GEORGIA INSTITUTE OF TECHNOLOGY
 OFFICE OF CONTRACT ADMINISTRATION
 SPONSORED PROJECT INITIATION

Date: \qquad
Project Title: Technical Assistance for Miami Laces Corp.

Project No: A-2260
Project Director: J. C. Muller
Sponsor: Bickman, Libby, Thomas \& Braxton
Agreement Period: \quad From__ $9 / 7 / 78 \quad$ Until __11/30/78

Type Agreement: Ltrs. dud. 9/7/78 \& 9/27/78
Amount: $\$ 1,365$

Reports Required: Final Report

Sponsor Contact Person (s):
Technical Matters

Ms. Diane C. Blunt Hickman, Libby, Thomas \& Braxton 235 Peachtree Str. Atlanta, GA 30303

Defense Priority Rating:
Assigned to: \qquad Technology \& Development

Contractual Matters
(thru OCA)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director
Deen/Director-EES
Accounting Office
Procurement Office
Security Coordinator (OCA)V
Reports Coordinator (OCA)

Library, Technical Reports Section
EES Information Office
EES Reports \& Procedures
Project File (OCA)
Project Code (GTRI)
Other

(School/Laboratory)
\qquad

SPONSORED PROJECT TERMINATION

Date: \qquad
Project Title: Technical Assistance for Miami Laces Corp.
?roject No: A-2260
Project Director: J. C. Muller
Sponsor: Bickman, Libby, Thomas \& Braxton
\div
Effective Termination Date: \qquad
Clearance of Accounting Charges: \qquad
Grant/Contract Closeout Actions Remaining:

- Final 2 Invoice X
_ Final Fiscal Report
_ Final Report of Inventions
_ Govt. Property Inventory \& Related Certificate
- Classified Material Certificate
- Other \qquad

Assigned to: \qquad Technology \& Development \qquad (School/Laboratory)

COPIES to:

Project Director
Division Chief (EES)
School/Laboratory Director
Dean/Director-EES
Accounting Office
Procurement Office
Security Coordinator (OCA) \downarrow
Report i Coordinator (OCA)

Library, Technical Reports Section
Office of Computing Services
Director, Physical Plant
EES Information Office
Project File (OCA)
Project Code (GTRI)
Other \qquad

Production and Profitability
 Analysis of
 Miami Laces Corporation

by
James C. Muller Research Engineer

November 1978

I spent three days plus working directly with the client at his factory as requested by the SBA sponsor. During this time I became thoroughly knowledgeable on every phase of the client's business. I instructed the client on numerous aspects of manufacturing and business in general. To construct the figures in the body of this report, I had to perform a thorough analysis on every piece of equipment in the plant; review specifications of proposed equipment; weigh and measure product and raw material; review every pertinent record, bill, and invoice; and question the client incessantly.

A great deal of credit goes to the client in this case. It was because of his complete openness and excellent records that this analysis could be made in the depth that it was.

BACKGROUND

Miami Laces Corporation started in business eighteen months ago as a small manufacturer of shoe laces. The owner and operator, Mr. Enrique Collazo, began on a part-time basis and has since gone into the business full time. The business is as yet too small to justify the hiring of any employees; so, Mr. Collazo performs all the functions of selling, manufacturing, maintaining, and even delivering the product.

At present the firm is selling all its production to one Miami shoe manufacturer. Indications are that this customer would buy more product, if it could be produced, and that another larger Miami shoe manufacturer would like to buy shoe laces from the firm. On this basis, Mr. Collazo has ordered some additional equipment to expand his capacity by an estimated 75\%. At this juncture, Mr. Collazo requested that the Small Business Administration provide management and technical assistance.

The specific needs of the client were cited as:

1. Study present production system and determine per unit cost of items. Assist client in establishing correct pricing formula.
2. Review client's plans for proposed expansion:
a. determine probable production output;
b. determine increase in costs and revise pricing as necessary;
c. provide client with methods of recording, scheduling, and controlling production; and
d. make other major corrections apparent in review of present and proposed operations.

DISCUSSION

My first impression of Miami Laces Corporation was that it was amazingly neat and orderly. The machines were obviously secondhand but they were neatly installed and well maintained. The layout was efficient and compact. The only objectionable aspect was the rather loud chatter of the dozen braiding machines. I found Mr. Collazo to be cheerful, energetic, and enthusiastic, and he remained that way during my entire visit.

My first order of business was to establish rates, selects, and uptimes for his present machines and make knowledgeable estimates for the machines on order. I observed the machines in operation, making measurements as appropriate, and I questioned Mr . Collazo on certain aspects which I knew would require assumptions and/or estimates.

I roughly calculated the capacity of each operation, finding that braiding capacity was the limiting factor of plant capacity. Mr. Collazo tries to keep the braiders running continuously, 24 hours a day, every day. The braiders run unattended; they are down during periods when they are being loaded with yarn bobbins, when the machine shuts down after detecting a yarn breakout or an empty bobbin, and during maintenance and breakdown periods. This situation provided me with the opportunity to calculate a very accurate effectiveness factor for the braiding operation, because I definitely knew the running period, could get the actual production from the invoices, and could calculate a theoretical production using cycle rate. I selected a 91-day period from July 1, 1978, to September 30, 1978, for the analysis. I extracted the information from invoices prepared during the period. The lace length mix is the key ingredient in the analysis. Please refer to braiding machine uptime determination in Exhibit 1. Note that the effectiveness factor is calculated by objective means. This factor is used in the production analysis of both the old and new braiders. (See Exhibit 2 and 3, respectively.)

Unfortunately, the client does not record the running times of either the tipping or the bobbin machines, so rigorous determination of an effectiveness factor could not be made on these machines. The author relied on observation, measurement over short sample times, and past experience in constructing the production analysis of both of these machines. (Exhibits 4 and 5). A production analysis of the new tipping machines (Exhibit 6) was made from specifications supplied by the manufacturer.

The machine analysis is summarized in Exhibit 7. The production summary is for the expanded plant, i.e., the braiding figures are for the combined twelve old machines and the six new machines, and the tipping machine figures are for the new machine. Note that the plant suffers from a severe shortage of braiding capacity, even after expansion. The braiding machines operate on a continuous basis, whereas the tipping machine and bobbin machine are on 40-hourweek schedule, so this closes the gap somewhat. This shortage in braiding capacity as compared with tipping capacity grows progressively worse as the lace length increases, but remains relatively unchanged as compared with bobbin machine capacity.

The select rates are implicit in the production summary, and the broadload rates will come into play in determining raw material costs and scheduling. Relatively speaking, shrinkage plays an unimportant role in the cost of the plant because the select rates are high. It is possible that the shrinkage rates are understated; if shrinkage is actually this low, the overall productivity of the plant might be suffering as Mr. Collazo strives to rework a few pounds of yarn.

After the production model was completed, I questioned Mr. Collazo regarding a sales forecast. He insisted that he would have no trouble selling everything he could produce. Certainly this might be the case in the short run. I advised Mr. Collazo of the risks of serving only one customer and counseled him to seek at least one new customer. He seemed to share my concern and related that he had several prospective customers if he could only make production.

Based on the above market situation, I proposed a sales forecast based on the product mix he had experienced in the quarter from July through September, which I had previously analyzed. I calculated the maximum amount of product the braiding department (limiting capacity) could produce running continually during the year, using the production rates generated by the production model, and at the determined length mix. The analysis is shown in Exhibit 8.

I again processed the invoices for the $91-d a y$ period, this time extracting the quantities of the different products. (See Exhibit 9.) Then I applied this mix to the new capacity (Exhibit lo). I conservatively used the current average sales prices (A.S.P.) for the products in computing the sales revenue.

Next, the cost model was constructed. The most significant component of cost in the shoe lace product is the cost of raw materials. In order of importance, the three basic materials are yarn, acetate film, and acetone.

The yarns are either cotton or polyester; either 16 gage/2 ply or 20 gage/2 ply; they can be either natural, bleached, or dyed. While there could have been a reasonably large number of combinations possible, fortunately there were not. Mr. Collazo standardized on an 8 mil , inch-wide acetate film for the tips, and acetone is always the welding solvent. Essentially, what we have is a variable cost component, which depends on length and type of yarn, and a constant cost component, the plastic tip. Exhibit 11 is a sample calculation for determining the raw material cost of one product. Exhibit 12 is a complete schedule of raw material costs for each product. For convenience, the raw material costs were computed on a l,000 gross basis. Current prices were used in all cases.

Next I prepared a pro forma Income Statement. Mr. Collazo's accountant provided a Balance Sheet and an Income Statement (Exhibit 13 and 14). I first annualized the fixures from Exhibit 14, after finding out what period the statement covered. I also attempted to substantiate and/or adjust the figures by reviewing Mr. Collazo's records. Exhibit 15 is the Annualized Income Statement of the plant as it is before expansion. Then I prepared a pro forma Income Statement for the plant after expansion (Exhibit 16). Comparing the two exhibits suggests that the capacity has doubled. This is an overstatement, however; apparently the productivity of the plant prior to July was somewhat lower than it was subsequent to July. The actual increase in capacity is 59\%, as can be verified by referring to the new and old braider production analysis. Note the substantial increase in profitability made possible by the expansion.

In allocating General Factory Overhead (GFO) to the different products, I divided the cost equally to the three departments: bobbin rewind, braiding, and tipping. This is perhaps as good a method as any. To do the allocation by a rigorous method would require a tremendous amount of record keeping and probably would not be worth the trouble. The next step is to calculate the annual broadload in gross in each department (Exhibit 17). Using the broadload figures and the standard machine rates calculated previously, I calculated the machinehours necessary to make the production in each department (Exhibit 18). By dividing the one-third GFO amount by the total machine hours in each department, one can get the GFO cost per machine-hour in each department. This is the standard cost allocation we need to complete the analysis. Finally a table of GFO costs per M gross is computed in Exhibit 19.

All previous analyses and calculations are summarized in the Production Budget, Exhibit 20. This schedule contains significant information and should be examined carefully. The most obvious and noteworthy conclusion is that the 620 p white product line is apparently underpriced. Exhibit 21 is a suggestion for repricing the 620 P product, showing the impact of repricing on profitability. Exhibit 22 is a break-even chart of the operation as budgeted. The breakeven point is 18,851 gross, and this is only 63% of plant capacity.

CONCLUSIONS

By Observation

Positive

- The plant is well laid out.
o The equipment is professionally installed.
o There is enough room in the existing plant for
the additional equipment, but it is going to be tight.
- Mr. Collazo is energetic and enthusiastic and appears
to have all necessary entrepreneurial instincts to succeed in this business.
- Record keeping i.s much better than average.

Negative

- Plant is too noisy.
o The mezzanine level is precariously reached by a stepladder and there is no railing.
- A drum of acetone is in the confines of the plant (vapors are harmful and flamable).
- There are exposed pinch points on the machines.

By Anaylsis

Positive

- Mr. Collazo has made a good decision by purchasing an automatic tipping machine. The present machine, although innovative, is inconsistent and unreliable.
- Mr. Collazo has made a good decision by adding 6 braiding machines. He needs the additional braiding capacity. In fact, he could use an additional dozen or so fast braiders, but he does not have room for them.
o The business is growing to the point where Mr. Collazo can finally get a reasonable return on his efforts.
- I feel that additional expansion could be warranted after the market base is expanded.

Negative

- It appears that the 620 P product is underpriced. The profit margin on this product is significantly out of line with the other products.

RECOMMENDATIONS

Facility

- Install acoustic tile on ceiling and walls to reduce noise level. Also try to buy quieter braiders in the future.
- Put a railing on the mezzanine level.
o Install a vertical ladder permanently against the wall for climbing to the mezzanine level. There is no space for a staircase, but the present situation is extremely dangerous.
- Exchange the weighing scale to one that reads in pounds and tens/ hundreds of pounds. The scale reading in pounds and ounces greatly enhances the likelihood of making mistakes.
- Check with the fire marshal about the acetone. He may know of a way to reduce the hazard and possibly lower your insurance premium at the same time.
o Look for a larger facility. You cannot expand anymore in the one you have, and you will soon want to expand if you continue to grow.
- Use the old tipping machine as an emergency backup for the new machine. The old machine degrades the product by producing inconsistent lengths and soiling the braid. This condition might prove to be an annoyance to your new customers.

Business

- You should not attempt to use the outdated pricing table you showed me during my visit to somehow compute your product costs. The table in no way models your costs and is intended to be used only as a pricing guideline. The standard costs of products computed in this report are much more accurate, and costs for any new products can be computed by the same method.
- Your pricing policies depend for the most part on current market practices. I cannot stress enough that you have to keep abreast of whatever is going in the market-mand that is easier said than done.
- Raise the price of 620 P product if possible. Suggestions as to price and analysis of impact of overall profitability are in the body of this report.
- You can sell off the excess capacity on your tipping machine by jobbing for other lace makers, but remember that the margains may be small and this really does not get you any new customers.
- Continue your practice of not building inventories. In your market situation it is possible to do this and thereby keep your requirement for working capital at a low level.
o Continue to seek business. I can foresee that your next move would be a really large and profitable one when you increase the braiding capacity to the point where you can add another operating shift for the bobbin and tipping machine.

BRAIDING UPTIME DETERMINATION

During the 91 day sample period the braiding machines were in continuous operation;
so: $\quad 91$ days $\mathrm{X} 24 \frac{\mathrm{hrs}}{\mathrm{day}}=2184$ hours

The normal production rate of a braiding machine is 120 ft of braid per hour;
so:
Total

*From mix analysis of laces produced during the 91 day period.
**120 ft/mach $-\mathrm{hr} \cdot \mathrm{x} \mathrm{12} \mathrm{in} / \mathrm{ft}=$ gross
144/gross $x()$ in lace length $=\overline{\text { mach-hr }}$

OID BRAIDING MACHINES PRODUCTION ANALYSIS

It was calculated previously that the braiding operation is 64.5\% effective. We will assume that the operation runs 99% select and has an uptime of 64.8\%. By observation it was determined that the machines run at a rate of $120 \mathrm{ft} / \mathrm{mach}-\mathrm{hr}$.;

Consequently:

Lace Length	$\frac{\text { Gross* }}{\text { Mach-hr }}$	Machine Number	Gross 24	0.269	\mathbf{x}
27	0.239	\mathbf{x}	12	$=$	3.225
30	0.215	\mathbf{x}	12	$=$	2.867
33	0.195	\mathbf{x}	12	$=$	2.580
36	0.179	\mathbf{x}	12	$=$	2.345
40	0.161	\mathbf{x}	12	$=$	1.935
45	0.143	\mathbf{x}	12	$=$	1.720
54	0.119	\mathbf{x}	12	$=$	1.433

* $\frac{120 \mathrm{ft} / \text { mach-hr } \times 12 \mathrm{in} / \mathrm{ft} \times 0.645}{144 / \mathrm{gross} \times() \text { in lace length }}=\frac{\text { gross }}{\text { Mach-hr }}$
$\frac{6.450 \text { gross-in/mach-hr }}{\text { () in lace length }}=\frac{\text { gross }}{\text { Mach-hr }}$

New braiders are reported to run at 235 rpm whereas, the old braiders rum at 198 rpm. So the new braiders run $235 / 198=118.7 \%$ the speed of the old braiders. Assume that the same 64.5\% effectiveness applies;
so:

Lace Length	$\frac{\text { Gross* }}{\text { Mach-hr }}$		Machine Number		$\frac{\text { Gross }}{\text { Dept-hr }}$
24"	0.319	x	6	$=$	1.914
27	0.283	x	6	\pm	1.701
30	0.255	x	6	=	1.531
33	0.232	x	6	=	1.392
36	0.212	x	6	$=$	1.276
40	0.191	x	6	=	1.148
45	0.170	x	6	=	1.021
54	0.142	X	6	=	. 851

By observing the machine it was determined that the machine winds 4 each 3.5 -inch bobbins every two minutes. These bobbins were weighed and it was determined that an average of 3.3 ounces of yarn was wound on the bobbins. (analysis for 16 ga.,2-ply polyester yarn);
therefore:

$$
\frac{4 \text { bobbins }}{2 \text { min. }} \times \frac{3.3 \mathrm{oz} .}{\text { bobbin }} \times \frac{1 \mathrm{~b}_{.}}{16 \mathrm{oz} .} \times \frac{60 \mathrm{~min} .}{\mathrm{hr} .}=25.75 \frac{\mathrm{lbs}}{\mathrm{hr}}
$$

By observing the machine and from information obtained by questioning the principal,the select rate was estimated at 99% and the machine uptime estimated at 65\%. Consequently, the effectiveness factor is $0.99 \times 0.65=0.643$.

Lace Length	Net lbs * Gross	$\frac{\text { Gross** }}{\text { Mach-hr }}$
24	.652	25.395
27	.733	22.588
30	.815	20.316
33	.896	18.479
36	.977	16.947
40	1.086	15.246
45	1.222	13.549
54	1.466	11.294

*These figures were obt:ained by weighing samples of finished laces and taking an average weight; the weight of the plastic tips were netted out so only the weight of the braid remains in these net weight figures. Also the effect of the broadload rate of 103% was taken into account. The full schedule was arrived by proportion.
$\frac{* * 25.75 \mathrm{lbs} / \mathrm{hr} \times 0.643}{(\text {) net } \mathrm{lbs} / \mathrm{hr}}=\frac{\text { Gross }}{\text { mach }-\mathrm{hr}}$

Exhibit 5

By observing the machine it was determined that it runs at the rate of 16.4 each 40 inch laces per minute. The rates at other lace lengths are estimates. Again by observation and information obtained by questioning the principal the select rate was estimated at 98% and the machine uptime estimated at 55\%. Consequently, the effectiveness factor is 0.98×0.55 or 0.539 .

Lace Length	$\frac{\text { Cycle }}{\text { Min }}$	$\frac{\text { Gross* }}{\text { Mach-hr }}$
24	18.4	4.140
27	18.0	4.050
30	17.6	3.960
33	17.2	3.870
36	16.8	3.780
40	16.4	3.690
45	16.0	3.600

| * () $\frac{\text { Cycle }}{\text { Mach-min }} \times \frac{\text { Gross }}{144 \text { Cycles }} \times \frac{60 \text { min }}{\text { mach-hr }} \times 0.539$ | $=\frac{\text { Gross }}{\text { Mach-hr }}$ |
| ---: | :--- | ---: | :--- |
| () $\frac{\text { Cycle }}{\text { Mach-min }} \times 0.225 \frac{\text { Gross-min }}{\text { Cycle-mach-hr }}$ | $=\frac{\text { Gross }}{\text { Mach-hr }}$ |

NEW TIPPING MACHINE PRODUCTION ANALYSIS

The following schedule of cycle times was determined from examining the specifications of the new machine and talking with the supplier. The select rate is estimated to be 99% and the uptime is estimated at 68\%. Consequently, the effectiveness factor is $0.99 \times 0.68=0.673$.

Lace Length	$\frac{\text { Cycle }}{\text { Min. }}$	$\frac{\text { Gross* }}{\text { Mach-hr }}$
24	98	27.440
27	96	26.880
30	95	26.600
33	93	26.040
36	91	25.480
40	89	24.920
45	86	24.080
54	81	22.680

* Cycle $\quad \times \frac{\text { Gross }}{144 \text { cycles }} \times \frac{60 \text { min }}{\text { Mach-hr }} \times 0.673=\frac{\text { Gross }}{\text { Mach-hr }}$
$\frac{\text { Cycle }}{\text { Mach-Min }} \times 0.280 \quad \frac{\text { Gross-Min }}{\text { Cycle-Mach-hr }} \quad=\frac{\text { Gross }}{\text { Mach-hr }}$

PRODUCTION SUMMARY

	lea. Bobbin Machine	l8 ea. Braiding	lea. Lace ipping
Length	$\underline{\text { (gross/hr) }}$	Machine (gross/hr)	Machine (gross/hr)
24	25.395	5.139	
27	22.588	4.568	27.440
30	20.316	4.111	26.880
33	18.479	3.737	26.600
36	16.947	3.426	26.040
40	15.246	3.083	25.480
45	13.549	2.741	24.920
54	11.294	2.284	24.080
			22.680

Broadload Percentages

Select
0.99 *
0.99
0.99
0.99
1.00

Broadload
1.04
1.03
1.02
1.01
1.00

Exhibit 8

PLANT CAPACITY ANALYSIS

From the Production Sumary,it appears that the braiding operation is going to be the limiting factor in the plant's capacity. Assuming that the product mix will be the same as that of the three month sample previously analyzed, the following can be calculated:

$$
\begin{aligned}
24 " 130^{\prime \prime} & 46^{\prime \prime} \\
\frac{0.059 \mathrm{P}}{5.139}+\frac{0.263 \mathrm{P}}{4.111}+\frac{0.253 \mathrm{P}}{3.426}+\frac{0.391 \mathrm{P}}{3.083}+\frac{0.034 \mathrm{P}}{2.741} & =8760 \mathrm{hrs.} \\
0.011 \mathrm{P}+0.064 \mathrm{P}+0.074 \mathrm{P}+0.127 \mathrm{P}+0.012 \mathrm{P} & =8760 \mathrm{hrs.} \\
, 0.2885 \mathrm{P} & \\
\mathrm{P} & =30.361 \text { gross }
\end{aligned}
$$

But broadload factor is 1.02 so:

$$
\text { Annual capacity }=\frac{30,361 \text { gross }}{1,02}=29,766 \text { gross }
$$

Exhibit 9

PRODUCT MIX DETERMINATION
FROM INVOICES 7-1-78 thru 9-30-78 (\#204 thru \#238)

	Units Gross	$\begin{gathered} \text { Mix } \\ \% \end{gathered}$
416P White		
30"	630	13.3
36	815	17.2
40	1120	23.6
416 K Brown		
30"	100	2.1
36	190	4.1
40	200	4.2
420K Dyed		
36"	85	1.8
40	100	2.1
420 Natural		
36"	110	2.3
40	50	1.1
45	30	. 6
620P White		
24"	280	5.9
30	515	10.9
40	385	8.1
45	130	2.7
Total	4740	100.0

Exhibit 10

SALES BUDGET

	Units Gross	A.S.P. (\$)	Revenue $(\$)$
416P White			
30	3,959	2.51	9,937
36	5,120	2.80	14,336
40	7,025	3.14	22,059
416 K Brown			
30	625	3.62	2,263
36	1,221	4.04	4,929
40	1,250	4.52	5,650
420K White			
36	1,221	3.12	3,806
40	952	3.45	3,284
45	179	3.50	627
620P White			
24	1,756	1.55	2,722
30	3,245	1.85	6,003
40	2,411	2.31	5,569
45	804	2.57	2,066
Total	29,766		83,251

RAW MATERIAL COST SAMPLE CALCULATION FOR 416P WHITE 40" LACE

Procedure
Weigh a 40 in. $x 144=5,760$ in. or 480 ft . length of 416 P braid to determine yarn weight per gross.

Weigh a spool of acetate film then tip ten gross laces and reweigh. The difference in the weights/lo is the acetate film weight per gross.

An estimation was made that a 55 gallon drum of acetone will last for 8,000 tipping operations.

Calculation

416P White	30 inch	\$1,102.16
	36	1,308.85
	40	1,446.64
416 K Brown	30	1,840.26
	36	2,194.56
	40	2,430.77
420K White*	36	1,418.56
	40	1,568.54
	45	1,756.02
620P White	24	727.66
	30	892.40
	40	1,057.14
	45	1,304.24

Miami Laces Corporation Statement of Financial Position
 For The Period Ending September 30, 1978

ASSETS

Current Assets:

Popular Bank of Hialeah
Intercontinental Bank
Cash On Hand
Accounts Recievables
Inventory
Prepaid Expenses
Total Current Assets
(112.57)

$$
113.43
$$

$$
210.99
$$

$$
3,195.20
$$

3,074.04
383.75

$$
6,864.84
$$

Fixed Assets:

Furniture \& Fixtures	$1,970.65$
Machinery \& Equipment	$18,604.45$
Truck	385.00
Less: Accumulated Depreciation	(853.00)

$$
20,107.10
$$

Intangible Assets:

Organization Cost
Less: Accumulated Amortization Total Intangible Assets

Other Assets:

Security Deposit-Rent	160.00	
Security Deposit-Fhone	100.00	
Security Deposit-I,ight	150.00	
Total Other Assets		$\mathbf{\$ 1 0 . 0 0}$
TOTAL ASSETS		

Security Deposit-Rent
1,330. 35
(266.05)

$$
1,064.30
$$

LIABILITIES \& CAPITAL

Current Liabilities:

Accounts Payable

 Stockholders Loan Totai Current Liabilities
Long Term Liabilities:

Loan Small Business Administration

Capital:

Common Stock (Authorized \& issued 40 shares (e no par value)
Retain Earnings
Total Capital
TOTAL LIABILITIES \& CAPITAL

$3,143.67$

8,235.50

10,000.00
7,067.07

$$
\begin{array}{r}
17,067.07 \\
\$ 28,446.24 \\
\hline
\end{array}
$$

UnAudited

Exhibit 14
Miami Laces Corporation Statement of Profit \& Loss For The Period Ending

Cost of Sales

Begining Inventory 900.46
Purchases 15,811.38
Ending Inventory Cost of Sales
$(3,074.04)$
Gross Profit................................. $\$ 11,158.78$
General Expenses

Rent	998.40
Accounting \& Legal	101.25
Utilities	597.11
Phone	520.52
Advertising	62.50
Insurance	959.32
Supply	46.28
License \& Taxes	72.00
Repair \& Maintance	95.04
Truck	240.44
Travel \& Entertaiment	91.05
DqQention	15.00
Interest	251.55
Bank Charges	44.75

Net Income
$\frac{(4,095.21)}{\$ 7,063.57}$

ANNUALIZED INCOME STATEMENT

 (BEFORE EXPANSION)| Sales Revenue | | \$42,508 |
| :---: | :---: | :---: |
| Materials | | 19,129 |
| Gross Profit | | \$23,379 |
| General Factory Overhead | | |
| Salary @ \$210/week | 10,920 | |
| Rent | 1,997 | |
| Professional Services | 600 | |
| Electricity | 1,024 | |
| Telephone | 892 | |
| Insurance | 2,290 | |
| Office Supplies | 100 | |
| License \& Taxes | 150 | |
| Maintenance | 200 | |
| Truck Expenses | 720 | |
| Travel | 300 | |
| Interest \& Loan Repayment | 2,000 | |
| Bank Charges | 80 | |
| | | 21,273 |
| Net Profit | | \$2,106 |

PRO FORMA INCOME STATEMENT
(AFTER EXPANSION)

Sales Revenue		\$83,251
Materials		39,400
Gross Profit		\$43,851
General Factory Overhead		
Salary @ \$210/week	\$10,920	
Rent	1,997	
Professional Services	600	
Electricity	1,600	
Telephone	1,290	
Insurance	3,000	
Office Supplies	200	
License \& Taxes	150	
Maintenance	500	
Truck Expenses	1,072	
Travel	300	
Interest \& Ioan Repayment	6,060	
Bank Charges	80	
		27,769
Net Profit		\$16,082

Exhibit 17

BROADIOAD

Lace Length	Bobbin gross	Braiding gross	Tipping gross	Total gross
24	1,809	1,791	1,774	1,756
30	8,066	7,986	7,907	7,829
36	11,991	7,712	7,636	7,560
40	1,013	1,872	11,754	11,638
45				993

PRODUCTION SCHEDULE

Lace Length	Bobbin Mach-hr	Braiding Mach-hr	Tipping Mach-hr
24	71	349	65
30	397	1,943	297
36	460	2,251	300
40	787	3,850	472
45	-75	-366	41
Total			8,759

Exhibit 19

GENERAL FACTORY OVERHEAD PER MACHINE-HOUR

Exhibit 20
MIAMI IACES CORP. PRODUCTION BUDGET

	Units gross	$\begin{gathered} \text { ASP } \\ \hline \end{gathered}$	$\begin{gathered} \text { Revenue } \\ \$ \\ \hline \end{gathered}$	$\begin{gathered} \text { Raw Mat. } \\ \hline \end{gathered}$	Labor	$\begin{gathered} \text { Variable } \\ \$ \\ \hline \end{gathered}$	$\begin{gathered} \text { Gross Margin } \\ \$ \\ \hline \end{gathered}$	$\begin{gathered} \text { Gross Margin } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { GFO } \\ \$ \\ \hline \end{gathered}$	$\begin{gathered} \text { Profit } \\ \$ \\ \hline \end{gathered}$	Profit \qquad \%
416P White											
30	3,959	2.51	9,937	4,363		4,363	5,574	56.1	3,261	2,313	23.3
36	5,120	2.80	14,336	6,701		6,701	7,635	53.3	4,818	2,817	19.7
40	7,025	3.14	22,059	10,162		10,162	11,897	53.9	7.158	4,739	21. 5
416K Brown											
30	625	3.62	2,263	1,150		1,150	1,113	49.2	515	598	26.4
36	1,220	4.04	4.929	2,677		2,677	2,252	45.7	1,148	1,104	22.4
40	1,250	4.52	5,650	3,039		3,039	2,611	46.2	1,274	1,337	23.7
420K White 36											
40	1,220 952	3.12 3.45	3,806 3,284	1,731 1,493	$\begin{aligned} & \text { R } \\ & + \end{aligned}$	1,731 1,493	2,075 1,791	54.5 54.5	1,148 970	927 821	24.4 25.0
45	179	3.50	627	314	\square	1, 314	1,713	49.9	200	113	18.0
620P White											
24	1,756	1.55	2,722	1,278		1,278	1,444	53.0	1,249	195	7.2
30	3,245	1.85	6,003	2,896		2,896	3,107	51.8	2,674	433	7.2
40	2,411	2.31	5,569	2,548		2,548	3,021	54.2	2,456	565	10.1
45	804	2.57	2,066	1,048	-	1,048	1,018	49.3	898	120	5.8
TOTAL	29,766		83,251	39,400	-0-	39,400	43,851	52.7	27,769	16,082	19.3

Exhibit 21

REPRICING 620P PRODUCT

To obtain net profit $\%$ of 24 \%

620P White	$\begin{gathered} \text { Recommended } \\ \text { ASP } \end{gathered}$	Old ASP	Margin	x	Amount		Added Profit
24"	\$1.89	\$1.55	\$0.34		\$1,756	=	\$ 597.04
30	2.25	1.85	0.40		3,245	=	1,298.00
40	3.03	2.31	0.72		2,411	=	1,735.92
45	3.18	2.57	0.61		804	=	490.44
TOTAL							\$4,121.40

