
GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT INITIATION

Date: 	12/8/80

Project Title: RIGEL CustoMization, Installation, Enhancement, and Training

Project No:
	A-2778

Project Director: Ms. B. S. Rice

Sponsor:
	Lockheed-Georgia Company; Marietta, Georgia 30063

Agreement Period: 	 From 	9/26/80 	Until
	9/25/81

Type Agreement: 	Standard Industrial w/P.O. No. RX 15062

Amount: 	 $20,000

Reports Required: Monthly Letter Progress Reports

Sponsor Contact Person (s):

Technical Matters

Mr. W. R. Hood
Department 7235, Zone 316
Lockheed-Georgia Company
86 South Cobb Drive
Marietta, Georgia 30063

Contractual Matters

(thru OCA)

Mr. J. L. Kirsch, Buyer
Direct Charge Group
Department 52-25, Zone 383
Lockheed-Georgia Company
86 South Cobb Drive
Marietta, Georgia 30063
404/424-2073

Defense Priority Rating: 	None

Assigned to: 	CSTL/DSB

COPIES TO:

WM/Laboratory)

Project Director
	

Library, Technical Reports Section

Division Chief (EES)
	

EES Information Office

School/Laboratory Director
	

EES Reports & Procedures

Dean/Director— EES
	

Project File (OCA)

Accounting Office 	 Project Code (GTRI)

Procurement Office
	

Other

Security Coordinator (OCA)

(....--RepPrts Coordinator (OCA)

CA-3 13/761

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION SHEET

Date 5/7/87

Project Title: RIGEL Customization, Installation, Enhancement & Training

Project No: 	A-2778

Project Director:
	B. S. Rice

Sponsor: 	Lockheed-Georgia

Effective Termination Date: 	
9/25/81

Clearance of Accounting Charges: 	

Grant/Contract Closeout Actions Remaining:

Final Invoice alliflelotWISPettitittifitY

Final Fiscal Report

111 Final Report of Inventions

❑ Govt. Property Inventory & Related Certificate

❑ Classified Material Certificate

❑ Other 	

Assigned to: 	ECSL

	 (School/Laboratory)

COPIES TO:

Administrative Coordinator
Research Property Management
Accounting
Procurement/EES Supply Services

Research Security Services
Reports Coordinator (OCA)
Legal Services (OCA)
Library

EES Public Relations (2)
Computer Input
Project File
Other 	

.•7 7 7

RIGEL CUSTOMIZATION, INSTALLATION,

ENHANCEMENT, AND TRAINING

Monthly Status Report

September 26 through October 31, 1980

EES/GIT Project A-2778

Prepared by

Digital Signal Processing Branch
Electronics and Computer Science Laboratory

Georgia Institute of Technology
Atlanta, Georgia 30332

Beverly S. Rice

for

The Lockheed-Georgia Company
86 South Cobb Drive

Marietta, Georgia 30063

under

Standard Industrial Agreement 9-30-80
Purchase Order Number RX-15062

OBJECTIVE

The customization, enhancement, and installation of the RIGEL (Raster-scan
Intelligent Graphics Engineering Language) software package on Lockheed's
Digital Equipment Corporation PDP-11/34 minicomputer for use with a Ramtek
RM-9300 color graphic display unit, and training in the use of the software.

WORK SUMMARY

The contract officially began on September 26, 1980, but work did not start
until the last two days of October, so not much progress can be reported
during the period covered.

Future reports will present a description of the work in terms of manhours
expended and progress achieved. They will track the progress via a critical
path method (CPM) chart like the one shown in Figure 1. Four tasks are
depicted:

I. Customization
II. Installation and demonstration,

III. Enhancement, and
IV. Training and Consultation.

For each task, various nodes are defined.

WORK PROJECTED FOR NEXT MONTH

During November, work will proceed on Task I.

1 3

[-------TASK I

TASK II

I TASK III I 	TASK IV 	

4 	 5 W 6 W 	7 W 8

customization basic verifica- short enhance- prepar-
for computer RIGEL tion of tutorial ments to ation of
dependencies instruction basic on basic RIGEL course

set
installation

language language materials

week of
instruc-
tion on
enhanced
RIGEL

0 	

customization
for display

dependencies

Figure I. Critical Path Method Chart for RIGEL Project

RIGEL CUSTOMIZATION, INSTALLATION,

ENHANCEMENT, AND TRAINING

Monthly Status Report

November 1 through November 30, 1980

EES/GIT Project A-2778

Prepared by

Digital Signal Processing Branch
Electronics and Computer Science Laboratory

Georgia Institute of Technology
Atlanta, Georgia 30332

Beverly S. Rice

for

The Lockheed-Georgia Company
86 South Cobb Drive

Marietta, Georgia 30063

under

Standard Industrial Agreement 9-30-80
Purchase Order Number RX-15062

OBJECTIVE

The customization, enhancement, and installation of the RIGEL (Raster-scan
Intelligent Graphics Engineering Language) software package on Lockheed's
Digital Equipment Corporation PDP-11/34 minicomputer for use with a Ramtek
RM-9300 color graphic display unit, and training in the use of the software.

WORK SUMMARY

During the first week of November, Mr. Russell Bell, our technical contact at
Lockheed, was ill due to an auto accident, so work did not commence until the
second week. 	Meetings were held with Mr. Bell to establish Lockheed's
hardware configuration and software needs. 	The following discussions were
reached:

1. Lockheed wants to use their Ramtek display unit with a DEC PDP-11/34
minicomputer, executing under the RSX-11M Operating System.

2. Lockheed's Ramtek configuration comprises hardware and firmware
options.

- controller RM-9300
- special options package (RM-SPO)
- memory option card RM-MOC
- serial link/cursor RM-SLC
- graphics (RM-GRA)
- conics (RM-CON)
- scaling (RM-SCA)
- scroll (RM-SCR)
- programmable font (RM-FNT)
- interactive peripherals (RM-PER)
- type II video card (RM-V2)
- memory plane (RM-5x6x6)
- general purpose interface card (RM-9000-40)
- joystick cursor controller (GC-106)
- keyboard (GK-120)
- distribution panel (RM-PP2)
- cable (GA-10315)

It does not include these firmware options:

- logical and arithmetic functions (RM-LAF)
- status management (RM-STA)
- user subroutines (RM-SBR)
- magnify (RM-MAG)

3 	Lockheed will have one color graphic CRT terminal tied to the Ramtek,
with 512 lines of 640 pixels each.

During 	November, coding 	changes to 	make 	RIGEL compatible 	with the
above-mentioned configuration were begun. Tech plans to deliver the software
to Lockheed on a DEC RL-02 diskpack, since that is the only input/output
medium on Lockheed's PDP-11/34. Russ Bell has delivered an RL-02 to Tech for

this purpose.

Lockheed is acquiring a hardware interface and software handler for the DEC
computer from Ramtek. The software will be delivered on a magnetic tape.
Since Lockheed does not have a mag tape device, Tech will copy the tape to the
RL-02 on Tech's VAX computer. Software delivery will not occur prior to that
point in time, since the Ramtek cannot be addressed by the PDP-11/34 without
the interface and handler, so no debugging would be possible.

MANHOUR REPORT

Following is a breakdown by function of manhours expended for the period
designated, corresponding to Figure 1.

November 1 through November 30, 1980

NAME CPM NODE MANHOURS

Beverly Rice 1 67

Beverly Rice 2 60

Ralph Duncan 1 8

FUNCTION

definition of requirements;
begin customization

definition of requirements;
begin customization

aid in software placement
on the VAX

WORK PROJECTED FOR NEXT MONTH

During December, Tech plans to proceed with Task I.

I--iTASK I

TASK II

I TASK III 1 	TASK IV 	

3 	W 4 	W 5 	W 6 	 1 	 8

customization
for computer
dependencies

2

customization
for display

dependencies

basic 	verifica- 	short 	enhance- 	prepar- 	week of
RIGEL 	tion of 	tutorial 	ments to 	ation of 	instruc-

instruction 	basic 	on basic 	RIGEL 	course 	tion on
set 	language 	language 	 materials 	enhanced

installation 	 RIGEL

Figure 1. Critical Path Method Chart for RIGEL Project

Vie
-, 7' ?..kakr

Georgia Insi tute of Technology
ENGINEERIN ; EXPERIMENT STATION

ATLANTA, GEORGIA 30332

January 10, 1981

Mr. William R. Hood
Department 7235, Zone 316
LocUped-Georgia Company
86 P'Ith Cobb Drive
Mari ,ta, GA 30063

Subject:
	

EES/GIT Project A-2778 "RIGEL Customization,
Installation, Enhancement, and Training"
Progress/Status Report,
December 1 through December 31, 1980

Dear Mr. Hood:

The attached document comprises a Progress/Status Report for Project
A-2778, covering the period from December 1, 19810rough December 31, 1980.
It consists of a brief description of manhours expended and progress achieved
on the technical effort during the above-mentioned period.

Should you have any questions concerning the contents of these
attachments, please do not hesitate to call.

Sincerely,

Beverly S. Rice
Project Director
Digital Signal Processing Branch

BSR/dwt

Attachments

cc: Russell Bell, Lockheed
John Kirsch, Lockheed
Kenneth R. Perry, DSPB
Duane Hutchinson, OCA
File

AN EQUAL EMPLOYMENT/EDUCATION OPPORTUNITY INSTITUTION

RIGEL CUSTOMIZATION, INSTALLATION,

ENHANCEMENT, AND TRAINING

Monthly Status Report

December 1 through December 31, 1980

EES/GIT Project A-2778

Prepared by

Digital Signal Processing Branch
Electronics and Computer Science Laboratory

Georgia Institute of Technology
Atlanta, Georgia 30332

Beverly S. Rice

for

The Lockheed-Georgia Company
86 South Cobb Drive

Marietta, Georgia 30063

under

Standard Industrial Agreement 9-30-80
Purchase Order Number RX-15062

OBJECTIVE

The customization, enhancement, and installation of the RIGEL (Raster-scan
Intelligent Graphics Engineering Language) software package on Lockheed's
Digital Equipment Corporation PDP-11/34 minicomputer for use with a Ramtek
RM-9300 color graphic display unit, and training in the use of the software.

WORK SUMMARY

Only roughly two weeks of work were performed on the project in December, due
to a week of Christmas holidays at Georgia Tech and a week of vacation on the
part of the project director.

Work on Nodes 1 and 2, customization for computer and display dependencies at
Lockheed, is virtually complete, with the exception of changes which may be
needed for compatibility with the Ramtek handler and interface which Lockheed
has purchased.

Nodes 3, 4, and 5, consisting of installation of the basic RIGEL instruction
set at Lockheed, verification of its operation, and a tutorial on its use,
will be delayed until Lockheed receives the software handler for the PDP/11
minicomputer-Ramtek hardware interface from Ramtek. In the event that this
delay should be prolonged, enhancements (Node 6) will be based on intuition of
what would be most desirable and useful, rather than on actual "hands-on"
experience of Lockheed personnel with the basic language.

MANHOUR REPORT

Following is a breakdown by function of manhours expended for the period
designated, corresponding to Figure 1.

December 1 through December 31, 1980

NAME
	

CPM NODE 	MANHOURS 	 FUNCTION

Beverly Rice 	 1 	 52 	completion of customization for
computer dependencies,
pending receipt of the
Ramtek software interface

Beverly Rice 	 2 	 52 	completion of customization for
display dependencies,
pending installation and
checkout

WORK PROJECTED FOR NEXT MONTH

During January, Tech plans to proceed with Task III, pending receipt of the
Ramtek interface, at which time work on Task II will begin.

//-- ,2 77g"

Georgia Institute of Technology
ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

February 10, 1981

Mr. William R. Hood
Department 7235, Zone 316
Lockheed-Georgia Company
86 South Cobb Drive
Marietta, GA 30063

Subject: 	EES/GIT Project A-2778 "RIGEL Customization,
Installation, Enhancement, and Training"
Progress/Status Report,
January 1 through January 31, 1981

Dear Mr. Hood:

The attached document comprises a Progress/Status Report for Project
A-2778, covering the period from January 1, 1981 through January 31, 1981. It
consists of a brief description of manhours expended and progress achieved on
the technical effort during the above-mentioned period.

Should you have any questions concerning the contents of these
attachments, please do not hesitate to call.

Sincerely,

Beverly S. Rice
Project Director
Electronics and Computer Systems Lab

BSR/dwt

Attachments

cc: Russell Bell, Lockheed
John Kirsch, Lockheed
Fred L. Cain, ECSL
Hugh W. Denny, ECSL
Duane Hutchinson, OCA
File

AN EQUAL EMPLOYMENT/EDUCATION OPPORTUNITY INSTITUTION

RIGEL CUSTOMIZATION, INSTALLATION,

ENHANCEMENT, AND TRAINING

Monthly Status Report

January 1 through January 31, 1981

EES/GIT Project A-2778

Prepared by

Electromagnetic Compatibility Division
Electronics and Computer Systems Laboratory

Georgia Institute of Technology
Atlanta, Georgia 30332

Beverly S. Rice

for

The Lockheed-Georgia Company
86 South Cobb Drive

Marietta, Georgia 30063

under

Standard Industrial Agreement 9-30-80
Purchase Order Number RX-15062

OBJECTIVE

The customization, enhancement, and installation of the RIGEL (Raster-scan

Intelligent Graphics Engineering Language) software package on Lockheed's

Digital Equipment Corporation PDP-11/34 minicomputer for use with a Ramtek

RM-9300 color graphic display unit, and training in the use of the software.

WORK SUMMARY

The work on Node 3, installation of the basic RIGEL instruction set, has had

to be postponed pending receipt by Lockheed of the software handler for the

PDP/11 minicomputer--Ramtek hardware interface from Ramtek. Delivery of this

handler was promised to Lockheed in November, but Ramtek has apparently had a

delivery schedule slippage.

Because of this, work proceeded somewhat out of sequence on Nodes 4, 5, 6, and

7. Customization of the code for a DEC PDP-11/34 was tested to the extent

that is practicable on a PDP-11/34 at Tech. This is part of Node 4 and should

help to reduce the time required for Node 3, installation of the basic

instruction set at Lockheed. Work on Nodes 5 and 7 consisted of preparation

of materials which will be used for the short tutorial on the basic language

and instruction on the enhanced language.

Work on Node 6 consisted of beginning to outline suggestions as to which

enhancements would be most beneficial for Lockheed's application and hardware

configuration.

Note: during the time period covered by this report, January 1981, the Ramtek

handler had not yet been received. At the time of the writing of this report,

however, Lockheed has received a tape of the software from Ramtek and has

delivered it to Tech. Assuming that the software on the tape is in order, it

will be copied onto the RL-02 disk pack supplied by Lockheed, so that work can

proceed on installation.

MANHOUR REPORT

Following is a breakdown by function of manhours expended for . the period

designated, corresponding to Figure 1.

NAME

January 1

CPM NODE 	•

through January

MANHOURS

31, 	1981

FUNCTION

Scott Coleman 4 4 Verification of basic language
on Tech-owned PDP-11/34
system

Beverly Rice 4 8 Verification of basic language
on Tech-owned PDP-11/34
system

Beverly Rice 5 40 Prepare materials to be used
for short tutorial on
basic language

Beverly Rice 6 40 Begin outlining suggestions for
enhancements

Beverly Rice 7 29 Begin editing changes for
course materials

Louise Ruffin 5 8 Secretarial aid on preparation
of tutorial materials

WORK PROJECTED FOR NEXT MONTH

During February, Tech plans to install the basic RIGEL instruction set, verify

its operation, and present a short tutorial on the basic language. This is

dependent, of course, upon the proper operation of the hardware interface and

software handler from Ramtek. It also assumes availability of some machine

time on the PDP-11/34 at Lockheed. Meanwhile, discussions will proceed with

Lockheed personnel as to desired enhancements.

1

customization
for computer
dependencies

2

I----TASK 	

	 TK III 	TASK IV

3 	W 4 	W 5 	W 6 	 7 	 8

basic verifica- short enhance- prepar-
RIGEL tion of tutorial ments to ation of

instruction basic on basic RIGEL course
set

installation
language language materials

week of
instruc-
tion on
enhanced
RIGEL

customization
for display

dependencies

Figure I. Critical Path Method Chart for RIGEL Project

1?-6778'

,77

•

•

• ...:',x1,11e..a)

Georgia Institute of Technology
ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

10 March 1981

Mr. William R. Hood
Department 7235, Zone 316
Lockheed-Georgia Company
86 South Cobb Drive
Marietta, GA 30063

Subject: Monthly Progress Report No. 5
Purchase Order No. RX-15062
"RIGEL Customization, Installation, Enhancement, and Training"
Covering the period February 1 through February 28, 1981
Project No. A-2778

Dear Mr. Hood:

The objective of the project is the customization, enhancement, and
installation of the RIGEL (Raster-scan Intelligent Graphics Engineering
Language) software package on Lockheed's Digital Equipment Corporation PDP-
11/34 minicomputer for use with a Ramtek RM-9300 color graphic display unit,
and training in the use of the software. As indicated in Figure 1, there
are four major tasks to be performed on this effort:

Task I 	Perform customization for computer dependencies and for
display dependencies.

Task II 	Install the basic RIGEL instruction set, verify its
operation, and present a short tutorial on its use.

Task III Implement enhancements to RIGEL.

Task IV Prepare course materials and present a week of instruction
on RIGEL and on the enhanced features.

Prior to February, work on Node 3, installation of the basic RIGEL
instruction set, had had to be postponed, pending receipt by Lockheed of the
software handler for the Ramtek General-Purpose (hardware) Interface
(GPIF). Early in February, Lockheed received from Ramtek a tape of the
software driver. This tape was delivered to Tech, with the intent that
Tech would copy it onto Lockheed's RL--02 disk pack via Tech's Vax, since
Lockheed does not have a tape drive on their PDP-11. Unfortunately, the
tape from Ramtek was improperly formatted and largely unreadable. Two
conversion routines had to be written in order to read the tape contents and
get them in standard DEC format. Furthermore, since the handler is a

AN EQUAL EMPLOYMENT/EDUCATION OPPORTUNITY INSTITUTION

Mr. William R. Hood
10 March 1981
Page Two

"general purpose" one, it had to be modified somewhat to make it
operational for Lockheed's hardware. Although not originally specified in
the contract, a couple of weeks were spent performing this item by Tech,
since Lockheed has no way of accessing a mag tape on their system.

Work proceeded on Node 4, verification of the basic language. Tech
has a set of standard test routines for the Ramtek, which are designed to
verify operation of the Ramtek hardware and firmware, as well as to
demonstrate proper operation of RIGEL. These routines have been modified
for Lockheed's specific application. The routines were "desk-checked" on
Tech's Vax by operating them with the RIGEL software.

An RL-02 disk pack has now been loaded with the RIGEL preprocessor and
assembler software, the Ramtek handler,and the test routines. When
Lockheed indicates that they are ready, Tech will begin the actual software
installation. (At last check, Lockheed's system was "down", due to
hardware problems.)

Meanwhile, work also progressed on Nodes 5 and 7, preparation of
materials for the tutorial and the week of instruction.

The following is a breakdown by function of manhours expended for the
period of February 1-28, 1981, corresponding to Figure 1:

NAME CPM NODE MANHOURS FUNCTION

Mike Boatright 3 3 Generation of RL-02 pack on Vax

Scott Coleman extra 8 Correction of Ramtek handler

Ralph Duncan extra 4 Reading and conversion of
Ramtek handler

Beverly Rice extra 60 Reading conversion, and cor-
rection of Ramtek handler

Beverly Rice 4 60 Modification and checking of
hardware/firmware test routines

Beverly Rice 5 12 Preparation of materials to be
used for short tutorial on
basic language

Beverly Rice 7 28 Preparation of course materials

Mr. William R. Hood
10 March 1981
Page Three

During the month of March, work should finish on Nodes 1 through 5 and
continue on Nodes 6 and 7, assuming that Tech is able to obtain access to
Lockheed's equipment.

Respectfully submitted,

Beverly S. Rice
Project Director, A-2778

BSR:gh

APPROVED:

Hugh W. Denny, Chief
Electromagnetic Compatibility Div.

cc 	Russell Bell, Lockheed
John Kirsch, Lockheed
Fred L. Cain, ECSL
Hugh W. Denny, ECSL
Duane Hutchinson, OCA
File

[-------TASK I 	I 	TASK II

1

T!K III 1 	TASK IV

3 	 4 	W 	5 	 7 	 8

basic verifica- short enhance- prepar- week of
RIGEL tion of tutorial ments to ation of instruc-

instruction basic on basic RIGEL course tion on
set

installation
language language materials enhanced

RIGEL

customization
for computer
dependencies

0 	

2

customization
for display
dependencies

Figure I. Critical Path Method Chart for RIGEL Project

Georgia Institute of Technology
ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

10 April 1981

Mr. William R. Hood
Department 7235, Zone 316
Lockheed-Georgia Company
86 South Cobb Drive
Marietta, GA 30063

Subject: Monthly Progress Report No. 6, Project A-2778,
Purchase Order No. RX-15062, "RIGEL Customization,
Installation, Enhancement, and Training" Covering
the Period March 1 through April 3, 1981.

Dear Mr. Hood:

The objective of the project is the customization,
enhancement, and installation of the RIGEL (Raster-scan Intelligent
Graphics Engineering Language) software package on Lockheed's
Digital Equipment Corporation PDP•11/34 minicomputer for use with a
Ramtek RM-9300 color graphic display unit, and training in the use
of the software. As indicated in Figure 1, there are four major
tasks to be performed on this effort:

Task I 	Perform customization for computer dependencies
and for display dependencies.

Task II 	Install the basic RIGEL instruction set,
verify its operation, and present a short
tutorial on its use.

Task III Implement enhancements to RIGEL.

Task IV 	Prepare course materials and present a week
of instruction on RIGEL and on the enhanced
features.

During the period of March 1 through April 3, everything came
together to provide Lockheed a functional graphic system with
RIGEL. At Lockheed's request, their personnel and ours joined
efforts in order to insure that all elements of the hardware,
firmware, and software were functional and communicating properly
with each other. Tech would especially like to thank Mike Cronin
and Charles Stokes for their aid in this connection. Several
problems were detected and corrected in each of these fundamental
areas.

The most difficult problems to diagnose and correct centered
around the handler provided by Ramtek. This handler was mentioned
in last month's letter as being the source of a considerable
conversion effort. This piece of software is much harder to debug

AN EQUAL EMPLOYMENT/EDUCATION OPPORTUNITY INSTITUTION

than other elements of the systems, for several reasons. It was not
written by either Tech or Lockheed, it is poorly documented, it is
intended to be general-purpose in nature, and its proper
functioning depends upon an intimate understanding of the
functioning of the Ramtek hardware, which is also poorly
documented. Until the handler problems were finally corrected,
debugging of other system elements was also severely hampered,
because without proper handler operation, no information could
complete the vital communications link between the computer and the
display unit. We were, so to speak, debugging "in the dark", since
no pictures could be drawn on the screen. The efforts and expertise
of Scott Coleman of Georgia Tech were vital to getting this
difficult step completed in a timely manner. It soon became
apparent that the handler, as delivered by Ramtek, could not
possibly operate with the particular interface and hardware which
comprise Lockheed's configuration. Among other things, the handler
was using the wrong instruction words and sequences for their
particular interface. Even more disturbing, however, was the
discovery that certain fundamental errors existed in the handler
code which caused it to address out of its own executable area and
"bomb" in the teletype handler code. These errors are of such a
nature that the handler could never have functioned properly on a
DEC computer, whether it be Lockheed's configuration or anyone
else's. The handler from Ramtek was thus delivered to Lockheed in
an untested, inoperable mode, a condition which should be
inexcusable.

With respect 	to hardware, 	several difficulties were
encountered with the interface for the Ramtek-to-PDP-11/34 link.
Problems ranged from the interface board not being properly seated
to the NPR "grant" line on the Ramtek interface backplane slot not
being cut, thus preventing the computer from "talking" to the
Ramtek. Several minor problems were also found with the display
unit itself. Some problems were easy to detect and correct, such as
the cables not being properly connected. More seriously, at one

point the green gun ceased to function, and the unit experienced
severe color imbalance. It required a couple of days to get
everything adjusted again.

Software system problems were less severe and easier to
diagnose and correct than hardware problems, but because they were
numerous, it required some time to address all of them. The major
difficulty in this area stemmed from the fact that Lockheed's PDP-
11/34 RSX system is new, and final system configuration has not yet
been completed. It was therefore necessary for Tech to perform
certain procedures in order to expedite and to enable the RIGEL
software, a moderately sized piece of code, to execute. As an
example, the overlay task builder, TKB, had originally been
installed. Using TKB, a small FORTRAN program required five
minutes to link, and a large program needed thirty minutes.
Needless to say, debugging was severely restricted by such time
delays, so Tech installed the resident task builder, BIGTKB, in
TKB's place. For a similar reason, the resident macro assembler,
BIGMAC, was installed in MAC'S place.

Another system software problem centered around the partition
for the Ramtek driver. Normally, RMDRV would reside in the driver
partition, DRVPAR. However, this partition was specified to
default to minimum size during Lockheed's system generation, and it
was therefore too small to hold the Ramtek driver. RMDRV therefore
had to be installed in partition GEN. We recommend that DRVPAR be
sized to accommodate RMDRV on a future system generation effort, so
that it will operate more efficiently.

After all these problems were solved, everything proceeded
smoothly. Tech executed a series of test routines to thoroughly
check the functioning of the Ramtek firmware. 	Generally, some
deviations from specifications are discovered in this way. 	In
Lockheed's case, however, everything was found to be functioning
properly.

Tech then proceeded with an overview briefing on the basic
RIGEL instruction set and a week of intensive training on the use of
RIGEL. In conjunction with the training, Tech delivered ten sets of
User's Manuals and Instruction Notes to Lockheed. By the end of the
second day of training, Lockheed personnel were able to generate
some fairly sophisticated pictures with RIGEL, based upon their
anticipated applications. Tech would like to commend Herb Archer
in particular on his ADI display.

Certain enhancements in operation were implemented, based on
Lockheed's experience in using RIGEL. Most notably, the sequence
of preprocessing, compiling, and linking a picture program was
simplified considerably. In the RIGEL User's Manual, a page is
devoted to the sequence needed to accomplish these setups when
executed manually. With the new procedure, the whole sequence can
be invoked by typing

@ RIGEL

and entering the source filename and answering a couple of
questions.

Tech also provided a short session on how to define and access
additional colors, other than the eight basic ones in RIGEL. This
is a simple procedure; the difficulty lies in choosing 1024 colors
from 4096 possible ones and deciding how to name or reference them.
Lockheed has indicated a desire on the part of their human factors
personnel to experiment with various color combinations.

Tech would have liked to provide additional features and
enhancements to RIGEL, but given the difficulties which were
encountered with Ramtek's handler and interface, and with the
newness of Lockheed's system, it was judged by both Lockheed and
Tech to be more important to get the hardware functioning properly
and efficiently with the basic instruction set. This condition now
exists.

The following software source files were delivered to Lockheed
on an RL-02 disk pack:

(1) Basic RIGEL files

RIGEL. FTN -- RIGEL preprocessor
(executes as RIGEL TKB)

RIGASL. FTN -- RIGEL graphics assembler routines (linked
to picture programs as RIGASL.OBJ)

RMDRV.MAC 	Ramtek-provided driver

USRSYM.MAC -- another Ramtek-provided file

RMDRVBLD.CMD -- command file (Tech-provided) to build
the Ramtek driver

RAMTEKBLD.CMD -- command file to build a display program

SOURCE.RGL -- shell of a picture program, to
simplify editing

(2) Sources for RIGEL test pictures

GDRIVE3.RGL -- non-displayable code test
TESTCR.RGL -- non-displayable code test
RAMLIB.RGL -- simple symbol library
BALOON.RGL
CIRCLE.RGL
CROSS.RGL
DIMENN. RGL
FNTPHI.RGL
LINPLT.RGL
MCTSTB.RGL
NEWRAS.RGL
OUB.RGL
PLOT.RGL
RELIND.RGL
TEXT.RGL
WHEELS.RGL
YELDOT.RGL
CONVERGE.RGL - - undocumented display, created for Charlie
Stokes to aid in convergence of the display unit.

The following is a breakdown by function of manhours expended
for the period March 1 through April 3, 1981, corresponding to
Figure 1:

NAME 	CPM NODE MANHOURS

Beverly Rice 	3 	8

FUNCTION

RIGEL installation

Beverly Rice 	extra
	

24 	Installation, correction,
and check-out of
Ramtek handler

Scott Coleman extra 	6 	Installation, correction,
and check-out of
Ramtek handler; correction
of installation of Ramtek-
to-DEC interface

Beverly Rice 	4 	32 	Testing and verification of
hardware, firmware, and
software

Beverly Rice 	6 	40 	Modification of DEC system
and installation of
additional procedures;
some RIGEL enhancements

Beverly Rice 	7 	48

Louise Ruffin 	7 	8

Beverly Rice 	5 & 8 	32

Preparation of course
materials

Copying and binding of
course materials

Short tutorial and week
of instruction on RIGEL

Tech has very much enjoyed working with Lockheed. We have seen
enough of Lockheed's application to know that RIGEL will simplify
their picture generation tasks and allow them to concentrate more
on the application and less on the hardware. We hope that
additional enhancements will be implemented at a future date,
either by Tech or Lockheed, to make RIGEL even more flexible, and to
meet more of Lockheed's specific needs. A list of recommendations
by Tech will be forwarded to Lockheed in the near future.

Tech would especially like to thank Bill Hood, Herb Archer,
Russ Bell, Mike Cronin, Charlie Stokes, and Dan Walden of Lockheed
for their assistance, courtesy, and patience.

Respectfully submitted,

Beverly Sal ce
Project Director, A-2778

BSR:jb

Appr/oved: 	/7 ,

H. W. Denny, Chief
Electromagnetic Compatibility Division

cc: Russell Bell, Lockheed
John Kirsch, Lockheed
Fred L. Cain, ECSL
Hugh W. Denny, ECSL
Duane Hutchinson, OCA
File

I------TASK I- 	I 	TASK II I TASK III I 	TASK IV

1 	 3 	 4 	 5 	 6 	 7 	 8

customization
for computer
dependencies

2

customization
for display

dependencies

basic verifica- short enhance- prepar- week of
RIGEL tion of tutorial ments to ation of instruc-

instruction basic on basic RIGEL course tion on
set

installation
language language materials enhanced

RIGEL

Figure 1. Critical Path Method Chart for RIGEL Project

RASTER-SCAN INTELLIGENT

GRAPHICS ENGINEERING LANGUAGE

(RIGEL)

USER'S MANUAL

FOR USE ON LOCKHEED-GEORGIA COMPANY'S

PDP-11/34 COMPUTER

WITH A RAMTEK 9300 DISPLAY SYSTEM

	}

Georgia Institute of Technology

Engineering Experiment Station

RASTER-SCAN INTELLIGENT
GRAPHICS ENGINEERING LANGUAGE

(RIGEL)
USER'S MANUAL

FOR USE ON LOCKHEED-GEORGIA COMPANY'S
PDP-11/34 COMPUTER

WITH A RAMTEK 9300 DISPLAY SYSTEM

by

Beverly S. Rice and Constance R. Foulke

Georgia Tech Project A-2778

© 1979

Revised March 1981 by Beverly S. Rice

ELECTROMAGNETIC COMPATIBILITY DIVISION
ELECTRONICS AND COMPUTER SYSTEMS LABORATORY

ENGINEERING EXPERIMENT STATION
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

FOREWORD

This report was prepared by the Electromagnetic Compatibility Division of

the Electronics and Computer Systems Laboratory at the Georgia Institute of

Technology. The work described was performed under the general supervision of

Mr. Hugh W. Denny, Head of the Electromagnetic Compatibility Division. The

project was directed by Beverly S. Rice.

Within the Lockheed-Georgia Company, the assistance of Mr. William Hood,

Mr. Herb Archer, Mr. Russell Bell, Mr. Michael Cronin, Mr. Charles Stokes, and

Mr. Daniel Walden is especially appreciated.

ii

SPECIAL NOTE

This manual was created as a general document to be used with RIGEL as it

is implemented on any number of computer systems. Therefore, a few of the

references in it should be modified in reading for Lockheed's application.

First, the document describes a system with four display units per Ramtek

interface. Lockheed has one currently, although more could be accommodated at

a later date.

Second, the colors described in the text of the document, namely RED,

GREEN, BLUE, WHITE, BLACK, MAGENT (name for magenta), CYAN, and YELLOW, are

the eight which are normally chosen for the Ramtek 9300. Additional colors

could easily be implemented, since Lockheed has the Ramtek V2-type video

board, which permits definition of up to 4096 colors.

The information contained in Section 10 ("Procedure for Creation and

Execution of a Display") and in the Appendices is specific to Lockheed's

application and should be consulted when in doubt.

Last, in examples which illustrate the syntax of RIGEL statements, the

standard DEC convention of using upper case letters for required instruction

names and lower case letters for words which can be specified by the user has

been followed.

iii

TABLE OF CONTENTS

Section 	 Page

1. Introduction 	 1-1

2. Retention of FORTRAN Features 	 2-1

3. Preprocessor and Graphics Assembler 	 3-1

4. Time-Critical Applications 	 4-1

5. Screen Coordinate System 	 5-1

6. Description of the High-Level Language 	 6-1

6.1 Features 	 6-2

6.2 General Program Structure 	 6-4

6.3 Control Statements 	 6-6

6.3.1 FIXED 	 6-6
6.3.2 RTIME 	 6-6
6.3.3 SYMDEF 	 6-7
6.3.4 BEGPIC 	 6-7
6.3.5 ENDPIC 	 6-7
6.3.6 DEFINE 	 6-8
6.3.7 ENDDEF 	 6-8
6.3.8 SYMBOL 	 6-8

6.4 	Instructions and Their Associated Data 	 6-9

6.4.1 SET 	 6-10
6.4.2 ERASE 	 6-10
6.4.3 TEXT 	 6-11
6.4.4 RASTER 	 6-12
6.4.5 VECTOR 	 6-13
6.4.6 CONIC 	 6-14
6.4.7 PLOT 	 6-15
6.4.8 FONT 	 6-18

6.5 	Arguments 6-19

6.5.1 FOREGD 	 6-20
6.5.2 BACKGD 	 6-20
6.5.3 IX1 	 6-20
6.5.4 IX2 6-21
6.5.5 WINDOW 	 6-22
6.5.6 SCAN 	 6-23
6.5.7 DIMEN 	 6-23
6.5.8 SPACE 	 6-24
6.5.9 SCALE 6-24

iv

Section 	 Page

6.5.10 COEFF 	 6-25
6.5.11 BASE 	 6-27
6.5.12 START 	 6-27

6.6 	Modes 	 6-29

6.6.1 IX 	 6-29
6.6.2 BK 	 6-31

6.7 	Interaction of Arguments 	 6-32

6.7.1 Interactions Concerning TEXT 	 6-32
6.7.2 Interactions Concerning RASTER 	 6-33
6.7.3 Interactions Concerning VECTOR 	 6-34
6.7.4 Interactions Concerning CONIC 	 6-34
6.7.5 Interactions Concerning PLOT 	 6-34
6.7.6 Interactions Concerning FONT 	 6-35

7. User's Symbol Library 	 7-1

8. Restrictions 	 8-1

9. Error Handling and Messages 	 9-1

10. Procedure for Creation and Execution of a Display 	 10-1

10.1 Files and Conventions 	 10-3

10.2 Special Procedures 	 10-4

10.2.1 Creation of the User's Source Program 	 10-4

10.2.2 Preprocessing by RIGEL 	 10-4

10.2.2.1 Preprocessing of a FIXED or RTIME
Program 	 10-4

10.2.2.2 Preprocessing of a SYMDEF Symbol Program 	10-5

10.2.3 Execution of the Picture Program 	 10-5

APPENDICES

APPENDIX A RIGEL Summary

Part I 	Control Statements 	 A-1
Part II 	Instructions and Their Associated Data 	 A-2
Part III Ramtek Arguments 	 A-3
Part IV 	Ramtek Modes 	 A-4
Part V 	User Symbol Arguments 	 A-4

APPENDIX B Argument Value Tables 	 B-1

Part I 	Interaction of COP, WINDOW, and SCAN 	 B-1
Part II 	SCAN Directions for RASTER Instruction 	 B-2
Part III SCAN Directions for TEXT Instruction 	 B-3
Part IV 	SCALE Values 	 B-4
Part V 	Interaction of START, WINDOW, and SCAN 	 B-5
Part VI 	SCAN and SPACE Values 	 B-6

APPENDIX C Declarations Required by RIGEL 	 C-1

APPENDIX D Currently Implemented User Symbols 	 D-1

APPENDIX E RIGEL Error Messages 	 E-1

Part I 	User Errors 	 E-1
Part II 	Fatal User Errors 	 E-3
Part III Fatal RIGEL Errors 	 E-4
Part IV 	Warning Messages 	 E-5

Page

 A-1

vi

LIST OF FIGURES

Page

FIGURE 6-1

FIGURE 6-2

FIGURE 6-3

FIGURE 6-4

FIGURE 6-5

The Code Necessary to Generate a Simple Picture,
with the Aid of RIGEL 	 1-2

The Code Necessary to Generate the Simple Picture
in Figure 1-1, without the Aid of RIGEL 	 1-3

Creation of a Picture Using RIGEL (a two-part process) . . . 3-2

Division of Picture into Fixed-Background and
Real-Time Portions (recommended but not required for
time-critical applications) 	 4-2

Horizontal and Vertical Filled Plots 	 6-17

Generation of a Circle Using the Conic Instruction 	 6-26

An Example of Addressing Modes 	 6-30

Interaction of the START Argument and Filled Plot 	 6-35

A Line Plot 	 6-37

FIGURE 1-1

FIGURE 1-2

FIGURE 3-1

FIGURE 4-1

vi i

1. INTRODUCTION

Whereas raster-scan graphics has exhibited remarkable advances in recent

years in terms of hardware, there has been a surprising lack of parallel

development in the realm of user-oriented software interfaces. The

Raster-scan Intelligent Graphics Engineering Language (RIGEL) preprocessor and

assembler were designed specifically to provide an interface between the user

and the machine-level instruction set of the Ramtek RM-9000 Series Graphic

Display System. In this manual, the use of four display screens, of

resolution 640 by 512 pixels, tied to a single Ramtek processor, is assumed.

The user must be acquainted with FORTRAN, but it is not necessary that he be a

programmer by profession. Only minimal training is required for such a person

to become conversant in the high-level RIGEL language. The tremendous savings

in personnel time required to generate graphics displays, and the fact that

such displays do not have to be coded by professional programmers, make RIGEL

a worthwhile investment.

The RIGEL graphics language was designed from a human factors point of

view, with the main purpose of providing the user with an easy method of

programming graphics displays. RIGEL results in several major benefits for

the user as compared with programming in machine code:

o The process of defining a picture is greatly simplified, thus

reducing programming time. As can be seen in Figures 1-1 and 1-2,

a few lines of RIGEL code, similar to FORTRAN and employing words

for commands and arguments which are easy to understand and

remember, replace many lines of machine code.

o A program coded in RIGEL provides a much better mental image of

what is being drawn than does a program coded in machine language.

In a sense, RIGEL is self-documenting; thus it is much easier for

someone else to understand the program (or for the same person to

understand it at a later date, after it has been set aside for a

while).

THE CODE NECESSARY TO GENERATE
A SIMPLE PICTURE, WITH THE AID OF RIGEL

Desired Picture:

RIGEL Code:

FIXED
PROGRAM VALVE
BEGPIC (1)
ERASE FOREGD=BLUE; BACKGD=WHITE (2)
SYMBOL CIRCLE SIZE=50; POSX=320; POSY=120 (3)
VECTOR START=320,120; END=320,180 (4)
VECTOR START=170,140; 	END=470,220; END=470,140; (5)

END=170,220; 	END=170,140
TEXT START=230,70; STRING='VALVE # 1' (6)
ENDPIC
END

NOTE: Parenthesized numbers to the right of the code are
used to reference corresponding machine code in
Figure 1-2.

FIGURE 1-1

THE CODE NECESSARY TO GENERATE
THE SIMPLE PICTURE IN FIGURE 1-1,

WITHOUT THE AID OF RIGEL

Machine Code:

Column 1 Column 2 Column 3 Column 4 Column 5

(1) 	0902 0007 0000 0004 008C
FFFF 0009 0000 0140 00AA
OFFF 0000 (3) 	OF03 00AA OODC
OFFF 0000 9000 (4) 0E03 00AA
0000 0000 0000 8000 * 008C
0000 0000 0001 0140 (6) 0C23
0000 0000 0000 0078 8000
0000 0000 0004 0004 00E6
0000 0000 0000 0140 0046
026C 0000 0000 00B4 000A **
00EF 0000 0000 (5) 0E03 5641
0000 0000 0000 8000 4C56
0000 0000 0000 00AA 4520
027F 0000 FE6F 008C 2320
00EF (2) 	0902 0000 0010 3120 ***
0000 8006 07D0 01D6
0007 0249 0140 OODC
0009 OFFF 00AA 01D6

FIGURE 1-2

o It is thus much easier to change a picture, because the line to be

changed can be easily located. 	Also, RIGEL automatically handles

the "repercussions" of changes which the user would have to

implement manually for a machine-coded program. As an example, if

we wanted the lines in the example in Figure 1-1 to be red instead

of 	blue, 	we 	could 	simply 	change 	line 	(4) 	to 	read:

VECTOR START = 320,120; END = 320, 180;
1 	FOREGD = RED

In the machine code (Figure 1-2), however, we would have to add the

value 0924 (red) at one particular spot in the list of numbers and

also remember to change the argument flag at * from 8000 to 8002 to

indicate the presence of an additional argument. Similarly, if we

were to make a change in data by having line (6) read:

TEXT START = 230,140; STRING = "VALVE # 100",

we would have to change the word at *** from 3120 to 3130 and then

add 3020. Additionally, the data count word at ** would have to

change from 000A to 000C.

o Ease of determining and correcting errors is also enhanced by

RIGEL. Failure to indicate the correct number of arguments or data

words in the machine code version would cause subsequent

instructions to be treated as data and data as instructions,

resulting in a garbled, meaningless picture. Such an error usually

requires a considerable amount of time to trace. 	With RIGEL,

however, instructions and data are generated by the processor. The

data may have an error in value caused by a user's incorrect entry,

but it will nonetheless be treated as data, thus simplifying the

process of correction.

o RIGEL provides the user with the ability to create and implement

customized user symbols.

o RIGEL also permits the user to decrease picture-generation overhead

in time-critical situations. These last two benefits are described

elsewhere in this documentation.

It is assumed that the reader of this manual has a working knowledge of

the FORTRAN programming language; therefore, details related to programming in

these areas are not presented. This manual gives a general description of the

various Ramtek instructions and arguments and details of how to implement them

in the RIGEL language. It was not the authors' purpose to duplicate the

contents of the Ramtek Programming Manual , which the user should consult for

specifics of what these commands do. This manual does include, however, items

of clarification which the designers of RIGEL, as users of their own product,

felt were either omitted or unclear in Ramtek's documentation.

2. RETENTION OF FORTRAN FEATURES

The RIGEL translator examines each statement in the user's input program

to see if it is a graphics instruction (a statement valid in RIGEL but not in

FORTRAN). If it is recognized as a graphics instruction, the translator

generates the corresponding FORTRAN statements. If, however, the statement is

not recognized as a graphics instruction, then the translator assumes it must

be a FORTRAN statement and passes it through unaltered. Thus, the RIGEL

system does not restrict the use of FORTRAN statements; it simply provides a

set of additional statements which may be used.

Note in particular that this scheme does not check each statement against

an exhaustive list of all possible FORTRAN instructions. To do so would have

greatly increased the RIGEL overhead in terms of memory usage and execution

time and would have duplicated much of the effort of the FORTRAN compiler. In

practical terms, this means that a misspelled graphics instruction statement

will be passed undetected and unaltered from RIGEL to the FORTRAN compiler,

which will then detect and flag the error. This was deemed to be acceptable,

since the error is eventually flagged. In all other cases, where the first

word of a graphics instruction is spelled correctly, any other errors in the

statement will be detected by the RIGEL preprocessor.

3. RIGEL: PREPROCESSOR AND GRAPHICS ASSEMBLER

RIGEL functions in two separate parts (see Figure 3-1) in order to take a

user's program written in FORTRAN plus graphics language statements and create

a picture from it. 	The user's source program is first read by the RIGEL

Preprocessor, which converts the program to a pure FORTRAN program. 	At task

build (link) time, the library of RIGEL Graphics Generation Routines, which is

responsible for generating the Ramtek object code, is linked to the user's

program to form a complete picture program which is then ready for execution.

FORTRAN
compiler

and
assembler

CREATION OF A PICTURE USING RIGEL

FILE

GENERATION

(a two-step process)

* *

■_
user s
source

program
(FORTRAN
plus

graphics)
■,_

■,

RIGEL
graphics
gener-
ation

routines

V

pure
FORTRAN
picture
program

compiled
FORTRAN
picture
program

■, 	,/

link
editor

compiled
& linked
picture
program,
ready to
execute

EXECUTION
icture

displayed ,

on
terminal/

* step 1--convert to FORTRAN

** step 2--link with graphics
subroutines

RIGEL
GRAPHICS

PRE-
PROCESSOR

FIGURE 3-1

4. TIME-CRITICAL APPLICATIONS

Incorporated in RIGEL is an important mechanism for applications that are

time-critical; namely, pictures can be divided into two portions, one called

the "fixed-background" portion, and the other called the "real-time" portion.

A series of instructions, each of which requires a finite amount of time to

execute, must be processed in order to draw a picture. It may require several

seconds to interpret all of these instructions. A large portion of the

picture, however, may consist of "constants" (legends, scales, etc.) that are

independent of real-time data and that do not change throughout the duration

of the picture. 	This portion of the picture can be generated once by

executing each instruction in sequence (see Figure 4-1). 	The bit-image

pattern of the picture can then be read back from the display and stored on

disk. From then on, whenever that picture is displayed, the background image

can be written directly back to the screen without having to re-execute each

separate instruction. Then, only the portion of the picture which is dynamic

has to go through the instruction-execution process.

Note that there is a trade-off between the increased speed with which a

picture can be displayed by separating it into these two components, and the

amount of disk storage space which is required to store the fixed-background

portion. Unless a special packing algorithm is applied, a fixed-background

bit-image pattern will require 327,680 words for storage (that is, one word

for each of 640 x 512 pixels). Since only 12 bits of each word are used,

packing could reduce this figure to 245,760 words per picture.

DIVISION OF PICTURE INTO FIXED-BACKGROUND AND REAL-TIME PORTIONS

(recommended but not required for time-critical applications)

creation
of fixed-

background
program

t
C

 —

creation
of real-
time data

rocessing
and display
program (time of

creation
of program)

fixed
background

image
(bit)

pattern
stored
disk„/

genera-
tion of fixed-
background
portion of

program

generation
of real-time

portion
of

dis-
play

td —

retrieval of
fixed back-

\

picture
display

disk

total

ground image
(bit)
pattern

from

(time of
display of

total
picture)

time
FIGURE 4-1

4-2

1(0,0) 	 (639 ,0

x

length d

• • 	• 	•

. (observe pixel
spacing is 1-1

• in x and y
directions)

,511) 	 (639,511))

5. SCREEN COORDINATE SYSTEM

The CRT display screen used in the current application has the following

format:

That is, there are 640 pixels (dots) in the horizontal (x) direction and 512

pixels in the vertical (y) direction. Unlike the normal representation of the

Cartesian coordinate system, in which the positive directions are defined to

be to the right and upward, the Ramtek system establishes right and downward

as positive, thus locating the origin (0,0) in the upper left-hand corner of

the screen. Absolute "x" values can range from 0 to 639, and absolute "y"

values from 0 to 511 (relative addressing will be described later).

6. DESCRIPTION OF THE HIGH-LEVEL LANGUAGE

RIGEL is a graphics preprocessor which extends the normal FORTRAN control

structures to include graphics commands. RIGEL will accept any statements

that the FORTRAN compiler will accept, in addition to those specific to RIGEL.

Unlike other graphics packages, RIGEL does not simply consist of a set of

subroutines which are callable from the user's program. Instead, RIGEL is a

set of key-word commands which can be embedded in the user's program.

Although the decision to pursue this approach in the design of RIGEL necessi-

tated the creation of a preprocessor to generate a FORTRAN program, whereas

the use of subroutine calls would have resulted in a FORTRAN-compatible

program, the former approach was preferred from the standpoint of optimizing

ease of use. For example, a subroutine to produce a line of text might have

looked like:

CALL TEXT (POSX, POSY, ROTATE, ARRAY, NCHARS, SCALE)

The arguments in the calling sequence would all have to be specified, in the

proper order, in order for the instruction to function correctly. That is,

CALL TEXT (POSX, POSY, ARRAY, NCHARS, SCALE)

or CALL TEXT (POSX, POSY, ARRAY, ROTATE, NCHARS, SCALE)

would have been incorrect. 	A casual user would have had to program with a

manual in hand, a situation which is normally very frustrating for users who

are not primarily programmers. In the RIGEL language, however, a handful of

arguments with mnemonic names can freely combine with the various mnemonic

instructions. The same text instruction in the RIGEL language might have

looked like:

TEXT POSX = 10; POSY = 50; ARRAY = ICHAR, 15

or TEXT ARRAY = ICHAR, 15; SCALE = 2

or TEXT POSY = 50; ARRAY = ICHAR, 15; POSX = 10; SCALE = 2

or any number of other possibilities with arguments in any order (or omitted

when they assume default, or previous, values).

6-1

6.1 Features

The Raster-scan Intelligent Graphics Engineering Language (RIGEL) includes

eight control words, eight instructions (six of which require data specific

for that instruction), twelve general-purpose Ramtek arguments which may be

used with any of the instructions, two modes, and ten symbol arguments, which

are used only for items in the user symbol library. Sections 6.2 through 6.7

discuss in detail these various key words and their functions. Appendix A

provides a summary of them.

The RIGEL language, which is nearly free-format, encompasses several

useful general features:

o Like FORTRAN, instructions and arguments do not have to begin in

any particular column.

o Like FORTRAN, continuation lines are permitted for an instruction,

and expressions can span lines.

o Spaces can be inserted between (but not in the middle of) variable

values for legibility.

o Arguments (descriptors) for an instruction can be specified in any

order, or omitted entirely if they are to assume default values.

o Argument values generally have several alternate forms of

specification, to suit different user applications. 	For example,

numeric text data can be entered as

STRING = "6.5"

or ARRAY = IDATA, 3 (where IDATA contains

the characters)

or VALUE = X, 3, 2 (where X = 6.5).

o Argument values can be specified in the text of the program; e.g.,

IF (X .GT. 10.0) FOREGD = RED

or WINDOW) = 100

o A special set of symbols can be custom-designed for the user (e.g.,

STAR) and can then be referenced as though they were part of the

normal instruction set. These symbols have their own set of

arguments, in addition to being allowed to access any of the

standard Ramtek arguments. The above-named symbol could be used by

specifying:

SYMBOL 	STAR 	COLOR =

1 	BLUE; SIZE = 10; POSX = 50;

2 	POSY = 150

6.2 General Program Structure

There are three types of programs recognized by RIGEL: 	fixed-background

display, real-time update display, and user symbol definition programs. 	Each

of these three has a certain program structure which must be observed. One of

the three key-words -- "FIXED", "RTIME", or "SYMDEF" -- must be specified on

the first line of the program. The rest of the program consists of a mixture

of standard FORTRAN and RIGEL graphics instructions.

FIXED and RTIME program structures are identical, except for the first

line which identifies the program type. In a FIXED or RTIME program, the

command "BEGPIC" ("begin picture") must precede all other graphics

instructions, and at least one "ENDPIC" ("end picture") command must precede

the FORTRAN "END" statement. Thus, the structure of a FIXED or RTIME program

would be:

FIXED 	 [or RTIME]
• • •
FORTRAN declarations *
other FORTRAN statements
. • •

BEGPIC

FORTRAN and/or graphics statements

ENDPIC
	

(this statement may be repeated)

FORTRAN statements
	

(e.g., END)

A SYMDEF program is not in standard program format, but rather consists of

the instruction "SYMDEF" followed by one of more sets of instructions defining

symbol(s), each of which is delimited by the instructions "DEFINE symbolname"

and "ENDDEF."

The structure of a SYMDEF program defining n symbols would thus be:

SYMDEF
DEFINE name 1

FORTRAN declarations *
• • •
FORTRAN and/or graphics statements
• • 	•

6-4

ENDDEF
DEFINE name2
• • 	•
FORTRAN declarations *
• • 	•
FORTRAN and/or graphics statements
• • 	•
ENDDEF
• • 	•
• • 	•
DEFINE name n
• • •
FORTRAN declarations *
• • 	•
FORTRAN and/or graphics statements
• • 	•
ENDDEF

* NOTE: The FORTRAN declaration section includes those which are required for

RIGEL (see Appendix C), as well as any additional declarations which the user

may need to make for his particular application.

FURTHER NOTE: A symbol definition program may NOT use another symbol

within its body.

6.3 Control Statements

The eight control statements in the RIGEL language -- FIXED, RTIME,

SYMDEF, BEGPIC, ENDPIC, DEFINE, ENDDEF, and SYMBOL -- are not directly related

to any one particular Ramtek instruction, but rather perform chores such as

initialization and guidance of the RIGEL Preprocessor in translating the

user's program. These eight control statements and their functions are

described below.

6.3.1 FIXED

This instruction is required to be the first word of a fixed-background

display program; it is invalid anywhere else. Among other functions, it

causes RIGEL, upon encountering a BEGPIC instruction, to erase and initialize

all of the CRT display units on one Ramtek display generator. It automat-

ically sets the display mask so that the picture which is about to be drawn

will appear on all of the CRT's. The bit image pattern generated in the

Ramtek memory can then be read and stored on disk for future display on any of

the CRT units.

6.3.2 RTIME

This instruction is required to be the first word of a real-time update

display program; it is invalid anywhere else. When RIGEL encounters an RTIME

instruction, it automatically sets the display mask so that the picture which

is about to be drawn will appear on only one CRT display unit. Furthermore,

whatever is already present on the screen is not erased; the new image is

simply superimposed over the previous one. This program should not be used to

create a bit pattern.

6.3.3 SYMDEF

This instruction is required to be the first word of a symbol definition

program; it is invalid anywhere else. Among other functions, it alerts RIGEL

to the fact that symbol subroutines, rather than picture display programs, are

being created. 	These symbol subroutines will later be referenced by SYMBOL

statements, which are described in Section 6.3.8. 	Note that more than one

symbol can be defined in a SYMDEF program, as shown in Section 6.2.

6.3.4 BEGPIC

This instruction ("begin picture") causes the initialization of a display

program. It should therefore appear in the user's FIXED or RTIME program

before any other Ramtek instructions are issued, and it should appear only

once. BEGPIC is invalid in a SYMDEF program. BEGPIC initializes the values

of the various Ramtek arguments and modes and, in the case of a fixed-

background bit image program, also erases the screen.

6.3.5 ENDPIC

This command may appear any number of times in a FIXED or RTIME program;

it is invalid in a SYMDEF program. Each ENDPIC causes the current contents of

the Ramtek instruction buffer in memory to be written to the Ramtek hardware.

At least one ENDPIC is therefore required in a FIXED or RTIME program, and the

(final) ENDPIC statement must not be followed by any graphics instructions.

In most practical applications, this means that the next program statement

will be the FORTRAN "END" statement.

6.3.6 DEFINE

This statement is used in a SYMDEF program to signal the start of a new

symbol definition. The name of the symbol follows the word "DEFINE"; e.g.,

DEFINE STAR.

This command has no meaning in a FIXED or RTIME program.

6.3.7 ENDDEF

This statement is used in a SYMDEF program to signal the end of a symbol

definition. It has no meaning in a FIXED or RTIME program.

6.3.8 SYMBOL

This control statement is used in a FIXED or RTIME program to evoke a

symbol that has been previously created in a SYMDEF program. The correct

symbol is indicated by the symbo: name following the word "SYMBOL", such as

SYMBOL STAR. Further details on this instruction are given in Section 7.0.

"SYMBOL" is invalid in a SYMDEF program.

••• argn

6.4 Instructions and their Associated Data

The RIGEL language includes eight Ramtek instructions -- SET, ERASE, TEXT,

RASTER, VECTOR, CONIC, PLOT, and FONT. 	The section on general program

structure, Section 6.2, indicates where these instructions may be used. 	The

general format of the Ramtek instructions is:

inst 	arg i ; 	arg2 ;

where "inst" is the mnemonic representation of one of the Ramtek instructions,

and "arg i " is either an argument, data, or mode value of the form:

arg i = val l , 	val n

where "arg i " is the mnemonic representation of one of the key words for

arguments, data, or modes. This key word is followed by an equal sign. In

cases where an argument requires multiple values, they are separated from each

other by commas; arguments (or data or modes) are separated from each other by

semi-colons. No semicolon is placed after the last argument. There may be

any number of these arguments, in any order, and they may span continuation

lines. Since data are obligatory for all instructions except SET and ERASE,

these instructions are the only two which may appear without any arguments.

Argument and mode values are optional and may be specified for any of the

instructions, so they are described separately (see Sections 6.5 and 6.6).

Data values, however, are required and are specific to certain instructions

(e.g., STRING may be used with TEXT but not with VECTOR), so they are

described in conjunction with the instruction itself. In most cases where

data values are required, there are several representations by which the

values may be specified, thus providing the user greater flexibility.

The user should note in the following data descriptions that all arrays

are one-dimensional. In cases where the data consists of (x,y) coordinate

points, two separate arrays are used, one for the x-coordinate values and one

for the y-coordinate values.

6.4.1 SET

The SET instruction does not require data, but it may be accompanied by

any number of arguments. It sends new values of the specified arguments to

the Ramtek hardware, which could affect subsequent instructions, but does not

itself cause any change to the representation on the display screen. In that

sense, SET is like the "no-op" instruction which occurs in many programming

languages.

NOTE: 	In the opinion of the authors, the SET instruction is of no value,

since it does not cause a screen change. 	In place of an

instruction like:

SET FOREGD = BLUE

we would use:

FOREGD = BLUE.

The first instruction forces an output to the Ramtek, including

separate words for the instruction. The second merely stores a new

value for the FOREGD argument in the RIGEL common. This argument

could change again before the next instruction is output, in which

case only the new value would be output using our method. Even if

it does not change, it goes out as a one-word argument for a

meaningful instruction, rather than as a several-word separate

instruction.

6.4.2 ERASE

The ERASE instruction does not require any data. 	It sets all of the

pixels within the rectangular area defined by the four WINDOW argument values

to the BACKGD color (or to the FOREGD color, if reverse background mode (BK =

1) has been selected). 	In the normal background mode, the foreground is the

color of lines drawn by VECTOR, characters created by TEXT, etc. 	These are

6-10

(320,256)

drawn upon the background color, which is established by first erasing a

rectangular area. In the reverse background mode, erasing is performed in the

foreground color, and lines and characters are generated in the background

color. The user is advised to explicitly define a WINDOW with the ERASE

instruction. Otherwise, the last WINDOW in effect will be used as a default.

SAMPLE DISPLAY

ERASE WINDOW = 0,0,320,256; BACKGD =
1 	BLUE

(0,0)

6.4.3 TEXT

The TEXT instruction is used to generate ASCII characters on the screen.

These characters, and the number of characters, constitute the required data

and can be represented in any one of four formats:

TEXT ARRAY = name, length

or TEXT STRING = "abc"
	

(or labc')

or TEXT VALUE = xx.x, m, n

or TEXT VALUEL = xx.x, m, n

where: "name" is the name of an integer array containing ASCII characters

packed two per word

"length" is the number of words in array "name"

"abc" is an ASCII character string

6-11

"xx.x" is a real number expression with "m" significant digits

(exclusive of sign and decimal point) to be represented and "n"

digits to follow the decimal point

note: 	VALUE specifies a right-justified number (the normal

representation); VALUEL specifies a left-justified number

EXAMPLES: TEXT ARRAY = INAME, 20

TEXT STRING = "THIS IS A STRING"

TEXT VALUE = 37.5, 3, 1

TEXT VALUEL = (x+y)/100, N, 2

SAMPLE DISPLAY

TEXT WINDOW = 320,240,480,360;
1 	SCAN = 3; FOREGD = BLACK;
2 	STRING = "CATS"; START = 480,360

(320,240)

I SIVD,

(480,360)

6.4.4 RASTER

The RASTER instruction writes data to the display unit on a bit-per-pixel

basis (see Section 3-50 of the Ramtek Programming Manual for further details).

RASTER data is specified in an array:

RASTER ARRAY = name, length

6 - 12

where: "name" is the name of an integer array containing Raster data, and

"length" is the number of words in array "name".

SAMPLE DISPLAY

DIMENSION ISOL(10)

DATA ISOL(1), ISOL(2), ISOL(3), ISOL(4),
1 	ISOL(5), ISOL(6), ISOL(7), ISOL(8),
2 	ISOL(9), ISOL(10) /4* "177777, 0,
3 	2* "177777, 0, "170360, "7417/

RASTER FOREGO = RED; WINDOW = 290,
1 	240,353,279; SCALE = 22; ARRAY
2 	= ISOL, 10

(290,240)r---1
C=7.3

9:113(353,279)

6.4.5 VECTOR

The VECTOR instruction is used to draw lines from the point specified by

the argument START to successive end points specified by the data, which

represent (x,y) screen coordinates. (Note that if the START argument is not

specified, then the Current Operating Point is used as the startpoint; see

Section 6.5.12 for details.) VECTOR data can be specified as a set of two

arrays or as a series of endpoints:

VECTOR ARRAY = name
l' name2, length

or VECTOR END = x
1'y 1' END = x'2-,y-- ... END = x n ,y n 2'

where: "name l " is an array containing "length" successive x-coordinates

"name2 " is an array containing "length" successive y-coordinates

"x i ,y i " are the rectangular coordinates of the ith endpoint

EXAMPLE: VECTOR START = ICX, ICY; END = IX, IY; END = 10,50;
1 	END = (10 + 1/2 * 3) * 3, K

SAMPLE DISPLAY

VECTOR FOREGD = BLUE; START =
1 	320,240; END = 639,0

(639,0)

(320,240)

Note: 	lf, after indexing, any of the START or END coordinate values exceed

the screen resolution, the result may be indeterminate.

6.4.6 CONIC

The CONIC instruction is used to generate conic sections (circles,

parabolas, ellipses, and hyperbolas). 	The instruction begins at the point

defined by START and generates the conic section in a clockwise manner. 	The

data for this instruction represents (x,y) endpoint screen coordinates. 	If

the conic being drawn passes through the first endpoint, the conic will be

terminated at that point. (If more than one endpoint is specified, all are

ignored except the first one.) This means that, in order to draw a complete

circle, START (x,y) coordinates should equal END (x,y) coordinates. These

(x,y) data values have the same representations as for the VECTOR data in

Section 6.4.5; that is,

CONIC ARRAY = name l' name2, length

or CONIC END = x1 , y
1

where "length" is normally equal to one.

SAMPLE DISPLAY

CONIC FOREGD = BLUE; START = 160,200;
1 	END = 200,160; COEFF = 1,1,0,0,
2 	-80,0

(200,160)

(160,200)

Note: 	If, after indexing, any START or END coordinate values exceed the

screen resolution, the result may be indeterminate.

6.4.7 PLOT

The PLOT instruction is used to draw either filled plots or line plots

from the point specified by the argument START to successive points specified

by the data, with the increment in either the x or y direction held constant.

Plot data specifies either x or y coordinates, but not both. When BASE = 0,

SCAN = 0 specifies horizontal line plots and SCAN = 4 specifies vertical line

(160,
120) 111111111(320,120)

	

(160, 	 (480,

	

152) 	 152)
(160,

(400,184)
184)

plots. 	If SCAN = 0 and BASE V 0, the BASE argument value is the constant

y-coordinate, and the data represents successive y-coordinates whose spacing

is determined by SPACE. If SCAN = 4 and BASE y 0, then the BASE argument
value is the constant x-coordinate, and the data represents successive

x-coordinates whose spacing is determined by SPACE. The width of each plot

segment is determined by DIMEN. The two filled PLOT cases are represented in

Figure 6-1.

The format for PLOT data is:

PLOT POINT = p l , p 2 , 	pn

or PLOT ARRAY = name, length

where: "p i n is the coordinate of the ith endpoint

SAMPLE DISPLAY

PLOT START = 160,120; BASE = 160; DIMEN = 20,30;
1 	SPACE = 22,32; POINT = 320,480,400; SCAN=4

Note: 	If, after indexing, any POINT coordinate values exceed the screen

resolution, the result may be indeterminate.

HORIZONTAL AND VERTICAL FILLED PLOTS

HORIZONTAL PLOT
(SCAN=0)

VERTICAL PLOT
(SCAN=4)

FIGURE 6-1

6-17

INSERT

6.4.8 FONT

The FONT instruction is used to define a character which can later be

referenced by the TEXT instruction, and thus displayed on the screen. Each

word of FONT data represents two successive lines of pixels for the character,

whose dimensions are 8 x 12 pixels. The user should thus specify a data array

six words long. He must also specify a character code for this symbol, so

that he can later reference it. Section 3.60 of the Ramtek Programming Manual

contains an example of how to describe a character. The format for the FONT

instruction is:

FONT CODE = n; ARRAY = name, length

where: "n" represents an octal character code between "140 and "237

"name" is the name of the integer data array

"length" is the number of words in array "name"

SAMPLE DISPLAY

DIMENSION IPHI(6), IBLK(6), IVAL(1)

DATA IPHI(1), IPHI(2), IPHI(3), IPHI(4),
1 	IPHI(5), IPHI(6) / "10, "16052,
2 	"25052, "25052, 11 16010, "4000/
DATA IBLK(1), IBLK(2), IBLK(3), IBLK(4),

1 	IBLK(5), IBLK(6) /6*0/

IVAL(1) = 100*256+101
FONT CODE = 100; ARRAY = IPHI,6
FONT CODE = 101; ARRAY = IBLK,6
TEXT START = 80,160; SPACE = 15,18; SCALE =

1 	22; ARRAY = IVAL,1; FOREGD = BLACK

(80, 160)

Et—lar (INSERT)
(111,207)

6-18

6.5 Arguments

The twelve valid RIGEL arguments are listed here and in Appendix A:

FOREGD, BACKGD, IX1, IX2, WINDOW, SCAN, DIMEN, SPACE, SCALE, COEFF, BASE, and

START. Argument values may be specified for any of the instructions. If an

argument value is set in a FORTRAN statement, it affects the execution of the

next RIGEL instruction. Otherwise, an argument value is specified in a RIGEL

statement, and the specified argument value assignment occurs before the

instruction is executed.

An argument value assignment is indicated in the following format:

argument name = value(s)

in which the values are separated by commas. Argument value specifications in

the same RIGEL statement are separated by semicolons. When a RIGEL

instruction is executed, the relevant arguments are interpreted using the

current argument values; the current argument values are the last values

specified, or the default values if no specification has been made.

NOTE: 	When a multi-valued argument is used with a graphics instruction,

only the argument name is given, followed by the values, as for

example:

ERASE WINDOW = 0,0,639,511

When such arguments are used in the body of the FORTRAN program as

variables, multi-valued arguments are treated as arrays. Done this

way, the previous statement would appear as:

WINDOW (1) = 0
WINDOW (2) = 0
WINDOW (3) = 639
WINDOW (4) = 511
ERASE

Descriptions of the individual arguments follow.

6.5.1 FOREGD

In the normal background mode (BK=O), the foreground is the color of lines

drawn by VECTOR, characters generated by TEXT, etc. These are drawn upon the

background color, which is established by first erasing a rectangular area.

In reverse background mode (BK=1), erasing is performed in the foreground

color, and lines and characters are generated in the background color.

The possible foreground argument values are: RED, GREEN, BLUE, WHITE,

BLACK, MAGENT, CYAN, and YELLOW. 	The foreground argument specification is of

the form, FOREGD = color. 	The default foreground argument value is WHITE.

Under normal conditions, the user might employ the FOREGD argument with the

SET, TEXT, RASTER, VECTOR, CONIC, and PLOT instructions.

6.5.2 BACKGD

For a description of the function of the background argument, see Section

6.5.1 (FOREGD).

The possible background argument values are: RED, GREEN, BLUE, WHITE,

BLACK, MAGENT, CYAN, and YELLOW. The background parameter specification is of

the form, BACKGD = color. The default background value is BLACK. Under normal

conditions, the BACKGD argument is used mainly with the ERASE instruction, in

which it defines the color to which the area defined by WINDOW will be erased.

6.5.3 IX1

The Index-1 argument is only used whenever Index-1 addressing is

specified, i.e. when IX = 1, but the IX1 values can be set using any

addressing mode. 	The IX1 argument has a horizontal displacement value and a

vertical displacement value, e.g. IX1 = x,y. 	The horizontal displacement

value offsets the x-coordinate of a received (x,y) coordinate pair, and the

vertical displacement value offsets the y-coordinate of a received (x,y)

coordinate pair. 	The IX1 x-address value can be any integer value from -639

6-20

to +639, inclusive, and the y-address value can be any integer value from -511

to +511, inclusive.

The actual Index-1 argument values depend upon the received IX1 values and

the addressing mode. 	If the addressing mode is absolute (IX = 0), the

received IX1 values are used directly as the actual IX1 values. 	If the

addressing mode is Index-1 (IX = 1), the received IX1 values are summed with

the current IX1 values to obtain the new IX1 values. For the Index-2

addressing mode (IX = 2), the received IX1 values are added to the current IX2

values to obtain the new IX1 values. Lastly, for the relative addressing mode

(IX = 3), the received IX1 values are added to the current XCOP and YCOP

values to form new IX1 values.

The default IX1 values are (0,0).

The IX1 argument can be used with any instruction except FONT. An example

of the use of IX1 is shown in Section 6.6.1.

6.5.4 IX2

The Index-2 argument is only used whenever Index-2 addressing is

specified, i.e. when IX=2, but the IX2 values can be set using any addressing

mode. The IX2 argument has a horizontal displacement value and a vertical

displacement value, e.g. IX2 = x,y. The horizontal displacement value offsets

the x-coordinate of a received (x,y) coordinate pair, and the vertical

displacement value offsets the y-coordinate of a received (x,y) coordinate

pair. The IX2 x-address value can be any integer value from -639 to +639,

inclusive, and the y-address value can be any value from -511 to +511,

inclusive.

The actual Index-2 argument values depend upon the received IX2 values and

the addressing mode. 	If the addressing mode is absolute (IX = 0), the

received IX2 values are used directly as the actual IX2 values. 	If the

addressing mode is Index-1 (IX = 1), the received IX2 values are summed with

the current IX1 values to obtain the new IX2 values. 	For the Index-2

6-21

addressing mode (IX = 2), the received IX2 values are added to the current IX2

values to obtain the new IX2 values. Finally, for the relative addressing

mode (IX = 3), the received IX2 values are added to the current XCOP and YCOP

values to form new IX2 values.

The default 1X2 values are (0,0).

The IX2 argument can be used with any instruction except FONT. An example

of the use of IX2 is shown in Section 6.6.1.

6.5.5 WINDOW

The WINDOW argument is used with the following instructions: SET, ERASE,

TEXT, and RASTER. The WINDOW parameter values define an area whose edges

constitute the boundaries of a rectangular region that may be accessed by

these instructions.

There are four WINDOW argument values which are specified in the following

manner: WINDOW = x L , yT , x R , yB , in which "x L " is the window's left-most

x-coordinate, "yT " is the top-most y-coordinate, "xR " is the right-most

x-coordinate, and "y B " is the bottom-most y-coordinate. The following

restrictions apply to the WINDOW argument values:

(1) xL < x R

(2) yT < yB

(3) -639 < x L < + 639

-639 < x
R
 < + 639
 —

(4) -511 < yT < + 511

-511 < yB < + 511

If, after indexing, any of the WINDOW parameter values exceed the screen

resolution, the result will be indeterminate. The default WINDOW values are

(0, 0, 639, 239) such that the entire display screen is within the WINDOW.

Whenever WINDOW argument values are given, the Current Operating Point

(COP) is set to the coordinate defined by the table in Appendix B, Part I.

6.5.6 SCAN

There are eight possible scan sequences for the RASTER, TEXT, and PLOT

instructions. 	The particular SCAN sequence is specified in the following

manner: 	SCAN = x, where "x" is an integer expression with a value between

zero and seven. 	The default value is zero. 	The SCAN directions for the

RASTER instruction are listed in the Table in Appendix B, Part II, and the

directions for the TEXT instruction are listed in Appendix B, Part III.

Primary scan is the direction of consecutive pixels. 	Secondary scan is

the wrap-around direction upon reaching a window boundary. That is, when the

primary scan completes a line of pixels and is ready for wrap-around, the

secondary scan will determine whether the second line of pixels is above,

below, to the right, or to the left of the first line. The influence of the

SCAN argument value upon the RASTER, TEXT, and PLOT instructions is described

in Sections 6.4 and 6.7 of this manual.

6.5.7 DIMEN

The DIMEN argument may be used with three instructions: 	SET, TEXT, and

PLOT. 	The DIMEN parameter defines the dimensions of the alphanumeric font in

terms of width and height, or the width or height of individual plot segments

in terms of elements or lines. The DIMEN argument has two values, the first

of which specifies character width, or plot segment width for horizontal

plots, and the second of which specifies character height, or plot segment

height for vertical plots. 	These values are set in a RIGEL program in the

following way: 	DIMEN = x,y, where "x" is an integer expression with a value

6-23

between 0 and 639, inclusive, and "y" is an integer expression with a value

between 0 and 511, inclusive. 	The default DIMEN width value is 7 and the

default DIMEN height value is 9. 	When this argument is used to specify

character width and height, it is independent of character scale and

orientation.

6.5.8 SPACE

The SPACE argument may be used with three instructions: 	SET, TEXT, and

PLOT. 	This argument has two values, an x-displacement and a y-displacement,

which have default values of 7 and 9, respectively. The SPACE values may be

set in a RIGEL program in an argument assignment of the following form: SPACE

= x,y, where "x" is an integer expression with a value between -639 and 639,

inclusive, and "y" is an integer expression with a value between -511 and 511,

inclusive.

With the TEXT instruction, SPACE determines the distance between

successive characters and the distance between successive lines. With the

PLOT instruction, SPACE determines the increment from plot entity to plot

entity, along the plot axis. For more detailed descriptions of the

interaction of these instructions with the SPACE parameter, refer to Section

6.7 of this manual.

6.5.9 SCALE

The SCALE parameter determines the number of picture elements to be

displayed per pixel element that is received, along the y-axis and along the

x-axis. The SCALE argument has seventeen possible values, which are listed in

the table in Appendix B, Part IV. A SCALE argument assignment in a RIGEL

program would be of the following form: SCALE = x, where "x" is one of the

seventeen integer values listed in the table. The default SCALE value is

zero, which specifies a 1:1 ratio along the y-axis and a 1:1 ratio along the

x-axis.

The table lists for each SCALE value the y-scale ratio of displayed

picture elements to received picture elements and the x-scale ratio of

displayed picture elements to received picture elements.

The SCALE parameter influences the SET, TEXT, and RASTER instructions.

Concerning the TEXT instruction, x-scale refers to character width, and

y-scale refers to character height.

6.5.10 COEFF

The CONIC EQUATION COEFFICIENTS argument sets the values of the

coefficients which are used by the CONIC instruction. The CONIC instruction

can be used to draw circles, ellipses, parabolas, and hyperbolas; however,

only the use of the CONIC instruction to draw circles will be discussed here.

The form of the COEFFICIENTS argument assignment is:

COEFF = A, B, C, D, E, K

where A = 1, B = 1, C = 0, AND K = the total number of picture elements to be

displayed. 	If K = 0 is specified, K assumes the default value of 1280. The

values of D and E depend upon which START point of the circle is used. 	(See

Figure 6-2). 	If the bottom center of the circle is used as the START point,

then D = 0 and E = -2 * the radius. If the left center of the circle is used

as the START point, then D = -2 * the radius and E = O. With the START point

of the circle at the top center, D = 0 and E = +2 * the radius, and with the

START point of the circle at the right center, D = +2 * the radius and E = O.

The Ramtek-9300 draws each of these circles in a clockwise pattern. See

Section 6.7.4 for additional information.

The default values for A, B, C, D, E, and K are zeros.

GENERATION OF A CIRCLE USING

THE CONIC INSTRUCTION

top center

(D=0; E=2R)

left center

(D=— 2R; E 0)

right center

(D=2R; E=0)

bottom center

(D=0; E=-2R)

A = 1
	

B = 1 	C = 0

K = number of picture elements

(default = 1280)

R = radius, in pixels

FIGURE 6-2

6-26

6.5.11 BASE

The BASE parameter influences the PLOT instruction in that it specifies

whether a filled plot or a line plot is to be drawn. A line plot is a plot in

which the POINT value along one plot segment becomes the START point value for

the next plot segment. A BASE value of zero specifies a line plot.

If the BASE argument has a non-zero value, then the BASE value is the

START point for each plot segment. If the SCAN argument value is between zero

and three, then the BASE argument defines the horizontal axis to which the

filled-plot segments will be drawn, i.e., BASE specifies a y-coordinate.

Likewise, if the SCAN value is between four and seven, BASE defines the

vertical axis to which the filled-plot segments will be drawn, i.e., BASE

specifies an x-coordinate.

The BASE argument value is set in a RIGEL program in the following manner:

BASE = x, where "x" is an integer expression with a value between -639 and

639, inclusive. The default BASE value is zero.

6.5.12 START

The START argument defines a start-point, which can be specified in the

following manner: START = x,y, where "x" is an integer value between -639 and

639, inclusive, and "y" is an integer value between -511 and 511, inclusive.

The default START value is (0,0). Note: if, after indexing, either

startpoint coordinate value exceeds the screen resolution, the result will be

indeterminate.

The instructions which are affected by the START argument are: SET, TEXT,

RASTER, VECTOR, CONIC, and PLOT. When the WINDOW or SCAN arguments are

specified for the TEXT or RASTER instructions, the appropriate startpoint is

automatically calculated; therefore, the START argument need not be specified

unless a different startpoint is required. 	For proper instruction execution,

the START value should be within the WINDOW region. 	Refer to the table in

Appendix B, Part V, for the START default values based on the WINDOW and SCAN

values.

If the START argument is not specified for the SET, VECTOR, CONIC, or PLOT

instructions, then the current Current Operating Point is used as the

startpoint. The START parameter sets the value of the Current Operating Point

to the value of the properly indexed startpoint.

6.6 Modes

There are two modes in the RIGEL language that can be user-controlled.

These are the addressing and the reverse background modes. Mode values can be

specified in RIGEL instructions or in regular FORTRAN statements.

6.6.1 	IX

The addressing mode value can be specified in the following manner: 	IX =

n, where n is an integer expression of value 0, 1, 2, or 3. 	Absolute

addressing is indicated by a value of zero, indexed addressing by a value of

one or two; and relative addressing by a value of three. The coordinate

values that may be affected by the addressing mode are: WINDOW, IX1, IX2,

START, POINT, and END.

In the absolute addressing mode, which is the default mode, the (x,y)

coordinate values for the Ramtek and data arguments listed above are used

directly as screen coordinates. In the indexed addressing mode, the (x,y)

coordinate values are added to the index values selected to determine the

coordinate points. If IX = 1 is specified, the (x,y) coordinate values are

summed (two's complement addition) with the current INDEX-1 specified values

in order to derive the effective address. If IX = 2 is specified, the (x,y)

coordinate values are summed (two's complement addition) with the current

INDEX-2 specified values in order to determine the effective address. In the

relative addressing mode, the (x,y) coordinate values are added to the Current

Operating Point (last screen coordinate read or written) to determine the

screen coordinates.

Figure 6-3 presents an example of the use of various addressing modes.

(639,120)

(160,0) (320,0) (639,0)

0

(639,239)

(0,60)

(0,120)

AN EXAMPLE OF ADDRESSING MODES

PORTION OF
DISPLAY TYPE OF EFFECT ON
AFFECTED CSP CODE ADDRESSING SCREEN

A VECTOR FOREGD = BLACK; ABSOLUTE LINE DRAWN FROM
1 	START = 160,0; (160,0) 	TO
2 	END = 320,120 (320,120)

COP SET TO 	(320,120)

B VECTOR IX = 3; START = RELATIVE LINE DRAWN FROM
1 	-320,-60; 	END = (0,60) TO
2 	320,60; 	END 	= 160,119 (320,120) TO

(480,239)
COP SET TO 	(480,239)

NONE SET IX1 	= -160,0; RELATIVE NONE; COP REMAINS
1 	IX2 	= 0,-139 AT 	(480,239)

IX1 ASSUMES VALUE
OF 	(320,239)

IX2 ASSUMES VALUE
OF 	(480,100)

C ERASE IX 	= 2; INDEX-2 ERASED
1 	BACKGD = BLUE;
2 	WINDOW = -160, 	-100,
3 	159,20

WINDOW: 	(320,0,
639,120)

D ERASE 	IX = 1; INDEX-1 ERASED
1 	BACKGD = RED;
2 	WINDOW = -320,-119,0,0

WINDOW: 	(0,120,
320,239)

E VECTOR IX = 0; ABSOLUTE LINE DRAWN FROM
1 	START = 480,120; (480,120) TO
2 	END = 480,239 (480,239)

COP SET TO 	(480,239)

(0,239)
	

(320,239) 	(480,239)

FIGURE 6-3

6-30

6.7 Interaction of Arguments

The twelve valid RIGEL arguments interact with each other, with the

instructions, and with the modes. This section provides information that is

in addition to the documentation on the individual arguments, instructions,

and modes.

6.7.1 Interactions Concerning TEXT

The WINDOW argument defines the rectangular area into which TEXT will be

written. If any pixel of a character is within this area, the entire character

will be displayed, even though the entire character may not be within the

WINDOW region.

The actual size of a character is determined by the dimension parameter.

The maximum values of the DIMEN argument, with reference to the TEXT

instruction, should be 8 pixels wide by 12 pixels high. If the dimension

values are less than 7 by 9 (for regular characters) or less than 8 by 12 (for

FONT-defined characters), the right-most and bottom-most pixels of the

character will not be displayed.

The SPACE parameter determines the distance between the automatic

startpoint of one character and the automatic startpoint of the next

character. The automatic startpoint of a character is the upper left corner

of the character, in whichever direction the character is oriented. Refer to

Appendix B, Part VI for the appropriate SPACE values to use with the different

SCAN values. When the negative sign is indicated before the SPACE value in

the table, it should also be indicated in the RIGEL program.

The primary and secondary update directions are defined by the SCAN

parameter and are listed in the table in Appendix B, Part III. Additionally,

the SCAN values determine the startpoint for the TEXT instruction, when the

START argument is not explicitly set. This interaction between SCAN and TEXT

is stated in the chart in Appendix B, Part V.

6-32

6.6.2 BK

The reverse background mode can be specified by the following method: BK

= n, where n is an integer expression of value 0 or 1. Normal background

mode, which is the default mode, is specified by a value of zero, and reverse

background mode by a value of one.

When reverse background mode is indicated, the roles of the foreground

(FOREGD) and background (BACKGD) arguments are reversed. For example, the

ERASE instruction sets the rectangular area specified by the WINDOW argument

to the BACKGD color if normal background mode is indicated, and to the FOREGD

color if reverse background mode is selected. Each of the instructions is

affected by the reverse background mode.

The effect of the SCALE argument upon the TEXT instruction is defined in

the table in Appendix B, Part IV.

6.7.2 Interactions Concerning RASTER

The WINDOW parameter defines the exact region into which the RASTER

instruction writes FOREGD or BACKGD data, depending upon the BK mode value.

The RASTER instruction interprets the data on a bit per pixel basis, i.e. each

bit determines whether a pixel gets a value or not. A "one" bit causes the

respective pixel to receive a FOREGD or BACKGD value, and a "zero" bit causes

the respective pixel to receive no value.

The appropriate WINDOW values depend upon the SCALE value of the RASTER

instruction. For example, to calculate the WINDOW values for a RASTER with

SCALE = 22, which is a ratio of 4 displayed pixels per 1 received bit, the

number of element pixels should be 4 times the number of element data bits,

and the number of line pixels should be 4 times the number of line data bits.

If the RASTER mentioned above were to be described using 16 element bits by 10

line bits, the WINDOW should be 64 pixels wide by 40 pixels high. An example

set of coordinates would be: WINDOW = 140, 120, 203, 159.

When a scaling-down operation is specified by the SCALE parameter in the

horizontal or vertical direction, bits 7, 5, 3, and 1 are used for a ratio of

1:2 and bits 7 and 3 are used for a ratio of 1:4 (the bits are numbered with 7

on the left and 0 on the right).

The START argument does not need to be specified. 	However, if it is

specified, it should be set to the value of the Current Operating Point after

the WINDOW setting. For example, with SCAN = 0, START = x L , yT of the WINDOW

region and with SCAN = 1, START = xR , yT of the WINDOW region. The

appropriate values are defined in the table in Appendix B, Part I.

The SCAN parameter also defines the primary and secondary RASTER update

directions as shown in the table in Appendix B, Part II.

6.7.3 Interactions Concerning VECTOR

If the START argument is not explicitly set in the RIGEL program, the

Current Operating Point is used as the startpoint. If more than one endpoint

is specified, then continuous, straight lines will be drawn between the

consecutive endpoints.

If, after indexing, any of the START or END coordinate values exceed the

screen resolution, the result may be indeterminate.

6.7.4 Interactions Concerning CONIC

The START value for the CONIC instruction, used to draw a circle, should

be at either the bottom-center, the left-center, the top-center, or the

right-center of the circle (see Figure 6•2). The CONIC instruction draws

circles in a clockwise pattern. Two methods may be used to terminate a CONIC

plot. First, the number of pixels to be displayed may be specified. Second,

an END value may be specified such that only a portion of the CONIC is drawn

or, if the END value is equal to the START value, the entire CONIC is drawn.

NOTE: 	if, after indexing, any START or END value exceeds the screen

resolution, the result may be indeterminate.

Refer to Section 6.5.10 for information concerning the COEFF argument.

6.7.5 Interactions Concerning PLOT

The SCAN argument determines whether the PLOT is horizontal or vertical.

This interaction and the interaction between DIMEN and PLOT are described in

Section 6.4.7 in the documentation on PLOT. The SPACE parameter determines

the distance between the startpoint of one plot segment and the startpoint of

the next plot segment. In the case of filled plots, the START argument

specifies the point of the plot that is closest to the baseline (see Figure

6-4). The baseline, in the case of a filled plot, is determined by the BASE

6-34

INTERACTION OF NE START ARGUMENT AND FILLED PLOTS

RIGEL Code:

0 	PLOT START = 150,100; BASE = 160;
1 	SCAN = 4; DIMEN = 7,9; SPACE = 7,9;
2 	POINT . 130,130,130
PLOT START = 170, 100; POINT = 190,190,190

(B) 	PLOT START = 480,100; BASE = 480;
1 	SCAN = 4; D1MEN = 7,9; SPACE = 7,9;
2 	POINT = 460, 460. 460
PLOT POINT = 500,500,500

FIGURE 6-4

argument. 	In the case of a line plot, the BASE argument should have a value

of zero. 	See Section 6.5.11 on the BASE argument for a more detailed

discussion.

Figure 6-5 shows an example of a line plot that is described by the

following instruction:

PLOT START = 450, 120; BASE = 0; SCAN = 4;

1 	POINT = 470, 460, 465, 475, 455; DIMEN =

2 	12, 9; SPACE = 6, 11

6.7.6 Interactions Concerning FONT

The DIMEN argument defines the size of the FONT character. 	The DIMEN

width value can be from 1 to 8 pixels and the height value can be from 1 to 12

pixels. If the DIMEN values are less than the FONT character size, the right

and bottom portions of the character are not displayed.

The START value should be the top left corner of the FONT character. The

twelve bytes (6 words) of FONT-definition data define which pixels receive the

FOREGD or BACKGD value and which pixels receive no value. The "one" bits in

the data cause the respective pixels to receive FOREGD or BACKGD values,

depending upon the BK value, and the "zero" bits cause the respective pixels

to receive no values. The high-order bit of each FONT data byte represents

the left margin of the FONT character matrix, and the low-order bit of each

FONT data byte represents the right margin of the FONT character matrix.

Since the TEXT instruction is used to display a FONT character, the

arguments and modes that affect TEXT also affect the FONT characters when they

are displayed.

(450,120)
	

(470,120)

(460,131)

it (465,142)

(475,153)

(455,164)

A LINE PLOT

a portion of the

display screen

FIGURE 6-5

Two examples of FONT code definitions are:

FONT CODE = 101; ARRAY = IPI, 6

FONT CODE = 102; ARRAY = IBLNK, 6

where the arrays IPI and IBLNK have been previously defined. 	The following

statements would make use of these FONT definitions:

IDUM (1) = 101 * 256 + 102

TEXT ARRAY = IDUM, 1

Note that this format requires two FONT characters per array.

7. USER'S SYMBOL LIBRARY

A very useful feature of RIGEL is the ability to create and use customized

user symbols, such as electronic and mechanical symbols, and general symbols,

such as circles. Note that this is different from the FONT specification

provided by Ramtek, which forces the user to define a symbol pixel by pixel in

at most an 8 x 12 format. These user symbols, once defined, can then be

located at any desired point on the screen, rotated to various orientations,

and displayed in any of the available colors. Symbols can also be scaled to

any size.

Symbols are defined in SYMDEF programs (see Sections 6.2, 6.3.3, 6.3.6,

and 6.3.7 above for details). A user symbol is then implemented in the user's

program by a statement of the form:

SYMBOL symname arg 1 ; arg2 ; 	argn

where "symname" is the name of the user symbol, and "arg i " is either a Ramtek

argument (see Section 6.5), a Ramtek mode (see Section 6.6), or a symbol

argument. There are currently ten special arguments which apply only to user

symbols. These are:

o Coordinates which specify the location of the symbol in (x,y) pixel

notation:

POSX = x

POSY = y

where "x" is a value between 0 and 639, and "y" is a value between

0 and 239; "x" and "y" may be valid integer expressions or

variables.

o Rotation, specified in degrees:

ROTATE = n

where "n" is a valid integer expression, variable, or constant

whose value equals 0, 90, 180, or 270.

o Size of the symbol:

SIZE = n

where "n" is a valid integer expression, variable, or constant; in

general, the size is a measurement of the width, height, or radius

of the symbol, measured in pixels.

o Color of the symbol:

COLOR = hue

where "hue" is any of the eight available Ramtek colors (RED,

GREEN, BLUE, WHITE, BLACK, MAGENT, CYAN, and YELLOW), or NONE (to

produce a black outline).

o Five general arguments available to the user for any purpose:

SARG1, SARG2, SARG3, SARG4, SARG5.

Appendix D portrays the symbols which are currently available and

illustrates how these arguments apply to them.

8. RESTRICTIONS

RIGEL was designed as a one-pass translator, in order to conserve memory

and execution time. Because of this, the RIGEL programmer must observe the

following restrictions upon the FORTRAN statements in his program:

o RIGEL must invent statement numbers in the process of converting

the user's graphics commands to FORTRAN. 	It does so by beginning

with the largest available integer, 32767, and generating succes-

sively smaller numbers as it needs them. Do not use a number which

will be generated by the translator. A good rule of thumb is to

avoid using statement numbers larger than 30000.

o Blanks are meaningful separators in RIGEL. 	Use them to separate

different words, but do not use them in the middle of key words.

o One graphics statement in the user's program may expand into more

than one FORTRAN statement. 	If the graphics statement has a

statement number, then RIGEL places it on the first line of the

corresponding FORTRAN expansion. 	This is fine for statements

referenced by a GO TO, but will produce incorrect results if the

statement is the final one of a DO-loop. 	Therefore, the final

statement of DO-loops should always be a FORTRAN statement. A safe

and practical scheme is to always terminate DO-loops with CONTINUE

statements.

o RIGEL key words are reserved and may not be used as variable names.

In addition, the names of variables and arrays in the RIGEL commons

are reserved. 	The names which a user should avoid, except in

statements where they satisfy the syntax of RIGEL, are:

BACKGD 	ICAN 	IRAMBF 	NFCODE 	SIZE

BASE 	ICOMP 	IRAMCR 	NMODUL 	SPACE

BK 	 IDATA 	IRAMPR 	NONE 	START

BLACK 	IDEBUG 	IUFT 	NWDARG 	WHITE

8-1

BLUE 	IDISCR 	IX 	NWDATA 	WINDOW

COEFF 	IENDPG 	IX1 	POSX 	YELLOW
COLOR 	IFDATA 	IX2 	POSY

CYAN 	IHILIM 	LDATA 	RED

DIMEN 	INDARG 	LIMCHK 	ROTATE

FOREGD 	INSTRC 	LOCARG 	SARG1

GREEN 	IOPCD 	LOWLIM 	SARG2

IARGNO 	IOPCOD 	LUNDIS 	SARG3

IARGS 	IOPFLG 	LUNLST 	SARG4

IARGVL 	IPICNO 	MAGENT 	SARG5

IBK 	IPROG 	MAXBUF 	SCALE

IBUFWD 	IPTRIB 	NDEVIC 	SCAN

In addition to these restrictions upon the FORTRAN statements in a user's

display program, there are four simple rules which must be observed in

creating a program. These items are explained elsewhere in this documentation

under the appropriate subject headings, but they are also listed here for

convenience:

o The first line of a program must be "FIXED", "RTIME", or "SYMDEF."

If the lexical analyzer cannot find one of these three key words,

it is unable to proceed any further. Almost any other error can be

detected, and program analysis will proceed, but this error is

severe.

o The user must include RIGEL's set of commons in his program. 	An

easy method for doing this is outlined in Section 10.2.1.

o Any FIXED or RTIME program must include one BEGPIC and at least one

ENDPIC statement. 	BEGPIC causes initialization of the RIGEL

variables to occur, and ENDPIC causes the (remaining) contents of

the display buffer to be transmitted to the Ramtek.

o Symbols may not be used to define other symbols. For example, line

(3) below is illegal:

SYMDEF
DEFINE SYM1
• • 	•

SYMBOL SYMX
• • 	•

ENDDEF

9. ERROR MESSAGES

The portion of RIGEL which parses the user's program and translates it

into FORTRAN produces three types of error messages (see Appendix E for a

listing of the messages):

(1) "User errors" occur when the user violates the syntax of the

RIGEL language, but not so badly that the preprocessor cannot

continue to analyze the remainder of the instructions in his

program. 	This should be the type of error message encountered

most frequently by the user, as when he misspells the name of an

instruction or argument, forgets to specify data for an

instruction, or does not supply a separating semicolon between

arguments.

(2) "Fatal user errors" occur when the user does something so drastic

that RIGEL cannot decide how to analyze the rest of his program.

Rather than waste computer time and list a lot of potentially

meaningless error messages, it simply terminates analysis of the

user's program. Two typical sources of such a message would be

if the user forgot to specify one of the key words "FIXED",

"RTIME", or "SYMDEF" as the first instruction, or if he

accidentally specified an input file which was empty or contained

garbage. This message is also generated if the user exceeds the

generous number of errors which are permitted in one program --

quite likely, he may have a repetitive error of some sort.

(3) "Fatal RIGEL errors" hopefully should never be seen by the user.

They indicate a serious problem with RIGEL, rather than with the

user's program. 	The designers of RIGEL should be notified if

such an error does occur, and listings of input and output should

be saved for their reference.

As RIGEL analyzes the user's program, it generates a listing file of his

source on the listing device. If an error is detected on a line, an asterisk

is placed beneath the character where the error was detected, and then an

error message is printed, such as:

VECTOR STRRT = 10, 50 	(where START is misspelled)

USER ERROR
ARGUMENT NAME IS INVALID

NOTE: The user should never try to compile and execute a display program if

RIGEL has detected any errors of any type in it.

Graphics Assembler Messages

If the user specifies any argument values that are greater than the RIGEL

upper limit or less than the RIGEL lower limit for that argument, then the

Graphics Assembler modules reset these values to the upper limit or the lower

limit, respectively, and print a warning message in the Ramtek output listing.

However, if, after indexing, the argument values exceed the screen resolution,

then indeterminate data may result.

10. PROCEDURE FOR CREATION AND EXECUTION OF A DISPLAY

Please note that details of this section pertain directly to using RIGEL

on a Digital Equipment Corporation PDP-11/34 minicomputer with RSX-11/M

Operating System and FORTRAN IV. There are several ways to set up procedures

that would accomplish the various steps necessary to generate a display; we

will simply outline one method which we found to be convenient and make

general recommendations about how to proceed.

Figure 3-1 provides an overview of the process of creating a display using

the RIGEL Graphics Preprocessor and the RIGEL Graphics Generation Routines.

While RIGEL functions in two parts, namely:

o preprocessing (conversion to FORTRAN) and

o linking with the graphics subroutines,

several steps are necessary to accomplish the complete task. These include:

1. Creation of the user's source program.

2. Preprocessing by the RIGEL Preprocessor of the source program to

produce a FORTRAN program.

3. 	Compilation.

a) If the source program is a FIXED or RTIME program, it is

compiled, assembled, linked with the graphics assembler

modules and the user symbol library (via a task build

operation), and stored as an executable task.

b) If the source program is a SYMDEF program, it is

compiled and added to the symbol library.

4. When the executable task created above (step 3.a) is executed, and

the user specifies which Ramtek interface and which display

10-1

monitor to use (assuming that multiple units are available), the

Ramtek object code for the picture is generated and sent to the

specified monitor(s).

10.1 Files and Conventions

It is assumed that the user is familiar with the RSX-11/M Operating

System. In our implementation of RIGEL, we use the following standard files:

FILE 	 USE

RIGEL.FTN

RIGEL.OBJ

RIGEL.TSK

RAMTEK.RGL

RAMTEK.LST

RAMTEK.FTN

RAMTEK.OBJ

RIGASL.FTN

RIGASL.OBJ

RAMTEK.TSK

RIGEL preprocessor source file

compiled version of RIGEL.FTN

RIGEL preprocessor executable task

user's input file for preprocessing

listing of user's input file and error messages

output FORTRAN source file from preprocessor

compiled version of RAMTEK.FTN

RIGEL graphics assembler subroutines (source file)

compiled version of RIGASL.FTN

executable task formed by linking RAMTEK.OBJ with

RIGASL.OBJ

SOURCE.RGL 	shell of an input file for editing purposes

10.2 Special Procedures

If the user wishes, he can establish procedures to simplify the process of

creating a display. We shall outline briefly the files which are used and

describe the steps which are necessary to generate a picture.

10.2.1 Creation of the User's Source Program

The input source program is created with the DEC Text Editor (EDI). Since

the RIGEL common blocks and equivalence and data statements need to be

included in the user's source program, we have found it useful to maintain a

file named SOURCE.RGL with these items in it. SOURCE.RGL is simply the shell

of a user's program. SOURCE.RGL is edited, and the output file is stored

under another filename.

10.2.2 Preprocessing by RIGEL

The RIGEL Preprocessor expects the user's source file to be in RAMTEK.RGL,

so the file created in 10.2.1 should be copied into RAMTEK.RGL. The

Preprocessor generates the FORTRAN translation of the program (RAMTEK.FTN) and

a listing of the input (including error messages, if any), in RAMTEK.LST.

THE USER SHOULD NEVER ATTEMPT TO ASSEMBLE OR EXECUTE A PICTURE PROGRAM

IF RIGEL INDICATES AT THIS POINT THAT IT CONTAINS ANY ERRORS.

10.2.2.1 Preprocessing of a FIXED or RTIME Program

File RAMTEK.FTN is compiled, and file RAMTEK.OBJ is linked with the

compiled version of the Graphics Assembler Routines (RIGASL.OBJ) by the DEC

Task Builder (TKB) to form the executable task RAMTEK.TSK (which can be stored

under a different name, if desired).

10.2.2.2 Preprocessing of a SYMDEF Symbol Program

File RAMTEK.FTN is compiled, and file RAMTEK.OBJ is added to the user's

library of symbols.

10.2.3 Execution of the Picture Program

The RAMTEK.TSK file created above is executed. 	The user must input a

Ramtek display generator number if more than one such device exists on his

system. If he has more than one CRT screen on a Ramtek generator, then he

must also input a CRT screen number for an RTIME program.

APPENDIX A

RIGEL SUMMARY

PART I -- CONTROL STATEMENTS

FIXED

RTIME 	key word to define program type; is first word of program

SYMDEF

1 BEGPIC used in FIXED and RTIME programs to initialize and terminate graphics

1 DEFINE symname used in SYMDEF programs to initialize and terminate symbol

SYMBOL symname used in FIXED and RTIME programs to reference symbols in the

1

ENDPIC 	program portions

ENDDEF 	definitions

user's symbol library

PART II -- INSTRUCTIONS & THEIR ASSOCIATED DATA

INSTRUCTION 	 PERMISSIBLE DATA ARGUMENTS

SET 	 (no data arguments)

ERASE 	 (no data arguments)

TEXT 	 ARRAY = name, length

or STRING = "abc" (or 'abc')

or VALUE = xx.x, m, n

or VALUEL = xx.x, m, n

RASTER 	ARRAY = name, length

VECTOR
	

END = x l , y l ; END = x 2 , y 2 ; ... END = x n , yn

or ARRAY = name ' , name 2 , length

CONIC
	

END = x l , y l ; END = x2 , y2 ; ... END = x n , y n

or ARRAY = name l' name 2, length

PLOT 	 POINT = p l , p 2 , ... p n

or ARRAY = name, length

FONT 	 CODE = n; ARRAY = name, length

PART III -- RAMTEK ARGUMENTS

FOREGD = color (RED, GREEN, BLUE, WHITE, BLACK, MAGENT, CYAN, or YELLOW)

BACKGD = color

IX1 = x, y

IX2 = x, y

WINDOW =xvxv L' JT' - R' JB

SCAN = m 	(0 < m < 7)

DIMEN = width, height

SPACE = horizontal-space, vertical-space

SCALE = m

COEFF = A, B, C, D, E, K

BASE = x 	(or BASE = y)

START = x, y

PART IV 	RAMTEK MODES

(0 < n < 3) 	 [addressing]

(n = 0 or 1) 	 [reverse background]

PART V -- USER SYMBOL ARGUMENTS

ROTATE = n 	(n = 0, 90, 180, or 270)

SIZE = n

POSX = x

POSY = y

COLOR = color

SARG1 = n

SARG2 = n

SARG3 = n

SARG4 = n

SARG5 = n

IX = n

BK = n

APPENDIX B

ARGUMENT VALUE TABLES

PART I -- INTERACTION OF COP, WINDOW, AND SCAN

SCAN 0 1 2 3 4 5 6 7

COP 	x- v al ue x i.. x R x i_ x R XL x L x R x R

COP 	y-value YT YT YB YB YT YB YT YB

PART II -- SCAN DIRECTIONS FOR RASTER INSTRUCTION

SCAN 0 1 2

I H
 4 5 6 7

PRIMARY

DIRECTION ./ T

SECONDARY

DIRECTION T --

PART III -- SCAN DIRECTIONS FOR TEXT INSTRUCTION

SCAN 0 1 2 3 4 5 6 7

PRIMARY

DIRECTION

H H H H V V V V

SECONDARY

DIRECTION

V V V V H H H H

where: H = horizontal direction

V = vertical direction

PART IV -- SCALE VALUES

PICTURE ELEMENTS

Scale Value Y-Scale, X-Scale

(Displayed:

Y-Ratio,

Received)

X-Ratio

-22 -2 	, -2 1:4 	, 1:4

-21 -2 	, -1 1:4 	, 1:2

-20 -2 	, 0 1:4 	, 1:1

-12 -1 	, -2 1:2 	, 1:4

-11 -1 	, -1 1:2 	, 1:2

-10 -1 	, 0 1:2 	, 1:1

-2 0 	, -2 1:1 	, 1:4

-1 0 	, -1 1:1 1:2

0 0 	, 0 1:1 1:1

1 0 1 1:1 2:1

2 0 2 1:1 4:1

10 1 0 2:1 1:1

11 1 1 2:1 2:1

12 1 2 2:1 	, 4:1

20 2 0 4:1 	, 1:1

21 2 	, 1 4:1 	, 2:1

22 2 2 4:1 	, 4:1

PART V -- INTERACTION OF START, WINDOW, AND SCAN

SCAN 0 1 2 3 4 5 6 7

WINDOW

ORIGIN

A B C D A C B D

Corner A 	 Corner B

WINDOW

Corner C 	 Corner D

PART VI -- SCAN AND SPACE VALUES

SCAN VALUE SPACE: 	X-VALUE SPACE: 	Y-VALUE SAMPLE DISPLAY

0 W H
XYz —›

4/

1 -H W
<7 N 1

1(

2 H -W 1\
t■] --.

3 -W -H t
zxx

4 W H
x
Y -->
Z
\I/

5 H -W /IN

4

6 -H W <-. N
4/

7 -W -H
/1
Z

‹- I
x

where: W = Character Width

H = Character Height

APPENDIX C

DECLARATIONS REQUIRED BY RIGEL

C*
C 	INTRODUCE NAMES FOR COLORS AND ARGUMENTS
C

INTEGER RED, GREEN, BLUE, WHITE, BLACK, MAGENT, CYAN, YELLOW
INTEGER FOREGD, BACKGD, IX1(2), IX2(2), WINDOW(4), SCAN, DIMEN(2),

	

1 	SPACE(2), SCALE, COEFF(6), BASE, START(2), IX, BK, POSX, POSY,

	

2 	ROTATE, SIZE, COLOR, SARG1, SARG2, SARG3, SARG4, SARG5

C
C 	INSERT GRAPHICS PREPROCESSOR COMMONS
C

COMMON /RIGCOM/ IPROG,NDEVIC,LUNLST,LUNDIS
COMMON /RAMFIX/ IARGVL(16),NWDARG(16),LOCARG(16),LIMCHK(16),

	

1 	LOWLIM(30),IHILIM(30),IDISCR(17),I0PCD(8),IFDATA(8),

	

2 	NMODUL(3,10)
COMMON /RAMTEK/ IRAMCR(30),IRAMPR(30),INDARG(16),IDATA(200),

	

1 	IARGS(10)
COMMON /CGRIN/ IARGNO,IBK,IBUFWD,ICOMP,IDEBUG,IENDPG,INSTRC,

	

1 	IOPCOD,IOPFLG,IPTRIB,IX,LDATA,MAXBUF,NFCODE,NWDATA
COMMON /DISBUF/ IRAMBF(500)

C
C 	EQUIVALENCE NAMES OF ARGUMENTS TO THEIR CORRECT POSITIONS
C 	IN THE CORRESPONDING BUFFERS
C

EQUIVALENCE (FOREGD,IRAMCR(2)),(BACKGD,IRAMCR(3)),

	

1 	(IX1(1),IRAMCR(4)),(IX2(1),TRAMCR(6)),(WINDOW(1),IRAMCR(10)),

	

2 	(SCAN,IRAMCR(14)),(DIMEN(1),IRAMCR(15)),(SPACE(1),IRAMCR(17)),

	

3 	(COEFF(1),IRAMCR(21)),(BASE,IRAMCR(27)),(START(1),IRAMCR(29)),

	

4 	(SCALE,IRAMCR(19))
EQUIVALENCE (BK,IBK)
EQUIVALENCE (POSX,IARGS(1)),(POSY,IARGS(2)),(ROTATE,IARGS(3)),

	

1 	(SIZE,IARGS(4)),(COLOR,IARGS(5)),(SARG1,IARGS(6)),(SARG2,IARGS(7)),

	

2 	(SARG3,IARGS(8)),(SARG4,IARGS(9)),(SARG5,IARGS(10))

C
C 	DEFINE VALUES FOR COLORS
C

DATA RED, GREEN, BLUE, WHITE, BLACK, MAGENT, CYAN, YELLOW, NONE

	

1 	/0, 1, 2, 3, 4, 5, 6, 7, -1/
C**

APPENDIX D

CURRENTLY IMPLEMENTED USER SYMBOLS

At the time of the preparation of this manual, Lockheed had not specified

any user symbols, so none will be defined in this section. However, the

following points about the relationship between symbol arguments and symbols

might prove helpful to Lockheed personnel, should they choose to create a user

symbol library at some future date:

1. The point specified by (POSX, POSY) is the starting location of

the symbol. 	This point is identified by a "." on each diagram.

After the symbol is drawn, a new (POSX,POSY) location is

calculated. 	This point is identified by an "x" on each diagram

and represents the default starting location of the next symbol.

2. ROTATE specifies one of four orientations-0, 90, 180, or 270

degrees. Note that each symbol is rotated counterclockwise from

its 0 degree orientation.

3. SIZE is used for symbols which only need to have one dimension

specified. 	SIZE specifies the horizontal radius in pixels of

symbols such as CIRCLE and SEMICR. When two dimensions need to be

specified, SARG1 and SARG2 are used (see note 5).

4. COLOR, which can be any of the eight permissible Ramtek hues,

specifies the internal shading color of each symbol. 	If the user

specifies COLOR = NONE, only the black outline of each figure is

produced.

5. SARG1 and SARG2 are used when two size dimensions are needed for a

symbol. 	SARG1 (indicated by "A") is horizontal length in pixels,

and SARG2 (indicated by "B") is vertical height in pixels.

APPENDIX E

RIGEL ERROR MESSAGES

PART I -- USER ERRORS

1. The first word of the program cannot be followed by a continuation line.

2. Arguments or data values are not permitted for this instruction.

3. The graphics initialization flag cannot be set more than once.

4. Symbol name is missing or invalid.

5. Symbol name must be followed by a space or end-of-statement.

6. Symbol name must be followed by an end-of-statement.

7. Every "DEFINE" statement must be followed by an "ENDDEF" statement before
another "DEFINE" statement is used.

8. Each "ENDDEF" statement must be preceded somewhere by its own "DEFINE"
statement.

9. A macro symbol instruction cannot be nested inside a macro symbol
definition.

10. A macro symbol can only be defined by a SYMDEF program.

11. The graphics routines cannot be initialized from inside a Symbol
Definition program.

12. The graphics routines cannot be terminated from inside a Symbol
Definition program.

13. Argument or data name must be followed by an equal sign.

14. Argument name is invalid.

15. Argument or data name is invalid.

16. Instruction lacks data.

17. At least one argument value is missing.

18. Argument values must be separated by a comma.

19. Argument strings must be separated by a semicolon.

20. Argument value cannot be a quotation.

21. Argument value is missing.

E-1

22. Mode value is missing.

23. Array name is missing or invalid.

24. Number of words in array is missing or invalid.

25. Argument value must be a quotation.

26. X value is missing or invalid.

27. Y value is missing or invalid.

28. Point value is missing or invalid.

29. Font code value is missing or invalid.

30. Data value is missing or invalid.

31. Format is missing or invalid.

32. Arithmetic expression has unmatched parentheses.

PART II -- FATAL USER ERRORS

1. The first word of the program must be FIXED, RTIME, or SYMDEF.

2. Input source file is empty.

3. Source statements contain errors - therefore, no picture can be created.

4. A FIXED program must contain a BEGPIC statement.

5. A FIXED program must contain at least one ENDPIC statement.

6. A REAL-TIME program must contain a BEGPIC statement.

7. A REAL-TIME program must contain at least one ENDPIC statement.

8. Source statements contain errors - therefore, no macro symbol subroutine
can be created.

9. "DEFINE" and "ENDDEF" statements have not been properly placed in the
program.

10. Fatal user error in ERROUT -- Number of user errors has exceeded the
maximum number of allowable errors.

PART III -- FATAL RIGEL ERRORS

1. Program type (IPROG) has assumed an invalid value.

2. Statement type (ISTYPE) has assumed an invalid value.

3. Data indicator (IARGNO) has assumed an invalid value.

PART IV -- WARNING MESSAGES

I. Warning -- Argument no. (IARGNO) has value of (ICURNT) - is out of range.
Value set to (LOWLIM (LOCATN)).

2. Warning -- Argument no. (IARGNO) has value of (ICURNT) - is out of range.
Value set to (IHILEM (LOCATN)).

3. Warning -- Argument no. (IARGNO) has invalid value of (ICURNT). Color
will not be changed.

4. Warning -- Invalid total number of digits (I) specified for text value.
Number set to 10.

5. Warning -- Invalid number of decimal fraction digits (3) specified for
text value. Number set to zero.

6. Warning -- Magnitude of real number (R) cannot be represented by value
format specification (1,0).

7. Fatal Graphics Assembler error in COPCOD -- invalid instruction number =
(INSTRC).

8. Fatal Ramtek error -- I/O status flag = xxxxx.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113

