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SUMMARY 

As building performance is increasingly improved and building energy 

consumption decreases, a greater percentage of the total energy loss of a building occurs 

through envelope leakage. This leakage is characterized by the effective leakage area or 

ELA, which is a proxy parameter to what is essentially a complex flow phenomenon 

through cracks driven by pressure differences. Moreover, different façades and façade parts 

have different ELA and are typically subjected to different pressure differences in a given 

wind condition. This poses major challenges to building energy models. 

Current building performance simulation (BPS) uses software modules that 

approximately calculate envelope infiltration, but the literature shows that their calibration 

and validation is still unsatisfactory. In fact, calibration and validation of BPS models is 

still an important subject of study in our quest to improve the fidelity of simulation-based 

predictions in various applications. The high level of interaction and subsumption* between 

parameters can result in a model that approximates the measurements well (and thus meets 

the ASHRAE auditing threshold) but whose “best estimates” of parameters are unreliable. 

This can be a problem in performance contracting when limits have been agreed on certain 

parameters such as ELA and U-value. It can also be problematic in the use of the model 

for certain performance assessments. This thesis exemplifies the underlying issues by 

comparing the results of direct and indirect calibration at different fidelities. 

 
* Subsumption designates in this context how certain parameters can assume a different value than their best 

physical estimate to make up for the errors in other parameters or structural errors in the model. A model can 

then show good alignment with measured outcomes, although the values its parameters are (far) off from the 

true values. 
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The study focuses on the calibration of building energy models of existing 

buildings. It does so by conducting calibration for different experiments, i.e., for different 

sources of data, and for different model fidelities. The calibration is anchored around ELA 

and its impact on “best estimates” of other parameters is verified. The study is done with 

explicit quantification of uncertainties in the experiments as well as in model parameters. 

The two major experiments considered are (a) direct ELA calibration through tracer gas 

experiments, (b) indirect ELA calibration with consumption data enhanced by spot 

temperature measurements. Two case studies on existing buildings are performed. 

The thesis develops a new framework to address calibration and validation for 

different combinations of data and model fidelity, where each combination leads to 

probability distributions of the calibration parameter set. For each combination the ultimate 

aim is to determine the fitness of the resulting building energy model for given application 

studies such as building energy benchmarking, fault detection, unmet hour verification, etc. 

This requires the introduction of a novel fitness measure that determines the confidence 

level of a particular calibrated model for decisions in a predefined building performance 

assessment scenario. The thesis shows an early example of how to develop and quantify 

fitness.  

The results will be meaningful for better understanding façade infiltration, better 

understanding of the limits of calibrated models, and the way this translates into fitness of 

the resulting model. The thesis focuses exclusively on existing buildings, but its findings 

may lead to large scale data sets of calibrated ELA values in existing buildings, that may 

find their way into better ELA quantification in energy models of new designs. 
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

Buildings are primarily designed to assure best thermal comfort with the minimum 

amount of energy consumption. Heating, ventilating, and air conditioning (HVAC) 

systems in buildings are designed to maintain thermal comfort at the desired level as well 

as assuring best indoor air quality (IAQ). However, the operating cost of HVAC systems 

is often a large percentage of the total energy cost of buildings, which on average 

constitutes 47% of the primary energy consumed in a building (DOE, 2017). In 2018, 

residential and commercial buildings consumed about 40% of total U.S. energy 

consumption (EIA, 2019). According to the same source, commercial floorspace grows by 

an average 1% per year through the projection period of 2050. This growth will increase 

the total demand for energy which imposes new challenges for the world and nationwide 

carbon emission mitigations. It calls for further research and development to explore 

innovative solutions in real practice. Hence, the use of energy simulation software has 

increased in response to the current emphasis on reducing energy consumption and 

greenhouse gas emissions, which asks for the investigation of different design options and 

their impacts on building energy use. 

One option to reduce building energy use is the improvement of building envelope 

airtightness. This can be guaranteed by the right choice of façade technologies and proper 

assembly and maintenance of the façade over the lifetime of the building. Existing data 

show that unless extra efforts are made to the design and construction of tight building 

envelopes, commercial buildings are much leakier than typically assumed (Emmerich, 

McDowell, & Anis, 2007); (Emmerich & Persily, 2013). Therefore, the energy impacts of 
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uncontrolled infiltration are also greater than assumed. Nevertheless, current energy 

simulation software and design methods generally cannot accurately account for envelope 

infiltration because no good estimate of leakiness is readily available, and therefore the 

impacts of improving airtightness on energy may not be fully appreciated. 

This dissertation investigates the effect of using various granularities of data for 

calibration and validation. In this study, the emphasis on data granularity and calibration 

method is mainly driven by the need to identify the effective leakage area (ELA) as this is 

the façade property that dominates air infiltration. It should however be noted that an 

isolated single parameter calibration is not a possible or even plausible undertaking because 

a model always contains a set of other parameters that are basically unknown as they cannot 

be measured in isolation, at least not without considerable effort in setting up experiments. 

So, although the prime interest is on ELA of the various facades or rather facade elements 

of a building, other parameters will enter the calibration process by necessity. 

1.1 What is the value of calibration and what do we need to know about it? 

Models are built to help us understand the reality with which we desire to interact 

for our advantage. Building energy predictions might lead to poor approximations 

compared to reality. We can relate this deficiency of predicted results to the lack of 

knowledge related to 1) reliable information about critical model parameters, e.g., U-value, 

air infiltration, lighting and plug loads; 2) experience required to analyze and schematize 

building specifications and derive a suitable model; 3) validity of the model and sub-

models in complicated real environments that could be far outside the laboratory testing 
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conditions; 4) quality assurance of the simulation tool used in the calibration, e.g., 

modeling/coding errors. 

Given the aforementioned causes of deficient building energy models for existing 

buildings, calibration techniques can play a significant role to mitigate them, as it fills in 

for the lack of prior knowledge. Calibration is commonly applied to building performance 

simulation (BPS) to benchmark buildings under normative usage scenarios, perform 

diagnostics and determine post retrofit savings predictions, as part of energy savings 

performance contracts and related PM&V methods. Some BPS software offers an 

extension to embed a calibration technique in the simulation environment itself. The basic 

approach is always to tune selected unknown parameters to reconcile the model predictions 

with monitored data. However, while it is logical to use monitored data (the observations) 

and in particular building energy consumption data to calibrate a building simulation 

model, the calibration technique may not always result in a more reliable use in above 

mentioned applications. When calibrating a large number of model parameters to a limited 

number of observations (also known as under-determined or over-parameterized problem 

in mathematics), there can be many combinations of model parameters that will result in a 

close match to the observations (e.g. utility consumption data). Hence, a close match is not 

in itself proof of a good calibration as the calibrated model may show a good match with 

the pre-retrofit observations but may fail to predict accurate outcomes of the post retrofit 

case (Judkoff, Polly, & Neymark, 2016), (Reddy T. A., Maor, Jian, & Panjapornpon, 2006). 

Therefore, the probability that the calibration actually improves the model and associated 

energy savings predictions after the retrofit is correlated with the observation frequency of 

the building performance data, or the informational content of the data. 
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Therefore, it is useful to have a test method for calibration techniques that provides 

at least the following three primary metrics (Judkoff, Polly, & Neymark, 2016): 1) the 

goodness of fit between the calibrated model generated data and utility consumption 

observations, 2) the closeness of the calibrated parameter values and the “true” parameter 

values, and 3) the accuracy of the savings prediction or other application. Not all calibration 

techniques can use all three metrics. Unfortunately, most of the calibration studies are only 

limited to metric 1 and 3, which only tests different aspects of “correctness” of the 

calibration algorithm. Although this is useful, it is only a weak test of the value of the 

calibrated model. As argued above, metric 2 may in fact play the most significant role to 

determine the goodness of the model for a specific application.  

The true complexity of calibration which cannot be tested or standardized lies in 

the fact that most calibration parameters are surrogate parameters that  moreover appear in 

simplified physical relationships at the core of the building energy model. As a 

consequence, there is an unavoidable and significant model discrepancy, usually referred 

to as model form uncertainty (Sun Y. , 2014). As such any calibration will only lead to 

“best estimates” of calibration parameters that subsume that part of building behavior that 

is fundamentally not addressed in the model. It is significant to note that enlarging the pool 

of calibration parameters or enlarging the amount and resolution of real observations will 

NOT remove this bias. The reason is that “subsumption” is unavoidable, so structural 

model discrepancy will always show up in the deviation of calibration parameter values 

from their true values. Only a joint effort to both increase the fidelity of the model (thereby 

decreasing the structural error) and increase the parameter pool may remove the bias. 

However, this will potentially lead to vastly over-engineered and run-intensive simulation 
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models. Before undertaking such an effort, it needs to be established first whether (in spite 

of the described bias) the calibrated model is fit enough for anticipated use. The corollary 

is that if sufficient fitness can be proven for the low fidelity model with a certain data 

resolution, the extra effort would be wasted. It is the core objective of this thesis to make a 

fundamental contribution to this longer term aspiration. 

1.2 Literature review 

This section presents an extensive literature review of current infiltration modeling 

and building performance simulation (BPS) modeling and calibration methods that are 

widely considered in this research arena, e.g. (Reddy T. A., 2006); (Price, Chang, & Sohn, 

2004); (Judkoff & Neymark, 2006). We will also review infiltration testing techniques. 

1.2.1 Infiltration modeling method 

In an existing building, there are many leakage spots on the building skin, for 

simplicity regarded as a collection of façade parts, each of which can be assigned an 

effective leakage area (ELA) (Sherman & Grimsrud, 1980). Currently, available methods 

for evaluating the building’s ELA (we will use this term from now on as a vector of ELA 

values for the distinguished facade parts) and associated infiltration rates range from simple 

air change methods to complex physical modeling methods. Many studies use different 

sources of the infiltration rates in BPS. Infiltration rates could be set up as certain air change 

rates according to an estimation of building envelope tightness (Thormark, 2002); (Niu, 

Zhang, & Zuo, 2002). Infiltration rates can also be calculated according to numerical 

equations and correlations with wind speed (Kurnitski, et al., 2011), where wind speed is 

used as a proxy to wind pressure which is the real driver of air infiltration. Multi-zone 
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modeling simulation is employed in building performance analyses to consider detailed 

building configurations and provide relatively accurate infiltration rates (Emmerich & 

Persily, 1998). In BPS tools, such as EnergyPlus, the energy calculation methods typically 

use default infiltration rates depending on different leakage properties of the buildings such 

as: leaky, normal, and tight (DOE, 2017). These three categories of building leakage do 

not account for the infiltration driving mechanisms and other building characteristics. 

Consequently, the assumed infiltration rates do not reflect the direct impacts of outdoor 

weather conditions (Ng L. C., Musser, Persily, & Emmerich, 2013). Therefore, the default 

settings for infiltration rates do not reflect the actual dynamic infiltration rates in the 

building energy simulations. For many applications this could be proven unacceptable 

(“unfit”). 

To more directly reflect the actual weather conditions, a study by the Pacific 

Northwest National Laboratory (PNNL) proposed a simplified approach to account for 

wind-driven infiltration rates into buildings (Gowri, Winiarski, & Jarnagin, 2009). The 

method uses an average wind speed coefficient for a square office building to calculate a 

base infiltration rate that is further varied with the average wind speed using modeling 

features within EnergyPlus. Even though this approach addresses wind-driven infiltration, 

it is highly simplified and also not accounting for the infiltration rates due to stack effect. 

Another study on airflow rate calculations indicates that the underestimation and 

overestimation due to surface averaged pressure coefficients are not negligible (Costola D. 

, Blocken, Ohba, & Hensen, 2010). Therefore, the simplified methods may not be 

sufficiently accurate to generate actual infiltration values in varying conditions and in 

configurations where the wind pressures show significant variation over the façade. The 
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assumption that a part of the façade can be represented by one single ELA and one single 

wind pressure coefficient (Cp) introduces a model reduction (in fact contributing to model 

form uncertainty) that will inevitably lead to a bias in the calibrated value of ELA. 

Among the physical modeling methods, a research study developed a roadmap for 

performing full 3-D envelope simulations to calculate air leakage in buildings (Younes & 

Abi Shdid, 2013). This method realistically depicts the various cracks common in an 

envelope in terms of shape, location, and quantity, so it leads to a computationally 

demanding simulation model.  

It is to be expected that different infiltration model assumptions will lead to large 

deviates in simulation outcomes. However, existing studies have not focused on comparing 

the influence of different infiltration rate calculation methods on the accuracy (or rather 

correctness) of building energy simulation results in a given usage scenario. 

As an important contribution to quantify infiltration in buildings, the U.S. National 

Institute of Standards and Technology (NIST) developed multi-zone airflow network 

models and applied this to the DOE reference buildings (Ng, Musser, & Persily, 2012). 

Their approach makes it possible to calculate detailed annual whole building infiltration 

rates (Wang, 2013); (Ng, Emmerich, & Persily, 2014). Based on the NIST airflow 

simulation software CONTAM (CONTAM, 2015), the multi-zone airflow network models 

can use transient weather data to calculate air infiltration (through openings and leakages) 

at each time step of the simulated period. In this nodal-flow network, each branch in the 

network is defined through a flow-resistance equation, which requires knowledge about 

the ELA’s of façade elements on a zone level as well as the flow resistance of internal 
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partitions and doors. If these values are known with accuracy, the model provides more or 

less realistic estimations for air infiltration since they consider the outdoor weather, internal 

zonal/system interactions, stack effect etc. (Ng, Musser, & Persily, 2012). The studies 

conducted by (Wang & Zhong, 2014), which aim to assess the energy savings realized by 

yearly air infiltration, use a coupled CONTAM-TRNSYS model to calculate energy 

savings in heating and cooling affected by air infiltration in the medium office DOE 

reference building model in 8 climate zones. The use of TRNSYS in their study is 

apparently justified by the availability of a data interface with CONTAM. (Ng, Emmerich, 

& Persily, 2014) use a similar approach with EnergyPlus. As shown in Figure 1.1 they used 

the yearly infiltration rate generated from CONTAM and input it into EnergyPlus to 

account for total energy performance of the building. However, this method needs 

predefined values of ELA’s for CONTAM input. 

 

Figure 1.1 Framework of infiltration simulation in current methods using a nodal 

airflow model 

Overall, there have been many different calculation methods of infiltration rates in 

both theoretical and practical studies. The approach shown in Figure 1.1 represents the 
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most common method is the yearly infiltration and transient airflow simulation method. 

The pre-simulated hourly infiltration rates of the whole building are exported and input in 

the energy model. It is important to understand the accuracy level of building performance 

analysis associated with different methods of infiltration rate calculations. 

1.2.2 Direct measurement of air leakage  

Several standards exist for the testing of infiltration and air leakages in building 

envelopes. Among these are conventionally blower door testing and tracer gas methods 

(Sherman & Grimsrud, 1980). It should also be stated here that other methods such as tracer 

smoke, sound transmission, and thermal imaging testing assist in locating leakages 

(McKenna & Munis, 1989). These testing methods are mostly carried out in accordance 

with ISO and ASTM standards. A more detailed discussion comparing the testing methods 

and their instrumentation is presented below. 

1.2.2.1 Fan pressurization method 

Air leakage in buildings can be determined by fan pressurization techniques. This 

method is synonymous to ‘blower door’ testing, which uses a large door or window-

mounted fan to blow air into or suck air out of a building creating pressurization or 

depressurization to determine the airflow at different pressure differences (ΔP) across the 

building shell. The measurements are influenced by environmental conditions at the time 

of the test (Persily A. , 1982). The environmental factors influencing the measurement can 

be grouped into two categories: 1) the effects of air density differences on airflow 

measurements; and 2) the effects of wind pressures on airflow and inside-outside pressure 

differences. The air density differences are caused by inside-outside air temperature 
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differences at the time of the test, as well as differences between the air temperature at the 

time of the test. Differences in air density are also caused by variations in atmospheric 

pressure from the time of calibration to the time of the test and by changes in elevations 

(Sherman M. , 1998). Wind pressure variations over the surfaces of the building can cause 

uncertainties in the inside-outside pressure measurement (typically sensed at one location 

only).  

1.2.2.2 Tracer gas method 

Tracer gas methods provide an accurate measurement of the aggregated air flow 

through the many unknown gaps and cracks that appear in the construction of a building. 

Both the (ASTM, 2011) standard test method for determining air change in a single zone 

by means of tracer gas dilution and the (ISO-12569, 2017) thermal performance of 

buildings determination of air change in buildings tracer gas dilution method present 

similar testing procedures. This test method uses the measurement of tracer gas dilution to 

determine air exchange in a building zone. The measurement of tracer gas concentration, 

and often the volume rate of the tracer gas that is released into the zone, allows calculation 

of the volume rate of air that infiltrates or exfiltrates from the zone. From this, one can infer 

the air change rate from the following equation. 

𝐴𝐶𝐻 =  
𝑙𝑛 𝐶2 − 𝑙𝑛 𝐶1

∆𝑡
 (1.1) 

 Where 

𝐴𝐶𝐻: the change rate, [1/h]; 

𝐶1: gas concentration at start; 
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𝐶2: gas concentration at end; 

∆𝑡: time interval, [h]. 

To determine the average air change rate, one introduces a volume of tracer gas 

uniformly into the zone, ensures a uniform concentration, and then measures the tracer gas 

concentration at given times; then calculate the air change rate for that period as the 

difference between the logarithms of the initial and final tracer gas concentrations divided 

by the time interval as in Eq. (1.1). 

Although these two direct measurement methods can provide a more accurate 

estimation of air leakage than physics-based modeling methods, some critical issues are 

always associated with them which in many cases stand as a barrier to using them. The 

implementation of direct testing requires a fully controlled environment, which is 

disruptive to occupants most of the time. Moreover, the instrumentation used for the testing 

is typically sophisticated which requires special site preparation and expertise, thus leading 

to an expensive and costly test. Finally, not every building under certain conditions can be 

tested, for instance it is very difficult to utilize blower door testing in large commercial 

building. Same with tracer gas, it is nearly impossible to reach the desired gas concentration 

on large spaces, and if one tried, it would be costly to fill the space with the gas at high 

enough concentrations. Therefore, alternative (i.e., indirect) methods are attractive to 

mitigate such issues and still arrive at a fit enough model, or a model that can compete with 

models based on direct identification of ELA. 
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1.2.3 Calibration methods 

The most need for calibration occurs in energy auditing of buildings for the purpose 

of benchmarking, detecting faults or determining best retrofit interventions. In the latter 

case, the simulation is set up to improve energy efficiency by implementing the most 

optimal retrofit technologies. However, no current physics-based model can represent the 

infiltration flow in a real building well enough without reliance on actual observations. As 

discussed, this is a major downside of some simplified methods presented in the previous 

sections. One common way to mitigate that is by adding onsite observations and tuning 

model parameter values to reconcile predictions with observations. (Reddy T. A., 2006) 

presents a review on the various uses and benefits of calibration in the context of building 

energy simulation. Current calibration processes can be broken down into the following 

categories: general references (Kaplan, Caner, & Vincent, 1992); calibration based on 

iterative, manual, and pragmatic intervention (Kaplan, McFerran, Jansen, & Pratt, 1990a); 

calibration based on a suite of informative, graphical comparative displays (Bronson, 

Hinchey, Habrel, & O'Neal, 1992); calibration based on special tests and analytical 

procedures; and analytical or mathematical methods of calibration (Reddy T. A., 2006). It 

is crucial to understand that every model calibration process is influenced by sources of 

error and uncertainty including: model fidelity, data resolution and accuracy, improperly 

defined ranges of unknown input parameters and improper model assumptions.  

As part of developing a calibration methodology for BPS, (Reddy, Maor, & 

Panjapornpon, 2007) presented heuristic and analytical procedures, which include a 

heuristically defined set of influential parameters. This is followed by performing a coarse 

grid search using Latin Hypercube (LHS) and Monte Carlo (MC) simulations to identify 
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“strong” parameters and a small set of solutions. They use the small solution set to predict 

changes in the building and building systems, and compute uncertainty in the calibrated 

model solutions. The objective is to tune the various inputs to the simulation program so 

that the predicted energy use matches the actual energy use. Once the calibrated model 

provides a good fit with the observed utility data, it is assumed that the program is able to 

predict building performance after operational and equipment changes accurately. This 

approach can be seen as the classical calibration approach. However, major retrofits of 

building components and use of new technologies and systems may pose additional 

uncertainties and render the model less fit for the intended purpose. 

Some studies create a methodology that depends on constructing a preliminary 

model that relies only on the connectivity of the zones and on easily observable parameters 

such as zone volumes. Then they describe other parameters with uncertainty distributions, 

and take samples from the parameter distributions using MC methods to exercise the 

preliminary model, and analyze the results to determine what type of measurements will 

most reduce the uncertainties in the parameters that affect a specific quantity of interest 

(QoI) (Price, Chang, & Sohn, 2004). Due to a large number of parameters in any given 

building model, it is not practical to conduct exhaustive measurements. Also, due to the 

complexity and surrogate nature of many parameters, it may not be possible to perform 

experiments that can directly measure them. (Price, Chang, & Sohn, 2004) focus on 

determining which measurements should be done to reduce the uncertainty in the input 

parameters that have the greatest influence on the response. 

In terms of implementation of traditional calibration, manual tuning of the model 

is the most common method in real practice. In this process, the modeler changes certain 
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parameter values in a heuristic and iterative manner to reconcile predictions with 

observations as best as possible. Most studies in this category focus on the procedures, 

guidance, and particularly graphical and analytical techniques that inform the model tuning 

process (Habrel, Bronson, & O'Neal, 1993c), which otherwise would be solely based on 

the modeler’s knowledge and experience. 

Instead of manually selecting calibration parameters and adjusting their values, this 

process can be automated. This is accomplished by advanced methods that rely on 

mathematical algorithms to infer parameter values based on best model agreement with 

observations. This approach is at the core of the approach used in this thesis. The standard 

statistical metric CVRMSE serves as the objective function that needs to be minimized as 

shown in Figure 1.2. It implies the search for the smallest possible integrated squared 

difference between model output and observations. This optimization approach formalizes 

calibration into a deterministic parameter estimation problem, and employs numerical 

algorithms to find the optimum, i.e., the parameter values that minimize CVRMSE. If 

multiple types of observations and outcomes need to be matched (e.g., energy consumption 

and zone temperatures), a compound CVRMSE based on chosen weights for both types of 

observation can be used. The choice of appropriate weights is not simple and deserves a 

separate treatment. For more details on BPS optimization, one can refer to the work of 

(Nguyen, Reiter, & Rigo, 2014). For now the choice of weights is based on a heuristic 

assessment of the relative magnitude of the two components of the objective function. The 

weights are typically chosen such that both have the same order of magnitude, i.e., equal 

weight. 
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Figure 1.2 Simulation-based calibration process minimizing the calibration criterion 

Many studies have investigated the optimization algorithm in Figure 1.2, such as 

(Ramos Ruiz, Fernández Bandera, Gómez-Acebo Temes, & Sánchez-Ostiz, 2016). They 

use a genetic algorithm to minimize a combined metric of R2 and the coefficient of 

variation CVRMSE for dominant parameters. To select the most dominant calibration 

parameters, they apply the Morris method based on “relative deviation”, whose value 

ranges are equally-possible discrete values that are consistent with supplied specifications 

and building documentations. (Djuric, Novakovic, & Frydenlund, 2008) use a simple heat 

balance model with built-in sequential quadratic programming (SQP) algorithm to 

minimize the root mean square error (RMSE) between predictions and observations. The 

entire set of parameters are calibrated since the model is relatively simple, and their upper 

and lower bounds are chosen based on on-site visit and authors’ experience.  
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The high computational cost of detailed physical models is a burden that has been 

widely investigated. Such studies often use statistical surrogate models or meta-models to 

emulate the physical model within the optimization routine, which allows for exploration 

of a large parameter space and expedites the search for the optimum. A comprehensive 

model calibration framework for simultaneous multi-level building energy simulation is 

proposed in (Yang & Becerik-Gerber, 2015). In this work they implicitly adopt a normal 

multivariate linear regression emulator and quasi multi-objective optimization with a 

weighted objective function and linear programming algorithm. The study performs 

classification of model parameters to differentiate estimable and adjustable parameters, 

then selects important adjustable parameters for calibration using the Morris method. 

Additionally, (Robertson, Polly, & Jon, 2015) apply an optimization algorithm based on 

gradient calculation to calibrate a normal multivariate linear regression meta-model of a 

DOE-2.2 model against synthetic utility data of a residential building. This study uses the 

CVRMSE as the objective function and calculates sensitivity coefficients by Monte Carlo 

simulation to select a subset of six calibration parameters.  

Uncertainty in calibration is another stream that heavily impacts the detailed 

building simulation models (Reddy T. A., 2006). In a collaborative research project (Reddy 

T. A., Maor, Jian, & Panjapornpon, 2006); (Reddy, Maor, & Panjapornpon, 2007), a two-

step approach has been proposed to search within the parameters space for plausible 

solutions. The first step, a “bounded” coarse grid calibration involves a procedure that 

identifies both promising solutions of parameter values and parameters influential on the 

model discrepancy. The second step, a guided search calibration, looks for the final set of 

solutions through either manual or automated calibration methods. In particular, (Sun & 
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Reddy, 2006) proposed an analytical parameter estimation method for the guided search, 

which used a gradient-based nonlinear optimization technique to minimize a weighted 

value of the CVRMSE of both electricity energy use and demand residuals on monthly 

basis as the objective function. This method identifies calibration parameters based on the 

normalized sensitivity coefficients determined by the local sensitivity analysis approach. It 

also recognizes the mutual correlation among the calibration parameters to ensure they are 

mathematically identifiable.  

A common issue in model calibration is overfitting, where one obtains incorrect 

and often implausible parameter values in fitting observations as they subsume model bias. 

Many studies attempt to address this issue in deterministic parameter estimation including 

the work of (Carroll & Hitchcock, 1993). They propose the regularization process by 

introducing a penalty term in the objective function to prevent overfitting. This takes the 

form of the sum of weighted square difference between a plausible solution and its 

corresponding default values. They reject those values deviating drastically from the 

default despite that they provide good agreement. Unfortunately, the calibration process in 

real practice is prone to overfitting due to the model’s imperfection and limited 

observations. There are a few attempts to consider parameter uncertainties but they fail to 

translate those uncertainties into model predictions to inform building performance 

management practice. Lack of proper recognition of the main sources of discrepancy and 

inefficient use of data impairs the confidence of those methods in many real-life cases. 
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1.2.4 Validation method  

Validation of BPS models in practice involves collection of observations and 

assessment of the model predictions’ agreement with these observations, both of which 

will be briefly reviewed and discussed in this section. 

1.2.4.1 Data gathering 

It is well-known that the choosing of the correct inputs in our building performance 

model will largely determine the validity of the outcome. Therefore, the collection, 

recording and cleaning of descriptive data in practice has an intrinsic role in BPS, which 

often relies on practitioners’ knowledge and experience. As a result, manual collection of 

extensive building information and data often leads to a model of sufficient validity, but in 

most cases it is costly in time and labor. This is probably because these methods often 

involve evidence-based parameter estimation at the level of building sub-systems, often 

with the help of local embedded sensor data. In addition, well-designed procedures 

regarding the retrieval and recording of information and data throughout the calibration 

process also contribute to success. However, most studies on calibration focus on 

compliance with calibration standards, like ASHRAE Guideline 14-2002 (ASHRAE, 

2002), as the sole validation criterion. Lack of sufficient information and recorded 

observations for validation may impair the model’s credibility and obscure the benefit of 

BPS calibration. Therefore, a systematic way to integrate the strengths of both approaches 

deserves further investigations on the gathering of information and recording of monitoring 

data. 
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Regarding the type of information and data, (Fabrizio & Monetti, 2015) provides a 

taxonomy in ascending order of collection effort: utility bills, as-built data, site visit or 

inspection, detailed audit, short-term monitoring, and long-term monitoring. (Raftery, 

Keane, & Costa, 2011) proposed a similar taxonomy with the focus on the hierarchy of 

reliability, which includes data-logged measurements, spots for short-term measurements, 

direct observation (site surveys), operator and personnel interviews, operation documents, 

commissioning documents, benchmark studies and best practice guides, standards, 

specifications and guidelines, and design stage information (e.g., the initial model). 

It is important to mention that monitoring data in building operation can be 

classified at different scales, i.e., temporal, spatial, and categorical. The temporal scale 

concerns the coverage and resolution of monitoring data regarding its temporal variability, 

mostly due to weather and usage scenarios. The most common type of data in building 

performance management is the monthly utility bill, as it is readily available and reliable 

in most cases. The use of hourly or sub-hourly data, such as those from smart meters, 

building management systems (BMS), in-situ monitoring, etc. receives increasing attention 

(Heo & Zavala, 2012); (Djuric, Novakovic, & Frydenlund, 2008) (Yang & Becerik-Gerber, 

2015). Short interval data is usually more informative than monthly data in model 

validation because of the embedded dynamic characteristics. However, the length of hourly 

or sub-hourly data used in common analysis is often limited to a few weeks of spot 

monitoring, or only aggregated at the whole-building level for smart meter data, as it is 

difficult for common methods to handle large amounts of data. This may affect the data’s 

coverage of variations of weather conditions and expose the model to extrapolation risks. 

In addition, hourly or sub-hourly data contains relatively large variations because of 
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varying building usage. The fact that these variations are largely unknown, unless directly 

monitored, pose a significant difficulty. Its strong temporal correlation with energy 

outcomes makes it difficult to filter them out when identifying the performance of building 

fabric and energy supply systems. In general, performing a calibration on an in-situ 

experiment which is largely uncontrolled and at least only partly unmonitored, will put 

limits on the effectiveness of calibration of BPS models in practice.  

It is worth mentioning that spatial and categorical are other scales that must be 

recognized in data collection. The spatial scale deals with the coverage and resolution of 

monitoring data with respect to its spatial variability, i.e., determined by spatial topology 

of the building and space functions. The categorical scale concerns the type of monitored 

state variables which are mostly directly related to the output of interest for building 

performance management. The most common type of output is power or energy use of 

electricity, gas, and/or other fuels. In contrast, room air temperature is less commonly 

monitored, as it is typically maintained by the HVAC system according to the thermostat 

setting, and therefore is often relatively constant and less informative (Mustafaraj, Marini, 

Costa, & Keane, 2014). (Roberti, Oberegger, & Gasparella, 2015) provide a case study that 

calibrates a model of a historical building to hourly indoor air and surface temperature. 

(Ramos Ruiz, Fernández Bandera, Gómez-Acebo Temes, & Sánchez-Ostiz, 2016) perform 

calibration of a building envelope by comparing it with observed interior temperature 

measurements. 

All in all, model validation in real practice often builds upon its agreement with 

whole building monthly consumption data, which is often too aggregated and incomplete 

to reveal detailed dynamic characteristics. Monitoring data with high temporal and spatial 



21 

 

resolutions and/or belonging to multiple outcome categories, on the contrary, could be 

either too noisy, done under uncontrolled and unknown weather and usage conditions, or 

less relevant for the approximation of a specific QoI. Given the situation that there is always 

a lack of information about scenario and physical parameters (at least in uncontrolled 

experiments), it is important to treat model calibration as a process that delivers a stochastic 

outcome for the calibration parameters. This then requires a new approach to model 

validity, as embedded uncertainty is to some degree unavoidable. It then becomes 

necessary to test the resulting model from a risk-conscious decision-making perspective 

rather than testing accuracy per se. The latter is barely addressed in the literature. 

Therefore, a systematic method to assess data informativeness and calibration under 

uncertainty is worth further study as it will take model validation in building performance 

management to the next level. This thesis aims to cement a solid footing for this ambition. 

1.2.4.2 Accuracy metrics 

In common practice, a BPS model is deemed calibrated if its prediction is in 

agreement with observations, i.e., its goodness-of-fit reaches a certain threshold. This 

agreement is often quantified by the standard statistical metric CVRMSE: 

𝐶𝑉𝑅𝑀𝑆𝐸 =
1

�̅�
√

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

𝑛
 

(1.2) 

 Where 

𝑦:̅ the mean of all observation values, 

𝑦𝑖: the observation point, 𝑖=1,2,…𝑛, 

�̂�𝑖: the corresponding estimate of the observation. 
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This validation approach forms the calibration criterion established in ASHRAE 

Guideline 14-2002 (ASHRAE, 2002), that stipulates the tolerance limits of calibrated 

simulation models in terms of CVRMSE, which should be less than 15% with the use of 

monthly utility data and up to 30% with the use of hourly data for a model to be deemed 

valid.  

However, calibration criteria based on goodness-of-fit of deterministic predictions 

are not very suitable to evaluate BPS models (Li, 2017). In reality, every BPS has 

uncertainty in model parameters and inbuilt uncertainties in systemic modeling 

assumptions. Outcomes should therefore be interpreted as stochastic outcomes which can 

be more informative in specific applications. To be more specific, the connection between 

the prediction uncertainty of a model and its accuracy under these goodness-of-fit metrics 

is valid for normal linear regression models rather than for BPS models because of the 

latter’s disparate model assumptions (Reddy T. A., 2006). Similar observations and a more 

technical explanation can be found in the work of (Heo Y. , 2011). (Li, Augenbroe, & 

Muehleisen, 2017) develops a comprehensive uncertainty quantification of energy models 

of experimental setups carried out in a test cell for the purpose of blind model validation.  

In summary, we argue that current standard deterministic calibration methods 

cannot evaluate the inherent probabilistic nature of predictions, and hence cannot inform 

these application studies that involve decision scenarios involving a conscious risk 

assessment. More generally speaking, deterministic models cannot be tested against a 

fitness criterion, as such testing requires that a model is tested against the probability that 

it produces the correct answer or decision in a simulation supported decision scenario. In 

this context, more informative and practical metrics to assess model accuracy, validity and 
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fitness and corresponding data informativeness are needed in the calibration of building 

performance models. 

1.3 Goal and research questions 

The review of research concerning calibration and validation of BPS models reveals 

that further study is needed to understand the role of prior information about the building 

and availability of monitored data in the calibration of the model. A primary goal is to 

improve the accuracy of the calibration parameters while avoiding the confounding effect 

of uncertainties across the calibration parameter set.  In theory, this applies to all parameters 

of the building, but this thesis focuses on a subset of parameters, i.e., the crucially important 

façade parameters associated with infiltration, in particular on effective leakage area 

(ELA), which expresses the leakiness of a façade. The ELA needs to be diversified for 

different façades and façade elements in the BPS. In this study, the set of ELA parameters 

is seen as the anchor of a calibration framework that allows inspection of the 

“subsumption” effects on other parameters, as already introduced. This approach is based 

on the belief that in many buildings, air infiltration is a major unknown that is virtually 

impossible to observe directly without significant effort. The correct calibration of ELA is 

therefore important and taken as central focus, while other relevant parameters are 

introduced in the calibration to show their effect on the outcome of the overall calibration. 

An important practical goal of the thesis is that a process is developed that can serve as a 

guide to determine what monitoring plan one needs to adopt to calibrate ELA such that the 

resulting model is fit enough to perform the given task. 

Therefore, the thesis targets the following research questions: 
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1. Will the effective leakage area (ELA) that is calibrated with limited “retail” data 

(i.e., customarily available monitor data) at different resolutions be close enough to 

one derived from direct measurements, which is considered the best obtainable 

estimate? 

2. How can a new measure of fitness of a calibrated BPS be defined that can be 

correlated with model fidelity and monitoring data resolution? This question will 

be answered for one specific decision scenario dealing with energy benchmarking, 

requiring an answer to the question “is a model fit enough to be used in the 

benchmarking of an existing building against a predefined target value?”. 

To address these questions, we need to look at the calibration process differently 

than hitherto customary. We need to ask what we know about ELA values before 

calibration, and how certain we are about ELA values after calibration. This would 

normally invite a Bayesian calibration (BC) approach, but this is deliberately avoided in 

this thesis to keep the treatment closer to practice. Existing work on BC of BPS models is 

scarce, but recent progress is promising as reported in (Heo Y. , 2011) and (Chong, 2018). 

These studies reveal multiple problems that hamper efficient and reproducible application 

of BC of BPS models. To avoid these problems and reduce the computational footprint of 

the calibration methed, this dissertation uses a comparatively light-weight, home-grown 

replacement of  BC.  Accordingly, the work in this thesis is oriented to answer these 

research questions in the presence of unavoidable uncertainties in parameters, 

measurements and models.  
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1.4 Structure of the thesis 

The thesis is outlined as follow: 

• CHAPTER 1 presents background and motivations for the thesis. It starts with the 

question why we need calibration in the first place, then provides literature for 

modeling and current measuring techniques as well as calibration and validation 

methods. 

• CHAPTER 2 provides theory for infiltration and the physics behind it. It also 

introduces fundamentals and crude uncertainty analyses. 

• CHAPTER 3 provides an overview of the proposed framework and discusses 

theoretical benefits. 

• CHAPTER 4 covers the uncertainty analysis of building model parameters related 

to ELA. It handles the process of uncertainty quantification in the context of wind 

pressure coefficient and wind speed, and it presents the experimental results of the 

direct ELA estimates. 

• CHAPTER 5 provides details on the models preparation for the ELA calibration 

process. It also covers the methodological treatments on calibration in terms of 

sensitivity analysis as well as the process of quantifying uncertainty parameters of 

building performance models. 

• CHAPTER 6 presents case study 1: Indirect ELA calibration in a commercial 

building. 

• CHAPTER 7 presents case study 2: Indirect ELA calibration in a residential 

building. 
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• CHAPTER 8 provides an inclusive discussion about the results that are compiled 

from the two case studies. 

• CHAPTER 9 introduces the concept of fitness level and applies it on a 

benchmarking pass/fail decision scenario. 

• CHAPTER 10 presents a summary of the thesis with research conclusions and 

recommendations for future work. 
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CHAPTER 2. THEORY OF INFILTRATION AND 

UNCERTAINTY 

Airflow control in buildings is a key component of building performance for 

reasons of air quality, comfort, and energy efficiency. There are several problems attributed 

to poor airtightness of buildings as indicated in the following diagram. 

 
Figure 2.1 Consequences of poor building airtightness 

The largest single energy end-use in buildings is space heating and cooling, which 

accounts for almost half the energy use in the building sector. The space conditioning load 

(i.e., the energy consumed by both space heating and cooling) is due to two main 

components: conduction and infiltration (Sherman M. , Air Infiltration in Building, 1980). 

Conduction causes direct heat loss through materials in the building envelope because of a 

temperature difference across it and expressed by the following formula: 

𝐸 = 𝑈 𝐴 ∆𝑇 (2.1) 

Where 

E: heat loss due to conduction [W], 



28 

 

U: conductivity of the envelope [W/m2/K], 

A: envelope area [m2], 

ΔT: inside-outside temperature difference [K]. 

Infiltration, on the other hand, is the mass transport of air through leaks in the 

building envelope and is caused by pressure differences across the envelope. The heat loss 

(in the heating season) due to infiltration is the product of the infiltration and the 

temperature difference and formulated as follow: 

𝐸 = 𝑄 𝜌 𝐶𝑝 ∆𝑇 (2.2) 

Where 

E: heat loss due to infiltration [W], 

Q: infiltration [m3/s], 

ρ: density of air [1.2 kg/m3], 

Cp: heat capacity of air [1000 J/kg/K], 

ΔT: inside-outside temperature difference [K]. 

Infiltration is transient as it is a function of weather, which is dynamic and 

impossible to model as a single factor in the heat balance. Most attempts are based on 

empirical formulas that express monthly infiltration amounts Q into a zone of a building 

or the building as a whole, usually expressed as the fraction of air change rate of the 

building volume per hour (ACH). Due to the complexity of wind and pressure patterns 

around the building, such attempts are merely a first order approximation, and cannot lead 

to accurate predictions of the energy consumption, unless the façade is tight enough to 
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safely assume that infiltration is always small, e.g., less than, say 0.1 ACH. This is however 

seldom the case, certainly over time as facades age. 

2.1 Building simulation concerning airflow  

The term Building simulation covers a wide range of scenarios and modeling 

activities related to buildings. In the context of this thesis we reduce the scope to the 

calculation of energy consumption and temperature field in response to given, time-variant, 

external conditions; involving several steps as follow: 

1. Specification of requested simulation outcomes: the required model outcomes 

(or generally speaking Quantity of Interest (QoI)) that is determined by the purpose 

of the simulation. In this study we focus on a dynamic assessment of the energy 

consumption of the building as well as the indoor climate, specifically temperature. 

2. Specification of model inputs related to external conditions and usage: this 

includes the outdoor climate and the operation of the building. For the outdoor 

climate, a modeler needs access to historical time series of (hourly) weather data is 

measured at a nearby meteorological station. If available, one can use an on-site 

weather station for higher granularity data. The usage scenario concerns the 

operation of the building as they relate to internal heat gains from people, 

equipment and lighting in the spaces. 

3. System modeling and simulation: the process that involves the modeling of every 

component and defines all linkages, i.e. their physical aspects and controls. In most 

practical situations, system models are developed in a building modeling and 

simulation environment. The functionality and architecture of these modeling 
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environments vary significantly. In this thesis we use a small subset of models 

across the spectrum of fidelity, i.e., a reduced-order tool: EPC, in both monthly and 

hourly resolution, and a high fidelity tool: EnergyPlus (Crawley, Hand, Kummert, 

& Griffith, 2008). 

2.1.1 Airflow modeling 

As discussed in the previous section, the simulation model should define the 

“scenario” which specifies the weather and usage conditions the building is exposed to, 

and the physical model that captures the response of the building to these conditions. In 

practice, this distinction is commonly not preserved in the quantification of the airflow 

through the building, as airflow rates are often specified as pre-defined flows with a more 

or less fixed value throughout the simulation. 

In general, airflow through a building is driven by a combination of wind, thermal 

buoyancy, and mechanically induced pressures. The corresponding physics are presented 

in the following section. 

2.2 Modeling the airflow physics 

To develop an effective model for predicting the infiltration in a given building, the 

basic physics of infiltration needs to be understood. In this section, the laws of airflow 

dynamics are applied to the special circumstances that drive air infiltration in buildings.  

In order to evaluate the energy load of air infiltration, it is essential to determine 

the infiltration flow rate. This indicates the amount (volume) of air infiltrating into a 

building (and elsewhere exfiltrating from the building), based on which the zonal energy 
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loads due to this infiltration flow amounts can be determined. Infiltration is the airflow 

through the envelope in response to externally applied pressures (caused primarily by 

weather, i.e., wind pressure and temperature difference). They occur through leaks or 

cracks in the building shell. Several traditional methods assign a fixed value to the 

infiltration flow rate and do not take into account various dynamic factors that control the 

fluctuating infiltration flow rate, such as weather conditions, air temperature, wind speed, 

wind direction and several other dynamic factors. To study the actual flow, we need to 

separate the driving force (pressure difference) from the façade property that captures a 

resistance to that force. The resistance is inversely proportional to the leakiness, for which 

we customarily use ELA. It should be well understood that ELA is a “surrogate” parameter 

that is not observable in the true sense of the word or even directly measurable. It can be 

defined as “the equivalent amount of orifice area that would pass the same quantity of air 

as would pass collectively through a building envelope or component at a specified 

reference pressure difference” (AIVC, 1992). 

As stated earlier, infiltration is caused by differential pressures across the envelope 

of a structure. These pressures are caused by the action of the weather on the structure. 

Weather induced pressures can be separated into two types: stack effect pressures as 

created by an indoor-outdoor temperature difference, and wind effect pressures as created 

by the dynamic forces exerted by the wind on a stationary object (Sherman & Grimsrud, 

1980). In this section, calculations of both effects are presented separately based on the 

(Sherman & Grimsrud, 1980) model.  
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The pressures induced by the stack and wind effects cause flow through the leakage 

area of the building envelope. Using ELA is the property that relates driving pressure to 

resulting flow leads to: 

𝑄 = 𝐸𝐿𝐴√
2

𝜌
∆𝑃 

(2.3) 

Where  

𝑄 : air flow [m3/s], 

𝐸𝐿𝐴 : effective leakage area [m2], 

𝜌 : density of air [1.2kg/m3], 

∆𝑃 :  the applied pressure [Pa]. 

Although every part of the envelope can be given an effective leakage area, in a 

real situation it will be practically impossible to identify all of the facades and facade parts 

and roofs individually. Hence, the number of leakage variables is typically limited, for 

instance by considering each face of the building to have a single ELA. This assumes that 

the ELA of a part of the envelope is an aggregate value of the individual ELA’s of its sub-

components, which for the sake of energy load calculations is a plausible assumption. In 

this thesis the LBL model for the stack and wind effects calculations is adopted. The 

required formulas are given below; the full derivations and more information can be found 

in  (Sherman & Grimsrud, 1980). 
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2.2.1 Stack effect 

The stack effect pressure is caused by the existence of bodies of air whose 

difference in temperatures cause different densities. Based on the condition of hydrostatic 

equilibrium, the change in pressure with respect to height is proportional to the density. 

Consequently, In the case of a building, as the inside and outside bodies of air will have 

different temperatures, there will be a differential surface pressure that changes with height, 

this differential pressure is given by this formula: 

∆𝑃𝑠 = 𝜌𝑔𝐻
∆𝑇

𝑇
 

(2.4) 

Where  

∆𝑃𝑠: internal pressure shift [Pa],  

𝑔 : acceleration of gravity [9.8 m/s2], 

𝐻: height of the ceiling above grade [m], 

∆𝑇 : inside-outside temperature difference [⁰K], 

𝑇: inside temperature [⁰K]. 

Normally the internal pressure shift ∆𝑃𝑠 has relatively little impact compared to 

wind pressures on the overall infiltration, however in a case where the difference between 

inside and outside temperature is large or in the case of tall buildings, the stack pressure 

can have a considerable impact on infiltration. In those cases we take the stack effect 

pressure into consideration in the following formula:  
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𝑄𝑠 =
1

3
× 𝐸𝐿𝐴 × √

1

𝜌
∆𝑃𝑠 

(2.5) 

Where  

𝑄𝑠 : stack effect factor, 

2.2.2 Wind effect 

The flow of air around a building creates varying wind pressures on the building's 

skin. The pressure intensity, distribution, and nature over the building envelope vary by 

location. The wind pressure intensity depends on the air density, wind speed and building 

shape and urban surroundings characteristics. This can be expressed as a wind angle 

dependent normalized wind pressure coefficient: Cp. The general expression of the wind 

pressure intensity is then given by the following equation: 

∆𝑃𝑤 = 𝐶𝑝
1

2
𝜌𝑣2 

(2.6) 

Where  

∆𝑃𝑤: wind pressure [Pa], 

Cp: wind pressure coefficient, 

𝑣: actual wind speed at a specified reference point [m/s]. 

This can be applied to any surface for which the Cp is known (as a function of wind 

direction). Conventionally, a reference wind speed, v can be defined to be the undisturbed 

wind speed at the height of the building. This convention for defining wind speed 

necessitates a method for converting wind speed obtained from a weather tower 
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measurement to this local reference, free-field wind speed. To do this, the following 

formula can be implemented: 

𝑣 = 𝑣0 × 𝜏 (
𝐻

𝐻𝑚𝑒𝑡
)
𝛾

 
(2.7) 

Where  

𝑣0 : wind speed at standard conditions [m/s], 

𝐻: height of the structure [m], 

𝐻𝑚𝑒𝑡: height of meteorological station [m],  

𝜏, 𝛾: constants that depend on terrain class; where terrain class characterizes the urban 

setting [-]. 

Terrain effects capture the fact that the vertical wind profile (see Figure 2.2) varies 

by geographic location when the surrounding terrain changes (i.e., surrounding shape of 

urban built form, trees, etc. as well as the geography will affect the free-field wind profile.) 

The standard undisturbed wind speed is defined at 10m height in rural terrain as shown in 

Figure 2.2. 



36 

 

 
Figure 2.2 Impact of wind speed by terrain 

To calculate the wind speed at one site from measured data at another site, we first 

use the above formula to calculate the standard wind speed for the measurement site; then 

the standard wind speed is used to calculate the wind speed at the desired site. The 

following equations are useful in calculating the actual wind speed: 

�́� = 𝑣0 × �́� (
�́�

𝐻𝑚𝑒𝑡
)

�́�

 
(2.8) 

  

𝑣 = �́�

[
 
 
 
 𝜏 (

𝐻
𝐻𝑚𝑒𝑡

)
𝛾

�́� (
�́�

𝐻𝑚𝑒𝑡
)
�́�

]
 
 
 
 

 (2.9) 

In these expressions, the primed quantities are for the wind measurement site. 

Values for the two parameters dependent on terrain class are shown in the table below. 

Note that this approach is based on the assumption that there is no strong correlation with 

wind direction. For some sites the upwind terrain varies with direction, such as, for 
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instance, in sites close to large bodies of open water. If we ignore the effect of wind 

direction we can use Eq. (2.3) in the calculation of infiltration induced by wind effect, if 

we can find a local approximation of wind pressure as function of wind speed. Normally, 

this is not possible or physically plausible, which mandates the calculation of Cp for all 

relevant parts of the skin, and for all wind directions. 

The quantities necessary for calculating the terrain factor are in Table 2.1 (Sherman 

& Grimsrud, 1980): 

Table 2.1 Terrain parameters for different classes 

Class γ τ Description 

I 0.10 1.30 
Ocean or other body of water with least 5km of unrestricted 

expanse. 

II 0.15 1.00 
Flat terrain with some isolated obstacles (e.g. building or 

trees well separated from each other). 

III 0.20 0.85 Rural areas with low buildings, trees, etc. 

IV 0.25 0.67 Urban, industrial or forest areas. 

V 0.35 0.47 Center of large city. 

2.3 Crude uncertainty analysis 

A building energy model mimics the actual behavior of the building, mostly to 

assist decision-makers in achieving some objective. However, this model is not capable to 

correctly predict the real conditions of the building due to the following reasons. First, 

whether the model is built based on general assumption or even deep energy audits, the 

model may not accurately correspond to the actual building because the (partly assumed) 

input parameters do not provide complete and certain information. Second, the model 

cannot exactly capture the system behavior because of inherent simplifications of the 

physics. Hence, the model may not predict actual building behavior even with the best 
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possible values of the model parameters. Due to these model imperfections, the building 

performance model often yields predictions that unavoidably deviate from actual observed 

values. 

Uncertainty analysis helps to quantify the effect of lack of knowledge that affects 

the fidelity of the model. The analysis explicitly captures the effects of incomplete 

knowledge on a QoI (Augenbroe, Heo, & Choudhary, 2011). Therefore, the quality of 

uncertainty quantification (UQ) strongly influences the rigor of an uncertainty analysis 

(UA). UQ encompasses the identification of uncertainty sources that possibly impact the 

outcomes. The quantification of uncertainty is done in the form of probability density 

functions of the values that parameters can have based on a lack of more precise 

information. The following sections discuss sources of uncertainty in the context of 

performance analysis; later sections will present uncertainty sources and quantification in 

the identified sources. Usually the quantified uncertainty is propagated through the 

simulation of the energy model with the use of various sampling methods, which results in 

probability distributions of model outcomes. The probabilistic outcomes can be translated 

into single values (e.g., by aggregation or statistical representation) if needed according to 

the objectives of the case in hand. Typically the mean and standard deviation of an 

approximated normal distribution are used for this purpose. 

2.3.1 Sources of uncertainty 

As stated earlier, the nature of uncertainties and how one deals with them depends 

on the given scenario and application. Uncertainty arises from a lack of knowledge about 

the behavior of the building or a specific system and the appropriate parameter value to use 
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which is normally assumed to have a fixed value in standard deterministic simulation. In 

general use of BPS to analyze some aspect of building performance, the uncertainties come 

from three main sources: physical parameter uncertainty (P), scenario uncertainty (S), and 

model inadequacy, also referred to as the earlier introduced model form uncertainty 

(MFU). These types of uncertainty are briefly discussed in the following paragraphs; more 

details can be found in the work of (de Wit, 2001), (Sun Y. , 2014), and (Wang Q. , 2016). 

The parameter uncertainty in the energy model refers to that uncertainty associated 

with building physical and operational components. The model parameters that fall under 

this type of uncertainty specify thermal properties of materials, internal gains, properties 

of the HVAC system, and their operation and control settings (de Wit, 2001). In existing 

buildings, these parameters often diverge from their original specifications in the design 

documentation or from industry template values. This is because the nominal conditions 

used for performance testing cannot capture dynamic and stochastic building operation 

conditions. In addition, systems degrade over their life cycle, which gradually increases the 

magnitude of uncertainty in the system performance. Moreover, design and specification 

documents often lack a full description of system properties but provide information about 

system types. Therefore, we need to investigate the fundamental factors that cause 

uncertainty in model parameters in order to quantify parameter uncertainty in the models. 

Scenario uncertainty resides in the external environment (i.e., weather conditions) 

and the use of the building (e.g., building usage, occupancy, and operation schedules). The 

actual weather conditions around the building (e.g., local ambient temperature, cloud 

cover, local wind speed) differ from the TMY/AMY weather data usually adopted in 

standard simulations. For instance, the local wind speed can be significantly different 
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compared to wind speed captured from a meteorological station that is located at a distance 

from the actual site. When use is made of a standard year, such as TMY (Hall, Prairie, 

Anderson, & Boes, 1978), the weather data is averaged by a statistically representative 

selection from 30-year weather data. In addition, actual in-use operation scenarios fluctuate 

from average fixed schedules typically assumed used in models. Although scenarios are 

inherently uncertain, modelers ignore deviations from "average" scenarios and assume that 

usage scenarios are fully known. In some cases this assumption is reasonable, for instance 

when using monthly average weather data and schedules in the performance measures that 

are calculated for a year and not dependent on day to day variations. However, for the 

purpose of this thesis the temporal scale of model calibration is typically much shorter, and 

short term variations are significant. For instance, the wind speed, which is highly 

fluctuating, is a crucial factor in ELA measurements as will be discussed in CHAPTER 4. 

Building energy models are not capable to perfectly represent the reality, which in 

itself produces another type of uncertainty, i.e., model form uncertainty or MFU (Sun Y. , 

2014). Inadequacy in a model varies depending on the choice of specific energy models; a 

higher resolution model is known to represent the reality more accurately than a lower 

resolution model. Yet, all energy models approximate the phenomena of physical heat 

transfer that occur in a building by abstracting their complexity into simplified models. In 

this process, some physical phenomena are ignored if they are regarded insignificant with 

respect to their effects on system energy performance. But the simplifications obviously 

lead to an inherent MFU that should be used in predictive simulations since the importance 

of MFU on predicted outcomes is significant. If that is the case, it could turn out that the 

model should be rejected for the selected purpose. In calibration however, no attempt is 
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made to explicitly quantify MFU.  The reason is that calibration poses a different challenge. 

If a model has large MFU the calibration will be impacted in the sense that the calibration 

parameters will subsume all or part of (unknown) MFU. Stated differently, the calibration 

parameters will try to make up for the model behavior that is missed by the model but is 

obviously present in the observations. This phenomenon of subsumption is intrinsically 

present in any calibration exercise. If enough calibration parameters are used, one could 

hope that the calibration parameters actually subsume all of the MFU and thereby make 

the model more correct than it ought to be. This reasoning drives much of the thinking 

behind this thesis as one of the major goals is to compare the calibration of low fidelity 

(large MFU) with high fidelity (small MFU) models. The underlying inquiry is whether 

the low fidelity model can, after calibration, be as correct as the high fidelity model. This 

is a fundamental question that cannot be answered in generality but only in specific cases. 

The thesis focuses on outlining the approach to generate relevant answers. Following above 

reasoning it should be well understood that the calibrated parameters in a low fidelity 

model can be far off from the true values of these parameters. They “correct” the model 

for a selected QoI, but their calibrated values are incorrect. Through the comparison 

between the calibrated low and high fidelity models it is expected that this effect can be 

quantified. 

2.3.2 ELA quantification 

This section provides fundamentals about ELA quantification on the basis of given 

building conditions and usage/weather scenarios. According to the airflow physics 

described earlier, it is found that wind pressure coefficient (Cp) and local wind speed (v) 
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are the parameters that play an essential role in identifying the ELA. Therefore, we need to 

have a thorough understanding of both Cp and v. 

2.3.2.1 Wind pressure coefficient 

An averaged and simplified Cp can be obtained from several sources and databases 

(Costola, Blocken, & Hensen, 2009).  However, actual wind pressure coefficients can vary 

largely over the surface of a building. For instant Figure 2.3 shows an example of local 

pressure coefficient distributions on the surface of a typical tall rectangular building for 

varying wind angles.  

 
Figure 2.3 Cp contour on a tall rectangular building at varying wind angles 

(ASHRAE., 2009) 

For accurate computation of the pressure fields on the facades, one will need a wind 

tunnel experiment or a high fidelity flow simulation. As the pressure field will be very 
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sensitive to global wind direction (measured in the undisturbed situation) we need to repeat 

the Cp calculation for every possible wind direction. This makes wind pressure 

computations for infiltration airflow rate calculations overly complicated and 

computationally expensive. In order to correct the pressure coefficients for variations in 

wind direction, (Swami & Chandra, 1988) suggest a formula to calculate Cp values for a 

rectangular free-standing building where wind angle is a parameter in the formula, as given 

by Eq. (2.10) along with example plot for different wall ratios in Figure 2.4: 

𝐶𝑝 = 0.6𝑙𝑛 [1.248 − 0.703𝑠𝑖𝑛 (
𝛼

2
) − 1.175𝑠𝑖𝑛2(𝛼) + 0.131𝑠𝑖𝑛2(2𝛼𝐺)

+ 0.769𝑐𝑜𝑠 (
𝛼

2
) + 0.07𝐺2𝑠𝑖𝑛2 (

𝛼

2
) + 0.717𝑐𝑜𝑠2 (

𝛼

2
)] 

(2.10) 

Where  

α: wind incidence angle, 

𝐺: natural logarithm for the ratio of width (W) of the wall under consideration to the width 

of the adjacent wall (L). 
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Figure 2.4 Surface pressure coefficient as a function of wind incident angle in the 

Swami and Chandra formula for different side ratios (Deru & Burns, 2003) 

It should be noted that the above model is only valid for cases dominated by free 

field wind pressure. It would potentially lead to inaccurate results in situations that 

introduce turbulence to the flow, e.g., high terrain roughness or local shielding, irregular 

shaped buildings, etc. 

In those situations, i.e., where the free field assumption does not apply, we can use 

alternative methods such as:  

- Cp generator (CpGen): a parametric model developed based on experimental data that 

calculates Cp values based on wind direction and building dimensions and obstacles 

taking the surrounding terrain into account (Knoll, Phaff, & de Gids, 1995). The Cp 

generator requires information about geometries and terrain roughness for adjacent 

obstacles and distant obstacles, respectively. As outcomes, it obtains surface-averaged 

coefficient values (Cp) for each wall at each wind direction. It can also approximate Cp 

for grid points on a façade, but they are generally less accurate. 
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- CFD simulation: general purpose high fidelity flow-temperature simulations that have 

been used to study airflow around buildings with focus on wind pressure on the building 

façade. However, despite the vast increase in the application of CFD to study wind flow 

around buildings, it is not common to use it as a source of custom Cp data for building 

simulation. The main reasons are the required level of expertise and the high cost of 

these simulations, both in terms of computational resources and user time, when 

compared to the building energy simulation itself (Costola, Blocken, & Hensen, 2009). 

- Direct wind pressure measurement: it consists of a wind pressure sensor or transducer 

to be located on the surfaces of the building. As pressure is applied to the diaphragm of 

the sensor, a charge is generated on the sensitive surface of the sensor. The high-

impedance electrostatic charge is then conditioned externally to a readout or recording 

device. This method is the most accurate compared to the other methods above; 

however, it requires high-end devices and special installation which is cumbersome in 

some cases. Also, the measurement must be long enough to collect enough data for all 

wind directions. In some cases this is a bottleneck. It should be noted that this adds to 

the control or rather observability of the experiment and as such reduces uncertainty in 

the calibration process considerably. 

2.3.2.2 Local wind speed 

As described in previous sections, the local wind speed can affect the infiltration 

significantly. This is because the wind data in weather files are usually measured at a 

meteorological station at a given height, and the approaching wind velocity v for height H 

of the building is modified from the measured meteorological wind velocity by Eq. (2.9). 

The exponent indexes γ and τ are regarded to depend on ground roughness, and are taken 



46 

 

to be standard values as in Table 2.1. However, these standard values are based on 

predominant mechanical turbulence (strong wind). Hence, these indexes should be 

modified further when the contribution of convective turbulence becomes significant. This 

implies that the use of constant values, e.g., 0.20 and 0.85 for γ τ respectively, contains an 

approximation error in calculating the velocity of approaching wind when the effect of 

stratification becomes strong due to unstable atmospheric conditions ( Lim, Ooka, & 

Kikumoto, 2015). This error contributes to the uncertainty in the calculation of local 

velocity and hence wind pressures and resulting airflow rate Q. Wind velocity has a 

significant impact on the formulation of wind pressure coefficient. As concluded in the 

previous section, it is difficult to perform an accurate evaluation of Cp because of the 

various influencing parameters, including surrounding elements, building configuration, 

details of the building surface, and the characteristics of the approaching wind. It is clear 

that the uncertainty in the approaching wind velocity profile causes subsequent uncertainty 

in the wind pressures on the building surface. 

2.4 Propagation of uncertainty  

On the basis of the parameter uncertainties identified in the previous section, the 

uncertainty in the model output is calculated by propagation of the parameter uncertainties 

through the model. For lack of explicit information on the parameter distributions, a 

combination of normal and uniform distributions is assumed for all parameters in 

accordance with the GURA-W UQ repository (Sun Y. , 2014). The parameter ranges 

established from this generic source are interpreted as central 95% confidence intervals. 

Where necessary, the normal distributions are truncated to avoid physically infeasible 

values. The uncertainty in scenario and usage scenarios is not taken from the “vanilla” UQ 
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repository but based on local on-site observations, with uncertainty to represent unknown 

variability due to lack of full observability of extrapolation outside the strictly observed 

period. 

Once the sources of uncertainty associated with model parameters (P and S) are 

quantified, they are propagated through a simulation engine in Monte Carlo (MC) fashion 

with an appropriate sampling technique (e.g., Latin hypercube sampling) (Wyss & 

Jorgensen, 1998). The MC method draws random values from uncertainty distributions. 

This process often requires a large number of samples to ensure convergence to the true 

probability density of a particular QoI. Hence, when a high-fidelity simulation model is 

deployed, this method is often not efficient due to high computational burden. LHS 

alleviates the computational burden by efficiently capturing the variability of the 

distributions of uncertain parameters. LHS partitions a probability density function into 

segments by the same magnitude of probability and draws a sample once from each of the 

segments. As a result, this method ensures the reliability of probabilistic outcomes with 

much smaller sample size.  
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CHAPTER 3. APPROACH AND METHODOLOGY 

This chapter lays out the research methodology and explains its effectiveness 

toward the specific questions under study. The previous chapter focuses on identifying 

sources of model discrepancy, i.e., the gap between predictions and observations and the 

role that calibration parameters (i.e., the model parameters for which “best estimates” based 

on measurements are derived) play in this. These results are used to arrive at novel 

interpretations of the value of calibration for different model fidelities and different 

measurement data sets. The inherent “value” of the resulting model will be based on 

quantification of the fitness of the calibrated model, albeit that the scope of this thesis limits 

this to one particular fitness measure in one specific case. 

The first part of the work is conducted along two main routes that both lead to an 

estimation of the primary parameter (vector) under study, ELA. The diagram below shows 

the two distinct ways to measure ELA, i.e., via direct measurement and indirect calibration 

from simple, routinely available measurements. 
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Figure 3.1 General outline of the core research topic: ELA estimation 

From the testing techniques presented in the first chapter, the tracer gas method has 

been chosen for the direct calibration approach in the left part of Figure 3.1. The obvious 

reason for this choice is its practicality and relative simplicity.  One measures the decay of 

a released gas concentration at a zonal level which is assumed to be the direct result of 

infiltration. On the other hand, indirect calibration basically depends on the measurement 

of the indirect effects of infiltration (e.g., on energy and temperature) and uses simulation 

tools and calibration techniques to estimate the “best estimate” of ELA. 

3.1 Methodology framework 

As depicted in Figure 3.2, the first step in the process of this work is to conduct 

sensitivity analysis of all candidate building parameters for a building under study. This 

step informs the choice of the set of calibration parameters and other “regular” parameters 

that are fixed, albeit, as explained below, that the set of regular parameters will be assumed 
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to be variable/uncertain to some extent. The next step is to use the model with a selected 

calibration parameter set in a calibration process that finds best estimates of the calibration 

parameters by making the difference between model outcomes and real data from the 

conducted direct or indirect experiments as small as possible. This step may be repeated 

multiple times with different sets of calibration parameters to verify how sensitive the 

outcomes are to the choice of the calibration set.  In all steps, the ELA parameter(s) are 

always in the calibration parameter set. Every calibration trial with different parameter sets 

will lead to a new value (distribution) of the ELA parameters. If some of the regular 

parameters are assumed uncertain, the calibration will be repeated many times for different 

samples from these uncertain parameters (sampled in a way that they are represented 

according to their occurrence probability). For each chosen calibration set, the resulting 

values of an ELA parameter will then take the form of a probability distribution which 

represents the uncertainty in the calibrated value of ELA as a result of the (assumed) 

uncertainty in the regular parameters. It should be remembered that the result is only as 

good as the uncertainty estimates of the parameters allow. 

All resultant ELA distributions will be compared and analyzed to reveal the 

effectiveness of the different calibration sets and the sensitivity of the calibrated parameters 

to other partially unknown parameters. 
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Figure 3.2 Proposed calibration process 

The following sub-sections discuss every part of this process separately. 

3.1.1 Sensitivity analysis 

A sensitivity analysis (SA) of all uncertain model parameters is conducted by 

representing their possible values with probabilistic distributions and test their influence 

on a chosen outcome (QoI) of the simulation. SA reveals which parts of the total output 

uncertainty can be attributed to uncertainties in individual inputs or groups of inputs, and 

it ranks the importance of input parameters based on their influence on the uncertainties of 

model outcomes. Commonly used probability distributions include uniform distribution, 

triangular distribution, normal distribution, and log-normal distribution. The classical 

interpretation of probability considers the sample points of a specific parameter as 

observable realizations of uncertain events, and assumes that the frequency records of them 

allows the inference of probability distributions. The other view involves a quite different 
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interpretation. A subjective interpretation considers the probability distributions as a 

reflection of the decision-maker’s subjective preferences following a ‘rational preference’ 

set of axioms, or the degrees of belief about these variables without necessarily referencing 

to frequency observations of them. These competing interpretations of a standard 

probabilistic setting are quite different, but they imply rather similar practical 

implementation features. For the targeted SA, it is sufficient to define plausible ranges of 

parameters and assume their distribution (e.g., uniform or normal) and rank their 

importance through well-established methods. The resulting ranking and interaction 

between parameters is used to determine the calibration set and regular set, where the 

boundary between the two sets is not fixed but variable. 

3.1.2 Data collection for the calibration target 

As introduced in section 1.2.4.1, well-designed procedures regarding the use of 

information and data throughout the calibration process have a significant impact on the 

success of the outcome. Most studies on calibration use compliance with calibration 

standards, like ASHRAE Guideline 14-2002 (ASHRAE, 2002), as validation criterion. 

Regardless of whether the calibrated model passes the test, there is usually insufficient 

proof to test the validity of calibrated parameter values. Clearly the quality and volume of 

the monitored outcomes as well as fidelity of the model play a role, but it is very hard to 

make their roles explicit. The most common type of monitored data in building 

performance management is the monthly utility bill, as it is readily available and reliable 

in most cases. The use of additional hourly or sub-meter data, building management 

systems (BMS), in-situ monitoring, etc. is discussed in (Heo & Zavala, 2012). This type of 

data is obviously more informative than monthly data for model validation because of the 
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embedded dynamic characteristics. Hence, increasing the volume and type of monitored 

outcomes helps to overcome uncertainties associated with the experiment setup, such that 

one can appropriately attribute the discrepancy between assumed and observed parameters. 

In terms of data variety, it is always desirable for a data set to include simultaneous 

measurements of different types of variables, such as submetered energy use, lighting and 

plug loads, and indoor temperatures. When different types of variables can be 

simultaneously monitored over a relatively long period, model verification can be 

performed more comprehensively. One objective of this thesis is to measure the fidelity of 

a model over different resolutions and granularities of input data. Therefore, different 

setups of data monitoring are applied in the case studies. The monitored outcomes include: 

• Energy: hourly electricity consumption. 

• Temperature: indoor zonal temperatures. 

• Meteorological conditions: on-site dry bulb temperature, relative humidity, global 

irradiance, and wind speed and direction. 

3.1.3 Model calibration technique 

Calibration is the essential part in the framework of this thesis. The most common 

automated model tuning approach formalizes calibration into a deterministic parameter 

estimation problem, minimizing the discrepancy between measurements and model 

outcomes as objective. This employs numerical algorithms to find the parameter values 

(for all parameters in a chosen calibration set) that minimize this objective function.  
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As implied in section 1.2.3, the issue with any calibration is that some parameters 

may subsume the effect of other parameters and inherent model discrepancies (MFU) as 

well as wrong scenario data and observation data errors. Jointly, they increase the 

uncertainty in the resulting model and more specifically make parameter estimates less 

reliable. The subsumption of these exogenous disturbances in the calibration parameters is 

directly intertwined with the interaction between all calibration parameters. The proposed 

approach to monitor and, if possible, quantify this effect is depicted in Figure 3.3. 

 

Figure 3.3 Iterative calibration steps to determine calibration parameter sets via 

sensitivity analysis 

The process starts with defining all uncertain parameters (including ELA) followed 

by a sensitivity analysis to rank the most dominant parameters at this stage. The outcome 

of this step is to separate parameters into a calibration set and a regular set. Since our target 
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is to determine the value of ELA, we start the calibration with a small set containing only 

ELA as calibration parameter(s). Out of that calibration we can generate a distribution for 

the ELA vector by taking sample values for all uncertain parameters and repeating the 

calibration for every sample. The reduction of the calibration set is a repetitive process 

where every time additional calibration parameters are added. For every set a new ELA 

distribution is found in the calibration step. It could be expected that all ELA distributions 

are not the same due to the interaction between the calibration parameters. At this stage we 

apply a sensitivity analysis technique to more objectively account for parameter interaction 

effect. Particularly, the method used for this is the Morris method (Morris, 1991) which 

ranks the effect of uncertain parameters on ELA distributions. We stated earlier that the 

Morris method has been recognized as a suitable screening technique for building energy 

models (de Wit, 2001); (Moon, 2005). The method is computationally efficient as it is able 

to rank the sensitivity of many uncertain parameters using relatively small samples. 

Moreover, the method does not assume the relationship between parameters and model 

outcomes as linear, and evaluates the effects of parameters on the model outcome over the 

whole parameter space by exploring multiple regions sampled from the parameter space 

(Heo Y. , 2011). Hence, the method can capture nonlinear effects of individual parameters 

and interaction effects among parameters. More technical details are described in section 

5.3.1. 

3.1.4 Model validation 

A crucial question is whether the proposed approach leads to a more accurate ELA 

estimate. This can only be judged against a known true value. However, as explained 

above, there is no established way that would give the true value of ELA. Reference values 
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generated in previous research as will be discussed in section 4.1, inform only the range of 

possible ELA values. Therefore, this study relies on the best available method to establish 

a “truth value” for ELA, which is the direct experiment with tracer gas to measure 

infiltration for a given building zone directly and derive a best estimate of ELA. The test 

is done at zonal level so that we can derive ELA for each façade or part of a façade of the 

building. There are test factors that have to be considered throughout the test period. They 

reflect experimental assumptions and can be described as follows: 

1. The tracer gas mixes perfectly. 

2. The effective volume of the enclosure is identified. 

3. The zone only exchanges air through the façade; i.e., the other enclosure parts 

and any HVAC opening are sealed perfectly. 

4. The factors that influence air infiltration remain unchanged throughout the 

experiment period. 

The following conditions apply to the conducted experiments: 

• CO2 is the gas used for the test with high concentration of 500 ppm and neutral 

level of 3500 ppm. 

• Meteorological parameters are recorded and include: wind speed and direction, 

temperature (indoors and outdoors), relative humidity. 

• Pressure sensors measure the wind pressure on the tested facades (only used in 

one of two case studies) 

It is clear that test assumptions do not apply perfectly, and some conditions cannot 

be monitored with great accuracy. These facts lead to uncertainties in the experiment that 
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compound into a range of possible values of the derived ELA.  Wind pressure is one of the 

main driving forces of infiltration and is one of the main sources of uncertainty that affects 

the resulting ELA value. Therefore, even with in-situ direct measurement, we still expect 

a (possibly large) range of values in the generated ELA estimate. 

As discussed in the previous chapter, the formula for wind pressure uses a reference 

wind speed as the basis for the wind pressure coefficient Cp. Cp for a given location on a 

façade as explained earlier can be obtained in different ways either by measurement, 

empirical laws or using software. Ideally, wind tunnel is the most accurate method to derive 

Cp, but because of its complexity it is nearly impossible to be done for every study. 

Alternatively, we can use Cp generator. As explained in section 2.3.2.1, it is a tool that 

calculates wind induced surface pressure coefficients in the urban context. It is originally 

developed from experimental (wind tunnel) data to determine Cp values for any wind 

direction, building dimensions and adjacent and distant obstacles in the urban context 

(Knoll, Phaff, & de Gids, 1995). For the purpose of this study, it is important to investigate 

the uncertainty in Cp thoroughly. Hence, more about uncertainty quantification of Cp will 

be discussed in CHAPTER 4. 

As alluded above, it is important to account for any uncertainty in the tracer gas 

experiment. By modeling all factors as uncertainties, the derived ELA will be in the form 

of a distribution. In fact, we will find different distributions depending on the assumed 

uncertainty (width of distribution) of the Cp estimates that we use. The diagram below 

visualizes the resulting ELA values in response to different types of Cp fidelities. 
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Figure 3.4 Visualization of the impact of different Cp calculation methods on ELA 

estimates 

The figure depicts that with increasing accuracy of the experiment, the estimated 

ELA distribution should become “skinnier” thus increasing our confidence in the ELA 

estimate. One ultimate way to account for the effect of wind pressure is to measure it 

directly during the tracer gas experiment, e.g., with pressure transducers at the outside of 

the facade. Obviously the error in the measurement devices and sensors themselves and 

unaccounted disturbances during the experiment can never be avoided. 

3.1.5 The role of Cp in the indirect calibration 

When estimating ELA through an indirect experiment (i.e., calibration of the 

building energy model), we still need a reliable estimate of Cp to enable the calibration of 

ELA. This implies that Cp enters into the sensitivity analysis and hence into the calibration, 

either as member of the calibration parameter set or in the regular parameter set (with an 

uncertainty distribution that will vary with the method employed to derive Cp estimates). 

This constitutes a major contribution to the current understanding of calibration methods 
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under the combined uncertainty of model parameters and external conditions (in this case 

local wind pressure). 

The significance of this work is to better understand how to improve the estimate 

of a specific calibration parameter to be as close as possible to the true value. In particular, 

the challenge is to verify whether the proposed iterative process of sensitivity analysis and 

increased number of calibration parameters leads to more confidence in the best ELA 

estimate where “best” estimate is defined as one that gives the smallest difference between 

model outcomes and measurements. This process will be repeated for different calibration 

cases, where each case deals with a certain simulation tool and a certain amount of 

measurement data. Based on the approach discussed above, every case results in a different 

ELA parameter distribution. Figure 3.5 provides a visualization of the expected result. Each 

distribution represents the best estimate obtained for a case as described above. It also 

shows the prior distribution and two additional dotted lines representing the results of direct 

calibration based on field experiments with different fidelity of Cp. The other two solid 

curves represent two cases with specific model fidelity and data resolution. The figure is 

only intended to prepare the reader for the next chapters that establish the estimates in two 

distinct case studies. Based on those, conclusions will be drawn with respect to type of 

model and outcome data that is needed to produce ELA estimates with a certain level of 

confidence. For this we use statistical measures to define the distance between best ELA 

estimate and experimentally measured ELA. 



60 

 

 

Figure 3.5 Illustration of expected ELA outcomes for different calibration cases 

The comparison of the resulting ELA distributions is expected to lead to important 

findings about the relevance of direct versus indirect calibration and the role that data 

availability and model fidelity plays in the outcomes. 

The process will be repeated for several model fidelities and different monitored 

outcomes to show how both will impact: 

- Approximation of measured QoI (traditional measure of goodness of the 

calibrated model) 

- Approximation of ELA (this represents a measure of goodness of the calibrated 

parameter values) 

It should be noted that both measures are good indicators of the effectiveness of 

the calibrated model, but they nevertheless fall short of delivering a measure for a “one 

fits all” conformance test. For this an application tailored fitness measure is more 

adequate as elaborated in the next section. 
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3.2 Evaluation of a specific calibrated model 

This research is also aiming to provide a reliability measure that helps to determine 

how much confidence one can have in using a calibrated model for a specific task, or in a 

specific simulation scenario. A novel fitness measure, for now loosely defined as the 

“measure of reliability” of a calibrated model would be the ideal outcome. If the calibrated 

model is proven reliable to be used for a task it is deemed fit for this task. By defining tasks 

of increasing complexity, a model’s fitness level can be defined by the highest task it can 

perform. In this manner, the hope is that fitness level of a calibrated model can be predicted 

based on the resolution and quality of the data, number of calibration parameters and the 

fidelity of the underlying model. It is well recognized that such a generic assessment 

methodology is the holy grail of calibration research and some modesty is in order with 

respect to what this dissertation can achieve. In this study we will therefore only test our 

thinking on one particular setting. This setting is the benchmarking of existing buildings 

where a fitness measure is introduced that can effectively test the reliability of a calibrated 

model to verify its reliably in an existing building benchmarking application. 

3.2.1 Comparing existing goodness of fit to proposed fitness levels 

Section 1.2.4.2 discusses the statistical metric to evaluate the goodness of every 

calibration model. This type of validation is in fact the only criterion established in 

ASHRAE Guideline 14-2002 (ASHRAE, 2002) which provides a standard procedure for 

the whole-building calibrated simulation approach. First, a modeler should plan the 

calibration exercise by specifying a simulation software, the unit and interval of monitored 

data for calibration (i.e., monthly, hourly), and acceptable tolerances for model validation. 
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Second, the model requires some information to be collected onsite (e.g., building 

dimensions, construction specifications, system nameplates information, occupancy and 

operation schedules, and whole-building utility data). Third, based on collected 

information, a simulation model of the building can be constructed corresponding to other 

assumptions that are deemed to represent the actual building reasonably. Finally, one 

compares the simulation model outcomes to measured data, and refines the model until the 

discrepancy between predicted energy uses and measured energy use falls within 

acceptable tolerances. Under the assumptions of normal linear regression, one can translate 

these statistical metrics into uncertainty of certain model predictions, e.g. energy savings. 

Within a calibration process, uncertainty analysis estimates the level of confidence 

that can be placed in our predictions. Without such a measure of “fitness”, it is impossible 

to judge the accuracy of the prediction for making decisions. In other words, trusting a 

calibration model output associated with high uncertainty may lead to considerable risk to 

the validity of the model’s results in a decision context. As has been stipulated before, the 

fidelity of the model is expected to play a dominant role in how fit the resulting calibrated 

model is. But it could be expected that for simple tasks a low fidelity model could do well 

enough, even if the values of the calibrated parameters are far removed from their truth 

values. The fidelity levels to be considered in this thesis (Figure 3.5) can be ranked within 

a spectrum from first order simulation (EPC) to high fidelity simulation (EnergyPlus with 

AirflowNetwork).  Ideally, fitness levels could be determined for each specific case as 

depicted in Figure 3.7. 
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Figure 3.6 The case specific determination of fitness level 

Fitness levels established this way could serve as a guide to determine what 

monitoring plan one needs to calibrate certain parameters (e.g., ELA), such that the 

resulting model is fit enough to perform a given task. To make this explicit, Figure 3.6 

shows what type of result could be expected; each red dot represents the maximum fitness 

of a given case, i.e. a given combination of data resolution and model fidelity. The 

maximum value for each case is determined through iteration with different calibration and 

regular parameter sets. Once the maximum fitness for each case is established one can set 

a threshold (or required fitness level) for the calibrated model in a given scenario as shown 

in Figure 3.7, and find which case is fit enough to meet this requirement. This thinking 

requires that relevant decision scenarios and fitness measures have to be developed first. 

The vertical axis in the figure is for now undefined. It would have to be based on a set of 

application scenarios ordered along the axis according to increasing demand on model 

correctness. This poses a major challenge for the research community as a whole. The 

fitness level is expected to be higher for increased data resolution and model fidelity. 
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However, these levels are highly dominated by the choice of calibration parameters, which 

complicates the process.  

 
Figure 3.7 The expected result of the fitness determination 

The projected outcome from the fitness levels is to determine which factors in the 

calibration have the most influence on the overall result so that one can make the judgment 

about what additional effort will make the calibrated model more effective. This objective 

is over-ambitious at this stage and a general treatment that would underpin Figure 3.7 is 

not attempted in this thesis. 

3.3 Contribution to the field 

The thesis develops a theoretical foundation and workable calibration process for a 

deeper understanding of building energy model calibration.  It ties together model fidelity 

and data resolution in the presence of uncertainties and verifies the role of the choice of a 

calibration parameter set. It introduces a novel approach to the definition of fitness 

measures that could be shown to be more versatile and relevant than the present ASHRAE 

measures. Throughout this thesis, the approach is demonstrated and validated on the 
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calibration of ELA parameters, which are recognized as notoriously difficult to calibrate 

as their role is often subsumed in other parameters in models that pass the ASHRAE test. 

Revealing the latter effect through iteration with different parameter sets is a second 

important contribution of the thesis. The diagram below illustrates the computational 

framework with speculative use for the quantification of novel fitness measures. 

 
Figure 3.8 The overall iterative calibration process 

The methodology described above is implemented on two case studies, one is a 

commercial building, and the other one is a residential building as described in CHAPTER 

6 and CHAPTER 7.  
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CHAPTER 4. ELA ESTIMATES DERIVED FROM TRACER GAS 

EXPERIMENTS 

This chapter details the derivation of ELA estimates from in-situ tracer gas 

experiments, using the physical models introduced in CHAPTER 2. The explicit 

quantification of all inputs in this direct calibration is conducted with focus on wind speed 

and Cp, which have been established as the major sources of uncertainty in the experiment. 

The underlying research issues are elaborated in the following sections. 

4.1 Prior estimate of the uncertainty of ELA 

As introduced earlier, ELA is not a material property that is directly measurable. It 

is a defined or “surrogate” property that can only be inferred from an experiment. It should 

be noted that the scope of ELA is in principle undefined and left over to the modeler’s 

choice. For example, it could relate to a whole façade or the façade parts that border a given 

building zone, or even a subarea of a given façade, such as a window. 

National standards and guidelines establish recommended ELA values that 

correspond to the normal and the best practice for different types of buildings and more 

specifically facades. One example is the ASHRAE fundamental (ASHRAE, 1997). Most 

of these values correspond to pressurization tests at specific conditions. The problem with 

the standardized values is that disparities have been reported between the specific measured 

data and the standard values, which indicates that actual ELA of existing buildings is often 

either much higher or lower than the values recommended by the standards. 
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Before attempting a calibration, it is important for this study to identify what we 

know about ELA beforehand as this will serve as a prior guess for the ELA values that are 

going to be estimated. In order for that, we need to obtain data on how leaky a building is 

in general, i.e., without much specific information. A recent study quantifies the 

uncertainty in ELA across a large spectrum of directly measured buildings in many 

locations and situations (Sun, et al., 2014). This is part of a larger effort that provides 

energy modelers with quantified uncertainty distributions for a variety of parameters and 

discrepancies in the internal modules of a building energy model.  

The uncertainty in ELA was quantified based on analyzing measured whole-

building envelop airtightness data as summarized by (Emmerich & Persily, 1998). The 

majority of these data are previously reviewed by (Persily A. K., 1998) with some 

additional buildings added. The air leakage values are normalized by the area of the 

aboveground portion of the building envelope. The basic ELA formula in this situation is 

an enhancement to Eq. (4.1), which mainly focuses on the cases where a blower door test 

is used. This expression is given by:  

𝑄 =
𝐸𝐿𝐴

10000
√

2

𝜌
∆𝑃 (

∆𝑃𝑓

∆𝑃𝑟
)
𝑛

 (4.1) 

Where  

𝑄 : air flow at ∆𝑃𝑓 [m3/s], 

 
 It focuses on realization uncertainty at the time that there is only a designed building. It has to be stipulated 

that this does not apply in the case of an existing building when on-site inspection can reveal many details 

that will help the building auditor to adjust an uninformative prior (as developed in above mentioned study) 

into a more precise adjusted prior. However, the distinction needs no further stressing as the ELA prior is in 

fact not used in this thesis and only presented as baseline to compare derived ELA estimates. 
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∆𝑃𝑓: applied pressure difference [Pa], 

∆𝑃𝑟: reference pressure difference [Pa], 

𝑛: pressure exponent [-]. 

It should be realized that all tests are done by a standard blower door test at ∆𝑃𝑓 =

 75 Pa. The outcome can be used to derive an ELA estimate at ∆𝑃𝑟 = 4 Pa which is 

frequently used since it represents the average magnitude of the pressure difference under 

real life conditions. 𝑛 is a factor that accounts for the shape and average length of the 

cracks. It is basically unknown, but studies have shown that a value of 0.65 is a good 

estimate with some variability between 0.6 and 0.75. 

The ELA value was derived for each building in the dataset by (Emmerich & 

Persily, 1998) creating multiple samples of ELA for varying n. Assuming that every 

building comes from the following distribution: 

𝐿𝑜𝑔(𝐸𝐿𝐴)~𝑁(𝜇, 𝜎2); 

a distribution for ELA can be established. Figure 4.1 shows the result as a log-normal 

distribution with mean 1.282, and standard deviation 0.879 (Wang Q. , 2016).  
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Figure 4.1 Predicted distribution of Log(ELA) 

Note that this distribution is constructed from data for a large set of buildings of all 

kinds, including some old and very leaky buildings, hence the long tail with high ELA 

values. If one had no knowledge whatsoever about a building (new or existing), this 

distribution would be a useful prior albeit a rather uninformative one. Obviously as one has 

more information about the building such as age, façade technology, type of assembly 

method, contractor reputation, performance contract (if any), etc., one will use this 

information to make a more informative prior distribution. This is however not within the 

scope of this thesis as it is not relevant for the chosen method. Rather, the wide distribution 

in Figure 4.1 is used as a basic reference (or indeed as an ELA prior distribution in the 

Bayesian sense if no other information is available) for the values that will be obtained 

from all ensuing calibration efforts. 
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4.2 Wind pressure coefficient 

As introduced in section 2.3.2.1, the wind pressure coefficient (Cp) is the key 

boundary condition that induces airflow between the external environment and building 

zones. Primary sources such as full-scale experiments or reduced-scale experiments in 

wind tunnels can provide custom and detailed Cp data for a specific building shape. 

Sometimes an urban scale CFD simulation can be a plausible and somewhat less expensive 

alternative (Costola, Blocken, & Hensen, 2009). However, both methods are time-

consuming and expensive, which prohibits their use in routine building (design) 

assessments. Analytical formulas and databases are commonly used as alternative sources 

to obtain Cp data, which are straightforward to use and therefore found in most of the 

airflow modeling and building performance tools. A disadvantage of the latter sources is 

the limited amount of Cp data that is typically provided or derived, often based on 

simplifying assumptions. One significant assumption adopted by many of these sources is 

the validity of using surface-averaged Cp values instead of local Cp values with high spatial 

resolution. 

From the sensitivity analysis conducted in our case studies in CHAPTER 6 and 

CHAPTER 7, it is shown that the effect of the uncertainty in wind pressure coefficients on 

the output of a building simulation model, relative to the effect of other uncertainties, is 

significant, which means that the contribution of Cp to the overall uncertainty in predicted 

outcomes is potentially significant. Hence, the aim of this section is to quantify the 

uncertainty in Cp more rigorously and generically, based on existing experimental data. 
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4.2.1 Experimental data 

A widely accepted method to assess wind pressure coefficients of a building is a 

wind tunnel study. In a wind tunnel, a scale model of the building and its surroundings is 

immersed in a simulated boundary layer flow. Thus, Cp can be assessed from 

measurements of both surface pressures and wind velocities or dynamic pressures. 

It must be noted that these wind tunnel values only approximate the desired full-

scale values with some level of uncertainty. Indeed, due to scaling effects and 

simplifications in both the simulated boundary layer and the wind tunnel model, the 

acquired pressure coefficients only approximately capture the relation between wind 

velocities and surface pressures on the full scale building in an actual wind field (Sherman 

M. , 1998). For instance, buoyancy effects, which may significantly affect the boundary 

layer flow at low wind speeds, are absent in a typical wind tunnel flow. 

Although potentially important, uncertainties resulting from these effects are not 

addressed in this chapter. We consider a wind tunnel study as a first and basically only step 

in the assessment of Cp. Therefore, given the specification of a wind tunnel experiment, 

we can identify the uncertainty in the measured pressure coefficients by comparing them 

with Cp values derived by existing tools and analytical methods rather than in a wind tunnel 

experiment. This follows the standard approach used in uncertainty quantification (UQ) 

when the discrepancy between a high fidelity and a lower fidelity model is characterized 

and quantified. 

Accordingly, the ‘‘Tokyo Polytechnic University (TPU) wind pressure database’’ 

provides the experimental wind tunnel data used in this part of the intended uncertainty 
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quantification (Quan, Tamura, Matsui, Cao, & Yoshida, 2007). The database contains the 

results of test  models in a boundary layer wind tunnel with a test section 2.2 m wide by 1.8 

m high. The atmospheric boundary layer is simulated by turbulence-generating spires, 

roughness elements and a carpet on the upstream floor of the wind tunnel’s test section. 

Different wind profiles were used to build the database. In most experiments, the mean 

velocity (with power-law exponent α = 0.20) and the turbulence intensity profiles were in 

accordance with class III (rural area) in Table 2.1. The turbulence intensity at a height of 

10 cm was about 0.25, and the test wind velocity at this height was about 7.4 m/s (Costola 

D. , Blocken, Ohba, & Hensen, 2010).  

Our uncertainty analysis needs to consider the effect of various surrounding 

conditions to be in agreement with the variation of the wind tunnel experiment. 

Accordingly, the target model of the experiment was set at the center of a turntable of 200 

cm diameter surrounded by similar buildings models with different variations and 

surrounding densities (i.e., CA (0.1, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60)). The 

formulation of these densities is following Eq. (1.1): 

𝐶𝐴 =
𝑎𝑟𝑒𝑎 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑖𝑡𝑒
=

𝑏𝑑

𝐵𝐷
 (4.2) 

 Where, b and d are the breadth and depth of the buildings. B and D are the average 

distances between corresponding points on adjacent buildings in two coordinate directions, 

as shown in Figure 4.2. 
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Figure 4.2 Variations of surrounding densities for Cp measurements 

From all surrounding densities presented in the database, we used Free Field as 

well as CA (0.10, 0.15, 0.30, 0.50) to quantify uncertainty against our Cp modeling 

techniques. The outcomes provided in the published database are Cp values at every 

measured tap on the surfaces of the model. We select 12 taps that are evenly distributed 

over each surface and used for comparison with Cp values generated from other models. It 

must be noted that the number of wind directions tested is not consistent for all cases (e.g., 

free field has only 7 angles, and CA 0.10 has 19 angles), which could somewhat bias the 

final outcome of the uncertainty quantification. 

The test models in this database include three kinds of roof types (i.e., flat, gable, 

and hip) with different variations of shape and size. In our study we select the sizes that 
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closely match our case studies, which are i) flat-roofed model with dimensions: Hight = 

6cm, Breadth=16, Depth=24; and ii) gable-roofed with dimensions: Hight=12cm, 

Breadth=16, Depth=24, roof slop=26.7⁰. All these data are used to quantify the uncertainty 

associated with the empirical models as described in the following section. 

4.2.2 Calculation models for Cp 

To obtain a first impression of the uncertainties in Cp derived from existing data, 

Swami&Chandra and CpGen from section 2.3.2.1 are used to estimate the pressure 

difference coefficients for wind angles between 0⁰ and 180⁰ as shown in Figure 4.3 and 

Figure 4.4. 

As introduced earlier, the model by Swami&Chandra is developed to calculate 

façade averaged pressure coefficients. CpGen modeling has some superior capability over 

Swami&Chandra, as it can simulate Cp in situations with added geometric details. CpGen 

is indeed based on regressions over a wider range of geometric parameters generated by a 

wide range of variants in wind tunnel tests. It remains an open question though whether the 

Cp outcomes of CpGen deliver (on average) a better result than Swami&Chandra. CpGen 

produces Cp results under different variations (i.e., free field or with obstacles). Figure 4.3 

shows that the spread of outputs from the different models is not very considerable under 

the free field condition; however, it becomes more significant when obstacles are 

introduced into the model as presented in Figure 4.4. In both models, the degree of 

consensus between the two alternatives strongly depends on the wind angle. 
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Figure 4.3 Comparison of Cp calculations under Free Field condition 

 

 

Figure 4.4 Comparison of Cp calculations with obstacles condition at a density level 

of CA = 0.10 

If we would consider adopting the Cp points in the model outcomes as a measure 
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and, more importantly, which do not. Accordingly, the model outcomes depend on 

additional choices by the analyst: 

• Several models require characterization of the wind velocity profile; 

• The surroundings of the building under study have to be classified in a “shielding” 

class that fits the given case. 

Although the above comparison seems to supports the assertion that significant 

uncertainty exists in wind pressure coefficients, evidenced by existing data, it does not 

provide a proper basis to assess this uncertainty in a particular Quantity of Interest (QoI) 

as predicted by a building simulation. More trusted data is required to provide reliable 

inputs to the simulation and to assess the impact of Cp uncertainty as well as other sources 

of uncertainty. Following standard UQ methodology, the Cp uncertainty is quantified by 

comparing “real” and modeled Cp values. The next section discusses the procedure in 

which the TPU database is used to quantify the uncertainties in Cp. 

4.2.3 Quantification of Cp uncertainty 

Figure 4.5 and Figure 4.6 give an item-wise presentation of the Cp results with 

respect to the available data and wind directions of the database. As the purpose of the 

wind tunnel tests was primarily to obtain empirical reference material, only the Cp results 

are shown here. The figures show the upper bound and lower bound for both models 

(Swami&Chandra and CpGen), within the 5 and 95 percentile, i.e., with 90 % confidence 

that a value falls inside the plotted range. As mentioned earlier, for this study we use five 

different urban variations to represent surrounding effects where each variation falls in a 

CA class as previously explained. Our case studies fall within density value of CA = 0.10. 
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The data presented below are for the north face of the model and surrounding density CA = 

0.10. Tables and figures for all other cases are presented in APPENDIX A. 

 

Figure 4.5 Results of Cp from Swami&Chandra model with 90% confidence 

interval under CA=0.10 
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Figure 4.6 Results of Cp from CpGen model at 90% confidence interval under 

CA=0.10 

The results show that uncertainty in Cp models dominated by wind directions and 

surrounding density. In the free field analysis, both models demonstrated good agreement 

with the wind tunnel data, which results in relative standard deviations of 0.08 and 0.11 for 

Swami&Chandra and CpGen, respectively. With the higher surrounding density, the 

deviation in the models becomes more significant as can be seen in the above figures; the 

relative standard deviations are 0.25 and 0.29 for Swami&Chandra and CpGen, 

respectively. Although the variation is higher in CpGen, the Cp results lie within a quasi-

consistent narrower range, and the uncertainty is distributed more evenly when compared 

with Swami&Chandra. We see this only happen on the lower densities (e.g., CA=0.10 and 

CA=0.15), and the reason for that is obvious in the case of Swami&Chandra, it is due to 
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the embedded empirical formulation that does not capture the characteristics of 

surrounding densities. Although CpGen uses empirical formulae regressed on wind tunnel 

experiments with a large number of urban characteristics, the Cp outcomes for each 

specific wind tunnel experiment are not available and can therefore not be used in the 

comparison. As a result, it is not surprising that the discrepancy between the specific 

experiments in our reference database and empirically-based CpGen results can be large. 

Table 4.1 shows uncertainty quantification in terms of standard error (standard deviation 

divided by the absolute sample mean) for both models and under different variations of 

surrounding densities. 

Table 4.1 Standard error (SE) of Cp uncertainty under various surrounding 

densities 

Surrounding density 
Uncertainty quantification (SE) 

Swami&Chandra CpGen 

Free Field 0.08 0.11 

CA 0.10 0.25 0.29 

CA 0.15 0.30 0.34 

CA 0.30 0.45 0.46 

CA 0.50 0.46 0.48 

In conclusion, the uncertainty in Cp for two competing low fidelity models is 

assessed on the basis of existing real (“high fidelity”) data. The analysis demonstrates that 

there is considerable uncertainty in resulting median Cp values compared to reality. This 

uncertainty is strongly dependent on wind direction and correlated with surrounding 

density. The immediate conclusion is that airflow predictions with current models that use 

Cp require uncertainty analysis (UA) to quantify the uncertainty in airflows based on the 

uncertainty in Cp. The above shows that a comprehensive wind tunnel database is an 
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adequate source to perform the UQ on Cp. The next section presents uncertainty in wind 

speed, which is another source of uncertainty that needs to be considered in the UA. The 

corollary for calibration is that uncertainty in Cp and local wind speed (whether measured 

or model generated) are direct inputs into the calibration of ELA.  

4.3 Local wind speed 

Much work has been dedicated to the mathematical representation of wind speed 

as being essential for BPS and ELA in particular. Typically, BPS follows the approach 

presented in section 2.2.2 to compute the local wind speeds at a local terrain. As discussed 

in the same section, Eq. (2.9) expresses the method that computes local wind speed at a 

certain height from the measured wind speed (𝐻𝑚𝑒𝑡) at the meteorological station with the 

use of wind reduction factors. A simple empirical way to derive the local wind speed is to 

use a wind reduction factor that is expressed as a function of measurement height (H) and 

terrain class constants (γ,τ), as provided in Table 2.1. This model is also adopted by 

ASHRAE Fundamentals (ASHRAE., 2009). 

The variability of wind reduction parameters creates major discrepancy between 

the output from the ASHRAE model and the actual measured local wind speed. Figure 4.7 

gives an impression of the discrepancy between observed wind speeds (red and green) and 

converted wind speed (black) using the ASHRAE model. The hourly data presented here 

are for the first three days of January 2018; Eq. (2.9) is used to convert the wind velocity 

at 10 m height at Atlanta Hartsfield airport to a local wind speed. The observed local wind 

speeds are collected from two weather stations located on the campus of Georgia Institute 

of Technology (GaTech police station and Bobby Dodd stadium weather stations). The 
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purpose of using two observed data points is to confirm the resolution of the measured 

local wind speed within the same area, and the dotted lines in Figure 4.7 confirm that both 

observed data are in close agreement. Also, the results show that the converted wind speed 

does not represent the values that are measured on-site very well, which confirms that the 

simplicity of the terrain parameters in the wind reduction formula erodes the accuracy of 

the calculated local wind speed. 

 

Figure 4.7 Pairwise comparison between measured local wind speeds and ASHRAE 

model wind speed 

Hence, simulation of local wind speed has been the subject of several publications 

that aim to provide techniques for simulating wind speeds for dispersed sites. Many of 

these studies share a common drawback of not taking the high temporal correlation, or 

autocorrelation, into account. Autocorrelation occurs when the error term observations in 

a regression are correlated, which means that observations of the error term are not 
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independent of each other (Blanchard & Desrochers, 1984). This is a common issue in time 

series analysis and can be found clearly in wind speed data.  

Therefore, this section describes the steps that perform an uncertainty 

quantification of local wind speed. Based on actual data, the model takes account of the 

autocorrelation and allows a time series to be generated, which preserves all the main 

characteristics of these data.  

4.3.1 Model preparation 

In order to account for the effect of temporal correlation, the model was built using 

a method that is common for time series analysis. It allows dependent variables to be 

studied and takes account of the nature of that dependence. It also allows the user to single 

out, from an entire class of models (ARIMA), one that would best represent the original 

data. 

An Autoregressive Integrated Moving Average (ARIMA) is a class of models that 

explains a given dataset based on its own past values, and can be written as: 

𝑌𝑡 = 𝑎 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2+. . +𝛽𝑝𝑌𝑡−𝑝𝜖𝑡 + ∅1𝜖𝑡−1 + ∅2𝜖𝑡−2+. . +∅𝑞𝜖𝑡−𝑞 (4.3) 

 Where 

𝑌𝑡: value of regressed phenomenon at current time t; 

𝑌𝑡−𝑝: value of Y at lag p of time t; 

𝛽𝑝: autoregressive coefficient of lag p; 

𝜖𝑡−𝑞: errors of the autoregressive models of the respective lags. 
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Normally, an ARIMA model is characterized by three terms: p,d,q. where p is the 

order of the AR term, q is the order of MA term, and d is the number of differencing 

required to make a time series stationary. In regard of stationarity, the correlation between 

the state at two different times is defined only by the amount of time between them, which 

is known as stationarity. This property enables modelers to significantly reduce the 

complexity of the model; however, numerous time series cannot be adequately modeled as 

stationary. Such as the case for meteorological data, which tend to have significantly 

different statistical properties throughout the day and year. The statistical characterization 

can be made once the residuals, 𝜖𝑡, of the model have been determined. If the residuals are 

assumed normally distributed, then the mean and variance of 𝜖𝑡 can be estimated. 

Consequently, with the regression parameters and the corresponding uncertainty defined, 

the model of ARIMA process is complete. More statistical analysis regarding weather data 

time series can be found in (Blanchard & Desrochers, 1984) and (Lee, Sun, Hu, Augenbroe, 

& Paredis, 2012). 

4.3.2 Generating the statistical model 

The framework to quantify the uncertainty of local wind speed is shown in Figure 

4.8. The process consists of four stages: 1) obtaining wind speed data, 2) process the 

dataset, 3) compute the statistical difference for uncertainty quantification, 4) use the data 

in the simulation tool. The following paragraphs will discuss every stage in more detail. 
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Figure 4.8 Framework of local wind speed uncertainty quantification 

The first stage is to gather the required meteorological data. As our case studies 

located in Atlanta, the weather file used in the first run of simulations is the Actual 

Meteorological Year (AMY) for Hartsfield airport of 2018. Then we apply Eq. (2.9) to 

calculate the local wind speed for every hour in the time series. From Table 2.1 we used 

class I to represent the airport terrain conditions, and class III to characterize the terrain 

condition of Georgia Tech. On the observation side, an on-campus weather data was 

collected to represent the actual data of local wind speed. These data will then be processed 
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to quantify the discrepancy between calculated local wind speeds and the measured ones 

on location. 

The next stage consists of the determination of the p, d, and q of Eq. (4.3) in addition 

to the preliminary estimation of the ARMA parameters of the model that will be used in 

the next step.  

The first task is determining whether the selected dataset contains any special 

behavior. For this we need to perform an autocorrelation function to check for the 

seasonality of the data. The analysis confirms that our datasets are nonstationary, which 

requires a differencing process to overcome this problem. The implementation revealed 

that the model reached stationarity with the first order of differencing; this determines the 

value of d to be equal to 1.  

Besides, we need to determine the set of lags in the term p that defines which 

previous hours the current state is regressed upon. While this step may appear trivial, it is 

quite important to construct the model properly. Because only a limited amount of data is 

available at each hour, only a limited number of lags can be included. In addition, using 

too many prior coefficients as predictors can lead to over-fitting, resulting in poor 

predictive capability. As a result, the number of lags in the term p is chosen to be 2 based 

on the partial autocorrelation analysis, which also suggests that our time series can perform 

well with autoregressive model only; this means our final model will take the form of 

ARIMA (2,1,0) or simply ARI (2,1). 

Before we proceed with autoregression analysis, we need to ensure that the 

residuals of the linear process will follow a Gaussian form. That means the measured values 
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themselves should be Gaussian as well. For this, a Box-Cox Transformation is used to 

'normalize' the data. In this process, sampled data are inverted through an approximate 

Cumulative Distribution Function (CDF), and then through the inverse standard normal 

CDF to obtain a set of samples that more closely approximate samples from a normal 

distribution. Once the data have been normalized for each hour, ARI (2,1) is performed to 

generate the required residuals. 

Once all above is satisfied, we can start with the process of autoregression. The 

ARI (2,1) model was obtained by minimizing the sum of the squares of the differences 

between the actual speeds and those given by the model. If the fitted model is adequate, 

then the autocorrelations of the residuals should be uncorrelated and normally distributed 

with mean 0 and variance √𝑛. If the assumption of normality is justified, then 95% of the 

residuals should be within the ±2√𝑛 boundaries. The model is finally accepted if these 

residuals are found to be uncorrelated. 

The next step is to define the residuals and then capture the means and covariance 

of each hour using standard statistical methods. The generated residuals from both datasets 

(i.e., AMY and on-campus wind speed data) are then compared against each other based 

upon Root Mean Square Deviation (RMSD), which results in a relative standard deviation. 

This outcome represents the uncertainty quantification value that we are aiming for. 

Accordingly, the quantified uncertainty for the local wind speed from our process is equal 

to 0.42. As Figure 4.9 presents, this number shows high uncertainty in the context of 

calculated to actual local wind speed, and that confirms the fact that wind speed is a very 

unstable phenomenon and cannot be completely described by a probability distribution.  
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Figure 4.9 Uncertainty bands reflected in the ASHRAE model local wind speed for 

the first three days of January 

The final step in the process is the generation of the weather files that contain the 

newly fitted (i.e., subtraction of residuals from the original data) and inverted local wind 

speeds. The new wind speeds will serve as variables that change with respect to the 

provided uncertainty range. Those uncertainties in wind speeds are determined by 

multiplying the residuals by the uncertainty value; after that we fit the data by subtracting 

the new residuals from the original data to produce the final converted wind speed. This is 

done by specifying a surrogate parameter in the simulation tool that allows us to apply the 

defined uncertainty range to generate new wind speed values (i.e., time series samples) 

every time we run the simulation. In other words, every simulation will use a new weather 

file with new precalculated local wind speed values. The process of generating the wind 

speeds with uncertainty can take place inside the simulation tool within the process of 

sensitivity analysis and calibration.  
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4.4 Propagation of uncertainty 

The notion of uncertainty propagation and the essential need for it was briefly 

introduced in section 2.4. In this section we propose the uncertainty propagation through a 

building energy model to assess the resulting uncertainty in the yearly consumed electricity 

in kWh/m2/year. This exercise is done to give an illustration of the effect of different 

sources of uncertainty on a resulting model outcome. An evaluation of this uncertainty on 

its own merits may give an intuitive idea of its significance and the relevance to account 

for it. To fully appreciate the effect, we analyze the impact of uncertainty information on, 

or rather its contribution to, the prediction of a QoI with a building energy simulation 

model. 

The uncertainty in the model output, i.e., yearly energy consumption, is 

investigated at three different levels. Firstly, the uncertainty in the building performance 

resulting from only Cp. Secondly, the effect of the uncertainty from local wind speed only. 

Note that in these two stages, all other parameters in the model are fixed at deterministic 

values. Finally, the uncertainty in all model parameters (chosen in accordance with the 

“vanilla” UQ repository introduced in section 5.4) is propagated through an entire year 

simulation with the building energy model. Although the specific building is immaterial 

for the illustration, it should be noted that the building in the second case study in 

CHAPTER 7 is used, specifically its EnergyPlus model used there.  

4.4.1 Propagation of wind pressure coefficient  

As presented earlier in this chapter, the uncertainty in Cp is quantified in terms of 

marginal distributions for different wind directions. Figure 4.10 shows the propagation 
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results based on 500 random samples from the joint distribution over Cp values. This is a 

sufficient number to obtain an accurate estimate of mean and standard deviation of the QoI. 

All parameters other than the Cp were kept at fixed base values. For most of these 

parameters, the base value was set to an estimate of their mean value.  

 

Figure 4.10 Frequency distribution of the delivered energy with respect to Cp 

uncertainty propagation 

The result of Cp propagation indicates that the uncertainty resulting from only Cp 

is moderately significant. It should be noted that the ELA value in the example building 

was on average 0.32 cm2/m2, which introduces some leakiness. This explains the relative 

sensitivity of the energy consumption to the variation in Cp, i.e., between 45 and 55. 

Moreover, the delivered electricity in this propagation process is sensitive because of the 

way this building was operated, which mostly depends on cooling. Hence, the effect of air 

infiltration on cooling is huge, and the major part of this is cooling. This explanation needs 

to be handled with care as it is applicable as well for the following two subsections. 
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4.4.2 Propagation of local wind speed  

The propagated uncertainty of only local wind speed leads to a QoI distribution as 

presented in Figure 4.11. similar to Cp, this is based on 500 random samples from the joint 

distribution over wind speed values. Again all parameters other than the wind speed were 

kept fixed at base values.  

 

Figure 4.11 Frequency distribution of the delivered energy with respect to wind 

speed uncertainty propagation 

Here the results of local wind speed propagation show a variation on the outcome 

between 55 and 60. Although this range is relatively smaller than what obtained from the 

Cp, the impact of wind speed is moderately significant.  
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4.4.3 Propagation of all parameters  

For all parameters, besides those addressed above, we interpret the ranges of 

uncertainty quantification of different uncertainty sources in our models that are identified 

in Table 5.1 as central 95% confidence intervals. Where necessary, the normal distributions 

are truncated to avoid physically infeasible values. Figure 4.12 shows the results of the 

propagation of the uncertainty in all parameters. The outcome distribution is based on 500 

random samples.  

 

Figure 4.12 Frequency distribution of the delivered energy with respect to all 

parameters uncertainty propagation 

It is clear from here that the uncertainty in the outcome is quite pronounced, as 

indeed confirmed by the variation in outcome, which is between 40 and around 80. It 

should be kept in mind though that the vanilla (i.e., non case specific) UQ repository has 

in general wide distributions. This is in particular true for the very wide ELA distribution 
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(the uninformative prior as discussed previously). It is no surprise that the combination of 

all uncertainties leads to unrealistically wide distributions. 

4.5 Experimental case studies 

It is important to establish an ELA benchmark based on in-situ measurement, which 

we will also refer to as “direct ELA calibration” as distinctive from the indirect calibration 

based on a QoI that is readily available, i.e., without the need for an in-situ experiment. 

The tracer gas technique is used for the experiment on the two case studies (as will be 

discussed in CHAPTER 6 and CHAPTER 7). The first case study is a commercial building 

with six thermal zones. The second case study is a two-story detached house and divided 

into eight thermal zones that are served by two central air conditioning systems. The 

resulting direct ELA is conducted with the conditions described in section 3.1.4. The 

following subsections provide details on the ELA experiment process.  

4.5.1 ELA determination based on in-situ measurement for case study 1 

Only one zone (“event area”) in this case study has been subjected to the 

experiment, which leads to the determination of the ELA of the front façade of the building, 

referred to as “front ELA” (see Figure 6.7 zone 5). The experimental results reveal that this 

space has an average ACH value of 0.68 1/h during the conducted experiment. Now we 

can conduct the direct ELA calibration using Eq. (2.3), but it should be remembered that 

this calculation is affected by sources of uncertainty characterized by Cp and wind speed. 

This is due to the fact that we cannot know the precise wind speed and direction, nor the 

correct Cp values for different parts of the designated façade. Therefore, deriving a best 

guess for the experimentally determined ELA requires an uncertainty analysis, which leads 
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to an estimate in the form of a distribution of estimated ELA values. As mentioned in 

section 4.2, we can test the ELA with two different types of Cp models or measurements; 

in this case we use the empirical calculations based on Swami&Chandra Eq. (2.10). The 

direct calibration provides a distribution of where the actual ELA could be, and the 

outcome ranges between 0.22 and 1.00 cm2/m2; Figure 4.13 shows the Monte-carlo 

simulation results of the experimental ELA against the prior knowledge that we discussed 

in section 4.1. 

 

Figure 4.13 The result of experimentally determined ELA (black) against the 

uninformative prior (red) 

The results indicate that what we know about ELA if no information is available, 

is a very wide distribution that would be nonsensical to use in any type of building energy 

analysis. This underscores the need for some level of ELA calibration (direct or indirect) 

before proceeding. It should be noted however that the building energy auditor will have 

expert knowledge and some onsite information that will allow him or her to reduce the 
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prior uncertainty significantly. In such a case, it becomes a matter of judgment whether 

ELA calibration should be performed. 

4.5.2 ELA determination based on in-situ measurement for case study 2 

We carried out a tracer gas test on three zones in the building, which represents the 

front, back, and right facades. Using the data collected in the conducted experiment it is 

found that these spaces have average ACH values of 0.38 1/h, 0.41 1/h, and 0.23 1/h, 

respectively. The right façade is represented by a single room with only one small window, 

which explains the small ACH compared to the others. We generate the ELA value 

following the same fashion that we used in the previous case study. However, for this 

building we have installed both an on-site weather station and a pressure sensor during the 

experiment. This provides higher resolution and more precise data to calibrate the “direct” 

ELA value. Hence, we show the results of ELA for two conditions i.e., “with” knowing the 

wind pressure value given by the pressure sensor, and “without”. Without pressure sensor, 

the outcomes range between 0.12 and 0.75 cm2/m2, 0.14 and 0.66 cm2/m2, and 0.04 and 

0.44 cm2/m2, for the front, back, and right facades, respectively. On the other hand, the 

direct calibrations with the pressure sensor show significantly narrower distributions that 

range between 0.26 and 0.43 cm2/m2, 0.30 and 0.49 cm2/m2, and 0.08 and 0.31 cm2/m2 for 

the front, back, and right facades, respectively. Figure 4.14 shows the results for the “back 

ELA” of both experiments (i.e., with Cp only and with wind pressure sensor) against the 

prior knowledge that we discussed in section 4.1).  
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Figure 4.14 “Directly” calibrated ELA against uninformative prior (red); with the 

use of a pressure sensor (black), and without pressure sensor (blue) 

Similar to the findings in the previous case study, the results indicate that the prior 

knowledge about ELA is very uninformed compared to the ELA found from on-site 

measurements. Summarizing the work presented, the most important recognition is that 

there is still some uncertainty in the determined ELA, which explains the distribution 

derived from the experiment. The underlying uncertainties are in the Cp, wind pressure as 

well as the experiment devices. It is not surprising that ELA estimates become significantly 

more informative when more information regarding wind pressure and local wind speed is 

available.  
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CHAPTER 5. MODEL PREPARATION FOR INDIRECT 

CALIBRATION 

Irrespective of the model being used, there are several essential steps that require 

consideration prior to and during the model build phase. These steps impact on model 

performance and include the choice of model fidelity, modeling approach, and specific 

steps in the calibration. The following sections discuss the preparation we depend upon in 

building our calibration models. 

5.1 Calibration models and fidelity 

5.1.1 Reduced order models 

The Energy Performance Calculator (EPC) tool is used as the prime representative 

of the class of low resolution, first-order simulation tools. It is a simple energy estimation 

tool developed by the building technology group at the school of Architecture at Georgia 

Tech according to ISO-13790 (ISO-13790, 2008) with some modifications.  It represents 

the lowest fidelity level considered in this thesis. The tool has an Excel interface and 

requires basic inputs such as building geometry, construction type, system used, schedule 

and appliance, and equipment specification. The tool results show the thermal energy need 

for heating and cooling, and delivered energy (electricity and gas) of the building 

throughout the year, either at monthly or hourly intervals. The first is done with simple 

heat transfer and zonal heat balance calculations. Delivered energy is calculated based on 

simple conversion factors for the HVAC system to meet the thermal heating and cooling 

demand. Direct electricity use for other energy consumers in the building is added to the 
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delivered energy by standard calculations. ISO-13790 was developed for normative 

benchmarking purposes and used mainly in Europe. Through the removal of some of the 

original normative assumptions, the tool can also be used as a low-order building 

simulation tool. This has good use in the early design stages and for simple evaluation of 

new and existing buildings. For comparative analysis the tool has proven to be accurate 

enough for most applications (Kim & Augenbroe, 2013). It should be mentioned that there 

is an updated standard (ISO-15014), which adds some refinements to the calculation. This 

is immaterial for this study as EPC is primarily used as a (random) exemplar of a family of 

low-order simulation tools. 

Based on ISO-13790 and after removing the normative assumptions, we follow the 

standard process of consulting design specifications, construction documents and operation 

manuals to build the energy model of the given building. The main parameters of the energy 

model can be broadly summarized within the following groups: a) building envelope 

properties (e.g., thermal transmittance, emissivity, solar absorptance, heat capacity), b) 

internal loads (appliances, lighting, occupants), c) properties of the HVAC systems, d) 

properties describing ventilation and infiltration, and e) external environment (weather 

data). This is followed by an onsite audit and interviews with the building manager, which 

leads to adjusted values assigned to the model parameters such that the energy model 

represents the actual building as used and operated.  

The current version of EPC accounts for the airflow rate in the zonal heat balance 

using the air change rate as an input. However, it must be noted that customizations have 

been added to the standard EPC to account for the necessary airflow calculations based on 

ELA values following the fundamentals described in section 2.2. This modification 
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substitutes for the simple infiltration calculations that are traditionally done in ISO-13790 

and adds a term to the zonal heat balance that is characterized by the amount of air with 

the outside temperature and is driven by the wind pressure difference. In this procedure, 

the ELA is the infiltration input instead of the air change rate, and the subsequent airflow 

calculation follows Eq. (2.3) and Eq. (2.5) for wind effect and stack effect, respectively. 

5.1.2 Higher order models 

In energy performance assessment with simulation, the goal is to predict energy use 

in a way that reflects what is expected from a real system “as closely as needed and/or 

possible”. Although this goal is vague, it is to be expected that some use cases of building 

energy simulation require an extended level of detail and model refinements to achieve it. 

In such cases, the resulting model exceeds the simplified low resolution approach and can 

be denoted as a higher fidelity model. For instance, a low-resolution model describes the 

characteristics of major components, whereas the higher fidelity simulation model requires 

a detailed level of model parameters that describe the physical behavior of individual parts. 

Thus, this type of model allows the modeler to specify in detail the parameters that 

influence the building energy behavior based on information about thermal properties of 

the envelope, control set points, occupant loads, primary and secondary HVAC system 

properties, and hourly weather data for the location of the building. Accordingly, we 

assume in this thesis that EnergyPlus represents all aforementioned characteristics and can 

be used as our high fidelity model. In addition, it is essential for this thesis to implement 

the modeling methods that can best estimate the ELA value. The following sections 

elaborate on the modeling approach to achieve this. 
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5.1.2.1 EnergyPlus-AirflowNetwork 

As the focus of this thesis is to accurately predict the ELA values, different methods 

to account for the airflow rate in EnergyPlus need to be inspected. There are different 

simplifications (assuming infiltration rates similar to what we discussed for EPC), but the 

only correct way to account for the airflow rate in the model with the use of ELA at each 

surface is through the Airflow Network feature. The Airflow Network model provides the 

ability to simulate multizone airflows driven by wind and also by forced air distribution 

systems and can specify the properties of a surface “linkage” through which air flows. This 

linkage is always associated with a heat transfer surface (wall, roof, floor, or a ceiling) or 

subsurface (door, glass door, or window) with both faces exposed to air. The associated 

leakage component for this surface can be a crack (or surface ELA) in an exterior or interior 

heat transfer surface or subsurface. For our purpose, the ELA is used to define the air 

leakage at each outer surface of the zonal geometric model, and the relationship between 

pressure and airflow follows the fundamentals discussed in section 2.2. 

5.1.2.2 Wind speed manipulation 

As previously described, wind speed is an essential part in the characterization of 

ELA calculation; therefore, it is important to include it correctly as a transient variable in 

the energy model. Unfortunately though, there is no direct way in EnergyPlus to account 

for the wind speed’s uncertainty. As a result, it requires specific manipulation to tackle this 

issue through EnergyPlus’s built-in objects. Currently, the “Site Weather Station” and 

“Height Variation” objects in EnergyPlus are used to specify the measurement conditions 

for the climatic data in the weather file. These conditions deal with the height above ground 
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of the air temperature sensor, the height above ground of the wind speed sensor, as well as 

coefficients that describe the wind speed profile due to the terrain surrounding the weather 

station (see Eq. (5.1)). Therefore, these weather objects are useful and can be manipulated 

to customize the weather data input during the simulation process. 

𝑉𝑧 = 𝑉𝑚𝑒𝑡 (
𝛿𝑚𝑒𝑡

𝑧𝑚𝑒𝑡
)
𝑎𝑚𝑒𝑡

(
𝑧

𝛿
)
𝑎

 (5.1) 

 Where 

𝑉𝑚𝑒𝑡: the wind velocity that is extracted from the weather file [m/s], 

𝛿: the boundary layer thickness for the given terrain type, 

𝑎: terrain-dependent coefficient, 

𝑧: the height of the standard wind speed measurement at the meteorological station as well 

as the model site [m]. 

Introducing this formulation is essential to understand how local wind speed is 

manipulated in our model (note that Eq. (5.1) is equivalent to Eq. (2.9)). As discussed in 

section 4.2.3, the uncertainty quantification is performed based on a time series process 

with actual wind speed data, and the generated wind speed values from the time series are 

used to produce weather file samples for the simulation process. Accordingly, we can adapt 

Eq. (5.1) to introduce a “surrogate” term that can assign an uncertainty range to the wind 

speeds that are extracted from the weather file. To do this unobtrusively within EnergyPlus, 

we use the boundary layer thickness 𝛿𝑚𝑒𝑡 from Eq. (5.1) as our surrogate term where the 

𝑉𝑚𝑒𝑡 term still recalls the actual wind speed values from the weather file. The remaining 
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terms in the equation need to be normalized by assigning values that equal to one for 𝑧𝑚𝑒𝑡 

and 𝑎𝑚𝑒𝑡, and zero for 𝑎 to disable their dependency. This is expressed in Eq. (5.2). 

𝑉𝑧 = 𝑉𝑚𝑒𝑡 (
𝛿𝑚𝑒𝑡

1
)
1

(
𝑧

𝛿
)
0

 (5.2) 

 

𝑉𝑧 = 𝑉𝑚𝑒𝑡 𝛿𝑚𝑒𝑡 (5.3) 

The consequent result will be 𝑉𝑚𝑒𝑡 multiplied by the surrogate term 𝛿𝑚𝑒𝑡 depending 

on the uncertainty quantification in section 4.3.2. The final expression follows Eq. (5.3). It 

should be noted that this is a method that captures the specified uncertainty in the wind 

speed without resorting to rewriting a specific part of the EnergyPlus code, necessitating 

an intrusive intervention in the simulation software. 

5.2 Modeling approach 

The structure of the calibration exercise follows the diagram in Figure 5.1. The 

procedure of the proposed calibration methodology relies on three distinct parts. The first 

part is the choice of the underlying model to be calibrated. In this thesis, a distinction is 

made between four model resolutions, i.e., EPC-monthly, EPC-hourly, EnergyPlus-

(monthly data), and EnergyPlus-(hourly data). It should be noted that the last two 

(EnergyPlus) are equal in fidelity but different in resolution of outcome and hence the 

formulation of the calibration criterion. The first two are different in resolution (EPC-

monthly is based on 12 averaged monthly calculations, whereas EPC-hourly performs 8760 

hourly calculations), as well as resolution of the outcome calibration.  The determination 
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of these models depends, among others on the availability and granularity of the quantity 

of interest (QoI-i) used for the calibration. One interesting point to make here is that if a 

QoI is only available at monthly granularity, the use of an hourly simulation would require 

the simulated outcomes to be aggregated per month before substitution in the calibration 

criterion. Intuitively, this approach raises doubts on the effectiveness of the use of a high 

granularity (hourly) model. The intent of this chapter is to perform the necessary studies to 

confirm or contradict this intuition. 

Every model in the calibration process is conjoint with a calibration criterion (CC) 

that is determined by the measured QoI’s. In the case studies only two types of QoI are 

considered: QoI-1 is the energy consumption, either available at monthly or hourly 

resolution, and always as whole building aggregated electricity consumption; QoI-2 is the 

indoor temperature, available at hourly level, but not for the full calibration period, and 

only in selected zones. Based on the availability of QoI-1 and sometimes QoI-2, two 

calibration criteria can be constructed: i) CC-1 which uses only QoI-1; ii) CC-2 which uses 

QoI-1 and QoI-2 together. The resolution of CC-1 and CC-2 (monthly or hourly) can be 

chosen independently, depending on the resolution of model outcomes and measurements. 

The incremental nature of the process is driven by the characterization of the 

calibration set (CS-i), which is the set of calibration parameters that enters the calibration 

process steps for a particular model and a specific calibration criterion. The choice of the 

calibration set is informed by a sensitivity analysis (SA) process that is performed at every 

calibration step. In the current calibration process, the number of calibration sets is limited 

to four sets (i.e., CS-1, CS-2, CS-3, and CS-4). This is executed in both case studies. 
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Figure 5.1 The structure and variants of the calibration process 

Every specific calibration step is characterized by the model, a calibration criterion, 

and a calibration set. For example, EPC-hourly, CC-1, and CS-3. More details are provided 

in CHAPTER 6 and CHAPTER 7 which show the application of the structure and variants 

in the two case studies. 

5.3 Methodological treatment on calibration  

5.3.1 The use of sensitivity analysis 

Sensitivity analysis (SA) can help in understanding the relative influence of input 

parameters on the output (Saltelli, Tarantola, Campolongo, & Ratto, 2004). In the field of 

building energy models, combining simulation tools and sensitivity analysis can be useful 
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as it helps to rank the input parameters (or family of parameters) and then to select the most 

appropriate ones to be considered, depending on the objective of the modeling. The Morris 

method (Morris, 1991), (Campolongo, Cariboni, & Saltelli, 2007) is used to perform the 

parameter screening. It is a well-known method that utilizes the distributions of parameter 

uncertainties to determine the relative ranking of all uncertain parameters. It is deployed 

for every step in our calibration exercise, where every step uses a larger calibration set, and 

consequently a smaller uncertain parameter set. The Morris method produces a ranking 

across the uncertain parameter set and an indication of potential interaction between 

individual parameters. Besides, the standard deviation of the elementary effects (EE) is a 

relevant indicator of non-linearity in input parameters of the model or interactions with 

other input variables involved in the model. 

For the normative model calibration we use SimLab 2.2 (a software designed for 

Monte Carlo-based uncertainty and sensitivity analysis) to execute the Morris method 

(SimLab, 2008). For the transient model, the sensitivity analysis is programmed and 

executed in python 3.0 based on this work (Saltelli, et al., 2008). The total electricity 

consumption (monthly or hourly) is used as the QoI in the analysis while the process of SA 

is repeated iteratively prior to every consecutive calibration step (i.e., with changing 

calibration parameter sets) as described in Figure 3.2; more details regarding SA attributes 

and outcomes will be discussed in CHAPTER 6 and CHAPTER 7 for every case study. 

5.3.2 Calibration treatment 

Once the parameters have been chosen and the model has run for a set of samples 

of possible parameter values selected from their respective distributions, the calibration is 
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repeatedly used for every sample to generate distributions for the selected parameters. The 

goal of the calibration process is to generate distributions of best estimates of the true ELA. 

To measure the reliability of an ELA distribution to its true value, CVRMSE is used to 

evaluate the calibrated model by checking whether there is an acceptable agreement 

between the simulated and measured QoI. As discussed earlier, this agreement is only a 

proxy to the reliability of ELA. CC-1 is a straightforward calibration criterion needing no 

special consideration. CC-2 considers QoI-1 and QoI-2 altogether which necessitates a 

specification of how the optimization should satisfy both targets: minimize the difference 

in energy consumption as well as indoor temperature. This multi-objective optimization 

problem is simplified in a single combined discrepancy using a weighting factor as defined 

in the following formula: 

𝐽(𝑊𝐸 ,𝑊𝑇) = 𝑊𝐸 ∑(∆𝐸𝑖)
2 + 𝑊𝑇 ∑(∆𝑇𝑖)

2

𝑁

𝑖=1

𝑁

𝑖=1

 (5.4) 

Where 

𝑊𝐸: weighting factors for energy consumption. 

𝑊𝑇: weighting factors for temperature. 

∆𝐸𝑖: the difference between a reference energy consumption value and the actual value at 

time, i. 

∆𝑇𝑖: the difference between a reference indoor temperature value and the actual value at 

time, i. 
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On the left hand side of Eq. (5.4), 𝑊𝐸 and 𝑊𝑇 are weighting factors for QoI-1 and 

QoI-2, respectively, and the objective function turns into a single objective once these 

weighing factors are set. 

It should be noted that the advocated approach comprises deterministic 

optimizations repeated for all samples of the uncertain parameters. Although there is also 

prior information about the uncertainty in the calibration set, this information is not used 

in this approach. It could be if one were to employ Bayesian calibration (BC). This comes 

at a heavy price (mainly computation expense) while there is a little demonstratable payoff. 

Indeed, the posterior distributions of the calibration parameters could be heavily influenced 

by the assumed priors. If this is undesirable, the only recourse is to assume uninformative 

priors which de facto will deliver the same results as advocated in our method.  So, rather 

than using BC, a less cumbersome method is used, which can be referred to as “poor-man’s 

Bayesian calibration”. It is composed of a series of independent deterministic calibrations 

without use of prior distributions for the calibration parameters. Each single deterministic 

calibration uses sampled values from the parameter probability distributions. The results 

of all deterministic calibrations, together with the occurrence probability of the sampled 

parameter values used in each step can be assembled in a probability distribution of every 

calibration parameter that is considered. 

As described in the methodology chapter of this thesis, the process of calibration is 

repeated multiple times until the “smallest” value of a discrepancy metric, i.e., the 

difference between measured and calculated QoI is achieved. For every energy model (with 

varying resolution and fidelity), a fixed number of consecutive calibration steps is 

performed, where each step is preceded by a sensitivity analysis (SA) step.  Each 
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consecutive calibration step is conducted with a larger set of calibration parameters. 

Parameters that are removed now become part of the normal set of parameters with 

specified uncertainty ranges.  We limit the treatment to four distinct steps where each step 

corresponds to a different size of the Calibration Set (CS-i). It is important to mention that 

every next SA step is conducted after the previous calibration step is finished, and the 

resulting calibration parameters’ values can now be used in the next step of the process. 

This way the new SA reflects the better judgment of the uncertainty of a parameter based 

on the results of the previous calibration step. This will, by consequence, deliver a more 

reliable sensitivity ranking. 

5.4 UQ of model parameters of energy models of existing buildings 

A major source of uncertainty is the fact any model parameter is only “known” to 

some extent; hence its value needs to be approximated by a probability distribution.  This 

would be less relevant if a parameter is deemed a calibration parameter, but in many cases 

the modeler may be reluctant to include every parameter that is not known precisely in the 

calibration set. This section focuses on quantifying parameter uncertainty in a general 

context of building energy modeling, with focus on existing buildings. Uncertainty in 

model parameters depends on the level of model granularity. For instance, transient 

simulation models can describe the physical behavior of an individual component through 

its model parameters at a detailed level, while those in normative models capture the 

characteristics of systems only at an aggregate level. Accordingly, uncertainty associated 

with different levels of model parameters should be separately investigated. One can refer 

to (Heo Y. , 2011) who investigates uncertainty in normative model parameters by 

quantifying uncertainty in several macro-level parameters and their relationships. Also 
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many studies have extensively investigated quantification of uncertainty in detailed 

simulation models (de Wit, 2001); (Macdonald, 2002); (Moon, 2005), with the caveat that 

the first two focus solely on new (as designed) building specifications whereas the latter 

focuses on realized buildings. The distinction between the two is very significant when it 

comes to conducting a UQ of the parameters in either model. The reasons for this are easy 

to understand. In the design case, the primary objective of the UQ is to define “realization 

uncertainty”, i.e., how the design specifications will be realized in the future real building. 

Such UQ thus deals with tolerances in material properties, deviations from the specs, 

natural variability (also referred to as batch uncertainty) across components, workmanship, 

aging, and similar effects. For existing buildings there is fundamentally no realization 

uncertainty as the building is a real “brick and mortar” specimen. In theory, the physical 

parameters of the realized building are fully observable and any uncertainty can thus be 

eliminated. This is only true in theory though, because the amount of work to determine 

material compositions and properties, such U-Values, etc. would be clearly prohibitive. On 

top of this, certain properties, such as ELA, emissivity, convective heat transfer coefficients 

and others, even U-value, are not directly observable as we have argued earlier. For the 

latter, one would indeed always rely on calibration rather than direct observation.  In 

summary, it can be stated that the UQ of model parameters will be different for design and 

existing buildings. For scenario uncertainty there is also a significant difference, as the 

design case solely works from the designed use by the client organization whereas for the 

existing case, actual onsite use can be monitored to some extent, thus typically reducing 

uncertainty in the scenario parameters. For the third category, model form uncertainty 

(MFU), there is in principle no distinction between the designed and existing building case.  



109 

 

The next section details the approach to uncertainty in model parameters at the start of the 

calibration process of existing buildings. 

5.4.1 Baseline parameters of building model 

The uncertainty quantification of model input parameters such as thermophysical 

properties, systems, and internal heat gains is relatively straightforward. Once sufficient 

data are collected, the uncertainty in these input parameters can be characterized by 

probability distributions (e.g., normal distribution) with standard statistical methods 

(Bedford & Cooke, 2001). This applies to model and scenario parameters, although the 

quantification of the latter could become difficult if the parameters are time series or if 

correlations are apparent among parameters. One example is the weather conditions usually 

specified as an external scenario with 8760 hourly values in the case of hourly simulations 

for a year. In some cases when there is no direct observation for the full simulation period, 

the weather variable can be characterized with an autoregressive process to generate 

stochastic values from the measured weather data. This process is discussed for the 

quantification of wind speed in section 4.3. 

The characteristics of construction materials used in the building fabric are captured 

by the physical parameters of the building energy model. Uncertainty in thermal properties 

of materials largely arises from variations in manufacturing and specific realizations related 

to workmanship (Wang, Augenbroe, & Sun, 2014). The latter study shows the need for 

extensive on-site observations to quantify uncertainties in the model parameters of the 

building as realized and as operated. Within the scope of this thesis, this is not attempted. 

Rather, the uncertainty in model parameter uncertainties is assumed to be similar to the 
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realization uncertainty assumed in the design case. Note that this assumes that we basically 

treat the uncertainty in model parameters in the calibration as prior information, without 

adding detailed posterior information from the actual building; although were available, 

we color the prior uncertainty distributions based on some readily on-site observable 

information. With this in mind, we are able to use uncertainties as for example quantified 

in (Macdonald, 2002) and (de Wit, 2001) and other resources to quantify thermal properties 

of materials as well as other uncertainty sources. More recently, most current known ranges 

were brought together in an Uncertainty Quantification repository (Lee, Sun, Augenbroe, 

& Paredis, 2013). For instance, the standard deviation of uncertainties in solar absorptance 

and emissivity is 5% and 2%, respectively. These uncertainties were selected (“colored”) 

based on the material types of our case studies; however, it must be recognized that the 

uncertainty range quantified as standard deviation differs depending on the type of 

materials. The mentioned Uncertainty Quantification Repository (UQ Repository) 

provides energy modelers with quantified uncertainty distributions for a variety of 

parameters and discrepancies in the internal modules of a building energy model. The 

repository was developed to serve the Georgia Tech Uncertainty and Risk Analysis 

Workbench (GURA-W), details of which are described in (Lee B. , 2014) and (Lee, Sun, 

Augenbroe, & Paredis, 2013). Table 5.1 shows the quantified uncertainty sources and their 

references. 

The HVAC system is parametrized by the thermal efficiency of heating/cooling 

generation, more specifically the coefficient of performance (COP). The specification of 

the system is typically documented in the manufacturer’s manual, which presents the 

system efficiency under full-load standard testing conditions. However, the system’s 
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efficiency can fluctuate over time depending on its actual operating conditions. The 

quantification of HVAC system parameter uncertainty is highly dependent on the 

granularity of the HVAC system model in the building energy model. Based on (Chong & 

Lam, Uncertainty Analysis and Parameter Estimation of HVAC Systems In Building 

Energy Models, 2015), the uncertainty quantification of the system’s COP is 5% of its 

capacity, and 25% of the fan efficiency (Wang Q. , 2016). 

Occupants, lights, and plug loads in a building are all forms of internal heat gains. 

Heat gains from occupants depend on the number of people and their metabolic rates in 

spaces. Even if the number of people in the space temporarily fluctuates, schedule of 

building’s occupancy is considered as the fixed profile that captures the average occupancy 

pattern. Occupants’ metabolic rates depend on individuals’ activity level. Referring to 

GURA-W UQ repository, the uncertainty of metabolic rate is quantified between 70 and 

130.  

In an effort to quantify plug loads, a study by (Dunn & Knight, 2005) was 

conducted in form of a survey of 30 buildings in UK. The survey suggests that plug loads 

can range between 124 W and 229 W per person in a building with 158 W per person as 

an average with a standard deviation of 21%. Based on these values, one can calculate the 

range of possible plug loads from the number of occupants for a particular building under 

investigation. 
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Table 5.1 Uncertainty quantification of different uncertainty sources in our models 

Parameter Uncertainty quantification  Reference 

1. HVAC   

     Cooling COP Relative normal (1, 5%) (Chong & Lam, 

Uncertainty Analysis and 

Parameter Estimation of 

HVAC Systems In 

Building Energy Models, 

2015) 

     Heating COP Relative normal (1, 5%) (Chong & Lam, 

Uncertainty Analysis and 

Parameter Estimation of 

HVAC Systems In 

Building Energy Models, 

2015) 

     Fan efficiency Relative normal (1, 25%) (Wang Q. , 2016) 

2. Material   

     Wall conductivity Relative normal (1, 4%) 

(Sun Y. , 2014), (Lee B. , 

2014), (Wang Q. , 2016), 

(Macdonald, 2002) 

     Roof conductivity Relative normal (1, 4%) 

     Wall solar absorptance Relative normal (1, 5%) 

     Roof solar absorptance Relative normal (1, 5%) 

     Wall emissivity Relative normal (1, 2%) 

     Roof emissivity Relative normal (1, 2%) 

3. fenestration  

     Glazing transmittance Relative normal (1, 7%) 

     Glazing conductivity Relative normal (1, 7%) 

4. Internal heat gain   

     People Relative uniform (70, 130) (Sun Y. , 2014) 

     Lighting Relative normal (1, 21%) (Dunn & Knight, 2005) 

     Plug loads Relative normal (0.75, 15%) (Hejab & Parsloe, 1992) 
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Table 5.1 (continued)   

5. weather   

     Cp Relative normal (1, 30%) 

CHAPTER 4 
     Local wind speed Relative normal (1, 42%) 

6. effective leakage area  

     ELA LogNormal (1.28, 0.88) 

As emphasized before, in a calibration process, the scenario parameters need to be 

chosen with care, using all available posterior information. This mainly applies to the usage 

of the building (occupancy, HVAC control setpoints, lighting/appliance) and weather, 

usually requiring the translation of nearest weather data to the local site. This is highly 

dependent on the data collection during the period used for the calibration. Uncontrolled 

calibration experiments have by definition large uncertainty in scenario parameters which 

results in poor calibration results, although this goes unnoticed in many studies when no 

uncertrainty analysis is conducted. 

5.5 Measurement of the discrepancy between ELA distributions 

At a certain point in the analysis, it is essential to measure the goodness of the 

estimated ELA against the direct ELA estimation for each case. This step is important to 

help understand and determine what level of information was able to achieve the best 

estimate when compared to the real ELA experiment. In statistics, there are a variety of 

methods that one can use to measure the distance and divergence between two 

distributions. In this section we propose one effective method that is widely utilized to 

quantify the similarity between two probability distributions, which is called Kullback–

Leibler divergence (Kullback & Leibler, 1951). 
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The Kullback–Leibler divergence (KL) (a.k.a., relative entropy) is a divergence 

measure and widely used for measuring the fit of two distributions. It is important to note 

that although the KL is often used to see how “different” two distributions are, it is not a 

metric. Importantly, it is neither symmetric nor does it obey the triangle inequality. 

However, the KL is always non-negative and equals zero only if the two distributions are 

identical, which by definition means that the larger KL value is the larger distance between 

the two distributions. Hence, for probability distributions p and q over the same domain, 

the KL is defined as (Bishop, 2006): 

𝐾𝐿(𝑝 ∥ 𝑞) = 𝑙𝑜𝑔
𝜎2

𝜎1
+

𝜎1
2 + (𝜇1 − 𝜇2)

2

2𝜎2
2 −

1

2
 (5.5) 

Where 𝐾𝐿 is the Kullback–Leibler divergence of distributions p and q, and 𝐾𝐿(𝑝 ∥ 𝑞) ≥

0. The two case studies described in the following chapters will deploy the methods laid 

out above.  
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CHAPTER 6. CASE STUDY 1: INDIRECT ELA CALIBRATION 

IN A COMMERCIAL BUILDING 

This chapter shows the implementation of the proposed methodology consisting of 

a stepwise calibration process on a real commercial building. The main intention of the 

case study is to validate the proposed approach where validation centers on the obtainable 

accuracy of ELA estimates for the given building. 

6.1 Building description 

The calibration is conducted for a multipurpose building located in Atlanta, GA 

called the gathering spot (TGS). The building is one floor with a unique double-height 

ceiling and floor area of 1950 m2. The building has six zones in total with a mixture of 

HVAC systems as shown in Figure 6.1 and specification in Table 6.1. 
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Figure 6.1 Zones distribution and overview of The Gathering Spot (TGS) 

Table 6.1 Case study characteristics 

Zone Area (m2) HVAC Units 

Zone 1: Co-working 565 
FCU-1, FCU-2, FCU-10, FCU-15, FCU-16, 

FCU-17, FCU-18, FCU-19, FCU-20 

Zone 2: Restroom 218 FCU-12, FCU-13 

Zone 3: Kitchen 200 AHU-3 

Zone 4: Conference & Storage 187 FCU-11, FCU-21 

Zone 5: Event space 337 AHU-1, AHU-2, FCU-3 

Zone 6: Dining area 446 
FCU-4, FCU-5, FCU-6, FCU-7, FCU-8, 

FCU-9, FCU-14 
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The setpoint temperature of the building is 21℃ for heating and 24℃ for cooling. 

The primary energy source for all systems is electricity. In addition, the building is 

equipped with indoor temperature sensors in every zone.  

The energy consumption data that is available in this building is electrical energy 

consumption in kWh. These data are collected for the entire year of 2018. Indoor 

temperature sensors were installed to collect data from the beginning of January 2018 until 

the end of the year at a resolution of 5 minutes. The indoor temperature sensor data have 

been aggregated to average hourly resolution to be used in the calibration criterion as QoI-

2. 

6.2 Calibration of the low-resolution model (EPC-monthly) with monthly 

consumption data 

As the first step, uncertainties in model parameters are quantified by reviewing 

published literature and industry standards. CHAPTER 4 and CHAPTER 5 describe the 

process of quantifying the uncertainties in energy models in detail, and Table 5.1 is used 

to summarize the uncertainties around the initial values assigned to model input 

parameters. The uncertainty information is essential for the consecutive step in the 

calibration process: in particular for parameter screening and iterative calibration under 

uncertainty. The latter refers to calibration when some model parameters are viewed as 

uncertain. The following sections present the technical workflow and implementation of 

the calibration process. 
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6.2.1 Sensitivity analysis 

6.2.1.1 General remarks on the presentation of results 

The results of the SA and elementary effects (EE) analysis are presented as two 

instructive graphs. One is a horizontal bar chart to rank the sampled parameters based on 

their importance, which is characterized by each input variable i absolute average (μi*). 

The other representation of SA outcome is the traditional Morris 2D plot with an (x,y) point 

for each input variable: the x-axis represents the absolute average (μi*), and the y-axis 

represents the standard deviation of the EE (σi). This information can be supplemented by 

the ratio (σi/μi*) as an indicator of linearity (or non-linearity), as defined below. 

First, we can say that the input factor i has a monotonic effect on the response 

function if all estimates of EEi have the same sign, increasing or decreasing, depending on 

the sign of the elementary effects. In this case, μi* is equal to the absolute value of μi. If 

σi/μi* is smaller than 0.10, then the elementary effects are almost constant, and the input 

variable i has an almost linear effect on the model. A true linear response corresponds to 

σi/μi* = 0. 

If the ratio σi/μi* is smaller than 0.5, most elementary effects have the same sign, 

and the model response can be considered as monotonic with respect to the input factor i. 

This fact justifies using the ratio σ/μ* as an indicator for almost linear (if σi/μi* <0.1) or 

monotonic influences (if σi/μi* < 0.5). 
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For highly scattered elementary effects (σi/μi* > 1), a non-monotonic behavior is 

clearly established and, in this case, (σ/μ*) stays in the interval greater than 1. The absolute 

average μ* is more influenced by the standard deviation σ. 

Accordingly, by plotting three straight lines of slopes σ/μ* = 0.1, 0.5 and 1, 

respectively, we can identify the elementary effects in a graphical scatter plot. Those 

factors are 1) almost linear (below the line σi/μi* = 0.1), 2) monotonic (0.5 > σi/μi* > 0.1), 

3) almost monotonic (1 > σi/μi* > 0.5), and 4) the factors that are non-linear or have 

interactions with other factors (σi/μi* > 1). Defining these four zones also provides a means 

of inspecting the results of the sensitivity analysis in case the results contradict what is 

comprehended from the physical point of view. 

6.2.1.2 SA implementation 

We apply the Morris method SA to identify the parameters that have the most 

impact on the variation of monthly energy consumption. In this case, monthly energy 

consumption is chosen as the principle Quantity of Interest (QoI) because it is the QoI that 

is monitored and used as the data in the ensuing calibration step. The dependency of the 

delivered energy on the chosen variables can be shown through the resulting distribution 

of the QoI as a function of the possible variation (variance) of input variables, as described 

above.  

As stated earlier, the first step for the SA process is to estimate uncertainties in 

model parameters specific to the building case. The identification of the base values is 

based on design documents, the generic UQ repository and, where necessary, building 

audits augmented by expert knowledge. A 20-level design of 23 parameters with a sample 
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size of 480 is applied to the building energy models. Table 6.2 provides the initial list of 

the uncertain parameters in the EPC model and their uncertainty ranges.  

Table 6.2 Parameter uncertainty in model testing and acronym definition 

Acronym Definition Uncertainty range Comment 

ELA_Back ELA of the E side (cm2/m2) LogNorm(1.28,0.88)  

ELA_Front ELA of the W side (cm2/m2) LogNorm(1.28,0.88)  

ELA_Right ELA of the N side (cm2/m2) LogNorm(1.28,0.88)  

Cp Wind pressure coefficient  RelativeNorm(1, 0.25) 

The uncertainty is 

relative to every Cp 

value 

Wind Speed Local wind speed (m/s) RelativeNorm(1, 0.42) 

The uncertainty is 

relative to every 

hour wind speed 

value 

Clg COP Cooling COP Norm(3.75, 0.18)  

Htg COP Heating COP Norm(1.75, 0.09)  

fan power HVAC fan power (W/l/s) Norm(1, 0.25)  

Clg SP wd Cooling setpoint in the weekdays (⁰C) Tring(20, 24, 26)  

Htg SP wd Heating setpoint in the weekdays (⁰C) Tring(18, 22, 24)  

Roof U Roof U-value (W/m2∙K) Norm(0.24, 0.02)  

Wall U Wall U-value (W/m2∙K) Norm(0.35, 0.02)  

Window U Window U-value (W/m2∙K) Norm(3, 0.6)  

Solar Trans Window’s solar transmittance Norm(0.75, 0.05)  

Occupancy Occupancy internal gain (m2/person) Uniform(8, 16)  

Lighting Lighting internal gain (W/m2) Norm(12, 3)  

Appliances Plug loads internal gain (W/m2) Norm(16, 2.5)  

Sch Occ wd Occupants schedule in the weekdays  Tring(0.7, 0.9, 1)  

Sch Occ we Occupants schedule in the weekends Tring(0.1, 0.15, 0.25)  

Sch Lgt wd Lighting schedule in the weekdays Tring(0.85, 0.9, 1)  

Sch Lgt we Lighting schedule in the weekends Tring(0.15, 0.2, 0.25)  

Sch App wd Appliances schedule in the weekdays Tring(0.85, 0.9, 1)  

Sch App we Appliances schedule in the weekends Tring(0.1, 0.15, 0.20)  

As it is always included in the calibration sets from CS-1 to CS-4, ELA will not 

enter the SA process (excpt in the first SA process), which helps to reveal other relatively 
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important parameters to be included in the consecutive calibration steps with larger 

calibration sets, as confirmed in the SA results for these steps.  

At the beginning, we initiate the process with parameters screening of all input 

variables in the sample pool, which also includes the ELA parameters. Although ELA 

parameters are always included in the first calibration set CS-1, this step is important to 

understand the characterization and influence of these parameters as a whole on the energy 

model. Therefore, from Figure 6.2 we notice that ELA-Front (No. 4 in the graphs) has high 

level of importance on the SA rank, and also indicates a nonlinear effect or interaction with 

other variables because it is situated in the fourth region in the interaction graph with σ/μ* 

> 1. The remnants SA results as well as the calibration process are presented in the next 

section. 

 
Figure 6.2 SA results of dominant parameters in CC-1, for calibration set: CS-1 
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6.2.2 Calibration process 

After finding the most dominant parameters by conducting the SA, we select the 

top ones that have the most impact on the QoI, which is also expected to have the largest 

influence on the results of the calibration. As we move on with the same procedure, more 

parameters are selected to be added to the prior calibration set leading to a larger CS and a 

likewise smaller uncertain parameter set. Table 6.3 shows the parameter sets that have been 

selected in the four steps in this fashion. 

Table 6.3 Calibration parameters sets of EPC/CC-1 model used in the calibration 

steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Appliances Appliances Appliances 

 Occupancy Occupancy Occupancy 

 Appliances Schedules Appliances schedules Appliances Schedules 

 Cooling setpoints Cooling setpoints Cooling setpoints 

  Cp Cp 

  Fan power Fan Power 

  Heating setpoints Heating setpoints 

  Lighting Lighting 

   Wind speed 

   Occupancy schedules 

   Cooling COP 

   Heating COP 

   Window U-value 

In the first calibration we select ELA as the lone calibration parameter(s). Note that 

in this case the granularity of separately identifiable façade parts leads to three ELA 

parameters. This step is important to construct an idea of what would be the value of ELA 

without being influenced by concurrent calibration of other parameters. It is expected that 
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the resulting ELA will have a (potentially wide) distribution because of the influence of 

the uncertainties in the regular parameter set. To show the influence of the uncertain model 

parameters, the deterministic calibration is run multiple times, where each sample has a 

value for each regular but uncertain parameter, sampled in accordance with their 

probability distribution. Combining the deterministic calibration results of all samples 

delivers a distribution of calibrated ELA values. The calibration process is automated to 

run 50 samples resulting in 50 values for ELA in the EPC-monthly model. The façade 

configuration of the building leads to distinguishing three dominant parts for which a 

different ELA should be assigned or calibrated, for simplicity denoted here by “front”, 

“back”, and “right” ELA. As an example, the resultant of the entire calibration exercise of 

CC-1 for “front ELA” is shown in Figure 6.3. 

Focusing on the outcome of CS-1, one notices a rather wide and uninformative 

distribution, which was expected because the EPC model has low resolution, the measured 

data is low resolution, and no other parameters are being calibrated except the ELA. The 

most probable values of ELA results established from this first step are used as input in the 

SA that drives the selection of parameters in the next calibration step; the SA result of the 

top 15 parameters in the second step is shown in Figure 6.4. It leads to the construction of 

the next calibration set, CS-2 as listed in Table 6.3. This process is continued until the final 

CS-4 is selected containing all or most of the parameters in the pool, which is almost 

deterministically calibrated with only a few remaining uncertainties involved, mostly 

stemming from the partly unknown scenario. 
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Figure 6.3 Calibration results of ELA (CS-1 through CS-4) for CC-1 

Figure 6.3 also shows the ELA results of the next steps of the procedure (with CS-

2, 3, 4). Recall that these results are based on QoI-1 (monthly energy use) and CC-1. Each 

step results in a different ELA distribution. ELA values of CS-2 through CS-4 prove to be 

still as wide as CS-1. The possible reason for this is the additional input variables still have 

nonlinear effect or interaction with the ELA, or the MFU is high, which puts severe limits 

on the ability to arrive at a more precise ELA estimate. This can be extracted from the SA 

results from Figure 6.2 to Figure 6.6 as all dominant parameters seem still to have high 

influence on the model with μi* ranging between 500 kWh/yr to 800 kWh/yr. However, 

CS-4 shows a rather constrained distribution compared to the other distributions. Wind 

speed in this calibration set is the most dominant parameter as shown in Figure 6.6, which 



125 

 

could indicate that the combination of Cp from the previous set and wind speed in this final 

calibration results in a more pronounced ELA estimation. This implies in this particular 

case that if ELA is a calibration parameter then uncertainty of Cp and wind speed is not 

crucial. Finally, the red bar in CS-4 is the deterministic calibration value for ELA when all 

parameters are included in the calibration. The purpose of this step is to construct a static 

point of where ELA can be located if we assume no uncertainty in the model and assume 

(falsely) that all unknown parameters can be calibrated based on the available data. This 

result can however be considered unrealistic as will be further discussed in section 6.5. 

 
Figure 6.4 Ranking of dominant parameters for CC-1, with calibration set CS-2 
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Figure 6.5 Ranking of dominant parameters for CC-1, with calibration set CS-3 

 
Figure 6.6 Ranking of dominant parameters for CC-1, with calibration set CS-4 

6.2.3 Adding QoI-2 in the calibration  

The calibration process is conducted following the same fashion but with more 

granular data to test the potential improvement if additional measurement data is added to 

the pool. In this case we include indoor temperature in zone 5 (see Figure 6.7) for an entire 

year. With the additional outcome the calibration criterion is changed to include QoI-1 and 
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QoI-2. This leads to CC-2 as introduced earlier, with the reflection that the resolution of 

both outcomes can be different, in this case monthly for energy and hourly for 

temperatures.  There are different ways to define the calibration target, i.e., minimizing the 

discrepancy in multiple outcomes, as in this case 1) the discrepancy in monthly energy, 

and 2) the discrepancy in hourly temperatures in a selected zone.  In this case we perform 

the calibration for the aggregated discrepancy by a weighting factor of 𝑊𝐸=1 and 𝑊𝑇=15.6 

for both outcomes from Eq. (5.4) following the explanation in 5.3.2. This way a single 

objective is minimized, and essentially the same calibration process from the previous 

section is repeated but this time with EPC-hourly.  

 

Figure 6.7 3D layout of temperature measurement locations. The tested zone is 

highlighted yellow (zone 5) 

The SA process of the combined criteria results in new sets of calibration 

parameters as presented in Table 6.4.  
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Table 6.4 Calibration parameters sets of EPC/CC-2 used in the calibration steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Cooling setpoints Cooling setpoints Cooling setpoints 

 Appliances Appliances Appliances 

 Heating setpoints Heating setpoints Heating setpoints 

 Appliances schedules Appliances schedules Appliances schedules 

 Lighting Lighting Lighting 

  Fan Power Fan Power 

  Solar transmittance Solar transmittance 

  Window U-value Window U-value 

  Cp Cp 

   Cooling COP 

   Wind Speed 

   Occupancy 

   Occupancy schedules 

   Wall U-value 

Similar to the previous process in CC-1, we begin with a parameter screening to 

understand the characterization and influence of these parameters as a whole on the energy 

model. Therefore, from Figure 6.8 we notice that ELA-Front (No. 4) has high level of 

importance on the SA rank with a nonlinear effect or interaction with other variables (i.e., 

σ/μ* > 1). This finding is very similar to what we established from the first SA result in 

CC-1. Hence, this suggests that with the implementation of the weighting factor, the ELA 

still has the same magnitude of importance on the model. 
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Figure 6.8 Ranking of dominant parameters for CC-2, with calibration set CS-1 

Consequently, Figure 6.9 shows the results of the entire calibration exercise of 

CC-2 for front ELA. 

 
Figure 6.9 Calibration results of ELA (CS-1 through CS-4) for CC-1 
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The calibration exercise results in more constrained distributions compared to that 

we establish with CC-1. Although the ELA distribution with CS-1 delivers a pronounced 

distribution compared to other ELA estimates, this distribution is hardly credible since the 

systemic error in the tool my force the ELA to the lowest value admissible, i.e. the lower 

constraint that we assigned (i.e., 0.05). This is an example of how a small calibration set 

can lead to large bias in the estimate of the parameters, even when an uncertainty range is 

assumed in non calibration parameters. The SA can provide an indication of this. It can be 

seen from Figure 6.8 that the first three important parameters are located in the region 

between 0.5 and 1 (i.e., 1 > σ/μ* > 0.5), which indicates an almost monotonic effect with 

the model, whereas ELA (No. 4) is in the interaction region. Therefore, ELA at this point 

seems to have a great impact on the model, which makes it always pick low values to 

achieve better optimization, apparently making up for large MFU inherent in the model. 

Further, ELA distributions found with CS-2 and CS-3 are still uninformative with 

the caveat that CS-3 is forming a peak around 1.25 cm2/m2. The impact of the additional 

parameters can be explained by the mean value (μ*) of the fan power (No.1), solar 

transmittance (No.2), window U-value (No.3), and Cp (No.4), which are generally larger 

than the other parameters, see  Figure 6.11.  



131 

 

 
Figure 6.10 Ranking of dominant parameters for CC-2, with calibration set CS-2 

 
Figure 6.11 Ranking of dominant parameters for CC-2, with calibration set CS-3 

The ELA distribution found with CS-4 is slightly less uninformative because it has 

less shorter tails compared to the others. We can expect that the addition of wind speed in 

the calibration set affects the model significantly as can be extracted from Figure 6.12. 
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Figure 6.12 Ranking of dominant parameters for CC-2, with calibration set CS-4 

However, all distributions are uninformative about the true ELA value, and if we 

look at all distributions in one picture, we come to the conclusion that the ELA distributions 

are only slightly better than the uninformative prior we established earlier. By comparing 

results for EPC-monthly with EPC-hourly, the results indicate that the higher resolution 

model provides a “better” estimation of ELA although the improvements are marginal and 

both models do not lead to credible ELA estimates. We will discuss the reflection of these 

results with the goodness of the energy model in CHAPTER 8. 

6.3 Calibration of EnergyPlus model with monthly consumption data 

Quantification of uncertainties in model parameters depends on the choice of a 

building energy model as even “similar” parameters can have a different realization 

depending on the granularity and related simplifications of each model. For instance, a 

low-resolution model describes the characteristics of major components whereas the higher 

fidelity simulation model requires a detailed level of model parameters that describe the 
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physical behavior of individual parts. Owing to the different granularity level, parameter 

uncertainty in a higher order dynamic simulation model (in our case EnergyPlus) can differ 

from that in the normative model. Table 5.1 is still an adequate summary of the 

uncertainties around the initial values assigned to the EnergyPlus model parameters, and 

the ranges reflect the correct associations with this model fidelity. 

6.3.1 Sensitivity analysis 

With the Morris method, 54 independent samples are generated to obtain the 

elementary effects of individual parameters. 1100 simulations are run to support the 

appropriate selection of the calibration parameters among the total 58 uncertain parameters 

as listed in Table 6.5.  

Table 6.5 Parameter uncertainty in model testing and acronym definition 

Acronym Definition Uncertainty range Comment 

ELA-Back ELA of the E side (cm2/m2) LogNorm(1.28,0.88)  

ELA-Front ELA of the W side (cm2/m2) LogNorm(1.28,0.88)  

ELA-Right ELA of the N (cm2/m2) LogNorm(1.28,0.88)  

Cp-Front, Back, 

Right (21 points) 
Wind pressure coefficient  RelativeNorm(1, 0.25) 

The uncertainty is 

relative to every Cp 

value 

Wnd-Spd Local wind speed (m/s) RelativeNorm(1, 0.42) 

The uncertainty is 

relative to every hour 

wind speed value 

Clg-COP Cooling COP Norm(3.75, 0.02)  

Htg-Coil-Eff Heating COP Norm(1.75, 0.09)  

Fan-Eff HVAC fan efficiency Tring(0.2, 0.6, 0.9)  

Clg-sp-WD 
Cooling setpoint in the 

weekdays (⁰C) 
Tring(20, 24, 26)  

Htg-sp-WD 
Heating setpoint in the 

weekends (⁰C) 
Tring(18, 22, 24)  

Clg-sp-WE 
Cooling setpoint in the 

weekdays (⁰C) 
Tring(22, 26, 28)  

Htg-sp-WE 
Heating setpoint in the 

weekends (⁰C) 
Tring(16, 18, 22)  
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Table 6.5 (continued) 

Roof-cond Roof U-value (W/m2∙K) Norm(0.24, 0.02)  

Wall-cond Wall U-value (W/m2∙K) Norm(0.35, 0.02)  

Wndw-cond Window U-value (W/m2∙K) Norm(3, 0.6)  

Wndw-Trans Window’s solar transmittance Norm(0.75, 0.05)  

Occ-1, 2, …, 6 
Occupancy internal gain 

(m2/person) 
Uniform(8, 16)  

Lights-1, 2, …, 6 Lighting internal gain (W/m2) Norm(12, 3)  

EE-1, 2, …, 6 
Plug loads internal gain 

(W/m2) 
Norm(16, 2.5)  

Figure 6.13 shows the ranking of uncertain parameters in the EnergyPlus model for 

consecutive choices of the first calibration parameter set (CS-1). They are ordered by their 

relative importance in the selected QoI which is limited to aggregated monthly energy 

consumption, corresponding to the sparse availability of measured data in this case study. 

The ranking is based on the relative change in output means µi*. The right side of Figure 

6.13 shows the interaction wedge among the sampled parameters. 

 
Figure 6.13 SA results of dominant parameters for CC-1, with calibration set CS-1 

When comparing this SA result with its peer obtained for EPC (see Figure 6.2), we 

notice that the SA for both EPC and EnergyPlus shows that ELA has a substantial effect 
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on QoI-1 among all input variables. This interpretation must be handled with care, as the 

variance-based SA shows the effect of uncertainty in a parameter on the total resulting 

uncertainty in a chosen QoI. The reason that ELA is dominant can be largely attributed to 

the fact that the initial assessment of uncertainty in the ELA parameter is large. Refinement 

of the uncertainty ranges in parameters (as more information is used in their estimates) may 

lead to significant changes in the ranking order. This however does not change our 

procedure as the primary objective is the calibration of ELA which is therefore always the 

only calibration parameter in CS-1, regardless of the SA outcome of the initial step. 

6.3.2 Calibration process 

Table 6.6 shows the four parameter sets that are selected to conduct the EnergyPlus 

calibration. 

Table 6.6 Calibration parameter sets of EnergyPlus/CC-1  

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Coil heating efficiency Coil heating efficiency Coil heating efficiency 

 Occupancy Occupancy Occupancy 

 Roof conductivity Roof conductivity Roof conductivity 

 Lights Lights Lights 

  Cp Cp 

  Appliances Appliances 

   Wind speed 

   Window transmittance 

   Cooling COP 

   Cooling setpoint 

   Heating setpoint 



136 

 

Similar to EPC calibrations in the previous sections, CS-1 only contains ELA for 

the three major façade parts as the lone calibration parameters. This is required to construct 

an idea of what would be the value of ELA without being influenced by concurrent 

calibration of other parameters, but being influenced by lack of precise information about 

the values of the non-calibration parameters.  

Following the established procedure, the highest probable ELA value from CS-1 is 

used as new inputs for the SA of the full calibration set leading to a new ranking as shown 

in Figure 6.15. From that ranking we construct a new set of calibration parameters, i.e., 

CS-2 in Table 6.6. This will be continued in a similar fashion for CS-3 and CS-4. All 

calibrations are done with only QoI-1 (monthly energy). Accordingly, the calibration is 

automated to run 50 samples from the calibration parameter set resulting in 50 values for 

ELA. The results of this calibration exercise for “front ELA” are shown in Figure 6.14. 

ELA results of CS-1 and CS-2 are still as wide as those we established with EPC-

monthly ranging between 0.05 to 3.25 cm2/m2. It can be seen from Figure 6.15 that though 

the µ* value of the input variables is varying with the position, but the µ* of the heating 

efficiency (No. 1)  and the occupancy (No. 2) are generally larger than the other parameters. 

Hence, these two parameters are affecting the model output in a significant way with less 

impact on the ELA.  
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Figure 6.14 Calibration results of ELA (CS-1 through CS-4) for CC-1 

On the other hand, CS-3 and CS-4 are more informative than the distributions that 

were developed from the EPC calibrations. In particular, ELA calibrated with EnergyPlus 

has a higher probability of being in the range 0.3-1.0 cm2/m2 in CS-3, and around 0.3 

cm2/m2 in CS-4. This indicates that the higher fidelity of EnergyPlus may lead to a modest 

improvement in the resulting ELA estimate, assuming uncertainties in all non-calibration 

parameters to be identical. This can be extracted from Figure 6.16 and Figure 6.17; among 

all of the input parameters, the Cp parameters and wind speed have the highest impact on 

the energy consumption (QoI-1), whereas the other parameters have minimum impact on 

the model output. Therefore, their influence on energy consumption variations can be 

neglected. Moreover, it can be observed that the corresponding 𝜎 values of Cp and wind 
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speed are large, indicating that these two parameters have the greatest interaction with the 

other parameters when all parameters are affecting the model output. In other words, 

energy consumption shows a nonlinear behavior with respect to these two parameters. 

 
Figure 6.15 SA results of dominant parameters for CC-1, with calibration set CS-2 

 
Figure 6.16 SA results of dominant parameters for CC-1, with calibration set CS-3 
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Figure 6.17 SA results of dominant parameters for CC-1, with calibration set CS-4 

6.3.3 Adding temperature information in the calibration  

The final step is the inclusion of QoI-2 (indoor temperature) of zone 5 into the 

calibration target. As explained before, the calibration is conducted with the target to 

minimize the discrepancy in both measured energy consumption and indoor temperature. 

In this case we perform the calibration for the aggregated discrepancy in a similar fashion 

to EPC-hourly using weighting factors of 𝑊𝐸=1 and 𝑊𝑇=15.6 for both outcomes from Eq. 

(5.4). This way a single objective is minimized, and essentially the same calibration process 

from the previous section can be used. The SA for the combined calibration process results 

in new sets of calibration parameters as presented in Table 6.7.  

Table 6.7 Calibration parameters sets of EnergyPlus/CC-2 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Occupancy Occupancy Occupancy 
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Table 6.7 (continued) 

 Coil heating efficiency Coil heating efficiency Coil heating efficiency 

 Roof conductivity Roof conductivity Roof conductivity 

 Cp Cp Cp 

  Appliances Appliances 

  Lighting Lighting 

  Wall conductivity Wall conductivity 

   Window conductivity 

   Window transmittance 

   Wind speed 

Figure 6.18 shows overlay distributions of the entire calibration exercise of CC-2 

and CC-1 for the front ELA. 

 
Figure 6.18 Calibration results of ELA (CS-1 through CS-4) for CC-1 and CC-2 
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ELA distributions of this calibration exercise are more informative and 

significantly constrained when compared with the results of CC-1 in EnergyPlus (blue 

bars). The results of SA in Figure 6.19 indicate that ELA-front (No. 4) has high µ* but at 

the same time located in the region between 0.5 and 1 (1 > σ/μ* > 0.5), which means that 

ELA at this point has less chance to have interaction with other parameters; therefore, more 

conclusive predictions. We also notice that the additional parameters in CS-2 and CS-3 

have led to similar distributions of ELA, with the most probability being around 0.25 

cm2/m2. This can be explained by the significant impact of the Cp (No. 4, 6, etc.) on the 

ELA estimation as it becomes a calibration parameter starting from CS-2 as shown in 

Figure 6.20. Besides, the corresponding standard deviation (σ) values of Cp are also large, 

indicating that the Cp have great interaction with the other parameters when all parameters 

are affecting the model output. 

 
Figure 6.19 SA results of dominant parameters for CC-2, with calibration set CS-1 
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Figure 6.20 SA results of dominant parameters for CC-2, with calibration set CS-1 

On the other hand, with CS-4 the result for CC-2 is not much different from that 

obtained for CC-1. In particular, ELA calibrated with EnergyPlus for CC-2 has a higher 

probability to be at 0.25 cm2/m2. This indicates that the higher fidelity of EnergyPlus may 

lead to a modest improvement in the resulting ELA estimate, assuming all uncertainties in 

non-calibration parameters to be identical. The SA results of CS-3 and CS-4 are shown in 

Figure 6.21 and Figure 6.22. The prudent conclusion at this point is that given the low 

resolution of the measurements and the lack of precise estimates of the non-calibration 

parameters, the increased fidelity of the simulation model leads to only modest 

improvements in general. But for the full calibration set (CS-4) the results for both CC-1 

and CC-2 are remarkably narrow and close, indicating that some confidence in the resulting 

ELA estimate is warranted.  
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Figure 6.21 SA results of dominant parameters for CC-2, with calibration set CS-3 

 
Figure 6.22 SA results of dominant parameters for CC-2, with calibration set CS-4 

6.4 Evaluation and results analysis 

Comparing the calibrated EPC models with the calibrated EnergyPlus models in 

terms of calibration metrics (i.e., CVRMSE), leads to the following observations. Figure 

6.23 and Figure 6.24 use boxplots to show the variation of the statistical measures over the 
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two models (EPC and EnergyPlus), for the two calibration criteria, i.e., CC-1 (uses QoI-1 

only) and CC-2 (QoI-1+QoI-2) and for the consecutive selection of calibration sets (CS-i).  

 
Figure 6.23 The variation of CVRMSE on energy prediction among the calibration 

sets for EPC using CC-1 (left) and CC-2 (right) 

 
Figure 6.24 The variation of CVRMSE on energy prediction among the calibration 

sets for EnergyPlus using CC-1 (left) and CC-2 (right) 

It becomes evident that the variation in the prediction error of CS-1 is relatively 

larger than all other calibration sets, which is true for both EPC and EnergyPlus. For 

example, the CVRMSE from CS-1 in the EPC-monthly/CC-1 model may be as small as 

0.18 or as large as 0.60 across the four cases. On the other hand, CS-2, CS-3 and CS-4 give 

smaller variations in CVRMS, with medians much smaller than with CS-1. This means that 
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these calibration sets are more stable since the variations among different models are 

smaller. More discussion about this is provided in CHAPTER 8.  

Besides, we cannot rely only on CVRMSE to evaluate the accuracy of the calibrated 

models. In fact, it is important to inspect whether the observed outcomes are in close 

similarity with the predicted outcomes. Hence, Figure 6.25 to Figure 6.28 show pairwise 

comparisons between EPC and EnergyPlus energy data as well as the observed and 

predicted data within the model itself; every figure presents four graphs for every 

calibration set (CS-i).  

 
Figure 6.25 Energy consumption with CS-1: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 
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Figure 6.26 Energy consumption with CS-2: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 
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Figure 6.27 Energy consumption with CS-3: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 
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Figure 6.28 Energy consumption with CS-4: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 

The figures above present a comparison between the energy consumption outcomes 

of the calibration criterion 1 (QoI-1) and the calibration criterion 2 (QoI-1 + QoI-2). 

Although the CVRMSE with CC-2 is seen to be better than with CC-1, the energy 

consumption predicted by the model is in contrast with the better CVRMSE values 

obtained with CC-2. Figure 6.29 presents CVRMSE values of CC-2 for QoI-1 only; these 

results indicate that the error in energy prediction becomes higher when we add QoI-2 to 

the model. This designates that the overall CVRMSE performs better with QoI-2 than with 

QoI-1, and based on the weighting factor that we assigned for the combined calibration, 
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we achieved a smaller CVRMSE value without doing much in improving the energy 

consumption prediction.  

 

Figure 6.29 The variation of CVRMSE on energy prediction on CC-2 among the 

calibration sets for EPC-hourly (left) and EnergyPlus (right) 

Finally, the above figures (6.25 through 6.28) show that EPC models have better 

agreement with the observation than EnergyPlus. This suggests that the low resolution 

information and data used in the EnergyPlus model and its calibration are potentially 

insufficient to support accurate predictions. 

6.5 ELA determination based on in-situ measurement 

Figure 6.30 compares the ELA estimates derived in this chapter, using both EPC 

and EnergyPlus models against the in-situ instrumentally derived ELA. Only the best cases 

for each model and best performing calibration set and calibration criterion are shown in 

the form of distribution fit run on the histograms of the original results. 
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Figure 6.30 Best results of ELA calibrations with EPC and EnergyPlus in 

comparison with experimentally determined ELA (green) 

The shaded green distribution in Figure 6.30 illustrates the direct ELA calibration, 

which is assumed to be our best representation for the true ELA. The direct calibration of 

ELA provides a reasonable estimate, although the distribution is unexpectedly wide (the 

95% confidence interval (CI) is between 0.33 and 0.76). Assuming that for engineering 

purposes an 80% confidence interval is acceptable, it would situate the ELA engineering 

estimate between 0.38 and 0.66, which is much larger than most papers on experimentally 

derived ELA seem to indicate. This points to the fact that the reported confidence in 

experimentally determined ELA based on tracer gas are misplaced based on our findings. 

However, as indicated earlier, the uncertainty in wind pressures during the experiment can 

be significantly reduced if dynamic wind pressures are measured. The effect of this will be 

seen in case study 2 (CHAPTER 7). 
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In terms of ELA estimation through our calibration process, Table 6.8 provides the 

characterization of the ELA outcomes of each calibration set in the calibration process. As 

described in CHAPTER 5, we use Kullback-Leibler divergence (KL) to measure the 

divergence of the estimated ELA distribution from the one we established experimentally. 

Besides, we define the goodness of the estimated ELA by measuring its probability (P) 

within the 80% CI engineering range that we introduced in the previous paragraph; in this 

case the highest probability value is more desirable. As an additional aspect to support our 

decision toward the best ELA evaluation, we must take into consideration the span of the 

estimated ELA distribution; in this case we look at the standard error (SE), where we 

assume that the narrower distribution leads to a more stable model with respect to the ELA 

estimation. Thus, with the combination of these three criteria, we can eventually determine 

which ELA distribution represents the best results among all others. All best estimations 

are highlighted green in Table 6.8. 

Table 6.8 Measurements of the distance and divergence between estimated and 

direct ELA 

Model 

Measurements of Direct ELA at CI= 80% 

CS-1 CS-2 CS-3 CS-4 

P KL SE P KL SE P KL SE P KL SE 

EPC-monthly/CC-1 0.05 1.99 0.08 0.03 1.89 0.07 0.03 1.93 0.07 0.02 2.02 0.07 

EPC-hourly/CC-2 0.62 0.36 0.02 0.02 2.17 0.07 0.02 1.98 0.07 0 4.22 0.03 

EnergyPlus/CC-1 0.02 2.22 0.07 0.02 2.02 0.07 0.50 0.41 0.04 1 0.31 0.01 

EnergyPlus/CC-2 0.57 0.42 0.03 1 0.20 0.01 1 0.20 0.01 1 1.40 0.001 

Accordingly, none of the EPC models resulted in a reasonable estimation that can 

efficiently represent the true ELA. Both EPC-monthly and EPC-hourly (red and orange 

distributions, respectively) are so wide that they hardly improve on the non-informative 

prior. However, in the case of EPC-hourly we notice that even though it is wide, the 
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distribution is much closer to the direct ELA estimation, which of course leads to better 

estimation compared to that with EPC-monthly. This is a 0.63 probability as opposed to 

0.03 in the EPC-monthly. It is important to note that CS-1 is considered the best ELA 

distribution among the others in EPC-hourly, but this does not necessarily mean that CS-1 

as an energy model is the best. In fact, the tendency of the ELA estimations to pick values 

from the lower bound in our assigned constraints makes this estimation more closer to the 

direct ELA. This is an aberration of the particular model rather than a structural benefit. 

Therefore, this as a whole leads to the inevitable conclusion that the ELA calibration in 

these models, i.e., with a data resolution of only monthly aggregated energy consumption 

leads to rather useless results. One should remember that the given building has precisely 

ONE single but unknown ELA value, and it is clear that this combination of data and model 

does not let us make a reasonable estimate of that value. 

On the other hand, both EnergyPlus models perform much better in terms of ELA 

estimation combined with the fact that EnergyPlus with the energy-temperature criterion 

(CC-2) has a narrower distribution and is more in line with the mean value of the green 

distribution. Both distributions are situated within the 80% CI of the direct ELA with 

probabilities equal to 1. We notice that the KL value in EnergyPlus/CC-2 is higher than 

CC-1. This does not mean that CC-1 has led to a better distribution than CC-2, but because 

CC-2 gives a narrower distribution (SE = 0.001), the divergence by definition becomes 

larger than for CC-1 with a slightly wider distribution (SE = 0.01). Hence, the KL value in 

this case becomes larger. More discussion of the relation between ELA estimation and the 

energy results is provided in CHAPTER 8. 
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CHAPTER 7. CASE STUDY 2: INDIRECT ELA CALIBRATION 

IN A RESIDENTIAL BUILDING 

7.1 Building description 

The second case study is a typical residential house located in the Atlanta area (see 

Figure 7.1). The house has two stories with footprint area of 118 m2 (total building area = 

236 m2).  The structure of the building is mainly wood studs and plywood, and the roof is 

gabled. The first and second floors are separately airconditioned with two central 

airconditioning systems. The energy model for this case study is constructed based on 

personal audit and resources of typical house construction information. 

 

Figure 7.1 Zones distribution and overview of the residential case study 
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In this case study we conduct the calibration process in the same fashion as the 

previous case study. However, for this building outcomes are collected at higher 

granularity, i.e., both hourly aggregate electricity consumption and hourly indoor 

temperature in addition to aggregated monthly energy consumption. The building is 

equipped with an on-site weather station to measure dry-bulb temperature, global solar 

radiation, local wind speed, and wind direction. The period for these measurements and 

associated calibration is three months, starting from August to the end of October 2019. 

Accordingly, this building has more calibration cases than the previous case study, 

and the following sections will follow this structure: 

• Section 7.2: calibration criterion 1 (CC-1) with EPC-monthly and QoI-1-M 

(monthly energy consumption).  

• Section 7.3: calibration criterion 1 (CC-1) with EPC-hourly and QoI-1-H (hourly 

energy consumption).  

• Section 7.3.2: combined EPC calibration with the addition of QoI-2 (hourly indoor 

temperature); (QoI-1-H + QoI-2). This is calibration criterion 2 (CC-2) with EPC-

hourly. 

• Section 7.4: calibration criterion 1 (CC-1) with EnergyPlus-(monthly data) and 

QoI-1-M. 

• Section 7.5: calibration criterion 1 (CC-1) with EnergyPlus-(hourly data) and QoI-

1-H. 

• Section 7.5.2: combined EnergyPlus calibration with the addition of QoI-2; (QoI-

1-H + QoI-2). This is calibration criterion 2 (CC-2) with EnergyPlus-(hourly data). 

• Section 7.6: evaluation and results analysis of energy models. 

• Section 7.7: comparisons of the ELA estimates and the experimentally measured 

ELA distributions. 
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7.2 Calibration of the low fidelity and low-resolution model (EPC-monthly) with 

monthly consumption data 

The process starts with estimating the uncertainties in model parameters. Base values 

are assigned to model parameters based on building audits, design documents, operation 

manuals, and ASHRAE standards to make the model as close to existing building conditions 

as possible while respecting the fact that many parameters are only known approximately. 

Based on collective expert knowledge from the literature study, uncertainties are quantified in 

relevant model parameters, starting from Table 5.1. The SA process provides the parameter 

screening that helps to determine the dominant uncertain parameters for every step in our 

calibration process. 

7.2.1 Sensitivity analysis 

The Morris method provides the elementary effects of every individual parameter. 

At this stage of the process, monthly energy consumption is chosen as the primary QoI 

because it is monitored and used as the data in the ensuing calibration step. For every 

energy model (with varying order and fidelity) a fixed number of consecutive calibration 

steps is performed, where each step is preceded by a SA step. The procedure is exactly the 

same as previously explained in case study 1. 

A 20-level design of 23 parameters with a sample size of 480 is applied to the 

building energy models. Table 7.1 provides the list of the uncertain parameters in the EPC 

model and their uncertainty ranges, while Figure 7.2 ranks the role of each parameter in 

the resulting energy consumption distribution based on a change in variable means. This is 
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visualized through the customary relative ranking graph, which shows the relative 

importance of variables on the outcome.  

Table 7.1 Parameter uncertainty in model testing and acronym definition 

Acronym Definition Uncertainty range Comment 

ELA_Back ELA of the NW side (cm2/m2) LogNorm(1.28,0.88)  

ELA_Front ELA of the SE side (cm2/m2) LogNorm(1.28,0.88)  

ELA_Right ELA of the SW side (cm2/m2) LogNorm(1.28,0.88)  

Cp Wind pressure coefficient  RelativeNorm(1, 0.25) 

The uncertainty is 

relative to every Cp 

value 

Wind Speed Local wind speed (m/s) RelativeNorm(1, 0.42) 

The uncertainty is 

relative to every hour 

wind speed value 

Clg COP Cooling COP Norm(3, 0.15)  

Htg COP Heating COP Norm(1.5, 0.08)  

fan power HVAC fan power (W/l/s) Norm(1.5, 0.38)  

Clg SP wd 
Cooling setpoint in the 

weekdays (⁰C) 
Tring(22, 25, 27)  

Htg SP wd 
Heating setpoint in the 

weekdays (⁰C) 
Tring(17, 20, 23)  

Roof U Roof U-value (W/m2∙K) Norm(0.25, 0.02)  

Wall U Wall U-value (W/m2∙K) Norm(0.30, 0.02)  

Window U Window U-value (W/m2∙K) Norm(3, 0.6)  

Solar Trans Window’s solar transmittance Norm(0.75, 0.05)  

Occupancy 
Occupancy internal gain 

(m2/person) 
Uniform(80, 120)  

Lighting Lighting internal gain (W/m2) Norm(8, 1.6)  

Appliances 
Plug loads internal gain 

(W/m2) 
Norm(12, 2.4)  

Sch Occ wd 
Occupants schedule in the 

weekdays  
Tring(0.7, 0.9, 1)  

Sch Occ we 
Occupants schedule in the 

weekends 
Tring(.90, 0.95, 1)  

Sch Lgt wd 
Lighting schedule in the 

weekdays 
Tring(0.70, 0.80, .85)  

Sch Lgt we 
Lighting schedule in the 

weekends 
Tring(0. 70, 0.80, .85)  

Sch App wd 
Appliances schedule in the 

weekdays 
Tring(0.70, 0.80, .85)  

Sch App we 
Appliances schedule in the 

weekends 
Tring(0. 70, 0.80, .85)  
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Figure 7.2 SA results of dominant parameters for CC-1, with calibration set CS-1 

The first step in the calibration process is conducting a parameter screening of all 

input variables in the parameter pool, which includes the ELA parameters as well. As 

described earlier, this initial step is important to understand the characterization and 

influence of these parameters as a whole on the energy model predictions. Therefore, from 

Figure 7.2 we notice that ELA parameters (No. 1, 4, and 6 in the graphs) have a high level 

of importance in the SA rank, and also indicate a nonlinear effect or interaction with other 

variables because of their location in the fourth region in the interaction graph (i.e., σ/μ* > 

1). This can be primarily attributed to the fact that the initial assessment of uncertainty in 

the ELA parameter is large. Refinement of the uncertainty ranges in parameters (as more 

information is used in their uncertainty estimates) may lead to significant changes in the 

ranking order. This however does not change our procedure as the primary objective is the 

calibration of ELA, which is therefore always calibration parameters in CS-1 through CS-

4, regardless of the SA outcome of the initial step. The remainder of SA results as well as 

the calibration process are presented in the next section. 
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7.2.2 Calibration process 

After finding the most dominant parameters by conducting the SA, we select the 

top ones that show substantial impact on the QoI and are therefore expected to have a large 

influence on the results of the calibration. As we move on with the same procedure, 

parameters are selected to be added to the prior calibration set leading to a larger CS and a 

likewise smaller uncertain parameter set. Table 7.2 shows all calibration sets that have been 

selected in the four steps. 

Table 7.2 Calibration parameters sets of EPC-monthly/CC-1 used in the calibration 

steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Lighting Lighting Lighting 

 Lighting schedules Lighting schedules Lighting schedules 

 Appliances Appliances Appliances 

  Solar transmittance Solar transmittance 

  Fan power Fan power 

  Cooling setpoints Cooling setpoints 

  Wall U-value Wall U-value 

   Cooling COP 

   Cp 

   Roof U-Value 

   Wind Speed 

This is very similar to the approach explained in case study 1. The façade 

configuration of the building leads to distinguishing three dominant parts for which a 

different ELA should be assigned, for simplicity denoted here by front, back, and right 

ELA (see Figure 7.1). The resultant of CS-1 through CS-4 for “back ELA” is shown in 
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Figure 7.3. We chose to discuss this particular façade because it gives the most illustrative 

results about how the process moves from one step to the next. 

 

Figure 7.3 Calibration results of ELA (CS-1 through CS-4) for EPC-monthly/CC-1 

Similar to the conclusion from the first case study, it turns out that the ELA 

distribution in CS-1 is very wide. This is not unexpected as the EPC model is low 

resolution, the measured data is low resolution, and no other parameters are being 

calibrated except the ELA. The next step is to run another SA, which results in a new 

ranking as shown in Figure 7.4. Then, the same calibration is conducted with the single 

discrepancy (CC-1) in the objective. From Figure 7.3 we notice that for CS-2 the ELA 

distribution is still as wide as with CS-1, which means that the additional parameters in this 

calibration set have minimal impact on the prediction of ELA. This can be seen from the 
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SA results in Figure 7.4 where the highest μ* values are found for the lighting, lighting 

schedules, and appliances (No. 1, 2, and 3, respectively). Another group of parameters with 

slightly lower influence includes solar transmittance, fan power, and cooling setpoints (No. 

4, 5, and 6, respectively), while the remaining parameters are identified as negligible 

parameters. For this step all parameters exhibit a σ/μ* ratio >1, except for the energy 

consumption by lighting and appliances, which suggests that most parameters exhibit either 

non-linear behavior or interaction effects with other parameters or both. 

 
Figure 7.4 SA results of dominant parameters for CC-1,  with calibration set CS-2 

On the other hand, one can observe that ELA in CS-3 forms a clear peak around 

0.9 cm2/m2 even though it is still a rather wide distribution ranging between 0.1 cm2/m2 to 

around 2 cm2/m2. This suggests that the new parameters have considerable interaction with 

ELA. Considering their impact on the model outcome, the most important factors on this 

step are fan power, cooling setpoints, and solar transmittance. These are followed by wall 

U-value, cooling COP, and by wind speed. It also can be seen from Figure 7.5 that the first 
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three important parameters have a ratio of σi/μi* > 1, which indicates a non-linear or 

interaction effect with other parameters within the model. 

 

Figure 7.5 SA results of dominant parameters for CC-1, with calibration set CS-3 

Finally, CS-4 distribution is more determined with a higher probability of being at 

1.35 cm2/m2. This indicates that the more information we add to the low resolution model 

may lead to a modest improvement in the resulting ELA, assuming all uncertainties in non-

calibration parameters to be identical. This can be explained in Figure 7.6; among all of 

the input parameters, Cp (No. 1) has the highest impact on the energy consumption (QoI-

1), whereas the other parameters have minimum impact on the model output. Therefore, 

their influence on energy consumption variations can be neglected. Moreover, it can be 

observed that the corresponding 𝜎 value of Cp is almost monotonic, indicating that Cp 

mostly does not has interaction with the other parameters, which helps in constructing a 

more constrained ELA prediction. It should be noted that our confidence in the end result 

is low because we expect that the large MFU in the EPC-monthly is subsumed in the 
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resulting calibration parameter values. This is further elaborated in the overall assessment 

in the next chapter. 

    

 
Figure 7.6 SA results of dominant parameters for CC-1, with calibration set CS-4 

7.3 Calibration of the low-fidelity model (EPC-hourly) with hourly consumption 

data 

It is acknowledged that with higher resolution data, the calibration is expected to 

perform better in terms of parameters estimation. Hence, the outcomes of this case study 

are extended to hourly electricity (QoI-1-H) for the period between August 1st to end-

October. In this EPC-hourly model we use the same parameter inputs that are used in the 

EPC-monthly model, and subject to the calibration procedure in the same fashion as before, 

keeping in mind that this case uses calibration criterion 1 (CC-1) with hourly energy 

consumption (QoI-1-H) instead of monthly aggregates. Next, we present SA for parameter 

screening to determine dominant uncertain parameters for every step in our calibration 

process. 
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7.3.1 Calibration process 

Table 7.3 shows all parameter sets that have been selected for the EPC-hourly model. 

Table 7.3 Calibration parameters sets of EPC-hourly/CC-1 used in the calibration 

steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Lighting Lighting Lighting 

 Cooling setpoints Cooling setpoints Cooling setpoints 

 Appliances Appliances Appliances 

 Lighting schedules Lighting schedules Lighting schedules 

  Solar transmittance Solar transmittance 

  Appliances schedules Appliances schedules 

  Fan Power Fan Power 

  Cp Cp 

   Cooling COP 

   Wall U-value 

   Wind speed 

   Roof U-Value 

After running the calibration with the same procedure we followed earlier, the 

results of all calibrations for “back ELA” are shown in Figure 7.7. 
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Figure 7.7 Calibration results of ELA (CS-1 through CS-4) for EPC-hourly/CC-1 

This shows that although the ELA distributions in CS-1 and CS-2 are rather wide, 

it reveals a significant improvement compared to the first calibration set of the EPC-

monthly calibration. This can be explained from the SA results in Figure 7.8 where we 

notice that besides its considerable importance, back ELA (No. 4) indicates an almost linear 

effect with other parameters on the energy consumption with a ratio of 0.5 < σ/µ* < 1. A 

similar observation is found in the second SA results as shown in Figure 7.9, where 

lighting, cooling setpoints, and appliances are the most dominant variables, but each 

parameter has a different σ/µ* ratio from low to high effect with the other parameters. This 

supports the conclusion that higher granularity in the observed outcomes leads to better 

parameter prediction, but this cannot be generalized without more cases.  
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Figure 7.8 SA results of dominant parameters for CC-1, with calibration set CS-1 

 
Figure 7.9 SA results of dominant parameters for CC-1, with calibration set CS-2 

The combination of the parameters in CS-3 seems to have a stronger influence on 

the variability of ELA as shown in the interaction part of the SA in Figure 7.10. This is 

shown in the plot of (µi*, σi) in large values of mean and standard deviation of solar 

transmittance, appliances schedules, and fan power. Cp on the other hand shows to be a 
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very important parameter with high µ* value, but its overall σ/µ* ratio is between 0.1 and 

0.5, which indicates an almost linear effect with the model outcome.  

 
Figure 7.10 SA results of dominant parameters for CC-1, with calibration set CS-3 

Therefore, as CS-3 achieves a highly constrained ELA distribution, CS-4 as a 

consequence becomes as determined and very similar distribution as with CS-3. This also 

can be observed by the low µi* values of the parameters, which indicates that the remaining 

parameters may have minimal improvement than CS-3. The SA outcome of CS-4 is shown 

in Figure 7.11. 
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Figure 7.11 SA results of dominant parameters for CC-1, with calibration set CS-4 

7.3.2 Adding temperature measurements in the calibration  

Similar to the first case study, the calibration process is repeated with higher 

resolution outcomes to test the potential improvement if additional outcomes are added to 

the pool. The indoor temperature in zone 4 is measured for three months (August till the 

end of October). As stated earlier, the indoor temperature is an additional QoI that can be 

predicted with the energy model simulation, and thus used in the calibration target. In this 

case we perform the calibration for the aggregated discrepancy in a similar fashion to EPC-

hourly using weighting factors of 𝑊𝐸=1 and 𝑊𝑇=2.8 for both outcomes from Eq. (5.4). 

This way a single objective is constructed to be minimized, and essentially the same 

calibration process from the previous section can be used. The SA for the combined 

calibration process results in new sets of calibration parameters as presented in Table 7.4. 
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Table 7.4 Calibration parameters sets of EPC-hourly/CC-2 used in the calibration 

steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Lighting Lighting Lighting 

 Cooling setpoints Cooling setpoints Cooling setpoints 

 Lighting schedule Lighting schedule Lighting schedule 

 Appliances Appliances Appliances 

  Fan power Fan power 

  Cp Cp 

  Wall U-value Wall U-value 

   Solar transmittance 

   Wind speed 

   Cooling COP 

   Heating setpoint 

   Window U-value 

The SA process in this section is similar to the previous process in CC-1. At the 

beginning we conduct a parameter screening of all uncertain variables to understand the 

influence of these parameters as a whole on the energy model. Therefore, from Figure 7.12 

we notice that ELA-Back (No. 3) has a high level of importance on the SA rank, and also 

indicates a nonlinear effect or interaction with other variables because according to its 

location in the interaction graph with a ratio of σ/μ* > 1. Hence, this suggests the 

implementation of the current weighting factors has little influence on the dominance of 

ELA on the combined calibration criterion. It can be expected that overweighting the 

temperature discrepancy (by choosing a larger 𝑊𝑇) may change that. This is not inspected 

further here. 



169 

 

 
Figure 7.12 SA results of dominant parameters for CC-2, with calibration set CS-1 

The sample pool in Table 7.1 is used in the SA process, and the ELA result 

established from the first step is used as input in the SA that drives the selection of 

parameters in the next calibration step; the SA result of CS-2 is shown in Figure 7.13.  

 
Figure 7.13 SA results of dominant parameters for CC-2, with calibration set CS-2 

The calibration process is run with the same calibration sets that are identified in 

Table 7.4, with the target to minimize the weighted discrepancy in both measured energy 
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consumption and indoor temperature. Figure 7.14 shows overlaid distributions that 

compare all back-ELA results between EPC-hourly CC-1 and CC-2. It should be recalled 

at this point that CC-2 is the combined calibration with QoI-1-H (hourly energy 

consumption) and QoI-2 (hourly indoor temperature). 

        

  

Figure 7.14 Calibration results of ELA (CS-1 through CS-4) for CC-1 and CC-2 

The ELA results of CC-2 are not very much different from the results established 

for CC-1, especially with CS-1 and CS-2. However, it can be noticed that there is a 

persistent tendency in every calibration result that forces ELA values to the lower edge of 

our calibration constraint which is set at 0.05 cm2/m2. Therefore, the prudent conclusion at 

this point is that given the lack of precise estimates of the non-calibration parameters, the 

increased fidelity of the simulation model leads to only modest improvements.  
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Figure 7.15 SA results of dominant parameters for CC-2, with calibration set CS-3 

 
Figure 7.16 SA results of dominant parameters for CC-2, with calibration set CS-4 

7.4 Calibration of EnergyPlus model with monthly consumption data 

The selected higher fidelity model in this study is EnergyPlus, with base values and 

uncertainties assigned to model parameters through the same method we established for 

EPC, but this time with more details as required by the tool. Table 5.1 summarizes the 

uncertainties around the initial values assigned to model parameters. Cp is based on the 
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Swami&Chandra model with the uncertainty quantified in CHAPTER 4. SA is again 

applied for parameter screening to determine the dominant uncertain parameters for every 

step in the calibration process. 

7.4.1 Sensitivity analysis 

With the Morris method, A 20-level design of 48 independent samples are 

generated to obtain the elementary effects of individual parameters. 980 simulations are 

run to support the appropriate selection of the calibration parameters among the total 48 

uncertain parameters as listed in Table 7.5.  

Table 7.5 Parameter uncertainty in model testing and acronym definition 

Acronym Definition Uncertainty range Comment 

ELA_Back ELA of the NW side (cm2/m2) LogNorm(1.28,0.88)  

ELA_Front ELA of the SE side (cm2/m2) LogNorm(1.28,0.88)  

ELA_Right ELA of the SW side (cm2/m2) LogNorm(1.28,0.88)  

Cp_ (21 points) Wind pressure coefficient  RelativeNorm(1, 0.25) 

The uncertainty 

is relative to 

every Cp value 

Wnd_Spd Local wind speed (m/s) RelativeNorm(1, 0.42) 

The uncertainty 

is relative to 

every hour wind 

speed value 

Clg_COP Cooling COP Norm(3, 0.15)  

Htg_Coil_Eff Heating COP Norm(1. 5, 0.08)  

Fan_Eff HVAC fan efficiency Tring(0.2, 0.6, 0.9)  

Clg_sp_WD Cooling setpoint in the weekdays (⁰C) Tring(22, 25, 27)  

Htg_sp_WD Heating setpoint in the weekends (⁰C) Tring(17, 20, 23)  

Clg_sp_WE Cooling setpoint in the weekdays (⁰C) Tring(22, 25, 27)  

Htg_sp_WE Heating setpoint in the weekends (⁰C) Tring(17, 20, 23)  

Roof_cond Conductivity of the roof (W/m∙K) Norm(0.13, 0.01)  

Wall_cond Conductivity of the wall (W/m∙K) Norm(0.18, 0.01)  

Wndw_cond Conductivity of the window (W/m∙K) Norm(0.95, 0.2)  

Wndw_Trans Window’s solar transmittance Norm(0.75, 0.05)  
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Table 7.5 (continued) 

Occ_1, 2, 3, 4 Occupancy internal gain (m2/person) Uniform(80, 120)  

Lights_1, 2, 3, 4 Lighting internal gain (W/m2) Norm(8, 1.6)  

EE_1, 2, 3, 4 Plug loads internal gain (W/m2) Norm(12, 2.4)  

The results from 48 independent evaluations of Morris method, each with 20 

trajectories, are summarized in Figure 7.17. The figure shows the ranking of uncertain 

parameters in the EnergyPlus model for the first calibration parameter set (CS-1). The 

parameters are ordered by their relative importance in the selected QoI-1 (aggregated 

monthly energy consumption), corresponding to the availability of measured data. Each 

point represents the mean of the 20 absolute mean values µ* (x-axis) and standard 

deviations σ (y-axis) of the elementary effects for each parameter. 

 
Figure 7.17 SA results of dominant parameters for CC-1, with calibration set CS-1 

We notice from Figure 7.17 that ELA has a significant impact on the energy model. 

However, as we focus on the Back-ELA (No. 3), we notice its location is on the border 

between the third and the fourth regions in the Morris wedge plot. This indicates that back-

ELA can be nonlinear or has an almost monotonic effect on the model. If the latter was 
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true, then we should expect a more rational estimation of ELA values. This is discussed in 

the next section. 

7.4.2 Calibration process 

Table 7.6 shows the four calibration sets that have been selected to conduct the 

EnergyPlus calibration based on the parameters screening. 

Table 7.6 Calibration parameters sets of EnergyPlus-(monthly data)/CC-1 used in 

the calibration steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Fan efficiency Fan efficiency Fan efficiency 

 Cooling setpoints Cooling setpoints Cooling setpoints 

 Cp Cp Cp 

  Lights Lights 

  Cooling COP Cooling COP 

  Window transmittance Window transmittance 

  Wind speed Wind speed 

   Wall conductivity 

   Window conductivity 

In the first calibration task we include all ELAs as lone parameters to construct an 

idea of what would be the estimation of ELA without being influenced by concurrent 

calibration of other parameters. The results of 50 samples for back ELA are shown in 

Figure 7.18.  
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Figure 7.18 Calibration results of ELA (CS-1 through CS-4) for EnergyPlus-

(monthly data)/CC-1 

These results are interestingly different from those we established with the EPC 

models. Use of CS-1 leads to a wide distribution of ELA and is not very informative. This 

is because no other parameters are being calibrated except the ELA. Also, from the SA of 

CS-1 (Figure 7.17) we see that although the ELA parameter has a dominant impact in terms 

of output means µ*, its variance is also as high, which indicates a nonadditive relationship 

with other parameters. 

However, the ELA distribution has a narrow shape with CS-2, i.e., within a range 

between 0.05 and 0.3 cm2/m2. This calibration set contains parameters that are related to 

the HVAC system, plug loads, as well as Cp (see Figure 7.19). Among these parameters, 
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fan efficiency and Cp have the highest variance (i.e., non-linearity with other parameters) 

compared to the other selected parameters, which suggests that the combination of 

parameters in CS-2 has a pronounced impact on the model output, which is one of the 

conditions for informative outcomes of calibration. 

 
Figure 7.19 SA results of dominant parameters for CC-1, with calibration set CS-2 

Subsequently, ELA in the calibration with CS-3 results in a very determined 

distribution at 0.3 cm2/m2 because, at this point, the model has all the influential parameters 

that affect the value of the ELA, as shown in Figure 7.20. Although all parameters in CS-

3 have a nonlinear or interaction effect (or both) with other input variables, the means of 

their elementary effects are far less to have a distinct impact on the ELA estimation. Thus, 

the calibration of CS-3 produces one ELA value, which is also the same value that CS-4 

produces. 
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Figure 7.20 SA results of dominant parameters for CC-1, with calibration set CS-3 

7.5 Calibration of EnergyPlus models with hourly outcomes 

The EnergyPlus-(hourly outcomes) model is identical to the one we built for the 

calibration with monthly outcomes, so the same procedure as explained earlier is followed. 

Table 7.5 summarizes the uncertainties around the initial values assigned to the model 

parameters.  

7.5.1 Calibration process 

Table 7.7 shows the four parameters sets used in the EnergyPlus-(hourly data) model. 

Table 7.7 Calibration parameters sets of EnergyPlus-(hourly data)/CC-1 used in the 

calibration steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Cooling setpoints Cooling setpoints Cooling setpoints 

 Wind speed Wind speed Wind speed 
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Table 7.7 (continued) 

 Cp Cp Cp 

 Cooling COP Cooling COP Cooling COP 

  Window conductivity Window conductivity 

  Roof conductivity Roof conductivity 

  Burner efficiency Burner efficiency 

  Electric equipment Electric equipment 

   Fan efficiency 

   Occupancy 

   Wall conductivity 

Figure 7.21 shows the ranking of the top 15 uncertain parameters in the EnergyPlus-

(hourly data) model for the first calibration parameter set (CS-1). The parameters are 

ordered by their relative importance in the selected QoI, which is hourly energy 

consumption, corresponding to the resolution of measured energy consumption. The result 

shows that µ* and σ values of the sampled points are different, and there are certain 

fluctuations in their trend of variations. However, by focusing on the Morris wedge, we 

realize that the conjugate interaction of back-ELA (No. 3) is decreasing when it affects the 

model energy output as opposed to the SA results that we established for the monthly 

outcome calibration previously. This finding will affect our ELA estimation as described 

below. 
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Figure 7.21 SA results of dominant parameters for CC-1, with calibration set CS-1 

Consequently, we run the calibration steps with the same procedure we followed 

earlier, and the results of all calibrated cases for “back-ELA” are shown in Figure 7.22. 
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Figure 7.22 Calibration results of ELA (CS-1 through CS-4) for EnergyPlus-(hourly 

data)/CC-1 

The first calibration set (CS-1) results in a narrower ELA distribution compared to 

the same calibration set that we established previously with EnergyPlus-(monthly 

outcomes). This is obviously due to the magnitude of the monotonic effect of ELA in the 

SA exercise (see Figure 7.21). It should be remembered that we perform the hourly 

calibration for the period from August to the end of October. Thus, both the data resolution 

and the period of data collection have a substantial role in characterizing the model’s 

parameters, and possibly reduce its uncertainty. We also notice a clear peak in the ELA of 

CS-1 around 0.45 cm2/m2, which suggests a possible determination of ELA value in the 

later calibrations, which is found to be true as the CS-2 result reveals.  
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ELA in the calibration with CS-2 results in a more distinct distribution at 0.45 

cm2/m2 because, at this point, the model has all the influential parameters that affect the 

value of the ELA estimation. It can be seen from Figure 7.23 that the SA outcome of CS-

2 highlights cooling setpoints (No. 1 and 3), wind speed (No.2), and Cp (No. 4) to appear 

with a significant influence on the model outcome. The remaining parameters can be 

classified as less important, although not negligible for a number of them. Only cooling 

setpoints have a monotonic effect with σ/µ* between 0.1 and 0.5. All other parameters 

show a non-linear influence and/or interactions with other parameters (σ/µ* > 1 for many 

of them). Therefore, with all parameters that help to form a determined ELA estimation in 

the model, we expect that every consecutive calibration will produce the same ELA 

distribution as no other influential parameters are involved, which indeed proves to be the 

case as evidenced in Figure 7.22. The SA results of the various calibration sets are 

presented below. 

 
Figure 7.23 SA results of dominant parameters for CC-1, with calibration set CS-2 
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Figure 7.24 SA results of dominant parameters for CC-1, with calibration set CS-3 

 
Figure 7.25 SA results of dominant parameters for CC-1, with calibration set CS-4 

7.5.2 Adding temperature information in the calibration  

Similar to the previous case, the calibration process is now repeated with higher 

resolution outcomes to test the potential improvement if additional outcomes are added to 

the calibration criterion. As in the EPC-hourly/CC-2, we use the indoor temperature in zone 

4, which is measured for two months. In this case we perform the calibration for the 
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aggregated discrepancy in a similar fashion to EnergyPlus-(hourly data) using the same 

weighting factors of 𝑊𝐸=1 and 𝑊𝑇=2.8 for both outcomes respectively, from Eq. (5.4). 

The SA for the combined calibration process results in new sets of calibration parameters 

as presented in Table 7.8. 

Table 7.8 Calibration parameters sets of EnergyPlus-(hourly data)/CC-2 

used in the calibration steps 

CS-1 CS-2 CS-3 CS-4 

Front ELA Front ELA Front ELA Front ELA 

Back ELA Back ELA Back ELA Back ELA 

Right ELA Right ELA Right ELA Right ELA 

 Cooling setpoints Cooling setpoints Cooling setpoints 

 Cp Cp Cp 

 Fan efficiency Fan efficiency Fan efficiency 

  Roof conductivity Roof conductivity 

  Lighting Lighting 

  Occupancy Occupancy 

  Wind speed Wind speed 

   Window transmittance 

   Appliances 

   Wall conductivity 

   Window conductivity 

The SA process in this section is similar to what was previously done in CC-1. 

Therefore, from Figure 7.26 we notice that back-ELA (No. 2) has high level of importance 

on the SA rank, and also indicates a nonlinear effect or interaction with other variables 

because it is located in the fourth region in the interaction graph (i.e., σ/μ* > 1).  
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Figure 7.26 SA results of dominant parameters for CC-2, with calibration set CS-1 

The calibration process is conducted with the same sets that are identified in Table 

7.8, with the target to minimize the weighted discrepancy in both measured energy 

consumption and indoor temperature. Figure 7.27 shows overlaid distributions that 

compare all back-ELA results between EnergyPlus-(hourly data) CC-1 and CC-2. 
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Figure 7.27 Calibration results of ELA (CS-1 through CS-4) for EnergyPlus-(hourly 

data)/CC-2 

The ELA outcoms in this calibration exercise results in similar distributions 

obtained for CC-1. Even though with CS-2, ELA shows a little wider distribution, the peak 

value still best matches that for CC-1. We can say that the model at this point has all the 

influential parameters that affect the value of the ELA; in particular cooling setpoints and 

Cp, where the latter also has interaction with other parameters in the model as shown in 

Figure 7.28. Consequently, every consecutive calibration produces the same ELA 

distribution as no other influential parameters are involved. This finding suggests that 

feeding this model with additional information (i.e., indoor temperature) has minimal 

impact on the ELA estimation. The remaining SA outcomes are presented below. 
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Figure 7.28 SA results of dominant parameters for CC-2, with calibration set CS-2 

 
Figure 7.29 SA results of dominant parameters for CC-2, with calibration set CS-3 
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Figure 7.30 SA results of dominant parameters for CC-2, with calibration set CS-4 

7.6 Evaluation and results analysis of energy models 

This section presents a comparison between the CVRMSE results of EPC and 

EnergyPlus models with the different calibration criteria. The details are provided in the 

following subsections. 

7.6.1 Evaluation and results analysis of monthly calibrations 

We compare the calibrated EPC-monthly cases with the calibrated EnergyPlus-

(monthly data) cases in terms of the performance metric CVRMSE. Figure 7.31 uses 

boxplots to show the variation of the statistical measures with the four calibration sets (CS-

i) for one calibration criterion, i.e., CC-1 (uses QoI-1-M only). It is obvious that the 

variation in the prediction error with CS-1 is relatively larger than other cases for both EPC 

and EnergyPlus, with a median CVRMSE of 0.49 and 0.35 for EPC and EnergyPlus, 

respectively. The whole picture of the results shows a gradual decrease in CVRMSE 

values, with CS-4 resulting in the smallest median and variation in CVRMSE over the other 
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cases. This means not only that CS-4 overall performs better than the other calibration sets, 

but also that it is more stable since the variations among different cases are smaller. CS-2 

in both models have median values that are greater than 15%, which means that both CS-

1 and CS-2 in EPC and EnergyPlus models do not meet the ASHRAE guideline. The 

overall performance of CS-3 in both models is similar to CS-4 (below 15%), which proves 

to be within the acceptable range.  

 

Figure 7.31 The variation of CVRMSE on monthly energy prediction among the 

calibration sets for EPC (left) and EnergyPlus (right) 

Yet, we cannot rely only on CVRMSE to evaluate the accuracy of the calibrated 

models. Hence, it is important to inspect if the observed data is in close similarity with the 

predicted outcome. Figure 7.32 to Figure 7.35 show a pairwise comparison between EPC 

and EnergyPlus energy predictions with the calibrated models and observed outcomes. 
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Figure 7.32 Energy consumption with CS-1: EPC (left), EnergyPlus (right). Red 

(observed data), box (prediction) 

 
Figure 7.33 Energy consumption with CS-2: EPC (left), EnergyPlus (right). Red 

(observed data), box (prediction) 
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Figure 7.34 Energy consumption with CS-3: EPC (left), EnergyPlus (right). Red 

(observed data), box (prediction) 

 
Figure 7.35 Energy consumption with CS-4: EPC (left), EnergyPlus (right). Red 

(observed data), box (prediction) 

In general, models that are calibrated with fewer parameters seem to have 

considerable deviation compared to those with more calibration parameters. From these 

results, it can be concluded that the calibrated EPC models are as good as the calibrated 

EnergyPlus model in terms of model optimization, but it must be recognized that a model 

that passes can still have useless approximations of calibrated parameters, which is 

discussed in CHAPTER 8 with reflections on the realized ELA estimate. Moreover, the 

results indicate that EnergyPlus simulation cannot do better than a low resolution model if 

one has only low-resolution observations.  
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7.6.2 Evaluation and results analysis of hourly calibrations 

With the more granular data and increased fidelity of the models, we provide a 

comparison between the CVRMSE results of EPC-hourly and EnergyPlus-(hourly data) 

with their different calibration criteria. Figure 7.36 and Figure 7.37 show the variation of 

the statistical measures over the calibrated models for two calibration criteria, i.e., CC-1 

(uses QoI-1-H only) and CC-2 (QoI-1-H + QoI-2), along with the consecutive selection of 

calibration sets (CS-i). The variation in the prediction error with CS-1 and CS-2 is 

relatively larger than the other calibration cases which is seen clearly for both EPC and 

EnergyPlus. For example, the median CVRMSE with CS-1/CC-1 is 0.47 and 0.33 for EPC 

and EnergyPlus, respectively; and with CS-1/CC-2 it is 0.44 for EPC and 0.25 for 

EnergyPlus. In contrast, with CS-2, CS-3, and CS-4 we see smaller variations in CVRMSE 

for both models, with medians much smaller than with CS-1. This means that these 

calibration sets are more stable since the variations among different models are smaller. 

Another conclusion to draw from the CVRMSE values is that the calibrated outcomes for 

CC-1 are as good as for CC-2. More discussion about this is provided in CHAPTER 8. 
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Figure 7.36 The variation of CVRMSE on energy prediction among the calibration 

sets for EPC. CC-1 (left), CC-2 (right) 

 

Figure 7.37 The variation of CVRMSE on energy prediction among the calibration 

sets for EnergyPlus using CC-1 (left) and CC-2 (right) 

It is not enough to depend only on CVRMSE to evaluate the accuracy of the 

calibrated models, so it is important to check whether the observed data is in close 

similarity with the predicted outcome. Figure 7.38 to Figure 7.41 show pairwise 

comparison of the energy consumption predictions between EPC-hourly and EnergyPlus-

(hourly data) for different calibration criteria; every figure presents four graphs for every 

calibration set (CS-i). The data presented are for the first two days of August only.  
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Figure 7.38 Energy consumption with CS-1: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 
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Figure 7.39 Energy consumption with CS-2: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 
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Figure 7.40 Energy consumption with CS-3: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 
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Figure 7.41 Energy consumption with CS-4: EPC (top), EnergyPlus (bottom). Red 

(observed data), box (prediction) 

From the figures above we notice that the energy consumption results for CC-2 

have not led to a significant improvement compared to CC-1, which means that the 

additional QoI (indoor temperature) has minimal impact on the model output. This finding 

suggests that our energy model with hourly energy data can perform well enough without 

feeding it with more information. However, this reasoning cannot be generalized without 

more cases.  

7.7 ELA determination based on in-situ measurement 

Figure 7.42 shows a comparison of the ELA calibrations that are generated with 

EPC and EnergyPlus models against the experimental ELA with measured wind pressure. 
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The distributions presented in the plot are the best models of each tool with the respective 

calibration set. 

 

Figure 7.42 Best results of ELA calibrations with EPC and EnergyPlus in 

comparison with experimentally determined ELA (green) 

The shaded green distribution in Figure 7.42 represents the direct ELA calibration 

with the use of the pressure sensor. Therefore, this is assumed to be our best prospect for 

the true ELA. The direct calibration of ELA provides an enhanced estimate where the 95% 

confidence interval is between 0.34 and 0.46 cm2/m2. Assuming that for engineering 

purposes an 80% confidence interval is acceptable, it would situate the ELA engineering 

estimate between 0.36 cm2/m2 and 0.44 cm2/m2 which seems a reasonable range based on 

the tracer gas experiment. 
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In terms of ELA estimation through our calibration process, Table 7.9 provides the 

characterization of the ELA of each calibration set outcomes in the calibration process, and 

the best estimations (for a given tool/data/CC combination) are highlighted in green.  

Table 7.9 Measurements of the distance and divergence between estimated and 

direct ELA 

Model 

Measurements of Direct ELA at CI = 80% 

CS-1 CS-2 CS-3 CS-4 

P KL SE P KL SE P KL SE P KL SE 

EPC-monthly/CC-1 0.01 2.57 0.078 0.01 2.37 0.074 0.03 1.88 0.071 0 830 0.001 

EPC-hourly/CC-1 0.08 1.43 0.017 0.07 1.30 0.025 0 7.22 0.005 0 23.06 0.001 

EPC-hourly/CC-2 0.09 1.38 0.018 0.11 1.27 0.023 0.01 2.52 0.007 0 35.67 0.003 

EnergyPlus- 

(monthly data)/CC-1 
0.01 1.29 0.046 0.009 1.66 0.009 0 10.25 0.001 0 10.25 0.001 

EnergyPlus- 

(hourly data)/CC-1 
0.20 0.96 0.023 0.98 0.42 0.001 0.98 0.42 0.001 0.98 0.42 0.001 

EnergyPlus- 

(hourly data)/CC-2 
0.20 0.96 0.023 0.84 0.25 0.003 0.98 0.42 0.001 0.98 0.42 0.001 

Consequently, none of the EPC-monthly cases results in a reasonable estimation 

that can represent the true ELA. CS-3 is considered to give the best ELA distribution (red 

distribution) for EPC-monthly given that its probability value is the highest (0.03) and KL 

is the lowest (1.88), but its standard error (SE) is high indicating that it has very wide 

distribution as clearly observed from the graph. It is worth paying attention to CS-4 

outcomes; although this calibration set has the lowest SE, its probability is zero,  and the 

KL value is the highest (830), indicating that it is extremely far from the direct ELA 

estimate, which makes it the least reliable case. This implies in this particular case that, in 

both monthly models (EPC and EnergyPlus), the high effect of Cp and wind speed makes 

ELA deviate from the true value due to their subsumption effect, which happens because 

they are in the same formula. On the other hand, all other EPC distributions are clustering 

behind the green distribution with slightly different variations. EPC-hourly/CC-1 and CC-
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2 (orange, and purple distributions, respectively) are nearly similar, where both slightly 

intersect with the green distribution. However, this still could be a less informative 

estimation when compared with the experimental determination of ELA.  

EnergyPlus models perform better than EPC in for both monthly and hourly 

outcomes. The blue distribution represents EnergyPlus-(monthly data). It is interesting to 

note that CS-2 is considered to give the best ELA distribution over the other cases due to 

its better combination of goodness probability, KL, and SE (0.009, 1.66, 0.009, 

respectively), but this does not necessarily mean that CS-2 as an energy model is the best. 

Furthermore, EnergyPlus-(hourly data) proved to be the best models for both CC-1 and 

CC-2 with identical distributions that are situated within the direct ELA distribution. Both 

models have cases with probability equals to 1 as seen in CS-2 to CS4 and CS-3 to CS-4 

for EnergyPlus-(hourly data)/CC-1 and CC-2, respectively. 

Considering the above, the primary conclusion is that all ELA distributions derived 

with monthly outcomes are broad and substantially diverge from the experimentally 

derived best estimate for ELA. In fact, they hardly improve on the non-informative prior. 

This of course leads to the inevitable conclusion that with a data resolution of only monthly 

aggregated energy consumption leads to rather useless results for ELA estimates. Models 

calibrated with hourly outcomes perform better; this is most pronounced for the EnergyPlus 

model calibrated on hourly outcomes, which shows better ELA prediction than all other 

models. This confirms that we can achieve better parameter estimation with higher 

resolution outcomes and a higher fidelity model. The other (disappointing) conclusion is 

that the low fidelity model with high (hourly) resolution, although able to closely match 

the measured energy outcomes, does not come close to the best estimate of ELA.  
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CHAPTER 8. DISCUSSION OF RESULTS 

The previous chapters reveal that the calibration process reduces the mean bias 

errors between measured and energy model predictions used in two case studies. The 

conducted calibration resulted in ELA estimates based on different calibration sets (CS-i) 

and different criteria (CC-1 and CC-2). This chapter provides an inclusive discussion of 

the results presented in CHAPTER 6 and CHAPTER 7 and reflections on the resulting 

ELA approximation. 

8.1 Discussion 

We evaluate the validity of calibrated models in terms of agreements between 

predicted and monitored energy uses. Table 8.1 shows CVRMSE values of all calibrated 

models that are described in CHAPTER 6 and CHAPTER 7. The first column in the table 

indicates the type of model in the calibration process for both given case studies. The 

CVRMSE is provided in terms of mean, µ, and standard deviation, σ, with the four 

calibration sets (CS-i). The table also shows the best ELA results that were generated from 

every model’s calibration exercise with its KL and probability value, P, as well as the CS-

i with which the best estimate was achieved. 

  



201 

 

Table 8.1 overall view of the models' energy performance and the resulted ELA 

Model 

CVRMSE 
Best ELA result 

CS-1 CS-2 CS-3 CS-4 

µ σ µ σ µ σ µ σ KL P CS 

Case study 1   

EPC-monthly/CC-1 0.35 0.11 0.23 0.04 0.20 0.04 0.15 0.01 1.89 0.03 2 

EPC-hourly/CC-2 0.20 0.04 0.15 0.01 0.14 0.01 0.11 0.00 0.36 0.62 1 

EnergyPlus/CC-1 0.21 0.14 0.11 0.03 0.11 0.03 0.09 0.01 0.31 1 4 

EnergyPlus/CC-2 0.19 0.03 0.16 0.02 0.11 0.01 0.10 0.01 1.40 1 4 

Case study 2   

EPC-monthly/CC-1 0.54 0.15 0.24 0.10 0.16 0.06 0.14 0.04 1.88 0.03 3 

EPC-hourly/CC-1 0.50 0.15 0.36 0.05 0.30 0.01 0.29 0.00 1.30 0.07 2 

EPC-hourly/CC-2 0.50 0.15 0.36 0.05 0.31 0.02 0.29 0.00 1.27 0.11 2 

EnergyPlus-(monthly data)/CC-1 0.34 0.07 0.17 0.01 0.11 0.01 0.09 0.01 1.66 0.009 2 

EnergyPlus-(hourly data)/CC-1 0.32 0.04 0.26 0.01 0.26 0.08 0.24 0.00 0.42 0.98 2 to 4 

EnergyPlus-(hourly data)/CC-2 0.26 0.03 0.21 0.00 0.20 0.00 0.20 0.00 0.42 0.98 3 to 4 

The results show an overall consistent estimation of the calibration parameters 

among models with the same type of observations and calibration sets and time resolutions. 

The statistical measures indicate that the calibrated EPC models can predict the energy 

consumption as accurately as the calibrated EnergyPlus models. Also, the validation 

measures tell that the calibration process improves the accuracy of the model by gradually 

reducing the CVRMSE values with CC-1 and CC-2. It should be noted that in both case 

studies, all CVRMSE values with CS-1 of the calibrated models are higher than what is 

stipulated in ASHRAE Guideline 14 for a model to be deemed valid (i.e., 15% and 30% 

for the monthly and hourly data resolution, respectively) with the only exception for 

EnergyPlus-(hourly data)/CC-2. 

A closer look at the accuracy of calibrated models across different cases shows that 

after calibration, i.e., refined quantification of uncertainties associated with important 

parameters and model bias, the best overall accuracy is achieved when all types of 
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observations (QoI-1 + QoI-2) are used regardless their time resolutions. However, 

calibration with QoI-2 (i.e., indoor temperature) tends to add only a minor improvement to 

the overall calibration process, which indicates that the benefit of temperature monitoring 

is not significant; probably because its relative small hour-to-hour variations over the entire 

period do not contribute too much information in addition to the energy consumption. This 

is particularly true in operated buildings where the temperature fluctuations are controlled 

within a narrow band. Only nights and weekends will then add relevant temperature 

information to the calibration. For this and other reasons, our case studies confirm that the 

energy has more reliable sensitivity to ELA than temperature. In situations when the 

calibrated model predicts temperatures very well (small CVRMSE), the (large) MFU gets 

always subsumed in the parameters making them less reliable. The effect of this 

interpretation can be seen more in the low fidelity EPC models. 

The results in the above table indicate that models that are calibrated with fewer 

calibration parameters seem to have considerable deviation compared to those with more 

calibration parameters. In itself, this is not surprising as the calibration of smaller parameter 

sets suffers from more uncertainty in the non-calibration parameters. This does not always 

mean that the more calibration parameters the better model we achieve. In fact, feeding the 

model with a large number of calibration parameters, could lead to parameters subsumption 

that we described in CHAPTER 1. The proposed calibration process and the method of 

selecting calibration parameters from the pool based on a repetitive SA and deterministic 

calibration is set up to verify the subsumption effect.  Surprisingly, the effect could not be 

established. Generally it is found that the model predictions get better with larger 

calibration sets and the ELA estimate converges to its best estimate. This may not be true 
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though for all other calibration parameters. The major advantage of the stepwise calibration 

is that one is able to verify how much precision one sacrifices if the calibration is conducted 

for a small set of parameters. This approach can be extended to improve the precision of 

the outcome by reducing the uncertainty in the other parameters. The SA results indicate 

on which parameters one should focus first if one were to take this approach. 

We further compare the calibrated models in the context of ELA prediction. From 

this perspective we conclude that all EPC models provide less accurate ELA estimations 

comparing to what is achieved by EnergyPlus. In addition, the best ELA distributions in 

EPC models are either wide or far from the best estimate for ELA, which suggests that the 

MFU in these models is so significant that a reliable ELA estimate is more likely not 

reachable. This is also supported by the CVRMSE value for which the best ELA estimate 

was achieved. The first best ELA estimate in case study one is achieved at CS-2 with a 

mean CVRMSE value of 0.23, and CS-1 with a mean CVRMSE of 0.20; the similar finding 

is also realized in case study two, (see Table 8.1). However, it can be seen that the addition 

of QoI-2 in the calibration process leads to slightly better prediction, and this is verified in 

both case studies as presented in the ELA distributions. Accordingly, the CVRMSE values 

where the best ELA estimates were achieved with EPC models do not meet the ASHRAE 

guideline, which is in line with the expectation that ELA calibration results for these low-

resolution models lead to less informative and hardly usable results. 

On the other hand, the EnergyPlus models show more consistent outcomes 

regarding both CVRMSE and ELA estimates. This means that the ELA predictions become 

more reliable and definitely lead to a more informative result. We see this clearly in 
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EnergyPlus-(hourly data) in case study two where both ELA estimates and CVRMSE have 

reached constant outcome from CS-2 to CS-4 with a probability of 0.98 and KL 0.43. 

Another important conclusion is about calibrations that ignore uncertainties in 

dominant parameters. Such situations arise when a modeler deterministically calibrates a 

model (e.g., CS-1, CS-2, or CS-3) while ignoring uncertainty in other parameters. In doing 

so he/she has to choose deterministic input values based on person judgment, which 

unavoidably leads to a modeler’s bias. For instance, the outcomes for the two case studies 

show that the distribution in CVRSME is large for CS-1 but fast reducing for CS-2 and 

CS-3. This means that a deterministic calibration can hit a random point within the bands 

of CVRMSE outcomes. More importantly, the modeler’s bias will result in a random 

outcome for the calibration parameters. Our results show that the band for ELA is large, 

especially for CS-1 and CS-2, and to some extent even for CS-3, which means that the 

parameter's estimation of a deterministic calibration can be at any point within the range 

of the parameter outcomes. As a consequence, it can be said that while ignorance of 

uncertainty, many current calibration methods with a limited number of calibration 

parameters lead to very unreliable parameter approximation. The only way to avoid this is 

to consider the largest set of parameters for calibration as well as parameter uncertainty. 

This however leads to a large computational effort for the optimization where in many 

cases the optimum is missed. Nevertheless, this is recommendable as the potential negative 

effect of large calibration set (i.e., subsumption) plays a smaller role than expected at the 

outset of this study. Of course, this will have to be confirmed by more case studies. 
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8.2 Concluding remarks 

The objective of this chapter is to verify the first research question: will the 

effective leakage area (ELA) that is calibrated with measured, readily available outcomes 

at different resolutions be close enough to one derived from direct measurements, which is 

considered the best obtainable estimate? Several main conclusions can be drawn: 

1. Based on the SA results we can conclude that scenario uncertainty and parameter 

uncertainty are major uncertainties affecting the prediction capability with current 

energy models. This conclusion is driven by the fact that ELA always appears to be 

a dominant parameter that has significant impact on the outcomes of energy models. 

The reasoning for this is that ELA is a surrogate parameter that is sensitive to other 

unknown sources and effects that enter into the ELA estimates e.g., Cp and wind 

speed. This interaction affects the determination of a precise ELA estimate.  

2. The proposed calibration framework confirms that more calibration parameters can 

achieve better parameter estimation. However, this statement needs qualification in 

many cases (especially in monthly models) as some calibration parameters have 

only significant impact on the energy consumption but not much influence on the 

ELA calibration. Moreover, the “improvement” that is obtained in the ELA 

estimate is often not significant and in fact not a major improvement of the 

uninformative prior we established in section 4.1. Calibrations with hourly 

outcomes typically show better ELA estimation compared to monthly resolution.  

The high-fidelity models (i.e., EnergyPlus) prove to give a significantly closer 

estimate of the directly calibrated ELA than other models.  
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3. The considerable reduction in the CVRMSE with the higher resolution models is 

driven by the selection of calibration parameters. It is found that calibration with 

an additional outcome type (i.e., indoor temperature) can improve the overall 

CVRMSE, but that is highly dependent on the choice of the weighting factor and 

the setup of the hourly temperature simulation. Calibration with energy and indoor 

temperatures can in fact result in worse energy predictions compared to the best 

calibration with only energy data. It is not hard to see why this is always the case 

and is theoretically unavoidable. 

4. Finally, in terms of data variety, it is always desirable for a data set to include 

simultaneous measurements of different types of variables, such as HVAC systems 

and separately submetered energy use, lights, and occupancy. When different types 

of variables can be simultaneously monitored over a relatively long period, model 

verification can be performed in a more comprehensive manner than we do on our 

buildings. Moreover, comparing the accuracy among different types of variables 

may also lead to clues about the sources of prediction discrepancy. Therefore, based 

on the patterns of energy prediction discrepancy over a calibration period, we 

suspect that uncertainty in some parameters, e.g., lights and plug loads, which are 

mostly quantified at the whole-building scale, had better be refined to the level of 

thermal zones. 

In summary, the developed calibration framework is able to correct prior misguided 

assumptions about true ELA values, but results still depend on the prior estimates of other 

uncertainty in the energy model, uncertainty quantification, and the interaction with other 

parameters. One point to be emphasized is that prior estimates are set up based on collective 
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expert knowledge and can be made more precise when there is additional knowledge from 

prior uncertainty quantification studies. The resulting prior estimates can then be further 

refined through the calibration exercise.   
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CHAPTER 9. THE ROAD TOWARD A FITNESS MEASURE TO 

TEST A CALIBRATED MODEL 

This chapter demonstrates the capability of the new framework to support 

uncertainty analysis for risk-conscious decision making. CHAPTER 2 presents the 

importance of recognizing the role of uncertainty in a calibration process, i.e., the level of 

confidence that can be placed in our predictions as revealed by an uncertainty analysis. 

Without a measure of model reliability, it is impossible to judge the accuracy of a prediction 

for making decisions with confidence. Any “calibrated” model generates outcomes for a 

selected QoI that are by definition uncertain (mostly propagated from uncertain model 

parameters). Depending on the level of uncertainty this may pose considerable risk to the 

validity of the model’s use in a decision context.  

As summarized earlier, one of the key limitations of current methods is the 

implementation of deterministic approaches that ignore the influence of uncertainty on the 

model. It is a common misconception that increasing the fidelity of the model plays a 

dominant role in improving the validity of the model. However, accuracy should not be the 

primary concern when the model is used to generate predictions that are used in a given 

decision context. Rather, the question becomes how “fit” a model is to support the decision 

making. It could be expected that for simple tasks a low fidelity model will do well enough, 

even if its accuracy is not very great. In a calibration context, this observation is significant. 

Indeed a model is typically declared accurate if it is able to closely approximate a measured 

QoI, even if the values of the calibrated parameters could be far removed from their true 

values. As one puts more effort in the calibration, one may be able to improve the 
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approximation of the true calibration values, but it cannot be verified as the true values are 

unknown and in many cases unobservable, even through dedicated experiments. For the 

above reasons it seems plausible to look for a new measure that determines whether a 

model can fulfill a given role adequately. Such fitness measure will help to determine when 

and through what type of calibration the resulting model is fit enough. 

In this chapter we implement a method to determine how much confidence one 

should have in using a calibrated model for a specific task, or in a specific simulation 

scenario. If the calibrated model is proven sufficiently reliable for the task it is deemed fit 

for this task. By defining tasks of increasing complexity, a model’s fitness level can be 

defined by the highest task it can perform. In this manner one can relate the determined 

fitness level of a calibrated model to the necessary resolution of outcomes for the 

calibration (calibration criterion), number of calibration parameters (calibration set), and 

the fidelity of the underlying model that is used. More methodological background of this 

method is described in section 3.2.  

In the scope of this thesis, a full-fledged fitness framework and applicable measures 

could not be developed. Instead a case-specific exercise is shown as the first step towards 

that. In this exercise we test our thinking on one particular decision setting. This setting is 

the energy benchmarking of existing buildings, and a fitness measure is introduced that can 

effectively test the reliability of a calibrated model to perform the benchmarking at a 

requested level of reliability. 
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9.1 Proposed decision scenario: energy benchmarking of existing buildings 

This section applies the fitness level concept to help determine the reliability of a 

model for energy assessment and thereby provide input to the decision to determine 

whether the building meets a specified energy benchmark or not. This scenario is for 

instance relevant when cities issue regulations that mandate that all existing buildings must 

meet certain energy consumption limits, or pay a penalty or additional tax. As the 

regulation focuses on benchmarking the energy efficiency of the building for standard use 

and given climate, consumption records of previous years cannot be used for that purpose. 

Instead it forces the use of an energy model that predicts energy consumption in a given 

(mandated, hypothetical) usage scenarios and climate. The first step is obviously to develop 

an energy model that represents the actual building, and calibration is a crucial step in this.  

For the benchmarking scenario, we suggest that a model is “fitter” if the application 

of a benchmarking test (i.e., resulting in a pass/fail verdict) gives a certain guarantee that 

the actual building will have the same outcome. To apply this to our range of calibrated 

models means that the energy outcome of every calibration case will be tested against the 

benchmark value specified in the regulation. If the value is lower, the building passes. It 

should be remembered that the outcome of a model is a probability distribution of the value 

of the chosen QoI (in this case total yearly energy consumption). Therefore, the test should 

have a tolerance factor, which implies that we calculate the probability that the building 

passes. One could for instance require that this probability is at least 70%, or in the 

probabilistic form: 
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𝑃(𝐸𝑀 < 𝐸𝑏𝑒𝑛𝑐ℎ) ≥ 0.70 (9.1) 

 Where 

𝐸𝑀: the total predicted energy consumption (distribution) of the calibrated model 

[kWh/m2/yr]; 

𝐸𝑏𝑒𝑛𝑐ℎ: the benchmarking value [kWh/m2/yr]; we assume that 𝐸𝑏𝑒𝑛𝑐ℎ can take any value 

within a given range depending on policy making. 

As depicted in Figure 9.1, every model that is calibrated (following the procedures 

explained in this thesis) has an outcome distribution that ranges based on the fidelity of the 

model and the resolution of the calibrated parameters. If the model outcome has a 70% 

probability of being below the specified benchmarking value (this value can depend on the 

decision-maker), we consider that building to pass, otherwise it fails. Now since the 𝐸𝑏𝑒𝑛𝑐ℎ 

can be built upon a collection of peer buildings in the given city; this value can be a 

stochastic variable that ranges based on the size and variation of those buildings. Moreover, 

the value is ultimately up to the energy saving objectives of the city’s policy makers. To 

reflect on this, a uniformly distributed benchmarking value is chosen and a calibrated 

model is tested against every 𝐸𝑏𝑒𝑛𝑐ℎ. For every model and 𝐸𝑏𝑒𝑛𝑐ℎ, this produces a list of 

“pass” and “fail” results, which we denote 1 for pass and 0 for fail.  

To measure the fitness of a model, we would have to construct a representative set 

of actual buildings for which we have established (e.g., through controlled experiments 

and/or submetering) the true pass or fail score. Every building in this actual set is then 

calibrated following the same calibration process presented in this thesis to produce a set 

of distributions for the model’s outcome. The distribution of every building in the set is 



212 

 

used as a reference to measure the fitness within a specified probability range, which is 

defined by the number of matches and mismatches over the collection of buildings with 

our test model. The percentage of matches of a calibrated model can now serve as a 

quantified fitness level. The total number of matches of every model is then ranked to 

determine which model is fitter, and the model that has the highest number of matches is 

the fittest. 

 

Figure 9.1 the process to establish the fitness level for a benchmarking scenario 

Now, the practical limitation of this whole process lies in the difficulty of collecting 

all information of the set of real buildings and then build an energy model for each of one; 

this could be an extra effort to be considered in the future. Besides, a more in-depth 

assessment needs to be considered when determining which building is eligible to be 

deemed pass among the building stock; this adds additional complexity. To avoid this, the 

above approach is substituted by a simple exercise that generates a surrogate fitness level 

for benchmarking. In this task we use only one building (i.e., case study two) while 

assuming the true benchmarking outcome for that building is known, which is based on the 

outcome that is obtained by the best calibrated model. Therefore, the model with the best 
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calibration results (EnergyPlus-(monthly data)/CS-4/CC-1) is deemed the best model for 

this exercise. 

9.2 Case study 

This section revisits the second case study from CHAPTER 7 to apply the proposed 

fitness level approach. The monthly calibrated models are used to perform the fitness level 

determination.   

As the first step, we create a range of 𝐸𝑏𝑒𝑛𝑐ℎ values that follow a uniform 

distribution and ranging between 41 kWh/m2/yr and 50 kWh/m2/yr. They are chosen to fall 

within the range of the case study building used in case study two. This range is constrained 

(with 15% tolerance) by the end tails of the best model (i.e., EnergyPlus-(monthly 

data)/CS-4/CC-1); for simplicity we call this model “Mfit”. Next, we determine the 

probability of the energy consumption with respect to the sampled 𝐸𝑏𝑒𝑛𝑐ℎ for every model. 

For this process we select only ten samples for 𝐸𝑏𝑒𝑛𝑐ℎ, and since the spread of the specified 

limits is relatively small, we merely list the values of 𝐸𝑏𝑒𝑛𝑐ℎ in descending order. Following 

Eq. (9.1) we establish the benchmarking decisions between pass and fail results (i.e., 1 and 

0) for all models, including Mfit. Finally, we obtain the fitness identifier by comparing the 

outcome of every model at a specific 𝐸𝑏𝑒𝑛𝑐ℎ with Mfit. Table 9.1 and Table 9.2 present the 

results of this process for EPC and EnergyPlus, respectively. 
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Table 9.1 the fitness level outcomes for EPC models 

 

Table 9.2 the fitness level outcomes for EnergyPlus models 

 

With a 70% confidence level, the results from the two tables show that CS-2 and 

CS-3 in EnergyPlus model and CS-4 in EPC are the ones that have the highest value of 

similarities with Mfit with scores of 7 and 8 out of 10. This indicates that these cases are 

the fittest model over all competitors. Note that CS-4 in Table 9.2 is the case that is deemed 

the best model, which by definition is the same as Mfit.  

Accordingly, if we take into consideration the complexity of building the energy 

models using the two tools, we realize that EPC provides a comparable result with less 

modeling effort. Based on the above analysis the policymaker could therefore decide that 

indeed the EPC model is fit enough to support the new city benchmarking policy thus 

avoiding wasting efforts on developing EnergyPlus models for all buildings in the city. In 

P(EM < Ebench) Pass/Fail

41 0.44 0 0.17 0 1 0.05 0 1 0.23 0 1 0.21 0 1

42 0.96 1 0.19 0 0 0.08 0 0 0.31 0 0 0.34 0 0

43 1.00 1 0.22 0 0 0.12 0 0 0.40 0 0 0.50 0 0

44 1.00 1 0.24 0 0 0.17 0 0 0.49 0 0 0.65 0 0

45 1.00 1 0.27 0 0 0.23 0 0 0.59 0 0 0.78 1 1

46 1.00 1 0.30 0 0 0.31 0 0 0.68 0 0 0.88 1 1

47 1.00 1 0.33 0 0 0.39 0 0 0.76 1 1 0.94 1 1

48 1.00 1 0.36 0 0 0.48 0 0 0.83 1 1 0.98 1 1

49 1.00 1 0.39 0 0 0.56 0 0 0.88 1 1 0.99 1 1

50 1.00 1 0.43 0 0 0.65 0 0 0.92 1 1 1.00 1 1

1 1 5 7

Matches 

w/ Mfi t
P(EM < Ebench) Pass/Fail

EPC

Matches 

w/ Mfi t

Ebench CS-1 CS-2 CS-3 CS-4

P(EM < Ebench) Pass/Fail
Matches 

w/ Mfi t
P(EM < Ebench) Pass/Fail

Matches 

w/ Mfi t
P(EM < Ebench) Pass/Fail

Total points of fitness

Mfit

P(EM < Ebench) Pass/Fail

41 0.44 0 0.00 0 1 0.00 0 1 0.00 0 1 0.44 0 1

42 0.96 1 0.00 0 0 0.00 0 0 0.00 0 0 0.96 1 1

43 1.00 1 0.00 0 0 0.01 0 0 0.15 0 0 1.00 1 1

44 1.00 1 0.00 0 0 0.43 0 0 0.80 1 1 1.00 1 1

45 1.00 1 0.01 0 0 0.97 1 1 1.00 1 1 1.00 1 1

46 1.00 1 0.02 0 0 1.00 1 1 1.00 1 1 1.00 1 1

47 1.00 1 0.05 0 0 1.00 1 1 1.00 1 1 1.00 1 1

48 1.00 1 0.09 0 0 1.00 1 1 1.00 1 1 1.00 1 1

49 1.00 1 0.15 0 0 1.00 1 1 1.00 1 1 1.00 1 1

50 1.00 1 0.23 0 0 1.00 1 1 1.00 1 1 1.00 1 1

1 7 8 10

EnergyPlus

P(EM < Ebench) Pass/Fail
Matches 

w/ Mfi t

Matches 

w/ Mfi t

CS-1 CS-2 CS-3

P(EM < Ebench) Pass/Fail
Matches 

w/ Mfi t

P(EM < Ebench) Pass/Fail

CS-4

Matches 

w/ Mfi t

P(EM < Ebench) Pass/Fail

Total points of fitness

Mfit
Ebench
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this regard, the fitness level approach is beneficial to inform a given decision scenario with 

a calibrated model that lowers computational cost and has sufficient fitness.  

9.3 Conclusion and remarks  

Although some level of uncertainty analysis is essential in building improvement 

decisions and regulatory settings where energy predictions are used, current practice does not 

offer an adequate way to quantify the level of confidence that can be placed in a prediction 

with a given model. Therefore, it is hard to judge which model is adequate enough for 

making decisions in a given scenario. We argue in this chapter that a model fitness measure 

can help in making the right choice. The proposed determination of such a quantified 

fitness measure is introduced and applied to a simple benchmarking pass/fail decision 

exercise. One of the purposes of building energy performance benchmarking is to quickly 

identify a far less energy-efficient building among a large group of buildings. Obviously 

the fitness of a model will increase if it is used only to identify heavily under or over-

performing buildings. This is however not yet included in our analysis but reserved for 

future work. At this point, the analysis points to the fact that the fitness level approach can 

be beneficially used for energy performance benchmarking and support the selection of an 

adequate model.  

In summary, there are several remarks worthy of extended discussion: 

• Benchmarking is chosen as an application scenario because it is a straightforward 

and simple exercise to test fitness. For any other scenario an approach could be 

developed along similar lines 
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• Even though we assume that benchmarking is a simple task, we cannot generalize 

our findings without addressing the major obstacle, which is the need to test the 

fitness measure against a set of real buildings. This will require a large energy 

modeling effort. For now it is fair to assume that there will be little appetite of 

funders to support this effort. 
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CHAPTER 10. CLOSURE 

10.1 Summary and concluding remarks 

There are many instances where an energy model of an existing building is needed. 

For instance, simulation can be implemented based on compliance testing against building 

energy codes; it is also advantageous for the assessment of the saving potential in 

retrofitting existing buildings. In both commercial and residential sectors, the importance 

of minimizing the discrepancy between predicted and measured energy uses is well 

recognized like in PM&V applications. If underdeveloped, or more specifically 

“uncalibrated” models are used, the large discrepancy between prediction and actual will 

undermine the market’s confidence in energy-efficient buildings. 

Calibration techniques have encountered great improvement in recent years and are 

well supported by ASHRAE (ASHRAE., 2009) and (ASHRAE, 2002) guidelines, new 

standard initiatives ASHRAE 14, (ASHRAE, 2014), and numerous theoretical and field 

studies. The criteria laid down in the ASHRAE guideline are useful, but more work is 

needed to understand the special nature of calibration of building energy models. Such 

criteria stipulate ranges of admissible error in the total estimated energy consumption of a 

building but do not address underlying aspects such as uncertainty embedded in the models 

or initial guesses about the value of building a model. In addition, the current methods 

cannot adequately support risk-conscious decision-making because they deterministically 

calibrate an energy model and derive a single prediction of the desired outcome. This thesis 

argues that adequately predicting building energy consumption is vital to the successful 

deployment of building energy assessments and retrofits.  
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In this regard, the primary goal of this thesis is to improve the effectiveness of the 

calibration process such as choice of the calibration parameter set and fidelity of the model, 

while avoiding or at least understanding the confounding effect across the calibration 

parameter set.  Although this obviously applies to all parameters of the building, this thesis 

focuses on and is de facto anchored in the crucially important façade parameters associated 

with infiltration. The leading parameter is the effective leakage area (ELA), which is 

diversified for different façades and façade elements in the BPS model. The thesis deals 

with the problem through: 1) building a theoretical basis for understanding the current 

practices in building energy model calibration and the identification of ELA (viewed in 

this thesis as the main calibration parameter), 2) enhancing our capability in predicting 

future building energy use, i.e., offer a probabilistic calibration framework that is based on 

repeated deterministic calibrations. The main objective of the thesis is to understand the 

influence of the calibration settings on the resulting calibrated model. Among these settings 

is the fidelity level of the model, the use of different calibration sets, the type and interval 

of measurement data that is used and (to some extent) the metric that is used to measure 

the distance between observed and model generated outcomes. With this multi-

dimensional view on the calibration process, the ultimate aim is to provide in-depth 

information about what monitoring plan and model resolution one needs to calibrate certain 

parameters (e.g., ELA), such that the resulting model is fit enough to perform a given task. 

The resulting fitness should ideally be expressed in a quantifiable measure. Its 

determination is highly dependent on the calibration process, and in particular on the 

mentioned settings for which it is conducted. 
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Two case studies are provided in this thesis to demonstrate the approach. The first 

one is a multipurpose commercial building, and the other case study is a typical residential 

detached house. Both case studies were modeled with EPC, which represents the low-

resolution tool, and EnergyPlus, which represents the high-fidelity tool. The results 

demonstrate the effectiveness of the proposed calibration process in approaching the true 

values of the calibration parameters with a focus on ELA. 

In summary, this thesis demonstrates that: 

1. The proposed calibration methods make improved use of data in constraining 

uncertainty and improving prediction of calibration parameters.  

2. Predicting building energy consumption in a probabilistic way is the key enabler of 

improving predictions of uncertain parameters. This suggests that the fidelity of the 

underlying physical model is less important than many researchers seem to believe. 

3. The lower resolution EPC calibrations can adequately optimize the energy model 

and derive the same consistent results as EnergyPlus models when they are 

supported by the same calibration set and data availability. On the other hand, EPC 

has not done as good in terms of the calibration parameter approximation (e.g., 

ELA). 

Finally, one major long term mission of this thesis is the development of fitness 

measures that can be quantified for the use of a given model in a chosen decision scenario. 

A first attempt is reported calculating a fitness measure for a benchmarking scenario of 

existing buildings. It is used to test the concept of a fitness measure and an approach to 

quantify it. The results demonstrate that with the appropriate information we can measure 
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the reliability of the calibrated model for the given purpose, in this case expressed through 

the number of matches between the decision supported by a model and the true decision, 

albeit that for lack of broad data, the latter is for now substituted by a surrogate decision. 

10.2 Recommendations for future study 

Calibration is and will continue to be an important area of study for BPS 

applications in practice. Thus, the ultimate goal of the ongoing and future research is to 

establish a calibration process (and potentially a framework) that aids to understand, 

represent, and assess the effectiveness of calibration methods on building energy model 

fidelity and fitness. Some immediate future work would include: 

1. More case studies are necessary to confirm the feasibility of the calibration method 

across larger sets of buildings of different types and various energy measures. 

2. The proposed framework is adequate to incorporate all sources of uncertainty for 

parameter predictions. However, the sources of uncertainty in the case studies have 

been limited to scenario uncertainty and parameter uncertainty e.g., wind speed, 

physical properties, and equipment and systems performance. To correctly evaluate 

the variability of the calibration parameters, we need to further quantify the full 

spectrum of uncertainties. Hence, it is recommended to explore the use of explicit 

model form uncertainty quantification (MFU) to inform the calibration procedure 

through improved uncertainty analysis. 

3. For the tested case studies we were exposed to a very limited recorded data (i.e., 

energy consumption and indoor temperature), the calibration modules should be 
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extended to calibrate models with various types and spot-monitored (potentially 

sparse) outcomes.  

4. The calibration process is automated to run 50 samples resulting in 50 values for 

ELA in every step. However, this number of samples is moderately small as it might 

not be enough to capture all aspects of the parameter’s characteristics. Increasing 

the number of simulations by taking advantage of powerful computation is highly 

recommended. 

5. The proposed fitness level methodology makes a limited attempt to systematically 

address this issue because of time and resource constraints. It requires extended 

work to collect and build calibratable energy models for a large set of test buildings 

for the benchmarking scenario.  

6. The proposed fitness measure needs to be developed for a diverse set of scenarios. 

Among them, good candidates are:  

a. Building diagnostics and fault detection; 

b. Determination of an optimal retrofit or upgrade package (e.g., while meeting 

a given IRR or RoI constraint); 

c. Guaranteeing that a minimum required energy performance will be met by 

the building (e.g., as part of a performance contract, where getting it wrong 

may lead to contractually agreed penalties). 

7. The focus on CVRMSE for the discrepancy between simulated and measured 

values may be a limiting factor. Hence it is recommended to explore other 

calibration metrics to quantify the dissimilarity based on both proximity of the 

values and similarity of the dynamic behavior of the model outcome. We expect 
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that with the appropriate settings, such measures have the potential to deliver an 

informative calibrated model without ignoring the interdependence relationship 

between observed and predicted data.  
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APPENDIX A.  WIND PRESSURE COEFFICIENT: TABLES AND 

GRAPHS 

Table A.1 Uncertainty quantification data for CpGen (free field) 

 

Table A.2 Uncertainty quantification data for Swami&Chandra (free field) 
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Table A.3 Uncertainty quantification data for Swami&Chandra (CA = 0.10) 

 

Table A.4 Uncertainty quantification data for Swami&Chandra (CA = 0.15) 

 



225 

 

Table A.5 Uncertainty quantification data for Swami&Chandra (CA = 0.30) 

 

Table A.6 Uncertainty quantification data for Swami&Chandra (CA = 0.50) 
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Table A.7 Uncertainty quantification data for CpGen (CA = 0.10) 

 

Table A.8 Uncertainty quantification data for CpGen (CA = 0.30) 
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Table A.9 Uncertainty quantification data for CpGen (CA = 0.50) 
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Figure A.1 Results of Cp from Swami&Chandra model with uncertainty bands 

under free field conditions 
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Figure A.2 Results of Cp from Swami&Chandra model with uncertainty bands 

under CA = 0.10 
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Figure A.3 Results of Cp from Swami&Chandra model with uncertainty bands 

under CA = 0.15 
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Figure A.4 Results of Cp from Swami&Chandra model with uncertainty bands 

under CA = 0.30 
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Figure A.5 Results of Cp from Swami&Chandra model with uncertainty bands 

under CA = 0.30 
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