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CHAPTER 1

INTRODUCTION

1.1 Overview and Organization

The purpose of this thesis is to provide the reader with a fundamental understanding of

the problem of estimating and compensating for the unwanted motion experienced by a

synthetic aperture sonar (SAS). Several techniques are presented for solving this problem,

and an emphasis is placed on the practical aspects of implementing them. The schemes

presented have their relative merits; some are arguably better than others for a given ap-

plication. They have been proven to be effective by testing them extensively on field data

acquired by SAS systems carried by autonomous underwater vehicles (AUVs). Some of the

algorithms described in this thesis were used successfully in the world’s first demonstration

of fully-autonomous real-time SAS imaging software carried aboard an AUV.

This document is organized as follows:

• Chapter 1 provides an overview of the field of synthetic aperture sonar imaging. The

purpose of this chapter is to give some necessary background and to provide the

context in which the body of this work rests. The fundamental results regarding SAS

imaging are given, but most are not derived. Rather, qualitative arguments are given

along with references to more complete discussions.

• Chapter 2 gives an introduction to the two dominant types of SAS reconstruction

techniques: the spatiotemporal and Fourier-domain approaches. Both are derived in

detail, and care is taken to point out the important assumptions and approximations

found in these derivations. This chapter may be skipped by readers already well-

versed in SAS imaging.

• Chapter 3 presents an analysis of the ways in which various categories of platform

motion can degrade SAS imagery.
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• Chapter 4 describes the redundant phase center (RPC) technique for SAS motion

estimation, which is the foundation for much of Chapter 5.

• Chapter 5 is the focus of this thesis, as it discusses the problem of using the RPC

data to measure the motion of the platform carrying the sonar. Several techniques are

presented, and their relative merits are discussed.

• Chapter 6 discusses several ways to compensate the SAS data once the array motion

has been estimated. Of particular interest are the circumstances under which certain

simplifications can be employed that result in lower computational expense.

• Chapter 7 presents sample results and contains some final comments on the work as

well as suggestions for building upon it.

1.2 Real Aperture Sidescan Sonar

Before introducing the idea of synthetic aperture sonar, it is helpful to first describe real

aperture sidescan sonar imaging. A sidescan sonar consists of a transducer moving in a

nominally straight line through the water. At regular time intervals, the sensor transmits

a signal and records the received echoes. These echoes are then stacked sequentially to

construct a raster scan image of the sea floor as depicted in Figures 1.1 and 1.2. The

sensor used for sidescan imaging is frequently towed, with the tow cable being used for

data uplink. The sidescan sonar might also be mounted to a ship’s hull, and the application

most relevant to the present work is sidescan sonar carried by an autonomous underwater

vehicle.

The operating characteristics of a sidescan sonar can be summarized using the following

quantities:

• Range Resolution: The range resolution is often described as the distance between

the -3 dB points of the main lobe of the transmitted signal as measured along the
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Figure 1.1. The diagram above shows the important features of sidescan sonar data collection. The
most common way to image a large region of the sea floor is to tow or drive the sonar in a serpentine
pattern similar to the pattern used for mowing a lawn. The sonar thus images strips of the sea floor
that may be used to form a composite image. The range of the sonar determines the allowable pitch or
spacing between successive legs, Pleg. Also shown is the blind region, known as the holiday, that exists
around the nadir point. For complete coverage, the holiday must be imaged by adjusting Pleg or by
using a special downward-looking sensor known as a gap filler.

range axis. If the transmitted signal requires compression, or matched filtering, then

the resolution refers to the compressed signal.

• Cross-Range Resolution: The cross-range resolution is given by the distance between

the -3 dB points of the main lobe of the transmitted signal as measured along the

cross-range axis.

• Area Coverage Rate: The area coverage rate indicates the amount of area per unit

time that may be imaged with a given sonar.

• Frequency: The frequency of a sonar gives a rough indication of its maximum range
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Figure 1.2. The figure above contains both port and starboard sides of a sidescan SAS image. The
sandy sea floor transitions from a smooth to a rippled surface rather abruptly. The holiday is visible
as the region extending from -5 m to +5 m range.

capability, as the attenuation of sound in the water increases with frequency. The

frequency also indicates the acoustic wavelength which, in turn, indicates the lower

limit on the size of objects that may be imaged.

The range and cross-range resolution give the user an idea of the sonar’s point scatterer

response (PSR). That is to say, an ideal point scatterer (with no finite spatial extent) will

appear to have the dimensions given by the range and cross-range resolution. The following

sections give a brief discussion of each of the parameters listed above. For a detailed survey

of real aperture imaging sonar, see the texts by Fish and Carr [1, 2].

1.2.1 Range Resolution

The range resolution is simply proportional to the inverse of the bandwidth, Bw, of the

transmitted signal: δx = c/2Bw. These signals might be tone-bursts or they might be
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extended-time signals such as linearly-swept frequency modulated (LFM) pulses. A tone-

burst requires no added processing, but the signal amplitude is limited by the power that can

be put through the projector. This limit might be imposed by the hardware itself through

the electronics or the transducer, or by nature in the form of cavitation. Cavitation occurs

when the pressure of the rarefaction portion of the acoustic wave drops below the vapor

pressure of the surrounding water, effectively boiling it [3].

Extended-time signals such as the LFM require an additional step known as pulse com-

pression or matched filtering [3, 4, 5] in order to achieve the desired resolution. The fact

that these signals are extended in time allows the instantaneous power to be reduced. The

pulse compression step yields a high signal-to-noise ratio that might otherwise be physi-

cally impossible to obtain using a tone burst.

1.2.2 Cross-Range Resolution

The cross-range resolution (also referred to as azimuth resolution or along-track resolution)

of a real aperture sonar is given by the beamwidth of the transducer. The exact beam pattern

of a rectangular sensor of length D is derived in Section 2.4. For the present, it suffices to

use the approximate formula θ3dB ≈ λ/D where λ is the wavelength. The approximation

worsens for large beamwidths, but it is sufficiently accurate for almost all practical use.

The cross-range resolution is derived by idealizing the sensor directivity pattern as being

equal to zero outside the -3 dB beamwidth and constant within it. Thus, any scatterer whose

angle relative to the sensor boresight is greater than ±θ3dB/2 will be invisible. Furthermore,

if one or more scatterers (all assumed to be at the same range) fall within the -3 dB beam,

they are indistinguishable as separate objects and appear to have cross-range extent equal to

δy = Rθ3dB. In other words, the cross-range resolution is given by the arc length subtending

the sonar’s -3 dB beamwidth at a given range R. Thus, the cross-range resolution of a real

aperture sonar worsens linearly with range.

In order to achieve high resolution at long ranges, θ3dB must be reduced. This reduc-

tion can be accomplished in two ways. First, the frequency can be increased resulting in
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shorter wavelengths. The frequency cannot be increased arbitrarily, however, as absorption

eventually limits the useful range. Furthermore, the frequency range may be constrained in

some instances by the desire to avoid interfering with other acoustic devices. The second

way to improve resolution is to increase D. But again, D cannot be arbitrarily large as the

physical size of a transducer is often limited by cost, space and power requirements, and

manufacturing technology.

1.2.3 Area Coverage Rate

Sidescan sonar is often used to survey an area completely or to locate bottom features

within a given region. Hence, the area coverage rate (ACR) is an important metric when

designing a sonar or when choosing one for use in a given application. These surveys are

generally carried out by driving the sonar back and forth across the desired area in a fashion

reminiscent of the pattern used when mowing grass (see Figure 1.1). The area coverage rate

is the product of the range swath width, (Rmax − Rmin), and the sonar’s forward velocity, v.

For example, a sonar with a 30 m range swath moving at 1.5 m/s has an ACR of 45 m2/sec.

Area coverage rate is most commonly expressed as the area imaged per hour, in which case

the example yields an ACR of 0.16 km2/hr.

It is common to neglect the gap, or invisible region, occurring around nadir implying

that Rmin = 0. In this case, determining the ACR amounts to determining the maximum

range and forward velocity of the sonar. The maximum range is limited by acoustic atten-

uation and by the distance the sound is allowed to propagate before reception is terminated

and the next ping transmitted. The propagation time is, in turn, driven by the desired spac-

ing of the pings (that is, the cross-range spacing of the lines making up the raster scan

image). If the sonar ping spacing is Dping then the maximum range is:

Rmax =
Dpingc

2v
. (1.1)

This equation says that the ping spacing divided by the forward velocity gives the time

between pings. The ping time is then multiplied by the sound speed to give the distance
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covered by the sound propagation. Finally, this distance is divided by two to account for the

fact that the sound has to travel out and back from scatterers in the water. The maximum

range is inversely proportional to the forward velocity. Reducing v increases Rmax, but

there is often a practical lower limit on how slowly a body can move through the water and

remain stable enough to produce an acceptable image. The ACR is obtained by multiplying

Rmax in (1.1) by the forward velocity, v:

ACRRAS = Rmaxv =
Dpingc

2
. (1.2)

Equation (1.2) seems to say that the ACR can be increased easily by widening the distance

between pings. However, if Dping exceeds the cross-range resolution δy, then the coverage of

the sea floor will be incomplete by virtue of the fact that holidays will have been introduced

into the imagery in the cross-range dimension.

1.2.4 Frequency

A sonar’s frequency is important for several reasons. First, it determines the amount of

attenuation (expressed as decibels of loss per unit distance) experienced by the sonar’s

transmitted signal. Attenuation loss caused by the absorption of acoustic energy in seawater

is described in [3]. This topic is also discussed further in Section 1.3.5.

The second factor influenced by the frequency is the appearance of objects in the sonar

image. It is, in principle, possible to construct a sensor with bandwidth and aperture large

enough to achieve any desired resolution, δx by δy. However, the system resolution alone

does not determine how features appear in an image. Resolution does limit the sensor’s

ability to perceive them, though. The appearance of a given feature is determined by its

roughness relative to the sensing wavelength. For example, at the wavelengths associated

with human vision (380-780 nm), most surfaces are rough and scatter light in all directions.

Those that are not, such as mirrors and other highly-polished surfaces, convey information

to the viewer through their reflected light in a different manner. For example, a rough

sphere held against a black background and illuminated by a single light source is visually
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sensed to be spherical because of the gradations of light and shadow created by its shape.

Most of its surface scatters some amount of light to the observer’s eye. A perfectly smooth

mirrored sphere, however, would appear visually as a bright point because only a small

region on its surface will reflect light into the observer’s eye. The consequences of smooth

(specular) reflection and rough (diffuse) scattering must be taken into account when deal-

ing with imaging sonar. It is important to be aware of the sonar’s wavelength relative to

the roughness scale of the sea floor and any objects lying on it. A good introductory treat-

ment of the overall implications of wavelength on microwave imaging systems is found in

Chapter 4 of Steinberg and Subbaram [6]. This discussion applies equally well to sonar

imaging.

Thirdly, the frequency can also be used to determine if the sound will be able to pene-

trate a given material. For example, high frequencies are not effective at penetrating typical

sea floor sediments. Depending on the sediment type, lower frequencies can be used for

detection and imaging below the surface of the sea floor. There is a large body of literature

on the subject of subsurface object detection using sonar.

1.3 Sidescan Synthetic Aperture Sonar

Perhaps the best way to summarize SAS compared to real aperture sonar (RAS) is to say

that SAS allows the user to trade hardware complexity for software complexity. Synthetic

aperture sonar is the underwater acoustic counterpart to stripmap-mode synthetic aperture

radar (SAR), and the SAS community is the beneficiary of a rich body of literature gener-

ated by SAR researchers. Synthetic aperture imaging in general is closely related to other

technologies such as medical tomography and seismic imaging. A survey of this family

tree is beyond the scope of the present work, although a number of connections are noted

by Jakowatz [7] and Hawkins [8].
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Figure 1.3. SAS data collection is similar to the raster-style collection shown in Figure 1.1. An impor-
tant difference is that SAS relies on wide physical beams to insonify the sea floor for many pings which
are then coherently processed to form a synthetic aperture having a virtual beam whose cross-range
footprint is independent of range.

1.3.1 Stripmap-Mode Synthetic Aperture Data Collection

Just as with RAS, SAS imaging is conducted using sequences of transmissions and recep-

tions, or pings. The SAS moves through the water in the y direction at an altitude z off the

sea floor. The signal is sent out along the x, or ground range, axis. The data collection for

a SAS (see Figure 1.3) proceeds in much the same fashion as for a RAS. However, the time

series from each ping are stored for further processing, as opposed to being immediately

accumulated in an image. Consider the behavior of the observed signal as the SAS passes

by a single ideal point reflector. The scattered signal first appears at some range and then

moves closer until the sonar reaches the closest point of approach (CPA). Once the sonar

passes the CPA, the echo migrates back out in range. The locus of points traced out by

the reflected signal is a hyperbola, as shown in Figure 1.4. The length of the hyperbola is

infinite, but it is nearly always considered to be equal to the -3 dB (that is, the half power)
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Figure 1.4. Simulated SAS data and reconstruction. The upper figure (a) shows the hyperbolic signal
histories that result from observing a line of ideal point scatterers. The nulls of the sensor’s directvity
pattern are clearly visible, and the main lobe of the most distant hyperbola just fills the cross-range
extent of the figure. At any range, the length of the synthetic aperture is generally taken to be equal to
the -3 dB width of the main lobe. The lower figure (b) demonstrates that the resulting image resolution
is independent of range.

beamwidth of the transducer. A SAS image of the point scatterer is created by integrat-

ing the signal along this single hyperbola. Similarly, an entire SAS image is formed by

integrating over all the possible hyperbolae in the scene.

The cross-range extent of the hyperbolae depends on the beamwidth of the transducer

and is approximately equal to Rθ3dB. Thus, objects at longer ranges have longer hyperbolic

signal histories. As a result, the number of pings required to focus a single point scatterer

increases with range. For this reason SAS is said to have a constant angle of integration, as

opposed to a constant integration time. Figure 1.4 shows a row of point scatterers imaged

using SAS processing as well as the magnitude of the raw echo data used to create the

image. Note that the cross-range resolution is independent of range. The real aperture
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cross-range resolution at a range of 70 m would be seven times worse than at 10 m.

The process described above is known as stripmap mode synthetic aperture data col-

lection. This thesis concentrates solely on the stripmap modality, as it is by far the most

commonly encountered for SAS. There are other non-stripmap modes (see [9, 10, 11] for

example), but these are not explicitly considered here. Nevertheless, many of the results

presented might be usefully extended to other imaging modalities.

The operational properties of SAS can be compared to RAS using the four parameters

listed in the previous section:

1.3.2 Range Resolution

The range resolution of RAS and SAS is identical, δx = c/2Bw, because it only depends on

the bandwidth of the transmitted signal.

1.3.3 Cross-Range Resolution

The cross-range (or along-track) resolution behavior is arguably the defining difference

between real and synthetic aperture sonar. The cross-range resolution of stripmap SAS is

constant with range and is given by:

δy,SAS =
D
2
, (1.3)

where D is the horizontal length of the projector or receiver, whichever is larger [12].

In order to achieve this resolution, the received echoes are coherently integrated over the

synthetic aperture length, which is equal to Rθ3dB, the distance between the -3 dB points

of the beam at range R. The relationship in (1.3) is typically derived using linear (1D) or

rectangular (2D) transducers, but it is valid for any transducer whose directivity pattern

satisfies the condition θ3dB ≈ λ/D.

The fact that SAS cross-range resolution is equal to D/2 leads to a remarkable con-

clusion: small sensors actually yield better resolution. Of course, there are penalties for

making D very small. Small sensors generally have poorer gain than larger ones. Another

concern is the computational expense of forming the image, as decreasing D results in a
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larger beamwidth and, consequently, a longer synthetic aperture. The practical difficulty

of addressing the motion compensation problem over a large synthetic aperture is another

concern. Decreasing D without increasing the number of array elements also reduces the

area coverage rate. Nevertheless, it is clear that SAS overcomes one of the major design

challenges for a RAS. A synthetic aperture sonar enables one to achieve high cross-range

resolution using a small sensor. For comparison, one can compute the length required

for a real aperture sonar to equal a given SAS cross-range resolution (assuming the same

frequency in both cases):

δy,RAS = δy,SAS

=
Rλ

DRAS
.

(1.4)

Solving for the real aperture length DRAS gives:

DRAS =
Rλ
δy,SAS

=
2Rλ
DSAS

= 2LSA.

(1.5)

It can be seen that the real aperture required to achieve a cross-range resolution of δy,SAS

would have to be equal to twice the length of the synthetic aperture.

Yet another important property of SAS is that the cross-range resolution is independent

of frequency. One thus has a great deal of flexibility when choosing the operational band

of a SAS. SAS permits the use of low frequencies for high-resolution imaging (subject

to the considerations mentioned in Section 1.2.4 and in [6]). Low frequencies have the

added benefit of propagating with less attenuation. Consequently, for a given cross-range

resolution, a SAS will generally far outperform a RAS in terms of range capability.

1.3.4 Area Coverage Rate

The ACR of SAS is more constrained than for RAS in the sense that there exists a strict

cross-range sampling requirement for SAS. At a minimum, a synthetic aperture sonar must
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ping (sample spatially or transmit and receive) at intervals no greater than D/2. The details

of cross-range sampling requirements are addressed by several authors. For example, Rolt

[13] and Hawkins [8] both discuss the sampling constraints in the context of stripmap SAS

and provide references to other sources in the SAR literature. The cross-range sampling af-

fects the overall contrast, or dynamic range, of the SAS image. This can be quantified using

the peak to grating lobe ratio (PGLR) and the along-track ambiguity to signal ratio (AASR)

[8, 14]. The aliasing caused by the spatial undersampling of the synthetic aperture is also

of concern for interferometric applications. It is a form of noise that lessens the coherence

and therefore adversely affects the phase estimation required to measure bathymetry [15].

The equation for SAS area coverage rate can be found by multiplying Equation (1.2)

by the forward velocity v:

ACRSAS ≤ Rmaxv =
Dc
2
. (1.6)

The inequality is used in order to account for the case in which the SAS samples more

frequently than D/2. Interestingly, the ACR for SAS is a fixed number. Is is also generally

a low number for high-resolution systems. The low ACR of SAS appears to be a short-

coming, but it is easy to overcome by using arrays of receivers in conjunction with a single

transmitter. This scheme can also be applied to RAS and is treated in Section 1.4 below.

1.3.5 Frequency

The previous comments regarding the choice of frequency for RAS apply to SAS as well.

With respect to underwater imaging, one of the greatest advantages of SAS is that it can

operate at much lower frequencies than RAS for any given cross-range resolution. Higher

frequencies attenuate far more quickly in seawater, thus severely limiting the useful range

of the RAS. Figure 1.5 shows the attenuation per meter as a function of frequency as de-

scribed by Clay and Medwin [3]. In fresh water, the attenuation increases approximately as

the square of the frequency. In sea water the absorption is augmented by the phenomenon

of molecular relaxation, which is the rearrangement of certain molecules in response to the
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Figure 1.5. Attenuation of sound in sea water expressed in decibels per meter. The dashed lines repre-
sent the three individual phenomena contributing to the overall absorption loss shown by the solid line.
(After Clay and Medwin, [3])

acoustic pressure fluctuation. Boric acid and magnesium sulfate are the compounds present

in sea water that exhibit relaxation.

To illustrate the importance of this effect, consider a SAS having 2 cm cross-range

resolution and a center frequency of 100 kHz. A commercially-available RAS with similar

performance (because of the cost/difficulty of building large transducers) needs to operate

around 1 MHz. The absorption of sound energy by seawater at 1 MHz is approximately

nine times larger than it is at 100kHz (0.35 dB/m vs. 0.038 dB/m). The 1 MHz real aperture

sonar might match and even exceed the SAS resolution at short range. However, its range

is limited to approximately 30 m. In contrast, SAS at 100 kHz can produce high-resolution

images at long ranges (well in excess of 200 m)– a feat impossible to achieve with RAS.
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1.4 Vernier Sonar Arrays

As discussed previously, the area coverage rate is severely limited when the distance be-

tween consecutive pings must be small. For SAS, the ACR is especially poor because of

the spatial sampling constraint. Nevertheless, there is a simple solution: the number of

receivers can be increased from one to an arbitrary number, N [16]. For a single transmis-

sion this array of receivers collects multiple cross-range samples simultaneously. When

the sonar moves forward and sends its next transmission into the water, it can advance N

times farther than it could if only a single receiver were employed. As a result, the ACR is

increased by a factor of N. This configuration is often referred to as a vernier array, and it

is virtually always employed when constructing a SAS to be used for at-sea imaging. It is

less common for laboratory or tank experiments because the sensor is often moved by rail,

and the ACR is usually of no concern.

The key concept for understanding the use of vernier arrays is the notion of the phase

center. A phase center is simply defined as the point at which a signal appears to originate.

Most transducers, antennas, etc., radiate from an area with an appreciable physical dimen-

sion. For example, the face of a flat rectangular hydrophone may be many wavelengths

across at its operational frequency. When observed from a distance, the phase center of

this hydrophone is at the center of its face (assuming the face moves uniformly) and is

used to specify its location if it were to be treated as a point source. For a vernier array,

in which each receiver forms a bistatic pair with the transmitter, the phase center is the

point located midway between the transmitter and receiver. Thus, at a distance, the phys-

ical vernier array can be treated as a virtual phase center array that is exactly half as long

and consists of N monostatic transmit/receive elements. The phase center and vernier ar-

ray concepts are illustrated in Figures 1.6 and 1.7. It can be seen from the figure that the

illusion of the phase center array is not complete until a small delay is removed from the

data: τPC = (RTX +RRX − 2RPC)/c. The nature of this correction is clear from the geometry,

and it is discussed in detail by Bonifant [17].
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Figure 1.6. The diagram above illustrates the phase center concept. At long ranges, a bistatic source
and receiver pair behaves as a single equivalent sensor that is located midway between the physical
sensor locations. The location of this virtual sensor is called the phase center of the source/receiver
pair. The signal observed by the phase center is assumed to be the same as that observed by the
physical pair of sensors, with the exception of a delay equal to τPC = (RTX + RRX − 2RPC)/c.

The idea of replacing the actual bistatic configuration with a monostatic virtual trans-

mit/receive pair is critical for correct implementation of Fourier-based image reconstruction

techniques. These are derived using the monostatic assumption, so the observed data must

be conditioned to appear as if it were actually collected monostatically. This phase center

correction is less important for spatiotemporal domain reconstruction. While it may be

used in order to simplify or improve the efficiency of the reconstruction algorithms, the

reconstruction method itself is perfectly capable of accomodating the bistatic geometry.

1.5 Practical Concerns for Successful SAS Imaging

It is desirable for the SAS sensor to ping at uniform predetermined spatial intervals. Oth-

erwise, there is a risk of undersampling in the cross-range dimension. Also, efficient SAS

image reconstruction algorithms assume regular sampling in both range and cross-range.

If uniform sampling is not achieved, it is sometimes possible to resample the data onto a

regularly-spaced grid. This procedure is described in Chapters 5 and 6.
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Figure 1.7. A vernier array is constructed using the phase center concept illustrated in Figure 1.6. The
apparent length of the resulting phase center array (or virtual array) is exactly half that of the physical
array. Consequently, the advance per ping is determined by the length of the phase center array. The
diagram above shows this reasoning applied to an array of six receivers, with the trailing two elements
overlapping for the purpose of motion estimation using redundant phase centers.

The ping timing is typically accomplished using the AUV’s on-board estimate of its

speed over ground (SOG), which in turn is usually estimated using a device known as

a Doppler velocity log (DVL). A DVL operates by sending sound waves in orthogonal

directions down toward the sea floor and observing the Doppler frequency shift of the

backscattered signal. The measured Doppler shift in the orthogonal directions is then used

to estimate velocity. DVLs vary in accuracy, and their speed estimates are often fed through

a smoothing filter prior to being used to trigger the SAS. These navigation/control filters

combine the available information from the on-board motion sensors to compute the best

estimate of the AUV’s current speed and position.

AUVs travel slowly, and undersea navigation is challenging due to the fact that ra-

dio waves do not propagate underwater, rendering useless technologies like LORAN and

GPS. For the most part, the velocity/position of an AUV is known from combining the
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Figure 1.8. The photo above depicts the Small Synthetic Aperture Minehunter system developed for
the Office of Naval Research by the Naval Surface Warfare Center in Panama City, Florida [18]. The
SAS (the white section) was constructed by the Applied Research Laboratory of the Pennsylvania State
University. The vehicle is a Remus 600 supplied by the Woods Hole Oceanographic Institution. (Photo
courtesy of Mr. Daniel Brown.)

DVL output with the output of an inertial measurement unit (IMU). In general, the ro-

tational components of motion are easier to measure with sufficient accuracy, while the

translational components are more difficult. For this reason, the techniques presented in

Chapter 5 largely assume that the vehicle rotations are known and that the translations are

to be estimated using the SAS data itself. An example of an AUV-based SAS is shown in

Figure 1.8 (also see [18]).

1.6 Display of Synthetic Aperture Sonar Imagery

Imagery generated by synthetic aperture sonar is generally characterized as having a high

dynamic range. In other words, a single scene usually contains both very bright and very

dark pixels (a magnitude ratio of 1,000,000:1, or 60 dB, is not unusual). The human eye

also has a large dynamic range of approximately 90 dB, being able to function both in

starlight and sunlight. However, the eye can only perceive about 30 dB of dynamic range

at any given moment. Because of this, it is often challenging to display SAS imagery in

a manner that allows the human eye to observe both bright and dark details simultane-

ously. This problem is compounded by the fact that many common display devices, such
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as monitors and printers, have a dynamic range that is less than 30 dB.

There are any number of techniques used to compress high dynamic range data to make

viewing and interpretation easier. These range from simply taking the logarithm of the

image intensity to state-of-the-art techniques based on partial differential equations (see

Fattal et al. [19], for example). However, sonar imagery is somewhat unique in the sense

that it is often viewed in massive quantities by human operators subject to boredom and

fatigue. For this reason, making the output pleasing to the eye is as important as accurately

representing the information it contains.

SAS imagery displayed without regard to its dynamic range often appears to be dark.

This is due to the character of the statistical distribution of the amplitude of the scene re-

flectivity as represented by the image pixel values. Figure 1.10 shows a typical example

of such an image before and after applying the dynamic range modification technique de-

scribed in this section. Meanwhile, Figure 1.10(a) shows the probability density function

(PDF) estimated using the histogram of this image. The pixel magnitudes are normalized

to fall within the range [0, 1] prior to the computation. Note that the vast majority of the

pixels are tightly clustered around the value of 0.01 and that the horizontal axis only covers

the range [0, 0.07]. Also shown is a curve describing a gamma distribution PDF that was

generated using parameters estimated from the SAS image.

The technique employed in this thesis to deal with the large dynamic range of SAS

imagery is to expand the histogram so that the pixel magnitudes are spread over a wider

range of the display gamut. A simple algorithm is used:

1. Estimate the shape and scale parameters of the gamma distribution PDF that best fits

the pixel amplitude distribution found in a given scene.

2. Define the tails of this distribution as beginning at 1/1000th of the peak value of the

best-fit gamma PDF. These locations (pixel magnitudes) are denoted as Ilower and

Iupper.
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Figure 1.9. The upper image (a) shows an example SAS image displayed without any form of normal-
ization. A small number of bright pixels forces the majority of the image to be too dark. The lower
image (b) is the result of applying the normalization procedure described in this section to the upper
image.
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Figure 1.10. The upper plot (a) shows the gamma distribution PDF estimated using the pixel magnitude
values from Figure 1.9(a). Also shown is the estimate of the image magnitude PDF computed using the
histogram. The horizontal axis is truncated to emphasize the shape of the PDF. The lower plot (b)
shows the histogram after modification using the algorithm described in this section. The horizontal
axis in this plot is not truncated. The gamma PDF from the upper plot is included for comparison, and
its values are given by the right-hand vertical axis. Note the large concentration of dark pixels relative
to bright prior to adjusting the histogram.
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3. Set all the values in the image which are less than Ilower to be equal to Ilower.

4. Set all the values in the image which are greater than Iupper to be equal to Iupper.

5. Rescale the pixel values to range from 0 to 1. In other words, Ilower and Iupper now

correspond to 0 and 1 respectively.

This scheme tends to produce solid patches of saturated pixels if a bright extended target

is present. The effect can be visually unappealing and can result in the loss of important

detail. Instead of clipping all the pixels in the upper tail to a single value, they can be

allocated to a subset of the display gamut. This is accomplished using the following simple

modification to the normalization algorithm:

4. Assign a transition point T between the values of 0 and 1. All values less than Iupper

are then rescaled to cover the range [0,T ] instead of [0, 1] as before.

5. Rescale all the values in the image which are greater than Iupper according to:

I = T +
I − Iupper

1 − Iupper
(1 − T ).

By selecting T , the user can assign a portion of the display gamut to the very bright high-

lights without totally clipping them or allowing them to suppress the apparent brightness of

the majority of the image content. The resulting highlights retain some of their brightness

gradation. An example application is shown in Figure 1.10(b) in which T = 0.8. This

plot shows that a cluster of bright pixels occurs at I = 0.8, but that there are still brighter

pixels with magnitudes ranging up to 1. Also shown in the plot is the gamma PDF used to

fit the original data in Figure 1.10(a). The effect of expanding the histogram is dramatic,

as shown in Figure 1.10(b). This scheme was used to normalize all the SAS imagery in

this document, with the exception of Figure 3.7 which is plotted on a decibel scale, and

Figures 5.8 and 5.14 which were reproduced directly from earlier publications.

The approach described above is simple and appears to yield reasonable image quality

over a wide range of output devices. However, no claims are made regarding its optimality.
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The gamma distribution was chosen because it fits the data well and because reasonably

accurate closed-form estimates exist for computing the best-fit parameters. There is also

some justification in the literature for this choice, as high-resolution low grazing angle SAR

imagery is documented to be well-modeled by gamma, Rayleigh, and Weibull distributions

[20, 21, 22, 23].

1.7 Comments

The sea is restless and always in motion. This aspect of its nature is beloved by poets,

but not so endearing to engineers attempting to image the sea floor. For SAS it is particu-

larly bothersome, as the signal processing required for image formation becomes simpler

and more computationally efficient if the sonar travels a perfectly straight line through the

water. The techniques for using the SAS data to help measure the unwanted motion and

the subsequent compensation are the subject of this thesis. These techniques are described

in detail for practical implementation, and an analysis of the effects of unwanted platform

motion is given.

The basics of SAS image reconstruction are covered in Chapter 2. This discussion,

however, is less practical and is instead aimed at highlighting the assumptions and simpli-

fications involved in deriving the most important reconstruction methods. Hawkins’s 1996

Ph.D. dissertation [8] gives a thorough explanation of how to actually implement a number

of SAS reconstruction techniques. It also primarily deals with stripmap imaging, which is

the most common form of SAS. The synthetic aperture radar (SAR) community has pro-

duced a number of excellent texts having broad applicability. Some of the more recent and

well-known of these are by Carrara et al. [24], Jakowatz et al. [7], and Soumekh [25, 12].

A final note regarding terminology is in order. Motion estimation and compensation

are sometimes referred to as autofocus in the SAS literature since the image is corrected

using its own data. However, the SAR literature has a long history of using the term auto-

focus to refer to postprocessing done on the reconstructed image that brings it into sharper
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focus. This sort of autofocus relies on the image data for finding the desired correction,

and the two types of autofocus have little in common. The term micronavigation is also

widespread in the SAS literature as a way to refer to motion estimation and compensation.

This term is fitting in that typical AUV on-board navigation systems are too inaccurate to

use for high-resolution SAS imaging. In the present work the term autofocus is used in

its traditional SAR meaning. Meanwhile, the term micronavigation is generally avoided

because it is useful to discuss motion estimation and compensation separately, and the term

micronavigation tends to lessen the distinction between these two concepts.
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CHAPTER 2

OVERVIEW OF SYNTHETIC APERTURE SONAR IMAGE
RECONSTRUCTION

2.1 Introduction

Although the subject of this thesis is motion estimation and compensation for synthetic

aperture sonar, it is useful to provide a brief overview of the synthetic aperture imaging

model. The early discussion in this chapter follows a combination of that found in [26] and

Section 6.6 of [27]. The purpose here is not to give a rigorous mathematical development

of synthetic aperture imaging. Rather, an outline of such a development is presented, and it

is shown exactly where the major simplifying assumptions are made. With this knowledge,

the limitations of the traditional SAS imaging model become clear.

2.2 Coordinate System

The coordinate system used for the motion estimation is shown in Figure 2.1. It is an

ordinary right-handed set of axes except that the rotations about the z-axis are referenced

to the y-axis, not the x-axis. This is done so that a yaw angle of zero corresponds to the

array being parallel to the along-track direction. The notation for translations and rotations

is summarized in Table 2.1. The name for each kind of motion is shown in normal type.

The italicized type indicates the terms used for error, or unwanted motion, in the given

direction.

2.3 The Wave Equation and the Green’s Function

This section develops a model for the signal observed at a point in space caused by a

time-dependent source of finite spatial extent. The development begins with the nonhomo-

geneous wave equation:

∇2Ψ(t, x) −
1
c2

∂2Ψ(t, x)
∂t2 = − f (t, x) (2.1)
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Table 2.1. Conventions used to describe platform motion. The terms for unwanted motions are shown
in italics.

x range (sway)
y cross-range (surge)
z altitude (heave)
ψ pitch (pitch)
φ roll (roll)
θ heading (yaw)

in which Ψ(t, x) represents the amplitude of a field variable, c is the speed of propagation

(assumed constant), and f (t, x) is a source function. For acoustic waves, it is customary for

Ψ to be the excess pressure relative to the ambient pressure in the quiescent medium. In

sensing applications Ψ often represents the voltage at the output of the transducer, which is

usually assumed to be proportional to the field variable being measured.

2.3.1 Time-Independent Green’s Function

In the derivation of linear acoustics, all of the field equations are linear and have time-

independent coefficients [28]. Thus, it is possible for the field variables to oscillate with

the same frequency, but not necessarily the same phase, everywhere in the medium [28].

This suggests that (2.1) should be analyzed by considering each frequency separately. This

is done by taking the Fourier transform of (2.1) with respect to time,

(
∇2 + k2

)
Ψ(ω, x) = − f (ω, x), (2.2)

where k = ω/c is the wavenumber which has units of radians per meter. Equation (2.2) is

known as the nonhomogeneous Helmholtz equation. The advantage of the Helmholtz equa-

tion is that the number of explicit unknowns has been reduced by one; the time dependence

for each Fourier component is known to be an oscillation with freqency ω. The problem

is thus reduced to a purely spatial one. The left side of (2.2) is a form of Sturm-Liouville

operator on Ψ, which is denoted as L =
(
∇2 + k2

)
. As such, it belongs to a class of opera-

tors whose inverse exists and is represented as an integral operator whose kernel is known
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Figure 2.1. Right-handed coordinate system used for motion estimation and compensation. The array
yaw is referenced to the positive y-axis, as this is the direction of forward motion.

as the Green’s function [29]. In the present context, the Green’s function corresponding to

L is defined to be the solution of the point source nonhomogeneous equation:

LG(x, x′) = −δ(x − x′) (2.3)

subject to the same boundary condition as (2.1). This is the condition of outward-propagating

waves in free space, also known as the Sommerfeld radiation condition, under which the

required Green’s function is

G(x; x′) =
exp{− jkR}

4πR
, (2.4)

where R = |x−x′| is simply the distance between the source at x′ and observer at x. Knowl-

edge of the Green’s function allows one to proceed toward the objective of calculating the

field due to an arbitrary source. This field can be shown to be the convolution of the Green’s

function with the source distribution [30],

Ψ(ω, x) =
∫

f (ω, x′)G(x; x′)d3x′

=

∫
f (ω, x′)

exp{− jk|x − x′|}
4π|x − x′|

d3x′,
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in which x is the point of observation and the integral is carried out over all points x′ for

which the source exists. Thus, the Green’s function serves to weight the influence of f at

the observer location. For this reason, the Green’s function is also commonly referred to as

the spatial factor of the operator L.

2.3.2 Time-Dependent Green’s Function

Next, the derivation above is repeated with the goal of constructing the time-dependent

Green’s function that satisfies(
∇2 −

1
c2

∂2

∂t2

)
G(t, x; t′, x′) = −δ(x − x′)δ(t − t′). (2.5)

In this case, the nonhomogeneous Helmholtz equation (2.2) with this new source term

becomes: (
∇2 + k2

)
Ψ(x, ω) = −δ(x − x′) exp{− jωt′}, (2.6)

and the solution is G(x; x′) exp{− jωt′} [27]. Taking the inverse Fourier transform gives the

desired time-dependent Green’s function:

G(t, x; t′, x′) =
1

2π

∫
exp{− jkR}

4πR
exp{ jω(t − t′)}dω

=
1

2π

∫
exp{ j [−R/c + (t − t′)]ω}

4πR
dω

=
δ
(
t −

[
t′ + |x−x′ |

c

])
4π|x − x′|

.

(2.7)

This result may then be used to describe the time-dependent solution of the linear wave

equation in free space for any source function f (t′, x′):

Ψ(x, t) =
∫ ∫

f (x′, t′) G(x, t; x′, t′) d3x′dt′

=

∫ ∫
f (x′, t′)

δ
(
t −

[
t′ + |x−x′ |

c

])
4π|x − x′|

d3x′dt′.

(2.8)

The next section applies this result to obtain the time-dependent field due to a rectangular

source.
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Figure 2.2. Rectangular distribution of point sources used to model a sonar projector. The source is
located at the origin and lies in the y-z plane. The width and height are D and H, respectively.

2.4 Radiation from a Rectangular Source

In the following, the signal emitted from a point source is modeled as a complex sinusoid

modulated by a slowly-varying envelope function: P(t) = A(t) exp jωt. When the point

source is placed at x, the resulting field Ψ(t, x − x′) satisfies the following wave equation:(
∇2 −

1
c2

∂2

∂t2

)
Ψ(t, x; t′, x′) = −P(t)δ(x − x′). (2.9)

The solution is then calculated from the spatiotemporal convolution (2.8) above:

Ψ(t, x) =
A

(
t − |x−x′ |

c

)
4π|x − x′|

exp
{

jω
(
t −
|x − x′|

c

)}
. (2.10)

This is the field observed at x due to the prescribed point source at x′. Next consider a

continuous rectangular distribution of identical point sources with horizontal length D and

height H that is centered at the origin and is parallel to the y-z plane (see Figure 2.2). As

above, a given location on the rectangular source is denoted as x′, and points of observation

are designated by x. Unit vectors are indicated using the tilde. Furthermore, the following
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far-field approximation is made:

|x − x′| = |x| − x̃ · x′ + O
(

D2

|x|

)
≈ |x| − x̃ · x′,

(2.11)

in which the distance from the source to the observer is much larger than the characteristic

dimension of the source (that is, |x| � D). This approximation is common in acoustics and

optics, and it is also used in Chapter 6 in a different context. Here it leads to a closed-form

solution for the field Ψ due to the distributed source. Next, insert the expansion (2.11)

into (2.10) and use the zeroth-order expansion of (2.11) for the amplitude term because it is

assumed to be slowly varying and because |x| � |x̃ ·x′|. The first-order expansion, however,

is used for the phase of the complex exponential. The result is

Ψ(t, x) ≈
A

(
t − |x−x′ |

c

)
4π|x − x′|

exp
{

jω
(
t −
|x − x′|

c

)
+ jk

(
x̃ · x′

)}
=

P
(
t − |x−x′ |

c

)
4π|x − x′|

exp
{
jk

(
x̃ · x′

)}
.

(2.12)

With this approximation, (2.8) can be evaluated to obtain a closed-form solution for the

field far away from the rectangular point source distribution:

Ψ(t, x) ≈
P

(
t − |x−x′ |

c

)
4π|x − x′|

∫ +D/2

−D/2

∫ H/2

−H/2
exp

{
jk

(
x̃ · x′

)}
dxdy

=
P

(
t − |x−x′ |

c

)
4π|x − x′|

∫ +D/2

−D/2
exp { jk cosα} dx

∫ +H/2

−H/2
exp { jk cos β} dy

=
P

(
t − |x−x′ |

c

)
4π|x − x′|

sinc
(
kD
2

cosα
)

sinc
(
kH
2

cos β
)

=
A

(
t − |x−x′ |

c

)
exp

{
jω

(
t − |x−x′ |

c

)}
4π|x − x′|

sinc
(
kD
2

cosα
)

sinc
(
kH
2

cos β
)
,

(2.13)

in which α is the azimuthal angle (about the z-axis) and β is the elevation angle (about the

y-axis). These angles are referenced to boresight, which is the outward normal centered on

the face of the rectangular source.

The solution in (2.13) is for a single frequencyω. Thus, more complicated solutions can

be constructed by integrating over all the appropriately-weighted frequencies in a desired
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pulse. Noting that the complex exponential term in (2.13) can be written in two parts, and

carrying out the integration with respect to ω yields the time-space domain solution for a

given transmitted signal observed at x

S (t, x − x′) =
A

(
t − |x−x′ |

c

)
4π|x − x′|

∗t W
(
t, x − x′

)
(2.14)

in which the term W(t, x − x′) represents the spatiotemporal response of the rectangular

source and ∗t indicates convolution with respect to time.

2.5 Modeling the Reflection from the Sea Floor

This section presents the traditional model for the scattered signal used in the mathemati-

cal development of the standard synthetic aperture image reconstruction algorithms. This

model employs the following assumptions (see Section II.2.2 of [17]): the sound velocity is

constant throughout the medium (for example, multipath and medium inhomogeneity are

ignored, and the signal travels a straight path), the sea floor is modeled as a surface contin-

uum of ideal omnidirectional point scatterers, there are no occlusions, and the amplitude

of the sound scattered by an object is much smaller than that of the incident field. The

last is the so-called Born approximation or small scattering approximation [28, 27]. This

assumption is important because it implies that multiple scattering is neglected. Lastly, the

stop and hop or stop-start condition is imposed in which the sensor is considered to remain

effectively motionless during the time of flight of a single ping.

Under the above assumptions, the echo signal received at a point x by the sensor used

for both transmission and reception is the sum of all the signals scattered by the individual

point reflectors f (x′) on the sea floor weighted by the sensor’s two-way directivity pattern

W(t, x − x′):

E(t, x) =
∫

f (x′)
A

(
t − 2|x−x′ |

c

)
(4π)2|x − x′|2

∗t W
(
t, x − x′

)
d3x′. (2.15)

The temporal Fourier transform of the received signal is given by:

E(ω, x) =
∫

f (x′)A(ω)W (ω, x − x′)
(4π)2|x − x′|2

exp
{
− j2k

√
x − x′

}
d3x′. (2.16)
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Common simplifications to these expressions are to neglect the 1/(4πR)2 spreading term

(1/4πR out to the scatterer and another 1/4πR for the reflected signal going back to the

sensor) and the directivity pattern W. The former can be compensated using simple time-

varying gain, and the latter can be deconvolved in the frequency domain as set forth in

Chapter 4 of [8]. Note that W in the present context represents the weighting for both

transmission and reception. In (2.14), W indicated the transmit weighting alone.

The resolution in the range direction is unaffected by synthetic aperture processing. It

is inversely proportional to the bandwidth of the transmitted pulse. High-bandwidth signals

can be generated using very short tone bursts. However, the peak power requirements are

large and there are physical limits, such as cavitation, that place an upper bound on what is

achievable with these signals. A common workaround is to transmit a lower-power signal

with large time-bandwidth product (such as linearly-swept FM chirps). Upon reception,

such signals undergo pulse compression or matched filtering to achieve good range resolu-

tion. The operation of pulse compression is equivalent to computing the cross-correlation

between the received and transmitted signal. This is represented in the frequency domain

by multiplying the received signal with the conjugate of the transmitted signal spectrum:

E(ω, x) = |A(ω)|2
∫

f (x′)W (ω, x − x′)
(4π)2|x − x′|2

exp
{
− j2k

√
x − x′

}
d3x′. (2.17)

Taking the inverse temporal Fourier transform gives the pulse-compressed model:

Ec(t, x) =
∫

f (x′)
Ac

(
t − 2|x−x′ |

c

)
(4π)2|x − x′|2

∗t W
(
t, x − x′

)
d3x′, (2.18)

in which Ac(t) simply represents the autocorrelation of the transmitted pulse. The pulse is

often idealized as having a flat spectrum in which case Ac(t) is a sinc function whose main

lobe -3 dB width is c/2Bw where Bw is the bandwidth. If the transmit pulse is a tone burst

which requires no pulse compression, then (2.15) is the appropriate model.

At this point it is customary to absorb all the amplitude terms into the reflectivity term

f (x′). In other words, the amplitude terms are generally ignored in most derivations. They
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are retained for a while longer, however, as doing so helps to point out where the simpli-

fying assumptions are made in developing the reconstruction techniques. In practice, it is

rarely worth the complication and expense of accounting for the amplitude terms; synthetic

aperture imaging is almost completely a problem of properly accounting for the phase.

2.6 Spatiotemporal Domain Image Reconstruction

The classical approach to synthetic aperture image reconstruction is presented next. Here is

employed the term spatiotemporal domain reconstruction to distinguish this approach from

that in the Fourier domain, but the term time delay and sum is also common as is backpro-

jection. The scheme is straightforward. Each point in the scene being imaged corresponds

to a particular locus of echo returns in the observed data. In order to compute the value of

a single point in the reconstructed image, all that is required is to integrate the data along

this locus after multiplying by the complex conjugate of the expected locus as given by

the system model. This operation has the form of an inner product, and the reconstructed

image can the thought of as resulting from a spatially-varying correlation operation. To ob-

tain the equation for the spatiotemporal reconstruction, consider the ideal locus for a single

unit-amplitude point scatterer position at x̂. The hat notation is used to indicate either the

location at which the reflectivity is estimated or the estimated reflectivity itself. This is sim-

ply (2.15) into which has been substituted δ
(
t − 2|x−x̂|

c

)
, an infinite-bandwidth transmitted

pulse, for A
(
t − 2|x−x̂|

c

)
and f (x̂) has been set equal to one:

Eδ(t, x, x̂) =
δ
(
t − 2|x−x̂|

c

)
(4π)2|x − x̂|2

W (t, x − x̂) . (2.19)

The kernel for the image reconstruction integral, denoted as Eδ(t, x, x̂), is formed from

(2.19) by taking its reciprocal. Observe that if any of the quantities are complex, the result

is the reciprocal amplitude multiplied by a complex exponential with negative phase. Next,

the desired inner product is formed that enables the computation of an estimate f̂ (x̂) of the
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reflectivity at the point x̂ on the sea floor:

f̂ (x̂) =
∫

Eδ(t, x, x̂)Ec(t, x) d3x dt

=

∫
Eδ(t, x, x̂)

∫
f (x′)

Ac

(
t − 2|x−x′ |

c

)
(4π)2|x − x′|2

∗t W
(
t, x − x′

)
d3x′ d3x dt.

(2.20)

The next step is to simplify this expression by exploiting the sifting property of the delta

function when it appears inside an integral. The function Eδ(t, x, x̂) is nonzero only along

some path in 3D space, which is denoted as L. The symbol d`, where ` = `(t, x), indicates

a differential element along the curve L. Making this substitution gives:

f̂ (x̂) =
∫

Eδ(`)Ec(`) d`. (2.21)

For the usual ideal case in which the sensor trajectory is a straight line, the locus L is a

hyperbola.

The proceeding development of the spatiotemporal image reconstruction is general with

respect to the trajectory that may be realized by the sensor. Normally, the sensor is assumed

to fly in a straight line. If the sensor boresight is perpendicular to the collection path, then

the synthetic aperture length L is determined by the sensor’s beamwidth. The usual practice

is to set L equal to the -3 dB beamwidth. Then for a rectangular aperture, L = Rθ3dB =

Rλ/D, where R is the range under consideration. This is known as stripmap mode imaging.

The cross-range (or along-track) resolution can be determined as follows: the cross-range

spatial bandwidth (see [8]) is given by

Bky = 2k sin θ3dB

≈ 2k
λ

D

=
4π
D
.

(2.22)

The resolution ∆y is inversely proportional to bandwidth: ∆y = 2π/Bky = D/2. Here is

one of the primary advantages of synthetic aperture processing. The cross-range resolution

is independent of range. This is because the processing uses the same spatial bandwidth

regardless of range (that is, it integrates over a constant angle).
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2.7 Fourier-Based Image Reconstruction

The most widely-used Fourier-based image reconstruction technique is derived in this sec-

tion. It is usually called the wavenumber algorithm, but is also commonly referred to as the

ω-k, range migration, and seismic migration algorithm. The wavenumber algorithm first

found its way into the synthetic aperture literature in the late 1980s [31, 32, 33, 34]. Prior

to that, it was used in the geophysics community to form images of the Earth’s interior

structure [35, 36].

Up to this point, it has not been necessary to make assumptions about the nature of

the geometry of the synthetic aperture. Four key simplifications are now made in order

to render the mathematics tractable for the derivation. First, the sea floor is modeled as a

plane, or delta-sheet, of scatterers of the type described above located at z = 0 and centered

on the x-y origin. Secondly, the sensor trajectory is modeled as a perfectly straight line

with constant altitude z0 and constant negative offset −x0 from the x-axis. It is thus written

as (x, y, z) = (−x0, y, z0). Thirdly, the sensor is considered to be stationary during trans-

mission and reception at each position y (that is, the start-stop assumption is employed).

This simplifies the geometry of the problem. The fourth item is to change from two-way

spherical (1/R2) spreading to one-way (1/R) spreading (or to simply ignore the spreading

terms altogether). The one-way spreading assumption is made in order to make the problem

compatible with (2.26).

The third and fourth simplifications can be thought of as consequences of the exploding

source model in which the field of point scatterers is considered to emit the observed signals

directly instead of reflecting them after being emitted from the true source. This model,

described by Claerbout [36], involves treating the sound speed as c/2 instead of c. It also

implies the use of the Born approximation for scattered fields, as it disallows the possibility

of multiple scattering. Strictly speaking, the exploding source model exactly describes

the problem solved in this section: The simplifications above are made in order to make

synthetic aperture reconstruction fit the solution given below.
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The derivation begins with (2.17) and follows by applying the above assumptions. First

replace f (x, y, z) with f (x, y)δ(z), and substitute
[
(−x0 − x′) + (y − y′) + z0

]
for (x − x′) to

get:

E(ω, y) = |A(ω)|2
∫ ∫ f (x′, y′) exp

{
− j2k

√
(−x0 − x′)2 + (y − y′)2 + z2

0

}
(4π)2

√
|(−x0 − x′)2 + (y − y′)2 + z2

0|

dx′dy′. (2.23)

Looking at the left hand side of this equation, it is clear that the problem is two-dimensional.

To simplify further, the following change of variables is made:

x′s = −x0 −

√
(−x0 − x′)2 + z2

0, (2.24)

which represents the transformation from ground range and altitude to slant range. The

model then becomes:

E(ω, y) = |A(ω)|2
∫ ∫ f (x′s, y

′) exp
{
− j2k

√
(−x0 − x′s)2 + (y − y′)2

}
(4π)2

√
|(−x0 − x′s)2 + (y − y′)2|

dx′sdy′. (2.25)

Since there has been a change of variables under the integral, there should be an extra term

representing the Jacobian of the transformation. This is an amplitude term only, and it is

neglected in order to proceed with the derivation. At this stage, a 2-D result is employed

whose 3-D equivalent is known as Weyl’s identity. It expresses the 2-D Green’s function

as an expansion in terms of plane waves:

− j
4π

∫ exp
{
− j|x|

√
4k2 − k2

y + jkyy
}

√
4k2 + k2

y

dky = −
j
4

H(2)
0 (2kρ)

≈
1√

j16πkρ
exp {− j2kρ} ,

(2.26)

where H(2)
0 (2kρ) is the zeroth-order Hankel function of the second kind and the distance

between source and observer is ρ =
√

(−x0 − xs)2 + (y − y′)2. The second line of (2.26)

applies in the limit as kρ → ∞, which is a suitable approximation for practical imaging
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frequencies and geometries. Making the required substitution gives:

E(ω, y) =
1

(4π)2

√
k
jπ
|A(ω)|2

∫ ∫
f (x′s, y

′)

∫ exp
{
− j(x0 + x′s)

√
4k2 − k2

y + jky(y − y′)
}

√
4k2 + k2

y

dkydx′sdy′,

(2.27)

which can be rearranged to give:

E(ω, y) =
1

(4π)2

√
k
jπ
|A(ω)|2

∫ exp
{
− jx0

√
4k2 − k2

y + jkyy
}

√
4k2 + k2

y∫ ∫
f (x′s, y

′) exp
{
− jx′s

√
4k2 − k2

y − jkyy′
}

dx′sdy′dky.

(2.28)

The inner double integral over (x′s, y
′) is found to be the 2-D spatial Fourier transform of

the scene reflectivity:

E(ω, y) =
1

(4π)2

√
k
jπ
|A(ω)|2

∫ exp
{
− jx0

√
4k2 − k2

y + jkyy
}

√
4k2 + k2

y

F
(√

4k2 − k2
y , ky

)
dky.

(2.29)

The Fourier transform of both sides can be taken with respect to y leaving:

E(ω, ky) =
1

(4π)2

√
k
jπ
|A(ω)|2

exp
{
− jx0

√
4k2 − k2

y

}
√

4k2 + k2
y

F
(√

4k2 − k2
y , ky

)
. (2.30)

This equation can, at last, be solved explicitly for the wavenumber spectrum in terms of the

2-D Fourier transform of the collected data:

F
(
kx, ky

)
= S−1

 (4π)2

|A(ω)|2

√
jπ
k

√
4k2 + k2

y exp
{

jx0

√
4k2 − k2

y

}
E(ω, ky)

 , (2.31)

where the following nonlinear mapping is defined: S−1 as kx =
√

4k2 − k2
y . This mapping

is required in order to obtain the samples of the left side of (2.31) which are located on

a regularly-spaced rectangular grid (and thus amenable to the inverse FFT). This mapping
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is known as inverse Stolt mapping and is implemented in practice via interpolation in the

frequency domain. Prior to inverse Stolt mapping the right hand side of (2.31), the samples

of the observed data reside on an annular grid whose radius is 2k0, which is the wavenumber

at the center (or carrier) frequency of the temporal signal.

In (2.31) the transmitted spectrum is explicitly deconvolved in the Fourier domain. This

frequency-domain division operation cannot be relied upon to be stable. It is generally

ignored in most derivations: a typical scenario is to assume a flat spectrum and ignore

the |A(ω)|2 altogether. For wideband systems however, the transmitted spectrum may not

be sufficiently flat over the entire bandwidth. In this case, division by |A(ω)|2 could be

replaced by a spectral whitening operation if desired.

In practice, there are subtleties of the implementation of the wavenumber algorithm.

These details are not relevant to the mathematical development but pertain mainly to the

fact that efficient signal processing is done using baseband data. The detailed implemen-

tation of the wavenumber algorithm is given by Hawkins [8]. Another good discussion of

the wavenumber algorithm in the SAS literature is presented by Callow [37].

2.8 Comments
2.8.1 Reconstruction Expense

Strictly speaking, the spatiotemporal method of image reconstruction is probably the best

way to create a SAS image. Its only real drawback is that it is computationally demanding.

By comparison, the wavenumber algorithm is very inexpensive. Its efficiency is nothing

short of revolutionary, as it allows large quantities of imagery to be produced in a reasonable

time using ordinary desktop computers. In the absence of any aberrations (motion error,

medium instability, etc.), the wavenumber and spatiotemporal schemes produce essentially

identical imagery. Neither is superior from a mathematical point of view, and both preserve

phase which is useful for interferometric applications.

A simple analogy for the distinction between these two algorithms is the relationship

between the discrete Fourer transform (DFT) and the fast Fourier transform (FFT). The
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efficiency of the wavenumber algorithm is orders of magnitude better than spatiotemporal

backprojection. Also, just as the FFT is not an approximation to the DFT, the wavenumber

algorithm is not an approximation to spatiotemporal backprojection. Rather, the limitation

to both the FFT and to wavenumber processing is the fact that the input data must be sam-

pled in a particular fashion. For the FFT, this means uniform spacing of a one-dimensional

signal. The wavenumber algorithm requires uniform sampling in two dimensions. It also

requires that the data be collected along a perfectly straight sensor trajectory. This rarely

happens, so one is forced to compensate the data ahead of time to make it appear as if it

was collected in this way. This reality is the motivation for the material in Chapters 5 and 6.

From a practical standpoint, it is easy to build any required corrections, such as motion

compensation, into the spatiotemporal scheme as each pixel is reconstructed explicitly from

its own unique phase and amplitude history. On the other hand, the wavenumber algorithm

is inflexible. With the exception of a few relatively minor effects (examples are given

by Callow [37]), it is impossible to alter the algorithm to compensate for most aberrations.

Thus, the typical approach is to adjust the raw synthetic aperture data before presenting it to

the wavenumber algorithm. The drawback to this is that there are limits to the type/amount

of adjustment the data can tolerate. Assuming the vehicle carrying the sensor is stable and

the environmental conditions are not severe, wavenumber-based imaging performs as well

in terms of image quality as the spatiotemporal approach.

There are other image reconstruction techniques in addition to the two mentioned above.

These are detailed in the literature and generally fall into two categories. The first group

consists of those conceived prior to the wavenumber algorithm. These are often based on

some sort of approximation resulting in inferior imagery with no real computational ad-

vantage (see Chapter 4 of [8]). The second group of algorithms postdate the wavenumber

method and are often aimed at achieving the flexibility of spatiotemporal backprojection

while preserving the computational efficiency of wavenumber reconstruction. An example

of this group is fast factorized backprojection [38, 39, 40, 41].

39



2.8.2 Spatial Sampling Concerns

A discussion of synthetic aperture sonar cross-range sampling and its implications is given

by Hawkins [8] and earlier by Rolt [13]. It is common to design systems with D/2 sam-

pling, as this is generally considered to be the minimum spatial sampling rate that yields

good quality imagery. The D/2 sampling rate is somewhat analogous to the Nyquist rate

for temporal signals. There is a serious distinction to be made, however: The Nyquist rate

is predicated on the existence of a bandlimited signal. The cross-range spatial signal of

synthetic aperture imaging is not bandlimited; it only approximates this condition. Thus,

the D/2 sampling rate causes spatial aliasing in even the best circumstances. In the pres-

ence of motion errors, the array can become yawed causing the directivity pattern to further

amplify spatial frequencies that are already aliased by D/2 sampling. Thus, constructing

a SAS system to sample at D/3 or D/4 would enable it to produce imagery that is more

tolerant to errors in the array pointing angle.

This discussion of the effects of spatial sampling implies that the projector and re-

ceivers have the usual sinc-like directivity pattern associated with a rectangular aperture.

To be truly spatially bandlimited, either the projector or the receiver elements would have

to possess no sidelobes. Parametric sources [42, 3, 43] have this property, and they have

been used in experimental SAS configurations for generating narrow beams at low freque-

cies (for example, [44, 45, 46, 47]). If the projector were designed to provide much less

illumination at angles outside the -3 dB beamwidth, then the D/2 sampling would be more

suitable. Indeed, this approach is probably preferable to oversampling the array because

the cost associated with the improved projector would be expected to be less that the cost

of adding more receivers and the required electronics. The parametric source would be

useful in this respect, but these devices generally have low source levels and high power

consumption and are thus inefficient.
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CHAPTER 3

EFFECTS OF UNCOMPENSATED PLATFORM MOTION

3.1 Introduction

It is often of interest to consider how uncompensated platform motion can degrade the

ideal point scatterer response (PSR). Such knowledge can be used to shape the design of an

AUV-based SAS system. (A discussion of this problem in the context of real aperture sonar

is given by Zehner [48].) Also, knowing how certain types of motion affect a SAS image

can reduce the time spent in troubleshooting estimation and compensation schemes. In the

field of spotlight mode SAR, the effects of phase errors across the synthetic aperture are

relatively easy to describe and are well-documented (see, for example, Chapter 5 of Carrara

et al. [24]). However, the counterpart problem for the stripmap mode is less well-developed

in the literature. Some coverage exists in the SAR literature [49, 50, 51, 52, 53, 54], but it

is not as thorough as the treatment of spotlight errors. The goal of this chapter is to extend

the analysis of phase error effects for stripmap mode synthetic aperture imaging.

From a qualitative standpoint, the ability to associate a given type of phase error with a

characteristic degradation of the PSR is useful in diagnosing image quality problems when

troubleshooting SAS hardware and processing algorithms. For example, high-frequency

random phase errors result in an overall loss of contrast (that is, a reduction in peak to

average sidelobe ratio), but they do not degrade the resolution (-3 dB width of the PSR

mainlobe). On the other hand, periodic errors tend to create replica, or ghost, copies of the

PSR. Furthermore, the quantitative analysis of phase error effects is useful in the design

process. An error budget can be constructed that allows the designer to allocate resources

in ways aimed at reducing the most serious forms of degradation. Similar error budgets

can be used for developing the processing algorithms, tuning any relevant vehicle control

software, and for optimizing the operational procedures for deploying the SAS.
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3.2 Origin of Stripmap Phase Error Effects

For SAS, the primary source of phase errors is unwanted platform motion. Even when the

motion has been estimated and compensated, there are inevitably residual phase errors in

the data. From a hardware standpoint, phase errors might be introduced by a lack of proper

calibration of the hydrophone array or by timing problems in the ping triggering or in

the data acquisition system. Another important source of phase errors is the range-varying

nature of the motion compensation as discussed in Chapter 6. The analysis presented below

is general and applies to all stripmap phase errors regardless of origin.

Unwanted motion causes delays in the observed signal. If these delays exceed a range

resolution cell, then the synthetic aperture focusing will generally be poor. For this reason,

the discussion is restricted to the simpler case of motion errors whose magnitude is less

than a resolution cell. Such errors can be modeled as an additional phase term in the ob-

served signal. The analysis is furthermore restricted to a single point scatterer located at

(x, y) = (x0, 0) which then creates a planar geometry defined by the nominal sensor trajec-

tory (prescribed here to coincide with the y-axis) and the scatterer of interest. Within this

plane, cross-range focusing can be thought of as a spatially-varying two-dimensional cor-

relation operation (see Section 2.6). Here the problem will be treated as one-dimensional

by assuming that the curvature of the hyperbolic range migration of the received signal is

small or has been removed. Then, the cross-range focusing operation reduces to correlating

the observed signal with the ideal signal. This operation is given by:

f (y) = exp{− j2kR′(y)} �y exp{− j2kR(y)}

=

∫ LSA
2

−
LSA

2

exp {− j2kR′(u)}

· exp {+ j2kR(u − y)} du,

(3.1)

where

R(y) =
√

x2
0 + y2

R′(y) =
√

(x0 − ε (y))2 + y2,
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LSA is the length of the synthetic aperture, and �y represents correlation with respect to

the variable y. The quantity R is the ideal range (that is, R is referenced to the nominal

trajectory), R′ is the actual range from the sensor to the scatterer at cross-range position

y = 0, and ε is the motion error. Also, the directivity, or beam pattern, has been ignored.

In keeping with the small magnitude error assumption, R′ can be expanded about the point

ε(y) = 0 as follows:

R′ ≈ R +
dR′

dε

∣∣∣∣∣
ε=0

ε

≈ R −
(
1 −

y2

2x2

)
ε

≈ R − ε,

(3.2)

where the last simplification is based on the condition that y � x. This is equivalent to

assuming that the sensor has a narrow beam, in which case the width of a given illumi-

nated interval of y would be small compared to its range x. This also implies that the

delay induced by the motion error is the same for all scatterers in the beam. Note also that

the analysis is carried out only for a single frequency k0. This monochromatic representa-

tion is a suitable approximation for relatively narrowband systems. The extension to finite

(nonzero) bandwidth signals is addressed in Section 3.4.

Equation (3.2) allows the observed phase history from the right hand side of (3.1) to be

written as:

exp {− j2k0R′(y)} = exp {− j2k0 (R(y) − ε(y))} . (3.3)

This indicates that small motion errors simply introduce a phase distortion into the observed

signal. The significance of this result is that it can be used to make quantitative statements

about the behavior of the cross-range PSR as a function of the error ε(y). Note that (3.3)

is the product of the ideal and error signals. For convenience, the phase-error function

is denoted as g(y) = exp {+ j2k0ε(y)} and the ideal signal history as s(y) = exp {− j2k0R}.

Taking the Fourier transform with respect to the spatial variable y causes the transforms of

these two functions to be related by convolution rather than multiplication. Thus, the PSR
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for any g(y) is given by the following expression:

f (y) = F −1
ky

{[
S (ky) ∗ky G(ky)

]
S (ky)

}
. (3.4)

The spectrum of the ideal signal phase history S (ky) is first convolved (denoted by ∗ky)

with the spectrum of the error function G(ky), after which it is multiplied by the complex

conjugate of S (ky) to effect the correlation operation representing cross range signal com-

pression. An inverse Fourier transform in ky yields the corrupted PSR.

3.3 Phase Error Analysis

This section presents several canonical examples of synthetic aperture phase errors. The

linear, quadratic, and cubic terms may be used to represent more general low-frequency

phase errors via truncated Taylor series. The sinusoidal case is presented because it is

commonly encountered and can be used to synthesize more complicated phase error func-

tions. Random white noise phase errors arise in practice as a result of hardware problems,

medium fluctuations, or errors in the motion estimation/compensation. Another case pre-

sented is that of a phase error represented by the sawtooth function. This case is common

in SAS imaging, as it arises when a vernier array experiences a static yaw relative to the

nominal platform trajectory.

Polynomial errors with terms higher than third order are not considered. According

to Carrara et al. [24], the quartic and higher-order terms fall into the same category of

sinusoids with multiple cycles per synthetic aperture: That is, they are high-frequency

errors, and the purpose of the Taylor series analysis is to examine low-frequency phase

error functions. Low-frequency phase errors tend to primarily distort the main lobe of the

PSR, while high-freqency errors affect the sidelobe structure. The nature of this sidelobe

distortion can take several forms, as is shown below.
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3.3.1 The Principle of Stationary Phase

The principle of stationary phase (PSP) is a technique for finding approximate closed-

form solutions to integrals in which the integrand has a large phase variation and a slowly-

varying envelope, g0(u). It is frequently discussed in radar and optics texts (for example,

[55] and [56]). The expression for the PSP solution is:∫
g0(u) exp{ jφ(u)}du ≈

√
j2π

φ′′(u�)
g0(u�) exp{ jφ(u�)}, (3.5)

where u� is known as the stationary point and is the solution of φ′(u�) = 0. The PSP is the

primary tool used to carry out the analysis of this chapter.

3.3.2 Linear Phase Error

First consider the specific example of a linear motion error: ε(y) = αy and g(y) = exp{ j2k0αy},

where α is a dimensionless scale factor. The Fourier transform of this function is G(ky) =

δ(ky − 2k0α). The effect in the ky domain of a linear phase error is thus seen to be a shift of

the ideal observed signal spectrum. If S (ky) is bandlimited, then it is possible to choose α

such that S (ky − 2k0α) has no spectral support in common with S (ky). Roughly speaking,

the resolution of the PSR f (y) will be determined by the spatial bandwidth of this common

region of support. The detailed structural appearance of f (y) will also be determined by

the phase of F(ky).

A closed-form expression for the distorted PSR can be obtained when the slope α of

the linear phase error is small. The expression for the Fourier transform of the cross-range

signal is:

S (ky) =
√
πx0

jk0
rect

 ky

sin θ3dB

√
4k2

0 + k2
y


· exp

{
− j

(√
4k2

0 − k2
y

)
x0

}
≈

√
πx0

jk0
rect

{
ky

2k0 sin θ3dB

}
· exp

− j2k0x0 + j
k2

y

4k0
x0

 ,

(3.6)
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where θ3dB is the beamwidth of the sensor. The first expression for S (ky) was derived

[25] using the principle of stationary phase, which is summarized in Section 3.5. The

approximate expression for S (ky) was obtained by making a parabolic approximation to

R in (3.1) and using the PSP to take the Fourier transform. The quadratic approximation

to S (ky) is used below to facilitate the present analysis. It can be substituted into (3.4) to

obtain the following:

f (y) = F −1
ky


A(ky) exp

 j
k2

y

4k0
x0

 ∗ky δ(ky − 2k0α)


· A(ky) exp

− j
k2

y

4k0
x0




= F −1
ky

{
A(ky − 2k0α) exp

{
j
(ky − 2k0α)2

4k0
x0

}
· A(ky) exp

− j
k2

y

4k0
x0




= F −1
ky

{
A(ky − 2k0α)A(ky) exp

{
j
(
k0α

2 − αky

)
x0

}}
≈ F −1

ky

{
|A(ky)|2 exp

{
− jαx0ky

}}
= f (y − αx0) .

(3.7)

The approximation step in (3.7) was made by neglecting α in the amplitude term and α2 in

the phase term. It can be seen that the effect of a linear phase error is to shift the ky spectrum

of the received signal. If this shift is small (α < 1), then the result of this spectral shifting is

simply a shift in the cross-range position of the ideal PSR. This is the central result of this

section: spectral shifts 2k0α translate into spatial shifts αx0 of the PSR. This fact is used

extensively below in order to derive closed-form estimates of PSR deterioration.

3.3.3 Quadratic Phase Error

The quadratic phase error is generally considered to be the dominant cause of cross-range

defocus in synthetic aperture imagery. Apart from representing the second-order compo-

nent of the Taylor series expansion of a given motion, the quadratic phase error can be used

to model the effect of measurement errors in the wave propagation speed used for image
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reconstruction. As such, analysis of the quadratic error is also linked to the notion of depth

of focus.

The quadratic phase-error term is given by g(y) = exp{ j2k0νy2} where ν is a scale factor

having units of reciprocal length. Its Fourier transform obtained using the PSP is:

G(ky) =

√
jπ

2k0ν
rect

(
ky

4k0νLSA

)
exp

− jk2
y

8k0ν

 . (3.8)

The error g(y) has support on y ∈ [−LSA/2, LSA/2]. The exact and approximate quadratic

phase error spectra G(ky) are shown in Figure 3.1(a).

Using the reasoning upon which (3.7) is based, the degradation of the PSR can be

estimated if it is assumed that the width of the rectangle function appearing in (3.8) is small.

Then, the actual PSR can be thought of as a continuous smear of copies of the ideal PSR.

The width of the actual PSR is therefore determined by the width of the rectangle function

in (3.8). Consequently, the fundamental type of degradation caused by the quadratic phase

error is a broadening of the main lobe of the ideal PSR. In other words, the quadratic

phase error causes a loss of cross-range resolution. The expansion of the -3 dB width

of the PSR can be roughly estimated by the bandwidth of the rectangle function in (3.8)

using the result of the approximation in (3.7). This expansion is found to be equal to

∆PSR = 2|ν|LSAx0 = 2|ν|x2
0 sin θ3dB. It is clear that for a given value of ν, the PSR width

is proportional to the square of range. An example of the PSR degradation caused by the

quadratic phase error is shown in Figure 3.1(b).

Now, it can be shown that the effect of an error in the knowledge of the wave propaga-

tion speed can be modeled as a quadratic phase error. First, let the received signal be given

by:

exp{− j2(k0 + ∆k)R} = exp {− j2k0R} · exp {− j2∆kR}

= s(y)g(y),
(3.9)

where the parabolic approximation to the phase term has replaced its true hyperbolic form,

R ≈ x0 +
y2

2x0
, and the sound speed error has been represented by a change in the temporal
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Figure 3.1. (a) Comparison of the actual quadratic phase error (with νx0/D = 0.88) spectrum G(ky)
and the approximation given by (3.8) which was derived using the principle of stationary phase. (b)
Example of an ideal PSR and the PSR corrupted by a quadratic phase error.
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wavenumber, ∆k = − ω∆c
c(c+∆c) . The phase error function g(y) has a form that is identical

to the cross-range signal s(y), and (3.6) may therefore be used to obtain G(ky) simply by

substituting ∆k for k0. Consequently, the the region of support for G(ky) is {ky : |ky| ≤

∆k sin θ3dB}, and the spread of the PSR corrupted by the sound speed error is:

∆PSR =

∣∣∣∣∣∆k
k0

∣∣∣∣∣ x0 sin θ3dB

=

∣∣∣∣∣ ∆c
c + ∆c

∣∣∣∣∣ LSA.

(3.10)

This corresponds to ν = ∆c
2x0(c+∆c) in the result above. The error in c causes the PSR degra-

dation to become linearly proportional to the range. It can also be seen that narrow beam

sensors are less susceptible to image degradation caused by the sound speed error. The im-

plication is that this error can be reduced by increasing D at the cost of decreased resolution,

or by operating at a higher frequency.

Another useful application for this analysis is quantifying the effects of errors in the

estimate of the sensor’s forward (namely, cross range) velocity. For this situation, the cross

range location of the sensor is (wrongly) believed to be at y+ χy when it is actually located

at y. Here, the quantity χ represents the fractional error in the velocity estimate. That is,

χ = (vest − vact)/vact. Then, the range becomes R =
√

x2
0 + (y + χy)2 which is approximated

as R ≈ x0 + (1 + 2χ) y2

2x0
and the phase error function is given by:

g(y) = exp
{
−

j2k0χy2

x0

}
. (3.11)

The corresponding Fourier transform is:

G(ky) =
√

πx0

j2k0χ
rect

(
x0ky

4k0χLSA

)
exp

− j
3x0k2

y

8kχ

 , (3.12)

from which the corrupting PSR spread is found to be

∆PSR = 2|χ|LSA. (3.13)

As with the case of erroneous sound speed estimates, forward velocity errors are less harm-

ful for smaller synthetic aperture lengths and thus favor larger sensors and higher frequen-

cies. According to [57], the results of this and the preceding paragraph can be obtained in
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an alternative manner using the principles of geometrical optics.

3.3.4 Cubic Phase Error

While the quadratic phase error degrades the PSR symmetrically, the cubic phase error term

does so in an asymmetric fashion. Both errors decrease the resolution, which is the -3 dB

width of the PSR. The PSP is once again used to facilitate the analysis, as it is necessary

to know the Fourier transform of g(y) = exp{ j2k0ρy3}, where ρ is a constant with units of

1/length2:

G(ky) =
∫ L/2

−L/2
e j2k0ρy3

e− jkyydy. (3.14)

The stationary point of (3.14) is:

y� = ±

√
ky

6k0ρ
, (3.15)

and a question arises as to which sign is the correct one to take for the present application.

Substituting y� into the PSP phase term exp{ jφ(y�)} gives:

exp { jφ(y�)} = exp

∓ j
2ky

3

√
ky

6k0ρ

 . (3.16)

If the signs of ky and the constant ρ differ, then the argument of this exponential becomes

purely real. Thus, one finds motivation for choosing the positive sign in (3.15) in order to

avoid exponential growth in G(ky). The next term to examine in the PSP analysis is the

envelope term. As usual, the envelope of g(y) is a rectangle function centered at y = 0 and

having width LSA. This leads to the following for the envelope of G(ky):

g0(y�) = rect
(

y�

LSA

)
= rect


√

ky

6k0ρL2
SA

 . (3.17)

In this equation, it must be recognized that the argument of the rectangle function can

become complex. To deal with this situation, the definition of this function will be extended

so that rect(x) equals one if x is both real and |x| ≤ 1/2. For all other values of x, rect(x) = 0.
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Therefore, (3.17) indicates that the PSP approximation to the spectrum G(ky) is one-sided.

It is given by:

G(ky) ≈
√

jπ
(6ρk0ky)1/4 rect


√

ky

6k0ρL2
SA

 exp

 j

√
ky

6k0ρ

 . (3.18)

The region of spectral support of G(ky) for the cubic phase error function is {ky : 0 ≤ ky ≤

3k0ρL2
SA/2} if ρ > 0. If ρ is negative, then G(ky) has support given by {ky : 3k0ρL2

SA/2 ≤

ρ ≤ 0}. Applying the reasoning from (3.7) as before, the mainlobe expansion of the PSR

due to the cubic phase error function is:

∆PSR =
3
4
ρL2

SAx0

=
3
4
ρx3

0 sin2 θ3dB.

(3.19)

The stationary phase approximation to G(ky) is compared to the actual spectrum in

Figure 3.2(a). The resulting form of PSR defocus is shown in Figure 3.2(b). Unlike the

quadratic case above, the spread as given by ∆PSR does not fully describe the appearance of

the corrupted PSR. Here, the PSR tapers off from the peak value by several decibels before

finally reaching the knee, or cutoff, predicted by ∆PSR.

3.3.5 Sinusoidal Phase Error

Another interesting case is that of a sinusoidal phase error, g(y) = exp { j2k0β sin (γy)}. The

constant β has units of length, and γ has units of reciprocal length. The analysis of this

section is largely based on the work by Fornaro [52]. The function g(u) can be manipulated

into a more useful form by employing the generating function for the Bessel function of

the first kind:

e
x
2 (t− 1

t ) =
∞∑

n=−∞

tnJn(x), (3.20)

and making the substitutions t = exp{ jγy} and x = 2k0β. The result is:

e j2k0β sin(γy) =

∞∑
n=−∞

(
e jγy

)n
Jn(2k0β). (3.21)
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Figure 3.2. (a) Comparison of the actual cubic phase error spectrum spectrum G(ky) and the approx-
imation given by (3.18) which was derived using the principle of stationary phase. (b) Example of an
ideal PSR and the PSR corrupted by a cubic phase error with λ/D = 0.31 and ρL2

SA = 0.035.
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Taking the Fourier transform of this with respect to y gives G(ky):

G(ky) =
∞∑

n=−∞

Jn(2k0β)δ
(
ky − nγ

)
. (3.22)

Thus, a sinusoidal phase error will result in the creation of replicas of the ideal observed

signal spectrum S (ky). These replicas are weighted according to the value of the coefficient

Jn(2kβ). Although there are an infinite number of replicas, the coefficients die off quickly.

This rate of decay slows with increasing sinusoidal amplitude β, and the replica spacing is

determined by the frequency γ of the phase error function. Figure 3.3(a) shows G(ky) for

a representative value of k0β and Bky/γ. These quantities are dimensionless and represent

the relative error magnitude compared to the wavelength and the error frequency relative to

the spatial frequency bandwidth observable by the synthetic aperture, respectively. (Recall

that Bky ≈ 4π/D = 4k0 sin(θ3dB/2).) Assuming β and γ are within certain bounds, then the

result from Section (3.3.2) may be used to deduce that a sinusoidal phase error results in

multiple scaled copies of the ideal PSR:

fcomposite =

∞∑
n=−∞

Jn(2k0β) f
(
y −

nγ
2k0

x0

)
(3.23)

These replicas are located at y = ± nγ
2k0

x0. Note that the scale factor Jn(2k0β) depends on k0.

Figure 3.3(b) shows an example of these results.

3.3.6 Sawtooth Phase Error

The preceding analysis can be used to derive the effect of a sawtooth-shaped phase error

g(y) = exp{ j2k0ξ(y)}, where ξ(y) is the sawtooth function with period P and peak-to-peak

amplitude A. This case is important because it is frequently, if not universally, encountered

in practice. It is common for towed and autonomous SAS sensors to travel in some degree

of cross current. In these situations, the host platform usually experiences a static yaw,

known as crab, in order to keep the desired course over the bottom; finned bodies are

less susceptible to this effect than those without fins. The sawtooth phase error appears if

multiple receivers are used, and this is nearly always the case for SAS.
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Figure 3.3. (a) Comparison of the actual sinusoidal phase error spectrum spectrum G(ky) and the ana-
lytical expression given by (3.22). Note that the actual (or experimental) G(ky) was computed discretely,
and it therefore does not consist of delta functions as does the continuous result. (b) Example of an ideal
PSR and the PSR corrupted by a sinusoidal phase error with k0β = 0.63 and γ/Bky = 0.069.
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The peak-to-peak amplitude of the sawtooth error is given by A = ND sin(θcrab)/2 ≈

NDθcrab/2, where N is the number of receivers of length D and θcrab is the static yaw angle.

The period of the sawtooth pattern is, of course, P = ND cos(θcrab)/2 ≈ ND/2. Actual crab

angles are usually fairly small (less than ten degrees), and the small-angle approximation

is sufficiently accurate.

The Fourier series representation of the sawtooth wave is:

ξ(y) ≈
A
π

(
sin

2πy
P
−

1
2

sin
4πy
P
+

1
3

sin
6πy
P
− · · ·

)
=

A
π

∞∑
m=1

(−1)m−1

m
sin

2mπy
P

=
NDθcrab

2π

∞∑
m=1

−1m−1

m
sin

4mπy
ND

.

(3.24)

This infinite sum appears in the exponential term of g(y), and g(y) can therefore be written

as an infinite series of products. Recall from the previous section that the Fourier transform

of any single term in this product is an infinite sum in the ky domain. It thus may be seen

that G(ky) for the sawtooth case is an infinite series of convolutions of infinite sums:

G(ky) = Fy {g(y)}

= Fy

 ∞∏
m=1

exp
{

j2k0
A(−1)m−1

mπ
sin

2mπy
P

}
= G1(ky) ∗ky G2(ky) ∗ky G3(ky) · · · ,

(3.25)

where each of the Gm(ky) in the last line is the Fourier transform of a single component of

(3.24) and has the form of (3.22). An example is shown in Figure 3.4(a). Unfortunately,

there is no convenient closed-form expression for the corrupted PSR due to the sawtooth

phase error. It is true that the replicas due to any single sinusoidal component generally

decay quickly. The same is not true of the amplitudes of the terms of the Fourier series ξ(y)

because of the discontinuity present in the sawtooth function.

The characteristic feature of the sawtooth phase error is that the infinite series of con-

volutions behaves such that the replicas of the PSR are not symmetrically weighted. As
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Figure 3.4. (a) Comparison of the actual sawtooth phase error spectrum spectrum G(ky) and the analyt-
ical expression given by (3.25). For this example, the parameters are D = 0.4, θcrab = 2◦, and N = 6. (b)
Example of an ideal PSR and the PSR corrupted by a sawtooth phase error with the same parameters
given in Figure 3.4(a).
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one might expect, the sawtooth error causes a dominant replica to occur either to the left or

right of the real object. The distance between the replicas induced by the phase error is:

y =
2π

NDk0
x0. (3.26)

Figure 3.4(b) shows how the replicas of the PSR are evenly spaced but unevenly weighted.

It is important to point out that it is possible for one of the replicas of the PSR to have

an amplitude greater than the true PSR located at y = 0. It is also worth noting that

the asymmetric behavior predicted by the analysis above is due solely to the phase error.

The off-broadside pointing angle of the directivity pattern of the array elements was not

considered.

3.3.7 Random Normally-Distributed Phase Error

The final case to be considered is a random phase error: g(y) = exp{ jκ(y)}, in which κ(y)

is a normally-distributed zero-mean white random process with variance σ2
κ . Because the

process is stationary, the expected value is independent of y. Consequently, it is expressed

as:

E{e jκ(y)} = E{e jκ}

= µg

= E{cos(κ)} + jE{sin(κ)}

=

∫ ∞

−∞

cos(κ)
e−κ

2/2σ2
κ√

2πσ2
κ

dκ

+ j
∫ ∞

−∞

sin(κ)
e−κ

2/2σ2
κ√

2πσ2
κ

dκ.

(3.27)

A closed-form expression for this expected value was derived by Richards [58] who ob-

tained µg = exp{−σ2
κ/2}. Figure 3.5 shows the result of carrying out this integration numer-

ically for values of σ2
κ ranging from 0.01 to 10. The plot shows the expected value for the

real and imaginary parts separately. The expected value of the complex part of the random

proces is always zero, agreeing with the analytical result.
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Figure 3.5. Expected value of the real and imaginary components of (3.27) evaluated for values of σ2
κ

ranging from 0.01 to 100.

For small variance in the phase noise, the value of (3.27) is close to one. As the variance

becomes large, the expected value approaches zero. This makes sense intuitively because

the phase error function g(y) effectively becomes a vector of unit length whose angle in the

complex plane is uniformly distributed. In Figure 3.5, the quotient σκ/k0 can be used to

express the variance in terms of units of length. Similarly, the standard deviation in terms

of wavelengths is σκ/2π.

Also of interest is the variance of the function g(y):

var{g(y)} = E{|g(y) − µg|
2}

= E{|e jκ(y) − µg|
2}

= E{|e j2κ(y)|2} − |µg|
2

= 1 − µ2
g.

(3.28)

Interestingly, the variance of g(y) can be expressed solely in terms of its expected value.

The effect of the random phase error can be summarized by the expected value of the
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magnitude of the PSR, E(| f (y)|2). This quantity will be obtained using the following facts

regarding linear systems with random processes as inputs [4]:

Rpq(t1, t2) =
∫ ∞

−∞

Rpp(t1, t2 − α)h(α)dα (3.29)

Rqq(t1, t2) =
∫ ∞

−∞

Rpq(t1 − α, t2)h(α)dα, (3.30)

where h(t) represents the system impulse response, p(t) is its input, and q(t) is its output.

The result above enables one to find the autocorrelation of the output using only the auto-

correlation of the input and the system impulse response. The quantity of ultimate interest

is the expected value of the squared magnitude of the corrupted PSR, E(| f (y)|2): this is

equal to the autocorrelation of f (y) evaluated for zero lag.

In the following analysis, the corrupted received signal sc(y) = s(y)g(y) will be taken as

the input p(t) while s(y) plays the role of the linear system impulse response. The output

q(t) above corresponds to the PSR f (y). Recall that the ideal PSR can be thought of as the

autocorrelation of s(y), Rss(y′) (that is, h = 1). The first step is to find the autocorrelation of

sc(y) employing the fact that g(y) can be expressed as the sum of its mean and the centered

version of itself, g(y) = µg + (g(y) − µg) = µg + ν(y):

Rsc sc(y1, y2) = E{sc(y1)sc(y2)}

= E{s(y1)g(y1)s(y2)g(y2)}

= E{[µgs(y1) + ν(y1)s(y1)]

· [µgs(y2) + ν(y2)s(y2)]}

= µ2
gs(y1)s(y2) + E{ν(y1)s(y1)ν(y2)s(y2)}

= µ2
gs(y1)s(y2) + σ2

gδ(y2 − y1).

(3.31)

Note that s(y) does not appear in the last line because s(y)s(y) evaluated at zero is equal to
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one. The next step is to compute Rsc f :

Rsc f (y1, y2) = Rsc sc(y1, y2) ∗y2 s(y2)

= [µ2
gs(y1)s(y2) + σ2

gδ(y2 − y1)] ∗y2 s(y2)

= µ2
gs(y1) f (y2) + σ2

gs(y2 − y1),

(3.32)

followed by R f f :

R f f (y1, y2) = Rsc f (y1, y2) ∗y1 s(y1)

= [µ2
gs(y1) f (y2) + σ2

gs(y2 − y1)] ∗y1 s(y1)

= µ2
g f (y1) f (y2) + σ2

g f (y2 − y1),

(3.33)

where the symbol ∗ indicates convolution with respect to the subscripted variable. Finally,

if y2 = y1 = 0, the desired result is obtained:

R f f (0, 0) = E{| f (y)|2} = µ2
g| f (y)|2 + σ2

g f (0). (3.34)

Note that f (0) is real and is equal to LSA: f (0) =
∫ LSA/2

−LSA/2
s(y)s(y)dy. It is now possible to

quantify the effect of a normally-distributed white random phase on the ideal PSR. It can

be seen that the corrupted PSR consists of a copy of the ideal PSR scaled by µ2
g and added

to a background value. As the variance of the phase noise increases, the scaled copy of the

ideal PSR diminishes in amplitude relative to the mean background noise. The amplitude

of the peak of the corrupted PSR relative to the ideal is given in decibels by:

Actual to Ideal Peak Ratio = 10 log10 µ
2
g

= 10 log10 e−σ
2
κ .

(3.35)

Similarly, the actual peak relative to the background level is given by:

Actual Peak to
Mean Background Ratio

= 10 log10

µ2
gLSA

σ2
g

= 10 log10

µ2
gLSA

1 − µ2
g

= 10 log10
e−σ

2
κ LSA

1 − e−σ2
κ

.

(3.36)
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Figure 3.6. (a) Example of an ideal PSR and the PSR corrupted by a normally-distributed white ran-
dom phase error whose standard deviation is one quarter of a wavelength. (b) Surface plot depicting
the ratio of the actual peak to background ratio (in decibels) as a function of µg and the synthetic
aperture length.
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Equation (3.36) confirms analytically what is well-known experientially: random phase

errors result in an overall lack of image contrast but no loss of resolution. For a given

noise variance, this effect diminishes with range as the synthetic aperture length grows.

Figure 3.6(a) gives an example of an actual PSR and the PSR subject to random phase

noise with σκ = λ/4. One thousand realizations were averaged to compute the corrupted

PSR. For this example, the theoretical value for the actual peak relative to the ideal is

-10.9 dB and the value for the actual peak relative to the background is 28.3 dB. The

plot indicates a value slightly less than 28.3 dB for the peak to background ratio. This

apparent anomaly is due to the fact that the horizontal extent of the PSR contained in the

plot includes the sidelobe structure in addition to the background noise. For cross-range

values beyond ±0.5m, the peak to background ratio approaches the predicted 28.3 dB.

Additionally, Figure 3.6(b) depicts the behavior of (3.36) as a function of both µg and LSA.

The peak to background ratio improves as the synthetic aperture length grows. In practice

this means that narrow beam and short range SAS systems are the most susceptible to

random phase errors of a given variance. These errors tend to get suppressed due to the

averaging that occurs as the aperture length grows.

3.4 Results and Discussion

The preceding results are applied to actual SAS field data in Figures 3.7(a)–3.7(f). The

test image was first motion compensated in order to obtain proper focus. Then, each of

the errors analyzed in Section 3.3 was applied to the data to yield the set of images shown.

The parameters used to produce Figure 3.7 are the same as the counterpart examples in

Section 3.3. The object shown is a tetrahedron approximately two meters across. The

forms of distortion visible in the images are in good agreement with those predicted above.

Recall that the analysis was conducted for a single temporal frequency. The sonar used

to collect the field data is considered to be fairly narrowband with a center frequency to

bandwidth ratio equal to four. Nevertheless, the finite-bandwidth condition can be modeled
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Figure 3.7. Examples of the effects of the various types of phase errors discussed in Section 3.3: (a) no
error; (b) quadratic error; (c) cubic error; (d) sinusoidal error; (e) sawtooth error; (f) random error.
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by computing the degraded PSR for a range of temporal frequencies within a desired band

and then summing the results. Figures 3.8(a) and 3.8(b) show two examples of such a

computation. The phase error function parameters are the same as those used to produce

Figures 3.3(b) and 3.4(b).

3.4.1 Stripmap vs. Spotlight Phase Errors

The phase error effects for stripmap imagery are similar to those for the spotlight mode (see

Carrara [24]). This similarity is remarkable considering that spotlight phase errors affect

the PSR through a completely different mechanism. While stripmap data is collected by

accumulating a sequence of signals that are adjacent and parallel, spotlight mode data sig-

nals can be thought of as slices through a nominally circular patch on the Earth’s surface.

Because of the Fourier slice theorem, the constituent time series are Fourier transformed in-

dividually to yield a discretely sampled version of the two-dimensional Fourier transform

of the scene’s reflectivity function [7]. The spotlight image is then constructed by inter-

polating the polar Fourier data onto a regular rectangular grid so that the inverse Fourier

transform can exploit the computational efficiency of the FFT.

The important distinction is that spotlight mode data is collected directly in the spatial

Fourier domain, while stripmap data is not. Phase errors across a spotlight mode synthetic

aperture are multiplied with the data spectrum, and consequently, the ideal spotlight PSR

is convolved with the spectrum of the phase error function to yield the degraded PSR [24].

This stands in contrast to the stripmap case in which the ideal PSR spectrum is convolved

with the phase error spectrum, as shown by (3.4). Assuming that the phase error spectrum

is known, spotlight phase error analysis is fairly straightforward. For the stripmap case,

however, certain restrictions must be placed on G(ky) in order to obtain closed-form results

that lend themselves to easy interpretation. Specifically, G(ky) should be nonzero only

within a relatively narrow region centered on ky = 0.
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Figure 3.8. The plots above show the result of applying the single-frequency results to a finite-
bandwidth signal. Shown are the sinusoidal (a) and sawtooth (b) phase errors for a signal with a center
frequency to bandwidth ratio of four. These plots are the finite-bandwidth equivalent of Figures 3.3(b)
and 3.4(b) where the ideal PSR is omitted and the horizontal axis is enlarged by a factor of two.
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Figure 3.9. Synthetic aperture PSR as influenced by various degrees of quadratic phase error. The
upper plot has no weighting applied, while the lower was created using a Hamming window. The
horizontal axis is normalized length, where the interval [−0.5, 0.5] corresponds to the ideal cross range
resolution, D/2. Also, each PSR is displayed relative to its own peak value in order to better illustrate
the relative -3 dB widths of the mainlobes.
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3.4.2 Spatial Frequency Windowing Effects

The results of Section 3.3 are presented without any sort of spectral weighting, or win-

dowing. This was done in order to facilitate the derivation of closed form analytical ex-

pressions for the PSR behavior. Such weighting is, however, generally considered to be

standard practice for controlling the sidelobe behavior of the PSR. Figure 3.9 shows the re-

sult of Hamming weighting applied to various amounts of quadratic phase error. The figure

clearly shows that spectral apodization can go a long way toward blunting the deleterious

effects of phase errors on the stripmap PSR.

3.4.3 Moving Scatterers

An interesting feature is visible in many of the examples of SAS imagery shown in this

thesis, especially those in Chapter 7. Although each image is well-focused with respect to

sea floor, there is sporadic localized streaking in the cross-range direction. This streaking

is due to scatterers moving in the water, which are likely to be fish. A stationary scat-

terer would appear in the SAS image as a well-focused pointlike object, and hence not

discernible as a feature separate from the sea floor. As the scatterer moves, it introduces

phase errors into its cross-range signal history. Therefore, it will appear blurred when the

image is reconstructed.

An obvious question to ask is why the smearing is one-dimensional and parallel to the

cross-range axis. After all, it seems reasonable to expect fish to be moving in all directions.

This question can be answered using the preceding analysis. The y-axis is defined to be

cross-range, while the x-axis represents range. Also defined are the unit vectors ex and ey.

The sensor moves along the y-axis at a speed (assumed to be positive) of vSAS, while the

moving scatterer has velocity v = [vx vy]T . The time required to collect the data for a single

synthetic aperture is tSA = LSA/vSAS, where the synthetic aperture itself occupies the region

of the y-axis satisfying −LSA/2 ≤ y ≤ −LSA/2. The time during which the scatterer will

inhabit a given range resolution cell is: tdwell = min{δx/v · ex, tSA}.

As the sensor moves along the y-axis, the range from sensor to scatterer is R′(y) =
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√
(x0 − εx(y))2 + (y − εy(y))2 in which:

εx(y) = v · ex
y + LSA/2

vSAS
(3.37)

and

εx(y) = v · ey
y + LSA/2

vSAS
. (3.38)

Since the scatterer may move in any direction in the x-y plane, so (3.2) is extended to

account for errors in both range and cross-range. The range from sensor to scatterer can be

written via truncated Taylor expansion as:

R′ ≈ R +
dR′

dεx

∣∣∣∣∣
εx=0

εx +
dR′

dεy

∣∣∣∣∣∣
εy=0

εy

≈ R −
(
1 −

y2

2x2

)
εx −

y
x0 − εx

εy

≈ R − εx −
y
x0
εy.

(3.39)

The phase error function imposed on the SAS signal history can now be written:

g(y) = exp
{

j2k0
vx

vSAS
(y + LSA/2)

}
· exp

{
j2k0

vy

vSAS

y
x0

(y + LSA/2)
}

= exp { j2k0LSA} · exp
{

j2k0
vx

vSAS
y
}
· exp

{
j2k0

vy

vSAS

y2

x0

}
.

(3.40)

Equation (3.40) is easily analyzed using the results from Sections 3.3.3 and 3.3.2. There

are three phase error terms. The first is a constant and is irrelevant in the sense that it doesn’t

affect the magnitude of the PSR. The second term describes the effect of the x component

of the scatterer velocity and is a linear phase error. A scatterer moving along the x-axis

toward or away from the synthetic aperture will therefore be well-focused, but shifted in

cross range by an amount equal to x0vx/vSAS. The third term in (3.40) is a quadratic phase

error and represents the effect of the scatterer’s velocity in the y direction. This motion

will cause the PSR to widen, or blur, by a length equal to ∆PSR = 2LSA|vy|/vSAS. Thus, it

is shown that the PSR for moving scatterers such as fish will appear primarily as streaks in

the cross-range direction. An interesting consequence of this result is that the magnitude of

vy can be inferred from the width of the observed PSR. For example, the images containing

moving scatterers shown in this thesis yield values of vy in the neighborhood of 5 cm/s.
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3.5 Comments

The phase error analysis began with the assumption of small (or residual) motion errors

that are less than a resolution cell in extent. This simplification restricts the discussion to

phase errors. A similar treatment for the linear and sinusoidal cases is given in the SAR

literature by Fornaro et al. [52] in which no prior restrictions are placed on the magnitude of

the motion errors. The authors then develop an exact expression for the two-dimensional

spectrum of the observed synthetic aperture data. This spectral model is then simplified

using the small-magnitude assumption. Closed-form expressions for various types of phase

errors can be obtained from this simplified model.

It has been shown that the analysis of stripmap phase errors is, in general, much differ-

ent than for the spotlight mode. Nevertheless, the results are similar for the two imaging

modalities. For example, sinusoidal errors generate replicas of the PSR while random

high-frequency errors induce a loss of contrast without a loss of resolution. The overall

taxonomy for describing the qualitative effects of phase errors on stripmap imaging is es-

sentially the same as for spotlight imaging, as presented by Carrara [24]. These results are

useful in a variety of applications such as error budgeting for system design, developing

improved strategies for data collection, and diagnosing the sources of image degradation

for experimental data.

69



CHAPTER 4

THE REDUNDANT PHASE CENTER TECHNIQUE

4.1 Introduction

Synthetic aperture imaging is ideally done by collecting data on a perfectly straight line.

This rarely, if ever, occurs in reality, so the available sensor information must be used to

estimate the actual vehicle trajectory in order to obtain properly focused imagery. This

chapter describes the redundant phase center (RPC) technique which is the foundation for

the motion estimation presented in the next chapter. In the literature, RPC has generally

been considered to be a motion estimation technique unto itself (see [59], for example) and

aimed purely at improving the quality of the SAS imagery. It is treated here primarily as a

method for using the SAS data to accurately measure displacements in the image (or slant)

plane. This is a subtle difference, but it opens the door to applying RPC-based motion

estimates not only to the SAS imagery but also to improving the navigation of the host

vehicle.

The redundant phase center technique is simply a combination of the vernier array

concept described in Section 1.4 and the idea of correlating two similar signals to estimate

their relative delay. The motivation stated in Section 1.4 for using a vernier array was

to increase the area coverage rate of the SAS. An added benefit can be derived from the

vernier array if the SAS is moved forward through the water such that the aftmost part of

the array at ping p overlaps the foremost section at ping p − 1 as shown in Figure 1.7. The

advance per ping is set to be an integral number of phase center spacings that is less than

the total number of receivers in the SAS array. For each overlapping phase center pair, the

sensor has two observations of the sea floor which are identical, neglecting noise, except

for any delay caused by unwanted platform motion. The delay is estimated by studying

the cross-correlation of these two signals, and this is the subject of this chapter. Chapter 5

deals with interpreting the RPC delays to obtain a record of the actual platform trajectory.
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Table 4.1. Symbols used to describe the delay observed by a pair of overlapping receivers used by the
redundant phase center technique.

dn Vector from vehicle center to the nth array element.
t Time of ping transmission.
τn Time from ping transmission to reception by the nth array ele-

ment (that is, the time of flight).
x(t) Position of the vehicle center.
Φ(t) Rotation matrix indicating the orientation of the vehicle.
v(t) Linear (translational) velocity of the vehicle.
ω(t) Angular velocity of the vehicle.

s Scatterer location.
Rn(t) Vector at time t from the nth array element to a given scatterer.
rn(t) Unit vector in the direction of Rn(t).

4.2 Modeling the RPC Time Delays

This section gives a continuous-time model for the time delays observed by a redundant

phase center pair. Table 4.1 contains the definition of the symbols used. It is assumed that

the signal transmission and reception each occur instantaneously: the temporal Doppler

shifting caused by motion of the array is ignored.

The diagram shown in Figure 4.1 depicts the array locations over the course of two

consecutive pings used to estimate the time delay observed by a pair of redundant phase

centers. For the sake of illustration, the array shown has eleven elements, and the trans-

mitter is positioned such that it is coincident with the fifth element. It can be seen from

the previous discussion regarding vernier arrays that the required overlap actually occurs in

the phase-center space. In order to estimate the time delays, two overlapping channels are

required. In the following, this overlapping pair is referred to an RPC pair. SAS arrays are

often characterized by the number of RPC pairs they employ. This number can be adjusted

by changing the forward advance between pings of the array. Using more RPC pairs af-

fords an opportunity to average the motion estimates. However, this comes at the expense

of having a shorter, non-overlapping, section of the array that is actually used for imaging.

The consequence is a reduction of the area coverage rate. Conversely, fewer RPC pairs
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Figure 4.1. Schematic of two consecutive SAS pings with the array in motion. The physical arrays are
shown. A similar diagram of the phase center arrays would show the expected overlap of elements 10
and 11. The transmitter is colocated with the fifth element of the receiver array.

means that the imaging portion of the array is effectively longer resulting in an extension

of the range and area coverage rate of the SAS.

There are four times of interest depicted in Figure 4.1. The transmissions occur at times

t = tp−1 and t = tp, respectively. Since the array is in continuous motion, the receptions

occur at different locations at times t = tp−1 + τ
n
p−1 and t = tp + τ

n
p. Thus, the symbol τ

is used to denote the time between signal transmission and reception. The subscripts on

both t and τ indicate the time of transmission. Furthermore, τ has a superscript indicating

the position of the array element under consideration. The superscripts in Figure 4.1 are
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numbers. In the diagram, τ1
p−1 indicates the time of flight between transmission at time tp−1

and reception by the first element. Clearly, τ can vary along the array. In the following

equations the superscript “fore” denotes the element in the foreward part of the array at

ping p − 1 that overlaps with the aft part of the array, hence the designation “aft”, at ping

p. The quantity observed by an RPC pair comprising a forward channel from ping p − 1

and the appropriate aft channel from ping p is ∆τ = τaft
p − τ

fore
p−1, where the respective times

of flight can be expressed in terms of the kinematics:

τfore
p−1 =

1
c

{∣∣∣Rtx(tp−1)
∣∣∣ + ∣∣∣Rfore(tp−1 + τ

fore
p−1)

∣∣∣}
=

1
c

{∣∣∣s − x(tp−1) −Φ(tp−1)dtx

∣∣∣ + ∣∣∣s − x(tp−1 + τ
fore
p−1) −Φ(tp−1 + τ

fore
p−1)dfore

∣∣∣}
τaft

p =
1
c

{∣∣∣Rtx(tp)
∣∣∣ + ∣∣∣Raft(tp + τ

aft
p )

∣∣∣}
=

1
c

{∣∣∣s − x(tp) −Φ(tp)dtx

∣∣∣ + ∣∣∣s − x(tp + τ
aft
p ) −Φ(tp + τ

aft
p )daft

∣∣∣}
(4.1)

To simplify matters, let the position and orientation at the time of reception be approx-

imated by way of a truncated first-order Taylor series expansion. The position of the origin

of the vehicle’s body coordinates expressed in terms of a fixed external coordinate system

is:

x(tp−1 + τ
fore
p−1) ≈ x(tp−1) + τfore

p−1v(tp−1) (4.2)

Prior to expanding the orientation of the vehicle at reception, let the rotation matrixΦ(tp−1+

τfore
p−1) be factored into two sequential rotations: Φ(tp−1 + τ

fore
p−1) = Ψ(τfore

p−1)Φ(tp−1). The latter

term is the orientation of the vehicle at the time of transmission, while the former represents

the additional rotation that occurs during the time of flight. The Taylor expansion is then:

Φ(tp−1 + τ
fore
p−1) ≈ Φ(tp−1) + τfore

p−1Ψ̇(tp−1)Φ(tp−1). (4.3)

However, Ψ̇ evaluated at tp−1 is simply Φ̇(tp−1), which is assumed to be known from the

vehicle instrumentation. Thus,

Φ(tp−1 + τ
fore
p−1) ≈ Φ(tp−1) + τfore

p−1Φ̇(tp−1)Φ(tp−1). (4.4)
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Further simplifications can be made if the rotation Ψ is small. In (4.4), the rotation rate

Φ̇ is a matrix. However, multiplying Φ̇ times a vector can be shown to be equivalent to

the cross product between the instantaneous angular velocity ω = [ψ̇ φ̇ θ̇]T and that same

vector. This form is used henceforth. Substituting the Taylor approximations into the time-

of-flight equations yields:

cτfore
p−1 =

∣∣∣s − x(tp−1) −Φ(tp−1)dtx

∣∣∣
+

∣∣∣∣s − (
x(tp−1) + τfore

p−1v(tp−1)
)
−

(
Φ(tp−1)dfore + τ

fore
p−1ω(tp−1) ×Φ(tp−1)dfore

)∣∣∣∣
cτaft

p =
∣∣∣s − x(tp) −Φ(tp)dtx

∣∣∣
+

∣∣∣∣s − (
x(tp) + τaft

p v(tp)
)
−

(
Φ(tp)daft + τ

aft
p ω(tp) ×Φ(tp)daft

)∣∣∣∣
(4.5)

In an effort to facilitate matters later on, it is also assumed that the linear and angular

velocities change negligibly over the duration of two pings. The linear translations can then

be written as:

x(tp) ≈ x(tp−1) + ∆tv(tp−1) (4.6)

x(tp + τ
aft
p ) ≈ x(tp−1) + (∆t + τaft

p )v(tp−1) (4.7)

and the rotations are:

Φ(tp) ≈ Φ(tp−1) + ∆tω(tp−1) ×Φ(tp−1) (4.8)

Φ(tp + τ
aft
p ) ≈ Φ(tp−1) + (∆t + τaft

p )ω(tp−1) ×Φ(tp−1). (4.9)

Making this approximation is convenient because it allows the motion to be expressed in

terms of the position, orientation, and velocity of the first ping of the pair. The time delay
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observed by the RPC pair shown in Figure 4.1 becomes:

c∆τ = c(τaft
p − τ

fore
p−1)

=
∣∣∣∣s − {

x(tp−1) + ∆tv(tp−1)
}
−

{
Φ(tp−1)dtx + ∆tω(tp−1) ×Φ(tp−1)dtx

}∣∣∣∣
−

∣∣∣s − x(tp−1) −Φ(tp−1)dtx

∣∣∣
+

∣∣∣∣s − {
x(tp−1) + (∆t + τaft

p )v(tp−1)
}
−

{
Φ(tp−1)daft + (∆t + τaft

f )ω(tp−1) ×Φ(tp−1)daft

}∣∣∣∣
−

∣∣∣∣s − (
x(tp−1) + τfore

p−1v(tp−1)
)
−

(
Φ(tp−1)dfore + τ

fore
p−1ω(tp−1) ×Φ(tp−1)dfore

)∣∣∣∣
= Rtx(tp) − Rtx(tp−1) + Raft(tp + τ

aft
p ) − Rfore(tp−1 + τ

fore
p−1)

= Ra − Rb + Rc − Rd,

(4.10)

where the notation in the last line has been introduced for the sake of brevity in the equa-

tions used subsequently.

The details of the mathematics presented in this section come into play in the next

chapter. For the present discussion of measuring RPC time delays, the most important

concept from this section is the fact that these delays vary with range, or acquisition time,

unless (1) the sensor lies in the plane of the sea floor, and (2) its velocities v and ω are

both zero. This is, of course, never the case in practice, and it is customary to attempt

to estimate the delay locally by using a short-time sliding window. Of these two effects,

the range variation of the delay caused by nonzero altitude is the most significant. The

component of the array velocity in the range direction is generally small enough so that the

array movement within the duration of the correlation window may be neglected.

4.3 Short-Time Correlation-Based Time Delay Estimation

A short-time cross-correlation scheme is used in order to capture the range-dependence of

the RPC time delays as well as obtain estimates that are robust to local decorrelation. A

flowchart is provided in Figure 4.2 for reference in this description. The process begins

with two time series- one from each channel of the RPC pair. A local short-time window
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is then applied at the same position for both signals. The temporal length of the window

typically corresponds to 0.5–2 m of range. For common SAS systems, this range of window

lengths produces low-variance estimates of the delay while also being short enough to

justify the assumption of constant delay over the window duration. It is tacitly assumed

that signals 1 and 2 are not grossly time-shifted relative to one another. If they were, the

windowed signals might not be highly correlated. This is not a problem in practice for

motion estimation, although it may be for interferometry. Gross delays could be accounted

for by lengthening the window, estimating the gross delay, shifting the shorter windows

appropriately, and then proceeding as described below.

The next step in the time delay estimation process is to compute the correlation coeffi-

cient between the two signals:

ρ12(t) =
cov(s1, s2)
√

var(s1)var(s2)
. (4.11)

Note that ρ12 is complex because of the use of the complex baseband representation of the

received SAS signals. Examination of the cross-covariance function in more detail serves

to illuminate the method used for time-delay estimation. Recall the form of a (noise-free)

baseband complex echo return from a point scatterer at range R:

s1(t) = pm

(
t −

2R1

c

)
· exp {− jω0t}

= pb

(
t −

2R1

c

)
· exp

{
jω0

(
t −

2R1

c

)}
· exp {− jω0t}

= pb

(
t −

2R1

c

)
· exp

{
jω0

2R1

c

}
.

(4.12)

Likewise for s2:

s2(t) = pb

(
t −

2R2

c

)
· exp

{
jω0

2R2

c

}
. (4.13)

Assuming s1 and s2 are zero-mean, wide-sense stationary, and ergodic, the cross-covariance
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Signal 1 Signal 2

Short Time 
Window

Short Time 
Window

FFT-Based Cross 
Correlation w/Interploation 

for Peak Finding

FFT-Based Cross 
Correlation w/Numerical 
Method for Peak Finding

Cross Correlation Method

Find the Coarse Delay
(Based on the Lag of ρmax)

Find the Fine Delay
(Based on the Phase of ρmax)

Figure 4.2. Flowchart of the time delay estimation process. Signals 1 and 2 are typically much longer
than the window length. The process shown in the diagram is repeated many times, and the output is
a vector of time delays, one for each position of the local short-time window.
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function is:

cov(s1, s2; t) =
∫

s1(λ) s2(λ − t) dλ

=

∫
pb

(
λ −

2R1

c

)
· exp

{
jω0

2R2

c

}
· pb

(
λ − t −

2R2

c

)
· exp

{
− jω0

2R2

c

}
dλ

=

∫
pb

(
λ −

2R1

c

)
· pb

(
λ − t −

2R2

c

)
· exp

{
− jω0

2(R2 − R1)
c

}
dλ

(4.14)

where the overbar indicates complex conjugation and ω0 is the center frequency of the

signal. If the cross-covariance is evaluated at the lag that is equal to the relative time delay

between s1 and s2, then the following is obtained:

cov(s1, s2; t = 2(R1 − R2)/c) = exp
{
− jω0

2(R2 − R1)
c

} ∫ ∣∣∣∣∣∣pb

(
λ −

2R1

c

)∣∣∣∣∣∣2 dλ. (4.15)

This equation represents the (complex) value of the cross-covariance corresponding to the

maximum value of |cov(s1, s2; t)|, and it has two important properties. First, the peak mag-

nitude occurs when the lag is equal to the relative time delay between s1 and s2. Second, this

value is in general complex and its phase is proportional to the time delay being estimated,

modulo 2π. This suggests a two step approach for computing the time delay [60, 61]. First,

compute the coarse delay, ∆τcoarse, and then follow on with the fine delay, ∆τfine, such that:

∆τ = ∆τcoarse + ∆τfine. (4.16)

The coarse delay is equal to the location of the peak of the magnitude of cov(s1, s2; t). It

serves as an indicator of the integral number of wavelengths at the center frequency spanned

by the relative time shift. The fine delay represents the contribution to the time delay that

is a fractional part of a wavelength. It is found from the phase of the value of cov(s1, s2; t)

that has the largest magnitude, which is the value used for the coarse delay. The fine delay

is computed according to:

∆τfine = −
α

2π f0
+

m
f0

(4.17)

in which α is the phase of (4.15) and m ∈ Z is the ambiguity number satisfying the condition

that |∆τcoarse − ∆τfine| is minimized.
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Uncertainty in the estimate arises if noise is introduced to the signals being compared.

For this case, Bellettini and Pinto [62, 61] have reported the Cramér-Rao lower bounds on

the coarse and fine time delay estimates. They are:

σcoarse =

√
3

πBw
√

BwT

√
1
ν
+

1
2ν2 (4.18)

and

σfine ≈
1

2π f0
√

BwT

√
1
ν
+

1
2ν2 . (4.19)

In these calculations Bw is the signal bandwidth, T is the temporal duration of the corre-

lation window, and ν is the signal-to-noise ratio expressed in terms of the peak magnitude

of the correlation coefficent: ν = |ρ|/(1 − |ρ|). The product BwT is defined as the number

of independent samples in the correlation. The signals s1 and s2 are bandwidth sampled. It

is sometimes useful to rewrite T in terms of the spatial window length (in meters) used for

the correlation: T = 2Lwin/c.

The equation in the paragraph above relating SNR and the correlation coefficient is

easily derived as follows (see [63]). Consider a pair of signals s1 = s + n1 and s2 = s + n2,

in which s is the part that is common to both signals, and n1 and n2 are zero-mean iid noise

processes that are not correlated with s. The magnitude of the correlation coefficient is:

|ρ| =
|cov(s1, s2)|
√

var(s1)var(s2)

=
σ2

s

σ2
s + σ

2
n
.

(4.20)

Factoring σ2
s out of the numerator and denominator and defining the SNR as ν = σ2

s/σ
2
n

gives the relationship used above: |ρ| = 1/(1 + ν−1).

Figure 4.3 provides a real-world example of the potential accuracy of the RPC time

delay estimation. Figure 4.3(a) shows a set of delays obtained from SAS field data us-

ing RPC in addition to a plot of the curve describing the delays whose parameters were

computed using the nonlinear least squares technique given in Section 5.6. The standard

deviation cannot be computed directly since the delays vary with range and do not have a
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Figure 4.3. (a) Time delays estimated using RPC (diamonds) plotted along with the closed-form de-
scription of the RPC delay (solid line) found using the nonlinear least squares technique of Section 5.6.
The RPC delays shown correspond to ρ ≥ 0.85. Delays with ρ < 0.85 are not shown and were rejected
for the least-squares computation. (b) The lower plot shows the result of subtracting the least-squares
delay from the RPC observations (black diamonds, left-hand scale). Also shown are the correlation co-
efficients for the RPC delays (circles, right-hand scale). Note that all delays are expressed as distances.
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meaningful expected value that can be removed for the computation of σfine. To circumvent

this problem, the range-varying behavior is accounted for by subtracting the least-squares

estimate of the RPC delay from the observed values. The result of this operation is shown

in Figure 4.3(b), as are the correlation coefficients for the delays. In this example the av-

erage correlation coefficient is ρ = 0.95, and the standard deviation expressed in terms

of wavelengths is σfine = λ/185. By comparison, the CRLB computed from (4.19) is

σfine = λ/216. The performance in this instance is exceptionally good, and in practice the

results often come reasonably close to the CRLB. This extraordinary accuracy is the key

to the successful implementation of the motion estimation and compensation techniques

presented in Chapters 5 and 6.

The experimental σfine is occasionally observed to be less than the predicted CRLB.

This might seem to be problematic at first, as it can be proven that the CRLB represents

the best possible performance of any estimator. There are several possible sources of the

discrepancy, however. First, one must consider that the assumptions used to derive the

CRLB may not apply to the experimentally-observed data. For example, closed-form ex-

pressions for the CRLB are often more easily obtained by assuming that the estimator has

zero bias. In this case, the result cannot preclude the existence of a biased estimator with a

smaller variance; such CRLBs only guarantee that no unbiased estimator exists with better

performance. CRLB derivations are also frequently simplified by modeling the noise as

an additive white Gaussian process, when the true noise may be multiplicative, correlated,

and/or colored. Another potential source of inconsistency between the theoretical CRLB

and the experimental result is that the relationship between signal-to-noise and correlation

coefficient (4.20) used in (4.19) may differ from the actual relationship for the observed

SAS data. It should also be remembered that the ad hoc procedure used above to account

for the range variation of the delay may affect the result. Regardless of these concerns,

the CRLB given by (4.19) is accurate and is an invaluable tool for the design and analysis

of SAS systems and processing algorithms. The reader wishing to consider in depth the

81



development of this result is referred to [64, 65, 66, 67, 62]. Additionally, Johnson and

Dudgeon [68] give a brief discussion of bounds other than the CRLB that may be more

applicable to the problem of time delay estimation in low SNR conditions.

4.3.1 Algorithms for Coarse Time Delay Estimation

To close the discussion of the time delay estimation algorithm, two methods are presented

that can be used to accurately locate the peak of ρ12 without resorting to highly oversam-

pling s1 and s2. The first and easiest to implement is simply to fit a parabola using the

discrete peak of |ρ12| and its two neighboring samples. Because only three samples are

employed, a perfect parabolic fit can be guaranteed. Furthermore, an explicit analytical

expression exists for locating the peak value of the parabola. This expression is derived in

Section III.2.2.2 of [17] and is:

∆n =
−0.5[ f (n + 1) − f (n − 1)]
f (n + 1) − 2 f (n) + f (n − 1)

. (4.21)

Given f = |ρ12| evaluated at the peak value and the two adjacent samples, this equation

yields the fractional sample offset of the parabolic peak. Thus, the coarse time delay equals

the integer sample lag of the peak of |ρ12| plus the offset computed from (4.21). This

interpolative approach is robust and easy to compute. However, its accuracy is ultimately

limited by the fact that the peak of the correlation coefficient is approximated by a parabola.

Oversampling the correlation coefficient tends to improve the approximation and thus the

accuracy of the interpolated peak location. This is a consequence of the Weierstrass ap-

proximation theorem, a result from the field of real analysis [69]. In essence, it states

that a continuous function can be piecewise approximated by polynomials to any degree of

accuracy.

The second technique for finding the value of ρ12 corresponding to the maximum of |ρ12|

is iterative in nature. It can be used to locate the peak to an arbitrary degree of accuracy

without oversampling. The procedure is to shift s2 relative to s1 until the maximum of

|ρ12| occurs precisely on a discrete sample. The first step is to compute |ρ12| as well as
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its derivative with respect to the lag t, ρ′12. The value of ρ′12 evaluated at the peak sample

of |ρ12| serves as an indication of how much s2 should be shifted relative to s1 in order to

result in the highest possible value of |ρ12|. In other words, the probability of the peak of

|ρ12| falling exactly on a discrete sample is zero. However, this condition can be forced to

occur by iteratively shifting s2. Newton’s method is used to accomplish the goal. Recall

that Newton’s method for finding a zero crossing is: xn+1 = xn− f (xn)/ f ′(xn). In the present

context, the application is to solve iteratively for the coarse time delay, ∆τcoarse, such that

|ρ12(∆τcoarse)|2 = max{|ρ12(t)|2}. Newton’s method applied to the problem of finding the

peak magnitude of the cross-correlation is:

∆τcoarse,n+1 = ∆τcoarse,n +

d
dt |ρ12(∆τcoarse,n)|2

d2

dt2 |ρ12(∆τcoarse,n)|2
. (4.22)

The first and second derivatives of the squared envelope of ρ12 are required in order to exe-

cute this computation. Fortunately, analytical expressions exist that make these derivatives

easy to compute without resorting to finite-differencing schemes. They are:

d
dt
|ρ12(t)|2 =

d
dt
ρ12(t) · ρ12(t)

= ρ12(t) · F −1
ω { jωP12(ω)} + ρ12(t) · F −1

ω { jωP12(−ω)}
(4.23)

and

d2

dt2 |ρ12(t)|2 =
d2

dt2 ρ12(t) · ρ12(t)

= ρ12(t) · F −1
ω {−ω

2P12(ω)} + ρ12(t) · F −1
ω {−ω

2P12(−ω)}

+ 2F −1
ω { jωP12(ω)} · F −1

ω { jωP12(−ω)}

(4.24)

where P12(ω) is the Fourier transform of ρ12(t). Note also that the overbar indicates com-

plex conjugation and that the terms P12(−ω) can be readily computed using the time-

reversal property of the Fourier transform: P12(−ω) = Ft{ρ̄12(t)}. The differentiation prop-

erty of the Fourier transform has also been used: dρ12(t)/dt = jωFt{ρ12(t)}. With the

required derivatives in hand, the computation of ∆τcoarse,n+1 is repeated until the norm of

d
dt |ρ12(t)| is below a specified threshold.
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4.4 Comments

The question of optimal window length naturally arises when performing RPC time delay

estimation. This issue is complicated in general if one demands a truly optimal solution,

and the methods of harmonic analysis may prove to be of use in this case. This subject

is not explored further here. However, there are a few general observations that lead to

window lengths that perform well and are almost always suitable, if not optimal.

It is important to recognize from (4.19) that, for a fixed bandwidth, the delay estimates

improve as the window length increases because the number of independent samples in-

creases. However, the window length should not be increased arbitrarily. One reason for

this restriction is the underlying assumption that the delays are stationary over the duration

of the window, while the geometry of the problem causes the delays to vary with range (cf.

(4.10) which is a function of scatterer position s, Figure 5.6, and Section 6.2). Another

argument for shorter window lengths is that the correlation on the RPC channels degrades

with range due to the SNR drop associated with effects such as spreading loss, absorp-

tion, medium instability, and multipath (see Figure 4.4(a)). Thus, adding a large number

of samples to the window can actually have a negative impact on the quality of the delay

estimates. Furthermore, the correlation may degrade locally. The most frequent causes

of this are biologics and shadowing. (Fish and Carr [1, 2] and McCarthy [70] discuss the

presence of biologics, such as fish and vegetation, in RAS imagery.) Figure 4.4 shows a

SAS image and its corresponding RPC correlation map. The figures show several small fish

schools and the resulting localized decorrelation they cause. In this case the motivation for

shorter correlation windows is clear, as this provides a degree of robustness to the motion

estimation by enabling the locally unreliable delays to be rejected.

A general rule for choosing the minimum length of the correlation window can be

obtained from (4.19). Figure 4.5 shows a family of curves representing the Cramér-Rao

lower bound on the time delay estimate for an example system with a bandwidth of 30 kHz

and center frequency of 120 kHz. These curves exhibit a knee, beyond which there is little
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Figure 4.4. RPC correlation map (a) and the corresponding SAS image (b). The dark holes in the
correlation map are caused by schools of fish that are visible as blurred patches in the image. Also
note the bright wishbone-shaped object in the image. The strong scattering from this object causes an
increase in the local RPC correlation between 45 m and 50 m range.
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Figure 4.5. Cramér-Rao lower bound on the time delay estimates (4.19) for a SAS with a 30 kHz band-
width and a center frequency of 120 kHz. The curves represent correlation coefficients ranging from
0.5 (upper curve) to 0.9 (lower curve) in increments of 0.1.

advantage to increasing the correlation window length. Thus, the minimum window length

is suggested by the location of the bend in the CRLB curve for the typical correlation value

expected. The maximum length, on the other hand, is generally driven by the amount of

delay variation expected within the duration of the window. This variation diminishes with

range (see Figure 4.3(a)), so that longer windows may then be used to counter the drop in

correlation that also occurs at range.
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CHAPTER 5

MOTION ESTIMATION TECHNIQUES

5.1 Introduction

This chapter outlines a number of ways to estimate the motion of the SAS array and the

vehicle carrying it. Most of these are based on the redundant phase center technique de-

scribed in the previous chapter. While RPC is the thread connecting the motion estimation

schemes presented, it is shown that there are numerous ways to usefully interpret and ex-

ploit the RPC time-delay measurements. Hence, it is difficult to identify a particular algo-

rithm as being the best. The choice is largely driven by the number of RPC channels in the

array, the amount and quality of auxiliary navigation data, and the computational resources

available.

5.2 Defining the Nominal Sensor Trajectory

The ultimate goal is to derive the information needed to properly compensate the SAS data

for the unwanted motion of the array. The overall approach to motion estimation is to first

establish a baseline, or nominal trajectory, that will be used as a reference for all motion.

The motion is then estimated and expressed relative to the coordinate system defined by

the nominal trajectory (NT). The y-axis is taken to be along the NT, the z-axis is up, toward

the surface of the water, and the x-axis is range. In the discussion to follow, the NT is

understood to be computed using a method like the following least-squares regression.

First, the latitude and longitude of the platform at ping p are converted into meters traveled

north and east with respect to the first ping. The conversion used is

xeast[p] = (θlong[p] − θlong[1]) · Rearth cos θlat,avg (5.1)

xnorth[p] = (θlat[p] − θlat[1]) · Rearth (5.2)
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Figure 5.1. The nominal trajectory (NT) is defined on a scene-by-scene basis. The y-axis and the yaw
relative to it are defined by the mean track over the sea floor.

In computing xeast[p], the mean scene latitude has been used, and the radius of the earth is

6,378,140 m. This conversion is done on a scene-by-scene basis. Since the typical scene

dimension is on the order of tens of meters, this locally-flat approximation is perfectly

acceptable. The next step is to actually compute the best fit line to the vehicle positions.

This is done via:

A = [xeast 1] (5.3)[
αslope αintercept

]
=

(
ATA

)−1
AT xnorth (5.4)

The quantity αslope gives the slope of the best straight line fit to the actual vehicle positions

over the ping interval contained in the scene. Note that if the vehicle course is close to

being due north or due south, |αslope| would be large, possibly giving rise to errors in the

NT. In this case, the roles of xeast and xnorth could be swapped. What matters is that the

x-axis in this regression should be the cardinal direction closest to the actual vehicle track.

It is important to know αslope because navigation sensors record compass heading, but

what is required for motion estimation is the vehicle yaw relative to the track used for

image formation. Once αslope has been found, the yaw can be computed from the following

equation.

θyaw = −
(
θheading − π/2 + tan−1 αslope

)
. (5.5)
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Recall that the compass measures angles in the clockwise direction, while the coordinate

system employed in this thesis uses counterclockwise angles. The NT can be chosen some-

what arbitrarily. However, some choices are better than others in practice. For example,

see Section 6.5. The approach taken here is probably the most straightforward in that it is

simple and intuitive. Another useful way to define the NT would be to find the track that

minimizes the mean square yaw. In any case, the NT is a line in three dimensional space,

and it is considered to be perfectly horizontal (that is, parallel to the flat earth) at a height

equal to the mean vehicle altitude over the ping interval forming the scene.

If one did not wish to make the locally-flat earth assumption, the least squares com-

putation of the NT heading would have to be carried out in spherical coordinates. In this

setting, the problem goes from finding a best-fit line to points on a plane to finding the

best-fit great circle to points on the surface of a sphere. This approach is described by de

Witte [71]. This added complexity is unnecessary for the distances relevant to making SAS

imagery.

5.3 IMU-Based Motion Estimation

For host vehicles equipped with an inertial measurement unit (IMU), the most straightfor-

ward approach to synthetic aperture motion estimation is to simply rely on the vehicle’s

navigation records [72]. Indeed, this technique is frequently used for airborne SAR imag-

ing. The IMU-based motion estimate of the position of the mth receiver on the SAS array

is given by:

Rm(t) = RIMU(t) +Φ(t)dm, (5.6)

where Rm(t) is equal to the IMU’s estimate of its position, RIMU(t), plus the distance from

the IMU to the mth receiver, Φ(t)dm. The vector dm pointing from the IMU to the mth

receiver is expressed in the vehicle body coordinates; hence, it is fixed with respect to time.

The rotation matrix Φ(t) is provided by the IMU and transforms from the body coordinates

into the external (earth) reference frame.
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The drawback to this simple technique is that its effectiveness depends on the accuracy

of the IMU which, in turn, is generally tied to its cost, with good accuracy being expen-

sive. In nearly all SAS literature dealing with the problem of motion estimation, it is stated

that IMU accuracy is generally insufficient for SAS motion estimation and compensation,

regardless of the cost. This statement is justified by requiring that the motion be known

to within λ/8 over the entire synthetic aperture. While this is a sufficient requirement,

the analysis of Chapter 3 can be used to derive more realistic accuracy requirements for

the IMU. It should also be pointed out that inferior motion compensation is often better

than none. For this reason, the IMU motion estimate makes a good backup solution for

situations in which the RPC-based techniques fail; for example, one or more RPC chan-

nels malfunction or the correlations drop due to environmental effects or the presence of

biologics.

5.4 Slant Plane Redundant Phase Centers

This section discusses the most widely used and most fundamental of SAS motion estima-

tion schemes. In the literature, it is often referred to as the displaced phase center antenna

(DPCA) technique. It is referred to here as the slant plane redundant phase center (SPRPC)

technique. There are two reasons for the departure from the common terminology: The

first is to avoid confusion with another, related, radar concept known as DPCA used for

moving target identification (MTI) [73, 74]; hence the use of RPC in place of DPCA. The

“slant plane” prefix serves to emphasize the fact that the motion is estimated without regard

to any external frame of reference. At any given range, the motion estimate is computed

relative only to the scatterers at that range. Therefore, the motion estimate does not require

knowledge of the bathymetry, as it is computed in the instantaneous slant plane.

The slant plane RPC technique is described in the literature and in patents by several

authors. However, the most thorough description is arguably that given by Pinto and Bel-

lettini in 2002 [62]. The authors describe the DPCA motion estimation scheme and provide
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an analysis of the theoretical limits on its accuracy; some of these results were used earlier

in Section 4.3. The content of the present section is drawn primarily from this source.

SPRPC begins with the same raw material as most other SAS motion estimation schemes;

the time delays measured using the redundant phase center channels as described in Chap-

ter 4. The RPC delays, in general, vary with range because of the sensor altitude and the

bathymetry. It is assumed that RPC time-delay measurements have been made at all ranges

in the scene. If this is not the case, then the solution must be interpolated/extrapolated to

those ranges for which estimates do not exist. At any given range, the observed RPC time

delay comprises contributions from three sources. The first is the translation that occurred

between pings p − 1 and p (that is, the translational velocity). The second source of delay

is the static attitude of the array relative to the sensor baseline, or nominal trajectory. The

third contribution to the delay is the change in attitude from ping p − 1 to p, or the angular

velocity.

In [62], the first source of time delay is called DPCA sway and the latter two are termed

DPCA yaw (see Figure 5.2). The rationale for calling them sway and yaw is as follows:

Consider the point on the sea floor corresponding to a given RPC time delay measurement.

A plane is defined by this point and the along-track positions of the sensor at pings p − 1

and p. This plane can the thought of as the slant plane for that range; it is the instantaneous

slant plane. The RPC time delays measure the projection into this plane of the actual

sensor locations. In other words, the RPC portion of the SAS array effectively senses

only sway and yaw. This information is sufficient to perform compensation at the range

corresponding to the RPC delay, and no external reference frame is required. Only sway

and yaw as projected into the slant plane are sensed because the RPC portion of the SAS

array has been assumed to be one-dimensional. If the overlapping section of a vernier

array were two-dimensional, then the motion could be resolved more completely. The

paper by Doisy [75] gives an analysis of two- and three-dimensional sonar arrays used for

correlation-based motion estimation.
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Figure 5.2. The diagram above, after Pinto and Bellettini [62], shows the DPCA sway and yaw for two
consecutive pings. The shaded box indicates the overlapping portion of the SAS phase center array
used for motion estimation. The DPCA sway, γ, is referenced to the middle of this region.

According to [62], the Cramer-Rao lower bounds on the DPCA sway (γ) and yaw (ψ)

estimates are:

σγ =
1

2π
λ0

2
1
√

BwT
1
√

K

√
1
ν
+

1
2ν2

σψ =

√
3
π

√
K − 1
K + 1

λ0

(K − 1)D
1
√

BwT
1
√

K

√
1
ν
+

1
2ν2 ,

(5.7)

where ν is the signal-to-noise ratio, BwT is the number of independent samples in the

short-time window used for RPC time delay estimation (see Section 4.3), D is the horizon-

tal length of a single array element, and K is the number of independent elements in the

RPC portion of the SAS array. The signal-to-noise ratio is related to the magnitude of the

correlation coeffcient via ν = |ρ|/(1 − |ρ|).

The sway and yaw in the image plane are measured by the RPC portion of the SAS array

and then applied to the imaging (nonredundant) portion of the array to effect the motion

compensation. The apparent sonar trajectory at the time corresponding to ping p is given

by (see Section V of [62]):

yp = yp−1 + Dping

xp = xp−1 + γp−1 +
D
2
θp−1 +

D
2
θp

θp = θp−1 + ψp−1,

(5.8)

where Dping is the ideal advance per ping, γp and ψp are the sway and yaw from ping p − 1

to p as projected into the instantaneous image plane, and the angles θp are assumed to be

small so that sin θp ≈ θp. Figure 5.3 illustrates these quantities. The inter-ping sway of the
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Figure 5.3. The diagram above, after Pinto and Bellettini [62], shows the trajectory of the SAS phase
center array in the slant (or image) plane. The first array is shown as being parallel to the x-axis to
indicate that the integrated trajectory estimate given by (5.10) is referenced to the first ping.

geometric center of the SAS array is given by (xp − xp−1), and it is composed of the sway

seen by the RPC portion of the array as well as lever arm effects due to the in-plane yaw at

pings p − 1 and p. Equation (5.8) can be manipulated into the following form:

yp = (p − 1)Dping

xp =

p−1∑
l=1

γl + D
p−1∑
l=1

(
p − l −

1
2

)
ψl

θp =

p−1∑
l=1

ψl,

(5.9)

where l is the ping index. The accumulated position error can be written from this form of

the equations:

δyp = 0

δxp =

p−1∑
l=1

δγl + D
p−1∑
l=1

(
p − l −

1
2

)
δψl

δθp =

p−1∑
l=1

δψl.

(5.10)

The along track error is zero by assumption. Pinto and Bellettini point out that the cross-

track error accumulates like a random walk in the presence of pure sway error (δψp = 0
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for all p) and like an integrated random walk in the presence of pure DPCA yaw error

(δγp = 0 for all p). Error accumulates much more rapidly in the latter case resulting in

a highly correlated pattern of phase error along the synthetic aperture. It was shown in

Chapter 3 that uncorrelated phase errors are less destructive to SAS focus than correlated

phase errors.

The SPRPC (or DPCA) technique is the quintessential method of SAS motion estima-

tion. One advantage is that it requires no input from other motion sensors and requires no

external frame of reference. It is possible, at least in theory, to perform motion compensa-

tion using only the SAS data itself– an advantage that can be used to reduce the cost and

complexity of the overall SAS/vehicle system. It is for this reason that motion estimation

and compensation are sometimes called autofocus in the literature. In practice, it is often

necessary to extrapolate the SPRPC solution to certain locations in the SAS image. In this

situation, it often becomes necessary to make assumptions about the bathymetry and sensor

location. Another weakness of SPRPC is that the in-plane yaw estimates achievable using

redundant phase centers are generally inferior compared to the attitude measurements that

are likely to be provided by the on-board navigation system of an AUV. For any given

set parameters, the accuracy of the DPCA sway and yaw can be improved by increasing

the number of elements used for RPC delay estimation. This option carries a steep cost,

however, as it implies operating with a lower area coverage rate or using sonars with extra

elements and the added electronics and power consumption associated with them.

5.5 Nonlinear Least Squares

This section outlines the use of nonlinear least squares (NLLS) to find the vector v in

(4.10) under the assumption that the array’s attitude and angular velocity are known from

an additional sensor such as an IMU. The solution is Newton’s method and is described in

Chapter 10 of [76]. The NLLS solution is similar in form to the one-dimensional Newton’s
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method solution for finding local maxima or minima:

xn+1 = xn − f ′(xn)/ f ′′(xn). (5.11)

Many estimates of the time delay are typically available for a given RPC pair because of

the sliding short-time window described in the previous chapter. The problem is therefore

overdetermined, and the RPC delays are used to find the best estimate of the three unknown

parameters, vx, vy, and vz, expressed as the vector v = [vx vy vz]T . The goal is to find the

v that minimizes the quantity f (v) = 1
2 D(v)T D(v), where D(v) is known as the residual

function. The mth entry of D(v) is written, using (4.10), as:

Dm(v) = c∆τ̂m − c∆τm, (5.12)

where there are M measured RPC time delays and D(v) ∈ RM×1. The residual function is

simply the product of the sound speed and the vector of the time delays computed using an

estimate of v (that is, c∆τ̂m) minus the observed RPC time delays, c∆τm.

The first and second derivatives of f (v) are required in order to form the solution using

Newton’s method. The first derivative of f (v) is

∇ f (v) =
M∑

m=1

Dm(v) · ∇Dm(v)

= J(v)T D(v),

(5.13)

where J(v) ∈ RM×3 is the Jacobian matrix with J(v)mn = ∂Rm(v)/∂vn. Here, the m index

denotes the mth observed time delay and n indexes over the components of v. The mth row

of J(v) is

J(v)m∗ =
[
∆tra + (∆t + τaft

f )rc − τ
fore
i rd

]T
. (5.14)

The rows of the matrix J(v) are evaluated using known quantities and the current estimate

of v. The lowercase r is used to indicate the unit vector pointing in the direction of the

corresponding R in (4.10).

95



The second-derivative of f (v) is:

∇2 f (v) =
M∑

m=1

(
∇Dm(v) · ∇Dm(v)T + Dm(v) · ∇2Dm(v)

)
= J(v)T J(v) + S (v),

(5.15)

where

S (v) ≡
M∑

m=1

Dm(v) · ∇2Dm(v). (5.16)

The second derivative, or Hessian, of Dm(v) is ∇2Dm(v) ∈ R3×3 whose entries are given by:

∇2Dm(v)i j =
∂2Dm(v)
∂vi∂v j

. (5.17)

It is evaluated using the same information used to evaluate the Jacobian matrix. Based on

(4.10), the entries of the Hessian matrix are:

∇2Dm(v)i j =(∆t)2
{

Ra,iRa, j

|Ra|
3 −

δi j

|Ra|

}
+ (∆t + τaft

f )2
{

Rc,iRc, j

|Rc|
3 −

δi j

|Rc|

}
− (τfore

i )2
{
δi j

|Rd|
−

Rd,iRd, j

|Rd|
3

}
.

(5.18)

The symbol δi j in (5.18) represents the Kronecker delta, and it is used to delete the term

in which it appears for entries off the main diagonal of ∇2Dm(v). In practice, one does not

know the value of τaft
f . The definition of the RPC time delay, ∆τ = τaft

f − τ
fore
i , is used to

replace τaft
f in (5.18) with ∆τ+ τfore

i , where τfore
i is assumed to be known from the geometry

and ∆τ is the observed time delay. Using the above expressions for the first and second

derivatives of the residual function, and by analogy with (5.11), Newton’s method applied

to the nonlinear least squares problem is written as:

vc = vp −
(
J(vp)T J(vp) + S (vp)

)−1
J(vp)T D(vp), (5.19)

where vc is the current estimate of the vector v computed from the previous estimate vp, or

from the initial guess. Equation (5.19) is iterated until the norm of the residual is below a

specified threshold:

‖D(v)‖ =
[
D(v)T D(v)

]1/2
< εtol.
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Once this condition is met, the iteration stops and estimates for the x, y, and z components

of the array velocity are obtained. Note that RPC time delays are computed using two con-

secutive pings. According to the model described earlier, it was assumed that the velocity

remains constant over the duration of these two pings. Thus, the estimate represents the

velocity at ping p − 1.

A refinement can be introduced to the solution (5.19) by recalling that the RPC time

delays are derived from cross-correlations. These computations yield the lag as well as

the correlation coefficient. Thus, it is useful to weight each component of D(v) by the

corresponding cross-correlation coefficient. Let these coefficients be represented by the

vector w and by the matrix W which is all zeros except for w appearing along the main

diagonal. The weighted nonlinear least-squares solution then becomes:

vc = vp −
(
J(vp)T WJ(vp) + S (vp)

)−1
J(vp)T WD(vp), (5.20)

where S (v) is modified thus:

S (v) =
M∑

m=1

wmDm(v) · ∇2Dm(v). (5.21)

A useful strategy is to place a threshold on w such that components whose value is below the

threshold are set to zero. Thus, the unreliable time delay estimates are effectively discarded

and the solution is based only on the best measurements available. A sample image that

has been motion compensated using this technique is shown in Figure 5.4.

It should be pointed out that the quality of the estimate of the the velocity vector v is

not the same for all components. In general, poor estimates are obtained for components

of the velocity that are orthogonal to the range vectors implicit in the RPC delay estimates.

Conversely, more accurate velocity estimates are obtained for components that are nearly

parallel to the range vectors. In other words, the NLLS estimate of vx is generally good, that

of vz is less accurate because it is determined mostly by short-range delay estimates, and

that of vy is generally poor. In fact, the vy estimate is typically useless, and the preceding

result can be simplified by omitting the y component of the solution.
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Figure 5.4. The example above demonstrates the effectiveness of the nonlinear least squares (NLLS)
motion estimation. The upper image (a) was created without motion compensation, and the lower
image (b) was compensated using the NLLS estimate. The scene depicts scattered rocks and a pair of
lobster traps on the sea floor. A rope is visible connected to the trap in the lower right quadrant of the
image.
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5.6 Simplified Nonlinear Least Squares

This section outlines the use of nonlinear least squares to find the ping-to-ping displacement

vector x = [∆x ∆z]T associated with a given pair of RPC channels. This technique is

documented in the literature by Cook et al. [77]. The solution is identical in structure to

that found in the previous section, but in the present case the stop-and-hop assumption is

made. This eliminates two of the four range vectors described in (4.10). Furthermore, only

the relative horizontal and vertical displacements of the phase centers are estimated using

least squares. Once these have been computed, the contribution due to rotation is removed

leaving behind the sway and heave estimates.

Referencing Figure 5.5(b), which is a cross-section of Figure 5.5(a), the required time

delay is given by:

∆τ = 2∆R/c

=
2
c

(Rp − Rp−1)

=
2
c

( √
(x + ∆x)2 + (z + ∆z)2 −

√
x2 + z2

)
,

(5.22)

where the subscript p is the ping number index. As before, it is assumed that the sea

floor is a horizontal plane. If bathymetric information is available, for example, from an

interferometric array, it can be incorporated in a straightforward manner into (5.22). It is

also assumed that the RPC pair channels overlap perfectly in the y direction, or equivalently,

there is no surge error.

In the interest of brevity, the necessary residual, Jacobian, and Hessian are given with-

out added derivations:

Dm = c∆τ̂m − c∆τm, (5.23)

Jm∗ =

 2(x + ∆x)√
(x + ∆x)2 + (z + ∆z)2

2(z + ∆z)√
(x + ∆x)2 + (z + ∆z)2

 , (5.24)
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(a) (b)

Figure 5.5. The left diagram (a) shows two consecutive pings of a SAS array with two RPC channel.
The figure on the right (b) shows a cross-section in the x–z plane of a pair of redundant phase centers.
When the stop-and-hop assumption is made, ∆x and ∆z do not vary during the ping reception time.

∇2Dm,i j =


2

R̂p
−

2(x+∆x)2

R̂3
p

−
2(x+∆x)(z+∆z)

R̂3
p

−
2(x+∆x)(z+∆z)

R̂3
p

2
R̂p
−

2(z+∆z)2

R̂3
p

 , (5.25)

where the hat indicates quantities evaluated using the current estimate of x. As before, the

(weighted) numerical solution is written as:

xc = xp −
(
JT WJ + S

)−1
JT WD, (5.26)

with

S =
M∑

m=1

wmDm · ∇
2Dm. (5.27)

Figure 5.6 shows an example of this nonlinear least squares technique applied to field

data from the SAS12 system developed by the US Office of Naval Research [78]. The cen-

ter frequency of this research sonar is 180 kHz, making the wavelength equal to 8.33 mm.

Note that the total variation of the observed RPC time delays is less than a single wave-

length over the 70 m swath shown in the plot. It is clear that the NLLS scheme does an

excellent job of estimating the model parameters. This solution is a simplified version of

that given in the previous section. However, it is important to note that the curve describing

the RPC time delay tends to flatten out with range. Thus, the near range time delays are the
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Figure 5.6. The plot above demonstrates the typical performance of the nonlinear least squares tech-
nique. The broken line shows the measured RPC time delays as a function of range, and diamonds
indicate the points used to estimate [∆x ∆z]T via nonlinear least squares. These points correspond to
delays for which the correlation coefficient was equal to, or greater than, 0.9. The solid line shows the
time delay as a function of range as computed using the [∆x ∆z]T estimated by nonlinear least squares.

most important for computing x. Fortunately, the near range is precisely where the stop-

and-hop approximation holds and where the correlation (alternatively, the signal-to-noise

ratio) is the highest.

At this point, only the inter-ping displacement of one element in an RPC pair has been

estimated. This displacement can be caused by translations (sway, surge, heave) and rota-

tions (pitch, roll, yaw). AUVs are often outfitted with good-quality angular sensors, so it

is assumed that the rotations are known from these. It is then a simple matter to subtract

the rotational contribution from [∆x ∆z]T yielding the desired sway and heave estimates

according to:  ∆xsway

∆zheave

 =
 ∆x

∆z

 −Φpdaft +Φp−1dfore, (5.28)

where Φp is the rotation matrix describing the orientation of the array at ping p while dfore

and daft represent the positions, relative to the rotation sensor, of the phase centers making
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Figure 5.7. The inter-ping heave (∆z) estimate is integrated to yield an estimate of the altitude history
for a segment of SAS12 data (solid line). The broken line shows the altitude measured by the on-board
navigation system.

up the RPC pair. As an example of the quality of the motion estimates achievable using this

technique, Figure 5.7 shows the integrated NLLS heave estimate compared to the altitude

as recorded by the AUVs navigation computer. The constant of integration was chosen

such that the mean of the NLLS curve coincides roughly with the mean of the measured

altitude. Figure 5.8 shows a SAS image produced (a) without motion compensation and

(b) using the NLLS technique. This image shows some large-scale sand ripples adjacent to

fine-scale ripples. The visibility of the fine-scale ripples demonstrates the quality of focus

achieved by the motion estimation and compensation.

As an alternative to using IMU angular measurements to resolve the translational com-

ponents of the NLLS solution, the array rotations can be estimated and removed from the

NLLS estimate using RPC delays just as they are for the SPRPC technique. Briefly, the

procedure is as follows. At each ping, one obtains a separate estimate of ∆x and ∆z for

each RPC pair. Simple linear regression can be used to estimate the pitch and yaw by
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Figure 5.8. SAS image before (a) and after (b) motion compensation via simplified nonlinear least
squares. The scene depicts the edge of a region of sand ripples on the sea floor. (Figure reproduced
from [77].)
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Figure 5.9. Linear regression used to estimate the sway, heave, yaw, and pitch using the [∆x ∆z]T

estimates for ten pairs of redundant phase centers. The data shown in the plot contains an outlier
which was excluded in the computation. The circles represent the points [∆x ∆z]T in 3D space, while
the crosses indicate the projections into the x-y and y-z planes.

projecting the [∆x ∆z]T measurements onto the y-z and x-y planes, respectively. This oper-

ation is shown in Figure 5.9. The success of this approach depends on the number of RPC

channels, the SNR, the precision of the array construction, and the array calibration. Fig-

ure 5.10 shows a sample result obtained from this technique. Figure 5.11 shows an image

that was compensated using the RPC estimate of the angular motion in lieu of the IMU

measurements.

5.7 Dual-Sided Closed-Form Solution

The previous two sections detailed the use of nonlinear least squares to estimate the sonar

array velocity. The merits of this approach are twofold: first, only a single-sided sonar is

required, port or starboard, but not both. Secondly, it can account for the motion of the
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Figure 5.10. Vehicle yaw (a) and pitch (b) estimated using the simplified nonlinear least squares RPC
technique. The attitude estimates from the AUV’s inertial measurement unit (IMU) are shown for
reference. Both estimates are unsmoothed.
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Figure 5.11. SAS image before (a) and after (b) motion compensation showing a trap lying on the
bottom of Boston harbor in Massachusetts.
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Figure 5.12. The diagram above illustrates the process of computing the time-delay correction needed
to map a physical array of receivers into an array of phase centers located along the centerline of the
AUV.

array during the time of reception, so the stop-start assumption is not needed. In contrast,

this section describes a technique, based on approximations to the model presented above,

that can be used in conjunction only with a dual-sided sonar.

A closed-form solution for the sway and heave velocities, vx and vz, is desired. To derive

this solution, several simplifications are made. First, the stop-and-hop assumption is made

so that the vehicle is motionless between transmission and reception for any given ping.

Second, the along-track velocity is assumed to be ideal (no surge error). Third, the port and

starboard arrays are mapped into phase center arrays located along the longitudinal axis,

or centerline, of the vehicle. This is shown for a single side in Figure 5.12. To transform

the received signal from a bistatic transmitter/receiver pair into an equivalent phase center,

all that is required is the appropriate time delay, ∆tm
pc. The superscript m refers to the mth

receiver. This time delay accounts for the difference between the out-and-back distance

associated with the physical transmitter/receiver and the two-way distance associated with
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Figure 5.13. A dual-sided RPC configuration can be used to derive a closed-form solution to the prob-
lem of estimating the ping-to-ping sway and heave.

the corresponding phase center (see Section 1.4). It can be written as:

∆tm
pc = 2|Rpc| −

(
|Rtx| + |Rm

rx|
)

= 2
∣∣∣s − x(ti) − pm

pc

∣∣∣ − (∣∣∣s − x(ti) − dm
tx

∣∣∣ + |s − x(ti) − drx|
) (5.29)

where dm
pc is the vector pointing to the mth phase center location. This is defined to be the

projection of the usual phase center onto the vehicle centerline:

pm
pc =


0 0 0

0 1 0

0 0 0


(

dm
rx − dtx

2

)
. (5.30)

The notation of (5.29) closely follows that used to develop (4.10). In fact, the point of

mapping the port and starboard arrays to the centerline is to simplify (4.10). The mth phase

center is now in the same location regardless of whether it is on the port or starboard side,

and (4.10) can be simplified:

c∆τs = 2
(
Rstbd

p − Rstbd
p−1

)
= 2

∣∣∣∣s − {
x(tp−1) + ∆tv(tp−1)

}
−

{
Φ(tp−1)paft + ∆tω(tp−1) ×Φ(tp−1)paft

}∣∣∣∣
− 2

∣∣∣s − x(tp−1) −Φ(tp−1)pfore

∣∣∣
(5.31)

In this equation, a subscript has been introduced to distinguish between the RPC time delay

of the port and starboard sides. Recall that s indicates the location of a scatterer on the
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bottom and is taken to be s = [0 sx 0]T for a flat bottom. Thus, to write (5.31) for the port

side, it is only necessary to change s to −s:

c∆τp = 2
(
Rport

p − Rport
p−1

)
= 2

∣∣∣∣−s −
{
x(tp−1) + ∆tv(tp−1)

}
−

{
Φ(tp−1)paft + ∆tω(tp−1) ×Φ(tp−1)paft

}∣∣∣∣
− 2

∣∣∣−s − x(tp−1) −Φ(tp−1)pfore

∣∣∣
(5.32)

For both of these equations, all the terms not containing the velocity vector are moved to

the left-hand side and the result denoted as α. Therefore, (5.31) and (5.32) become:

αs = 2
∣∣∣∣s − {

x(tp−1) + ∆tv(tp−1)
}
−

{
Φ(tp−1)paft + ∆tω(tp−1) ×Φ(tp−1)paft

}∣∣∣∣
αp = 2

∣∣∣∣−s −
{
x(tp−1) + ∆tv(tp−1)

}
−

{
Φ(tp−1)paft + ∆tω(tp−1) ×Φ(tp−1)paft

}∣∣∣∣ . (5.33)

Each side can be squared and the two equations solved explicitly for vx and vz; remem-

ber that vy is ideal. The right-hand sides of (5.33) are vector magnitudes. To square

these each component is treated separately where s is as defined above, v = [vx vy vz]T ,

and x = [0 − Dp/2 z]T , where Dp is the distance along-track between pings and z is

the altitude of the vehicle at the first ping of the RPC pair. Lastly, define a new vector,

p̂ =
{
Φ(tp−1)p+ ∆tω(tp−1) ×Φ(tp−1)p

}
, which simplifies the task of explicitly writing the

components of (5.33).

α2
s/4 = s2

x + (∆tvx)2 + p̂2
aft,x − 2(sx∆tvx) − 2sx p̂aft,x + 2∆tvx p̂aft,x

+ (∆tvy − Dp/2)2 + p̂2
aft,y + 2(∆tvy − Dp/2) p̂aft,y

+ (z + ∆tvz)2 + p̂2
aft,z + 2(z + ∆tvz) p̂aft,z

(5.34)

α2
p/4 = s2

x + (∆tvx)2 + p̂2
aft,x + 2(sx∆tvx) + 2sx p̂aft,x + 2∆tvx p̂aft,x

+ (∆tvy − Dp/2)2 + p̂2
aft,y + 2(∆tvy − Dp/2)p̂aft,y

+ (z + ∆tvz)2 + p̂2
aft,z + 2(z + ∆tvz) p̂aft,z

(5.35)

Although somewhat menacing at first glance, these two equations are virtually identical.

Subtracting the latter from the former eliminates almost all the terms and it becomes easy

to solve for vx:

vx =
−1

sx∆t

α2
s − α

2
p

16
+ sx p̂aft,x

 . (5.36)
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Figure 5.14. The dual-sided closed-form solution was used to compensate the image above. The data
was collected by the SAS21 system sponsored by the Office of Naval Research [79, 80]. The uncompen-
sated image (a) is on the left, and the compensated image (b) is on the right. The image shows a small
depression in a sandy sea floor that is otherwise covered with sand ripples. Such holes have a number
of causes, and a notable example is the crater feeding behavior of dolphins [81]. (Figure reproduced
from [80].)

Solving for vz is also straightforward, but more tedious. To find vz a quadratic equation

must be solved, vz = (−b ±
√

b2 − 4ac)/(2a), where the positive sign on the discriminant is

used, and the a, b, and c terms are:

a = 2 ∆t2

b = 4∆t(z + p̂aft,z)

c = 2(z + ∆tvz)2 + 4(z + ∆tvz) p̂aft,z − 2z2 − 4zp̂aft,z.

(5.37)

An example showing a SAS image compensated using the dual-sided closed-form so-

lution appears in Figure 5.14. One important aspect of this approach is a consequence of

the stop-and-hop assumption. It was earlier shown that the RPC time delays vary with

range. However, if the array is stationary during transmit/receive, one is really measuring
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the ping-to-ping x and z displacements of the vehicle, which do not vary with range (see

Figure 5.13). RPC time delay estimates are computed using a sliding window, so for any

given pair of pings this solution yields many estimates of vx and vz. These can then be

subjected to a weighted average, as suggested above, where the weight is related to the

local cross-correlation coefficient. If the cross-correlation coefficient is below a specified

threshold, a weight of zero can be used.

5.8 Estimating Platform Surge Using RPC

Another problem of interest in the field of SAS is that of estimating errors in the along-

track, or cross-range, direction. The RPC technique relies on the correlation between

overlapping channels between two consecutive pings. This implies that the SAS system

is capable of measuring its speed with sufficient accuracy to ensure that the RPC channels

overlap properly. This distance covered between pings is known as the advance per ping

or APP. Errors in APP have two deleterious effects on the SAS operation. First, the array

may become spatially aperiodically sampled. As long as the APP error is not severe, this

poses little difficulty if the true APP is known. The other effect of APP errors is to reduce

the correlation of the RPC pairs. Section 3.3.3 discusses how a constant bias in the APP

degrades the focus of the synthetic aperture if it is uncompensated. This section describes

three related methods for measuring the APP.

5.8.1 Array Correlation Matrix Analysis

The first of the surge estimation techniques addressed here is described in the literature by

Groen [82] (also see [83] and [84]). The surge occurring between pings p − 1 and p is

computed from the correlation matrix Cp which is formed from the received signals of the
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N channels of the SAS array:

Cp =



c11 · · · · · · c1N

...
. . .

...

... cmn
. . .

...

cN1 · · · · · · cNN


, (5.38)

where

cmn =

∣∣∣〈sp−1
m , sp

n〉
∣∣∣∣∣∣sp−1

m

∣∣∣ ∣∣∣sp−1
m

∣∣∣ , (5.39)

and the angled brackets indicate the inner product operation. Each entry of Cp is computed

using signals from two consecutive pings. The superscript indicates the ping index and

the subscript denotes the array channel index. The signals used in (5.39) are generally

subjected to short-time windowing as is done for RPC delay estimation.

Assuming a favorable SNR, the matrix Cp exhibits a diagonal with high correlation

coefficients, and the position of this diagonal indicates the forward advance of the SAS

array between pings p − 1 and p. If the advance is zero, then the strong correlation would

occur along the main diagonal since sp−1
n would be nearly the same as sp

n . If the advance

is equal to Ñ ≤ N − 1 times the distance between phase centers, D/2, then sp−1
1 correlates

strongly with sp
Ñ+1

, and the strongly correlated diagonal would begin with the entry cÑ1

rather than c11. The other entries of this diagonal are given in Table 5.1. In general, the

advance per ping may not be exactly equal to ÑD/2, and interpolation must be carried out

within Cp in order to estimate the true advance per ping, or surge.

This approach to surge estimation has the advantage of being simple and computation-

ally efficient. It does have one serious drawback, however. If the array moves laterally by

an appreciable amount, then the received signals for ping p − 1 are no longer time-aligned

with the signals for ping p. In this case, the signals decorrelate and the surge estimate

will degrade. The way to circumvent this problem is to abandon the inner product given in
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Table 5.1. Intended RPC channel pairing for an N-channel array with M = N − Ñ overlaps.

Ping p − 1 Ping p
1 N − M
2 N − M + 1
3 N − M + 2
...

...
M N

(5.39) and replace the entries of Cp with the peak of the cross-correlation coefficient:

ρmn =
cov(sp−1

m , sp
n)∣∣∣sp−1

m

∣∣∣ ∣∣∣sp
n

∣∣∣ . (5.40)

This solution is more robust, but it incurs the expense of computing N2 cross-correlations

and finding their peaks as opposed to computing N2 inner products.

5.8.2 Exhaustive Surge Error Estimation

If there is no error in the advance per ping (APP), then the overlapped RPC channels in

Table 5.1 will be highly correlated. As the APP error grows, the correlation between the

intended RPC pairs diminishes and the correlation between other combinations of channels

will rise. As above, this effect is exploited in order to measure APP. Using the RPC channels

to estimate the surge requires multiple-channel overlap between pings, and thus there is a

certain price to pay in terms of area coverage rate for the ability to measure APP errors.

(The relationship between range coverage and array length is discussed in Section 1.3.4.)

This section presents a surge estimation technique similar to the one above and was first set

forth in the SAS literature by Oeschger [85].

As before, it is assumed that there are N channels in the array and M = N − Ñ of them

overlap for RPC use. The intended channel pairs are given in Table 5.1. For example, M =

2 in Figure 1.7, and M = 3 in Figures 5.2 and 5.3. If the APP error is zero, then this table

accurately describes the phase center positions relative to one another. Conceptually, APP

error causes the right column of the table to shift up or down by some unknown amount.
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A positive APP error means that the vehicle speed is estimated to be less than it actually

is. Consequently, the SAS ping will be triggered late and the distance between consecutive

pings too large. A negative APP error indicates that the vehicle speed is estimated to

be faster than its true value resulting in the SAS being triggered too soon. The distance

between pings will then be too small.

Since the true APP may be grossly in error, the pairwise signal correlations given in

Table 5.1 may be too low to use for motion estimation. This problem can be solved by using

the available overlapping channels to search for the combination that yields the highest

correlation. In other words, a given RPC channel (say, N − M + 1) is not only correlated

with its intended counterpart (2), but also with the neighbors of that counterpart (1 and 3,

for example). This notion suggests the following algorithmic procedure for estimating the

actual APP.

1. Define a reference channel, sref , from the overlapping portion of the array at ping p.

This is the right-hand column of Table 5.1.

2. Correlate sref with each channel of the previous ping, p − 1, using the short-time

procedure described in Chapter 4. This requires N correlation operations.

3. Find the channel, n, that is most highly correlated with sref. This gives the APP error

to within an integral number of phase centers.

4. Using the three correlations of sref with channels n − 1, n, and n + 1, perform a

quadratic interpolation (4.21) to estimate the fractional part of the APP error.

This procedure is capable of measuring any amount of negative APP error, since ping

p cannot occur before ping p− 1. However, the observable positive APP error is limited by

the number of overlapping phase centers. This is seen by considering Table 5.1. Positive

APP error is sensed by correlating the signal sref with channels forward of that channel that

matches sref in Table 5.1. In the table, these channels are found in the left-hand column.
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The largest observable positive APP error corresponds to M − 1 phase center spacings, or

(M − 1)D/2, where D is the element width. If sref = sN , then correlation with s1 from ping

p − 1 represents the upper bound on the observable positive APP error.

This technique for measuring the APP error is computationally expensive. The cost

can be mitigated to a certain extent, however. As a matter of practice, it is not always nec-

essary to correlate sref with all N elements of the array. For example, if one knows that

the vehicle’s on-board navigation can reliably estimate the APP to within ±1 phase center

spacings, ±D/2, then fewer correlations need to be performed. If the APP is expected to

be in gross error, then it must be estimated before performing the cross-track motion esti-

mation: the APP estimate will be used to first find the RPC channel combination yielding

the highest correlation. Otherwise, using the intended RPC correlation pairs may result in

bad cross-track motion estimates.

5.8.3 Surge Estimation via Eigendecomposition

A simple and elegant solution exists to the problem of surge estimation if it can be assumed

that the delay observed by the RPC channels is less than a range resolution cell. The first

step is to choose the nth channel from ping p as a reference signal, sref = sp
n . The reference

channel is generally one of the aft channels used for RPC delay estimation. Next, form

a matrix whose columns are the time series from the previous ping and whose locations

along the array bracket the cross-range position of the receiver, m, which would ordinarily

form the RPC match with the reference channel in the absence of any surge error:

S =
[
sp−1

m−u · · · sp−1
m · · · sp−1

m+v

]
. (5.41)

The indices u and v determine how many channels are searched in the surge estimation.

For example, an array of seven channels might have three of them dedicated for RPC use

(see Figure 5.3). One choice for sref would be channel six, assuming the array is indexed

from one to seven beginning at the foremost element. Then, setting u = v = 1 gives

S =
[
sp−1

3 sp−1
2 sp−1

1

]
. Using this particular configuration allows the surge to be estimated as
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long as it is within ±D/2, where D/2 is the horizontal separation of the phase centers of

the vernier array. Using more channels in S allows for the estimation of greater amounts

of surge.

In the absence of APP error, the signal sref = sp
n will be highly correlated with sp−1

m . The

APP error is estimated by finding the weight vector w that maximizes the quantity

‖(Sw)∗ sref‖
2
= (Sw)∗ sref s∗refSw

= w∗S∗sref s∗refSw

= w∗Rw,

(5.42)

where R is a correlation matrix. In other words, the weight vector sought combines the

columns of S so as to produce the best estimate of the vector sref. The condition is also

imposed that the norm of w be equal to one. From these requirements, the following La-

grangian is formed:

L(w, λ) = −w∗Rw + λ (w∗w − 1) . (5.43)

Taking the derivative of L(w, λ) with respect to w and setting the result equal to zero gives

−Rw + λw = 0, or (R − λI)w = 0, whose solutions are the eigenvalues and eigenvectors of

the matrix R. The matrix R has certain properties because it is a correlation matrix. Among

these are that R is Hermitian symmetric (R equals its conjugate transpose, R∗) and that it is

positive definite (that is, w∗Rw > 0, ∀ w , 0). These properties imply that the eigenvalues

of R are real and strictly positive.

The solutions of (5.42) and (5.43) represent the minimum, maximum, and saddle points,

where the maximum (minimum) value corresponds to the largest (smallest) eigenvalue.

This result, known as a maximum (or minimum) principle, is found in standard linear

algebra texts in connection with the discussion of quadratic forms and the Rayleigh quotient

[86, 87]. It is also a consequence of the Courant-Fischer min-max theorem.

Since the maximum value of (5.43) is sought for the present application, the desired

solution is the eigenvector corresponding to the largest eigenvalue. The columns of S cor-

respond to physical locations along the receiver array. Thus, the APP can be thought of as
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Figure 5.15. Comparison of the speed over ground (SOG) estimated computed using the exhaustive
correlation and eigendecomposition methods. The speed estimate computed by the AUV’s on-board
navigation system is also shown for reference.

the location of the peak found by interpolating within the entries of the weight vector w. A

comparison of the results obtained using the exhaustive search and eigenanalysis methods

is shown in Figure 5.15.

As with the other operations using RPC, this computation is performed locally using a

short-time sliding window. The results are then averaged using the correlation coefficients

as weights. In fact, this technique fits nicely with the time delay estimation, as the necessary

correlation coefficients will have already been computed. The matrix R will usually be of

fairly low rank, so the required eigendecomposition is inexpensive compared to the cost

of computing the extra cross-correlations used for the general APP estimation. In fact, a

complete eigendecomposition is unnecessary since only the largest eigenvalue is required.

Thus, this approach is amenable to numerical techniques, such as the power method [88],

which can compute the eigenvalues in descending order in terms of magnitude. Lastly, it is

worth observing that this technique for estimating the APP error of a SAS array a bears a
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resemblance to certain methods of adaptive array processing [68] used for signal detection

and estimation.

5.9 Non-RPC Data-Driven Motion Estimation Techniques

The majority of this chapter is dedicated to motion estimation techniques based on redun-

dant phase centers. These are robust and commonly used in practice. However, there are

other data-driven methods for estimating the motion of the SAS array which do not use re-

dundant phase centers. One significant factor motivating interest in these approaches is the

fact that, for a given number of array elements, dedicating receivers to RPC usage lowers

the area coverage rate of the SAS.

A technique for estimating sway is given by Johnson et al. [89]. In this case, the

sway is estimated by examining the statistics of the ping-to-ping phase variation of the

received echoes. This method is based on several assumptions, not the least of which is

the assumed absence of isolated bright scatterers. Fortunately, it is relatively simple to

detect and reject the returns from these scatterers, and the backscatter from the sea floor is

otherwise frequently observed to be reasonably homogeneous.

Another example of non-RPC-based motion estimation is given by Gough and Miller

[90] and is capable of estimating both the ping-to-ping sway and yaw of a SAS vernier

array. The method is based on the idea of producing low-resolution images using only

the receivers associated with a single ping (namely, all the receivers in the array). The

resulting images from adjacent pings are compared using cross-correlation, from which the

differential sway and yaw are inferred.

5.10 Comments

With the exception of the slant plane RPC motion estimation, the cross-track motion es-

timation techniques presented above contain explicit reference to an average location of a

scatterer on the sea floor. The typical workaround is to assume that the entire sea floor is
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a horizontal plane. This is a reasonable assumption for many environments, but there are

circumstances in which it may cause unacceptable error in the motion estimate. In gen-

eral, assuming a planar bottom is acceptable. Prior knowledge of the bathymetry or an

on-board interferometric capability could be used to dispose of any assumptions regarding

the contours of the sea floor.

Another subtlety that bears mentioning regards the short-time correlation coefficient

obtained in the time-delay computations. It is common practice to use these values as both a

threshold and weight in subsequent motion estimation schemes. The obvious approach is to

simply use the correlation coefficients directly as weights after thresholding at a particular

value, keeping ρ ≥ 0.85 for example. However, it may be preferable to give substantially

greater weighting to high values of ρ. In such cases, one might weight by 1/(1 − ρ).

Regardless, it should be noted that the performance of SAS motion estimation is dependent

on the choice for threshold value and weighting method, and that it is important to discard

the RPC time delays corresponding to low SNR conditions.
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CHAPTER 6

MOTION COMPENSATION

6.1 Introduction

This chapter addresses the actual process of compensating for unwanted platform motion.

There is a variety of tools for this purpose, and the specific choice of technique depends

strongly on the desired image quality, system parameters, and the permissible computa-

tional expense. Motion compensation amounts to merely reversing the time delays induced

by the platform motion, but this can be a complicated matter in general. The subsequent

discussion assumes that the motion compensation is a separate step in the overall process-

ing flow. That is to say, the compensation serves to condition the data prior to being recon-

structed with an algorithm that only treats the ideal straight line collection geometry. It is

this approach that necessitates the creation of the various compensation schemes. No sepa-

rate compensation step is required when the general form of spatiotemporal backprojection

is used for image reconstruction. In this case the price for perfect motion compensation is

steep, and excellent imagery can usually be obtained with much less computational effort.

6.2 The Range-Varying Nature of Motion Compensation

The amount of the shift required for compensation depends on the particulars of the motion

encountered, the range, and the bathymetry. (See [91] and [92] for a discussion in the

context of SAR.) This is illustrated in Figure 6.1 in which δ is the vector pointing from the

nominal trajectory (NT) to the actual location of the sensor in question, that is, a particular

channel of a given ping. It is important to point out that δ is not a ping-to-ping motion

vector. Instead, it is the result of the motion estimation in which the platform velocity

has been integrated to give a history of the array position relative to the NT. Recall from

Chapter 5 that the nominal trajectory is the line in 3D space to which the SAS data is

being corrected. In the present discussion, the NT points out perpendicularly from the
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(a)

(b)

Figure 6.1. The upper figure (a) shows the geometry used to describe the range varying time delay
correction. The drawing is not to scale in the sense that a far-field assumption is made in which |δ| � |R|
implying R is nearly parallel to R′ and thus R ≈ R′ + δ · e. This simplification leads to the idea that
the compensation delay for a particular range is given by the projection of δ onto a given R. Using this
idea, the total variation over the range swath of the time delay correction is found to be proportional to
δ · (efar − enear) as shown in the lower figure (b) (in which R′ is omitted). The maximum variation occurs
when δ‖(efar − enear).

page in Figure 6.1. Also shown are the vectors R and R′, along with their corresponding

unit vectors, which point to a given location on the sea floor from the NT and the sensor,

respectively. The time delay necessary for motion compensation is proportional to the

difference between R and R′,

tcorrect =
2
c
(
|R| − |R′|

)
. (6.1)
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At this point a far-field approximation is made in which it is assumed that |δ| � |R|. This

implies that R is effectively parallel to R′ which in turn implies:

R ≈ R′ + δ · e

= R′ + |δ| cos θerr,

(6.2)

where θerr is the angle between δ and e. It is here that the bathymetry comes into play

and the common assumption of a horizontal planar sea floor occurs. It is impossible to

determine θerr without knowledge of both δ and e. The previous chapter explained how to

estimate δ, but e is unlikely to be known unless the SAS in question happens to possess an

interferometric capability that can provide an estimate of the sea floor topography. If the

RPC motion estimation delays are known for all ranges in the swath, then knowledge of

the bathymetry is not required. However, it becomes necessary to interpolate or extrapolate

delays for those ranges for which RPC delays are unavailable. The planar assumption

regarding the sea floor is simply one possible way of determining e so that the motion

compensation delay can be computed for all ranges.

6.3 Range Compensation Using a Single Delay

Referring to Figure 6.1, the required time shift is clearly a function of range. If this variation

can be ignored, then motion compensation can be done by applying the same time shift at

all ranges, for example, the shift associated with the scene center, R0. This is the best-case

scenario as it is easy to implement using the time-shift property of the Fourier transform. As

such, it is well-matched to the wavenumber-based image reconstruction algorithms since

it can be performed after the temporal Fourier transform and prior to the spatial Fourier

transform. The single-delay approach can also be used to create a piecewise approximation

to a continuous delay. For example, a scene might be broken into two or more subswaths

with each receiving a single compensation delay. Then, each of the subswaths could be

imaged independently using wavenumber-based reconstruction.

Another single-delay compensation scheme applicable for narrowband systems is to
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divide the delay by the temporal sampling period giving the delay in terms of samples. The

integral part of the delay is then effected by reindexing the signal, and the fractional part

(expressed in seconds) is introduced via phase rotation: exp
{
− j2π f0tcorrect,frac

}
.

6.4 Range Compensation Using Variable Delays

There is often the need to apply a time (or range) varying delay. For small displacements,

relative to the size of a resolution cell, a simple phase rotation suffices for narrowband

sonars. For a given cross-range position this is implemented by multiplying each sample in

the received time series by exp { j2k0∆R(t)}, where ∆R(t) is the time-varying displacement

to be compensated. If the motion error is severe enough to shift the envelope of the received

signal though resolution cells, then the phase shift alone cannot achieve the desired result.

One option for dealing with this is to perform a bulk shift of the entire time series as

described in Section 6.3. The amount of this bulk shift is chosen by the user and might

correspond to the range-averaged delay or perhaps the value of the delay at the swath center.

Any residual delay (that is, the delay after the bulk shift is removed) can be removed using

a phase rotation provided it does not also shift the envelope of the received signal through

resolution cells.

Sometimes the compensation delay varies by more than a resolution cell over the range

swath, and/or it is not possible or desirable to subdivide the swath. In these circumstances,

there is little choice but to resample the time series by interpolating it from the actual

acquisition times onto the set of times dictated by the continuously-varying compensation

delays.

6.5 Crab Compensation

Crab occurs when an AUV or towfish points into a cross-current in order to maintain the

desired track over the sea floor (see Figure 6.2). The result of crab is that the boresight of

the physical SAS array is no longer perpendicular to the nominal trajectory. In other words,
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Figure 6.2. Crab occurs when an AUV is forced to place its angle of attack into a cross current in order
to maintain a desired track over the sea floor. Crab compensation be be performed in two ways. The
first is to beam steer the physical arrays by the angle θcrab in order to align them with the nominal
trajectory (NT) defined by the vehicle’s track over the sea floor. The second approach is to define
another compensation baseline NTsway making an angle θcrab with the vehicle track and then treat the
crab as sway.

crab is a form of array squint.

Crab can be compensated in two different ways. The first and most obvious is to

beam steer the signals for each ping, effectively moving the squint angle of the physical

array back to zero. This approach is easy to implement, but not all SAS array designs are

amenable to it. At the time of acquisition, the projector and receivers are always pointed

in the same direction. The notion of crab only arises when the synthetic aperture is formed

according to the chosen NT and the constituent physical arrays are found to be looking off

axis. When these arrays are steered in order to correct for the perceived crab, the array

elements must be spaced closely enough to ensure that the beam steering doesn’t cause

spatial aliasing. Unfortunately, this requirement demands that the array element spacing be

finer than D/2. When designing the SAS array, it is wise to consider the amount of crab

that might be encountered by the system.

The second approach for compensating crab is to reassign the nominal trajectory so that

it is aligned with the crabbed longitudinal axis of the vehicle, as shown in Figure 6.2. By

doing so, the crab ceases to look like a squint and is transformed into a sway. Recall that

the choice of nominal trajectory is completely arbitrary, although its placement is generally
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dictated by both common sense and processing constraints. This technique has the distinct

advantage of liberating arrays sampled at D/2 from the problem described in the previous

paragraph. The drawback is that the near-range and far-range boundaries of the scene

appear to creep, or skew, in range. Although the contents of the scene are not geometrically

distorted by this operation, a large crab angle can cause some image content to be lost and

is visually unappealing. A practical compromise is to correct for the crab by beam steering

as much as is allowed by the physical array. The remainder of the crab is then treated as a

sway, thus minimizing the loss of image content.

Crab is a common form of unwanted motion in AUV-borne SAS, and it should be

considered when planning data collection missions. For example, if an AUV is scheduled

to image an area of the sea floor, then it is best to operate at slack tides when currents are at

a minimum. Barring that option, then it is best to operate the vehicle parallel to the current,

either with or against it. Commanding the AUV to drive perpendicularly to a swift current

can result in SAS data that is difficult, if not impossible, to properly compensate.

6.6 Compensation for Angular Motion

Compensation for more general angular motion requires procedures similar to those de-

scribed for crab. The difference, though, is that crab is a static angular displacement of the

array, while the typical movements of an AUV are oscillatory in nature. There is there-

fore little choice for compensation except to perform beam steering at each ping to shift

the squint angle to zero. Compensating for large amplitude oscillations can result in local-

ized spatial aliasing of the physical arrays and, consequently, localized image degradation

that would appear as a blur running down range. For this reason, the specification of the

SAS array phase center spacing should take into account the statistics of the motions of the

vehicle intended to carry the SAS.

Unwanted angular motion can change the performance of the SAS even if the geomet-

ric errors are perfectly compensated using appropriate time delays. The synthetic aperture
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length is idealized as being equal to the -3 dB width of the array element horizontal beam-

pattern. The synthetic aperture length, in turn, determines the cross-range resolution. It is

possible for angular motions to change the pointing angle of the array so as to extend or

diminish the synthetic aperture, resulting in potential spatial aliasing and/or resolution loss.

6.7 Cross-Range Compensation

There is the potential need to compensate in the cross-range, or along-track, direction.

Here, there is little choice except to interpolate in the cross-range direction. This operation

has its limits. As above, the sampling of the SAS array influences the effectiveness of the

compensation. Sampling a synthetic aperture at D/2 phase center spacing is analogous

to sampling a time series at the Nyquist rate. This analogy is only approximate. See

Chapter 5 of [8] and [13] for an in-depth treatment of SAS sampling. If the D/2 sampling

requirement is met at all points on the synthetic aperture, then it is possible to interpolate

the data onto any desired cross-range grid. If the synthetic aperture is undersampled at any

point, then the cross-range interpolation may give results that degrade the imagery rather

than improving it. Since vernier SAS arrays are usually designed with phase center spacing

satisfying du ≤ D/2, undersampling can only occur when the advance per ping is so large

that there is no overlap between consecutive pings. This fact is yet another motivation for

designing SAS arrays with some degree of overlap for RPC use.

6.8 Examples of Range-Varying Motion Compensation

Equation (6.2) along with the assumption of a planar sea floor indicate that the compensa-

tion delay always approaches some asymptotic value as the range is increased. This is true

to the extent that the stop–start assumption is valid. If the intra-ping array motion must

be considered, then a limiting delay value does not necessarily exist. In this case, the δ

above would need to be rewritten as a function of time, or range, rather than being assumed

constant for the entire time of reception.
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Figure 6.3. Helical motion with a diameter of 0.25 m at a mean altitude of 7 m.

Figures 6.3 and 6.4 show an example of how the compensation error can vary if the

SAS array experiences a helical motion. Such motion is not uncommon in practice, as it

can occur when the direction of the AUV’s travel makes a nonzero angle with the direction

of the ocean waves. A helical trajectory often results if the vehicle is close enough to the

sea surface to be influenced by the wave action. The vehicle motion is shown in Figure 6.3

along with the nominal trajectory. Figure 6.4(a) shows the compensation delay that remains

after compensating the entire range swath using the delay computed for a range of 45 m.

Cross-range slices of this residual delay are shown in Figure 6.4(b) for ranges of 15 m and

80 m. Curves such as these can be used in conjunction with the results of Chapter 3 to

predict how the PSR degrades as a result of using a single delay to compensate all ranges.

For example, suppose the synthetic aperture length were 5 m at the closest range of 15 m.

Then, the residual compensation delay behaves like a phase error that is locally quadratic

127



(a)

0 5 10 15 20 25 30 35 40 45
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Cross Range (m)

R
es

id
ua

l E
rr

or
 (

m
)

 

 

15 m;  L
SA

 = 4.7 m

80 m;  L
SA

 = 25 m

(b)

Figure 6.4. The upper figure (a) shows the residual motion compensation error visualized as a surface.
Note that the residual error at a range of 45 m is zero, because this is the range at which the bulk
compensation was performed. The lower plot (b) shows the residual error at ranges of 15 m and 80 m.
To analyze the effect of the residual compensation error on the PSR, the error must be considered only
over the spatial extent of the synthetic aperture.
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or linear in nature, depending on cross-range position. Thus, alternating smeared and well-

focused regions in the cross-range direction would be observed in the image, provided that

the wavelength is not significantly larger than the residual error. The period of the example

motion is 15 m. At a range of 80 m where the hypothetical synthetic aperture length is

25 m, the phase error is sinusoidal in nature. At this range, the sea floor would be well

focused, but would exhibit replicas (or ghosts) in the cross-range direction.

For well-tuned AUVs operating in calm conditions, the range varying nature of the

compensation can often be ignored without having a dramatic impact on image quality.

This is not always the case, however. The angle θerr changes rapidly at short ranges and

rather slowly at long ranges. Thus, it is reasonable to expect range-varying compensation

to be a requirement for proper short range imaging. An example of this efffect is shown

in Figure 6.5. For this scene, the range of the object shown and the altitude of the SAS

are such that the depression angle of the object relative to the array boresight falls close

to the first null of the vertical beam pattern of the array. In fact, the null is visible in the

imagery as a dark vertical band at a range of 13 m. An adaptive gain has been applied to

the imagery to equalize the overall brightness in the scene. It is important to remember that

the visual appearance due to this gain can be deceptive: the signal-to-noise ratio outside

the main lobe is often poor.

6.9 Comments

Figure 6.6 shows a diagram of the motion compensation taxonomy that is suggested by the

preceeding discussion. It shows the algorithmic options that are available to address the

various types of motion compensation encountered in SAS imaging. Note that spatiotem-

poral backprojection is a world unto itself, so to speak, in that it is the exact solution for

any array trajectory. All other motion compensation is approximate to some extent. Nev-

ertheless, the combination of a relatively stable vehicle and good estimates of the motion

can often be used with fast compensation schemes and Fourier image reconstruction to
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Figure 6.5. Short ranges are especially susceptible to the defocus caused by compensating for the mo-
tion using a single delay for all ranges. The top image (a) shows an example of this effect, while the
bottom image (b) resulted from applying a range-varying compensation scheme. The dark vertical
band appearing at a range of 13 m is the first null of the vertical beam pattern.
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Figure 6.6. A taxonomy of motion compensation schemes.

efficiently yield imagery that is indistinguishable from its backprojected counterpart.

Another complication to the problem of motion compensation arises for widebeam

SAS. The discussion throughout this document assumes that, at a given range, the com-

pensation delay is the same for all scatterers in the sensor’s beam. This is an idealization

since all real beamwidths are finite, and the error for scatterers located at an angle of θ

relative to boresight is εR = (1− cos θ). Techniques for widebeam compensation have been

proposed by several researchers [93, 94, 95, 96]. A solid overview is given by Callow

[37]. As widebeam SAS becomes more prevalent, widebeam compensation will become

increasingly important.
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CHAPTER 7

CONCLUSION

The potential usefulness of synthetic aperture sonar is far-reaching. SAS can be used

in any application that is suitable for high-resolution real aperture sidescan sonar. Some

examples are given below.

• Maritime archaeology [97, 98, 99, 100]

• Ecological and fisheries management [101, 102, 103]

• Environmental remediation [104]

• Naval applications

• Oceanography

• Salvage

• Search and recovery [105, 106]

• Surveying

• Crime scene investigation and law enforcement [107]

Apart from having range-invariant resolution, SAS has the added benefit that its im-

agery is geometrically accurate when it is well-focused. This feature makes it relatively

easy to georeference SAS imagery, resulting in detailed maps of the sea floor in which

distances can be accurately measured. A well-focused SAS image may exhibit geometric

image distortion such as layover, but it will not show the warping due to platform motion

that is commonly seen in real aperture sidescan sonar. This property is a consequence of

the fact that the sensor motion relative to a point on the sea floor must be known in order to

properly reconstruct the image in the first place.
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(a) (b)

Figure 7.1. The photos above show a pair of World War II vintage aircraft. The left photo (a) depicts a
Fairey Firefly, a British carrier-based fighter. The right photo (b) shows a Curtiss SB2C Helldiver, an
American dive bomber. The Helldiver was responsible for sinking more tonnage of shipping than any
other aircraft during World War II. SAS imagery of these aircraft is shown in Figure 7.2.

7.1 Example SAS Imagery

This section presents a collection of sample imagery that highlights the ability of SAS to

image relatively large regions of the sea floor at high resolution. All of these images were

created using the motion estimation and compensation techniques described in this thesis,

and no autofocus schemes were used for enhancing the reconstructed imagery. The first

of these is Figure 7.2 showing SAS images of the aircraft pictured in Figure 7.1. Both are

World War II era carrier-based airplanes: the first a Fairey Firefly fighter and the second

a Curtiss SB2C Helldiver dive bomber. It can be clearly seen in the imagery that the port

wing of the Firefly is buried in the sediment, and the upper two blades of its four-blade

propeller are unbent. The implication of the latter observation is that the propeller was

not turning when the aircraft landed in the water. The Firefly rests in the waters of Jervis

Bay, Australia. The image of the Helldiver plainly shows that the horizontal stabilizer was

detached and now sits just aft of the port wing. The image also shows the internal structure

of the wings. This aircraft was ditched by its pilot in Buzzards Bay, Massachusetts.

A shipwreck is shown in Figure 7.3. The vessel is the tugboat Vittoria. It was fitted

with armament during World War II and sank as a result of a torpedo attack on the vessel

it was towing. It rests upright on the floor of the Ligurian Sea off the coast of Italy. Many

details are clearly visible on the deck of the boat, such as the outlines of the railing and the
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Figure 7.2. The top image (a) shows a SAS image of a Fairey Firefly lying on the sea floor in Jervis
Bay, Australia. It crashed as a result of a midair collision on November 27, 1956. Today, the wreckage
is popular with scuba divers. The bottom image (b) is of a Curtiss SB2C Helldiver in Buzzards Bay,
Massachusetts. It was ditched by Naval reservist Ensign John L. Hagerman after the aircraft’s engine
lost oil pressure and stalled during a training mission on July 7, 1947.
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Figure 7.3. The image above shows the World War II era tugboat Vittoria sitting upright on the sea
floor off the coast of Italy.

superstructure. The shadow cast by the wreck clearly reveals that it is a tug, and the rudder

is even visible beneath the stern.

Figure 7.4 contains another image from the Ligurian Sea. In this case, the scene depicts

segments of a pipeline that has fallen into disuse. The fact that most of the pipe segments

are not connected is easily discerned. The pipe flanges are also visible as bright highlights.

Nearby, a narrower modern pipeline is visible. The newer pipeline is secured by regularly

spaced anchor blocks.

7.2 Approaches to Synthetic Aperture Imaging

In reading the literature pertaining to synthetic aperture imaging, one notices that the writ-

ers come from a variety of backgrounds and that they bring their own perspective to bear
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Figure 7.4. The image above shows a pair of underwater pipelines off the coast of Italy. The larger of
the two is clearly not functional because many of its segments have become disconnected.

on the problem. Before concluding, some of the major approaches to the study of synthetic

aperture are highlighted. There are at least four ways to view the topic:

1. Mathematics: The mathematical viewpoint is attractive because of its power and

clarity. However, it can be difficult to convey the details of implementation in this

context. The mathematical approach was used in Chapter 2 to show how synthetic

aperture imaging is developed from linear acoustics and the wave equation. Mathe-

matical results also provide the certainty of convergence for techniques such as the

nonlinear least squares used in Chapter 5. Another advantage to the mathematical

standpoint is that the creation of a synthetic aperture image is an inverse problem,

and there is a vast body of literature on this subject.

2. Signal Processing: The signal processing point of view is an important one because
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most of the familiar results from one-dimensional processing of time series have

direct and easily-understood analogs in the cross-range spatial dimension. These

provide many of the tools needed to properly design a SAS and predict its perfor-

mance. The paper by Munson and Visentin [108] gives an excellent signal process-

ing interpretation of synthetic aperture imaging. The signal processing approach is

important also because it is the language for actually implementing synthetic aper-

ture algorithms efficiently (for example, sampling at the bandwidth and processing at

baseband as opposed to processing data at twice the Nyquist rate).

3. Optics: The fields of geometric optics and statistical optics serve as the bases for

explaining many aspects of synthetic aperture imaging. For example, Equations (3.9)

and (3.13) in Section 3.3.3 were derived mathematically. It was mentioned that the

same pair of results can be obtained using simple analogies from geometrical optics.

In addition, the important results presented by Pinto and Bellettini [62] regarding

the Cramer-Rao lower bounds on redundant phase center time delay estimation rely

partially on a result from statistical optics known as the van Cittert-Zernike theorem

[109, 110].

4. Probability: The probabilistic view of synthetic aperture imaging discards the idea

that the operation of image reconstruction is the coherent integration of echoes along

a deterministic path (see (2.21)). Rather, this integration is viewed as being over all

the possible paths, the distribution of which is weighted by the appropriate probabil-

ity density function. In this respect, the image reconstruction problem is not unlike

other problems in navigation and optimal signal estimation. Indeed, it is often stated

that the image reconstruction process is a sort of spatial matched filter. This is true,

but the statement is usually made primarily as an analogy to one-dimensional opera-

tions like pulse compression, and isn’t meant to describe an actual methodology for

computing imagery. To date, the probabilistic approach is the least explored.
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Clearly, one should not be surprised to find that there are often several ways to explain

any given aspect of synthetic aperture imaging. It should also be recognized that there

is great potential for making advances by bringing seemingly unrelated ideas from other

fields to bear on the problem. For example, the wavenumber domain image reconstruction

was well-known in the geophysics community for years before it came to revolutionize the

creation of synthetic aperture imagery. It is currently the dominant technique for image

reconstruction. Although synthetic aperture sonar is a largely mature technology [111],

there are likely to be many more breakthroughs that will enhance the performance and

expand the capability of SAS systems.

7.3 Summary of Contributions

Properly accounting for the platform motion is an essential part of a robust SAS processing

suite, and a thorough treatment of the subject has heretofore been absent from the liter-

ature. The overall contribution of this work is to provide a comprehensive overview of

the problem of SAS motion estimation and compensation. In addition, several specific

contributions to the field of synthetic aperture imaging were realized in the course of this

research:

• Chapter 3 gives an analysis of the effects of phase errors for stripmap mode synthetic

aperture processing [112]. The analysis for the companion problem of spotlight mode

operation is well-documented [24], but prior coverage of the stripmap case is less

complete [52, 54].

• Section 4.3.1 contains a novel method for finding the peak of the magnitude of the

cross-correlation function. The traditional approach is to oversample the correlation

function and then locate the peak using a parabolic fit [17]. The proposed technique

solves iteratively for the peak without the need for using oversampling as a tool to

achieve improved accuracy.
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• Three techniques for estimating platform motion were developed: the two-sided

closed-form solution [80], the nonlinear least squares approach [77], and the surge

estimation using eigendecomposition.

7.4 Final Comments

It goes without saying that the quality of SAS imagery is directly related to the quality of the

motion estimation and compensation. As a result, the purpose of this document is to offer

a survey of relevant techniques and to provide insight into how they are used in practice.

The preceding chapters give an overview of the problem of SAS motion estimation and

compensation. A deliberate attempt is made to highlight those details which are often less

than obvious, but absolutely necessary for success. Such knowledge is usually hard-won

through trial and error because it is largely absent in the literature.

In many SAS applications, motion estimation and compensation are just part of the

overall processing flow. The ultimate image quality is also determined by any autofo-

cus applied as well as any processing for image enhancement. The purpose of autofocus

is to correct any residual defocus left after motion compensation. However, SAS auto-

focus schemes are generally computationally expensive compared to motion estimation

and compensation. They may also have the unintended effect of worsening image qual-

ity, as autofocus schemes usually assume a point scatterer for the purpose of estimating

the corrupting phase function. It is therefore possible to see a well-focused extended tar-

get wrongly compressed to a point. For this reason, it is wise to emphasize the motion

compensation/estimation in order to reduce dependence on autofocus.

Nevertheless, autofocus is sometimes a necessary aspect of SAS processing. When

imaging at long range, the synthetic aperture length grows making it increasingly difficult

to keep the integrated error in the motion estimate within tolerable levels. Also, long range

imaging carries the risk of having the medium properties, most notably the sound speed,

change as a function of position and time. Such variation can cause image blurring and
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is difficult to combat except through the use of autofocus algorithms. There is a large

body of literature on the subject of SAR and SAS autofocus. While there are a number

of techniques used for SAS autofocus, the most successful appear to trace their lineage to

the phase gradient algorithm originally developed for spotlight-mode SAR [113, 114] and

subsequently adapted to stripmap mode [115].

The best motion compensation solution for any given SAS depends on factors such as

the resolution, available computing power, system cost, vehicle size, and expected oper-

ating conditions. The analysis and techniques presented here can be used to cover many

possible combinations of these parameters. However, there remain a number of outstand-

ing problems. An important example is widebeam motion compensation. This is a non-

trivial problem, and its relevance is increasing as the applications for SAS move beyond

high-resolution imaging and into areas like buried object detection and sediment character-

ization. Another avenue for research is in the area of using the SAS redundant phase center

motion estimates to aid the navigation of the host vehicle. Some initial work has been done

[116], but the potential for improvement is as yet unclear.
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