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Abstract

An important technique for alleviating the memory bottleneck is data prefetching. Data
prefetching solutions ranging from pure software approach by inserting prefetch instructions
through program analysis to purely hardware mechanisms have been proposed. The degrees
of success of those techniques are dependent on the nature of the applications. The need for
innovative approach is rapidly growing with the introduction of applications such as object-
oriented applications that show dynamically changing memory access behavior. In this paper,
we propose a novel framework for the use of data prefetchers that are trained off-line. In
particular, we propose two techniques for building small prediction tables off-line and the
hardware support needed to deploy them at runtime. Our first technique is an adaptation of
the Hidden Markov Model that has been used successfully in many diverse areas including
molecular biology, speech, fingerprint and a wide range of recognition problems to find
hidden patterns. Our second proposed technique is called the Window Markov Predictor,
which seeks to identify relationships between miss addresses within a fixed window. Sample
traces of applications are fed into these sophisticated off-line learning schemes to find
hidden memory access patterns and prediction models are constructed. Once built, the
predictor models are loaded into a data prefetching unit in the CPU at the appropriate point
during the runtime to drive the prefetching. We will propose a general architecture for such a
process and report on the results of the experiments we performed, comparing them against

other hardware prefetching schemes. On average by using table size of about 8KB size, we



were able to achieve prediction accuracy of about 68% through our own proposed method
and performance was boosted about 37% on average on the benchmarks we tested.
Furthermore, we believe our proposed framework is amenable to other predictors and can

be done as a phase of the profiling-optimizing-compiler.
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1. Introduction

It is a well-established fact that as processor speed increases, memory becomes a serious
performance bottleneck. While the introduction of caches significantly alleviated the
problem, caching alone will not bridge the increasing performance gap between multi-issue
processors running at very high clock speeds and memory. Data prefetching has been
proposed as an additional tool to bridge this gap. Existing hardware prefetching techniques
require the prefetching hardware to perform some form of learning and prediction in real-
time. This may necessitate a significant investment in hardware, or there may be an impact
on the critical path of instruction processing. In the worst case, it can be both. In this paper,
we propose a new paradigm that utilizes extensive profiling and powerful gff-/ine learning
algorithms. The main contributions of this paper are:

* A novel framework to perform off-line trace analysis that permits a wide range of

learning algorithms;

® A prefetching microarchitecture that is low in hardware requirement and overhead.
Our technique showed significant improvement in prediction accuracy over existing ones.

In Section 2, we will describe some representative previous works on this subject. In
Section 3, we will discuss the use of off-line learning algorithms. Our proposed architecture
will be presented in Section 4 together with three learning algorithms that we tested. This is

followed by experimental setup, results and a conclusion.



2. Previous Work

Research on memory hierarchy optimization can be classified into three broad categories:
software approaches, hardware approaches and hybrid approaches. We will briefly mention
some representative work that is relevant to our discussion. We refer the interested reader to
a detailed survey on the matter that was recently published [20].

In the field of software prefetching early work include that done by Callahan, Kennedy, and
Porterfield [2], and Klaiber and Levy [15]. The former proposed the insertion of data
prefetch instructions in data intensive loops while the latter studied efficient architectural
support mechanisms for data prefetch instructions. Mowry, Lam and Gupta [20] showed
that careful analysis and selective prefetching could provide significant performance
improvements in programs with regular nested loops. Lipasti ez a/. [17] proposed a compile
time heuristic called Speculatively Prefetching Anticipated Interprocedural Dereference (SPAID), for
inserting prefetches into the instruction stream to reduce both the cost and the frequency of
a certain class of data cache misses. Still other approach is that of Ozawa ez. 4/. [22] in which
they used cache miss heuristics to identify problematic loads and then to prefetch them. Luk
and Mowry [18] introduced a method by which the compiler can insert software prefetch
instructions for recursive data structures.

Perhaps aware of the potential difficulties of using software prefetching, there is significantly
more research on the alternative hardware approach to data prefetching. One seminal work
is Jouppi’s proposal [12] of adding “stream buffers” to prefetch sequentially in conventional
caches, there has been numerous suggestions for hardware prefetching. Prefetch strategies
for vector and scalar processors were studied by Fu and Patel [8, 9]. Chen and Baer [4]
proposed a lookahead data prefetching mechanism that combined stride information and
instruction lookahead.

They also investigated a mechanism [5], known as the Reference Prediction Table (RPT), for
prefetching data references characterized by regular strides. The RPT is a cache tagged with
the addresses of load instructions. For each load instruction, the cache stores the previous
memory address accessed by that instruction, the offset of that address from the previous
load and flags to track of the data access patterns in a RPT. In this method, prefetches can
be generated one iteration ahead of actual use but the problem was that memory latency

hiding is dependent upon the execution time of a single loop iteration. Mehrota [19]



proposed a hardware data prefetching scheme that attempts to recognize and use recurrent
relations that exist in address computation of link list traversals. Extending the idea of
correlation prefetchers [3], Joseph and Grunwald [11] implemented a simple Markov model
to dynamically prefetch address references.

Hybrid approaches attempt to overcome drawbacks of pure software and hardware
approaches by combining both. Karlsson, Dahlgren, and Stenstrom [13] proposed both a
pure software version and a combination of software and hardware prefetching technique
called “prefetch arrays” which can prefetch even short sequences linked data structure as the
lists found in hash tables and trees where the traversal path is not known a priori.
VanderWiel and Lilja [25] proposed a data prefetch controller (DPC), which combines low
instruction overhead with the flexibility and accuracy of a compiler-directed prefetch

mechanism.

3. Off-line Learning

Hardware predictors operate in two phases — a /learning phase and a prediction phase. In the
learning phase, the prediction facility is trained. Typically, this involves the updating of a
prediction table or automaton. In the prediction phase, the learned table or automaton is
used to make prefetch requests. In some schemes, during the prediction phase, the
prediction table or automaton may also be updated, i.e. the learning and prediction phases
are interleaved.
A major drawback of existing hardware schemes is the need to perform learning and
prediction both at run time. This severely limits the type of learning schemes that one can
use. We propose overcoming this limitation by taking the learning phase off-line. By using
sample traces collected from an application, prediction tables and automata can be trained
off-line. This rests on the important assumption that the sample trace used for the training
does correctly reflect the behavior of the application during its actual run. The success of
hardware prefetch mechanisms, all of which are based on learning past patterns to predict
future references, provides strong circumstantial evidence for this.

The factors determining the success of a prefetch scheme are accuracy, timeliness,
overhead and coverage. Accuracy refers to the percentage of prefetch requests issued are

actually used. An accurately predicted prefetch request is useless if it is issued too early or



too late relative to the actual use of the data. Any prefetch mechanism will have an
associated overhead (which may be in the form of additional instructions, hardware
investment, or increased bus utilization) that must not be too significant. Finally, the scheme
must be able to cover most of the loads. Unlike on-line schemes, off-line schemes can
consider a significantly larger window of the sample trace and/or use more complex analysis
and learning algorithms. This generally improves the accuracy of the prediction. Furthermore,
by staying focus on program hotspots, coverage is improved. The issue of timeliness and

overhead will be discussed when we outline our architectural solution.
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Fig. 1. Proposed Setup for Off-line Learning

4. Markovian Predictors
In this section, we shall desctibe our proposed Markovian predictors. Fig. 1 shows our

general approach. Training traces of the application of interest are collected. In our
experiments, these traces are first processed through a cache simulator so that we obtained
only the miss traces. It should be emphasized that we used a trace generated by using a
different input for the application in our experiments. During the sample trace collection
phase, the application is also profiled to identify the “hotspots” — sections of code that are
frequently executed. All the basic and hyper blocks in the benchmarks were sorted by their
dynamic cycle counts. The blocks accounting for X percent of the total dynamic cycle count

were selected to be hot spots. Sections of the miss trace corresponding to a particular



hotspot form the training sequences for that hotspot. These training sequences are then fed

to a learning/analysis algorithm that outputs a prediction model for a particular hotspot. The
predicion model is essentially a table with entres (x,y,,y,,.K,y,) where upon

encountering miss address x, prefetch requests are issued for address jy;, 3, ..., y. In
subsection 4.x, we will desctibe how we encode the entries in the table so as to reduce the

size of the prediction tables.

4.1 Simple Markov Predictor

This simple predictor is similar to the one used by Joseph and Grunwald [11]. Let T be the
sample miss trace of an application. For two miss addresses, x, y € T say, the probability P(y
| %), i.e. the probability of x being followed immediately by miss address y, is computed. For

each x € T in the miss trace, we compute N(x) = {P(y | x)} where , x, y € T and y # x. In
addition, from the trace we compute f{x) which is the frequency of occurrences of xin T.
Next, we fix the size of the prediction table. Since in practice, this will not
accommodate all miss addresses, we need a hashing algorithm to access the table. Let A(x) be
the hashing function that maps x to its entry in the prediction table. We used a lookup
mechanism that is similar to cache tag checking. This ensures that the prediction table can be
checked very quickly. We are now ready to construct the prediction table. We iterate through
the rows of the prediction table. Let £ be a row in the prediction table. From the set {x |
h(x) = k, x € T }, we select a miss address x with the highest f{x). In other words, of all the
miss addresses that map to the same row, we pick the one with the highest frequency of
occurrences in the sample trace. Let p be the number of prefetch request entry per row.
Having selected x, we simply use the p miss addresses of N(x) with the highest probabilities.

For our experiments, we chose p to be 4.

4.2 Windowed Markov Predictor

This is similar to the simple Markov predictor except that in the computation for N(x),
instead of considering only the miss addresses that immediately follows x, we use a window
of size w and consider all miss addresses within the window. In other words, if y,, y,, ..., is

the sequence of miss addresses that follows x, then for the windowed Markov predictor, we



use N°(x) = { P(j; | ) | i< w, x, y,€ T }. For our expetiments, we chose » to be five.
Another important modification is that we do not necessarily use up all p prefetch request
slots. Of the p top probabilities of IN’(x), we discard those that are less than a threshold. The
idea is to minimize bandwidth requirement by not prefetching those addresses with low

probabilities.

4.3 Hidden Markov Model (HMM) Predictor

The Hidden Markov Model (HMM) is a well-known technique that has a wide range of
applications [10, 16, 21]. Essentially, it is a Markov chain where each state generates an
observation. HMM are known to be very useful for time-series modeling since the discrete
state-space can be used to approximate many non-linear, non-Gaussian systems.

A HMM can be characterize as follows. Let S be the number of states, and K be the

number of (unique) symbols. The model consists of three matrices:
® A, is the probability of making a transition from state 7 to state /, with the

requirement that ZA,., =1L

J
® B, is the probability of outputting symbol & when in state 7, with the

requirement that Z B, =1;
k
® T,is the probability of starting in state I, with ZTC ;=1

There are established algorithms to train a HMM. These include the Viterbi and Baum-
Welch algorithms [6]. We used a modified version of a publicly available HMM code used
for speech recognition [7] to create HMMs of a sample trace, T. A unique HMM is created
for each hotspot. We set K to be the number of unique miss addresses in T. Each pass
through a hotspot is taken to be a unique training sequence.

To obtain the prediction table from the trained HMM, we used the following

strategy. Given x € T, we sort the set {B,, | / € S} and obtain the states 4, &, ..., 4, .-, 4,

corresponding to the highest ¢ members of the sorted set. For each of these states, we sort



the set { A, ; | /€ S} and obtain the rhighest probability next state. For each of these next

states, we again select the ¢ highest probability from {B, | j € S, y € K }. From this we can
construct a length two sequence (x;, y) as well as its associated probability P(x, y) where

P(-x’ y) = Bx,ik X Aik,jl X Bj[,)'

Proceeding in a similar manner, we can construct sequences of any length together with their
associated probabilities. In practice, for our experiments, we stopped at sequences of length
3 as the longer the sequence, the lower its associated probability. With all these sequences up
to a certain length in hand, we sort them according to their probabilities. We then proceed to
pick p unique symbols that are members of the sequences of highest probabilities as entries
in the prediction table for x. To overcome the problem of two miss addresses mapping to

the same prediction table location, the same technique outlined in section 4.1 is used.

4.4 Encoding the Prediction Table Entries

In order to reduce the size of the prediction tables, we used a stride-based encoding scheme.

Given an entry (x, Vis Vo Vs y4) from the predictive table derived above, where x is the miss

address to start the prefetch process and y,, ¥,, y;, and y, are the four prefetch targets.
Without loss of generality, we shall assume that they are sorted in the probability of the
prediction. Each of the methods above computes these probabilities. Consider the four
displacements d| = (x — y1), ..., ds = (x — y4). There are four cases for the encoding:
® (Case 1: All four displacements are in the integer interval [-128, 127]. We store all four
displacements in a 4-byte word.
® (Case 2: One of the four displacements is cannot be stored in an 8-bit byte. The one
that cannot be held in a byte is discarded.
® (Case 3: At least two of the four displacements are in the integer interval [-256, 255].
The two of the higher probabilities are stored in a 4-byte word.
® (Case 4: None of the above. y; is stored as a full 4-byte address.
Two additional bits are needed to distinguish the case of the entry. This encoding scheme
sacrifices on accuracy but results in a very compact table. The actual table size per hotspot is

shown in Table x. On the average, the prediction table for each hotspot is about 8KByte.
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5. The Proposed Hardware Architecture

In this section, we will describe the proposed architectures in which the off-line prediction
tables can be effectively deployed. The techniques described can be used to prefetch data
into the .1 data cache or the I.2 data cache. We begin by assuming a canonical machine with
the non-blocking I.1 data cache on-chip, a small prefetch buffer, and a I.2 data cache that is
off-chip but on-die. Fig. 2 shows the proposed architecture for L1 prefetching. We have
already described how the prediction tables are constructed off-line, and shall now describe
how the scheme will work at runtime. By means of the training trace, a special
“load_predictor <table_ addr>” instruction is inserted into earliest branch that,
in the trace, leads to a new hotspot. An example is shown in Fig. 4. An important issue is
whether there is sufficient time to preload the predictor table. If we assume that the table is
8Kbyte, and the bus width for the L1 and L2 architecture is 256 bits and 128 bits, then the
number of cycles it takes to load the entire table is 256 and 512, respectively. Table x shows
evidence of this being met a good proportion of the time. <NEED TO ELABORATEI!!l —

more than 1 table?>
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Fig. 4. Insertion of load_predictor instruction

Once the table is loaded, the prefetch engine will examine the miss addresses reported by the
cache unit. Using the standard tag checking mechanism, the prefetch engine will probe the
prediction table. When there is a hit in the prediction table, the prefetch engine will decode
the entry and issue the prefetch requests.

The mechanism for L2 prefetch is a variation of the L1 mechanism except that
instead of requiring an additional port to L2 memory, the table is fetched by cycle-stealing

from the main memory bus.

6. Experimental Setup

We use the Trimaran compiler-EPIC architecture simulation infrastructure [24] to evaluate
the performance of our proposed system and of each of the three off-line learning
algorithms outlined above. We compared the performance of our system against that of
using larger caches, and the RPT hardware prefetch scheme of Chen and Baer [5]. The

following benchmarks were used for the evaluation:

® 1301 from SPEC 95 which is an Xlisp interpreter.

¢ 181.mcf from SPEC CPU2000 which does combinatorial optimization / single-

depot vehicle scheduling



® 183.equake from SPECfp 2000 which does wave propagation simulation.
® 164gzip from SPEC CPU2000 which does compression
¢ 188ammp from SPECfp 2000 which does computational chemistry

® bisort, mst, treeadd, tsp, health from Olden Pointer Benchmark suite.

Our baseline setup is an IA64-like EPIC machine [14] with four integer, two floating point
and two memory units and a 32Kbyte L1 cache and a 256Kbyte L2 cache. We computed
stall cycles for 1.1 and 1.2 load misses when L1 cache size is 32K, 64K and 128K with 256K
L2 cache. In our experiments, the predictor is used to prefetch data from L2 into a 32Kbyte
prefetch buffer co-located with the L1 cache.

Our main metric for characterizing the performance of the memory system is sza// cycles. Stall
cycles account for a significant portion of actual data intensive program run-time (up to 90%
in some of modern architectures) and significant portion of stall cycles comes from load
misses. Reduction in stall cycles therefore directly leads to performance improvement. Since
our EPIC machine is an in-order machine, we assumed a “stall-upon-use” latency model. In
this stalling model, a load instruction that causes a cache miss will not immediately block the
pipeline. The pipeline is stall only at the earliest attempt to use the data that is to be loaded.
There are three parameters used to compute stall cycles. First is the minimum def-use latency
which is the minimum number of cycles for a certain value to be used after it is loaded by a
load instruction. This is obtained from the compiler. The second set of parameters consists
of the miss penalties for load misses at the level one and the level two caches. In our
experiments, a I.1 cache load miss costs 7 cycles and a 1.2 cache load miss costs 32 cycles.
Finally, the clock cycles at each L1 load miss occurred are also used.

The stall cycles for L1 load misses without prediction using profiling is computed as follows:

For certain load X operation,
e If Xresults in a L1 cache hit
o Stall cycle += max (H - L, 0)
e If X results in a miss at .1 but a hit at 1.2

o Stall cycle += max (M, - L, 0)



where H is the hit latency, L is minimum def-use latency and M, is miss penalty for L1
cache. The stall cycles for 1.1 load misses with our prediction is computed as follows:

For certain load X operation that was correctly predicted
® And X results in a cache hit
o Stall cycle += max (H - L, 0)
¢ And X results in a cache miss at L1 but a hit at L2
o Stall cycle += max (M, -4 - L, 0)

where 4 is distance in terms of clock cycles between load X and the previous request to
prefetch X. If a load operation was not preceded by any prefetch request, then the
computation of stall cycles is same as that without prediction. We should point out that we
did not consider store misses as most load misses dominated in the benchmarks.

We first built the prediction table per each hot spot for each benchmark we tested using
training input sets through offline learning methods. Then we ran the simulation again using
different input sets and generated load miss traces for level 1 and level 2 cache misses. The

training and testing input sets for the experiments are described in table 1.

Training input Testing input

130l {BENCH_DIR} /input1/train.Isp {BENCH_DIR} /input2/*lsp
181mcf | {BENCH_DIR} /input_train/inp.in {BENCH_DIR} /input_ref/inp.in
183equake | {BENCH_DIR} /input_train/inp.in {BENCH_DIR}/input_ref/inp.in
164gzip {BENCH_DIR}/ {BENCH_DIR}/

input_train/input.combined 32 input_test/input.compressed 2

188ammp {BENCH_DIR}/input_train/ammp.in | {BENCH_DIR}/input_test/ammp.in

mst 1024 1 684 6
treeadd 20 1 40 6
bisort 250000 O 19600 4
tsp 1000000 O 3000000 O
health 5 500 1 3 250 2

Table 1. Training and testing inputs(arguments) for each benchmark tested



For each benchmark, we selected certain basic blocks where most load misses occurred
through profiled information and assign them as candidates of hot spots. To be chosen as a
hot spot, there should be a large enough gap between the neighboring hotspots. For example,
the Treeadd benchmark of Olden Pointer benchmark suite comprises of 33 total basic
blocks and load miss occurred in only 11 of those 33 blocks. Moreover 75% of entire load
misses came from one particular basic block, basic block number 4 of treeadd procedure.
We chose this basic block as our first hot spot and next candidate for hotspot was block
number 6 of treeadd procedure where 20% of entire load misses came from. But the average
latency between this block and block number 4 was just 388 cycles which was less than our
threshold of 5000 for choosing hotspots, so even though basic block number 6 was one with
second most load misses, it was not chosen as our hot spot during our experiments. Basic
block number 6 of treealloc procedure was chosen as our second hotspot since its average
latency to the chosen hotspot was 190,826 cycles ensuring that there is enough time to load
the prediction table for this hotspot during runtime. The total number of hot spots ranges
from 2 (treeadd) to 19 (130Li) as seen in Table 2. The table also reports the average distances

of neighboring hot spots.

Total number Average
of Hot spots | distance between
chosen per hot spots
benchmark (cycles)
1301 L1 19 48,405
12 19 54,885
181mcf L1 14 75,694
12 14 92,289
183equake | L1 17 42,448
12 18 97,291
Mst L1 14 8,012
12 16 12,830
treeadd L1 2 190,826
12 2 210,211
bisort L1 11 100,215
12 14 113,356
Tsp L1 17 89,402
12 18 114,129
health L1 15 40,918
12 15 69,206

Table 2. Characteristics of hotspots in the benchmark.



As explained in section 4.4, we used a stride-based encoding scheme to get a realistic size of

prediction tables. Table 3 shows the result of applying this scheme to our implementation.
For each benchmark, we measured the average percentage of each 4 cases after Hidden
Markov and Windowed Markov learning phase ends and they each provide the prediction
table. As you see in table 4, Hidden Markov Predictor shows the tendency of providing
prediction addresses far apart from particular miss address in compared to Window Markov
Predictor(its windows size was set to 5) and it eventually led to much less number of
prediction addresses in the prediction table after many addresses which happen to be far
from were were thrown out of the final prediction table. The result show Window Markov
Model not only contains more prediction addresses for particular miss address in the
encoded prediction table but also its prediction accuracy was much higher than Hidden
Markov Model. In Fig. 5, we tested our Window Markov Model with different window size
and the best result came from window size 5 and the performance deteriorated as window
size is getting bigger. Those results strongly show the existence of data locality characteristics

even in pointer intensive applications.

Average %  Average %  Average % | Average % | Encoded

of of of of Table Size Accuracy
Case 1 Case 2 Case 3 Case 4

HMM 1.2 23 % 2.7 % 137 % 813 % 11.8 KB 38.3 %

130li WMML1 | 464 % 38.5 % 4.6 % 10.5 % 7.8KB 61.6%
WMMLI2 | 486 % 32.9 % 7.8% 10.7 % 72KB 78.4%

HMM L1 1.6 % 3.4 % 12.9 % 821 % 9.7 KB 28.6 %

HMM 1.2 1.9 % 57 % 92 % 832 % 72KB 26.9 %

181mcf WMMTLI | 50.6 % 402 % 1.4 % 7.8 % 75KB 76.2 %
WMMI2 | 137 % 522 % 17.7 % 174 % 8.4 KB 75.5 %

HMM L1 1.3 % 2.9 % 6.6 % 89.2 % 9.1 KB 81 %

183 HMM 1.2 1.7 % 31 % 7.5 % 87.7 % 8.4 KB 111 %
equake [ MM L1| 487% 31.4 % 8.6 % 113 % 53KB 66.8 %
WMMI2 | 728% 20.7 % 21 % 44 % 46 KB 48.6 %

HMM L1 5.4 % 102 % 214 % 63.0 % 9.7 KB 8.9 %

164 HMM 1.2 82 % 18.9 % 16.4 % 56.5 % 9.4KB 71 %
azip WMML1 | 385% 422 % 10.6 % 8.7 % 63 KB 54.9 %
WMMI2 | 431% 37.9 % 51 % 13.9 % 58 KB 58.8 %

HMM L1 83 % 32 % 21.6 % 66.9 % 8.1 KB 131 %

188 HMM 1.2 57 % 82 % 16.8 % 69.3 % 8.0 KB 9.4 %
ammp | MM L1| 447% 25.5 % 4.6 % 25.2 % 63 KB 70.3 %
WMMI2 | 538% 30.7 % 21 % 134 % 59KB 64.8 %

HMM L1 3.6 % 72% 671 % 221 % 53KB 15.9 %

_ HMM 1.2 21 % 31 % 39.6 % 552 % 43KB 174 %
bisort [WMML1 | 37.8 % 12% 3.0 % 49 % 6.0 KB 87.9 %
WMMI2 | 412% 32.8 % 133 % 127 % 76 KB 82.8 %




HMM L1 1.2% 1.7 % 7.8 % 89.3 % 8.5 KB 21.7 %
HMM 1.2 2.5 % 3.9% 11.2% 82.4 % 7.3 KB 14.9 %
mst WMM 1.1 80.3 % 6.0 % 12.4 % 1.3 % 12.2 KB 68.2 %
WMM L2 68.1 % 8.9 % 21.6 % 1.4 % 10.6 KB 62.2 %
HMM L1 1.2% 1.4 % 18.8 % 78.6 % 3.1 KB 18.6 %
HMM 1.2 23 % 4.8 % 30.2 % 62.7 % 2.8 KB 12.4 %
treeadd [WMML1 | 783 % 54 % 14.5 % 1.8 % 39KB 75.9 %
WMM L2 70.1 % 22.8 % 4.6 % 2.5% 3.6 KB 66.6 %
HMM L1 1.3 % 4.9 % 27.8 % 66.0 % 7.7 KB 38.0 %
tsp HMM 1.2 3.2% 2.0 % 259 % 68.9 % 5.8 KB 36.4 %
WMM 1.1 39.6 % 16.8 % 41.4 % 2.2 % 9.9 KB 43.7 %
WMM L2 30.1 % 15.0 % 52.0 % 2.9 % 8.3 KB 40.9 %
HMM L1 3.9% 2.1 % 25.5% 68.5 % 13.3 KB 18.7 %
HMM 1.2 1.8 % 3.5% 28.6 % 66.1 % 11.3 KB 15.5 %
health WMM 1.1 43.5% 31.1% 12.4% 13.0% 8.1 KB 73.6%
WMM L2 41.2% 28.6% 17.3% 12.9% 7.6 KB 78.2%
Table 3. Average characteristics of each hot spot per benchmark
L1 load L2 load L1 load L2 load
misses misses misses misses L1 load L2 load L1 L2
before before after after miss miss prefetch | prefetch
WMP WMP WMP WMP Coverage | Coverage | overhead | overhead
prefetch | prefetch | prefetch | prefetch
130li 11.17M 2.13M 6.19M 0.83M 44.6% 60.8% 0.48 0.37
183equake | 977.89M | 472.61M | 564.83M | 156.53M 42.2% 66.9% 0.39 0.96
164gzip 581.75M | 142.81M | 241.43M | 61.58M 58.5% 56.9% 0.74 0.66
188ammp | 408.57M | 178.33M | 155.58M | 74.72M 61.9% 58.1% 0.51 0.57
181mcf 774.65M | 429.93M | 350.76M | 204.22M 54.7% 52.5% 0.36 0.36
Tsp 1.78M 0.61M 1.10M 0.40M 38.3% 34.8% 0.60 0.58
Treeadd 0.54M 0.26M 0.25M 0.13M 54.0% 50.2% 0.36 0.47
Mst 3.15M 2.54M 1.84M 1.55M 41.5% 39.1% 0.37 0.41
Health 18.19M 9.64M 9.69M 4.98M 46.7% 48.4% 0.34 0.30
Bisort 2.47M 1.05M 0.90M 0.39M 63.5% 62.3% 0.21 0.30

Table 4. Coverage of L1 and L2 load misses of WMP predictor

Table 4 gives the detailed breakdown of the performance of the Window Markov Predictor.
It shows that the predictor do indeed reduce the overall number of load misses in the
applications. Columns 6 and 7 report the coverage of the predictor. This is the percentage of
load misses in the hotspots that hit the prediction table causing prefetch requests to be sent

out. The last two columns is the ratio of wasted prefetch requests (i.e. mispredictions) for




each (overall) load miss. We argue that although we did not simulate actual bus transactions
and bandwidth, these ratios indicate that the overhead caused by prefetch requests is low.

We attribute this to the good accuracy and coverage of the predictor.
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Fig. 5. Window Markov Predictor with various window size

The percentage performance improvement is shown in normalized graph of Fig. 7 with the
base case being that of a machine with 32KByte L1 cache and 256KByte L2 cache without
using any prediction scheme. We measured performance improvement by dividing total
execution cycles after certain prefetching scheme was applied by total execution cycles
without any prefetching scheme. The results shows that increasing I.1 cache size does not
necessarily improve performance especially for data intensive applications using dynamic
data structures like pointers. As can be seen, the Hidden Markov predictor(HMP) showed a
bigger performance increase in compared to bigger cache size or RPT or simple Markov
Predictor scheme except one SPEC 2000 benchmark(183equake). The Windowed Markov
Predictor (WMP) in turn did better than the Hidden Markov Predictor(HMP) or any other
schemes in all benchmark tests by large margin. In one instance, a 38% improvement in
performance was recorded using Windowed Markov Predictor. In almost all cases, the use of
off-line learning algorithms gave a pronounced performance improvement over that of

simply increasing the cache size or a hardware prefetch scheme like RPT.
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Fig. 6(a) and (b). Effect of increasing miss penalty.

Fig. 6 shows the effect of increasing miss penalties on the various schemes that we tested on
the 188.ammp benchmark. In the top diagram, the L.2 miss penalty is fixed at 93 cycles. This
was obtained from the actual measurements reported [28]. L1 miss penalty was varied from
12 to 38. In the lower diagram, a L1 penalty of 25 is assumed while the L2 penalty was varied
from 30 to 162. What is interesting to note is that the slope for the Window Markov
Predictor is gentler than that of others. The gap in memory and processor speed is increasing
resulting in larger miss penalties. The Window Markov Predictor seems to show more

promise that the other schemes in tolerating larger penalties, especially in the I.2 cache.
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Fig 7. Performance improvement in total cycles by percentage wise (normalized by
32K L1 cache and 256K L2 cache without using any prefetching scheme).
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Fig 8. Performance improvement in total cycles by percentage wise (normalized by
32K L1 cache and 256K L2 cache without using any prefetching scheme).



The percentage performance improvement is shown in normalized graph of Fig. 7 with the
base case being that of a machine with 32KByte L.1 cache and 256KByte 1.2 cache without
using any prediction scheme. We measured performance improvement by dividing total
execution cycles after certain prefetching scheme was applied by total execution cycles
without any prefetching scheme. The results shows that increasing L1 cache size does not
necessarily improve performance especially for data intensive applications using dynamic
data structures like pointers. In one instance, a 47% improvement in performance was
recorded using Window Markov Predictor. In almost all cases, the use of off-line learning
algorithms gave a pronounced performance improvement over that of simply increasing the
cache size or a hardware prefetch scheme like RPT. In particular, the Window Markov

Predictor gives the best performance.

7. Conclusion

In this paper, we proposed a paradigm and architectural framework for the use of off-line
learning algorithms in the prefetching of data. In all the benchmarks that we tested, our off-
line learning scheme gave improved performance more significantly than other schemes such
as increasing the cache sizes. The off-line approach allows for even more aggressive analysis
and prediction schemes. Our future research secks to develop more powerful learning
module. Furthermore, we believe that off-line learning can also be adapted to software
prefetching, and we are currently also examining that approach which will require even lesser

hardware support.
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