
Packets with Provenance

Anirudh Ramachandran, Kaushik Bhandankar, Mukarram Bin Tariq, and Nick Feamster
School of Computer Science, Georgia Institute of Technology

{avr,kaushikb,mtariq,feamster}@cc.gatech.edu

ABSTRACT

Traffic classification and distinction allows network opera-

tors to provision resources, enforce trust, control unwanted

traffic, and traceback unwanted traffic to its source. Today’s

classification mechanisms rely primarily on IP addresses

and port numbers; unfortunately, these fields are often too

coarse and ephemeral, and moreover, they do not reflect traf-

fic’s provenance, associated trust, or relationship to other

processes or hosts. This paper presents the design, analy-

sis, user-space implementation, and evaluation of Pedigree,

which consists of two components: a trusted tagger that re-

sides on hosts and tags packets with information about their

provenance (i.e., identity and history of potential input from

hosts and resources for the process that generated them), and

an arbiter, which decides what to do with the traffic that car-

ries certain tags. Pedigree allows operators to write traffic

classification policies with expressive semantics that reflect

properties of the actual process that generated the traffic. Be-

yond offering new function and flexibility in traffic classifi-

cation, Pedigree represents a new and interesting point in the

design space between filtering and capabilities, and it allows

network operators to leverage host-based trust models to de-

cide treatment of network traffic.

1. Introduction

Enterprise and transit networks must be able to classify

and differentiate network traffic to enable provisioning and

keep networks secure. Ideally, operators would be able to

differentiate traffic according to expressive features, such as

the application that generates the traffic; the host or user

that generated the traffic, and the associated privileges of

that user; whether or not that host might be infected, and

so forth. Differentiating traffic on such features would allow

operators to upgrade or downgrade the service seen by par-

ticular traffic flows based on flexible attributes and properties

and would, as a result, facilitate much more expressive poli-

cies (e.g., filtering traffic based on whether the process that

generated the traffic had talked to a known infected host or

not). Operators might also want to control traffic based on

the properties of the process that generated it (i.e., the appli-

cation that generated it, or what other hosts or files may have

affected the process).

Today, traffic classification is coarse and imprecise. Net-

Georgia Tech CSS Technical Report GT-CS-08-02

work operators typically classify traffic using port num-

bers or IP addresses. This approach is often too coarse or

ephemeral. It is also indirect: IP addresses carry no informa-

tion about the provenance of the traffic, such as the process

(or group of processes, or host) that generated the traffic.

Providing this type of function is difficult: The large vol-

ume of traffic that traverses the network makes inspecting

each packet’s contents infeasible, and the packets have no

markings that bind them to a particular process or group of

processes on any particular host. We believe that significant

gains in network traffic monitoring require means to bind

that traffic back to a process group (and corresponding level

of trust) on a host.

This paper presents Pedigree, which allows network de-

vices to classify traffic based on the privileges and prove-

nance of that traffic, rather than a coarse identifier like an IP

address that carries no semantics. Pedigree allows network

operators to express policies based on (1) what container—a

persistent identifier for a resource (e.g., process group, vir-

tual machine)—generated the traffic; (2) what inputs the pro-

cess that generated the traffic has received (“taint set”). Pedi-

gree has two components, as shown in Figure 1. The first

component is the tagger, a trusted module that resides on the

host and tags traffic with the identification of the container

(“container ID”) and taint set of the process that initiated the

traffic. Users in an enterprise or customers of an ISP who

want to receive better service (e.g., provisioning, stronger

security guarantees) may install such a tagger. The second

module, the arbiter, resides on a network element and acts

on the traffic according to these tags and the network opera-

tor’s policy. Such actions might include filtering or shaping

the traffic, shunting the traffic to a deep packet inspection de-

vice, or re-routing the traffic to a better provisioned network

with stronger performance guarantees. Network elements

can either upgrade or downgrade traffic based on these tags,

which essentially blurs the distinction between the two ex-

treme design points of capabilities (i.e., keeping the network

“off by default” and permitting only certain traffic) and filter-

ing (i.e., keeping the network “on by default” and discarding

undesirable traffic).

The tags that each packet carries map to a host container

from which the traffic originated, and reflect the specific

properties of that container, such as whether it has access

to certain keys, whether it has been affected by other pro-

cesses or files (even across hosts), etc. Network elements

can then associate the tags that the traffic carries with a par-

ticular container that generated the traffic (or to the commu-

1

Figure 1: High-level design of Pedigree.

nication history of the process that generated the traffic) and

take specific actions based on those tags, rather than acting

a on coarse-grained, ephemeral handle such as an IP address

or port. Unlike IP addresses, these container IDs and taints

are persistent: Even if a host changes its location or IP ad-

dress, or if it reboots, the markers on traffic that originate

from a particular host can always be tracked back to the pro-

cess group that generated them.

Pedigree marks packets with tags that have two distinct

components: container ID, which is deterministic (and, in

some cases, cryptographic) and essentially acts as an attesta-

tion regarding what container generated the traffic on a par-

ticular host; and taints, which reflect the set of tags that a

container accumulates by taking inputs from other files, pro-

cesses, and network sockets. Each packet carries such a tag

all the way to its destination; in principle, any network ele-

ment along the path could take action (e.g., filter, provision)

based on this tag. A network element that wants to make

a provisioning, forwarding, or filtering decision (an arbiter)

can then make forwarding decisions using policy based on

the container IDs, the taints, or a conjunction of the two (as,

reflected in the examples above). Although the arbiter could

certainly also reside in a trusted domain on the host, classi-

fying tagged traffic with an arbiter that is separate from the

host itself has two main advantages: First, Pedigree’s tags

allow an arbiter to classify traffic based on relationships and

correlations that may exist across hosts. Second, updating

traffic policies may be more manageable than doing so at

individual hosts.

Implementing Pedigree entails several challenges. First,

the tags must be resilient to forgery, minting, and replay: A

host or element that observes the tags on one packet should

have no mechanism or incentive to “steal” those tags to gain

a higher privilege. Similarly, a host should not be able to

mint a new set of tags to evade blacklisting or attain higher

privileges. Second, tagging must be fast: A host must be able

to tag packets as quickly as an application can send them, to

avoid degrading application service. Similarly, arbitration

must also be fast: network elements must be able to perform

arbitration at line rate.

This paper presents the following contributions. First, we

present a new framework for classifying traffic that leverages

a trusted component on the host to help operators attribute

semantics and trust to network traffic. This framework has

two conceptual contributions: extending host-based security

models into the network and highlighting a new point in the

design space between filtering (“on by default”) and capa-

bilities (“off by default”). Second, we design and implement

Pedigree, a system that operates within this framework to

help both enterprise networks and ISPs classify traffic based

on provenance and trust levels. Third, we present a user-

space prototype implementation of Pedigree and show that

packet and storage overhead is negligible for all but short

connections.

The rest of this paper is organized as follows. Section 2

discusses motivating applications. Section 3 describes the

trust model that Pedigree assumes. Section 4 presents the

main idea of Pedigree and presents the corresponding threat

model. Section 5 describes the detailed design of the tags

and taints, as well as how these taints propagate across the

processes within a host, as well as, across the hosts as mes-

sages traverse the network. Section 7 describes the proto-

type implementation of Pedigree. In Section 6, we analyze

the security of Pedigree under various threats; in Section 8,

we discuss the performance overhead of Pedigree. Section 9

discusses various optimizations and extensions, Section 10

discusses related work, and Section 11 concludes.

2. Motivation

Whereas today’s traffic classification and filtering meth-

ods attempt to classify traffic based on second-order effects,

the ideal scenario would allow operators to track first-order

effects, such as filtering traffic that comes from processes

that are known to be infected, or communicating with other

infected hosts. Although much previous work has been

done to track interactions and assign trust levels to processes

within hosts, all of this information is lost when network

traffic leaves the host and enters the network. Network de-

vices currently have no way to exercise complex policy be-

cause traffic is completely devoid of any information that

can be tied to provenance or semantics. The main goal of

Pedigree is to extend trust levels and semantics that can be

attributed host-level processes into the network. Today, fil-

tering and classification devices rely on port numbers and

IP addresses to attribute semantics to traffic. These ap-

proaches are inadequate; network devices could implement

more expressive policies if traffic carried additional informa-

tion about the host process that originated the traffic.

2.1 Today’s Classification: Indirect and Brittle

Relying chiefly on heuristics based on IP address and port

numbers to classify network traffic is both indirect and brit-

tle: Classifying traffic based on an IP address or port indi-

rectly expresses an operator’s intent to perform some higher

level action (e.g., rate-limiting peer-to-peer traffic, filtering

spam). In addition, these classification rules are brittle as

2

they require change when traffic sources change. In this sec-

tion, we elaborate on these shortcomings.

Why not IP addresses? Many filters, blacklists, and ac-

cess control lists are based on IP addresses, such as DNS-

based blacklists (DNSBLs) for spam prevention. Unfortu-

nately, the IP addresses that send spam continually change

(i.e., incidentally due to dynamic addressing and intention-

ally, due to techniques such as route hijacking [24]), making

it difficult to keep these lists up to date. Although statistical

and behavioral blacklisting methods (e.g., [14, 23]) can help

counteract the dynamism of IP addresses by tracking behav-

ioral invariants, these methods rely on indirect inference. A

better method would allow operators to track the privilege

and provenance of traffic based on deterministic properties

that are contained in the packets themselves.

Why not port numbers? Operators also use port numbers

to attribute traffic to applications. For example, operators

rate-limit peer-to-peer traffic, or assign higher priority to

real-time traffic, using destination port numbers that corre-

spond to well-known services. For example, because many

botnets use Internet Relay Chat (IRC) for their rallying be-

havior, inspecting IRC traffic used to be a reliable method

of detecting such traffic. Today, however, many applications

use non-standard ports, which makes it difficult to identify

such applications without expensive deep packet inspection

(DPI). As malicious applications are increasingly attempt-

ing evasion of port-based filtering by rallying using common

ports (e.g., HTTP [2] or peer-to-peer protocols [26]), even

applying DPI becomes impractical.

2.2 Pedigree: Robust and Direct

Pedigree’s tags (described in detail in Section 4) pro-

vide the following semantics to traffic: (1) the trust asso-

ciated with the process (or group of processes) that gener-

ated the traffic (“What is the entity that generated the traf-

fic?”); (2) the provenance of the process or group of pro-

cesses that generated the traffic (“Who has this entity been

‘talking to’?”). These semantics enable several new func-

tions and applications because they directly reflect the se-

mantics an operator might want to express. Because these

tags are persistent (Section 4, these semantics are also ro-

bust. The rest of this section describes functions that these

tags facilitate. Pedigree allows all of these applications to be

implemented within a single, coherent framework.

Provisioning Operators may sometimes prioritize for certain

types of applications (e.g., prioritize VoIP, de-prioritize peer-

to-peer traffic, etc.) or between certain customers (e.g., en-

terprise sites, specific users). To prioritize traffic for certain

applications today, operators must write policies that clas-

sify traffic based on brittle identifiers such as IP addresses

or port numbers, which suffer from a number of drawbacks.

Instead, operators might want to classify traffic using a tag

that directly links network traffic to the entity that gener-

ated it and provides information about whether or not that

principal belongs to a certain group. Certain tags could, for

example, provide access to better provisioned, less loaded,

or lower latency paths over “standard” paths (in this context,

upgrades are analogous to capabilities [36]).

Blacklisting Unwanted traffic such as spam, denial of ser-

vice attacks, and illegal content distribution are taxing net-

work and system resources. Eradicating such traffic is chal-

lenging because of their similarity to legitimate traffic, and

operators must often resort to some form of deep packet

inspection, which may be impractical on high-speed links;

even with fast DPI technology, encrypted traffic can still

evade being downgraded [33, 31].

Instead, tags that identified the application that originated

the traffic and tracked the history of the application that gen-

erated the traffic (e.g., whether that application had commu-

nicated with other known malicious processes) could be used

to rate-limit or filter traffic from these applications.

Exfiltration Enterprise network administrators must protect

internal hosts from compromise and prevent private data or

resources from leaving certain designated areas of the net-

work (“data leakage”, or exfiltration). Current solutions for

exfiltration involve either routing all traffic that leaves the

network through a middlebox that performs expensive (and

often ineffective) DPI-based watermarking techniques, or

filtering certain ports, which both benign and malicious pro-

cesses can evade using encryption or tunneling. Using tags

that could associate network data transfers from a host to

files that are being read on the host, operators can reliably

and cheaply ensure that only data pertaining to non-critical

files leave the enterprise network.

Secure network regions Applications such as online bank-

ing authenticate customers at the application layer (or above)

but have no way to ensure that traffic is not being routed

to (or through) malicious entities; such subversion may be

performed even by a keylogger on the host that has no priv-

ileges. A network operator may wish to enforce that traffic

destined to such “secure regions” originate only from trusted

applications. In order to implement this policy, the operator

can require that destined to certain parts of the network from

a user’s computer necessarily contain tags that indicate that

the application that generated the traffic possesses a valid

credential (such as a private-key signature); an egress router

could authenticate the credential before forwarding the traf-

fic.

3. Trust Model and Assumptions

Because arbiters in the middle of the network make deci-

sions about how to forward traffic based on Pedigree’s tags,

malicious processes or network entities have an incentive to

try to manipulate these tags. Accordingly, we make some

assumptions about the capabilities of various entities in the

network to observe and manipulate the tags. This section

discusses two important assumptions: First, that network el-

ements are trusted and, as a result, do not manipulate the

tags. Second, that the host based tagger (i.e., the entity

that annotates the packet with tags that conveys information

3

about provenance and privilege) is trusted. The rest of this

section discusses these two assumptions in more detail.

Assumption 1: Network elements do not modify tags.

Pedigree requires that network elements on the path (i.e.,

routers, switches, intrusion detection systems, proxies, or

firewalls) will: (1) forward packets from sender to recipient

without modifying Pedigree’s tags; (2) not use information

gleaned from tags for malicious purposes. Because network

elements are usually operated by ISPs or enterprises, and

because users already implicitly trust network elements to

forward packets to modifying higher-layer packet headers or

payloads, we believe that this assumption is reasonable.

Assumption 2: The end-host has a trusted component that

is always at a higher privilege level than any untrusted re-

source.

Pedigree requires that the component on the host that main-

tains provenance information for all resources on the host,

attaches tags to outgoing packets, and incorporates tag in-

formation from incoming packets into the reading process’s

provenance, is trusted. In order to deploy the tagger at the

correct trust level, we divide all entities (processes, kernel,

Virtual Machine Monitor (VMM), hardware, etc.) on gen-

eral purpose operating systems into the five distinct trust lev-

els listed below. Also shown is the tagger deployment option

assuming a given trust level is the highest for all untrusted

components in the system.

1. User-level unprivileged processes: These processes

cannot modify resources owned by other users (unless

explicitly granted permission). Tagger Deployment: As

a privileged process or daemon.

2. User-level privileged process: These processes have

super-user rights and may modify any resource at the

user-level. They, however, must issue system calls to

the kernel to gain access to physical resources. Tagger

Deployment: As a protected kernel module accessible

only to the system administrator (e.g., using passphrase

protection) 1.

3. Kernel-level process, either as a module or as built-in

code: These processes have unrestricted access to all

virtual (e.g., vfs) and physical resources. Tagger De-

ployment: If the kernel is vulnerable, the administrator

must execute the operating system in a virtual machine,

and deploy the tagger secure code within the hypervi-

sor [11].

1In current operating systems, the distinction between trust level 2 (user-
level privileged process) and trust level 3 (kernel-level process or module)
is blurry: any process that has super-user privileges on an operating system
can install arbitrary code (as a module) to the kernel, or even change the ker-
nel itself. Pedigree requires that processes at one trust level cannot affect
processes at higher trust levels; enforcing this separation between levels 2
and 3 requires a modification to the kernel to ensure that only certain priv-
ileged processes explicitly authorized by the user (e.g., using a passphrase
that is known only to the user and the running kernel) can change kernel
parameters or load or unload modules. With this modification, executing
the tagger as a kernel-level process will be sufficient most general purpose
computers. Surveys show that for most operating systems are exploited due
to vulnerabilities present in user-level process or services (privileged or un-
privileged); kernels are largely free of exploitable vulnerabilities [32].

4. VMM level: If the OS is executed within a virtual ma-

chine, the virtual machine monitor (or hypervisor) runs

at a higher privilege level than the guest operating sys-

tem (e.g., Xen [1]). Tagger Deployment: If the VMM

is susceptible to compromise, the tagger must be run

within a trusted hardware module.

5. Trusted computing platform: If the platform is

equipped with a hardware chip that executes trusted

code, the Trusted Platform Module (TPM) becomes the

highest level of trust for the platform. Tagger Deploy-

ment: If the hardware on a host cannot be trusted, the

tagger must be deployed outside the host (e.g., a home

router or cable modem).

The administrator of a end-host can decide the highest

threat level to assign for untrusted processes based on an-

ticipated threats: a general-purpose desktop computer may

execute arbitrary code at user-level, so deploying the tagger

at kernel level (level 3) is viable. Section 6.1 deals with this

issue in greater detail.

4. Pedigree: System Design and Function

This section presents the design of Pedigree. Section 4.1

discusses the portion of Pedigree that resides on end hosts,

and tracks provenance and interactions between resources

within a host: the tagger. Section 4.2 discusses the the ar-

biter, which resides in the network and uses the information

contained tags to classify traffic.

4.1 On The Host: Tags

Pedigree tracks interactions between resources (i.e., files,

processes, and sockets) in an operating system and attributes

persistent tags to each resource. Pedigree annotates outgoing

traffic with tags. When a process sends data on the network,

Pedigree’s tagger annotates outgoing packets with a tag that

represent the provenance of a packet: essentially, the pro-

cess that generated the traffic and where it has taken input

from. When a process reads data from the network, the tag-

ger updates the reading process’s tags with tags on incoming

packets. We describe the semantics and structure of these

tags and how they are used to track interactions.

4.1.1 Tag semantics and structure

Semantics. Tags convey two types of information: (1) lo-

cal properties about the process that generates the traffic

(e.g., information about the application generating the traf-

fic, whether or not the user of some process possesses a key);

and (2) the history of interactions of that container with other

local and remote containers. The tags that are assigned to a

given application’s processes (as well as its derivatives, such

as child processes) are unique and survive reboots, but the

tags for the same kind of application on different machines

are distinguishable from each other. The tags also serve as

audit trails about interactions between resource (“who-talks-

to-whom”), thus allowing a network device to filter traffic

based on the who or what the process that generated the traf-

fic has interacted with.

4

Tag length

Global Host ID Application ID

Container ID length

Encoded Bloom Filter

Cryptographic Token (optional)
ID

C
o

n
ta

in
er

T
ai

n
t

S
et

Figure 2: Structure of a tag in Pedigree.

Structure. Figure 2 illustrates the structure of Pedigree’s

tags. Tags have two parts: (1) a container ID, which al-

lows network elements to unforgeably identify the sender’s

unique host ID and application details (e.g., whether the

sender is using an approved Web browser program); (2) a

taint set, which provides information about a container’s in-

teraction with other applications and hosts.

The container ID identifies a virtual “container” within

which all of the resources of an application are constrained,

analogous to the terminology used in virtualization technolo-

gies like OpenVZ [21]. The container ID has two parts: (1) a

global host identifier (GHID), which is a unique integer that

is either tied to the installed operating system or to a unique

hardware serial number on the device2, and (2) an applica-

tion ID (AppID), is a unique, persistent, integer associated

with an application program, such as the binary file used to

start the application, its configuration files, etc. All of the ap-

plication’s resources—the application binary files, files cre-

ated by the application, the application’s processes and pro-

cess group, etc.—have the same persistent application ID.

The taint set for a resource stores the identifiers of all the

other resources (local or remote) that it has interacted with

in the past. In a fresh install of a typical operating system,

Pedigree initializes the taint set of all the resources with the

GHID and the respective AppID.

Pedigree maintains the taint set as a compact set data

structure; our implementation uses a Bloom filter [3]. The

size of the Bloom filter depends on the expected number

of unique members and acceptable false positive rate for

lookups. Pedigree compresses the taint sets while transmit-

ting them as part of tags in the packets. Pedigree further

reduces the overhead by including full taint set only at the

start of the connection and using a hash on the subsequent

packets.

Some processes may use the cryptographic token to in-

dicate authorization to receive, say, better quality of ser-

vice or access to a trusted network region. Depending on

the key distribution mechanism and the nature of authoriza-

tion required, this token might be an HMAC over fields in

the packet and tag, a signature, or even a network capabil-

ity [36].

4.1.2 Tracking interactions with tags

The tagger maintains each resource’s current tag, either

within the structure that the operating system uses to main-

2The tagger on a machine can choose the set of serial numbers it wants to
use to construct the GHID, as long as it can construct it again. The function
may even be different per host.

tain resource metadata (e.g., in the Linux kernel, the tag can

be added as an extra field in the inode for a file, or as a field

in task struct for a process), or at a central location that

contains tag informations of all resources (e.g., a database).

The tagger updates the tags as processes are executed and

interact with resources. Figure 3 shows the three ways that

tags are propagated

1. Resource A reads from Resource B or Resource B

writes to Resource A In this case, because both A and

B already exist (e.g., a process reads from a file or a

network socket), Pedigree updates the taint set of A

to include all of B’s taints. The container IDs of both

processes are unchanged.

2. Resource A creates Resource B. Because only pro-

cesses can create resources, A will be a process. B

may be another process (created using fork(2) in

POSIX), a file, or a network socket. In this case, all

fields of A’s tags are copied as B’s newly created tags.

3. Resource A executes Resource B. In this case, A re-

places its own process image by executing the binary

file B, using a system call such as execve(2) in

POSIX. Pedigree sets the new process’s AppID to the

hash of the file B. The new process’s taint set is set to

the taint set of the file B. If A passes data to the new

process through execve, Pedigree also updates the

taint set of the new process with A’s taint set.

Case 1 includes taints acquired by reading data from the

network, as well as from files and other processes. If incom-

ing network packets are carrying tags, the tagger updates the

reading process’s tags with tags from network packets; the

contents of these tags will be propagated to other resources

that the reading process creates or writes.

Case 2 includes new files or sockets created by processes

(using open(2), or new processes (using fork(2)).

Child processes inherit the parent process’s full tag when

they are created, but changes to the taint sets of either the

parent or child after creation are not propagated unless there

is an explicit read between the two (using IPC or shared

memory).

In Case 3, the tagger replaces the AppID with a hash to

retain consistent AppIDs for the same application across re-

boots or multiple instances of the same application: irrespec-

tive of the process executing the application, the AppID of

a process created using a specific binary file will remain the

same. Enterprises can use the AppID to ensure whether a

program generating traffic is authorized or not.

These three rules allow Pedigree to propagate tags for

any type of interaction between resources, both within and

across hosts. Pedigree’s taint propagation mechanism is

transitive: if resource A sends data to resource B, who in turn

sends data to resource C, resource C’s taint set will include

resource A’s set as well. As we show in the next section,

this important property allows Pedigree to track the history

of interactions between files, processes, and hosts, which is

useful in a variety of classification scenarios. Taint sets are

5

(Process)

(Process)

Resource Interaction

(Process)

read

(Process)

create

execute

(File)

replaced by

arguments to exec)

Update Operation

S :=S

C

S := SS

S

C

S := SS

S := SS

 := C

 := S

 :=C

(if passed

(Process/File/Socket)

(Process)

write

(Process/File/Socket)

(Process/File/Socket)

∪

∪

∪

R1

R1

R1

R1

R2

R2

R2

R2

R3

R1

R1

R1 R1

R1

R1

R2

R2

R2

R2

R2

R2 R2

R2

R2R3

R3

R1

Figure 3: The system calls that cause Pedigree to update tags of involved
resources. CR refers to the Container ID of resource R, and SR refers
to the taint set of R. 4

also susceptible to overflow; we discuss this issue in Sec-

tion 5.3.

Although we have designed and implemented Pedigree

around a POSIX-based Linux system, all general-purpose

operating systems offer equivalent interfaces to applications.

4.2 In The Network: Arbitration

Once packets have been tagged, any network element

along the path to a destination can perform arbitration to de-

cide how each packet should be treated. We use the term

arbiter to refer to a network element (e.g., proxy servers,

routers, authentication servers, intrusion detection systems,

and load balancing systems) that inspects some part of the

packet’s tag (i.e., the container ID, the taint set, or both)

and takes some action based on its value (e.g., filtering, re-

routing, etc.).

Pedigree’s tags allow network elements to either upgrade

or downgrade the level of service that some traffic sees based

on the tags carried in the packets. Operators can provide

improved levels of service to applications that present ap-

propriate authorization (i.e., as a cryptographic token in the

container ID). On the other hand, an arbiter can drop, rate-

limit, or de-prioritize the low-priority or unwanted traffic.

The rest of this section describes those actions in more de-

tail.

Controlling access to resources. An arbiter could inspect

the fixed fields on packet tags such as the AppID or signature

to perform authentication for access to a restricted resource

or secure region of the network (as described in Section 2).

4Pedigree does not treat network sockets separately as a socket normally
maps one-to-one to its controlling process.

This scenario is most applicable in an enterprise network,

where key management and distribution can be controlled

and users can be asked to run common software (e.g., the

tagger). An arbiter could use the AppID to ensure that a

user’s traffic was generated using authorized software. It can

also use the token to control access to more critical services,

(e.g., online banking portals).

Curtailing unwanted traffic. An arbiter that merely pre-

vents malicious application traffic from passing through will

only need to check whether a certain packet’s taint set con-

tains one or more taints belonging to known malware. For

example, Intrusion Detection Systems (IDSes) or firewalls

may inspect the taint set to check for membership of taints

of known malicious applications. To blacklist traffic, an IDS

might maintain a blacklist of taints known to belong to ma-

licious files or servers and the taint sets of incoming packets

to determine whether it contains any blacklisted taint. Pedi-

gree’s taint set is a Bloom filter, so the arbiter only needs

to perform a simple bitwise AND between the Bloom fil-

ters corresponding to a packet and a Bloom filter containing

the sought malware taint. The query returns true (i.e., the

packet on the wire contains the taint of the sought malware)

if the resulting Bloom filter is equivalent to the Bloom fil-

ter containing the malware. Upon discovering the presence

of a taint, the IDS can take further action (e.g., filter, drop,

rate-limit, inspect payload).

5. Practical Considerations

Deploying Pedigree on a real network faces several practi-

cal concerns such as increased packet size, overhead in stor-

ing tags on each host, potential for misclassification due to

overflow of the taint set of a resource’s tag, etc.; in addi-

tion, Pedigree also needs to be hardened against a variety of

attacks. This section addresses the practical considerations

in deploying Pedigree, while Section 6 discusses attack de-

fenses.

5.1 Packet Overhead

The taint set portion of a process’s tag is a significant over-

head if sent uncompressed with every packet in a connection.

To reduce packet overhead, Pedigree performs two optimiza-

tions: (1) Pedigree sends the full tag only at the beginning of

a connection, with subsequent packets carrying only a hash

computed on the tag; and (2) because the Bloom filter (i.e.,

taint set) that makes up the bulk of the tag is typically sparse,

Pedigree compresses it using a fast algorithm.

Avoiding full tags on every packet. To reduce the per-

packet overhead due to Pedigree’s tags for a network con-

nection, the tagger sends the full tag only once, during the

connection setup phase (e.g., the three-way handshake of

TCP-based protocols). Subsequent packets only contain a

well-known hash function computed on the tag. Arbiters

may compute the hash independently for verification, and

even use this hashed string as the key to quickly look up

the classification decision for later packets in the same con-

nection. If the taint set of the process generating packets

6

 0
 5

 10
 15
 20
 25
 30
 35
 40

0 25,000 50,000 75,000 100,000T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Number of inserted taints

Encoding time
Decoding time

 0

 0.5

 1

 1.5

 2

0 25,000 50,000 75,000 100,000

C
o

m
p

re
ss

io
n

 R
at

io

Number of inserted taints

Compression
Baseline

Figure 4: Golomb-Rice compression gain and latency evaluated using
a Bloom filter (of maximum capacity 100,000 taints) as more taints are
inserted.

changes after the beginning of the connection (e.g., because

the process acquired more taints by reading from another re-

source), only the newly set bits (and the hash of the new tag)

are sent on subsequent packets.

Compressing Bloom filters. The uncompressed size of

the Bloom filter depends on the expected number of taints

a resource can acquire during its lifetime, and the maximum

false positive rate for the chosen maximum number of taints.

Using standard Bloom filter calculations [3], a Bloom filter

that supports 100,000 insertions with a false positive rate of

0.01 or less requires approximately 127 KB.

To reduce the in-transit size of the filter, Pedigree com-

presses it before attaching it to network packets. The com-

pression scheme used must be fast enough to not hamper

packet processing, but effective enough to provide signifi-

cant compression gain. Because the run-lengths of 0 bits

in a Bloom filter follow a geometric distribution, Pedigree

uses Golomb-Rice codes that are optimal for such distribu-

tions [25]. Golomb-Rice encoding is parametric: it does not

require the computationally expensive sliding window look-

ahead used by algorithms such as Deflate [22].

Figure 4 plots the variation in compression ratios, as

well as the latency in encoding and decoding measured us-

ing our implementation of the Golomb-Rice algorithm, as

more taints are inserted into an initially-empty Bloom filter.

For sparse Bloom filters, Golomb-Rice encoding achieves

high compression ratios, but understandably degrades as

the Bloom filter reaches its capacity (because the filter ap-

proaches a uniform random binary string). The encoding

and decoding latencies—especially if performed only once

per a new connection—are also reasonable.

With the two optimizations above, the packet overhead

due to Pedigree’s tags is acceptable. For a typical sparse

Bloom filter, compression ratios of one-tenth are possible,

enabling Pedigree to represent a 128 KiB taint set in less

than 10 KiB. The container ID is also small, amounting to

32 bytes including a signature in our implementation. The

full tag (approximately 10 KiB) needs to be sent only once

per connection, and subsequent packets only carry a 20-byte

hash of the tag, provided the tags of the sending process do

not change mid-connection. Thus, for a 10 MB file transfer

using 1500 byte packets, the overhead due to Pedigree’s tags

amounts to only 1.5%.

5.2 Storage Overhead

Tags should use as little storage as possible. Pedigree

stores only the tags of active resources (open files and run-

ning processes) in physical memory; the in-memory stor-

age is of fixed-size and these entries are replaced (by writing

through to disk) using a least-recently used (LRU) policy.

The tags of all permanent resources (i.e., files), as well

as the tags of transient resource which cannot be accommo-

dated in physical memory, are stored on disk. To reduce the

overhead due to the permanent store, Pedigree could main-

tain only one copy of the taint set (which accounts for the

bulk of the tag) between all resources that have the same

taint set; this optimization would especially be useful in rep-

resenting the taint sets of all resources that have the initial,

default taint. Yet another optimization involves maintaining

only “diff” of the taint set for a resource if its taint set is sim-

ilar to that of another resource (e.g., two copies of the same

file which have been written to by two different processes).

Even without optimization, the number of permanent tags

that Pedigree will accumulate on a host is linearly bound to

the number of regular files on the disk.

5.3 Taint Set Overflow

Host processes continuously accumulate taints as they

communicate with other processes (local or across the net-

work) and read files, but their taint sets can accommodate

only a fixed number of taints before the false positive rates

increase beyond acceptable levels; we call this occurrence

“taint set overflow”. If false positive likelihood of a taint set

is high, arbiters will not act upon the presence of a malicious

taint in the taint set, due to the risk of misclassifying traffic

from processes that may have legitimately overflowed their

taint sets. Malicious processes may attempt to capitalize on

the arbiter’s inability, and intentionally create an overflow of

their taint sets in order to “hide” their malicious taints among

many others (e.g., by contacting arbitrary hosts on the Inter-

net, and acquiring at least one new taint per host).

To prevent a resource’s taint set from overflowing, Pedi-

gree clears portions of full (or nearly full) taint sets. Clear-

ing bits, however, induces false negatives in Bloom filter

lookups. In this section, we first argue that most resources

on a typical end-user operating system are unlikely to ever

overflow their taint sets We then present two schemes to un-

set portions of a Bloom filter as fills up, as well as a mech-

anism for clustering hosts that exchange resources based on

common taints.

5.3.1 Likelihood of Taint Set Overflow

Most legitimate applications on end-hosts accumulate

only a fixed number of taints in their taint set. Even for ap-

plications such as Web browsers and P2P software, the taints

7

0.8

0.85

0.9

0.95

1.0

 0 200 400 600 800 1000 1200 1400 1600

A
v

er
ag

e
si

m
il

ar
it

y

Age of taint

Figure 5: Evaluation of bit resetting Scheme 1: The taints that are
inserted last to the Bloom filter have a higher average similarity value
than earlier taints.

they accumulate in one session (i.e., the time that a particular

process executing the application binary is alive) are usually

not carried over to the next session, as these applications

never read files that they wrote to disk in a previous session.

For example, if a Web browser process P on a host down-

loads the file F from a remote host, the taint set of P , SP ,

will be updated as SP := SP ∪ SF , which will also be the

taint set of the copy of file F written to the host’s disk. The

taint set of the browser’s binary file itself is not affected, and

the next process executing the binary file will not acquire

file F ’s taints. Contemporary browsers such as Firefox fork

child processes for each download which die after the down-

load completes; such forking further segregates the taints of

the downloaded files from the parent browser process.

Admittedly, the number of taints that a legitimate pro-

cess can acquire in a session depends on usage pat-

terns, and representative figures for taints acquired by end-

user applications cannot be obtained without an exten-

sive user study. Even so, the number of taints required

to fill up a Bloom filter—approximately 100,000 in our

implementation—requires the host process to contact at least

the same order of different remote processes within one ses-

sion, which we believe is unlikely.

5.3.2 Probabilistic Bit Resetting

In order to prevent taint set overflows, we instrument the

tagger to reset one or more bits from a resource’s Bloom fil-

ter if the filter is filled beyond a threshold. Unfortunately,

if bits in a Bloom filter are reset, the filter loses the prop-

erty of never returning a false negative: even the keys (i.e.,

taints) that were inserted into the filter may not have all of

their corresponding bits set. To address this issue, the arbiter

must modify its technique for querying a taint set for mem-

bership of a particular taint: instead of verifying that all bits

corresponding to the k hashes for a certain key are set, the

arbiter must use a similarity metric, which may be the frac-

tion of bits (out of k) that are set for any given key (i.e.,

taint). Depending on the type of taints that are preserved, we

present two strategies for resetting bits.

Scheme 1: Preserve later taints. The first scheme involves

resetting one or more bits with equal probability each time

a new taint is inserted. This scheme preserves recently in-

serted taints. To verify that taints inserted later are likely

to have higher similarity scores than earlier taints, we inten-

tionally cause a Bloom filter to overflow, and measure the

average similarity of inserted taints. Figure 5 shows the av-

erage similarity of buckets of taints, sorted by age (i.e., a

taint with lower age is inserted later), for 1,500 taints in-

serted into a Bloom filter. We instrumented the Bloom filter

to allow bit resetting to kick in after very few taints are in-

serted. In Figure 5, the last inserted 100 taints have average

similarity of 1, indicating that these taints are hardly affected

by resetting.

This scheme is suitable for legitimate application pro-

cesses that acquire taints over the course of their normal op-

eration, such as Web browsers: the taints of newly read (i.e.,

downloaded) files—which could potentially be malicious—

remain unmodified until they are written to disk as separate

files, at the expense of taints of files read earlier.

Scheme 2: Preserve earlier taints. The second scheme

requires storing a snapshot of the Bloom filter for each re-

source at the time the resource was first created on the host.

When bits need to be reset, the current Bloom filter is com-

pared with the snapshot, and common bits are given high-

est priority against resetting. The scheme thus protects older

bits at the expense of newly set bits, and is suitable for poten-

tially untrusted application binaries: in the case of malware,

the taints in the snapshot likely include the malicious taints,

and the bits corresponding to these taints will be preserved

even if the malicious program later attempts to acquire a

large number of taints.

5.4 Automatically Identifying Taints

Using Pedigree, a network administrator who knows the

taints associated with the malware can filter traffic generated

by malicious programs, where these taints are presumably

acquired through another source (e.g., by directly contact-

ing the malware hosting server, from a honeypot, etc.). This

process, however, requires the administrator to acquire the

taints of these malware in order to perform lookups on real-

time traffic. These requirements are hard to meet: miscre-

ants release many new variants of malware each day [5], and

there will be significant delays before security researchers

can obtain and classify these taints. In fact, it is precisely

because of this large influx of new malware variants (many

of them auto-generated, such as polymorphic worms) that

manual classification is hard. Pedigree’s resource tracking

mechanism ensures that even these polymorphic variants of

worms inherit the taints of the original malware binary; thus,

although the malware processes on each host will have taints

specific to that host, they will all posses a subset of common

taints that were embedded in the first copy of the malware

executable (e.g., from the malware hosting Web site). 5

Arbiters in the core of the network are in a position to

observe traffic generated by a malicious program from dif-

ferent hosts, and can apply clustering on the taint sets of

traffic from these hosts in order to discover: (1) groups of

host processes that possess common subsets of taints; and

(2) the bits in the Bloom filter corresponding to the com-

mon subset of taints for a group. In this section, we present

5This statement assumes that all copies of a malware have the same root, but
this assumption is not necessary: clustering will merely group the subsets
of malware processes with different root taints in separate clusters, which
is equally beneficial to the operator.

8

Varying number of clusters (C)
Fixed params: B = 50; b = 2000; a = 1000; N = C × B

Clusters, C Clusters Found Avg. FNs Avg. FPs

5 5 0 1.6
10 10 0 3.6
15 24 0 1.45
20 20 0 1.6
25 28 0 1.6

Varying number of noise taint sets (N)
Fixed params: C = 5; B = 50; b = 2000; a = 1000

Noise, N Clusters Found Avg. FNs Avg. FPs

50 8 0 0
100 8 0 1.4
150 7 0 0
200 5 0 0
250 5 0 1.6
· · · · · · · · · · · ·

600 7 0 2

Varying noise within clusters (a)
Fixed params: C = 5; B = 50; N = 250 b = 2000

Cluster Noise, a Clusters Found Avg. FNs Avg. FPs

500 7 0 2.29
1000 8 0 1.75
1500 6 0 0.5
2000 6 0 0.83
2500 5 6.6 1.2

Notation
b – Initial taints per cluster B – Taint sets per cluster
C – Number of clusters a – Random taints per taint set

N – Number of “ambient noise” taint sets

Table 1: Clusters identified using different simulation parameters. Avg
FNs indicate the average False Negatives per cluster, and Avg. FPs in-
dicate average False Positives per cluster. All experiments were per-
formed using a Bloom filter that supports 10,000 insertions.

a clustering-based algorithm that arbiters can deploy to au-

tomatically identify taint sets that have subsets of taints in

common, which will likely be the case for a particular mal-

ware variant that runs on many infected hosts on the Internet.

Our algorithm uses the idea that, although some clusters

are likely to be non-malicious (e.g., different host processes

using a particular software downloaded from the same Web

site will cluster on the subset of taints corresponding to the

original copy of the software), the operator needs to manu-

ally verify only one host process’s traffic per cluster; once

one process’s traffic is identified as malicious, the operator

can automatically filter other traffic that clustered with the

identified traffic. In addition, the operator can also instru-

ment the clustering algorithm to return the smallest set of

‘1’ bits that define a cluster of malicious traffic; he can then

use this set as a direct filter on the taint sets of future traffic.

Evaluation. In this section, we evaluate how well the clus-

tering scheme described above identifies groups of related

processes (even from different hosts) that have a common

subset of tags. In our simulation, we create C clusters of B

taint sets (i.e., Bloom filters) each. All the taint sets within

any given cluster are initialized with the same b taints (but

with different taints across clusters). The initial taint set of

a cluster is analogous to the “root” taint of a malicious exe-

cutable before it spreads in the wild.

In order to simulate copies of a malware spreading across

different hosts and acquiring new taints, we now add a ran-

dom taints to each of the B taint sets of each cluster. All

taint sets are large enough to accommodate a+b taints. Each

taint within a cluster represents a different host process run-

ning the malware: they all possess the original b root taints,

but also posses a taints acquired due to later interactions be-

tween hosts and processes.

We also create N noise taint sets that each have a + b ran-

dom taints in order to simulate traffic with unrelated taint

sets that an arbiter will observe when attempting to clus-

ter taint sets in the network core. Finally, we input all taint

sets—C × B taint sets which have some taints in common,

and N noise taint sets—to Eigencluster [6], an unsupervised

spectral clustering algorithm, giving equal weight to each

taint set. Table 1 tabulates the number of clusters identified

by Eigencluster, the number of taint sets belonging to one

of the C clusters that were grouped with taints from another

cluster (False Negatives, or FNs), and the number of taint

sets from ambient noise, N , that were grouped with one of

the output clusters (False Positives, or FNs).

In each case, we expect: (1) Exactly C output clusters; (2)

No FNs (i.e., no element in a cluster was misclassified); and

(3) No FPs (i.e., no ambient noise was accidentally identi-

fied as belonging to a cluster). Our simulation shows that

the clustering does pick out all C × B taints and cluster

them (result not shown in Table 1), but the number of de-

tected clusters is sometimes slightly greater than the num-

ber of input clusters. There are no false negatives (except

when the common b taints within a cluster is overshadowed

by the b random taints added later): taint sets of processes

with common history will never cluster with another set of

processes. The existence of false positives (i.e., potentially

legitimate taint sets grouped with a malware cluster) ham-

pers blind filtering merely using the clustering output, but

the bulk of the noise—potentially legitimate taint sets—do

not form clusters. Because of the large reduction in “ambi-

ent noise”, it may be practical for the operator to channel all

taint sets from identified clusters to a deep packet inspection

device to weed out any false positives.

6. Protecting Pedigree from Attack

This section discusses host and network-based attacks

against Pedigree and defenses against them.

6.1 Host­based Threats

Pedigree is vulnerable to several host-based threats that

might allow a process to interfere with tagging. We discuss

threats in increasing order of the capabilities of a malicious

process.

Threat 1: Malware is a user-space, unprivileged process.

For this threat, an administrator assumes that the only un-

trusted components of the operating system are unprivileged

processes running in user-space. The tagger can then be de-

ployed as a user-space, privileged process through which all

outgoing (or incoming) packets are routed before they cross

to (or from) kernel-space. Trusting all privileged processes

may be reasonable for OS architectures where the amount

9

of trusted code is minimized (e.g., embedded OSes, L4 Mi-

crokernel [18], Exokernel [7], HiStar [37], etc.) or special-

purpose devices where the user cannot typically run pro-

cesses with super-user privileges.

Threat 2: Malware is a user-space, privileged process.

If the kernel is trusted, the tagger can be a kernel mod-

ule. Still, most operating systems also allow processes with

super-user privileges to change various parameters of the

running kernel, or even load and unload modules from the

kernel; thus privileged malicious process might bypass the

tagger by interfering with its parameters or even unloading

the module entirely. To counter this attack, we suggest even

a privileged process should present credentials (e.g., a pass-

word) to the kernel to change kernel settings.

Threat 3: Malware is a kernel module.

If malware can gain kernel rights (e.g., by inserting a ker-

nel module), it can typically bypass, corrupt, or completely

eradicate a software-based tagger. There exist two methods

to deploy the tagger at a level below the kernel. First, the

operating system, and all its processes, can be run inside a

virtual machine [28, 29, 34]. In this case, the tagger will re-

side either in the hypervisor, or in the trusted domain (e.g.,

Dom0 for Xen, the host OS in VMWare or UML). All un-

trusted programs will only be run in one of the untrusted

domains. The tagger maintains the tags of processes and

files of the untrusted OS outside the OS, and is therefore

protected even if the untrusted OS is compromised. Second,

the tagger can be deployed as a hardware chip (e.g., within

a Trusted Computing Platform) through which all incoming

and outgoing packets are routed.

6.2 Network­Based Threats

Only hosts that do not have a tagger installed can attempt

to mount attacks against Pedigree’s tags. Such hosts may

eavesdrop for tags on local networks, or attempt to manu-

facture tags to gain access to some resource. Of course, if

a host has not deployed Pedigree, then all information being

carried in the tags will be lost when processes on this ma-

chine take inputs from tagged packets and generate untagged

traffic of their own. ISPs can encourage users to deploy tag-

gers in various ways (e.g., providing preferential treatment

of traffic).

Threat 4: Eavesdropper attempts to spoof or replay tags (or

credentials in tags).

Although no host with a tagger can eavesdrop on tags,

malicious hosts may eavesdrop on packets on the wire and

mount attacks such as denial of privileges, replaying another

host’s packets, etc. To prevent valid tags from being re-

played by eavesdroppers, Pedigree includes a re-initializable

hash chains[9] as a cryptographic credential in the tag. Re-

initializable hash chains (RHC) are a variant of finite-length

one-way hash chains [17] that can be securely re-initialized

once the hash chain is exhausted. For each connection, Pedi-

gree sets up a new RHC. For the first packet in a connection,

the tag includes the first value of the RHC. Additionally,

the cryptographic signature included with the first packet is

performed over the self-identifying message (comprising the

GHID, AppID, taint set, source IP address, and source port)

concatenated with the first entry of the RHC. As before, ev-

ery subsequent packet carries the hash of the first packet’s

tag, as well as the next entry in the RHC. When the arbiter

receives the first packet, it verifies the signature using the

fields in the tag. After the signature is verified, the arbiter

stores the current value of the RHC, and uses it to verify that

new packets purported to belong to the same connection are

not replays.

The eavesdropper may spoof other portions of the tag, in-

cluding the global host ID (GHID) and the application ID

(AppID). These fields are not cryptographically meaningful,

and thus the arbiter will not typically use them to authenti-

cate traffic. Still, if the tagger knows the arbiter’s public key,

it may encrypt all fields in the container ID portion of the

tag. This approach requires the arbiter to have certified key

pairs and key distribution services.

Because the taint set portion of the tag is typically a com-

pact set representation that uses a probabilistic data structure

(Pedigree uses a Bloom filter), membership queries to the

taint may return a false positive. As result, we do not envi-

sion that the arbiter would use the taint set as a credential;

thus, there would be very little incentive for an eavesdropper

to replay a taint set.

Threat 5: Eavesdropper changes tags to evade blacklisting,

filtering, or other service degradation.

Using container ID fields to filter or blacklist is reliable

only when the network administrator is assured that all hosts

on a network have a trusted tagger installed; otherwise, a

malicious host may simply change the values of fields to

evade the filter. This is a reasonable assumption in enter-

prises where all hosts run a trusted OS that has the tagger

pre-installed.

In the wide-area, filters based on container IDs can be eas-

ily evaded since these IDs can be minted or forged. Thus,

arbiters in the wide-area must use the taint set. A malicious

process may still try to modify a taint set that was blocked

by the arbiter in order to construct a different taint set that

will be allowed by the arbiter. As a defense, the ISP might

encourage or require its users to necessarily install taggers

to receive normal service, and instrument “verified” taggers

with a credential that the ISP’s arbiter can verify; this cre-

dential may be a scheme to add a new taint to the taint set

of each packet that exits the host. The arbiter can first ver-

ify credentials on the taint sets of packets before performing

service decisions using the set. To prevent eavesdroppers

from guessing the credential taint (perhaps by collating taint

sets of many packets), the credential generator changes the

credential taint in some fashion.

7. Prototype Implementation

This section describes the prototype implementation of

10

Tag Processor

Database
Tag

Process Process

File Socket

POSIX Message Queue

System Call Interceptor

Tagger−enabled Host

F1

P1 P2

S1

update(P1 , F1)

retrieve(P2, &tag)

read(F1) send(buf, S1)

send(buf+tag, S1)

Figure 6: Architecture of the user-space Pedigree prototype. System
calls that propagate tags are intercepted using a pre-loaded shared li-
brary, and the tag information of all active resources is stored in a cen-
tral database.

Pedigree. Our prototype is geared towards testing the per-

formance and overhead of Pedigree and to serve as a proof

of concept; it does not attempt to be immune to malicious

attacks. Section 7.1 presents an overview of the prototype,

Section 7.2 describes the tag processor, Section 7.3 describes

tag database structure.

7.1 Overview

We implemented a proof-of-conceptprototype of Pedigree

in user-space in approximately 10,000 lines of C code with

2890 semicolons; we chose a user-space implementation for

ease of prototyping and testing.

Our prototype causes system calls made by applications

(e.g., read(2), write(2), fork(2), execve(2),

send(2), recv(2), etc.) to be interecepted by a pre-

loaded shared library, using which we track and record the

propagation of tags between resources. The shared library

also attaches tags of a process to the packets it generates,

and strips tags from packets the process reads and incorpo-

rates them into the process’s own tag.

7.2 Processing Tags

Figure 6 presents the architecture of our prototype. Be-

cause the prototype runs in user space, the tagger must be

notified whenever a system call that might propagate taints

is invoked. One way to implement this functionality is to

augment the kernel system call handler to notify the tag-

tracking process whenever such a system call occurs, but this

technique requires two user-kernel crossings, which are ex-

pensive. Instead, we use the functionality offered by the dy-

namic linker on Unix-like OSes (e.g., ld-linux.so in Linux)

to pre-load additional shared libraries before programs are

run (called “library interposing”), using the LD PRELOAD

environment variable.6

The interposed shared library wraps all system calls that

propagate taints according to the rules specified in Sec-

6Our implementation does not protect against malicious programs that an-
ticipate pre-loaded libraries and unset the LD PRELOAD variable. Strictly
speaking, there is no way to completely avoid “help” from the kernel in
tracking system calls: even if we resorted to building the tag-tracking func-
tionality into libc itself, a malicious program is free to link against its own
copy of libc.

tion 4.1.2. When a process invokes one of the wrapped sys-

tem calls, the code in the shared library sends a message

to a special process, the Tag processor with details of the

calling and called resource (e.g., in Figure 6, when process

P1 reads file F1, the library informs the Tag Processor of

the read, including the process ID of the process and the

inode number of the file). For some system calls, the inter-

posed library may also expect a response from Tag Proces-

sor: for e.g., during a send(2) call, packets must be

affixed with the tags of the process that invoked send(2)

before they are sent out to the network. At a high-level, the

Tag Processor offers two functions: 1) update (dst,

src): updates the tags of resource dst with those of

src; this operation is performed during read, write or

execve; 2) retrieve (src, &tag): retrieves the

tag of the resource src into the structure tag, which is per-

formed during send(2). A variant of update is invoked

when a network packet is received using recv(2): instead

of using a resource ID as src, the library uses the tag stripped

from an incoming network packet.

7.3 Tag Database

The tag processor uses a tag database to maintain the tags

of all active resources in the system. The database is imple-

mented as a two-level hierarchy consisting of an in-memory

cache backed by an on-disk database. The on-disk database

structure is maintained as two separate GDBM [8] databases,

one for files (i.e., permanent resources), and one for pro-

cesses (transient resources). The files are indexed by the ID

of the resource (i.e., inode number for files and process ID

for processes). Because process IDs are not related to to the

application being run as the process, the database for pro-

cesses does not have any permanent entries; the entry for a

process is deleted after the process dies, and the whole file is

cleared at system boot. The database for files, on the other

hand, persists across reboots.

The in-memory cache is used to reduce the I/O overhead

associated with accessing the on-disk database. The number

of tags cached is a configurable parameter. In case of cache

overflow, an LRU scheme is used to write through with the

on-disk database. When the system halts/reboots, cached

tags for files are transferred to the file database, while those

of processes are purged. The tag processor communicates

with the interposed library of a process making a syscall us-

ing POSIX message queues. Message queues automatically

handle issues of concurrency due to multiple processes writ-

ing to it.

8. Performance Evaluation

This section presents the evaluation of our prototype of

Pedigree implemented in user-space using library interpo-

sition. We evaluated the prototype on a 2.4GHz dual core

machine running a POSIX-based GNU/Linux system with

Linux kernel 2.6.22 and glibc version 2.6. We study the la-

tency overhead of the prototype when interposing both lo-

cal system calls (e.g., read, write) and remote ones (e.g.,

11

 1

 10

 100

 1000

READ WRITE SEND RECV

T
im

e
(µ

se
c)

Native syscall
Interceptor msg

Wrapped syscall
Tag processing

Figure 7: Latency overhead. Interceptor msg time indicates the time
taken by system call interceptor to enqueue a message. Tag processing
time is the time taken by tag processor to process one message.

send, recv), in order to demonstrate the feasibility of

Pedigree on general purpose computers.

Latency Overhead. To evaluate intra-host system call over-

head, we created two test applications — test-read and test-

write — that perform 10,000 read(2) and write(2)

system calls in a loop on an open file descriptor. To evalu-

ate network overhead, we created a client/server file-transfer

application to upload a 67MB file from client to server over

a 1Gbps switched LAN, with both client and server using a

4096-byte buffer for sending or receiving data. We assume

that tags of the client and server do not change for the du-

ration of the file upload experiment, which is typically the

case with most processes performing network data transfers.

Figure 7 depicts the latency overhead calculated for these

test programs with and without library interposition. Note

that Process syscall time does not include the Tag pro-

cessing time as the tag messages are asynchronous (except

retrieve). The latency overhead for wrapped syscalls

is usually low, ranging from 1.5 to 4.5 times that of the

native syscall, which is reasonable for a user-space imple-

mentation; an in-kernel implementation is likely to be sev-

eral times faster. For send(2), the Interceptor msg time

exceeds that for other syscalls because retrieve(src,

&tag) is synchronous, i.e., it must wait for the tag proces-

sor to reply with the retrieved taint.

Message Queue Overflow. We noticed that the tag pro-

cessor processes incoming messages slower than application

processes enqueue them, resulting in the POSIX message

queue becoming full. A full queue causes an application

process attempting to enqueue messages to block (i.e., the

process is moved to the operating system scheduler’s wait

queue), leading to higher observed latency for the applica-

tion process. Because blocking misrepresents the real over-

head of the prototype, we performed measurements using

a message queue large enough to not overflow during the

course of the experiment.

Assuming an arbitrarily large message queue is, however,

not practical: message queues remain in non-swappable ker-

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

W
al

l-
cl

o
ck

 t
im

e
o

f
te

st
-r

ea
d

 (
se

c)

Sleep time between successive reads (µsec)

Wrapped read(2)
Native read(2)

Figure 8: Experiment to measure message queue overhead in Pedigree
prototype. The sleep time between successive read(2) is varied and the
wall-clock time seen by wrapped and native test-read is measured.

nel memory and their size is thus limited by physical mem-

ory. On the other hand, if the application process enqueues

messages at a latency comparable to the rate at which the

Tag processor processes them, even a small message queue

would suffice for IPC. The test programs in our evaluation

invoke system calls as fast as the operating system and hard-

ware can field them without performing any processing on

the data, while a real application would presumably process

data before performing syscalls on the data.

To evaluate the impact of blocking on perceived appli-

cation latency, we repeat the 10,000 loop read(2) using

test-read with a smaller message queue of merely 100 mes-

sages. To simulate processing, we add a small delay after

each read using the usleep(3) library routine. Figure 8

plots the time perceived by the test-read application as the

delay is varied from 0 µsec to 500 µsec.

The latency experienced by native test-read begins at 0.05

seconds and increases linearly with delay, but the latency

for wrapped test-read remains the same at 2.5 seconds from

0 µsec through 240 µsec. The reason for wrapped test-read

not reacting to the explicit delay is because the the sleep time

overlaps with the blocking time: wrapped test-read spends

approximately 240 µsec per cycle on the scheduler’s wait

queue, and any delay below 240 µsec does not affect its

overall wall-clock time. Beyond delays of 240 µsec, both

wrapped and native test-read show linear increase in wall-

clock time, with the difference between the two (approxi-

mately 0.09 seconds, or approximately 180% of native test-

read) reflecting the actual overhead of library interposition.

The blocking latency of 240 µsec per read is compara-

ble to (or less than) the processing time for many typical

operations (e.g., a graphical application takes milliseconds

to redraw the screen; a file transfer application sending data

from disk at 1 Mbps using a 4096 byte read buffer performs

a read only once every 4 milliseconds), making even the

overhead of our prototype (with small message queues) fea-

sible for real applications 7 Implementing the tagger using

shared memory will not involve message queue overhead,

while an in-kernel implementation will completely eliminate

the need for IPC.

9. Discussion

7The 240 µsec figure is the average blocking time between successive en-
queues for the message queue across all processes, which may imply higher
delays per process if many processes simultaneously perform syscalls in
quick succession.

12

This section discusses some additional benefits that Pedi-

gree provides, as well as various limitations.

9.1 Benefits

Better anomaly detection. Pedigree focuses only on tag-

ging traffic, which we consider to be distinct from the well-

studied area of labeling traffic (i.e., as in traffic classification

and anomaly detection systems) [14, 16, 10]. We believe that

these systems could be much more powerful if the traffic it-

self carried taint sets indicating relationships among traffic

coming from different groups of hosts. For example, the

taint set might help an anomaly detection system realize that

a group of flows were related because the sources had all

communicated with one another, traffic flows coming from

a group of hosts were all generated by a process that was

running a common binary file, or that the traffic generated

by some group of processes that were running with a certain

level of trust.

Stronger host security. Administrators may want to track

files and processes that may have affected any given process.

Using Pedigree’s tags, system administrators can implement

host-based more expressive security rules than they can to-

day. An administrator who knows the taints corresponding

to a certain malicious application can construct a host-based

rule that prevents any process whose traffic carries the ma-

licious application’s taints from accessing critical resources,

irrespective of the process’ privilege level.

9.2 Concerns and Limitations

Connectionless protocols and route changes. Sending the

hash of the tag to reduce packet overhead (as described in

Section 5.1) will not work if either (1) the protocol is connec-

tionless or (2) the route from the sender to receiver changes

in the middle of a connection. It also imposes significant

overheads on short connections. The taint set is large, but

Pedigree’s container ID is small and can be used indepen-

dently of the taint set; applications that were sensitive to this

overhead could mark packets with only the container ID and

still gain some of the benefits of Pedigree. To combat route

changes, arbiters that receive unrecognized hashes of tags

could send a challenge (e.g., via an ICMP message) to the

sender asking the sender to re-send the original tag.

Taint accumulation. A potential application of Pedigree is

tracking worm outbreaks. Unfortunately, using the container

ID (specifically, the AppID) will likely be infeasible for this

purpose because most malware is polymorphic (i.e., each

copy of the binary takes a slightly different form). When

a worm creates a slight variant of a copy of itself, however,

the taint set for the new copy of the worm will contain the

taint set of the old worm, which may make tracking easier.

Additionally, Pedigree’s tagger could be augmented with a

special function that copies a hash of the old binary’s image

into the new binary’s taint set in cases where an application

creates a file that is similar to its own image.

Many applications, particularly those that maintain per-

sistent state in configuration files across sessions, may ac-

quire a very large number of taints over time. As such a taint

set fills up, performing certain types of operations, such as

tracking malware, become difficult: if such an application

writes malware to disk, the malware will acquire all of the

taints of that application. We believe the best defense against

this is to mandate that taint sets do not become too full using

the techniques we described in Section 5.3.

Issues with partial deployment. As discussed in Section 6,

when traffic that is carrying tags is passed through a host that

has not been instrumented with a tagger, the traffic’s “audit

trail” is lost. In these cases, a common worm outbreak (or

communicating group of hosts) might appear to an arbiter or

network monitor as distinct groups of hosts. Examining the

taint sets of each of the subgroups, however, might allow an

operator to recognize that taint sets from each group either

share many taints in common. In our future work, we plan

to study various methods for recovering taint sets in cases of

partial deployment.

10. Related Work

Resource interaction tracking. Pedigree is inspired by

ideas related to tracking interactions between resources at

the host level. Many research operating systems have at-

tempted to secure the system against exploits or to prevent

security breaches (e.g., exfiltration). Early research goes

back many decades (e.g., the Hydra operating system [4]),

and researchers continue to tackle related problems (e.g.,

Taos [30], and more recently, HiStar [37]). TaintCheck [20]

also monitors information flow, albeit at the instruction level,

in order to detect potential exploit code.

Access tracking systems such as Tripwire [27] perform in-

teraction tracking and detection; in contrast, Pedigree leaves

classification decisions to a separate arbiter. Perhaps the

closest work to Pedigree’s resource tracking scheme is “pro-

cess coloring” [12], where the authors propose tracking in-

teractions between resources (“color diffusion”). Their

work, however, uses interaction tracking for early detection

of resources on a host that possess “colors” of a vulnerable

process, (much like Pedigree can be used to strengthen host

security as discussed in Section 9); Pedigree is unique in ex-

tending resource tracking across hosts using taint sets.

Traffic classification. Pedigree is primarily a traffic classifi-

ciation system, and attempts to address some of the concerns

that similar systems address: (1) application identification

agnostic to IP or port using systems such as BLINC [14],

or using statistical techniques [19]; (2) identifying session

structure in traffic [13], etc. In contrast to these systems,

Pedigree does not use network-level characteristics to iden-

tify applications, but instead relies on the trusted tagger on

hosts to record and transmit the tags of processes generat-

ing packets. However, Pedigree’s clustering scheme (Sec-

tion 5.4) can use the hints that these systems provide in order

to tune the input to the clustering algorithm (i.e., cluster the

taint sets only of unknown applications).

Tracking worm outbreaks and intrusions. Tracing the

origin of worm outbreaks can help identify miscreants. Ran-

13

dom moonwalks [35] is representative of this body of work;

the authors use random walks to traverse edges of the graphs

constructed from traffic logs backwards in time in order to

identify the origin and propagation of worms. Many systems

such as BackTracker [15] use dependency graphs to back-

track attacks. In Pedigree, explicit backtracking or tracing

worm origins is not possible because a tag’s taint set can-

not enumerate the taints that were inserted into it; however,

an arbiter that sees a wide range of traffic can extract the

minimal taint sets using clustering (Section 5.4) to identify

groups of related hosts.

11. Conclusion

We presented Pedigree, a system for expressive,

semantically-rich traffic classification. Pedigree relies on

the cooperation of trusted taggers on end-hosts to affix tags

to network packets. Tags extend the provenance informa-

tion that already exists within a host to the network. These

tags may comprise fixed identifiers of the end-host, the ap-

plication generating packets, the credentials of the process

generating packets, and the taint set indicating the process’s

history (i.e., information about other processes, files, or re-

mote hosts that may have affected the process), These tags

can then be used by network elements (arbiters) for a va-

riety of applications, including: access control and authen-

tication, provisioning, preventing exfiltration, and tasks for

reducing unwanted traffic such as filtering, rate-limiting, or

dropping. Pedigree lets network operators use the same tag

structure for both upgrading and downgrading service, blur-

ring what we see as an artificial distinction between “on-

by-default” and “off-by-default” network capability design

paradigms. Our evaluation of a user-space prototype of Pedi-

gree shows that packet and storage overhead is negligible for

all but short connections.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In ACM Symposium on Operating Systems Principles,
pages 164–177, 2003.

[2] Bobax Trojan Analysis. http:
//www.secureworks.com/research/threats/bobax/.

[3] Burton H. Bloom. Space/time Trade-offs in Hash Coding With
Allowable Errors. In Communications of the ACM, volume 13, pages
422–426, 1970.

[4] E. S. Cohen and D. Jefferson. Protection in the hydra operating
system. In ACM Symposium on Operating Systems Principles, pages
141–160, 1975.

[5] Dark Reading. Malware Quietly Reaching Epidemic Levels.
http://www.darkreading.com/document.asp?doc_

id=143424.

[6] David Cheng and Ravi Kannan and Santosh Vempala and Grant
Wang. A divide-and-merge methodology for clustering. ACM
Transactions on Database Systems, 31(4):1499–1525, 2006.

[7] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. In ACM Symposium on Operating Systems Principles,
pages 251–266, 1995.

[8] GNU dbm. http://www.gnu.org/software/gdbm/.

[9] V. Goyal. How to re-initialize a hash chain. IACR 2004, 2004.

[10] Haakon Ringberg and Augustin Soule and Jennifer Rexford and

Christophe Diot. Sensitivity of PCA for Traffic Anomaly Detection.
In Proc. ACM SIGMETRICS, San Diego, CA, June 2007.

[11] IBM Secure Hypervisor.
http://www.research.ibm.com/secure_systems\

_department/projects/hypervisor/.

[12] X. Jiang, A. Walters, F. Buchholz, D. Xu, Y.-M. Wang, and E. H.
Spafford. Provenance-Aware Tracing of Worm Break-in and
Contaminations: A Process Coloring Approach. In ICDCS, June
2006.

[13] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal. Semi-automated
discovery of application session structure. In Proc. ACM SIGCOMM
Internet Measurement Conference, pages 119–132, Oct 2006.

[14] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: multilevel
traffic classification in the dark. In SIGCOMM, pages 229–240, 2005.

[15] S. T. King and P. M. Chen. Backtracking intrusions. ACM
Transactions on Computer Systems, 23(1):51–76, 2005.

[16] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide
traffic anomalies. In Proc. ACM SIGCOMM, Philadelphia, PA, Aug.
2005.

[17] L. Lamport. Password Authentication with Insecure Communication.
Communications of the ACM, 24(11):770–772, 1981.

[18] J. Liedtke. On micro-kernel construction. In ACM Symposium on
Operating Systems Principles, pages 237–250, 1995.

[19] A. W. Moore and D. Zuev. Internet traffic classification using
bayesian analysis techniques. In Proc. ACM SIGMETRICS, pages
50–60, 2005.

[20] J. Newsome and D. X. Song. Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on
commodity software. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2005, San Diego, California,
USA, 2005.

[21] OpenVZ Server Virtualization. http://openvz.org/.

[22] P. Deutsch. DEFLATE Compressed Data Format Specification
Version 1.3. Internet Engineering Task Force, May 1996. RFC 1951.

[23] A. Ramachandran and N. Feamster. Understanding the network-level
behavior of spammers. In Proc. ACM SIGCOMM, Pisa, Italy, Aug.
2006. An earlier version appeared as Georgia Tech TR
GT-CSS-2006-001.

[24] A. Ramachandran, N. Feamster, and D. Dagon. Revealing Botnet
Membership with DNSBL Counter-Intelligence. In 2nd USENIX
Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI), San Jose, CA, July 2006.

[25] Simon W. Golomb. Run-Length Encodings. In Transactions on
Information Theory, volume 12, page 399, 1966.

[26] Storm Worm DDoS Attack. http://www.secureworks.com/
research/threats/storm-worm/.

[27] Tripwire Configuration Audit. http://www.tripwire.com/.

[28] User Mode Linux Kernel. http://user-mode-linux.sourceforge.net/.

[29] VMware virtual machine. http://www.vmware.com/.

[30] E. Wobber, M. Abadi, and M. Burrows. Authentication in the taos
operating system. ACM Transactions on Computer Systems,
12(1):3–32, 1994.

[31] ISPs fight against encrypted BitTorrent downloads.
http://arstechnica.com/news.ars/post/

20060831-7638.html.

[32] 2006 Operating System Vulnerability Summary.
http://www.omninerd.com/articles/2006_

Operating_System_Vulnerability_Summary.

[33] Storm Botnets Using Encrypted Traffic. http://www.
securitypronews.com/insiderreports/insider/

spn-49-20071016StormBotnetsUsingEncryptedTraffic.

html.

[34] XenSource Home. http://www.xensource.com/.

[35] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm
origin identification using random moonwalks. In IEEE Symposium
on Security and Privacy, pages 242–256, 2005.

[36] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005.

[37] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazires. Making
information flow explicit in histar. In Symposium on Operating

14

Systems Design and Implementation, pages 263–278. USENIX
Association, 2006.

15

