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SUMMARY

The primary contributions of this thesis are associated with the development

of a new method for exploring the relationships between inputs and outputs for large

scale computer simulations. Primarily, the proposed design space exploration proce-

dure uses a hierarchical partitioning method to help mitigate the curse of dimension-

ality often associated with the analysis of large scale systems. Closely coupled with

the use of a partitioning approach, is the problem of how to partition the system.

This thesis also introduces and discusses a quantitative method developed to aid the

user in �nding a set of good partitions for creating partitioned metamodels of large

scale systems.

The high level motivation for the thesis was tied to the task of �nding or develop-

ing a method for enabling probabilistic li�ng of the �rst stage nozzle in a gas turbine

engine. To accurately assess the life of the nozzle, a complex �nite element analy-

sis was created that mimicked the spatial variability of the operating environment.

The large scale, complex nature of this model exposed several limitations to current

classes of methods typically used to assess the probabilistic nature of the life of gas

turbine parts. The proposed li�ng methodology was a indirect Monte Carlo simula-

tion technique that combined metamodels of the system with traditional Monte Carlo

simulation to assess the probabilistic nature of the nozzle life.

Unfortunately, metamodels based on traditional statistical linear models were not

deemed e�cient enough to use with the large scale nozzle model. Thus it was hypoth-

esized that the spatially partitioned nature of the nozzle model could be leveraged to

create partitioned metamodels of the system.

Partitioned model building allows a model builder to create metamodels of large
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scale systems with signi�cantly fewer runs than traditional statistical linear model

based metamodeling schemes. The reason being is that the majority of the data

required for traditional linear model based metamodels is used to quantify the vari-

ability on the response due to interactions between main factors.

A common assumption in statistical model building is that of e�ect sparsity. E�ect

sparsity implies that not all potential e�ects present in a statistical model are actu-

ally important to the variability to the response. Thus a partitioned metamodeling

scheme realizes the sparsity of the e�ects by capturing important interactions between

variables in a variable subgroup or partition and neglects the potential interactions

between variables in disjoint subgroups.

The new hierarchically partitioned metamodeling scheme, the lumped parameter

model (LPM), was developed to address two primary limitations to the current par-

titioning methods for large scale metamodeling. First the LPM was formulated to

negate the need to rely on variable redundancies between partitions to account for

potentially important interactions. While variable redundancies improve the accu-

racy of the partitioned metamodel, they do so at the cost of signi�cantly reducing

the e�ciency of the partitioned metamodeling process. By using a hierarchical struc-

ture, the LPM addresses the impact of neglected, direct interactions by indirectly

accounting for these interactions via the interactions that occur between the lumped

parameters in intermediate to top-level mappings.

Secondly, the LPM was developed to allow for hierarchical modeling of black-

box analyses that do not have available intermediaries with which to partition the

system around. Current hierarchical metamodeling methods require that the parent

analysis have intermediate responses or variables that the user can specify directly

as well as use the analysis' lower-level design variables to calculate. For systems that

do not have this level of transparency, hierarchical metamodeling was previously not

possible. Consequently the LPM enables hierarchical metamodeling of these types of

xvi



black-box analyses.

The second contribution of this thesis is a graph-based partitioning method for

large scale, black-box systems. When using a partitioned metamodeling method, the

very pertinent question of how to partition the system always arises. The current

methods used to address this problem rely on either engineering intuition to partition

the system or to partition the system along code or process boundaries. When there

is initially little known about the system, determining how to partition based on

engineering intuition can be unreliable at best. Consequently having a method that

is able to quantitatively guide the partitioning process using a small sample of data

from the system would be very useful. The second contribution for this thesis does

just that.

The graph-based partitioning method combines the graph and sparse matrix de-

composition methods used by the electrical engineering community with the results

of a screening test to create a quantitative method for partitioning large scale, black-

box systems. An ANOVA analysis of the results of a screening test can be used to

determine the sparse nature of the large scale system. With this information known,

the sparse matrix and graph theoretic partitioning schemes can then be used to create

potential sets of partitions to use with the lumped parameter model.

To validate the lumped parameter modeling method and the graph-based par-

titioning method, two test cases were developed. Unfortunately, the actual nozzle

model was not a good model to use with the validation process due to its very long

runtime. Thus, the �rst test case developed for validation was a �nite element model

of a parametric hollow I-beam. The I-beam model was created to be a medium �-

delity stand-in for the motivating nozzle model. It was formulated in as similar a

manner as possible to the nozzle model to capture the salient features while at same

time having a considerably shorter execution time.

While the �rst test case was chosen as a stand-in for the nozzle model, the second
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test case was chosen to provide a contrast to the black-box nature of models based on

�nite element analyses. The second test case was a set of equations that described the

behavior of a torsional-vibration system. The primary goal of this test case was not

necessarily to show how good or bad the lumped parameter metamodels of the system

are but rather to demonstrate a system that is not a good candidate for partitioned

metamodeling. In addition, since the equations for the system are completely known,

the true graph of the system can easily be created and compared to the experimental

graph created with the graph-based partitioning method.

The results of the validation process show that for systems which are good candi-

dates for partitioning, such as the I-beam problem, partitioned metamodels built on

the lumped parameter model can be quite good. The LPMs created for the I-beam

problem were as accurate or more accurate than metamodels created using traditional

statistical linear models. In addition LPM based models required approximately half

the data to create as compared to traditional statistical linear models.
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Chapter I

INTRODUCTION

As this thesis title implies, the work to be introduced and discussed revolves around

the development of a method for exploring the relationships between inputs and

outputs for large scale computer simulations. Primarily, the proposed design space

exploration procedure uses a hierarchical partitioning method to help mitigate the

�curse of dimensionality� often associated with the analysis of large scale systems.

Closely coupled with the use of a partitioning approach, is the problem of how to

partition the system. This thesis will also introduce and discuss a quantitative method

developed to aid the user in �nding a set of good partitions for a large scale system.

Although the research contribution is intended to stand on its own and be applica-

ble for a wide range of large scale systems, rarely is the research for an engineering

thesis performed in a vacuum. This thesis is no di�erent. In actuality all of the

research completed can be directly tied to the following motivation: Find or develop

a method that facilitates a means to accurately and e�ciently assess the probabilistic

life of a �rst stage nozzle in General Electric's new H machine gas turbine power

plant.

To see how that motivating statement and the contribution of this thesis are con-

nected, it will be bene�cial to start at the beginning and layout the prior development

that ultimately lead to the motivation. In fact, dissecting the motivating statement

foreshadows the �ow of the discussion of the next few sections. If the reader were to

essentially read the statement backwards, the order of topics to be covered would be

pretty much laid out.

To a �rst order, the contribution of this thesis is directly tied to the development
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of the new H machine by General Electric Energy. Thus to make the connection,

this chapter will �rst start by giving a brief overview of the H machine, why it was

developed, what were its primary design goals and what technologies enabled the

realization of these design goals.

As we will see, it was the use of the enabling technologies that ultimately spurred

the motivating statement that drove the work which forms the core of this thesis. The

enabling technologies on the new H machine create a highly variable and destructive

operating environment for the �rst stage nozzle. This operating environment has a

direct negative impact on the life of the �rst stage nozzle. In addition, degradation of

nozzle life can be directly linked to the economics of operating a gas turbine engine.

To accurately assess the life of the nozzle, a complex �nite element analysis was

created that mimicked the spatial variability of the operating environment. The

large scale, complex nature of this model exposed numerous limitations to current

classes of methods typically used to assess the probabilistic nature of the life of gas

turbine parts. From the analysis of these limitations, the actual research motivation

of this thesis will be identi�ed which will drive the development of the hierarchical

partitioning scheme and the associated method for �nding a set of good partitions

for large scale systems.

1.1 The GE H Machine and Enabling Technolo-

gies Overview

GE's new H series of gas turbine power plants were designed to be the �rst combined

cycle power plants to break the 60% e�ciency barrier. The 60% e�ciency is consid-

ered to be a true milestone for combined cycle power plants [169]. As a comparison,

the previous best in class combined cycle power plants, GE's FA machine [40] and

Siemens's 6000G [152], topped out at about 57 to 58% e�ciency. Although a 2%

increase in e�ciency does not seem like much, its e�ect amortized over the life of
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Figure 1: General Electric H Machine [40]

power plant can equate to signi�cant cost saving for the power plant operator. This

saving is realized because for gas turbine power plants, fuel usage is single largest

direct operating cost [96].

A combined cycle power plant is a system that integrates a gas turbine engine, a

steam turbine and a heat recovery steam generator into one package. The combination

of these three systems allows the power plant to utilize more of the energy liberated

from the fuel. In a typical engine, the majority of the heat generated by burning the

fuel is exhausted from the engine as waste heat. However, in a combined cycle power

plant the hot exhaust gases exiting the engine are used to create steam in the heat

recovery steam generator. This steam is then expanded through a steam turbine to

produce additional energy.

The GE engineers are able to reach the remarkable 60% e�ciency level by incor-

porating three primary technologies into the design of the H machine: closed-loop

steam-cooling, single crystal materials, and dry low NOx combustors [39]. Figure 1

shows a rendering of the H machine. As it will be discussed, each of these technologies

a�ect the life of the �rst stage nozzles in di�erent and sometimes detrimental ways.
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Of the three technologies that facilitate the reaching of the 60% e�ciency, closed-

loop steam-cooling is truly the enabling technology. The other two key technologies,

single crystal materials and dry, low NOx combustors, can be considered supporting

technologies for the closed-loop steam-cooling because of how the use of steam-cooling

a�ects the operating environment of the hot gas path components. Hot gas path

in this context refers to all of the engine components that are downstream of the

combustor, namely the gas turbine nozzles and buckets.

1.1.1 Closed-loop Steam-cooling

Closed-loop steam-cooling a�ects the overall e�ciency of the engine in two ways.

First it allows the engine to operate at a higher e�ective turbine �ring temperatures.

Second, it minimizes the chargeable cooling air losses associated with the parasitic

cooling air that is extracted from the �nal stages of the compressor and used to �lm

cool the �rst few stages of the turbine [96].

From a study of cycle analysis in classical thermodynamics, one knows that there

are several ways to increase the thermal e�ciency and power output of a gas turbine

engine. The two primary ways are to increase the overall pressure ratio of the com-

pressor and to increase the enthalpy or temperature of the combustion gasses �owing

through the turbine [155]. For the H machine, GE engineers actually employed both

strategies. Comparing the previous FA machine to the new H machine, the pressure

ratio was increased from 15.5:1 to 23.0:1, respectively, and the e�ective turbine �ring

temperature was increase from approximately 2, 420◦F to 2, 600◦F, respectively[21].

In most high performance gas turbine applications, parasitic cooling air is used to

�lm cool the �rst few stages in the gas turbine. The �lm cooling process causes an

overall temperature drop across the �rst stage nozzle of roughly 280◦F. By utilizing

the closed-loop steam-cooling on the �rst two stages of the turbine, the total amount

of parasitic air needed to cool the �rst stage nozzle is signi�cantly reduced and the
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Figure 2: Steam-cooling versus Film Cooling [15]

�rst stage nozzle temperature drop is reduced to less than 80◦F [15]. Reducing the

�rst stage nozzle temperature drop has the e�ect of increasing the e�ective �ring

temperature of the turbine without actually raising the temperature of the combustion

gases exiting the combustor. Figure 2 is a schematic depicting the di�erence between

�lm cooling and steam cooling as applied to a nozzle. In Figure 2, air cooling is

synonymous with �lm cooling.

As a point of reference, a 100◦F increase in turbine �ring temperature can provide

a corresponding increase of eight to thirteen percent in power output and a two to

four percent increase in simple cycle e�ciency [146]. Thus, as fuel usage constitutes

the single largest operating expense for a gas turbine operator, even a single point

increase in simple cycle e�ciency can substantially reduce the direct operating cost

over the life of a typical gas �red power plant [96]. Obviously then, any technologies

that facilitate an increase in turbine �ring temperature are clearly worth pursuing!

Reducing the parasitic cooling air has the additional bene�t of increasing the

amount of compressor discharge air that is available for heat addition in the combus-

tor. This additional mass �ow through the turbine and heat recovery unit results in

a two percentage point increase in the overall combined cycle thermal e�ciency [21].

5



1.1.2 Single Crystal Materials

The increase in e�ective turbine �ring temperature drives the need to use single

crystal materials technology in the manufacture of the hot gas path components.

In single crystal materials, all grain boundaries are eliminated from the material

structure which provides the component with improved resistance to damage due

to thermal stress, fatigue and creep as compared to previous, directionally solidi�ed

components [146]. By eliminating all grain boundaries, single crystal materials exhibit

substantially increased melting temperatures which increases the high temperature

strength of the material [146]. Single crystal materials also o�er increased low cycle

fatigue (LCF) life which is a common failure mechanism in gas turbine engines used

for peaking cycle operations [115].

In addition to single crystal materials, the hot gas path components are coated

with high temperature thermal barrier coatings (TBC). TBCs are required to protect

the hot gas path components from corrosion, oxidation and mechanical damage. As

the super alloys used in the manufacture of the hot gas path components have become

increasingly complex, it has proven to be di�cult to obtain both the required levels

of corrosion and oxidation resistance as well as the high thermal strength needed to

operate in high �ring temperature engines [146]. Thus TBCs are a necessary addition

to the components in the steam-cooled H machine, especially when the H machine will

be used for basing cycle applications where corrosion and oxidation are the primary

failure mechanisms [115].

1.1.3 Dry, Low NOx Combustors

The previous two technologies, closed-loop steam-cooling and single crystal materials

were adopted for use on the H machine because of their direct positive impact on the

thermal e�ciency of the engine. On the other hand, the dry, low NOx combustor
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technology is necessary for the successful adoption of the power plant by power gen-

erators. The H machine combustor does not in and of itself have a direct impact on

the e�ciency of the engine but rather is primarily designed to mitigate the negative

environmental e�ects of operating the engine at very high combustion temperatures.

Increasingly stringent environmental regulations are driving engine manufacturers to

design combustors with emissions as one of the primary design criteria [26].

It is not particularly di�cult to design a combustor that will produce exit tem-

peratures at or above the melting temperature of the turbine components. What

is di�cult is designing such a combustor to do so while producing low emissions of

NOx (nitrous oxides), CO (carbon monoxide), soot, unburned hydrocarbons and at

the same time provide an exit temperature pro�le that maximizes the life of the �rst

stage turbine nozzles and buckets [83]. The primary di�culty arises because of the

exponential dependency of the rate of NOx formation with combustion temperature.

To minimize the formation of NOx emissions, combustor designers employ a vari-

ety of techniques such as staged combustion and dilution of the primary combustion

air with uncombusted air [168]. The drive to higher �ring temperatures equates to

increased engine e�ciency which decreases the production of green house gases but

unfortunately does so at the cost of higher NOx levels. As such, the implementation

of the steam-cooling technology which enables higher �ring temperatures requires the

use of combustors specially designed to minimize NOx formation.

The previous long diatribe on the adoption and resulting bene�ts of the three en-

abling technologies used on the new H machine is not without purpose. In practically

every previous paragraph in this section, the connection between increased turbine

�ring temperature and increased engine cycle e�ciency was mentioned, as it turns

out the drive to increased e�ciency via increased �ring temperature has a signi�cant

and detrimental impact on the life of the �rst stage nozzles. In the sections that

follow, the function of the nozzles in a gas turbine will be discussed as well as how
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the operating environment imposed on the engine due to the use of steam-cooled

technology impacts the life of the �rst stage nozzles.

1.2 First Stage Nozzle Overview

Up to this point, the term �nozzle� has been thrown around quite a bit but what an

actual nozzle is and what it does have not been yet been discussed. This section will

give an overview of nozzles and their function in a gas turbine engine.

The function of a stationary �rst stage nozzle is to redirect the axial �ow of hot

gases from the combustor into the direction of the row of rotating �rst stage turbine

buckets [62]. The resultant vector from the turning action of these hot combustion

gases generates considerable forces on the nozzle that must be sustained throughout

the life of the part. The combustion gases are normally hotter than the melting

temperature of the metal. Thus, to avoid melting or oxidation, the nozzle is internally

cooled and gas path surfaces are protected using high temperature thermal barrier

coatings (TBC) [146]. There are also internal pressures in the nozzle that result from

coolant �ow. In addition, the nozzle must also seal the pressurized hot gases from

being released into the low-pressure regions of the turbine.

As was eluded to Section 1.1.1, the cooling mechanism developed for H machine

�rst stage nozzle (as well as the �rst stage buckets and second stage nozzles and

buckets) is di�erent than previous nozzle cooling mechanisms used in other GE gas

turbine engines. Historically, the initial stages of gas turbine engines have used �lm

cooling to insulate the gas turbine hot gas path parts from the combustor products

[13]. The �lm cooling air is bleed air taken from the last stages of the compressor,

routed through the main engine shaft and expelled into the hot gas path through small

holes on the airfoil sections of the nozzles and blades. See Figure 2 for a schematic of

how �lm cooling works. The new H machine however uses a revolutionary closed-loop,

steam-cooling technique where high pressure steam is routed through the internal
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Note - Figure 3 courtesy of the General Electric Company.

Figure 3: First Stage Nozzle CAD Drawing and H Machine Flow Path[21]

cavities of the engine to the �rst two stages of nozzles and blades to provide cooling.

Using steam for cooling provides the additional bene�t of super heating the steam for

use in the steam turbine. The heat absorbed by the steam is traditionally waste heat

but now can be converted into usable energy [96], which further increases the overall

e�ciency of the system.

The �rst stage nozzle is the �rst gas turbine component directly following the

combustor. Figure 3 shows a 3-D solid model of a nozzle airfoil section and its

location in a cross-sectional view of the H machine �ow path. The �ow path shown

is the cross-sectional view of the H machine shown in Figure 1. The nozzle shown in

Figure 3 is only one airfoil section from an array of nozzles that are attached together

in a ring around the engine.
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1.3 Operating Conditions and Nozzle Life

In Section 1.1, it was stated that the use of closed-loop steam-cooling, single crystal

materials and dry, low NOx combustors were the enabling technologies that allowed

the H machine to reach the 60% e�ciency mark. The down side to using these

technologies, however, is that each a�ects the life of the �rst stage nozzle in di�erent

and often detrimental ways.

Closed-loop steam-cooling increases the e�ective �ring temperature of the gas

turbine by decreasing the temperature drop across the nozzle due to �lm cooling.

Increased e�ective �ring temperature through the gas turbine essentially means that

the hot gas path components will be operating in increased gas temperatures. Closed-

loop steam-cooling eliminates the need to use �lm cooling to keep the nozzle material's

temperature below its melting point. The down side to not using �lm cooling is that

there will be increased thermal gradients through the nozzle walls. Increased thermal

gradients equate to increased stresses in the nozzle walls due to thermal loads which

negatively impact the nozzle's low cycle fatigue life.

Single crystal materials actually have a positive impact on the life of the nozzle.

As the name implies, in single crystal materials all grain boundaries are eliminated.

This technology impacts the life of the nozzle by increasing the high temperature

strength of the material [146]. Increasing the high temperature strength of the ma-

terial improves the low cycle fatigue life of the nozzle.

The dry low NOx combustor technology used on the H machine to reduce emissions

does not directly a�ect the life of the nozzle, what does a�ect the life of the nozzle is

the primary function that a combustor serves in an engine. A combustor's primary

function is to add energy to the pressurized gas exiting the compressor before the

gas enters the turbine. To add energy to the �ow, combustor typically burns natural

gas or oil. Burning these fuels in a pressurized oxidizer, air in this case, produces a

hot plasma. A plasma is a high temperature, highly chemically reactive gas [184].
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To give a reference point, the temperature of the combustion products coming out

of the combustor in the H machine is designed to be approximately 2, 600◦F [169].

Exposure to such extreme operating conditions typically will cause nozzle cracking

due to thermal stresses and oxidation due to the highly corrosive combustor e�uent

[8].

To summarize, excessive thermal stresses and corrosion/oxidation due to com-

bustor e�uent are the primary factors that limit the operating life of the �rst stage

nozzles. Fortunately, most gas turbine engines will not be a�ected by both of these

life limiting conditions at the same time. Most gas turbine engines used for power

generation are operated in one of two schedules or duties: continuous duty or cyclic

duty [8]. Continuous duty schedules are usually associated with power plants used

for base load applications and cyclic duty schedules are usually associated with power

plants used for peaking load applications.

A power plant operated in a base load cycle is scheduled to run all of the time

except during down time due to maintenance or failures [181]. The base load for the

energy grid is the amount of power used by the grid that does not �uctuate with

time, often times the base load is approximately 30 to 40% of the maximum energy

load consumed by the grid. When used in base load operations, the primary failure

mechanism for �rst stage nozzles is failure due to corrosion and oxidation [115].

A power plant operated in a peaking cycle is scheduled to run only when there is

an energy demand exceeding the base load [180]. A peaking load operating schedule

is cyclic with the peaking plant usually operating in the afternoons in the United

States. Power plants used for peaking applications must be able to be brought online

and operating at maximum power output in a relatively short time. When used in

peaking load operations, the primary failure mechanism for the �rst stage nozzles

is low cycle fatigue failure due to thermal stresses [115]. As it turns out, base load

applications are usually assigned to nuclear and coal �red power plants, while gas
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turbine engines are used primarily in peaking cycle applications. Thus the design

of the �rst stage nozzle in a gas turbine power plant is often driven by the induced

thermal stresses and low cycle fatigue life.

Earlier it was stated that over the operating life of a gas turbine power plant, fuel

is the single largest direct operating cost incurred by the power plant operator [96].

However an even more signi�cant impact on the bottom line of power plant operator

is any time the power plant is not available when needed. Obviously any time the

machine is under going repairs, it can not generate electricity which means the power

generator is not generating income, consequently down time has a signi�cant, negative

impact to the bottom line of the power generating facility. The time between major

overhauls in industrial gas turbines is often driven by the thermal fatigue life of

the �rst stage nozzle [34], especially when the power plant is used in peaking cycle

application. Thus, as the �rst stage nozzles and blades are often times the life limiting

parts in a gas turbine power plant, there is a de�nite need to identify or create new

methods that allow for better estimation of the life of these hot gas path parts.

1.4 Assessing Nozzle Life

Up to this point in the motivation for the work of this thesis, we have discussed a very

top-level driver for the work. Namely, how the operating conditions of a gas turbine

engine a�ect the life of the nozzle, and how nozzle life is directly tied to the economics

of engine operation. As nozzles can often be the life limiting part in an engine, they

will have a tendency to drive the schedule for down times due to maintenance and

failures [34]. Both of these types of down times have a direct negative impact on the

bottom line of power plant operators.

We have also explored how one of the primary design goals of the new H machine

also impacts the economics for the power plant operator. Designing the H machine to

produce the highest combined cycle power plant e�ciency on the market equates to
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lower direct operating cost for the power plant operator. The reason being is because

over the operating life of a gas turbine engine, fuel is the single largest direct operating

cost incurred by a power plant operator [96]. The development of the H machine

for increased e�ciency requires the use of several key enabling technologies: closed-

loop steam cooling, single crystal materials and dry, low NOx combustors. We have

examined how these enabling technologies, like the operating schedule of the engine,

can also have a negative impact on the nozzle life.

Given these two completely uncoupled sources of e�ects that adversely a�ect noz-

zle life (new technologies and operating schedule), it is obvious that having the ability

to accurately predict the life of the nozzle and to design nozzles for prolonged life be-

comes very attractive [91]. Thus to address this high level motivation, the work for

this thesis primarily revolves around developing a means to enable fast and accurate

assessments of the probabilistic life of the �rst stage nozzle in the new H machine.

The design of a �rst stage nozzle for successful long life in adverse operating con-

ditions depends on a number of interacting factors. For instance, material properties

are dramatically a�ected by the metal temperature. The metal temperature depends

on not only the gas path wall temperature but the interior wall temperature, wall

thickness and TBC thickness. Wall temperatures depend on gas and coolant temper-

atures and as well as the heat transfer coe�cients. Heat transfer coe�cients depend

on �ow rates, which depend on gas and coolant pressures. Stresses depend on ma-

terial properties, temperatures, wall thicknesses and mechanical loads. Fatigue life

depends on temperature, stress and operating cycle [173]. In addition, most of these

factors can and do vary at di�erent locations on the nozzle and the conditions at each

location can themselves a�ect the environment at other locations. Consequently we

are faced with a very complex, spatially varying system of interactions that is di�cult

to analyze.
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Simulation of the physics involved in such complex interactions is quite a di�-

cult challenge. Such simulations require the use of complicated �nite element models

(FEM) that require considerable resources to characterize even a single loading con-

dition for the model [175]. The �nite element analysis (FEA) method is a numerical

analysis technique that allows an engineer to obtain approximate solutions to the

complex partial di�erential equations (PDEs) that describe the response of a system

to external in�uences [18].

The �nite element method works by �rst discritizing the solution domain of the

system into a set of smaller sub-domains called elements. For each element, the PDEs

that describe the response of the system are approximated by algebraic, �nite di�er-

ence equations. Numerical analysis techniques are then used to solve the algebraic

equations for each element in the solution domain [128].

As an example of a discritized solution domain, Figure 4 is an example of a 3-D

solid model with an applied �nite element mesh. The model is of one airfoil section

from the nozzle array in the �rst stage of the H machine's gas turbine section. Using

this mesh, an FEA program solves the governing equations to predict the stress, strain

and temperature for each element. The solution obtained is a function of the speci�ed

set of external loads or boundary conditions.

The estimation of the life of the nozzle is determined �rst by calculating the

temperature and stress on the nozzle using the �nite element model, then using these

estimates, calculations of the life are obtained via proprietary li�ng models. The life

of the nozzle can be predicted at many �interesting� locations on the nozzle. Typical

locations represent historically low-life regions observed on actual gas turbine �rst

stage nozzles operating in the real world.

Accurately assessing the life of a complex part such as a nozzle operating in the

highly variable environment of a gas turbine power plant poses substantial problems

for traditional deterministic design methods [92]. This is primarily due to the fact that
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Figure 4 courtesy of the General Electric Company.

Figure 4: Meshed First Stage Nozzle

deterministic design methods are not able to adequately account for this variability.

To address this limitation, traditional methods rely on the application of conservative

factors of safety (i.e. worst-case scenarios, worst-case material properties, worst-case

tolerances, etc.) when estimating the life of the part [122]. Research has shown that

the factor of safety approach often leads to overly conservative life estimates which

translate into unnecessarily high maintenance and replacement costs for the engine

components [93]. Therefore, more recent design methods have begun to incorporate

probabilistics into the design of the engine components [174].

Probabilistic design methods allow an engine designer to estimate the non-deterministic

behaviour of the life of the nozzle. A non-deterministic estimate of life is essentially

a distribution of the life. The distribution of a response captures all of the variability

of the response due to the variability in the inputs. To give an example of the in-

formative di�erence between deterministic and non-deterministic estimates, consider

the comparison between the information provided to an engine designer by a factor

of safety estimated life value and the information provided to an economist trying
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to assess the income equality of the United States with only a quote of the average

income in the U.S. [86]. In both cases, the single numbers give some measure of the

response in question but neither are all that informative.

If the quoted values are average values (average life, average income), what type

of average is implied? Since an average is a measure of the central tendency of the

estimate, and there are several measures of central tendency, a quoted average is an

ambiguous value. In such a situation, one should quickly ask, does the average value

equal the arithmetic mean, the geometric mean, the median, the mode [66]? Does the

quoted value represent the lowest expected value, if so is there also a corresponding

upper bound on the value? What is the expected range of the value? Does the value

vary over a large range, or small range? All of these questions are answered when one

has the distribution of values as compared to a single value estimate. Probabilistic

design methods provided the designer with the response's distribution. A response's

distribution, as discussed in any introductory probability and statistics text [59], pro-

vides a complete description of its probabilistic behavior. The probability distribution

of the response allows the designer to know the probability of a response exceeding a

certain value.

The methods used to quantify the probabilistic nature of a response can be roughly

grouped into one of three categories, direct Monte Carlo Methods [140], indirect

Monte Carlo methods [11], and analytic reliability methods [198]. Although all three

classes of methods create assessments of the probabilistic nature of a response in

di�erent ways, each of the classes fall under the common heading of design space

exploration methods. A design space exploration method is any method that selects

samples from the input space and tracks the resultant sample from the output or

response space. For a given analysis, a sample of the input space means one unique

setting of the input values to the analysis. A sample of the response space means

the response value that resulted from transforming a sample from the input space
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through the analysis. The analysis in this case could be a mathematical function, it

could be an engineering design code or it could be a series of engineering design codes

linked together.

We have now identi�ed the two enablers that will allow an engine designer to

estimate the probabilistic life of a nozzle. One is the use of a multi-physics �nite

element analysis that maps a set of operating conditions to an estimation of the

stresses, temperatures and life of the nozzle. The other is the application of a design

space exploration procedure which will systematically produce samples mapping the

input to the output space through the �nite element analysis to characterize the

probabilistic nature of the nozzle life. The next section will go into some detail

discussing the development of an appropriate �nite element model created to capture

the in�uences of the highly variable environment that the H machine imposes on the

nozzle. The characteristics of this model will be discussed, focusing how they drive

the selection of the design space exploration procedure used to estimate the life of

the nozzle.

1.5 A Proposed Li�ng Methodology

In Section 1.4, it was stated that nozzles operate in a highly variable environment

and in Section 1.2, it was stated that the operating environment of a nozzle has a

direct impact on the life of the nozzle. Consequently if we want to accurately estimate

nozzle life we need to develop a model that is able to describe or capture as much of

that variability as possible.

In Section 1.4 it was also stated that to adequately represent the nozzle life we

need a probabilistic description of the life, that is, we needs its distribution. To

estimate the distribution of the life, we will need to use some sort of probabilistic

design method.

Now just because we have a model and a probabilistic design method, does not
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mean that we can simply apply the method to the model and realize the probabilistic

nature of the system. Rather, the model must be formulated in such a manner as

to enable the use of a design space exploration (DSE) procedure in conjunction with

the model. To use a DSE procedure with a given model, the model must allow for

parametric design. Parametric design implies that attributes of the model are under

control of the designer [29]. A model that enables parametric design is a model that

exposes a set of parameters or design variables to the DSE method. The DSE method

systematically varies these parameters and tracks the response(s) of the system.

In addition to exposing a set of design variables to the DSE method, the parame-

trized model must also be formulated such that it mimics the physics of the system

that it is representing. In our case we are trying to capture how the complex operating

environment imposed on a nozzle a�ects the nozzle life. This operating environment

consists of spatially varying thermal and mechanical loads. This translates into a

�nite element model that should allow the DSE procedure to parametrically vary the

temperature and heat transfer boundary conditions, as well as the wall thicknesses

from one location on the nozzle model to another.

The model formulated to capture the spatially varying thermal boundary condi-

tions and wall thickness is a zonally subdivided version of the �nite element model

shown in Figure 4. Each zone represents a di�erent geographic location on the model.

Figure 5 shows the subdivided nozzle �nite element model with each zone color coded.

The zones of the nozzle include areas such as the suction and pressure sides of the

nozzle airfoil, the inner and outer �llet regions between the nozzle airfoil and the

inner and outer bands, etc.

The model is parametrized by allowing the internal and external temperature and

heat transfer coe�cients; wall and TBC thickness to be independently varied across

each of the spatial zones. �External� in this context refers to the parts of the nozzle

exposed to the hot gas path, and �internal� refers to the parts of the nozzle located
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Note - Figure 5 courtesy of the General Electric Company.

Figure 5: Nozzle FEA Model Divided into Geographic Zones

in the cooling cavity. In all, the zonally subdivided nozzle model provided the design

space exploration procedure with 52 independent variables.

In typical �nite element analyses for li�ng prediction, the life response is usually

estimated as the overall life or global life of the part [91], however for this formulation,

a zonal approach is also used for the responses. As was stated in Section 1.4, the life

of the nozzle can be estimated at historically low-life regions on the nozzle. In this

formulation, each of the low-life regions corresponded to a cluster of nodes rather than

one single node. Within the cluster, responses for the life, temperature and stress

will be recorded at the node with the lowest life. In all, there are 85 total clusters on

the nozzle model where the three response types are evaluated at, resulting in a total

of 255 responses.

In addition to having 52 design variables and 255 responses, the spatially subdi-

vided �nite element model is characterized by having a relatively long run time. The

total wall clock time for one run is approximately 3.5 to 4 hours. This run time is

primarily due to the large number of elements that make up the �nite element model.
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The model shown in Figure 4 has approximately 750,000 elements. In general, this

model can be considered a large scale model.1

Section 1.4 stated that there are three general classes of probabilistic design meth-

ods suitable for realizing the probabilistic nature of the life of the nozzle. Those three

classes are direct Monte Carlo simulation, indirect Monte Carlo simulation and ana-

lytic reliability methods. With these three methods in mind one of the most important

initial research questions can be asked. Namely, which of these three primary proba-

bilistic design methods is the best to use with the nozzle model? The initial hypothesis

is, given the nature of the problem, an indirect Monte Carlo simulation technique is

most likely the best probabilistic design method to use with the model. The primary

reason is that given the combinations of model run time and the large numbers of in-

puts variables and responses; an indirect Monte Carlo simulation approach is deemed

the most computationally e�cient method.

Assertion: A spatially partitioned �nite element model was created to address the

complex operating environment that a nozzle is exposed to. This model has 52

variables, 255 responses and takes 3.5 hours to run.

Assertion: To capture the probabilistic nature of the life of nozzle, a probabilistic

design method is needed. The primary methods are direct Monte Carlo, indirect

Monte Carlo and analytic reliability methods.

Research Question 1: Which of the three primary probabilistic design methods is

most applicable for the nozzle problem?

Research Hypothesis 1: Given the computational nature of the nozzle model, it is

hypothesized that an indirect Monte Carlo simulation technique is most likely

the best probabilistic design method to use.

1See Section 3.1 for the de�nition used in this thesis to characterize a large scale model.
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An indirect Monte Carlo simulation method is a probabilistic design method that en-

ables the determination of a response's probabilistic nature by �rst creating a meta-

model or surrogate model of the response the system. Then the metamodel is used

with Monte Carlo simulation to transform random samples from the input space into

probability distributions of the output space. A metamodel in this case is a simpli�ed

representation of the actual model that captures the salient predictive capability of

the full model but executes in a fraction of a second. Chapter 2 goes into much more

detail on Monte Carlo simulation techniques and other probabilistic design methods.

Chapter 2 also provides a qualitative down select of the probabilistic design method

most applicable for the problem at hand.

However, even though the Monte Carlo/metamodeling combination is believed

to be the most e�cient probabilistic design method to apply to the problem, in its

traditional form this combination also is deemed to be not computationally e�cient

enough to apply to the problem. For instance, based on the run time of the model and

using a run estimate based on the minimum runs required to create a full quadratic

response surface of the system [109], over 5,000 hours would be required to create the

set of metamodels. The majority of runs required for this estimate are runs used to

quantify the variability of the response due to interactions between the design vari-

ables. An interaction is an e�ect whose magnitude is a function of the current setting

of two or more design variables. Consequently, the large scale nature of the model is

driving the need to employ the use of a large scale metamodeling technique to create

the metamodels. But now the question becomes, which large scale metamodeling

method should be used?

To alleviate as much of the computational burden as possible, it is hypothesized

that perhaps there is a way to use the spatially partitioned nature of the �nite element

model to our advantage. Perhaps a partitioned metamodeling approach could be used

to possibly reduce the total number of runs required. The idea being that if you
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could partition the set of design variables into several smaller sets you could reduce

the total number of runs required to make the metamodels. The run reduction comes

from the notion that interactions between design variables within a set are captured

but interactions between design variables in disjoint sets are not captured.

Assertion: Given the constraints imposed by the nozzle model's complexity, tradi-

tional statistical linear metamodeling methods are not e�cient enough to be

used with the model. Consequently a large scale metamodeling method is nec-

essary to reduce the total computational expense as much as possible.

Research Question 2: Which large scale metamodeling procedure is best to ad-

dress the characteristics of the nozzle model?

Hypothesis 2: Given the spatially partitioned nature of the �nite element model,

it is hypothesized that a partitioned metamodeling scheme seems like a logical

choice for reducing to the total number of runs required to create an accurate

metamodel.

This idea of leveraging the spatially partitioned nature of the system to create meta-

models is a direct realization of the concept of �Motivated Metamodels� by Davis

and Biglow (2002, 2003)[27, 28]. Davis and Bigelow's motivated metamodeling is

essentially the notion of using one's phenomenological knowledge about the system

to create better metamodels. �Better� in this case is not only more accurate but also

implies that the metamodels �tell the story� of the system. That is, they not only

capture the behavior of the system but they also capture the structure of the system.

In our case, partitioned metamodels would be capturing the partitioned nature of

our system in a way that traditional statistical linear metamodeling schemes can not

and at the same time allowing us to create metamodels more e�ciently than these

traditional approaches.
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To give an idea as to the potential run savings associated with using a partitioned

metamodeling approach, Figure 6 shows estimates of the total number of runs required

for several di�erent sizes of problems. The y-axis is the number of partitions that the

set of factors is divided into. In Figure 6, each partition is assumed to be of equal

size. The x-axis shows the number of runs required for a given partition size and total

factor count. The estimated number of runs, R, for a problem of size, n, partitioned

into p subsets is based on the following equation:

R = p
(n/p + 2) (n/p + 1)

2
(1)

where,

R = estimated number of runs required

p = number of partitions

n = total factor count

Equation 1 is a modi�ed version of the equation which estimates the minimum

number of runs required to create a full quadratic model based on a saturated design

space exploration [110]. Saturated in this context means that there is one run per

term in the model. In general one always collects more data than the minimum

required for a given model structure, so Equation 1 is merely used as a baseline for

comparison.

Using Figure 6 as a guide, the estimated number of runs required for a 50 para-

meter system partitioned into two sets is 702 runs. The estimated number of runs

for the complete 50 parameter system is 1,326 runs. Thus there could potentially

be a run savings of approximately 47% by partitioning a 50 parameter system into

two disjoint sets. If we partition the system into three sets, the run savings jumps to

62%. Granted these run savings projections are merely estimates, most likely the run

savings will not be as great as this, however there does seem to be some impetus to
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Figure 6: Projected Runs per Partition Size

explore a partitioned approach for creating metamodels of a large scale system.

Now that we have hypothesized that a partitioned metamodeling approach is a

potential candidate for reducing the total number of run required, we are now faced

with the problem of how should the design variables be partitioned? This is actually

a very important question because one could certainly envision how a poorly chosen

set of partitions for a large scale system could signi�cantly impact the accuracy of

the partitioned metamodels. Consequently, choosing an good set of partitions is very

important.

Unfortunately as we will see in Chapter 3, there does not seem to be any currently

available means to quantitatively determine an optimal set of partitions for metamod-

eling. The currently demonstrated methods are either based on engineering intuition

or partitioning along process or code boundaries. However, the electrical engineer-

ing community has been using partitioning approaches for many years to simply the
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analysis of VLSI (very large-scale integrated) circuits. Perhaps one of their methods

could be adopted to determine an optimal set of partitions for use with metamodeling.

Assertion: A partitioned metamodeling approach is proposed to reduce to total

number of runs required to create metamodels of the nozzle model.

Assertion: The electrical engineering community has been using partitioning tech-

niques for many years to analyze VLSI circuits.

Research Question 3: Is there a way to quantitatively �nd an good set of partitions

to use with the partitioned metamodeling process?

Research Hypothesis 3: It is hypothesized that a method from the electrical engi-

neering community for partitioning VLSI circuits could potentially be adopted

for �nding an optimal set of partitions for use with partitioned metamodeling.

To summarize, the method proposed to estimate the life of the �rst stage nozzle

is based on the spatially partitioned �nite element model shown in Figures 4. It

is hypothesized that creating a partitioned metamodel of the system that leverages

the spatially partition nature of the model will signi�cantly reduce the computation

expense to create an accurate metamodel. This partitioned metamodel can then be

used with a traditional Monte Carlo simulation to estimate the life of the nozzle. To

�nd the set of partitions, a technique from the electrical engineering community can

be used.

1.6 Initial Research Questions and Hypotheses

Review

The proposed method for predicting the life of the �rst stage nozzle presented in

Section 1.5 immediately raises three very important research questions and hypotheses

that need to be investigated. In fact the process of supporting or refuting these
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hypotheses will form the bulk of the next three chapters. Even more importantly,

the results of these inquiries will drive the majority of the work that this thesis will

contribute to the engineering community.

Section 1.5 hypothesized that given the nature of the �nite element model cre-

ated to predict the life of the nozzle, an indirect Monte Carlo technique is the most

appropriate method to realize the probabilistic nature of the nozzle life. In actuality

however, this hypothesis is merely based on the author's understanding of the sys-

tem and experience with other large scale systems. There may be other probabilistic

design methods available that are perhaps more appropriate for the system in ques-

tion. These could include new advances in quasi-Monte Carlo and adaptive, strati�ed

sampling techniques or the accurate and e�cient analytic reliability methods. This

question de�nitely needs to be resolved as selection of the wrong method could pre-

clude any ability to accurately and e�ciently assess the probabilistic life of the nozzle.

Chapter 2 will review each of the three primary classes of probabilistic design meth-

ods and using the characteristics of the system, show that indeed an indirect Monte

Carlo approach is a logical choice for analyzing the nozzle system.

The next burning question that needs resolving is, assuming that the indirect

Monte Carlo method is appropriate for the system, does a partitioned metamodel-

ing approach makes sense? Alternatively, is there another large scale metamodeling

method that already exists that can be readily applied to the system? Section 1.5

hypothesized that the spatially partitioned nature of the nozzle model could be used

with a partitioned metamodeling method to create accurate metamodels of the sys-

tem. To support or refute this statement, Chapter 3 will review the currently available

large scale metamodeling techniques and show that a partitioned approach does in

fact make sense. However, we will also see that there is not a currently available

large scale metamodeling technique that meets all the requirements for the system.

This lack of an appropriate method will drive one of the primary contributions of this
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thesis, namely, the development of a partitioned, hierarchical metamodeling scheme

for large scale, multi-objective systems.

Closely tied to the idea of partitioned metamodels for large scale systems, is the

very practical question of how to partition the system. One could certainly envision

how a poorly chosen set of partitions for a large scale system could signi�cantly

impact the accuracy of the partitioned metamodels. As we will see in Chapter 3, the

only currently available partitioning methods for use with metamodeling are based

on engineering intuition and partitioning along code or process boundaries. This lack

of a quantitative means to partition a large scale systems for use with metamodeling

is viewed by this author as a key missing element in the process.

Fortunately, the quantitative partitioning of large scale systems has largely been

solved by the electrical engineering community. It is hypothesized that perhaps one

of their methods could be used to �nd an optimal set of partitions for our problem.

However, as we will see in Chapter 4, their methods are not 100% applicable to the

problem at hand. Chapter 4 will follow the development of partitioning techniques

for large scale circuit analysis and identify the missing elements necessary to solve the

partitioning problem for large scale metamodeling. The adaptation and modi�cation

of the VLSI circuit partitioning methods for quantitatively partitioning large scale

metamodeling problems will comprise another of the primary contributions for this

thesis.

1.7 Outline of the Thesis

Chapter 2: Chapter 2 is written to address research question 1 and hypothesis 1

introduced in Section 1.5. Chapter 2 will review each of the primary probabilis-

tic design methods and map their characteristics against the characteristics of

the nozzle problem. This mapping will then be used to qualitatively determine

which probabilistic design method is most appropriate to use with the nozzle
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problem.

Chapter 3: Chapter 3 is written to address research question 2 and hypothesis 2

introduced in Section 1.5. Chapter 3 will review each of the large scale meta-

modeling techniques currently stated in the literature and use their strengths

and weaknesses to formulate a new large scale metamodeling method.

Chapter 4: Chapter 4 is written to address research question 3 and hypothesis 3

introduced in Section 1.5. Chapter 4 will review common systems decomposi-

tion methods used by the electrical engineering community analyze VLSI cir-

cuits. Based on the limitations of using these methods for metamodeling, a new

method will be formulated that allows one to determine the sparse nature of a

black-box system.

Chapter 5: Chapter 5 is an interim summary of the �rst four chapters. Chapter

5 will �nish with a complete summary of all of the research questions and

hypotheses mapped to the section that they were posed in as well as the section

that they are addressed in.

Chapter 6: Chapter 6 presents the formal development of the primary contributions

of this thesis. In addition, Chapter 6 will also formulate the validation plan that

will be used to assess the quality of the developed methods.

Chapter 7: Chapter 7 outlines the computational framework that was developed to

implement and validate the methods developed in Chapter 6.

Chapter 8: Chapter 8 summarizes the results of applying the methods developed

in Chapter 6 to the two test cases discussed in the validation plan. Chapter 8

will conclude by addressing the remaining unanswered research questions and

hypotheses.
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Chapter 9: Chapter 9 will start o� with a review of all the research questions and

hypotheses posed throughout the thesis and summarize the validity of each

hypothesis. In addition, Chapter 9 will formally state the contributions of this

thesis.

1.8 Summary

This chapter started o� with a direct motivating statement that drives the primary

contribution of this thesis to the engineering community. The contribution of this

thesis revolves around the development of a method for exploring the relationships

between input and outputs for large scale computer simulations. The proposed design

space exploration procedure uses a hierarchical partitioning scheme to help mitigate

the �curse of dimensionality� often associated with the analysis of large scale systems.

Closely coupled with the use of a partitioning approach, is the problem of how to

partition the system. Thus, the other main contribution of this thesis is the devel-

opment of a quantitative means to identify a good set of partitions for a large scale

system.

The motivation for the development of these new methods can be directly tied

to the development of General Electric's new H machine. In the design of the new

H machine, several key enabling technologies were required to facilitate reaching the

H machine's primary design goal: creation of a combined cycle gas turbine power plant

capable of reaching the 60% e�ciency barrier. This chapter discussed how the use

of closed-loop steam-cooling, single crystal materials and dry, low NOx combustors

have an adverse e�ect on the life of the �rst stage nozzle. Degradation of the life of

the �rst stage nozzle was then linked to the economics of operating the gas turbine

engine.

Given that the nozzle life is adversely a�ected by the operating conditions imposed

by the H machine's enabling technologies and poor life has a direct negative impact
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on the bottom line of gas turbine operators, there becomes a de�nite need to design a

nozzle that is robust to these operating conditions. To do so, the nozzle life is typically

analyzed using a complex �nite element analysis in conjunction with a probabilistic

design method. The �nite element model created for this system was a spatially

partitioned model comprised of 52 independent design variables and 255 independent

responses. The model took approximately 3.5 hours to compute one set of loading

and boundary conditions.

Based on the nature of this analysis, the proposed probabilistic design method used

to estimate the probabilistic nature of the life is a indirect Monte Carlo simulation.

Although indirect Monte Carlo methods are typically considered e�cient probabilistic

analysis methods, the large scale partitioned nature of the system identi�ed the need

for a new metamodeling method. Thus, it was hypothesized that a new metamodeling

procedure could be created that was able to exploit the partitioned nature of model to

create metamodels even more e�ciently but just as accurate as the currently available

metamodeling methods.

Stemming from this hypothesis, were three research questions that needed to be

answered before it could even be justi�ed to spend the resources to develop the new

hypothesized partitioned metamodel. First, even though an indirect Monte Carlo was

chosen as the appropriate probabilistic design method, is this probabilistic analysis

method actually the most appropriate for the system? Secondly, assuming that an

indirect Monte Carlo method is the appropriate probabilistic design method, does

the proposed use of a partitioned metamodeling scheme make sense? Alternatively,

is there another large scale metamodeling scheme that is more appropriate for the

system. Finally, assuming that a partitioned metamodeling approach is the best ap-

proach for the system, how does one actually determine how to partition the system?

The investigation of the necessary background information to support or refute

the hypotheses and to answer the research questions will comprise the bulk of the
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next three chapters.
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Chapter II

REVIEW OF PROBABILISTIC DESIGN

METHODS

The goal of this chapter will be support or refute the �rst research hypothesis stated

in Section 1.6; that hypothesis was: Given the computational nature of the nozzle

model, it is hypothesized that an indirect Monte Carlo simulation technique is most

likely the best probabilistic design method to use. This hypothesis was made based

on the characteristics of the nozzle model as well as the experience of the author

with applying probabilistic design methods to other similar problems. The pertinent

nozzle model characteristics that drove this hypothesis were the large numbers of

input variables (52), the large number of responses (255) and the long run time of

the model (3.5 hours).

To support of refute this hypothesis, the three primary classes of probabilistic

design methods will be reviewed. The review will be comprised of several direct

Monte Carlo simulation methods, the two primary analytic reliability methods and

several indirect Monte Carlo simulation methods. The review of each of the methods

will follow a roughly chronological order, starting with a basic history of the methods

(i.e. what �eld did they originate in and what problems were the initially intended to

solve), and �nishing with an overview of the fundamental equations for each method.

After reviewing each of these probabilistic design methods, the characteristics of

these methods will then be compared to a suite of requirements. The selected require-

ments are based on the needs of the overall analysis, as well as the constraints that

the nozzle model imposes on the analysis. Based on the results of this comparison,
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the validity of the previous research hypothesis will then be assessed.

2.1 Direct Monte Carlo Simulation

2.1.1 Traditional Monte Carlo Sampling

Direct Monte Carlo Simulation is the original and simplest of all the probabilistic

design methods. The technique was originally developed during the early 1940s by

Stan Ulam and John von Neumann to solve neutron shielding and other problems at

Los Alamos [151]. The �rst documented use of these techniques appeared in 1949 in a

paper by Metropolis and Ulam [103]. Unlike many other probabilistic design methods,

implementation of a Monte Carlo Simulation requires only a limited understanding

of probability and statistics.

In the most basic formulation of direct Monte Carlo Simulation, each input vari-

able to a deterministic analysis is assigned a distribution. Random samples from

each of the distributions are selected and evaluated in the analysis, each individual

analysis is considered one simulation. Many thousands of simulations are performed

to determine or realize the resultant probabilistic characteristics of the outputs from

the deterministic analysis [47].

In addition to being simple to implement, Monte Carlo simulation is also the most

accurate of the probabilistic methods. It is considered the �Gold Standard� by which

all other probabilistic methods are judged [130]. This is because as the number of

simulation cycles tends to in�nity, the true distributions of the outputs as a function

of the inputs will be realized. This result follows from a direct frequentest de�nition

of Monte Carlo simulation [172], namely that Monte Carlo Simulation is simply a

means of collecting random samples from the underlying population of all possible

outcomes of the analysis. Given an in�nite number of samples, the sample space

becomes equal to the population of outcomes.

While Monte Carlo Simulation is simple to implement and accurate, it is not a
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particularly e�cient method for determining the probabilistic nature of a system.

The ine�cient nature of a Monte Carlo Simulation stems from how the technique

calculates the probability of a certain event occurring in the underlying population.

The following equation is the fundamental equation for calculating the probability of

an event, Pevent, based on the total number of samples, N , taken from the population:

Pevent =
1

N

N∑
i=1

Ievent (xi) =
nevent

N
(2)

where, Ievent (xi) is a simple indicator function de�ned as:

Ievent (xi) =

 1, if event occurs

0, if event does not occur
(3)

Given Equation 2, to accurately estimate the probability of an event there is some

question as to how many samples, N , to take from the population. Various authors

give di�ering methods and rules of thumb for calculating the required number of

samples [48, 132, 140]. Empirical observations of applying Monte Carlo simulation

to large scale systems indicate that to get good resolution on the probability of an

event occurring, one needs roughly ten times the inverse of the event probability

times the number of random variables. As an example, in the design of a system

for long life, a typical desired probability of failure is often on the order of 1 failure

in 10,000 or 100,000 simulations. As such if the system has ten random input vari-

ables, a conservative estimation of the number of simulations required is one to ten

million samples. Unless one's simulation code runs extremely fast, this is often an

unreasonable number of samples to collect.1

To address the excessive number of samples required to perform a Monte Carlo

1However, if one is not necessarily interested in estimating probability of failure but rather in
estimating the shape of a response's probability distribution, then many fewer samples are needed.
Five to ten thousand samples is often a good starting point when using a Monte Carlo simulation
to realize an adequate histogram of probability distribution.
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simulation, there have been several other direct simulation techniques developed over

the years. In general they can be categorized under the general heading of �Variance

Reduction Techniques� and divided into three basic classes: strati�ed sampling [100],

quasi-Monte Carlo [53, 75] and importance or adaptive sampling [102]. In general

these techniques can often reduce the number of simulations required by several orders

of magnitude as compared to traditional Monte Carlo methods. However they do so

at expense of losing one of the most attractive features of classic Monte Carlo - its

simplicity.

2.1.2 Strati�ed Sampling

Strati�ed sampling is very similar to classic Monte Carlo with one variation. With

traditional Monte Carlo, points from the input domain are selected at random with

the possibility of missing some regions of the input space. Strati�ed sampling provides

that all areas of the design space are guaranteed to be represented. The sample space

is divided into m mutually exclusive regions, Rm, and random samples from each

region are taken based on each input variable's assigned distribution. The probability

of a speci�c event occurring can thus be calculated via Equation 4.

Pevent =
m∑

j=1

P (Rj)
1

Nj

Nj∑
i=1

Ievent (xi)

 (4)

where,

P (Rj) = the probability of region, Ri

Nj = the number of samples takes from region, Rj

Ievent (xi) = the indicator function as de�ned in Equation 3

Of the strati�ed sampling techniques, latin hypercube sampling is arguably the

most popular version. See Chapter six in �Sensitivity Analysis� [143] for an excel-

lent discussion of latin hypercube sampling. Also, the papers by McKay (1979)[100],
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Iman (1982)[68] and Huntington (1998)[67] provide a thorough introduction to appli-

cation of latin hypercube sampling for computer experiments. See Helton and Davis

(2002)[61] for a review of latin hypercube sampling applied to a variety of test cases.

2.1.3 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo sampling is similar in nature to the general class of strati�ed

sampling techniques in that it also aims to provide a uniform selection of points from

across the design space. However quasi-Monte Carlo di�ers from traditional Monte

Carlo in that the algorithms to select the points are completely deterministic. Halton

(1960)[53] and Hammersley (1960)[54] were the �rst researchers to develop the quasi-

Monte Carlo methods. The quasi-Monte Carlo methods are characterized by being

considerably more e�cient and having a faster rate of convergence as compared to

traditional Monte Carlo [130]. In addition, several of the quasi-Monte Carlo methods

o�er the ability to perform sequential sampling2 which is a distinct advantage over

latin hypercube sampling. For a good review of the e�ciency and accuracy of tradi-

tional Monte Carlo methods versus latin hypercubes and quasi-Monte Carlo methods

(Halton Sequences only) see Robinson (1999)[130].

2.1.4 Adaptive-Importance Sampling

Adaptive-importance sampling achieves overall e�ciency improvements as compared

to traditional Monte Carlo by concentrating the distribution of sample points to the

region of the input space associated with the occurrence of a speci�c event. This is in

stark contrast to the strati�ed sampling methods which provide an even distribution

of points across the input space. Adaptive-importance sampling is implemented by

de�ning an importance sampling distribution, f ∗ (x), to focus the sampling of the in-

put to the desired region. Equation 2 can then be updated to calculate the probability

2Sequential sampling describes any method that allows the experimenter to iteratively collect a
few sample points, check the result and repeat until a satisfactory solution converges or the allotted
computation budget is expended.
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of a speci�c event occurring.

Pevent =
1

N

N∑
i=1

Ievent (xi)
f (xi)

f ∗ (xi)
(5)

where, f (x) is the multivariate distribution of the input parameters. See Melch-

ers (1989)[102] for a thorough introduction to and development of importance sam-

pling methods. Wu (1994)[192] further develops the importance sampling method by

combining the notion of the most probable point (MPP) of failure with importance

sampling. See Section 2.2.1 for a discussion of the most probable point of failure.

2.2 Analytic Reliability Methods

Analytic reliability methods were originally developed to account for risk and un-

certainty when developing structural building codes to estimate acceptable levels of

load and resistance for structural design. Historically all uncertainly in structural

design was accounted for by applying conservative factors of safety to the applied

loads and/or the estimated resistance of a structure; it was assumed that these fac-

tors of safety were su�cient to keep the structure from failing [94]. To address the

inherent uncertainties associated with structural design, various analytic reliability

methods were developed to aid the structural designer. Analytic reliability methods

provide the designer with a means to rigorously account for uncertainty and produce

a resultant number, β, which represents the safety or reliability of the system. β is

typically referred to as the safety index or reliability index of the structure [194].

Fundamental to all analytic reliability methods is the notion of a limit state func-

tion. A limit state function is a function that relates a response of a system to a

speci�ed limiting value [156]. The response function can be any measure of perfor-

mance of the system, such as stress, life, cost ,etc. The standard de�nition of the

limit state function is:
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g (X) = Z (X1, X2, . . . , Xn)− z0 (6)

where,

g (X) = the limit state function

Z (X) = the response of the system

z0 = a prede�ned limit on the response

The limit state divides the response space into two regions, which are referred to

as the safe and unsafe regions for the response. By convention, the failure region,

Ω, is de�ned when g (X) < 0. Using this de�nition, the fundamental equation for

the probability of failure, pf , as used by all probabilistic design methods can then be

de�ned by the integral:

pf =

∫
. . .

∫
Ω

fX (x1, x2, . . . , xn) dx1dx2 . . . dxn (7)

Where fX is the joint probability distribution of the random variablesX1, X2, . . . , Xn

and the integral is evaluated over the failure region Ω [131]. Note however that while

this equation is the fundamental equation stated in the development of all analytic

reliability methods, evaluation of the integral is almost never performed except in the

simplest of cases. Generally the joint probability function, fX , is impossible to obtain

and even if it were available, evaluating a complex multidimensional integral like fX

is exceeding di�cult, if not impossible.

To integrate Equation 7, several di�erent analytic reliability methods have been

developed. These methods include FORM (�rst order reliability method) [124],

SORM (second order reliability method) [125] and AMV (advanced mean value) [193].

2.2.1 First Order Reliability Method

The initial development of the analytic reliability methods can be traced to back to

the 1920s. During this time the research centered around questioning the established
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structural design methods and the development of the concept of random structural

events [94]. This new line of thinking was a signi�cant departure from the traditional

notions of structural design and analysis. Unfortunately, the majority of this devel-

opment was largely ignored. It was not until a paper by Cornell (1969) [24], that the

�eld of analytic reliability methods started to gain traction.

Cornell's initial formulation was based on a de�nition of a the limit state func-

tion comprised of only the estimated load and resistance of the structure, S and R

respectively. R and S were assumed to be statistically independent, normal random

variables. A failure event was de�ned when R < S or equivalently, R − S < 0.

The reliability index was then easily de�ned as the inverse of the coe�cient of vari-

ation (COV) for a simple sum of normally distributed random variables. Following

suit, the probability of failure was then the value of the standard normal cumulative

distribution function (CDF) evaluated at the reliability index [24].

β =
µg

σg

=
µR − µS√
σ2

R + σ2
S

(8)

pf = Φ (−β) = 1− Φ (β) (9)

where

µg = mean of the limit state function, g

σg = standard deviation of limit state function, g

Φ = standard normal CDF

The Cornell formulation can easily be extended to limit state functions that con-

tains more than two random variables. The limit state can be linearized by creating

a �rst order approximation of the limit state function about a point in the design

space. The linearized limit state function, ĝ, and the corresponding reliability index

are shown in the following equations [156]:
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ĝ (u) = a0 +
n∑

i=1

ai (ui − u∗) (10)

β =
ĝ (µ)√∑n
i=1 a2

i σ
2
i

(11)

The primary limitation to Cornell's formulation was that it was not invariant to

di�erent yet equivalent forms of the limit state. For instance, the limit state de�ned

above as R < S can equivalently be de�ned as 1 − S/R < 0. Under the Cornell

formulation these two mathematically equivalent limit state functions will not yield

the same reliability index as de�ned in Equation 8 [47].

To address this limitation, Hasofer and Lind (1974)[58] applied a simple coordinate

transformation to scale the original variables into standard normal variables. The

transformation re-centers the original coordinate system around the origin of the

space. In doing so, the reliability index then becomes the minimum distance from the

origin to the limit state surface. The Hasofer-Lind transformation and corresponding

reliability index are:

ui =
xi − x̄i

σi

(12)

βHL =

√
(u∗)t (u∗) (13)
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where,

ui = standard normal version of variable, xi

xi = non-normal random variable

x̄i = mean of random variable, xi

σi = standard deviation of random variable, xi

βHL = Hasofer-Lind reliability index

u∗ = vector of standard normal random variables

at minimum distance from the origin

The transformed vector, u∗, is the point on the limit state function that is closest

to the origin of the transformed space. This point is often called the design point

or the most probable point (MPP) of failure [48]. Once the most probable point of

failure is found in the transformed space, applying the inverse of Equation 12 will

give the MPP in terms of the original random variables.

Up to this point in the development of what will eventually be called the �rst

order reliability method (FORM), both the Cornell and Hasofer-Lind methods have

relied on the assumption that the limit state function was a linear combination of

normally distributed random variables. However in actually, this is almost never the

case. As the random variables become more non-normally distributed, the accuracy

of each of these formulations is severely degraded. To address this limitation, there

are several available means of transforming the original non-normal distribution to

equivalent normal distributions. The most common methods are the classic Rosen-

blatt transformations, the Rackwitz-Fiessler two-parameter equivalent normal and

the Chen-Lind three-parameter equivalent normal transformations.

In its standard form, the Rosenblatt transformations [139] can be used to trans-

form any continuous, multivariate distribution, F (x1, x2, . . . , xn), into a uniform dis-

tribution on the n-dimensional hypercube. The Rosenblatt transformations can also
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be used to transform any non-normal distribution to a normal distribution. Using

the non-normal to normal transformation the Hasofer-Lind method can then be used

to �nd the MPP of failure. The primary detraction to using the Rosenblatt trans-

formations to simplify the mathematics is that the limit state function can become

quite distorted. A originally smooth limit state becomes highly curved and may now

have multiple most probable points of failure [156].

Rackwitz and Fiessler (1978)[126] extended the Hasofer-Lind formulation to ap-

proximate each non-normal random variable by an equivalent normal random variable.

The Rackwitz-Fiessler approximation method creates a two-parameter equivalent nor-

mal by matching the CDFs and PDFs of the original distribution with an equivalent

normal distribution at the most probable point of failure. This approximation gives

a reasonably accurate estimate for the probability of failure for most applications.

Chen and Lind (1983)[22] further extended the Rackwitz-Fiessler formulation by

approximating each non-normal random variable with a three-parameter equivalent

normal random variable. Although the Rackwitz-Fiessler algorithms is accurate and

e�cient for most applications, it looses accuracy as the input distributions become

highly skewed. The Chen-Lind formulation addresses this limitation by matching

the CDFs and PDFs of the two distributions at the MPP (like the Rackwitz-Fiessler

method) and adding the additional constraint that the slope of the PDFs of the two

distributions must also match.

The iteration scheme developed for the Hasofer-Lind formulation forms the pri-

mary method used to �nd the MPP of failure in the �rst order reliability method.

The following steps outline the �xed-point iteration scheme used and indicate where

the appropriate Rackwitz-Fiessler and Chen-Lind modi�cations are used to extend

the original Hasofer-Lind formulation [47]:
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1. De�ne an appropriate limit state function for the problem.

2. Assume a most probable point of failure in the design space, x∗.

3. Apply the Rosenblatt, Rackwitz-Fiessler or Chen-Lind approximations at x∗

to convert any non-normal random variables into equivalent normal random

variable.

4. Construct the linear approximation of the limit state function at x∗.

5. Based on the equivalent normal distributions, calculate the minimum distance

from the origin to the linearized limit state function.

6. Update x∗ with the new MPP of failure.

7. Repeat steps 2 through 6 until the MPP converges.

2.2.2 Second Order Reliability Method

The second order reliability method (SORM) extends FORM by creating a second

order or quadratic approximation to the limit state around the assumed MPP of

failure. The second order approximation to the limit state function is [33]:

ĝ (u) = a0 +
n∑

i=1

ai (ui − u∗i ) +
n∑

i=1

bi (ui − u∗i )
2 +

n∑
i=1

i−1∑
j=1

cij (ui − u∗i )
(
uj − u∗j

)
(14)

Even though the SORM creates a more accurate approximation to the limit state

at the MPP of failure it does so at the cost of requiring roughly n2 more function

evaluations. Rackwitz (2000)[124] points out that for 90% of all applications FORM

provides plenty accurate estimations of the probability of failure, thus the added

cost of SORM is generally not justi�ed. One particular case where SORM may be

required is when the Rosenblatt transformations are used to transform non-normal

random variables to equivalent-normal random variables. As was stated previously,
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the Rosenblatt transformations may distort the shape of the limit state function which

would require better approximations of the limit state function at the MPP of failure.

2.3 Indirect Monte Carlo Simulation

So far in this chapter we have examined, in roughly chronological order, the develop-

ments of two of the three primary methods for assessing the probabilistic nature of a

system. These methods started out with a discussion of traditional Monte Carlo sim-

ulation which assess the probabilistic nature of a system by using what is sometimes

referred to as �the full probabilistics� and �the true analysis� [16]. The term �the full

probabilistics� is in contrast to the analytic reliability methods which use approxi-

mations to the probabilistics to determine the probabilistic nature of the system. In

both cases, these two classes of methods use the true analysis in conjunction with

their probabilistic models.

An alternative approach would be to use a full probabilistic model with an approx-

imation to the true analysis. This is the approach taken by the indirect Monte Carlo

methods. The approximation to the true analysis is often called a metamodel. A

metamodel is a closed form approximation to the original analysis that is created by

observing the relationship between an analyses' inputs and its outputs. The creation

of metamodels in this manner falls under the general categories of Systems Identi-

�cation [85] when the designer does not have control of the inputs and Design and

Analysis of Experiments [106] when the designer can control the inputs and directly

observe the outputs.

Although it is not exactly clear when researchers began using metamodels in

conjunction with probabilistic analysis, one of the �rst uses was discussed in a papers

by Schueller et al (1989)[147] and Bucher et al (1990)[16]. These papers predominantly

advocate the use of advanced Monte Carlo methods for assessing the probabilistic

nature of a response. Advanced Monte Carlo methods refer to strati�ed sampling and

44



adaptive-importance sampling. In the cases where the response was particularly costly

to evaluate (e.g. in the case of a �nite element code), Response Surface Methodology

(RSM) [109] was used to estimate the limit state function around the means of the

input variables and �nd the most probable point of failure in with an adaptive-

importance sampling scheme.

The response surface equation (RSE) that Schueller and Bucher used was a sim-

pli�ed version of the traditional polynomial equation typically associated with RSM.

Traditionally, RSM uses a quadratic approximation to the response based on the

following equation:

ĝ (x) = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

n−1∑
i=1

n∑
j=i+1

βijxixj (15)

where,

ĝ (x) = approximation to the limit state equation

β = least squares regression coe�cient

xi = input variable, i

The RSE that Schueller and Bucher used was chosen to minimize the number of

function evaluations as much as possible yet still approximate the curved nature of

the limit state function. The simpli�ed function neglected all of the interaction terms,

βijxixj, to leave a pure quadratic interpolating function.

ĝ (x) = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i (16)

The Schueller-Bucher method creates an initial approximation to the limit state

function around the mean values of the input variables, �nds the MPP using this

approximation, and then recreates the simpli�ed RSE around the MPP. Importance

sampling is then used with the MPP-based RSE to estimate the probability of failure.
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Schueller and Bucher stated that their method had a function evaluation cost of 2n+1

runs per iteration, with a total expected cost of 4n + 3 for the complete analysis.

The Schueller-Bucher method was further re�ned by Rajashekhar and Ellingwood

(1993)[127] by adding a means to adaptively add in those interaction terms that

were missing from Equation 16. Rajashekhar and Ellingwood noticed that for certain

analyses, basing the importance sampling scheme only on an RSE with no interaction

terms often resulted in signi�cant error in the estimated probability of failure. In

addition they noted that in many cases more than two iterations were needed to

home in the MPP of failure. Consequently they concluded that the Schueller-Bucher

method would often require two or three times more runs than the stated 4n+3total

runs.

In order to keep total number of runs as low as possible but also account for the

important interaction terms to keep the accuracy high, the Rajashekhar-Ellingwood

method applies the following relative importance criterion to each term in the initial

RSE.

(
gi − gc

gc

)
< ε (17)

where,

gi = limit state computed at the ith experimental point

gc = limit state computed at the center point

ε = minimum relative importance

In the Rajashekhar-Ellingwood method, the initial RSE, based on Equation 15,

is created around the means of the input variables. Equation 17 is then applied to

each experimental run to separate important terms from unimportant ones. Only

the important terms were then included in subsequent iterations. Each subsequent

iteration is conducted in a similar manner as the Schueller-Bucher method.
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Thus far in the discussion of indirect Monte Carlo simulation, the presented meth-

ods are really nothing more than a merging of the key ideas from the analytic relia-

bility methods and the adaptive-importance sampling method from the direct Monte

Carlo methods. The key ideas from the analytic reliability being the most probable

point of failure and approximations to the limit states. Essentially the Schueller-

Bucher and Rajashekhar-Ellingwood methods side-step the problems often associated

estimating the numerical derivatives when creating Equations 10 and 14 by using a

standard least-squares approach to create the approximate limit state.

In both of the two previous classes of methods, analytic reliability methods and

RSE based importance sampling, the probability of failure for a given response is

estimated by iteratively homing in on the MPP of failure. This iterative process can

essentially be classi�ed as an optimization procedure. Meaning that the next step

or setting of the input variables is based on the current observed behavior in the

response. The fundamental limitation to optimization schemes is that they can only

be applied to one response at a time. Primarily because the setting of input variables

that is �optimal� for one response is not guaranteed to be �optimal� for the next.

Optimal in this case implies that the response has reached some sort of limit, for

example, the maximum probability of failure.

For the development of a probabilistic design system for the Pratt & Whitney en-

gine company, Fox (1994)[36] took a completely di�erent approach to indirect Monte

Carlo as compared to the Schueller-Bucher and Rajashekhar-Ellingwood methods.

Fox noted that in engineering design the designer is typically interested in knowing

the probabilistic nature of more than one response for a system as predicted by a

particular analysis code [35]. For instance in addition to estimating the life of a part,

a designer is also often interested in having probabilistic estimates of quantities such

as the plastic growth, allowable stresses, burst margin, etc. Consequently, rather then

run an iterative probabilistic analysis method for each desired response, Fox proposed
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using statistical Design of Experiments (DoE) [190] to explore the relationships be-

tween the inputs and outputs for a code. A DoE approach allows the designer to

systematically vary the inputs to a design code and examine as many of the outputs

as desired. The experimentally obtained data could then be used to create RSEs for

each of the desired responses.

With these response surface equations, the probabilistic nature of each response

is then assessed using the traditional Monte Carlo simulation method. Traditional

Monte Carlo can be used because each RSE only takes a fraction of a second to

evaluate, as such, it becomes possible to collect millions of sample points from the

response space in a relatively short amount of time.

The primary question that always arises when one implements a probabilistic de-

sign method with metamodels and traditional Monte Carlo is the question of accuracy

of the metamodels. Unfortunately there is not a simple answer to this question. Sev-

eral researchers have made cases for [37, 134, 170] and against [97, 165] the use of

metamodels and traditional Monte Carlo for assessing the probabilistic nature of an

analysis. To address many of these concerns, the method developed by Romero and

Bankston (1998)[135] can be used to incrementally increase the accuracy of the nec-

essary metamodels. The Romero-Bankston method is a sequential sampling method

that allows the user to progressively increase the accuracy of the metamodel to match

any complex function. The Romero-Bankston method has the additional and highly

favorable characteristic of increasing e�ciency as the size of the analysis increases

[135].

2.4 Discussion of Probabilistic Design Methods

The goal of this chapter was to address the �rst research hypothesis posed in Section

1.6, that hypothesis was: Given the computational nature of the nozzle model, it is
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hypothesized that an indirect Monte Carlo simulation technique is most likely the

best probabilistic design method to use. To validate this hypothesis, we will need to

compare the characteristics of the �nite element nozzle model with the characteristics

of the probabilistic design methods outlined in Sections 2.1, 2.2, and 2.3.

Section 1.5 outlined the proposed methodology that would be used to assess the

probabilistic life of the nozzle. To summarize, the proposed methodology was com-

prised of a zonally partitioned �nite element model and an indirect Monte Carlo sim-

ulation method. The zonally partitioned �nite element model was created to mimic

the complex, highly variable operating environment imposed on the nozzle. By zon-

ally partitioning the model, the various thermal boundary conditions and mechanical

loads could be varied at di�erent spatial locations across the nozzle. This resulted in

a parametric model with 52 independent input parameters.

In a similar fashion, the outputs of the model were also formulated with a zonal

approach. Responses of life, temperature and stress were tracked at 85 historically

low life regions on the nozzle. This resulted in 255 separate responses from the model.

In addition to having 52 design variables and 255 responses, the spatially parti-

tioned �nite element model is characterized by having a relatively long run time. The

total wall clock time for one run is approximately 3.5 to 4 hours. This run time is

primarily due to the large number of elements that make up the �nite element model.

With these three model characteristics in mind, we can then extrapolate and

come up with a list of criterion by which each of the probabilistic design methods

can be judged. First o�, there are two characteristics that we would like all of the

methods to exhibit: e�ciency and accuracy. If the method that we are using takes

an unreasonably long time to reach an answer, then the method is of little use to us.

Likewise, if the method will not reliably come to the correct answer then that method

is of no use to us.
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Since we are dealing with a large scale problem3, we would like a method that

has either been directly developed to address large scale problems or one that can be

easily adapted. Easily adapted implies that neither the accuracy nor the e�ciency of

the method break down as the problem size increases. Essentially this is a measure

of how well the method scales with the number of input parameters and responses.

As was stated previously, the spatially partitioned �nite element model estimated

the life, temperature and stress at 85 di�erent locations. Consequently we will want

a method that is able to handle multiple responses simultaneously. Any method,

regardless of how e�cient it is, that needs to be re-executed for each response in this

system would clearly violate our desired e�ciency requirement.

One characteristic that �nite element models often exhibit is that they are noisy.

Noisy in this context means that small perturbations in the input parameters do not

necessarily produce small variations in the responses. This is directly related to the

smoothness or continuity of the response function [133]. Noisy models often pose

signi�cant problems for methods that rely on numerical derivatives.

One of the most di�cult problems associated with using probabilistic design meth-

ods is determining the appropriate probability distributions for the inputs variables.

It is not inconceivable that a designer will assume one set of distributions, only later

to acquire some new information that shows the initial set of assumed distributions

was wrong. As such we would like our probabilistic method to be relatively insensitive

to the input distributions. Or as an alternative, if the input distributions are found

to be wrong, then the method can quickly be reapplied to assess the impact of the

new distribution set.

The next few paragraphs will qualitatively rank each of the previously discussed

probabilistic design methods on their applicability to the outlined characteristics.

Table 1 is a summary of the down-selection process.

3See Section 3.1 for a de�nition of a large scale problem.
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Table 1: Ranking Matrix for Probabilistic Design Methods

E�ciency

Starting with our �rst requirement, e�ciency, which by all accounts could be the

most important criterion for our selected method due to the long run time of our

model, we can immediately rule out two of the direct Monte Carlo methods. As was

stated in Section 2.1.1, the number of runs required to observe an event occurring is

is inversely proportional to the probability of the even occurring. Consequently, for

small probabilities of failure, a traditional Monte Carlo simulation is far too costly to

use with our model. Thus strati�ed sampling methods can also be eliminated from

consideration. Even though they often times require several orders of magnitude less

data than traditional Monte Carlo, they too are deemed to expensive for this problem.

As far at the other classes of methods are concerned, all of the literature on

the use of these methods suggests that they were created or adopted because of the

ine�cient nature of the traditional Monte Carlo methods. Therefore, any one of them

is a potential candidate to use with the nozzle model.

Accuracy

It is widely stated in the literature that the direct Monte Carlo methods are the �gold

standard� for accuracy [130]. In addition, the other two classes of methods (analytic
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reliability and indirect Monte Carlo) have also been shown to be accurate across a

wide range of problems. Consequently, any one of the probabilistic design methods

could be used if accuracy was the only requirement, with a preference given to the

direct Monte Carlo methods.

Large Scale Adaptability

Given the large scale nature of our nozzle model, we will need a technique that is

applicable to large problems. The selection of the technique should be based on

whether is has been successfully demonstrated on a similar large scale problems; or is

most likely scalable to meet the needs of the analysis of large scale problems. Scalable

in this context refers to how the method increases in the amount of data required as

the number of input variables increases.

In terms of scalability, it is not exactly clear which methods will scale the best.

Rackwitz (2000)[124] states that FORM and SORM have been demonstrated on

problems up to 50 variable with favorable results. However some researchers have

expressed concerns as to the scalability and accuracy of these two methods [148].

As far as the metamodeling based approaches are concerned, applicability to large

scale problems has not really been addressed in the literature much. In fact as we

will see in Chapter 3, there is only a hand full of potential methods available for large

scale metamodeling.

Multiple Responses

The requirement that the probabilistic design method be able to simultaneously assess

multiple responses immediately removes any iteration or optimization based method.

Consequently, the adaptive-importance sampling techniques as well as the analytic

reliability methods can not be used with the nozzle model to conduct a probabilistic

analysis.
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The traditional Monte Carlo, strati�ed sampling and the Monte Carlo via meta-

modeling all are potential candidates based on this requirement because the are all

purely independent, sampling schemes. Meaning, there is no feedback between the

previous sample and the selection of the next sample.

Insensitive to Noisy Models

Insensitivity to noisy models is of concern primarily because we are using a �nite

element model to predict the life of the nozzle. Finite element models are often

considered to be computationally noisy [133]. Computationally noisy in this context

means that small perturbations in the input parameters do not necessarily produce

small variations in the responses.

Noisy models often pose signi�cant problems for methods that rely on numeri-

cal derivatives. Consequently any probabilistic design method that uses numerical

derivatives to �nd the probability of failure will not work reliably with models that

are computationally noisy. This then implies that the analytic reliability methods,

potentially, are not good candidates for use with the nozzle model. The other classes

of techniques do not need derivative information, thus this requirement does not

preclude their use to solve the problem.

Insensitive to Input Distributions

Insensitivity to input distributions is of a more practical concern than a technical

concern, and is related to the fact that it is often di�cult to know ahead of time

what the actual input distributions for each of the design variables should be. Thus

any method that will require re-execution of the nozzle model in light of new input

distribution information is not as attractive as a method that does not. Consequently,

only the methods that rely on metamodels will meet this need. The reason being is

that the data required to create a metamodel is not contingent on the design variables'

input distributions.
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Of the two metamodel based methods, only the traditional Monte Carlo simulation

via metamodels meets this requirement. The adaptive-importance sampling is method

does actually require input distribution information to estimate the probability of

failure.

Method Down Select

Having now compared each of the three main types of probabilistic design methods

against the characteristics of the nozzle model, we have enough information to support

or reject the research hypothesis that initiated the need for this chapter. Recall that

research hypothesis was: Given the nature of the nozzle model, an indirect Monte

Carlo simulation technique is most likely the best probabilistic design method to use.

Based on the previous comparison, there is de�nite support for that statement.

This research hypothesis is supported by the results of two of the assessments:

the requirement for multiple responses, and e�ciency. First the requirement that the

probabilistic method be applicable to systems with multiple responses immediately

rules out all the methods other than the pure sampling methods. The pure sam-

pling methods are traditional Monte Carlo, strati�ed sampling and Monte Carlo via

metamodels.

Second, one of the stated requirements for �nding or developing a method to

assess the probabilistic life of nozzle was that it had to be very computationally

e�cient. This is primarily driven by the long run time of the nozzle model. Of the

three methods left, traditional Monte Carlo, strati�ed sampling and Monte Carlo via

metamodels, only the metamodeling approach meets the e�ciency need.

Thus based on this assessment, the hypothesis that an indirect Monte Carlo

method simulation method is indeed that best choice of probabilistic design method

to use with the nozzle model is supported.
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Assertion: A spatially partitioned �nite element model was created to address the

complex operating environment that a nozzle is exposed to. This model has 52

variables, 255 responses and takes 3.5 hours to run.

Assertion: To capture the probabilistic nature of the life of nozzle, a probabilistic

design method is needed. The primary methods are direct Monte Carlo, indirect

Monte Carlo and analytic reliability methods.

Research Question 1: Which of the three primary probabilistic design methods is

most applicable for the nozzle problem?

Research Hypothesis 1: Given the computational nature of the nozzle model, it is

hypothesized that an indirect Monte Carlo simulation technique is most likely

the best probabilistic design method to use.

Validity of Hypothesis 1: Based on the results of probabilistic method compari-

son, two requirements drove the down selection process, the need to simulta-

neously handle multiple responses and method e�ciency. Of all the methods

only traditional Monte Carlo simulation used in conjunction with metamodeling

concurrently addressed both of the requirements. Consequently, the hypothesis

that an indirect Monte Carlo method based on traditional Monte Carlo and

metamodels is indeed a valid statement.

2.5 Summary

The goal of this chapter was to support or refute the �rst research hypothesis stated

in Section 1.6, that hypothesis was: Given the nature of the �nite element model

created to predict the life of the nozzle, an indirect Monte Carlo technique the is

most appropriate method to realize the probabilistic nature of the nozzle life. This

hypothesis was made based on the characteristics of the nozzle model as well as the

experience of the author with applying probabilistic design methods to other similar
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problems. The pertinent nozzle model characteristics that drove this hypothesis were

the large numbers of input variables (52), the large number of responses (255) and

the long run time of the model (3.5 hours).

To support of refute this hypothesis, this chapter then reviewed the three primary

classes of probabilistic design methods. The review comprised of several direct Monte

Carlo simulation methods, the two primary analytic reliability methods and several

indirect Monte Carlo simulation methods. The review of each of the methods followed

a roughly chronological order, starting with a basic history of the methods (i.e. what

�eld did they originate in and what problems were the initially intended to solve),

and �nishing with an overview of the fundamental equations for each method.

After reviewing each of these probabilistic design methods, the characteristics of

these methods were then compared to a suite of requirements. The selected require-

ments are based on the needs of the overall analysis, as well as the constraints that

the nozzle model imposes on the analysis. These requirements were overall method

e�ciency, accuracy, large scale adaptability, applicability to multiple responses, in-

sensitivity to noisy models and insensitive to changes in input distributions. Based on

the results of this comparison, two requirements drove the down selection process, the

need to simultaneously handle multiple responses and e�ciency. Consequently, the

hypothesis that an indirect Monte Carlo method based on traditional Monte Carlo

and metamodels is indeed a valid statement.
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Chapter III

REVIEW OF LARGE SCALE METAMODELING

METHODS

The goal of this chapter is to support or refute the second research hypothesis stated

in Section 1.6, that hypothesis was: Given the spatially partitioned nature of the �nite

element model, it is hypothesized that a partitioned metamodeling scheme seems like

a logical choice for reducing to the total number of runs required to create an accurate

metamodel.

To support or refute this hypothesis, this chapter will introduce and outline all of

the general classes of currently existing large scale metamodeling techniques. How-

ever, before getting into the review of the actual methods, a de�nition of just what

of a large scale system is will be formulated. This de�nition will help to orient the

subsequent sections on large scale metamodeling techniques.

As we will see from the literature, there are two general classes of approaches that

are readily apparent for minimizing the required data to build accurate metamodels

for large scale systems: those that partition the design variables into groups and those

that take an all-at-once approach. Figure 7 will be used as a guide to summarize a

general taxonomy of the various large scale metamodeling techniques and how they

relate to each other.

Shown at the bottom left hand corner of the taxonomy is an empty space where

no methods currently exist. As we will see, that empty spot is a place holder for a

method that will be hypothesized to be the most applicable method to support the

research hypothesis that is motivating this chapter.
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Figure 7: Taxonomy for Large Scale Metamodeling Techniques

3.1 De�nition of the Large Scale Problem

Since this thesis is primarily devoted to developing a means of enabling probabilistic

design for the �rst stage nozzle model introduced in Section 1.5, which can consider a

large scale problem, a de�nition of exactly what is meant by a large scale problem is

in order. The term �large scale� is a rather ambiguous description and means di�erent

things to di�erent engineers. However, the scope of its meaning can be narrowed by

�rst identifying the goal and process of many engineering design exercises.

When one designs something, whether it be an airplane or a bracket on that

airplane, the objective of that process is to create an adequate design that meets the

required speci�cations for that system. To make the best possible design decision,

the designer would like to evaluate many alternative designs and pick the one that

best meets the requirements [29].

The evaluation of alternative designs can be classi�ed as design space exploration.
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Design space exploration (DSE) simply means a process of gathering information

about the design space of a system. The design space of a system is the collection of

all possible values of the design metrics for that system. A design metric in this case

implies a characteristic or response of the system that a designer uses to assess the

quality of the design. The exploration of the design space therefore entails varying the

system design variables and observing the resultant design metric values. A design

variable is simply a parameter that a designer can independently set or vary to see

the impact on a design metric.

Optimization is one particular example of a design space exploration procedure.

There are many di�erent types of optimization techniques that one can use to explore

a design space, however optimization in and of itself is not the focus of this thesis.

Another common design space exploration procedure is the exploration for the gen-

eration of metamodels. Design space exploration in the context of metamodeling is

synonymous with cartographic exploration. Cartographic exploration is exploration

of a land mass with the goal of creating a representation or map of that land mass.

With respect to design, a metamodel is therefore a map of the design space for a

system. This map is created from multiple representative samples from the design

space. In modern engineering design, the design process typically involves the use

of an engineering design code to simulate the system (i.e. produce samples from the

design space). Often times these codes take a non-trivial amount of time to analyze

one combination of input parameters. To make good design decisions one would like

to analyze as many combinations of input parameters as possible where each com-

bination represents a di�erent design from the design space. However the designer

is always faced with time constraints which will limit the total amount of possible

design exploration. Metamodels can often aid the designer in analyzing large num-

bers of alternative designs because they are a simpler representation of the complex

design code. These simpler models typically have signi�cantly faster execution times
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as compared to their originating engineering code.

The thoroughness with which one needs to explore the design space is dependent

on how much initial information is known (or can be assumed to be known) about

the system. The less that is known a priori, the more exploration that is required.

For example, in relation to metamodeling, one typically assumes a general topology

for the underlying design space (e.g. the design space is quadratic), as such one only

needs to collect enough information to create a metamodel to address that topology.

If on the other hand, one does not have any inkling as to the nature of the design space

topology, one will need to collect data until the design space is su�ciently resolved.

Prior knowledge is one factor that in�uences the amount of data that must be

collected from the system to create a representative metamodel of the design space.

Another and perhaps more important e�ect on the amount of data required is di-

rectly linked to the number of input parameters that one is varying to resolve the

design space. Intuitively, the more design parameters that a system has, the more

combinations of parameter settings one needs to examine to create an accurate map.

As an example, in standard Response Surface Methodology (RSM)[109] the minimum

amount of data required to create a 2nd order response surface equations (RSE) grows

quadratically with the number of input parameters. Thus as one increases the num-

ber of independent parameters to examine when exploring the design space, there is

a rapid, non-linear increase in the required samples from that space.

At this point an adequate de�nition of a large scale system can now be given. To

create a metamodel, data must be collected from the system in question. From a

pure e�ciency standpoint, it is advantageous to create this metamodel with as little

data as is necessary. As was previously outlined, there are several characteristics

of creating metamodels that tend to increase the amount of data required, namely

the lack of prior knowledge of the topology of the design space and the number of

design variables to be explored. However, neither of these two characteristics in and of
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themselves would constitute a system as being large scale. The additional aspect that

makes a system a large scale system is the run time of the analysis. A long runtime

in conjunction with a required large sample from the design space constitutes a large

scale system.

The reason for this de�nition can be argued from resources stance. Essentially,

the more time an analysis takes the more money it costs to perform. Thus any

approach that is capable of decreasing the total samples required while at the same

time creating an accurate metamodel for a large scale system is worth researching.

The following sections in this chapter will introduce and outline the general classes

of metamodeling techniques that have been adopted or created to address large scale

problems. Following the review, each large scale metamodeling scheme will be eval-

uated on its applicability to the nozzle problem.

3.2 Non-partitioned Approaches

�Non-partitioned� approaches refers to what are often called �all-at-once� approaches.

All-at-once in this context refers to any method that systematically evaluates all the

design variables concurrently. Essentially all classical Design of Experiments (DoE)

techniques adopt this approach. This is in contrast to any approach that �rst divides

up the design variables into groups and then evaluates each of the groups separately.

Partitioned approaches are examined in the next section of this chapter.

For large scale systems where decreasing the total number of experiments per-

formed is desirable, the choice of when to choose a partitioned approach versus an

all-at-once approach is system dependent. One can certainly imagine a system where

the determination of the partitions is not readily obvious, and thus an all-at-once ap-

proach is the logical choice. Conversely, there are systems where the design variables

are easily partitioned, thus a partitioned approach for run minimization may be the

better choice.
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The all-at-once approach for experimentation can roughly be divided into two

camps, those methods that build a design a priori and those that build the design

sequentially, that is, as the design space is being explored. In either case, to adopt

these approaches to large scale systems, there is one underlying assumption that

these methods all employ, the notion of e�ect sparsity [12]. E�ect sparsity refers

to the hypothesis that in large scale systems not all e�ects are important for the

variability of the response. In this context, an e�ect implies not only variability due

to a speci�c factor but also combinations of factors as well (i.e. the interaction terms

in a standard response surface equation).

For large scale systems, e�ect sparsity would allow the experimenter to create a

design with an acceptable number of runs and then build a reduced order model based

on the data collected. A reduced order model is a model that does not contain all

possible e�ects. Typically one would employ one of the various stepwise regression

routines such as forward selection, backwards elimination, stepwise regression or all-

subsets regression. Miller (1990)[104] gives a thorough review of each of the common

stepwise regression methods. Note however, these regression methods should not

be blindly applied, Abraham et al (1999)[1] identi�ed several risks associated with

applying these stepwise regression routines. Essentially they concluded that these

methods can not be assumed to reliably separate the active e�ects from the inactive

e�ects.

The reason for the breakdown of stepwise regression routines when used with su-

persaturated designs is due to the complex nature of the aliasing structure associated

with these designs. An alias is de�ned when the estimate of an e�ect also includes

the in�uence of one or more other e�ects (usually higher order interactions). For

example, if the estimate of e�ect D in a four factor experiment actually estimates

(D + ABC), then the main e�ect D is aliased with the 3-way interaction ABC [111].

Consequently, the experimenter does not know if the actual observed variability on
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the response is due to D or ABC or actually a combination of the two.

3.2.1 Pre-built Designs

The only class of designs of experiments that are truly feasible for large scale sys-

tems are supersaturated designs. A supersaturated design is technically any design

consisting of k factors and N runs where N < k + 1. Historically, this de�nition was

based on a linear, �rst order model consisting of only an intercept and the k main

factors. However, it can be extended to include any assumed linear model where the

total number of e�ects or terms in the model is greater than N − 1 runs.

Typically, supersaturated designs are custom built by an exchange algorithm.

In recent years there has been an explosion in the number and types of exchange

algorithms that have been published. These include variations on the classical Fedorov

exchange algorithm [105], columnwise [60, 89] and columnwise-pairwise algorithms

[87] and stochastic algorithms built around simulated annealing [4, 69, 98] and genetic

algorithms [20].

All of these exchange algorithms are faced with the same general problems, which

are summarized below:

• Finding a optimum design is a NP-hard optimization problem. Thus, as Hol-

comb (2002)[64] states, no one algorithm is clearly superior to any other.

• No exchange algorithm is guaranteed to �nd the optimal solution. This is due

to the fact that several dissimilar designs can have the same optimality criterion

value and therefore judged equal by the algorithm [20].

• As the number of factors and experiments increases the computational e�ort to

�nd the best design grows non-linearly, thus large designs can often take days

or months to create.

• Even though a supersaturated design may be deemed optimal it will in general
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have a complex aliasing structure which could potentially make the practical

interpretation of the experimental results di�cult or non-unique [118].

As was previously stated, one of the primary drawbacks to using exchange algorithms

to build optimal supersaturated designs is the upfront computational expense. When

this expense is unacceptable, there are several alternative classes of supersaturated

designs available. Lin (1993)[88] created a classes of supersaturated designs built on

half fractions of Hadamard matrices. He showed that these matrices were superior

to the other existing supersaturated designs (prior to 1993) and, more importantly,

were relatively easy to construct. His designs allowed for the estimation of k = N − 2

e�ects in n = N/2 experiments. N in this case refers to the order of the Hadamard

matrix.

Another computationally inexpensive route that has been explored for adapting

supersaturated designs to computer simulations are latin hypercube designs. Latin

hypercubes can be quickly designed to meet any computational experimentation bud-

get. However the typical latin hypercube algorithm is not guaranteed to produce an

optimal design. To address this limitation, several authors [10, 116, 195] have devel-

oped algorithms to design near optimal latin hypercubes. These algorithms produce

comparatively good designs, but typically with a signi�cant increase in computational

expense as compared to the standard latin hypercube algorithm. This class of designs

has also been shown to be well suited to the exploration of deterministic computer

simulations where space �lling designs tend to minimize the bias error between the

�tted model and the actual simulation [44].

3.2.2 Sequential Designs

As was stated in the previous section, the standard application of designs of experi-

ments is to build a complete design, collect all the data, and then build a model around
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that data. A natural extension to this approach is sequential experimentation. Se-

quential experimentation essentially performs all three of these tasks simultaneously.

A typical sequential method starts with a base set of experiments, then collection

of the data, followed by the building of a cursory model, and �nally, extension of

the design [141]. This approach allows the experimenter to modify or adapt the sub-

sequent designed experiments in light of the data collected [43]. The experimental

process can then be stopped when a su�ciently accurate model is built or the total

computational budget is met.

Sequential designs inherently imply a tight coupling between the design of the

computer experiments and the generation of the metamodel. Practically speaking, for

computer experiments this seems to be a logical approach to experimentation due to

the relative ease with which the experimenter can programmatically link the collection

and analysis of the data. Also, as Sacks et al (1989)[142] point out, sequentially

designed experiments are computational cheaper to generate than pre-built designs.

This is due to the fact that the creation of an optimal pre-built design is a single n × d

optimization problem, while a sequentially built design is a sequence of d-dimensional

optimization problems. It is important to note however, that even though sequentially

designed computer experiments are a logical approach to experimentation on the

computer, the process is limited to one response at a time. If the experimenter needs

to build models of more than one response the sequential process will have to be

performed for each response.

3.3 Partitioned Approaches

The previous section summarized several feasible all-at-once approaches for large

scale systems. As was noted, to apply supersaturated designs to large scale systems,

the exploitation of e�ect sparsity plus the use of a stepwise regression routine was

necessary to keep the computational expense reasonable.
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This section adopts a slightly di�erent paradigm for addressing the problem of size

in deterministic experiments. The new focus will examine several di�erent methods

that address the large scale problem by �rst partitioning the factors into subgroups,

analyzing each of the subgroups independently and then recombining the data to

build the �nal metamodel.

Although several di�erent partitioning approaches will be examined, in general

they have the same underling assumption. This assumption is based on the idea

that from the total set of design variables for the system, one can subdivide the

set into disjoint subgroups. Further, it is assumed that the interactions between

individual design variables in disjoint subgroups are of negligible importance to the

overall variability to the response. However, interactions between individual factors of

the same subgroup are important and thus are captured. The hierarchical partitioning

techniques discussed in Section 3.3.2 will expand on this assumption by allowing the

metamodel to capture general partition to partition interactions.

Essentially the assumption underlying the partitioning methods is implying noth-

ing more than e�ect sparsity. However, in this case the experimenter is specifying the

active e�ects rather than using a step-wise regression routine to �nd them. Granted,

the resultant metamodels for each of the partitioned methods tend to conceal the

direct observation of e�ect sparsity (as compared to the all-at-once approaches),

nonetheless, e�ect sparsity is still the underlying assumption.

On the left side of Figure 7 the partitioned approaches are divided into two general

categories, hierarchical and non-hierarchical partitioning methods. For the purpose

of this thesis, two basic types of partitioning can be de�ned as follows:

Hierarchical A multilevel subdivision of system variables and/or responses such

that parent-child relationships are readily apparent

Non-hierarchical A single level subdivision of system variables such that there are
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no obvious parent-child relationships between the variables and responses

A review of the literature identi�ed signi�cantly more techniques centered around

the all-at-once type approaches. On the partitioned side, there seems to be only a

few techniques that are adaptable or have been created for addressing the �curse of

dimensionality� associated with large scale computer simulations.

3.3.1 Non-hierarchical Partitioning

3.3.1.1 Variable Intercept Model Methods

There are two methods that can fall under the heading �Variable Intercept Models�.

Although these two methods are essentially di�erent, they employ the same general

mathematical description. The mathematical formulation is as follows:

Responses of partition 1:

ŷ1 = β0,1 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑
i<j

∑
βijxixj (18)

Responses of partition 2:

ŷ2 = β0,2 +
r∑

i=k+1

βixi +
r∑

i=k+1

βiix
2
i +

∑
i<j

∑
βijxixj (19)

Intercept for partition 1:

β0,1 = α0,1 +
r∑

i=k+1

αixi +
r∑

i=k+1

αiix
2
ii +

∑
i<j

∑
αijxixj (20)

Intercept for partition 2:

β0,2 = α0,2 +
k∑

i=1

αixi +
k∑

i=1

αiix
2
ii +

∑
i<j

∑
αijxixj (21)

As can be seen from this set of equations, the set of responses and design variables

is divided into two partitions (although both references [74] and [119] state that, in

theory, more partitions are possible). The equations linking the responses and their
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corresponding design variables are standard second order response surface equations.

The interesting deviation from standard Response Surface Methodology is in Equa-

tions 20 and 21. In this case the intercept terms are formulated to be functions of

the variables in the other partition. One interpretation on the functional form of the

intercepts, as Koch et al state (2000)[74], is to allow the mean term of the equations

to slide along the y-axis as the intercept factors change.

As stated earlier, both methods share the same mathematical descriptions; how-

ever, their methods and goals are di�erent. The primary goal of Koch's formulation

was for large scale system run minimization for computer simulations [73]. The focus

for Perry et al (2001, 2002)[118, 119] was on developing a technique to examine the

e�ect of multiple factors on sequential processes. Given this, the primary method

di�erences are associated with how the variable intercept is actually used. Koch's use

was stated earlier, namely as a true variable intercept. Perry, on the other had, uses

the intercept to estimate additional signi�cant e�ects on the response due to factors

in the other partition. These e�ects are then included in the �nal response surface

which employs a static intercept.

Another interesting deviation between the two methods is in the design of experi-

ments used to explore the relationship between the design variables and the responses.

Prior to choosing the type of design used to explore each partition, both methods

sanction one of several methods for determining the partitions:

• A screening test to quantitatively separate responses and factors into partitions

• Engineering intuition/domain knowledge

• Process or engineering code boundaries

Once separated, Koch then uses two separate DoEs to examine each partition inde-

pendently. In general these can be standard classical DoEs or DoEs designed explicitly

for computer experiments.
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Perry's DoE is a little more involved. First rather than examining each parti-

tion independently, a custom DoE is built that, although partitioned, examines the

in�uence of all factors concurrently. The partitioned DoE �rst starts with a small

composite design (SCD) for the partition with the largest number of factors. This

DoE essentially de�nes the total number of runs that the overall partitioned DoE will

contain. Then the experimenter generates another SCD design for the other parti-

tion. For the fractional factorial portion of the SCD, the design is built such that it

is nearly orthogonal, has near-equal occurrence of highs and lows for each factor and

minimizes the complexity of the aliasing structure. The axial points, of the second

partition SCD and the overall centroid for the total partitioned design are constructed

in the same manner as in a standard central composite design.

Returning for a moment to the previously stated three methods for partitioning

the problem, its important to note that these three methods are applicable to all the

partitioning methods outlined in this thesis. However, to the author's knowledge,

only the the last two methods (engineering intuition and process boundaries) have

been demonstrated in the literature. Although Perry and Koch state that a screen-

ing test can be used to quantitatively partition the factors and/or responses, neither

author provided a description of how to solve the partitioning problem in a quantita-

tive fashion. A discussion of possible means to quantitatively partition a large scale

problem will be taken up in Chapter 4.

3.3.1.2 Uni�ed Trade-o� Environment

The Uni�ed Trade-o� Environment (UTE)[7] stemmed from research aimed at de-

veloping a method to simultaneously model the impacts of mission requirements, ve-

hicle characteristics and technologies in aircraft systems design. In his thesis, Baker

(2002)[6] proposed two alternative environments for exploring these e�ects, an in-

tegrated environment and a multi-space environment. The integrated environment
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essentially takes the all-at-once approach for combining the various factors/design

variables associated with describing mission requirements, vehicle characteristics and

the desired technologies. Baker found that an all-at-once approach could not satis-

factorily be adopted to his needs, thus he devised a scheme that logically partitioned

the factors into the corresponding three design spaces.

The basic UTE method starts with a baseline vehicle and then formulates the

impacts of the various spaces into the form of �deltas� around that baseline. As was

stated earlier, Baker's formulation was built around only three partitions, namely

the mission requirements, vehicle characteristics and the technologies. However, in

theory this could be expanded to any number of partitions and the generic functional

relationship would be as follows:

Ym = β0,overall +
n∑

i=1

∆Ym,i (22)

where,

β0,overall = the baseline contribution to Ym plus the β0 from each partition

In the development of his method, Baker realized that the accuracy of the the UTE

method was hampered by neglecting some important interactions that may occur

between variables in disjoint groups. Thus to improve the accuracy of the method,

Baker suggested using a screening test to determine important interactions that may

be occurring but were not being accounted for and then used variable redundancies

between partitions to directly capture important interactions.

3.3.1.3 Spatially Partitioned Metamodels

For certain classes of problems, which involve the of building metamodels of �nite

element models, it is possible to exploit the spatial nature of the system to create

accurate metamodels with fewer runs [171]. The notion of e�ect sparsity can be
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enforced by assuming that the in�uence of a variable (i.e. its interactions with other

variables) is spatially localized. Volovoi et al (2003)[171] justify this approach by

using the St-Venant principle which characterizes the decay rate of disturbances in the

stress �eld by
√

G/E where E and G are the Young's modulus and shear modulus of

the material, respectively. Essentially what this implies is that only the interactions

between neighbors need to be considered. In the general case, it is important to

evaluate the decay rate and the spatial distance among zones in order to determine

what constitutes the proper neighborhood for each variable.

The general spatially partitioned DoE creation process is as follows:

1. Determine the interconnections between the spatial partitions or zones. Each

adjacent zone will represent an interaction to be captured in the model.

2. For a given interaction (i.e. a pair of adjacent zones), apply a fractional factorial

DoE that explores the interactions between all design variables that will be

varied across those two zones. All other design variables are kept at their

nominal values.

3. Apply the same fractional factorial approach for all the other pairs of zones by

appending the new runs to the end of the spatially partitioned DoE.

4. Execute the partitioned DoE as a standard DoE method.

5. Build the spatially partitioned metamodel by manually including only the inter-

actions de�ned in Step 1; all �rst and second order terms are handled normally.

3.3.2 Hierarchical Partitioning

Up to this point all the partitioning techniques have, for the most part, been of a

non-hierarchical nature. Koch's variable intercept method could perhaps be argued to

be hierarchical since the intercept terms are themselves functions, thus masking the

direct in�uence of factors in the other partition on the response. However, given its
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Figure 8: Generic Hierarchical Representation

mathematical similarity with Perry's variable intercept method, which was formulated

to be non-hierarchical, it was included as a non-hierarchical technique.

In general, both of the hierarchical techniques to be discussed in this section can

be notionally depicted by Figure 8. This �gure shows a generic system of four design

variables denoted by the xi,j's divided into two subdivisions or partitions. These

partitions are linked to the general response, Y, via the intermediate responses, Ỹi's.

The hierarchical techniques examined in this paper can be distinguished by the

nature of the intermediate responses, Ỹi's, shown in Figure 8. As shown in Figure 7,

in general these intermediate responses can be categorized by either being existing

or non-existing. Existing in this case implies that the intermediate response is an

actual response or intermediate variable that exists in the code and can be directly

manipulated by the experimenter.

3.3.2.1 Existing Intermediate Responses

The basic mathematical relationship describing the mapping from the low-level design

variables, x 's, to the top level response, Y, via the intermediate responses, Ỹi's, can
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be generically described as a composite function (i.e. f ◦ g ≡ f (g (x))). This is the

most intuitive type of hierarchical relationship, and for certain classes of problems

can be easily adapted for use as a large scale partitioning technique.

The General Composite Function (GCF) method can be outlined with a simple

example. Let us assume we are trying to develop a metamodel of the range of the

aircraft from an aircraft synthesis and sizing code. Based on the the Breguet range

equation, the range of the aircraft is among other things a function of the lift to drag

ratio (L/D) and the speci�c fuel consumption (SFC) of the airplane.

R =
V (L/D)

g · SFC
ln

(
Wi

Wf

)
(23)

where,

R = range of the aircraft

V = �ight velocity

L/D = lift to drag ratio

g = acceleration due to gravity

SFC = speci�c fuel consumption

Wi = initial aircraft weight

Wf = �nal aircraft weight

It follows from basic aerodynamics that the L/D is itself a function of more primi-

tive design variables directly associated with the wing of the airplane. These primitive

design variables include aspect ratio, sweep, the various airfoil parameters, etc. The

SFC on the other hand is a function of engine parameters such as overall pressure

ratio, turbine inlet temperature, etc. Thus applying the basic assumption of all par-

titioning techniques, we can surmise that interactions between the wing parameters

are important but interactions between the various wing and engine parameters are

not as important, and thus can be neglected. Using this basic logic we can then
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easily justify subdividing of the design variables into two partitions, a wing speci�c

partition and an engine speci�c partition. Each partition can now be independently

explored and the functional mappings between the partitioned design variables and

their corresponding intermediate responses can be determined.

To complete the method, the mapping between the intermediate responses and

the top-level responses needs to be explored. In the synthesis and sizing example, the

in�uence of the lower level design variables on the range response was lumped into the

L/D and SFC intermediate responses. In many synthesis and sizing codes to calculate

the range of the aircraft, the user can either supply a speci�c L/D or specify settings

for the more primitive design variables and use the codes internal aerodynamic rou-

tines to calculate the L/D. In the GCF method, both of these analysis avenues are

exploited. To complete the sublevel analyses, the internal aerodynamic routines are

used to explore the mappings between the wing speci�c design variables and the

L/D intermediate response1. To determine the mapping between the intermediate

responses and the top-level response, the user speci�ed values for the intermediate

responses (or in this case, what could be called intermediate design variables) are

used. Figure 9 shows the Breguet Range example mapped to the general hierarchical

representation.

To apply the GCF method there are two basic caveats that must be observed:

1. The ranges of the intermediate responses used to examine the intermediate to

top-level mapping must fall within the range of the intermediate response as

predicted by the low level to intermediate level mapping.

2. The code must allow the user to transparently examine and set the intermediate

responses.

1Note - it is not necessary to require the experimenter use the sizing and synthesis code's internal
aerodynamic routines. In fact one could instead use a separate, higher �delity aerodynamics code
to model the mappings between the low-level wing parameters and the L/D intermediate response.
The same approach could be used for the engine parameters as well.
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Figure 9: Breguet Range Hierarchy

Caveat one is a direct result of one of the primary limitations to metamodels, namely

extrapolation. Metamodels are generated by varying the input parameters over a

prescribed range of in�uence. The resultant response then has its own region of

validity as dictated by the ranges on the input parameters. As long as the user of the

metamodel stays within the chosen ranges of the input parameters, the metamodel is

acting as an interpolation engine and thus can be assumed to be accurate. However,

once the user steps outside of the bounds of the input parameters, the extrapolated

response as predicted by the metamodel can not, in general, be assumed to be an

accurate representation of the analysis that it is modeling.

This interpolation versus extrapolation characteristic has a direct impact on the

accuracy of the hierarchical metamodel generated by the General Composite Func-

tion method. It is important that the range of the intermediate response/variable

falls within the interpolation bounds as predicted by the sublevel design variables to

intermediate response mapping.

Caveat two identi�es the inherent di�erence between the two types of hierarchical

partitioning techniques. In the aircraft range example, the L/D and the SFC are
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readily identi�able intermediate responses and if the analysis code supports it, could

themselves be independently varied to �nd the intermediate to top-level mapping.

Unfortunately not all codes support this level of transparency/�exibility, in addition

there might not be any readily identi�able intermediate responses for the analysis in

question. It is this very problem that lead to the development of the of the hierarchical

metamodeling technique that comprises one of the primary contributions of this these.

3.3.2.2 Non-Existing Intermediate Responses

As was stated in the the previous section, analysis codes that do not exhibit the

ability to collect and manipulate intermediate responses pose a road block to the GCF

method for large scale partitioning problems. In addition, one can readily imagine

systems in which readily identi�able intermediate responses do not exist. It is these

systems that will be addressed by the hierarchical metamodeling method developed

for this thesis.

As an example, a typical �nite element analysis (FEA) is such a system that does

not contain any directly identi�able partitioning intermediaries. In standard FEA

codes, the user gets a direct mapping from the inputs to the outputs. Thus, there are

no intermediate responses around which to partition the lower level design variables.

On the surface, this would seem to negate the possible use of a hierarchical par-

titioning technique, and would require that the experimenter adopt one of the other

schemes outlined in this section to attack a large scale FEA problem. Fortunately, it is

possible to arti�cially create intermediate responses that are germane to the problem

at hand. Chapter 6 introduces and outlines the steps for applying a new hierarchical

metamodeling method that was developed to address large scale systems comprised

of multiple responses and that do not have readily identi�able intermedaries.
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3.4 Review and Discussion of Current

LSM Methods

Recall that the primary goal of this chapter is to support or refute the second research

hypothesis stated in Section 1.6, that hypothesis was: Given the spatially partitioned

nature of the �nite element model, it is hypothesized that a partitioned metamodeling

scheme seems like a logical choice for reducing to the total number of runs required

to create an accurate metamodel.

To investigate this hypothesis, this chapter outlined two general classes of tech-

niques applicable for run mitigation for large scale systems. Both avenues, either

directly or indirectly, exploit the notion of e�ect sparsity to justify the generation of

reduced order models. E�ect sparsity refers to the notion that in large scale systems

not all e�ects are important for the variability of the response. Employing this as-

sumption allows the experimenter to create reduced order models which require less

data than complete models. The distinction being that complete models contain all

potential e�ects on the variability of the response, while the reduced order models do

not.

The �rst set of approaches outlined revolve around the use of supersaturated

designs of experiments in conjunction with a stepwise regression routine to build an

accurate metamodel. The second set of approaches partition the total set of design

variables into smaller, disjoint subgroups. The subgroups are independently analyzed

and the resultant data combined to create the �nal metamodel. For the partitioned

approaches, e�ect sparsity is directly enforced by the experimenter. Conversely, the

all-at-once approaches use a stepwise regression routine to determine the level of e�ect

sparsity inherent to the system.

With this review in mind, we can now support or refute the research hypothesis

that drove the literature search in this chapter. First, yes it does appear that a

partitioned metamodeling approach does make sense for the analysis. The primary
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reason being, the alternative approach for building metamodels of large scale systems,

supersaturated designs with stepwise regression, may not reliably create metamodels

that represent the true nature of the system. The reason for this is due to the complex

aliasing structure of supersaturated designs. The consequence of the aliasing problem

is that even though the stepwise regression routine may produce a good metamodel

(i.e. one that accurately represents the shape of the modeled function), that model

will most likely not be an accurate representation of the system. This implies that

one should not use that model to make any statements as to the statistical nature of

the system.

Assertion: Given the constraints imposed by the nozzle model's complexity, tradi-

tional statistical linear metamodeling methods are not e�cient enough to be

used with the model. Consequently a large scale metamodeling method is nec-

essary to reduce the total computational expense as much as possible.

Research Question 2: Which large scale metamodeling procedure is best to ad-

dress the characteristics of the nozzle model?

Hypothesis 2: Given the spatially partitioned nature of the �nite element model,

it is hypothesized that a partitioned metamodeling scheme seems like a logical

choice for reducing to the total number of runs required to create an accurate

metamodel.

Validity of Hypothesis 2: For the most part, it does appear that a partitioned

metamodeling approach does make the most sense for the analysis. The pri-

mary reason being, the alternative approach for building metamodels of large

scale systems, supersaturated designs with stepwise regression, may not reliably

create metamodels that represent the true nature of the system. The reason for

this is due to the complex aliasing structure of supersaturated designs.
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However, none of the current large scale metamodeling methods meet all of

the needs of the nozzle problem. Consequently, a new partitioning method is

needed to be able to fully leverage the partitioned nature of the nozzle model.

If a supersaturated method for large scale metamodeling is not a feasible approach,

which then of the partitioned approaches is best? Answering this question is a lit-

tle less straight forward. A review of the literature revealed three potential non-

hierarchical partitioning methods and one hierarchical partitioning method. The �rst

two non-hierarchical methods, the Variable Intercept Model and Uni�ed Trade O�

Environment, can quickly be neglected.

The VIM methods were created primarily for partitioning along process or code

boundaries, that is the responses for one process and their important factors were

grouped together and the responses for a subsequent process and its important factors

formed the second group. For the model that we are trying to partition, there is only

one process and it is not at all clear how we should group the responses. Additionally,

its even less clear how we would determine which factors are most important for a

given set of grouped responses. Consequently the VIM methods do not appear to be

a good candidate for creating partitioned metamodels for the nozzle problem.

The UTE method can also be bypassed by closely examining Baker's stated accu-

racy and run results. In Baker's initial formulation of the UTE method, each of the

partitions were completely disjoint from one another. To assess the accuracy of the

UTE method, Baker ran two types of validation tests. One set of tests was on the

predictive accuracy of each of the individual partitions, the other assessed the predic-

tive accuracy of the combined set of partitions as depicted in Equation 22. Baker's

validation tests consisted of running several hundred o�-design points through the

analysis code and then comparing the predictive accuracy of the metamodels with

the results from the code.

The accuracy results for the individual partitions showed that each partition had
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a mean error of less than 1% and a standard deviation around that mean of approx-

imately 0.25 to 0.75%. For typical metamodeling purposes, relative errors in this

range are usually quite acceptable. However when Baker analyzed the predictive ac-

curacy of the complete UTE formulation he found the error rates considerably higher.

The mean error rates for the combined equation were on the order of 6 to 7% with

maximum errors as high as 43%.

Baker hypothesized that the increase in error was due to important interactions

between variables in disjoint groups that he was not capturing. To address this prob-

lem, Baker used a screening test to determine these important, neglected interactions.

Using these results, he then included the necessary factors in other groups and re-ran

the analysis. In doing so he was able to decrease the mean error by roughly 2 to 4

times. Although Baker's new approach was successful in reducing the error, he did

so at the cost of requiring more data than if he had simply analyzed all of his factors

at the same time! The total data required for the new approach increased by more

that 50%. Since one of the primary reasons for investigating the UTE method was

to minimize the curse of dimensionality for large scale systems, and since it has been

shown to be less e�cient than a standard all-at-once approach, the UTE method is

not a candidate to use with the nozzle model.

Ruling out the use of the spatially partition metamodeling (SPM) method for the

problem is a little less straight forward. The SPM method was originally developed

to create metamodels of �nite element models by exploiting the spatial nature of the

system. By all accounts this is exactly what we are looking for, we have a spatially

partitioned �nite element model and we need to create metamodels of it. Although

this thesis is motivated by the analysis of one particular large scale system, the nozzle

model, ideally we would like the developed method(s) to be as generic as possible.

Meaning, the process that is developed should be potentially applicable to all kinds

of large scale systems, not just large �nite element models. Unfortunately the SPM
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method does not really meet this level of generality. The argument behind that

statement can be linked to the guiding idea that lead to the formulation of the SPM

model.

The SPM method was developed around the idea that in�uence of a variable

(i.e. its interactions with other variables) is spatially localized. Volovoi justify this

approach by using the St-Venant principle which characterizes the decay rate of dis-

turbances in the stress �eld by
√

G/E where E and G are the Young's modulus and

shear modulus of the material, respectively. Essentially what this implies is that

only the interactions between neighboring spatial zones would need to be considered.

These neighbors could be individual variables or groups of variables.

The problem with extrapolating this method to other large scale systems becomes,

how does one decide if two variables or groups of variables are neighbors when the

problem is not or can not be formulated in a spatial fashion? This concern limits the

applicability of the SPM method to other classes of problems.

Having now reviewed and eliminated the all-at-once approaches based on super-

saturated designs and stepwise regression routines, as well as each of the three non-

hierarchical methods, the only currently available method remaining is the hierar-

chically partitioned General Composite Function method. Unfortunately, the GCF

method is also not applicable to the nozzle problem. Primarily because it is only ap-

plicable to systems with readily identi�able intermediaries. However the GCF method

should not be dismissed quite yet as it does have some nice properties that potentially

could drive the development of a new method.

3.5 Formulation of a New LSM Method

The previous section reviewed each of the currently available large scale metamodeling

(LSM) methods and concluded that none of the methods met all of the needs for the

nozzle problem. However, of all the methods reviewed, the UTE method is the most
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generic and could be applied to the nozzle problem. Unfortunately it seems to exhibit

problems with e�ciency and accuracy, although not necessarily at the same time. To

address the accuracy problem Baker, used a screening test to determine potentially

important interactions and then added the necessary factors to each partition. The

adding of factors increased the accuracy but negated any potential e�ciency gains

that using a partitioning approach would gain him.

Based on the results from Baker's accuracy analysis, we can conclude that by using

a partitioning approach we are neglecting some interactions which may have negative

consequences on the accuracy of the method. However we do not want to resort

to variable redundancy between the partitions because it will degrade the e�ciency

of the method. Now the question becomes, is there a way to have the e�ciency of

a partitioning approach while at the same time accounting for potential interactions

between partition variables that may need to be accounted for? In an indirect fashion,

the GCF method does just that.

Referring to Figures 8 and 9, each arrow represents a transfer function that maps

changes in lower level variables to the response in the next highest level. Therefore,

even though the lowest level design variables (the x 's) are in disjoint groups, that does

not mean that they do not have interactions. In fact they do, albeit indirectly via

the functional mapping between intermediate responses (the Ỹ 's) and the top-level

response (Y ). Therefore it is hypothesized that the intermediate to top-level map-

ping will indirectly account for any neglected, yet potentially necessary interactions

between low-level design variables in disjoint groups.

Assertion: Baker showed that important, neglected interactions do have a negative

impact on the overall accuracy of a partitioned metamodel.

Assertion: Adding variable redundancies between the partitions improved the ac-

curacy of the UTE metamodel but did so at the cost of degraded e�ciency of
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the method.

Research Question 2.1: Is there a way to account for potentially important inter-

actions without resorting to variable redundancy between the partitions?

Research Hypothesis 2.1: Using the GCF method as a prototype, it is hypothe-

sized that the intermediate to top-level mapping will indirectly account for any

neglected interactions between low-level design variables in disjoint groups.

Now that we have a good argument as to why the GCF method is probably the

best, general method to use for partitioned metamodeling, we are now faced with the

primary limitation of the GCF method. Namely, the GCF method is not applicable to

analyses without readily identi�able intermediaries. If you do not have intermediate

variables/responses in your code that can be directly manipulated, how can you do the

design space exploration to create the intermediate to top-level functional mapping?

To answer this question, perhaps we can again take cues from Baker's improved

method. In his improved method, he used a screening test to determine the important

missing interactions. In the new, hypothesized method, these interactions will be

indirectly accounted for via interactions between the intermediate responses in the

intermediate to top-level mapping.

Based on this hypothesis we now have a new question to answer, is there a way to

use a screening-like test with the new method, to determine the new method's means

of accounting for neglected interactions? Or to put it more succinctly, can we use a

screening-like test to determine the intermediate top-level mappings?

Before attempting to answer the this question, a quick estimation of the potential

run requirements (or savings) for the new method is in order. If the potential run

savings just are not there, answering the previous question becomes a less than useful

exercise.

To estimate the number of runs, the run results from the UTE method can be
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Table 2: Summary of UTE Variables per Partition

Table 3: Benchmarked Run Estimates for New Hypothesized Method

used as a benchmark. Table 2 summarizes the number of variables assigned to each

of the three partitions for the UTE method. In Table 2, the UTE original formu-

lation represents the original number of variables per partition before Baker used a

screening test to determine important interactions that he was missing. UTE up-

grades #1 and #2 represent the number of variables assigned to each partition after

Baker determined which missing interactions were negatively a�ecting the accuracy

of the method. The all-at-once row is there to represent a standard DoE approach to

modeling the system. The hypothesized method row states the variable counts per

partition for the new, hypothesized method.

Using the number of variables assigned to each partition as stated in Table 2, Table

3 summarizes the run requirements for the UTE methods and the new, hypothesized

method as compared to a similarly sized all-at-once approach. The UTE method run

requirements for each partition as well as the screening test are taken directly from

Baker's thesis [6]. In addition, the runs required for the all-at-once analysis are also

taken from Baker's thesis.

Before commenting on the projected run requirements for the new, hypothesized
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method, it is interesting to note how adding the additional factors to each parti-

tion quickly eliminates any potential run savings for a partitioning method. In fact,

completely neglecting the additional runs expended for the screening test, the runs

required for just the partitions for the UTE upgrade #2 exceeds the expenditure for

the all-at-once analysis by 6%. Obviously, having redundancies between partitions is

not an advisable solution for solving the problem of poor accuracy due to neglected

interactions in partitioning approaches, particularly if one of your primary objectives

is e�ciency.

To keep the comparison as close as possible, the projected run requirements for

the new, hypothesized approach uses the variable partitions as stated for the original

UTE formulation. Primarily this is because the original UTE formulation exhibits

excellent run savings. A run saving of 66% as compared to a standard metamodeling

approach would be fantastic. Secondly, the original UTE formulation is comprised

of completely disjoint groups which is a characteristic that the new, hypothesized

method will exhibit.

The main deviation between Baker's formulation and the proposed formulation

is in the size of the screening test. By all accounts Baker's use of a 137 run screen-

ing test for 16 factors seems uncommonly large. Unfortunately the actual design

of experiments that Baker used to perform the screening test was not stated in his

thesis.2

A more common size of design for screening a 16 variable problem is on the

order of 34 runs. A screening test of this size would be a resolution IV fraction

factorial. A resolution IV design allows the estimation of all main e�ects and some

2However a little research shows that Baker's 137 run DoE is roughly the same size as a minimum
run resolution V fractional factorial design (138 runs) [112] . His use of a screening test of this
size makes sense because of what he was trying to accomplish, his screening test was intended to
identify potentially important neglected interactions. A resolution V fraction factorial allows the
experimenter to estimate all main e�ects and all second order interactions are only aliased with
higher order e�ects. Consequently this would be a good design for clearly identifying important
interactions.
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two factor interactions are aliased with other two factor interactions [106]. Although

some two factor interactions are aliased, applying engineering intuition and logic to

the assignment of factors to the design columns can go along way to alleviate this

potential problem. Thus if we can use a more traditionally sized screening design

with the new formulation to determine intermediate to top-level mapping, we will

have a projected run savings of 54% as compared to a standard all-at-once approach.

Even if we have to resort to using a screening test twice this size, we will still have a

projected run saving of 42%.

It is not clear at this time how we can use a screening test to determine the

intermediate to top-level mappings. However, it is hypothesized that a screening can

be used to determine these mappings.

Assertion: Baker used a screening test to determine important, neglected interac-

tions and then used variable redundancy to account for these interactions.

Assertion: In the hypothesized method built on the GCF model, these interactions

will be indirectly accounted for via interactions between the intermediate re-

sponses in the intermediate to top-level mapping.

Research Question 2.2: Can the data from screening test be used to determine

the intermediate to top-level mappings for systems without identi�able inter-

mediaries?

Research Hypothesis 2.2: It is hypothesized that since the data from a screening

test data inherently contains the connectivity of the system, this data can be

used to create the intermediate to top-level mappings for systems that do not

have readily identi�able intermediaries.
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3.6 Summary

The goal of this chapter was to support or refute the second research hypothesis

stated in Section 1.6, that hypothesis was: Given the spatially partitioned nature of

the �nite element model, it is hypothesized that a partitioned metamodeling scheme

seems like a logical choice for reducing to the total number of runs required to create

an accurate metamodel.

To investigate this hypothesis, this chapter outlined two general classes of tech-

niques applicable for run mitigation for large scale systems. Both avenues, either

directly or indirectly, exploit the notion of e�ect sparsity to justify the generation of

reduced order models. E�ect sparsity refers to the notion that in large scale systems

not all e�ects are important for the variability of the response. Employing this as-

sumption allows the experimenter to create reduced order models which require less

data than complete models. The distinction being that complete models contain all

potential e�ects on the variability of the response, while the reduced order models do

not.

The �rst set of approaches outlined revolve around the use of supersaturated de-

signs of experiments in conjunction with a stepwise regression routine to build an

accurate metamodel. The second set of approaches partition the total set of design

variables into smaller, disjoint subgroups. The subgroups are analyzed and the resul-

tant data combined to create the �nal metamodel. For the partitioned approaches,

e�ect sparsity is directly enforced by the experimenter. Conversely, the all-at-once

approaches use a stepwise regression routine to determine the level of e�ect sparsity

inherent to the system.

Each large scale metamodeling method was then reviewed with the intent to sup-

port or refute the guiding research hypothesis for this chapter. In this review it was

concluded that, yes, it does appear that a partitioned metamodeling approach does

make sense for the analysis. The primary reason being, the alternative approach,
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supersaturated designs with stepwise regression, may not reliably create metamodels

that represent the true nature of the system. The reason for this is due to the complex

aliasing structure of the designs.

Having rejected the use of a supersaturated approach for large scale metamodeling,

the review of the currently available partitioned metamodeling schemes revealed that

none of these methods met all of the criterion for the problem at hand. However two of

the methods did have several desirable characteristics that could potentially be used to

create a new large scale metamodeling method. These two methods were the General

Composite Function (GCF) approach and the Uni�ed Trade-o� Environment (UTE).

The desirable characteristics were the means of indirectly accounting for missing yet

important interactions via the intermediate to top-level mappings (the GCF method)

and the use of screening test to create the intermediate to top-level mapping and thus

account for the missing interactions (the UTE method).

In the review of the current large scale metamodeling (LSM) methods and subse-

quent formulation of a new LSM method, two new research hypotheses were identi-

�ed. One, it is hypothesized that the intermediate to top-level mapping will indirectly

account for any neglected, yet potentially necessary interactions between low-level de-

sign variables in disjoint groups. Two, it is hypothesized that a screening can be used

to determine these mappings.
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Chapter IV

REVIEW OF SYSTEM PARTITIONING

METHODS

The goal of this chapter is to support or refute the third of the initial research hy-

potheses posed in Section 1.6. That hypothesis was: It is hypothesized that a method

from the electrical engineering community for partitioning VLSI circuits could poten-

tially be adopted for �nding an optimal set of partitions for use with partitioned

metamodeling.

That research hypothesis addresses the very practical question of how should a

large scale system be partitioned for use with a partitioned metamodeling scheme? In

Section 3.3.1, we stated the three methods quoted from the literature. These methods

were quantitative partitioning based on results from a screening test, partitioning

based on engineering intuition, and partitioning along code or process boundaries.

However, as was stated in Section 3.3.1, only the last two methods had actually been

demonstrated for use with partitioned metamodeling.

The lack of a means to quantitatively determine a good set of partitions or to

quantitatively support or reject a chosen set of partitions is seen a serious short com-

ing for the use of partitioned metamodeling schemes. Fortunately, the quantitative

partitioning of large scale systems has largely been solved by the electrical engineer-

ing community. However as we will see in this chapter, their methods are not 100%

adoptable for the problem at hand.

This chapter will follow the development of partitioning techniques for large scale

circuit analysis and identify the missing elements necessary to solve the partitioning
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problem for large scale metamodeling. The adaptation and modi�cation of the large

scale circuit partitioning methods for quantitatively partitioning large scale meta-

modeling problems will comprise another of the primary contributions for this thesis.

4.1 Diakoptics

The initial, rigorous work on the analysis of large scale systems can be traced back to

Kron and his work on the development of diakoptics [14]. Diakoptics is a method for

�nding the solution to large scale systems in a piecewise fashion [82]. The word �di-

akoptics� is derived the Greek word �kopto� which means �to tear� and �dia� which can

be interpreted as �system� [82]. Hence diakoptics is the method of �system tearing�.

The methods of diakoptics were an outgrowth of the work that Kron conducted as

electrical engineer for the General Electric Company in the 1930s and 1940s. During

that time, as Kron put it, his primary job was �given some highly complicated and

extensive physical or engineering structure, whose building-blocks may represent a

wide range of physical phenomena; the purpose of his study was to establish the

equations of state of the structure, in small installments, in a piecewise and orderly

manner� [82]. Over time, Kron became disenchanted with the rather haphazard �bag

of tricks� used to solve and analyze the equations of state for large scale electro-

mechanical structures.

To address the disjointedness of the then �current� solution methods, Kron began

looking for a uni�ed approach that would allow him to systematically describe, sim-

plify and solve complex engineering problems. Eventually he realized that the tools

used by modern physicists to describe the complex mathematics associated with non-

euclidean, n-dimensional space could be used to describe the high dimensionality

problems common to many engineering disciplines. Kron �rst began by using ten-

sor notation to summarize the equations of state for the individual components of his

complex system into one compact form [76]. He then characterized interconnectedness
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of the system by creating what he called the �connection matrix� [82]. The connection

matrix linked the �ow of information between each of the individual subsystems via

their connectivity in the complete system.

Although Kron's initial formulation was primarily applied to the analysis of elec-

trical networks, he extended his system tearing method to other complex systems of

equations. Examples include electro-magnetic �eld equations [77], the Schrodinger

wave equation [79], ordinary and partial di�erential equations [81], the equations of

elasticity [78], and the compressible and incompressible �uid �ow equations [80]. In

each case, Kron transformed the basic algebraic and di�erential equations from each

of these �elds into equivalent circuits analogies and applied the diakoptics method to

analyze each system.

The diakoptics method worked well for Kron, however as Steward (1965)[160] put

it �In the hand of someone such as Kron who has an understanding of the methods

and good insight to the problem, this technique has had outstanding success. The

widespread use of Kron's technique has perhaps been limited severely for lack of prac-

titioners skilled in the art of determining e�ective ways of tearing speci�c problems�.

Essentially what this is implying is that non-electrical engineers would have problems

reformulating their systems into an equivalent circuit analogy and then tearing the

system based on an understanding of electrical networks. Consequently, although

Kron's methods were widely referenced, their ultimate adoption was limited due to a

lack of a systematic procedure to tear the system [55]. Steward addressed this limita-

tion by making the connection between Kron's tensor representations of the system

and sparse matrix representations of systems [159]. In doing so, Steward opened

up the �eld of system tearing to all of the computer based methods that had been

developed to solve sparse matrix systems via systems partitioning.
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4.2 Overview of Sparse Matrix Methods

Kron's method of diakoptics or systems tearing is essentially a subset of a much

larger set of methods that had been developed over time to manipulate and solve

large, sparse matrices. Before getting into the pertinent sparse matrix methods that

potentially could be applied to the research objectives of this thesis, a brief overview

of what sparse matrices are and how they often arise in engineering analyses is in

order.

In the design and analysis of engineering systems, rarely is the behaviour of the

system governed by one mathematical equation, but rather engineering systems are

typically characterized by systems of equations. The most prevalent method of solving

systems of equations can be summarized with the following equation [178]:

Ax = b (24)

where,

A = the matrix of coe�cients for each variable in the system of equations

x = a vector of unknown variable values

b = the solution vector for the system of equations

In fact this equation shows up so much in science and engineering that it is prob-

ably the most studied equation in all of mathematics. For small systems, the most

direct method of solution is simply to invert the coe�cient matrix and multiply it by

the solution vector, x = A−1b. However, for large systems this solution approach is

almost never used, primarily because inverting the coe�cient matrix can be particu-

larly time consuming and is very sensitive to ill-conditioning in the coe�cient matrix.

The far more common approach is to use Gaussian elimination to solve the problem

[177]. When the matrix A is dense, that is, it is comprised of primarily non-zero val-

ues, Gaussian elimination works by transforming the matrix A into upper triangular
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form. Upper triangular form meaning that all elements below the diagonal are zero.

Once in upper triangular form, the system of equations can be easily solved by using

a simple back substitution scheme. In general, Gaussian elimination performs some

operation on every element in A, and when A is a very large matrix (say on the order

of tens of millions of elements) this process can be quite time consuming. Fortunately

for sparse matrices, the sparse nature of the system can be leveraged to minimize the

number of actual elements that need to be manipulated.

As compared to a dense matrix which contains primarily non-zero elements, a

sparse matrix is de�ned as a matrix that is populated mainly be zeros [185]. Sparse

matrices arise quite frequently in the analysis of large systems of equations in science

and engineering because quite often most equations do not contain every variable. As

an example, consider the follow set of simple equations:

x1 + 5x3 = b1

6x2 + x4 + 2x5 = b2

7x3 + x6 = b3

x2 + 3x4 + x5 = b4 (25)

x2 + 2x5 = b5

x1 + x3 + x6 = b6
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Figure 10: Example Sparse Matrix [186]

This set can be expressed in matrix notation as:



1 0 5 0 0 0

0 6 0 1 2 0

0 0 7 0 0 1

0 1 0 3 1 0

0 1 0 0 2 0

1 0 1 0 0 1





x1

x2

x3

x4

x5

x5


=



b1

b2

b3

b4

b5

b5


(26)

As we can see, the coe�cient matrix A is primarily comprised of zero elements.

Granted this is not a large matrix and in general much larger sparse systems are

characterized by a signi�cantly larger ratio of zeros to non-zeros. So much so that it

is often advantageous to not even pay attention to the actual values of the coe�cients

but rather to visually examine the structure of the matrix as a whole [3]. For instance,

Figure 10 shows a plot of the incidence matrix for a system comprised of 380 equations

and 380 variables.

An incidence matrix is a simpli�ed version of the coe�cient matrix, A, where
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Figure 11: Incidence Matrix of Equation Set 25

all of the non-zero coe�cients are replaced with a �1�. The incidence matrix of the

previous set of equations is shown in Figure 11. An incidence matrix is a simple way

to summarize the relationship between a set of equations and the set of variables

that are incident to each equation [182]. As an example, the �rst row in Figure 11 is

associated with equation one. In the previous set of equations, equation one is only

comprised of variables x1 and x3, consequently there is a �1� in the �rst and third

columns and the rest of the columns contain zeros. A �1� indicates incidence or a

relation and a �0� represents no incidence or relation. The incidence matrix is also

commonly called the occurrence matrix [63].

As was previously stated, in solving the Ax = b problem for large sparse systems,

the sparsity of the system can often be used to signi�cantly reduce the computational

expense associated with solving the system. A popular technique to is to reorder

the columns and rows of the sparse matrix as to put it into block diagonal form.

Reordering a sparse matrix in this fashion is referred to as �system partitioning�

[136].

As an example of system partitioning, consider the incidence matrix shown in

Figure 11 for the Equation set 25. A set of two independent subsystems or blocks

can be created by reordering the row and columns. Figure 12 shows the reordered

incidence matrix.

In the reorder matrix it is easy to see the two independent, dense sub-matrices

in Figure 12. The new block structure of the sparse matrix allows the Gaussian
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Figure 12: Reordered Incidence Matrix of Equation Set 25

elimination procedure to be applied to each of the independent blocks rather than to

the entire matrix. This partitioned system will typically require less computational

expense to solve than the complete problem [136].

The shape of the system partitioned incidence matrix shown in Figure 12 is typ-

ically referred to as block diagonal form (BDF). However not all sparse matrices

can be reordered into a BDF. Examples of other diagonal forms include block tri-

angular form (BTF), single and double banded block triangular form (SBBTF and

DBBTF), banded form (BF) and single and double bordered banded form (SBBF

and DDBF) [163]. In addition, each of these diagonal forms have speci�c variations

on the Gaussian elimination scheme to take advantage of their speci�c characteristics

[164].

The two independent blocks in Figure 12 are commonly referred to as disjoint

subsystems. Disjoint implies that each of the subsets of functions do not contain any

common variables [63]. If there were any common variables between the two sets of

functions, there would be a non-zero element(s) in the upper right hand quadrant or

the lower left hand quadrant in Figure 12.

When there are o� block-diagonal elements in the system partitioned matrix,

they are often referred to as �feedbacks�. The existence of feedbacks prevents the

independent solution of each of the connected sub-matrices and will in general require

the entire system to be solved as a whole [30].

As an example of how a feedback can occur, consider if the �fth equation in
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Figure 13: Reordered Incidence Matrix with Feedback

Equation set 25 was instead:

x2 + 2x5 + x6 = b5 (27)

The new incidence matrix with the updated �fth equation and its system parti-

tioned version are shown in Figure 13. If you compare Figures 12 and 13, you will see

that the only di�erence in the re-ordered matrix is the �1� in the last row of the third

column. This one, out of place element is feedback between the two sets of partitions

and consequently would require Gaussian elimination on the entire system.

In situations such as this, the primary means of dealing with feedback variables

is actually to remove or �tear� them from the system. The solution to the system is

then obtained by iteratively solving the new torn system. The use of the word �tear�

in this example is no coincidence. Tearing in this context is essentially what Kron's

method did although Kron never seemed to state it this simply. Also Kron did not

use a Gaussian elimination scheme to solve each subsystem, but rather relied on the

basic matrix inversion method to �nd their solutions [46].

4.3 Generalized Method of Systems Decomposi-

tion

The previous section introduced a general class of sparse matrix methods that al-

lows one to partition a very large system into smaller subsystems, solve each of the

subsystems independently and combine their solutions to create the solution for the
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entire system. This description is essentially a synopsis of what is called systems

decomposition [63].

Using the ideas from the previous section (systems partitioning and tearing) and

the previous description of the systems decomposition, we can outline a general

method for solving large scale systems [63].

1. Partition or re-order the large sparse matrix into a set of the smallest possible,

irreducible subsystems.

2. Remove or tear any non-zero, o�-diagonal elements from the system. O�-

diagonal implies elements that are not contained in the subsystem blocks.

3. Re-partition each of the subsystems to potentially further simplify the subsys-

tems into smaller subsystems.

4. Assume an initial value for each of the torn values. The assumed value is

determined by physical principles or a best guess.

5. Apply the appropriate solution technique to each of the subsystems and update

the torn values with the results from the subsystem analyses.

6. Iterate on Step 5 until the solution converges.

The previous systems decomposition process is essentially Kron's diakoptics method

for the solution of large scale systems and has been reformulated and approved upon

by numerous authors [23, 84, 144, 191, 196]. In mathematical notion, the solution

to Ax = b by the systems partitioning and tearing method can be summarized in

essentially two steps [45].

1. Find a matrix, C, such that:

(a) the non-zero entries of C are equal to the corresponding ones in A.
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(b) B , A− C is a non-singular and generally makes the solution to Bx = b

a relatively simple task.

2. Solve Bx = b by taking into account the �perturbation� caused by the non-zero

entries in the �cut matrix�, C.

Although in mathematical terms, the process of solving large scale systems by systems

partitioning and tearing seems quite simple, in actually it is not so straight forward.

The determination of the cut matrix, C, falls into the general class of NP-complete

problems [183]. The problem is considered NP-complete because for a large sparse

matrices, there are billions ways to re-order the columns and rows. Actually �nding

the �true� optimal ordering is almost impossible without examining every possible

combination. Consequently, the practitioners of diakoptics tend to assume that the

decomposition of the problem is given or is in general known [113], primarily by means

of using the structure of the physical system to partition the problem.

Fortunately as we will see in the next section there is a direct connection between

sparse matrices and graph theory. Using graphs of the system, one can often tell

where to partition the problem simply by looking the graph and separating out the

strongly connected sub-graphs [137].

4.4 Graph Theoretic Methods for Partitioning

To make the connection between graph theory and systems partitioning of large sparse

matrices, a brief introduction to graph theory will be useful. Then with this infor-

mation into hand, we can continue with the simple example from Section 4.2 to show

how graph theory can allow us to partition or reorder a sparse system.

A graph is a simple, visual way to represent the interconnectedness of a system.

In mathematical terms a graph, G, is de�ned as G = (V, E) where V is a non-empty
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Figure 14: Incidence Matrix and Its Graph [138]

set of vertices and E is set of edges1. Each edge is comprised of an unordered pair

of vertices from the set V [56]. A common way to represent a graph in matrix form

is through an incidence matrix. An incidence matrix was introduced in Section 4.2

and was used to summarize which variables were incident to which equation. In a

more general fashion, an incidence matrix is a means to summarize which vertices

are incident with a given edge. For instance, a graph and its corresponding incidence

matrix is shown in Figure 14.

Now that we have a basic understanding of what a graph is, we can now show how

a graph can be used to partition a large sparse system. The easiest way to see graph-

based partitioning in action is to consider the graph of the incidence matrix shown

in Figure 11. Recall that the incidence matrix in Figure 11 is based on the coe�cient

matrix created from the small Equation set 25. We already know that this incidence

matrix can be reordered or partitioned into two completely disjoint sets of equations

and variables. Figure 15 shows the graph of the incidence matrix from Figure 11.

Actually, the incidence matrix that is graphed is the transpose of the matrix shown

in Figure 15. The incidence matrix is shown in transposed form to place emphasis

on the variables by placing them at the vertices, that is, associating them with the

1Note - In the thesis we are only considering a very small subset of graph theory. All the graphs
in this thesis are considered simple, non-directed-edge graphs. See Harary (1972)[56] for a good
graph theory reference.

100



Figure 15: Graph of Incidence Matrix in Figure 11

rows.2 The graph could just as easily have been created with the equations on the

vertices, in either case the graph looks exactly the same.

Looking at Figure 15 we can instantly see that the system of equations is actually

comprised of two completely disjoint sets. Compare this with a visual inspection

of the original matrix, it is not immediately obvious that the system can be easily

partitioned into two subgroups by simply looking at the matrix. The important thing

to note is that this graph was created with the original, non-reordered incidence

matrix. In fact, this graph would look the same regardless of how the incidence

matrix is ordered. This brings us to a very important fact about graphs, graphs

remain invariant under classes of transformations such as row and column exchanges

[117].

Now let us extend our example to the same system of equations but now consider

the case with feedback. Recall that feedback occurred when we added a relationship

between variable six and the �fth equation. In doing so, when the system of equations

was partitioned into two block diagonal subgroups, a lone �1� showed up in an o� block

diagonal position. The existence of this o� block diagonal element typically precludes

the application of Gaussian elimination to solve each of the subgroups independently,

and consequently would require that the entire system be solved all at once. One

potential solution to this problem was to apply tearing to the system to remove that

2The author chose to associate the variables with the vertices in these examples because this
thesis is primarily concerned with means to partition the variables. By placing the variables on the
vertices now, the reader will be more familiar with the graph-based partitioning method developed
in Chapter 6.
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Figure 16: Graph of Incidence Matrix with Feedback

feedback.

So how does tearing manifest itself via graph theory? Figure 16 shows the inci-

dence matrix with feedback and its graph. What is interesting to note about this

graph is that the graph is now much more connected than the previous graph. That

is exactly what feedbacks do, they add connectivity to the graph of the system.

Comparing the graph in Figure 15 with the more connected graph in Figure 16,

we can see that the main di�erence between the two are the edges connecting vertices

(x5, x6) and (x2, x6). Why did these two new edges show up in the new graph?

They showed up because of what the edges in this graph represent. Two variables

share an edge when they are incident in the same equation. Consequently by adding

variable six to the �fth equation we made a connection between variables, x5 and x6

as well as x2 and x6.

Now we can describe what tearing means in graph theory. If we were to cut or

remove these two new vertices, the graph in Figure 16 would become the disjointed

graph in Figure 15. Consequently, tearing is a way to break a connected graph

into disjointed sub-graphs by removing edges [137]. In addition, the disconnected

sub-graphs that result from the graph tearing operation automatically gives you the

optimal ordering of the incidence matrix. Each sub-graph in this case would represents

a group of variables.

For the graph in Figure 16 the edges to cut are quite obvious, however for much

larger graphs, where to cut is not always so straight forward. Fortunately there has

been considerable work in the �eld of optimal graph partitioning. Unfortunately
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however, since this problem is equivalent to �nding the optimal orderings of the

incidence matrix, it is also an NP-complete problem. Consequently, most of the

algorithms that have been created rely on heuristics to �nd the best answer.

Harary (1971)[55] states that he believes that the best way to tear a matrix or

a graph is to remove a minimal set of points or lines. This statement accurately

describes the function that all current state-of-the art min-cut algorithms perform.

A min-cut algorithm is the common terminology used to describe a function that

partitions a graph by �nding a minimum set of cut-edges or cut-points such that the

graph is partitioned into n equally sized sub-graphs.

The current state-of-the-art min-cut algorithms can all essentially be traced to

a paper in 1970 by Kernighan and Lin [71]. Their algorithm is formulated to solve

the problem: �Given a graph, G, with costs on its edges, partition the nodes of G

into subsets no larger than a given maximum size, so as to minimize the total cost

of the edges cut� [71]. Closely following the Kernighan-Lin paper in importance in

the development of min-cut algorithms, is the paper by Fiduccia and Mattheyses

(1981)[32]. Fiduccia and Mattheyses proposed an algorithm that scaled essentially

linearly as the size of the problem increased. This is contrast to the Kernighan-Lin

algorithm which exhibited an n2log(n) dependency with problem size [150]. For a

good overview of the current state-of-the-art in min-cut algorithms, see the paper by

Junger, Rinaldi and Thienel (2000)[70].

Examples from the literature of using graph theory with statistical modeling and

estimation are very few and far between. In addition, none of the references use graph

theoretic partitioning to �nd optimal partitions for use with metamodeling when the

system structure is initially unknown. Wu and Chen (1992)[189] used graph theory to

plan two-level fractional factorial experiments when interactions are important. The

Wu-Chen method is essentially an extension of Taguchi's linear graphs. Camplolongo

and Braddock (1999)[19] and Cropp and Braddock (2002)[25] used graph theory to
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create new screening designs that were extensions to the Morris method[143] for

creating of one-at-a-time screening designs.

The closest method from the literature is by Bates et al (1996)[9]. Bates used

tearing to partition a VLSI circuit into subgroups and created metamodels of each

of the subgroups. However, as will be discussed in the next section, because Bates

started with a known system con�guration, his method is not applicable to the general

problem of partitioning a system with an unknown initial structure.

4.5 Extending Graph Theory to Metamodeling

Thus far in this chapter we have investigated the common methods that electrical

engineers use to partition and analyze very large-scale integrated (VLSI) circuits.

This investigation was driven by the research hypothesis stated at the beginning of

the chapter. That hypothesis was: It is hypothesized that a method from the electrical

engineering community for partitioning VLSI circuits could potentially be adopted

for �nding an optimal set of partitions for use with partitioned metamodeling.

In general, it seems that this hypothesis is true. These methods have all the char-

acteristics necessary that a partitioning scheme for large scale metamodeling would

need. Namely, given some complex interconnectedness between the variables, a par-

titioning scheme is used to subdivide them into disjoint subsets and then any missing

interactions from the torn system are captured via the hypothesized metamodeling

scheme discussed in Section 3.5.

However support for this hypothesis is made with some reservation. The reserva-

tion arises because of di�erences between the two types of systems being compared.

In the electrical engineering community, system decomposition methods are usually

applied to a system where the structure is known a priori. Meaning, an electrical

engineer starts o� the analysis with an existing system of equations or an existing cir-

cuit design. Thus he already knows the interconnectedness of the system, so applying
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a systems decomposition scheme is rather straight forward.

Assertion: A partitioned metamodeling approach is proposed to reduce to total

number of runs required to create metamodels of the nozzle model.

Assertion: The electrical engineering community has been using partitioning tech-

niques for many years to analyze VLSI circuits.

Research Question 3: Is there a way to quantitatively �nd an good set of partitions

to use with the partitioned metamodeling process?

Research Hypothesis 3: It is hypothesized that a method from the electrical engi-

neering community for partitioning VLSI circuits could potentially be adopted

for �nding an optimal set of partitions for use with partitioned metamodeling.

Validity Hypothesis 3: In general, this research hypothesis seems to be true. The

sparse matrix and graph theoretic methods have all the necessary characteristics

for a partitioning scheme for large scale metamodeling.

However, the lack of initial knowledge about the sparse structure of the black-

box systems used with metamodeling seems to preclude their use.

In the case metamodeling however, we do not start o� with a known system structure.

In fact determining that structure is the fundamental goal of metamodeling. All we

essentially have is a black box with a known set of inputs and outputs and we want

to make metamodels of this system. Thus if we don't know the structure, how can

we decompose it for use with partitioned metamodeling?

To answer that question, perhaps we can again borrow from Baker's improved

method. Recall that in Section 3.4, it was stated that Baker used a screening test to

determine important interactions that he was neglecting. He then used these results

to add factors to the current set of partitions. In e�ect, he was using the screening
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test to gain further insight into the structure of his system. Thus, perhaps we too

can use a screening to determine the structure of our system.

Before we can address this idea, it will be useful to review what a screening test is

and what it does. A screening test is a method that an experimenter uses to gain some

initial insight into his problem. Often when an experimenter starts the metamodeling

process, he has a rather large list of design variables that he wants to investigate the

impact of on a response(s). From the notion of e�ect sparsity [12], he suspects that

not all of those design variables are actually going to be important to the variability

of the response. Thus before he commits to expending the resources to create the

�nal metamodels, he would like to �rst pair down the large set of design variables to

a more manageable size. This is where a screening test comes in.

A screening test typically uses a low resolution design of experiments (DoE) to

perform an initial investigation of the system. Low resolution meaning that gener-

ally, only main e�ects and perhaps some two factor interactions will be investigated.

Consequently screening designs generally do not require a lot of runs of the analysis.

With the results of the screening test, the experimenter can then use an analysis of

variants (ANOVA) method to quantify the results. ANOVA is a common statistical

technique that partitions the total observed variability of a response into the variabil-

ity associated with each e�ect [106]. Then based on the magnitude of each e�ect's

observed variability, those e�ects with small observed variabilities can be neglected

for further consideration.

In essence then, a screening test is a statistical means of experimentally deter-

mining the structure of the system. It determines the structure of the system by

reducing the set of all possible design variables to only those that are important for a

given response. Essentially then, a screening test is realizing the sparse nature of the

system! Thus, the results of the ANOVA analysis could be used with a graph based

min-cut algorithm to partition the system into disjoint sets of variables.
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Assertion: A systems decomposition method for sparse systems is a logical means to

partition the inputs for large scale metamodeling, however there is not enough

initially known about the sparsity of the system.

Research Question 3.1: Given the black box nature of analyses used in metamod-

eling, how can their underlying sparse structure be determined?

Research Hypothesis 3.1: It is hypothesized that a screening test using a low

resolution DoE with ANOVA can be used to determine the underlying sparse

structure of the black box system, which then can be partitioned using a graph-

based min-cut algorithm.

Now that we have hypothesized a means for realizing the sparse structure of our sys-

tem via a screening test, we can actually take this idea one step further. Recall that

in Section 3.5 we proposed using a screening-like test to determine the intermediate

to top-level mappings. Perhaps we can use the screening test that was proposed in

hypothesis 2.1 as the same screening test needed to create these mapping. If so, we

would be maximizing the e�ciency of our method. No data collected would ever

be wasted. The same screening test data that we use to determine our partitions

could also be used to create the top-level mappings. This would be a signi�cant

improvement over Baker's method which used the screening data to determine fac-

tor redundancies and then discarded that data. We would be getting 100% data

utilization out of the new method.

Assertion: The use of the data from a screening test is proposed to perform two

di�erent operations in the new large scale metamodeling method: one for par-

titioning or tearing the system and another for determining the intermediate to

top-level mappings.

Research Question 3.2: Is it possible to use the same screening test data, that
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was collected for use with the lumped parameter method, to also determine the

sparse nature of the system for partitioning?

Research Hypothesis 3.2: It is hypothesized that since the data from a screening

test, which is to be used to tear the system into disjoint subgroups, inherently

contains the connectivity information; this data can also be used to create the

intermediate to top-level mappings which are designed to account for the impact

of system tearing.

4.6 Summary

The goal of this chapter was to support of refute the third of the initial research

hypotheses posed in Section 1.6. That hypothesis was: It is hypothesized that a

method from the electrical engineering community for partitioning VLSI circuits could

potentially be adopted for �nding an optimal set of partitions for use with partitioned

metamodeling.

That research hypothesis addressed the very practical question of how should a

large scale system be partitioned for use with a partitioned metamodeling scheme?

Section 3.3.1 stated the three methods quoted from the literature, these methods

were quantitative partitioning based on results from a screening test, partitioning

based on engineering intuition, and partitioning along code or process boundaries.

However, as was also stated in Section 3.3.1, only the last two methods had actually

been demonstrated for use with partitioned metamodeling. The lack of a means

to quantitatively determine a good set of partitions or to quantitatively support or

reject a chosen set of partitions is seen a serious short coming for the use of partitioned

metamodeling schemes.

To support the research hypothesis, we investigated how the electrical engineering

community's methods could be potentially applied to our problem. We reviewed the

development of systems decomposition methods for VLSI circuits. In this review we
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showed how the sparse nature of large scale systems promoted the used of systems

decomposition methods such as tearing and graph-based partitioning to simply the

system. Unfortunately we realized that these methods relied on initial knowledge of

the system. Consequently we were not able directly apply these partitioning methods

to our problem because we did not initially know the structure of our system.

To determine the initial structure of our system, we hypothesized that the results

from an ANOVA analysis based on a screening test could be used to realize the

sparse nature of our system. In addition it was also hypothesized that perhaps the

same screening data used to partition the system could also be used to create the

intermediate to top-level mapping for the hypothesized new method from Section

3.5.
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Chapter V

INTERIM SUMMARY

As the title suggests, this chapter is intended to summarize the main points of the

last four chapters to give a clear picture for the work to be discussed in the rest of

the thesis. The summary will include the main research questions and hypotheses

developed during the review of the background literature. In addition a summary

will be given of the methods formulated to �ll speci�c gaps and shortcomings of the

current large scale metamodeling techniques as identi�ed in the literature.

A secondary goal of this chapter is to give the �results only interested� reader a

quick primer to the previous background chapters so that the development of the

methods in Chapter 6 and the validation of these methods in Chapter 8 will have the

appropriate context.

5.1 Review of the Previous Four Chapters

Chapter 1 was essentially a systematic narrowing of the scope for the motivation for

this thesis. The motivation started with the design and development of a speci�c

system and was subsequently whittled down to a speci�c engineering task. The high

level motivator was the development of GE's new H machine gas turbine engine.

Clearly, the design of a new gas turbine power plant is far too broad a topic for an

engineering thesis, thus Chapter 1 identi�ed a speci�c part on the engine that is of

strategic importance to the economics of operating the engine. The part was the �rst

stage nozzle and the engineering task was to �nd or develop a method to accurately

assess the life of the nozzle. The work for the thesis was ultimately motivated by

limitations of the current methods that are typically used to execute this engineering
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task.

The life of a �rst stage nozzle is primarily in�uenced by the operating conditions

that the nozzle is exposed to. It follows then that to accurately predict the life of

a nozzle, a good understanding of what creates these conditions is quite important.

Thus, Chapter 1 reviewed how the three key technologies used on the H machine

had a direct negative impact on the life of the nozzle. The three key technologies,

closed-loop steam-cooling, single crystal materials and dry, low NOx combustors,

were enablers that facilitated the H machine reaching its primary design goal of 60%

e�ciency.

Given that the nozzle life is adversely a�ected by the operating conditions imposed

by enabling technologies and poor life has a direct negative impact on the bottom

line of gas turbine operators, there becomes a de�nite need to design a nozzle that

is robust to these operating conditions. To do so, Chapter 1 outlined a common

methodology used for assessing the life of gas turbine parts. The methodology used

a complex �nite element analysis in conjunction with a probabilistic design method.

The �nite element model created for this system was a spatially partitioned model

comprised of 52 independent design variables and 255 independent responses. The

model took approximately 3.5 hours to compute one set of loading and boundary

conditions. Figure 4 shows the meshed �nite element model of the nozzle and Figure

5 shows the basic layout of the spatially partitioned model.

Based on the nature of this analysis, a common probabilistic design method used

to estimate the probabilistic nature of the life is a indirect Monte Carlo simulation.

Although indirect Monte Carlo methods are typically considered e�cient probabilis-

tic analysis methods and have been successfully applied to many complex systems,

the large scale, partitioned nature of the system identi�ed the need for a new meta-

modeling method. Thus, it was hypothesized that a new procedure could be created

that was able to exploit the partitioned nature of model to create metamodels more
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e�ciently but just as accurately as the currently available statistical linear model

based metamodeling methods.

Stemming from this hypothesis, were three initial research questions that needed

to be answered before it could be justi�ed to spend the resources to develop the new

hypothesized partitioned metamodel.

• First, even though an indirect Monte Carlo was chosen as the appropriate prob-

abilistic design method, is this probabilistic analysis method actually the most

appropriate for the system?

• Second, assuming that an indirect Monte Carlo method is the appropriate prob-

abilistic design method, does the proposed use of a partitioned metamodeling

scheme make sense?

� Alternatively, is there another large scale metamodeling scheme that is

more appropriate for the system.

• Third, assuming that a partitioned metamodeling approach is the best approach

for the system, how does one actually determine how to partition the system?

Chapter 2 reviewed each of the common probabilistic design methods and compared

their characteristics against the needs of the probabilistic li�ng analysis. Three gen-

eral classes of probabilistic methods there were reviewed: direct Monte Carlo simula-

tion, analytic reliability methods and indirect Monte Carlo simulation. The speci�c

direct Monte Carlo simulation methods were traditional Monte Carlo, strati�ed sam-

pling, quasi-Monte Carlo and adaptive-importance sampling. The speci�c analytic

reliability methods were �rst order reliability method (FORM) and second order re-

liability method (SORM). The speci�c indirect Monte Carlo methods were adaptive-

importance sampling with metamodels and traditional Monte Carlo simulation with

metamodels.

112



A comparison of the characteristics of each of theses methods with the needs

and characteristics of the nozzle li�ng analysis, essentially concluded at the original

choice of using indirect Monte Carlo based on metamodels and traditional Monte

Carlo sampling was justi�ed. The justi�cation was based on the the fact that of all

the methods reviewed, only the Monte Carlo/metamodel combination was able to

simultaneously analyze multiple responses and exhibited the necessary e�ciency to

enable the probabilistic analysis. Table 1 shows a summary of each of the methods

ranked on their applicability to each of the important characteristics and requirements

of the nozzle model.

With Chapter 2 lending credence to the proposed probabilistic design method,

Chapter 3 addressed the second of the primary research questions, namely, what

large scale metamodeling technique is most appropriate to use with the system? To

answer this question two general classes of large scale metamodeling techniques were

reviewed, non-partitioned methods and partitioned methods. The fundamental dif-

ference between the two classes is that non-partitioned approaches analyzes all of

the design variables at one time and use a supersaturated design of experiments in

conjunction with a stepwise regression routine to create an accurate metamodel. The

partitioned methods take the alternative approach of partitioning the total set of de-

sign variables into smaller, disjoint subgroups. The subgroups are analyzed and the

resultant data combined to create the �nal metamodel.

Both of these classes of methods are essentially exploiting the notion of e�ect

sparsity to create their reduced order models. E�ect sparsity refers to the notion

that in large scale systems not all e�ects are important for the variability of the

response. Employing this assumption allows the experimenter to create reduced order

models which require less data than complete models. The distinction being that

complete models contain all potential e�ects on the variability of the response, while

the reduced order models do not. For the partitioned approaches, e�ect sparsity is
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directly enforced by the experimenter. Conversely, the all-at-once approaches use a

stepwise regression routine to determine the level of e�ect sparsity inherent to the

system.

Each large scale metamodeling method was then reviewed with the intent of sup-

porting or refuting the guiding research hypothesis for Chapter 3. In this review it

was concluded a partitioned metamodeling approach makes the most sense for the

analysis. The primary reason being, the alternative approach, supersaturated designs

with stepwise regression, may not reliably create metamodels that represent the true

nature of the system. The reason for this is due to the complex aliasing structure of

the supersaturated designs.

Having rejected the use of a supersaturated approach for large scale metamodeling,

the review of the currently available partitioned metamodeling schemes revealed that

none of these methods met all of the criteria for the problem at hand. However two

of the methods did have several desirable characteristics that could potentially be

used to create a new large scale metamodeling method. These two methods were the

General Composite Function (GCF) approach and the Uni�ed Trade-o� Environment

(UTE). The desirable characteristics were the means of indirectly of accounting for

missing yet important interactions via the intermediate to top-level mappings (the

GCF method) and the use of screening test to create the intermediate to top-level

mapping and thus account for the missing interactions (the UTE method). These

two characteristics will be combined in Chapter 6 to create the Lumped Parameter

Modeling process.

With Chapter 3 ending with the formulation of a new hierarchically partitioned

metamodeling technique for large scale systems, the third of the initial research ques-

tions was now of key importance. The third research question was the very practical

question how to best partition a system for use with a partitioned metamodeling ap-

proach. The review in Chapter 3 of the currently available partitioned metamodeling

114



methods identi�ed three means for determining the partitions of a system: quanti-

tatively partitioning using a screening test, partitioning using engineering intuition,

and partitioning along code or process boundaries. Although these three methods

were stated in the literature, only the last two have actually been demonstrated. The

third method, code or process boundaries, was not applicable to the nozzle problem

because there was only one process. The second method, engineering intuition, while

feasible, requires a good understanding of the system to determine a good set of

partitions. Ideally a quantitative method that could be used to support engineering

intuition would be best.

To �nd a quantitative means of partitioning a large scale system, Chapter 4 re-

viewed the system decomposition methods that electrical engineers use to partition

and analyze very large-scale integrated (VLSI) circuits. These system decomposition

methods allow the electrical engineer to tear the VLSI circuit into several smaller,

disjoint subsets, analyze each of the subsets independently and combine the results

back together to get estimates of the total system response. The primary mathe-

matical tools used for systems decomposition are sparse matrix and graph theoretic

partitioning methods.

Unfortunately these systems decomposition methods are not directly applicable

to the problem of determining a good set of partitions for use with metamodeling.

The reason is due to what is initially known about the two di�erent systems. In the

VLSI circuit problem, the engineer always starts out the decomposition process with

a given circuit diagram or set of equations for the system. Thus the sparse nature

of the system is known upfront. In the case of large scale metamodeling, the model

builder starts with a black box and in general knows nothing about the underlying

structure of the system. Consequently, using sparse matrix methods to decompose

the problem is not initially possible.
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To determine the sparse nature of the black box, a screening test used in conjunc-

tion with a linear model ANOVA analysis is proposed. Based on the data collected

from the initial screening test, an ANOVA analysis can be used to separate the sig-

ni�cant variables from the insigni�cant ones for each the responses. The results of

the ANOVA analysis can then be combined to create a sparse incidence matrix for

the system. A min-cut graph partitioning algorithm can then be used to partition

the system into disjoint subgroups.

With two new methods having been formulated in the previous four chapters (a

new hierarchically partitioned metamodel and a graph-based partitioning method for

large scale metamodeling), the remaining chapters will �rst start by formally devel-

oping these two new methods, and propose a validation plan to assess the goodness

of the new methods. Based on the needs of the validation plan, a new computational

framework will be discussed that will enable the successful testing of the new methods.

Two test cases will then be outlined and analyzed using the new methods and the

computational framework. Finally, a discussion of the results of the test case analyses

and conclusions about the research will �nish out the main body of the thesis.

5.2 Summary of Research Questions and Hy-

potheses

This section outlines a map of the thesis built around the research questions and

hypotheses identi�ed in the previous four chapters. Each research question will be

stated in context to the section that it was initially posed in. Following that, each

research hypothesis will then been linked to the section that either addressed or will

address the validity of the speci�c research question/hypothesis.

The following research question and hypothesis were posed in Section 1.5 and

subsequently addressed in Section 2.4. The two assertions that spurred the subsequent

research question and hypothesis were based on the need to combine a multi-physics

116



�nite element analysis with an appropriate probabilistic design method to adequately

assess the probabilistic nature of the life of the nozzle. The statement of the hypothesis

was made based on the author's experience of using probabilistic design methods used

with �nite element models.

Research Question and Hypothesis:

Assertion: A spatially partitioned �nite element model was created to address

the complex operating environment that a nozzle is exposed to. This model

has 52 variables, 255 responses and takes 3.5 hours to run.

Assertion: To capture the probabilistic nature of the life of nozzle, a proba-

bilistic design method is needed. The primary methods are direct Monte

Carlo, indirect Monte Carlo and analytic reliability methods.

Research Question 1: Which of the three primary probabilistic design meth-

ods is most applicable for the nozzle problem?

Research Hypothesis 1: Given the computational nature of the nozzle model,

it is hypothesized that an indirect Monte Carlo simulation technique is

most likely the best probabilistic design method to use.

Validity of Hypothesis 1: Based on the results of probabilistic method com-

parison, two requirements drove the down selection process, the need to

simultaneously handle multiple responses and method e�ciency. Of all

the methods only traditional Monte Carlo simulation used in conjunction

with metamodeling concurrently addressed both of the requirements. Con-

sequently, the hypothesis that an indirect Monte Carlo method based on

traditional Monte Carlo and metamodels is indeed a valid statement.

The following research question and hypothesis were posed in Section 1.5 and subse-

quently addressed in Section 3.4. The assertion that drove the subsequent research
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question and hypothesis were based on a simple estimation of the projected com-

putational expense required to create metamodels of the nozzle problem. A fairly

conservative estimate was on the order of 5,000 hours. Thus, it was felt that any ad-

ditional information about the system that could be used to create the metamodels

would reduce the total computational expense.

Research Question and Hypothesis:

Assertion: Given the constraints imposed by the nozzle model's complexity,

traditional statistical linear metamodeling methods are not e�cient enough

to be used with the model. Consequently a large scale metamodeling

method is necessary to reduce the total computational expense as much as

possible.

Research Question 2: Which large scale metamodeling procedure is best to

address the characteristics of the nozzle model?

Hypothesis 2: Given the spatially partitioned nature of the �nite element

model, it is hypothesized that a partitioned metamodeling scheme seems

like a logical choice for reducing to the total number of runs required to

create an accurate metamodel.

Validity of Hypothesis 2: For the most part, it does appear that a parti-

tioned metamodeling approach does make the most sense for the analysis.

The primary reason being, the alternative approach for building metamod-

els of large scale systems, supersaturated designs with stepwise regression,

may not reliably create metamodels that represent the true nature of the

system. The reason for this is due to the complex aliasing structure of

supersaturated designs.

However, none of the current large scale metamodeling methods meet all of

the needs of the nozzle problem. Consequently, a new partitioning method
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is needed to be able to fully leverage the partitioned nature of the nozzle

model.

The following research question and hypothesis were posed in Section 3.5 and will

be addressed in Section 8.3.1. The assertions that spurred the research question

and hypothesis were a result of reviewing the accuracy analysis that Baker used to

validate the UTE method. In that analysis he concluded that missing interactions

due to partitioning were negatively impacting the accuracy of the UTE metamodels.

Research Question and Hypothesis:

Assertion: Baker showed that important, neglected interactions do have a

negative impact on the overall accuracy of a partitioned metamodel.

Assertion: Adding variable redundancies between the partitions improved the

accuracy of the UTE metamodel but did so at the cost of degraded e�-

ciency of the method.

Research Question 2.1: Is there a way to account for potentially important

interactions without resorting to variable redundancy between the parti-

tions?

Research Hypothesis 2.1: Using the GCF method as a prototype, it is hy-

pothesized that the intermediate to top-level mapping will indirectly ac-

count for any neglected interactions between low-level design variables in

disjoint groups.

The following research question and hypothesis were posed in Section 3.5 and will

be addressed in Section 6.1. The assertion that drove this research question and

hypothesis was based on the primary limitation of using the GCF method. The

limitation being the lack of a means to create metamodels of analyses that do not have
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any readily identi�able intermediaries around which to create the intermediate to top-

level mappings. This research question and hypothesis were the primary motivation

for the research that lead to the development of the new large scale metamodeling

method in Section 6.1.

Research Question and Hypothesis:

Assertion: Baker used a screening test to determine important, neglected in-

teractions and then used variable redundancy to account for these interac-

tions.

Assertion: In the hypothesized method built on the GCF model, these in-

teractions will be indirectly accounted for via interactions between the

intermediate responses in the intermediate to top-level mapping.

Research Question 2.2: Can the data from screening test be used to deter-

mine the intermediate to top-level mappings for systems without identi�-

able intermediaries?

Research Hypothesis 2.2: It is hypothesized that since the data from a screen-

ing test data inherently contains the connectivity of the system, this data

can be used to create the intermediate to top-level mappings for systems

that do not have readily identi�able intermediaries.

The following research question and hypothesis were posed in Section 1.5 and subse-

quently addressed in Section 4.5. These two assertions were the result of proposing to

use a partitioned metamodeling approach to create metamodels of the nozzle prob-

lem and realizing that there is a need for a method to help determine a good set of

partitions.
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Research Question and Hypothesis:

Assertion: A partitioned metamodeling approach is proposed to reduce to

total number of runs required to create metamodels of the nozzle model.

Assertion: The electrical engineering community has been using partitioning

techniques for many years to analyze VLSI circuits.

Research Question 3: Is there a way to quantitatively �nd an good set of

partitions to use with the partitioned metamodeling process?

Research Hypothesis 3: It is hypothesized that a method from the electrical

engineering community for partitioning VLSI circuits could potentially be

adopted for �nding an optimal set of partitions for use with partitioned

metamodeling.

Validity Hypothesis 3: In general, this research hypothesis seems to be true.

The sparse matrix and graph theoretic methods have all the necessary

characteristics for a partitioning scheme for large scale metamodeling.

However, the lack of initial knowledge about the sparse structure of the

black-box systems used with metamodeling seems to preclude their use.

The follow research question and hypothesis were posed in Section 4.5 and will be ad-

dressed in Section 8.3.2. The assertion that spurred the subsequent research question

and hypothesis was made after reviewing the common sparse matrix methods used

for decomposing large scale systems into smaller disjoint subsets.

Research Question and Hypothesis:

Assertion: A systems decomposition method for sparse systems is a logical

means to partition the inputs for large scale metamodeling, however there

is not enough initially known about the sparsity of the system.
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Research Question 3.1: Given the black box nature of analyses used in meta-

modeling, how can their underlying sparse structure be determined?

Research Hypothesis 3.1: It is hypothesized that a screening test using a

low resolution DoE with ANOVA can be used to determine the underlying

sparse structure of the black box system, which then can be partitioned

using a graph-based min-cut algorithm.

The follow research question and hypothesis were posed in Section 4.5 and will be

addressed in Section 8.3.2. The following assertion was made after realizing that to

maximize the e�ciency of the new large scale metamodeling method, all the data

collected from the system needs to be used to create the metamodels of the system.

Research Question and Hypothesis:

Assertion: The use of the data from a screening test is proposed to perform

two di�erent operations in the new large scale metamodeling method: one

for partitioning or tearing the system and another for determining the

intermediate to top-level mappings.

Research Question 3.2: Is it possible to use the same screening test data,

that was collected for use with the lumped parameter method, to also

determine the sparse nature of the system for partitioning?

Research Hypothesis 3.2: It is hypothesized that since the data from a screen-

ing test, which is to be used to tear the system into disjoint subgroups,

inherently contains the connectivity information; this data can also be

used to create the intermediate to top-level mappings which are designed

to account for the impact of system tearing.
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Chapter VI

THE HIERARCHICAL DESIGN SPACE

EXPLORATION

PROCESS

This chapter provides the formal development of the two new methods hypothesized

and formulated in Sections 3.5 and 4.5. The �rst method to be developed is a new

hierarchically partitioned metamodel for use with large scale systems. The second

method to be developed is a graph-based partitioning method based on experimental

data collected from the system. The actual application of these two new methods

will be combined into a step-by-step process for performing design space exploration

and metamodel building for large scale, multi-objective computer simulations. The

chapter will conclude with a discussion of the validation plan for the new design space

exploration process.

6.1 Development of the Lumped Parameter

Model

This section presents the development of the new large scale metamodeling method

that comprises one of the primary contributions to this thesis. Before getting into

the formal development of the method, it will be useful to �rst recap what spurred

its formulation.

Recall that Section 3.4 concluded that none of the currently available large scale

metamodeling methods met all of the requirements for creating accurate metamodels

for the nozzle problem. Metamodels based on supersaturated DoEs and stepwise
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regression were ruled out because of concerns with the complex aliasing structures

associated with these designs. The VIM methods were ruled out because of concerns

of how to partition the problem around the responses. The UTE method was ruled

out because of accuracy and e�ciency problems. The SPM method was ruled out

because it was not general enough. Finally, the GCF method was ruled out because

it could not be applied to problems without identi�able intermediaries.

Having ruled out all of the available methods, Section 3.5 hypothesized that even

though none of the current methods individually met all of needs of the nozzle prob-

lem, perhaps combining the desirable characteristics and processes from several meth-

ods to create a new method would meet the necessary requirements. Recall, Baker

(2002)[6] concluded that the original formulation of the UTE method produced meta-

models were not su�ciently accurate. Baker hypothesized that UTE method's poor

accuracy was due to a few important, missing interactions between variables in disjoint

subgroups. Thus to solve the problem, Baker added variable redundancies between

the subgroups to directly account for these interactions. These redundancies �xed

the accuracy problem but signi�cantly degraded the e�ciency of the method.

Based on Baker's �nding, it was concluded that a partitioned approach will most

likely result in the missing of potentially important interactions which could degrade

the accuracy of the partitioned metamodel. However, it was also concluded that

variable redundancy was not the best solution to the problem. A connection was

then made that the General Composite Function method was indirectly accounting

for potentially important interactions; the interactions were indirectly captured via

the intermediate to top-level mappings. Thus the hierarchical structure of the GCF

method constitutes the �rst borrowed characteristic that will be used to create the

new partitioned metamodeling method.

Figure 17 is a notional representation of a new hierarchically partitioned meta-

model based on the GCF method. Figure 17 shows a generic system of four design
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Figure 17: Generic Hierarchical Representation

variables denoted by the xi,j's divided into two subgroups or partitions. These par-

titions are linked to the top-level response, Y, via the intermediate responses, Ỹi's.

The intermediate to top-level mapping will indirectly account for missing interactions

between the design variable in disjoint subgroups.

The second borrowed idea is based on how Baker determined the missing inter-

actions. Baker used a screening test to �nd and account for the missing interactions.

Consequently, it was hypothesized that perhaps a screening could also be used to �nd

and account for the potential missing interactions with the new method. The screen-

ing test would be used to somehow create the intermediate to top-level mappings. The

�somehow� in the previous sentence is important because it is not intuitively obvious

how a screening test can be used in this manner. The reason being is because the

structure of the new hierarchical metamodel is based o� of the GCF model and a GCF

model is created by directly manipulating existing intermediate responses/variables

to create the intermediate to top-level mappings. To make link between using the

data from a screening test and the creation of the intermediate to top-level mapping

for codes that do not have existing intermediate responses/variables, consider the
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where,
x = a vector of input variables from the input space
y = a response value from the output space

x-space = a mathematical set of vectors of design variables, x
y-space = a mathematical set of response values

y = f(x) = a generic function that maps from x-space to y-space

Figure 18: Generic Functional Mapping [138]

following development:

In abstract terms, a functional mapping is a relation that uniquely associates the

members of one mathematical set (the inputs) with the members of another mathe-

matical set (the outputs). Functions often have a many-to-one relation, meaning that

the object from the input set is comprised of several sub-objects and the output set

is one single object [176]. In the context of metamodeling, the metamodel itself is

the functional mapping that links a vector of variable settings from the input space

to a single value of a response in the output space. In general, any generic functional

mapping can be represented as shown in Figure 18.

Notionally, any functional mapping of inputs to outputs can be depicted as shown

in Figure 18. This �gure can also be applied to metamodels, as a metamodel is

typically a closed-form equation that links inputs to outputs. Note, in all the �gures

in this section, a bold symbol represents a vector of values. Thus any abstract space

that is labeled using a bold symbol is a vector space. For example the mathematical

set labeled �x-space� is a vector space because the �x� is set in boldface.

The notion of a basic functional mapping can now be linked with the hierarchical
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where,
ỹ-space = a mathematical set of intermediate response/variable values

ỹ = g(x) = a generic function that maps from x-space to ỹ-space

Figure 19: Generic Composite Function Mapping

mapping depicted in Figure 17. Recall that Section 3.3.2 stated that the basic math-

ematical relationship describing the mapping from the low-level design variables, x 's

to the top level response, Y, via the intermediate responses, Ỹi's can be generically

described as a composite function (i.e. f ◦g ≡ f(g(x)) ). Figure 19 shows a composite

function notionally depicted using these terms.

Essentially, a composite function adds additional layers of mappings between the

direct input to output mappings shown in Figure 18. However, Figure 19 is not quite

descriptive enough to depict the general hierarchical metamodeling problem. Figure

20 is a more complete representation of the general hierarchical mapping depicted in

Figure 18.

The primary di�erence between the generic composite function mapping shown

in Figure 19 and the hierarchical mapping extended to a composite function form in

Figure 20 is the partitioning of the x-space and ỹ-space into disjoint subspaces. But

what do these disjoint subspaces actually mean?

In terms of the complete x-space, the explanation of the subspaces is pretty

straight forward. Let us assume that an analysis that has �fteen inputs, or x 's.

Then, the total x-space represents the set of all possible vectors of input values made

up of values from each of individual x 's. If we were to partition this set of �fteen

x 's into three disjoint sets, say (x1, . . . , x5), (x6, . . . , x10), and (x11, . . . , x15), then,

the subspace labeled, x1-space, as shown in Figure 20, contains all of the vectors
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where,
xi-space = a disjoint subset of the complete x-space
ỹi-space = a disjoint subset of the complete ỹ-space

ỹi = gi(xi) = a generic function that maps from xi-space to ỹi-space

Figure 20: Hierarchical Mapping in Composite Function Terms

comprised of values only from the subset (x1, . . . , x5). Likewise the subspace labeled,

x2-space contains all of the vectors comprised of values from the subset (x6, . . . , x10),

and so forth and so on. Thus, a general vector of values from the x-space is comprised

of a union of sub-vectors from each of the subspaces.

Moving on to the ỹ-space, Figure 20 shows that each of the ỹ subspaces are created

by using some function, gi(xi), that maps values from the x-space subsets into the

ỹ-space subsets. Thus if the function gi(xi) that maps from one space to the next

is known, a set of de�ned values from the xi subspace will produce a sets of de�ned

values from the ỹi subspace.

Consider for a moment the functional mapping between the ỹ-space and the top-

level y-space. The y-space in this case is a generic place holder for a response from

some analysis. The function y = f(ỹ) is a multivariate function that takes in a vector

from the ỹ-space and produces a single response value, y. The ỹ vector is the union

of individual values, one from each of the ỹi subspaces. Thus if the function f(ỹ)
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is known, a set of de�ned values from the ỹi subspaces will produce a set of de�ned

values from the y-space.

With all of the previous three paragraphs in mind, if we were to take a complete

vector from the x-space, break it down into its constitutive sub-vectors, and map each

of these sub-vectors through the appropriate gi(xi) functions, we would get several

sets of ỹi values. If we then combine individual values from the sets of ỹi values

into a vector, ỹ and map ỹ through the f(ỹ) function we then would have a value

y. Therefore, in a two-stage fashion we have mappings of complete vectors in the

x-space to a values in the y-space.

Returning to the previous example, let us assume again that a certain analysis

that is comprised of �fteen inputs, the x 's, and one output, y. Let us further assume

that the set of inputs is partitioned into three disjoint sets, (x1, . . . , x5), (x6, . . . , x10),

and (x11, . . . , x15).

If we then independently assessed the impact of each of these subsets of x 's on

the response, y, we could create three separate metamodels such as y = g1(x1),

y = g2(x2), y = g3(x3), where each y is only a function of one the set of x 's. So in a

sense, each of the previous y 's could be considered partitioned or �localized� versions

of the total response y.

The redundant use of the symbol �y� to denote the mathematical quantities rep-

resented by the ỹi's and the response y is not sloppiness on the part of the author.

But rather the redundant use of �y� is to denote that the ỹ's are localized versions

of the top-level response, y. Thus the general hierarchical formulation can be sum-

marized as: the top-level response, y, is a function of the localized versions of the

response, ỹ's, which are in turn functions of the partitioned subsets of the variables.

This formulation is called the Lumped Parameter Model (LPM).
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Figure 21: Functional Mappings for the Lumped Parameter Model

The name �Lumped Parameter Model� was chosen because the e�ects of the indi-

vidual design variables on the top-level response are lumped together via the interme-

diate, localized versions of the top-level response. Since the intermediate responses,

the ỹ's are actually versions of the top-level response, then the ỹ subspaces shown

in Figure 20 actually are subsets of the actual y-space. Thus, a more appropriate

explanation of the y = f(ỹ) function is that the function f(ỹ) is a function that

takes a set of values from subsets of the the y-space and maps these subsets back

onto the originating space. The complete depiction of the functional mappings that

occur in the lumped parameter model is shown in Figure 21.

Even with this formulation it is still not exactly clear how to use the LPM for-

mulation in Figure 21 with a screening test to determine the functional mapping.

Recall, if we were to take a complete vector from the x-space, break it down into its

constitutive sub-vectors, and map each of these sub-vectors through the appropriate

gi(xi) functions, we would get several sets of ỹi values. If we then combine individual

values from the sets of ỹi values into a vector, ỹ, and map this vector through the f(ỹ)

function we then will then have a resultant value y. Therefore, in a two-stage fashion,
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there is a mapping of complete vectors in the x-space to a values in the y-space.

Let us assume for a second that we have partitioned up our analysis inputs and

executed a design of experiments on each of the sets of partitioned inputs. With

the data from each of the sublevel or input partition analyses, we can create each of

the ỹi = gi(xi) functional mappings. Now lets assume we preformed some type of

screening test on our analysis, what type of information would we now have? First,

we would have the xi to ỹi mappings from the individual subgroup analyses and from

the screening test, we would have a set of data that represents a mappings between

complete vectors of x values and a set of speci�c y values. The function that produced

that mapping of course was the original analysis.

If we then were to break each of the vectors of x 's from the screening test into

sub-vectors and map these sub-vectors through ỹi = gi(xi) functions, we would now

have a set of ỹi values that are directly related to the set of y values from the results

of the screening test. The set of ỹi values mapped to y values can now be use to

create the y = f(ỹ) function. That is how a screening test can be used to create the

intermediate to top-level to mappings.

In a more visual fashion, Figure 22 summarizes the results of breaking up the runs

of screening test and mapping the sub-vectors through the ỹi = gi(xi) functions to

get the an array of ỹi values. The array shown on the left hand side of Figure 22 is

a standard screening array with the resultant y values from the screening analysis.

The array shown on the right hand side of Figure 22 is the regression array that will

be used to determine the intermediate to top-level mapping, that is the y = f(ỹ)

function.

Thus far in the development of the lumped parameter model and the process used

to create a LPM, the discussion has been limited to the case of only one top-level

response. Obviously to use the LPM with the nozzle problem, which consists of 255

responses, it would be preferable to not have to run 255 separate screening tests.
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Figure 22: Creation of Ỹ Regression Array

That would surely negate any potential run savings associated with the method.

Fortunately, the method laid out so far only needs one minor change to address the

multi-objective problem. A simple example will illuminate the solution.

Consider the di�erences between applying a strati�ed Monte Carlo sampling scheme

to a multi-objective problem and applying an adaptive-importance sampling scheme

to the same problem. Recall that a strati�ed sampling method attempts to quantify

the probabilistic nature of a set of responses by spreading out the sampling points

as evenly as possible over the whole input space.1 Each input is evaluated at mul-

tiple levels over its de�ned range. Thus every region of the input space is explored.

This then implies that the entire output space is also explored, and not just for one

response but for every response at the same time.

Contrast this to an adaptive importance sampling scheme which only chooses

sampling points that are �optimal� for one particular response. These optimal points

are most likely not the optimal points for another response. Thus while the output

space for one response is adequately explored, the output space for another is woefully

under explored. This essentially describes the problem of using a standard fractional

1See Section 2.1 for a discussion of strati�ed and adaptive-importance sampling.
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factorial design to create the intermediate to top-level mapping.

It has been the author's experience that using the results of a fraction factorial

design to create the intermediate to top-level mappings results in ỹ-spaces that are

very disjoint and not even explored. Consequently the metamodels that result from

regressing the y-values against the ỹ regression arrays are of a particularly poor qual-

ity. To solve this problem the author essentially used a strati�ed sampling approach

to explore the x-space. Space �lling type designs such as latin hypercubes seem to

work very well for creating the intermediate to top-level mappings.

By using a space �lling design, the resultant ỹ regression arrays seem to have

a nice even distribution of points throughout each of the ỹ-spaces. In addition, any

multicollinearity [179] that exists between the regression array columns does not seem

to negatively impact on the results of the regression.

Based on the previous development of the lumped parameter model, hypothesis

2.2 can now be addressed. Hypothesis 2.2 was concerned with how to extend the

GCF method to systems without identi�able intermediaries. The GCF method relied

on existing intermediate responses/variables to perform the necessary design space

exploration to create the intermediate to top-level mappings. Obviously then, for

systems that do not have these available intermediaries, the GCF method is not a

viable method to use to create hierarchically partitioned metamodels.

First, recall that we wanted to use the GCF model as a prototype for the LPM

because of the GCF's ability to indirectly account for missing interactions between

the disjoint subgroups. The idea to use the intermediate to top-level mappings to

indirectly account for the missing interactions was in direct response to the accuracy

problems that the UTE method exhibited. Baker solved the UTE accuracy prob-

lem by �rst using a screening test to determine the important, missing interactions

and then used variable redundancies between the subgroups to directly create the
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necessary interactions. However, by resorting to variable redundancies, Baker signif-

icantly degraded the e�ciency of the UTE method. Thus, to use the GCF model as

a prototype for the lumped parameter model, the problem of how to do the design

exploration to create the intermediate to top-level mappings needed to be solved.

The proposed method follows Bakers lead and uses a screening test to get a direct

mapping between the unpartitioned x-space and the top-level y-space. With this

mapping, the inputs to this design space exploration can then be broken into their

constitutive sub-vectors and individually evaluated with the ỹi = gi(xi) functions

to create the ỹ regression arrays. The individual ỹ regression arrays can then be

combined with the response data from the screening test to create the y = f(ỹ) the

intermediate to top-level mappings.

Assertion: Baker used a screening test to determine important, neglected interac-

tions and then used variable redundancy to account for these interactions.

Assertion: In the hypothesized method built on the GCF model, these interactions

will be indirectly accounted for via interactions between the intermediate re-

sponses in the intermediate to top-level mapping.

Research Question 2.2: Can the data from screening test be used to determine

the intermediate to top-level mappings for systems without identi�able inter-

mediaries?

Research Hypothesis 2.2: It is hypothesized that since the data from a screening

test data inherently contains the connectivity of the system, this data can be

used to create the intermediate to top-level mappings for systems that do not

have readily identi�able intermediaries.

Validity of Hypothesis 2.2: The logical development of the lumped parameter

model (LPM) demonstrates how data from a screening test can be used to
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create the intermediate to top-level mappings for systems that do not have

readily identi�able intermediaries.

Partitioning the inputs to a screening test into their constitutive sub-vectors

and individually evaluating these sub-vectors with the ỹi = gi(xi) functions

will create the ỹ regression arrays. The ỹ regression arrays can then be com-

bined with the response data from the screening test to create the y = f(ỹ)

intermediate to top-level mappings.

6.2 Development of the Graph-based Partition-

ing Method

This section presents the formal development of the graph-based partitioning method

that comprises the other primary contribution to this thesis. Before getting into

the development of the method, it will be useful to �rst recap what spurred its

formulation.

Recall in Section 4.5 that the systems decomposition schemes used by the electri-

cal engineering community to simplify the analysis of VLSI circuits were not directly

applicable to the problem of partitioning design variables for use with large scale

metamodeling. The primary reason being is that in the electrical engineering com-

munity, system decomposition methods are usually applied to a systems where the

structure is known a priori. Meaning, an electrical engineer starts o� the analysis

with an existing system of equations or an existing circuit diagram. In the case of

large scale metamodeling, the model builder starts with a black box and in general

knows nothing about the underlying structure of the system. Consequently, how can

the sparse matrix methods be used to decompose the problem when little is initially

known about the system.

To answer that question, Section 3.4 proposed again borrowing from Baker's im-

proved method. Recall that Section 3.4 stated that Baker used a screening test to
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determine important interactions that he was neglecting. He then used these results

to add factors to the current set of partitions. In e�ect, he was using the screening

test to gain further insight into the structure of his system. Thus, it was hypothesized

that a screening could also be used to determine the unknown structure of the system.

As it turns out, a screening test works very well for determining the intercon-

nectedness of the system. Determining the underlying structure of the systems is as

simple as performing a screening test and using ANOVA to separate the active or im-

portant factors from the inactive ones for each response. The results of ANOVA will

produce a sparse incidence matrix that then can be used with a min-cut algorithm

to partition the system into disjoint subgroups.

Before the graph-based partitioning method for large scale metamodel is formally

laid out, a few important points need to be considered. First the screening test.

Recall the lumped parameter model is using the results from a space �lling design

to create the intermediate to top-level mappings. In addition in Section 4.5 it was

hypothesized that perhaps the same design that was used to determine the system

structure for partitioning could also be used to create the intermediate to top-level

mappings. Thus it would be ideal to double dip, that is, to reuse the initial screening

data to keep the e�ciency of the method as high as possible.

It has been the author's experience that using a traditional resolution IV fractional

factorial design [106] works very well for determining the underlying structure for

partitioning. However as was stated in Section 6.1, a fractional factorial design does

not seem to work well for creating the intermediate to top-level mappings, thus a space

�lling design was recommended. To solve this apparent contradiction the author

recommends a hybridized design. Half of the design is a resolution IV fractional

factorial and the other half is a latin hypercube design. The latin hypercube should

be �optimal� in the sense that the pairwise correlations between the factor columns

are minimized.
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One problem with using an optimal latin hypercube is that few statistical pack-

ages o�er latin hypercubes as a design of experiments option. Fortunately, Matlab

contains a simple function called �lhsdesign� [167] that creates fairly good designs

quite quickly. In addition, a paper by Joseph and Hung (2006)[123] provides an al-

gorithm for creating excellent latin hypercube designs. The Joseph-Hung algorithm

minimizes the pairwise correlations between the factor columns while at the same

time maximizes the distance between each of the design points.

The second point that needs discussing is on the use of the ANOVA results to

determine the sparse nature of the system. A typical ANOVA analysis gives the

user several statistical measures of the system, such as the sum of squares, F-test

values, and p-values for tests of signi�cance [109]. Unfortunately the problem with

these statistical measures is that they were developed to quantify stochastic systems,

not deterministic computer simulations. Thus as several authors point out [90, 142],

these quantities have no statistical meaning for deterministic computer experiments

and should not be used to determine which e�ects have any statistically signi�cant

impact on a response. However, none of these authors provide any alternative means

of reducing the number of e�ects in deterministic systems. That is, they do not

provide any means for determining the sparse nature of a deterministic system via

experimentation. Fortunately, it has been the author's experience that even though

these methods were not developed for deterministic systems, they seem to be robust

to this apparent misuse.2

2It should be noted that while the author appreciates the fact that using statistical measures
developed for stochastic systems is not necessarily appropriate for deterministic systems, it should
also be noted that this is an engineering thesis. Consequently, engineering theses are intended to
address and solve problems and not necessarily be 100% mathematically pure. If a method was not
created for a certain problem but that method works well to solve the problem, does that not justify
its use?
This problem of extending statistical measures intended for stochastic systems to deterministic

systems is an item that needs to be relegated to a future work. The author would like to have
addressed this problem in this thesis, but solving that problem is most likely a thesis in itself!
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6.3 The Hierarchical Design Space Exploration

Process

This section will combine the methods developed in the previous two sections with the

standard design and analysis of experiments method to create a step-by-step process

for analyzing large scale systems. Following the set of instructions, the method will

be outlined in a visual manner so that the reader can easily follow how the data

that is generated and manipulated in the process is related to the general input and

output spaces for the large scale system under analysis. See Figure 23 at the end of

this chapter for a visual process outline.

The Hierarchical Design Space Exploration Process (Hi-DSE):

1. Determine the set of inputs and outputs to be investigated.

2. Determine the range of values over which the inputs will be varied.

3. Create the screening design of experiments that will be used to collect the data

that will be used for both partitioning and to create the intermediate to top-level

mappings.

• A good choice for this design is a hybridized design where 50% of the runs

are a resolution IV fractional factorial and the rest are an equally sized

space �lling type design such as a correlation minimized latin hypercube.

4. Using the screening design from Step 3 and the variable ranges from Step 2,

collect an the initial set of response data.

5. Apply a main e�ects only ANOVA analysis to the data.

• A �main e�ects only analysis� implies that the linear model created for

the ANOVA analysis only contains main e�ects, no two-factor interaction

terms.
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6. Using the p-values from the ANOVA results, determine the �statistically� im-

portant variables for each response.

• The standard statistical assumption that e�ects with p-values less than or

equal to 0.01 are signi�cant seems to work well for determining the sparse

nature of the system.

7. Using the list of signi�cant factors for each response from Step 3, create the

incidence matrix for the system.

• Assign the variables to the rows and the responses to the columns.

• A statistically important variable for a given response is given a value of

�1� in the matrix and a �0� otherwise.

• In general, the incidence matrix of the system will not be square.

8. Create the variable adjacency matrix by multiplying the incidence matrix by

the transpose of itself.

• Cv = A ∗ At where A is the incidence matrix and Cv is the variable adja-

cency matrix.

• The response adjacency matrix can be created by multiplying the transpose

of the incidence matrix by itself. Cr = At ∗ A

• The adjacency matrices will no longer be made up of solely of 1's and 0's.

An element in the variable adjacency matrix, cij, is the number of times

variable i occurs with variable j in the same response.

• The diagonal elements, cii, represent the total number of responses that

variable i is signi�cant in.
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9. Create, and examine the graph of the adjacency matrix.

• Oftentimes, a good set of partitions will be fairly obvious.

• What is more important however is to determine if the graph can not be

partitioned. A system with a strongly coupled graph where every variable

appears connected to every other is not a good candidate for partitioning.

• Both Mathematica and Matlab provide built-in functions for creating and

manipulating graphs.

10. Choose a set number of partitions, and apply a min-cut algorithm to the graph.

• Most min-cut algorithms require the user to specify the number of parti-

tions to decompose the graph into. Typically they will try to create as

equally sized partitions as possible.

11. Overlay the partitioned sub-graphs that result from the min-cut operation on

top of the original graph.

• The overlaying of the partitioned graph on the original graph provides

intuitive, visual way to address the quality of the partitioning.

12. Repeat Steps 10 and 11 to examine several di�erent numbers of partitions and

pick the one that is best.

• The best set of partitions is one that provides a good trade o� between

run savings and missing interactions.

• As Guardabassi and Sangiovanni-Vincentilli (1976)[45] state, it is also im-

portant to pick a set that is justi�able using engineering intuition.
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13. Using the set of input variable partitions from Step 13, individually assess the

impact of each set of variables on the set of responses.

• The ranges for each variable are the same ranges de�ned in Step 2.

• Standard designs of experiments can be used for each of the subgroup

analyses.

• While one subgroup is being analyzed, hold the values of variables in the

other groups at their nominal values.

14. Analyze each of the subgroup analyses from Step 13 to create the ỹi = gi(xi)

functions.

• If there are n top-level responses, there will be n intermediate ỹi = gi(xi)

functions per subgroup.

15. Partition up the hybridized, screening design to create the individual ỹ regres-

sion arrays.

• If there are n top-level responses, there will be n individual ỹ regression

arrays.

• There will be one column per subgroup in each regression array.

• For n subgroups, and response, yi, the indices of the columns for regression

array i will be (ỹi1, ỹi2, . . . , ỹin).

16. Analyze each of the regression arrays from Step 15 with the response data from

Step 3 to create the yi = f(ỹi) functions.

17. Link the outputs of the low-level to intermediate functions, ỹi = gi(xi), to the

appropriate inputs of the intermediate to top-level functions, yi = f(ỹi) , and

you will then have a complete set of lumped parameter models.

141



Figure 23 at the end of this chapter shows the hierarchical design space exploration

process in graphical form.

6.4 Validation Plan

The validation requirements for the contributions of this thesis are actually quite

straight forward and can be broken into two separate parts. The two separate valida-

tion steps are: validation of the lumped parameter modeling method and validation

of the graph-based partitioning method.

6.4.1 For the Lumped Parameter Metamodeling Process

Although the primary motivation for this work was to �nd or develop a method

that enables accurate and e�cient probabilistic li�ng of �rst stage nozzles, actually

implementing the full li�ng analysis is not necessary. Recall that Section 2.4 deter-

mined that an indirect Monte Carlo method was the most appropriate probabilistic

design method to use with the nozzle problem. The primary reason was that tra-

ditional Monte Carlo simulation combined with metamodels was the only method

that possessed both the potential e�ciency and could evaluate multiple responses

simultaneously.

The metamodel/Monte Carlo combination has been successfully demonstrated

numerous times in the literature [37, 134, 170], thus the accuracy of the method itself

is not in question. Intuitively however, the accuracy of the combined method rests

solely on the accuracy of the metamodels. If the metamodels accurately reproduce the

behavior of the system, then the Monte Carlo results will be as if they were obtained

directly from the original model. Thus the primary validation for the new lumped

parameter model will be how well it mimics the response of the actual system.

Absolute accuracy however will not tell the whole story. Recall that Section 1.5

stated that given the long runtime of this model, traditional statistical linear model

based metamodeling schemes were not deemed e�cient enough and that perhaps
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the partitioned nature of the nozzle model could be leveraged to reduce the total

computational expense required to create the metamodels. Thus not only is the

absolute accuracy of the model important but it should also be benchmarked against

traditional statistical linear model based metamodeling schemes applied to the same

problem. If the new method is more e�cient, however not as accurate, then this

will preclude its usefulness for application to the nozzle model and to the engineering

community as a whole.

The only way to de�nitively tell if a metamodel is an accurate representation of

the system is to compare its predictive accuracy at o�-design point locations. In fact

several authors3 state that the only way to truly determine the accuracy of computer

based models is to evaluate the predictive accuracy at o�-design point locations.

O�-design point meaning combinations of variables that were not used to create the

model.

Thus the relative accuracy of the LPM models and several traditional statistical

linear model based metamodeling approaches will be compared by individually assess-

ing each of their accuracies with a sample from the actual model at several thousand

o�-design points.

The comparison of accuracy between the two methods will not be based on mean

error or maximum absolute error but rather based on comparing the distributions of

each of the relative errors. Relative error, in this case is the percent error. As will

be shown in Chapter 8 and Appendices A and B, all of the relative error assessments

have an approximate mean of zero and are all symmetrical distributions around that

mean, thus the primary di�erences between the individual error distributions are

their variances. Consequently, the assessment of one metamodeling method versus

another will consist of comparing the ratio of their variances referenced to a baseline

metamodeling method. The idea being that a model with a lower variance of error

3See Lin (2004)[90], Sections 2.3.2 and 2.3.3 for a thorough review.
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about the mean is deemed to be a more accurate model.

6.4.2 For the Graph-based Partitioning Method

The validation process for of the graph-based partitioning method is less straightfor-

ward than the validation process for a metamodeling scheme. For a metamodeling

scheme, it is easy to assess the accuracy of the models it creates and to benchmark its

performance versus other existing metamodeling schemes. It would be nice if the same

process could be applied to the graph-based partitioning scheme. Unfortunately, to

the author's knowledge this is the �rst time a similar graph-based partitioning method

has been used to characterize and partition a large system for use with metamodel-

ing. Consequently an objective, benchmark-based validation plan that compares the

quality of the partitions created by the proposed method to an available method(s)

is not an option.4

One simple way to validate the process is to use the graph-based partitioning

method to create several di�erent groups of partitions, and then apply the validation

plan laid out in Section 6.4.1 to assess the accuracy of each of the LPMs created with

these sets of partitions. In addition, one can then use phenomenological knowledge

of the system to qualitatively assess the goodness of a given set of partitions.

Even though there are no other quantitative based partitions schemes to bench-

mark against, Section 3.3.1 did discuss two qualitative means for partitioning a large

scale problem. Those methods were partitioning based on engineering intuition and

partitioning along code or process boundaries. Since the partitioning method is in-

tended for use with individual, black box codes, obviously process or code boundary

partitioning is not an option. However, engineering intuition (i.e. phenomenological

knowledge about the system) can still be used to partition the problem. Thus if meta-

models based on the graph-based partitioning are more accurate than the metamodels

4See the end of Section 4.4 for a review a summary of graph theoretic methods used with meta-
modeling and statistical analysis.
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based on engineering intuition, then that would validate the graph-based partitioning

method. An even better outcome would be if the graph-based partitioning method

created the same, or very similar, sets of partitions as was created using engineering

intuition.

As it turns out, the graph-based partitions can in fact be benchmarked versus

a previously developed engineering intuition-based partitioning scheme. Of the two

methods developed for this thesis, the LPM method was formulated, developed and

benchmarked before the work on the graph-based partitioning method had even been

contemplated. Consequently, the author needed a set of partitions to use with the new

metamodels for benchmarking. Initially it was hypothesized that there were two fairly

obvious ways to partition the nozzle model: subsystem partitioning and variable-

type partitioning. The subsystem partitioning grouped all of the variables pertinent

to a spatial zone together, thus each geographic zone was considered a subsystem.

For instance, all of the variables associated with zone 1 where grouped together:

zone 1 wall thickness, zone 1 internal temperature, zone 1 external temperature, etc.

The variable-type partitioning on the other hand grouped like variables together, for

instance all of the wall thickness variables were grouped together, likewise all of the

external temperature variables were also grouped, etc. Thus these two partitioning

schemes could be used to benchmark the graph-based partitioning method.

Therefore the validation plan of the graph-based partitioning method will consist

of creating several di�erent sets of partitions and validating the metamodels created

from these partitions using the validation plan from Section 6.4.1. The accuracy of

the graph-based partitions will be compared with the variable-type and subsystems

based partitions as well with several traditional all-at-once metamodeling schemes.
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6.4.3 The Validation Test Cases

Obviously the best test case to validate the methods against would be the model that

spurred the development of these methods, namely the nozzle model. However this

model can not be used to assess the validity of the new large scale metamodeling

scheme or the graph-based partitioning method.

The reason is purely practical. Given the very long runtime of the nozzle model,

3.5 hours per run, assessing the accuracy of the each of the methods discussed in

Sections 6.4.1 and 6.4.2 would take on the order of 30,000 hours (or 1,250 days).5

Clearly the nozzle model is not the proper vehicle for method assessment. Thus, an

alternative model that runs signi�cantly faster yet captures the salient features of the

nozzle model is needed.

The �rst test case is a parametric, �nite element model of a hollow I-beam. The

hollow I-beam is spatially partitioned in a similar manner as the nozzle model and has

all of the same characteristic variables as the nozzle model. The model is partitioned

into six spatial zones. In each spatial zone, the wall thicknesses, internal and external

temperatures as well as the internal and external heat transfer coe�cients are allowed

to vary. Thus the model has 30 independent variables. The responses were also

collected in a zonal fashion. The maximum temperature and stress from each zone

was recorded, thus the model has 12 independent responses. The total run time for

the hollow I-beam model is approximately 1.5 minutes on a vintage 2006 computer.

Chapter 8 will go into much more detail on the hollow I-beam model.

System responses modeled with �nite element analyses are often referred to as

implicit functions [48], that is, they do not have a nice closed formed solution. Thus,

the solution technique is to discritize the system and use FEA to iteratively solve the

5This assessment is based on assuming that each partitioned method would take on average 50%
of the runs for the complete model (approximately 1430 runs) and that there would be assessments
of 2 complete models and 8 partitioned models. This also assumes that each run would be executed
sequentially, obviously parallel evaluation of the runs can cut the total time down signi�cantly.
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problem. One problem associated with the �nite element method is that the solution

can be sensitive to variations in the discritization technique used. This means that

for the exact same model, two di�erent �nite element meshes can give two di�erent

answers. Therefore it would be bene�cial to apply the partitioning methods to a

system that does not experience this type of numerical noise.

Therefore a second test case based on a closed-form model of a torsional-vibration

system (TVS) is also proposed for the validation process. The TVS model has 18

variables and three responses and the entire behavior of the system can be captured

in a series of closed form equations.

The closed form nature of the TVS model actually provides a very nice tool for

assessing the graph-based partitioning method as well. Since all of the equations

are known a priori, the exact sparse matrix representation of the system can easily

be created. The exact sparse structure can then be compared against the sparse

structure predicted from the graph-based partitioning analysis. This will provide

further validation of the graph-based partitioning method.

6.5 Summary

This chapter was the formal development of the two new methods hypothesized and

formulated in Sections 3.5 and 4.5. The �rst method that was developed was a new

hierarchically partitioned metamodel for use with large scale systems. The model

created with this new method is referred to as the lumped parameter model (LPM).

The second method that was developed was a graph-based partitioning method

based on experimental data collected from the system. The process for performing

the graph-based partitioning of large scale systems for metamodeling is referred to as

the graph-based partitioning (GBP) method.

The actual application of these two new methods was combined into a step-by-

step process for performing design space exploration and metamodel building for
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large scale, multi-objective computer simulations. This new design space exploration

process is referred to as the hierarchical design space exploration (Hi-DSE) process.

Figure 23 is a visual depiction of the Hi-DSE process.

The chapter concluded with a discussion of the validation plan for the new de-

sign space exploration process. The validation plan outlined how the LPM and GBP

methods will be assessed as well as the two test cases that will be used in the assess-

ment.
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Figure 23: Hierarchical Design Space Exploration Process
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Chapter VII

FORMULATION OF A PARALLEL,

DISTRIBUTED COMPUTING ENVIRONMENT

This thesis has primarily been focused on methods for creating metamodels of large

scale computer simulations without much discussion of the actual experimentation

process. This chapter delves into practical aspects of the necessary computational

frameworks needed to perform these computer experiments. The framework laid out

in this chapter will form the core of the tool set used to collect and analyze the data

for the validation of the hierarchical design space exploration process.

First, an overview of the history of the di�erent alternatives to integrating com-

putational frameworks is given. Next, a new framework will be introduced, which

incorporates the latest computational techniques and more importantly a mind-set

emphasizing �exibility, modularity, portability and re-usability. This introduction

will include a thorough review of the fundamental design decisions that went into

developing this new integrated computational framework [197].

Unfortunately, not all of the code that was developed for the new framework can be

included in the thesis, doing so would add roughly 200 more pages to the appendices.

7.1 Need for Integrating Frameworks

Today's engineering designers have come to the realization that no longer can suc-

cessful designs revolve around the analysis and optimization of a single discipline.

But rather, successful designs are now viewed as a balance between competing dis-

ciplines. Given this, accounting for and balancing disciplines through the sharing of

data between disciplines becomes a monumental task.
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To date, several commercial applications and research programs [49, 108, 107]

have been developed to aid in the dissemination of information between discipline

analyses. Nonetheless, these tools do not always a�ord the designer the �exibility

necessary to implement novel design space exploration techniques and data manipu-

lation techniques.

The requirements for this research stem from the needs of MDO (Multidiscipli-

nary Design Optimization). The term MDO was coined almost a decade ago. This

relatively new �eld consists of the following principal conceptual components [153].

1. Design Oriented Analysis: System level designing allows the designer to answer

the �what-if� questions. Designers want to know the sensitivity of the design

with respect to the design variables.

2. Approximation Concepts: Metamodels allow the designer the ability to bypass

the expensive direct coupling of analysis codes to the design space exploration

tool. Common meta-modeling techniques such as Response Surface Method-

ology (RSM) and Neural Networks (NN) [145] can be used instead of these

complex disciplinary analysis codes.

3. Mathematical Modeling of Systems: It is common that an engineering system

is usually modeled by multiple disjoint analysis codes and not one monolithic

code. Data reduction techniques may need to be applied if large amounts of

data are exchanged between codes.

4. Decomposition: Given that codes analyzed on the same level are often tightly

coupled, it is usually preferable (if possible) to decouple the individual codes

and let the system-level take care of the coupling. Here system decomposition

techniques and tools such as the Bi-level Integrated System Synthesis (BLISS

[154]) are used.
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5. Design Space Exploration: Exploration of the design space for optimization

is the search to �nd the constrained minimum. Various algorithms such as

Sequential Linear Programming (SLP) and Sequential Quadratic Programming

(SQP) can be applied. Alternatively, where applicable, algorithms employing

stochastic processes (Genetic Algorithms (GA) and Simulated Annealing (SA))

are also an option [29].

6. Optimization Procedures: System optimization is conducted at the system-

level. The system-level optimizer knows which codes to execute and in what

fashion. This element e�ectively ties together the di�erent codes in an execution

sequence.

7. Human Interface: Manual intervention in the system design process is important

and is not an after-thought. In a well designed environment, the implementation

should allow for straightforward, designer intervention. This intervention is

needed since MDO often relies on human interaction to guide the process.

Typically each analysis code handles one disciplinary component of the overall systems

engineering problem. This implies that at the top-level all these disparate codes, each

with unique data formats and running on di�erent platforms, need to communicate

with each other through some system-level executor/controller. Furthermore, there

is often a coupling of inputs and outputs between analyses resulting in an iterative

analysis loop.

The problem is formulated by Sobieszczanski-Sobieski (1993)[153] as follows: �En-

gineering system analysis is expensive, time-consuming and a non-trivial managerial

task�. Hence the clear need for a framework to handle distributed MDO problems.

Such an integrating framework needs to capture all the enumerated MDO components

if the implementation is to be successful.
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7.2 History of Integrating Frameworks

7.2.1 Hard-Coded Algorithms

In the earliest frameworks, all disciplinary executables were brought together and

execution control was given to a �xed algorithm. There are three variations of this

formulation, in chronological order: monolithic codes, direct integration, and meta-

modeling techniques. Most of the monolithic programs were written in FORTRAN

and some examples of these e�orts are still around, such as: FLOPS (Flight Opti-

mization System)[99] and ACSYNT (Aircraft Synthesis)[2]. A general disadvantage

of these systems is the relative di�culty to include higher-�delity tools as they be-

come available, since these approaches require a total recon�guration of the script

that controls the execution.

Until recently, there was no valid alternative to this hard-coding of programs. In

the last decade, several commercial alternatives have been developed that address

many of the short comings to the early frameworks.

7.2.2 Commercial Applications

Scott (2001)[149] gave a good overview of the commercial endeavors. The following

high-level overview of three commercial packages is given here as an introduction.

Adaptive Modeling Language AML (Adaptive Modeling Language) is developed

by Technosoft [162]. AML is built on the philosophy of object-oriented software

design and uses LISP as its programming language, which is a fairly uncom-

mon language. Variables are created by instances of some previously de�ned

primitives. When de�ning formulas, AML automatically keeps track of which

variables depend on others. AML has easy to use graphical visualization ca-

pabilities (especially for aerodynamic design). Some disadvantages from a user

friendliness perspective are that a fairly good working knowledge is required

of object-oriented programming. The use of object-oriented programming is
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not necessarily detrimental as will be shown when discussing the open-source

requirements. Unfortunately, integration with certain common tools (Excel

spreadsheets etc.) is not yet functional.

iSIGHT iSIGHT is produced by Engineous Software [31]. iSIGHT is based on

MDOL (Multidisciplinary Optimization Language), its own language. Pre-made

building blocks are accessible through GUIs so to avoid direct interaction with

the underlying language. Logic-based control and optimization boxes are readily

available from the GUI environment. Options for parsing input and output �les

are very extensive. The linking between codes occurs simply by using the same

variable names. Unfortunately, cross-platform integration of di�erent codes and

front-end is not straightforward.

ModelCenter ModelCenter is made by Phoenix Integration [120]. The front-end

interface is called ModelCenter, while in the background the Analysis Server

services the request coming from the ModelCenter GUI [121]. Using the Model-

Center �web-browser�, it is very easy to use a resource/code once it is wrapped

and placed on the Analysis Server from any location. Response Surface gen-

erators, Monte Carlo simulation and stochastic optimization toolboxes were

recently added to the basic package. One of the remaining drawbacks of Mod-

elCenter is that multiple instances of a code, also known as parallelization, is

currently not supported.

Given the ease of use and polished execution that these commercial packages exhibit,

these environments have certain, inherent drawbacks as well. Most notably, they are

not open-source thus not allowing the designer to tailor the tool to exactly meet the

needs that the analysis may require. These tools allow for the designer to link codes

through the GUI (Graphical User Interface), but do not always give direct access

to the underlying core of the tool. Access to source code for extreme �exibility is a
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very important prerequisite in a conceptual design research environment where these

new methodologies are developed and investigated. Consequently, they are not truly

conceptual design tools since they do not allow the investigation of concepts. They

only allow for perturbations around a user-provided baseline input �le.

In that sense, these commercial packages are preliminary design tools. To use these

packages at the conceptual level is possible, however requires extensive changing and

use of the sometimes provided API (Applications Programmer's Interface). As a

result, they become not much di�erent from an actual programming language.

An interesting comparison can be made by looking at Microsoft Excel and The

MathWorks' Matlab. Excel inherently uses a GUI, the spreadsheet, to enter equations

and visualize its output. Matlab on the other hand opens up a library of functions,

which can be programmatically combined in a text �le (the Matlab m-�le) and exe-

cuted from a command input window. Over time, Excel added the capability of VBA

(Visual Basic for Applications), which allowed for more powerful operations compa-

rable to Matlab. Nonetheless, Matlab is still a more powerful and �exible tool since

it was conceived as an API. The same comparison is true for integrating frameworks:

most commercial applications use a GUI to interact with the user. It is this GUI

which makes these tools very user-friendly and easy to use, however, a general API

built on solid object-oriented programming is potentially much more powerful.

7.2.3 Open-Source Applications

An alternative solution is to develop a general, systems analysis API. This API would

be a general library of functionality that would allow the designer to programmatically

link and execute any number of analyses and manipulate the resulting data in any

conceivable manner.

Recent advances in business-to-business data transfer as well as server-client appli-

cation interfacing have made the task for the engineer to develop such an environment
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signi�cantly easier. More speci�cally, it is possible to create an API that incorporates

object-oriented code wrappers (Agents) written in Java with uniform, standard data

transport tools (XML (Extensible Markup Language) and SOAP (Simple Object Ac-

cess Protocol)) to create an infrastructure which is both platform independent and

�exible to the needs of the designer.

Starting such a task from scratch would entail a signi�cant programming feat

for any designer/programmer. Fortunately, readily available tool boxes for optimiza-

tion [114], statistics and simulation [65], visualization [157, 42], and web-server ap-

plications [166] are pre-written, plug-and-playable, and more importantly, generally

open-source.

These tools combined with the use of the agents give total �exibility and modular-

ity. This allows the designer to concentrate on the actual design task. More details on

the open-source building blocks of the framework will follow in subsequent sections.

7.3 Formulation of an Open-Source Alternative

The previous section highlighted some of the advantages and disadvantages of com-

mercial packages. An open-source tool should and can draw on the strengths and

weaknesses listed above. Below are a list of items that are worthy for incorporation

and investigating in this new integrating framework.

• Use the sound basis of object-oriented programming (from AML).

• Extensive tools for parsing input and output �les (from iSIGHT).

• Logic-based control boxes are pre-written and available as functions (methods

in Java) and in the API (from iSIGHT).

• Wrapped codes (also called agents) are immediately available from distributed

servers (from ModelCenter).
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• Methods for multiple instances of agents for parallelization need to be provided

(from a shortcoming in ModelCenter and iSIGHT).

• Allow for growth potential when incorporating statistical (from ModelCenter),

optimization (from iSIGHT), and visualization toolboxes (from AML).

7.3.1 Enabling Technologies

As was stated before, in recent years there has been an explosion of technologies

developed to facilitate business-to-business data transfer and server-client application

interfacing which can be readily employed to aid an engineer in the development of

an open source distributed integrating framework. The following is a brief overview

of the key technologies chosen to form the backbone of the framework.

7.3.1.1 Java

Java is best explained from an excerpt from Sun's (the developers of Java) web site

[161]:

Java is a simple, object-oriented, distributed, interpreted, robust, secure,

architecture-neutral, portable, high performance, multi-threaded, and dy-

namic language.

Essentially what this is saying is that Java o�ers an object-oriented, non platform-

speci�c programming language that has built into the very structure of the language

the ability to develop parallelizable, distributed code. All of these attributes are

essential for the development of the distributed framework. These traits will allow

Java to be both the development language as well as the language that the designer

will program with to create the custom systems level analyses.

7.3.1.2 Extensible Markup Language

XML is a meta-markup language for text documents. The data is included as strings

of text marked-up by tags describing the data. There are two important features to
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XML which make it very useful in data transfer [57, 101].

Firstly, portability. Just like Java, XML is non-platform speci�c since it is merely

a text �le and can be directly transferred between platforms. Java and XML produce

�portable code, portable data�.

Secondly, interoperability. The XML standard [188] speci�es the format and struc-

ture of an XML �le but not the content of the tags, the strings, the attributes, etc.

An XML data structure or �le can de�ne airplane data as easily as it can contain a

conference paper, as long as it conforms to the formatting standards.

7.3.1.3 Simple Object Access Protocol

Like XML, SOAP is a standard [187]. SOAP allows for straightforward data transfer

protocol using HTTP (Hyper-Text Transfer Protocol) as the transport layer. The use

of HTTP helps to resolve complicated issues as �rewalls, ports, sockets, etc.

There are two implementations of the SOAP standard: Apache [166] and Mi-

crosoft. The Apache implementation speci�es two methods to invoke SOAP services:

RPC (Remote Procedure Call) and the message-based model. The former is used in

this research.

7.3.1.4 Apache Tomcat Application Server

Distributed object computing extends an object-oriented system which allows objects

to interact across heterogeneous networks and inter-operate as a uni�ed whole. The

workhorse of this distributed environment is the server. Servers act as an intermedi-

ary, brokering communication channels between the client and sever applications.

The Apache Tomcat Application Server [188] is an open source application web

sever that uses SOAP as a means of deploying servlets and web applications. Although

any application sever could be used for this function, the Apache Tomcat server was

chosen because it is open source and the May 2005 Netcraft Web Server Survey found

that 56% of the web sites on the Internet are using Tomcat, thus making it more
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widely used than all other web servers combined.

7.3.1.5 Agents and Models

Earlier work by Hale and Mavris (1999)[51] documented the history of frameworks

and the evolution to the new collaborative environment. All these frameworks try

to aid the engineer in complex design problems with solutions that require analysis

from several domains. The automation of the solution process requires control and

communication of domain analysis be provided by the framework [50, 52].

Within this framework, a key technology is the implementation of the agent. Hale

and Craig (1994)[49] added a new component to the agent: the model, and proposed

an updated de�nition:

An agent is a resource, which has been modeled and wrapped for inclusion

in a distributed design environment. The agent design requires a designer-

centered, bi-directional wrap, independent of proprietary boundaries and

capable of supporting increasing �delity models.

These agents can generate accountable design information. This includes the �what,

why, when, and where� information needed as decision-support for the designer. The

result is intelligent agents, which e�ectively conceal the proprietary codes and data

formats from the end user. The schematic in Figure 24 depicts the breakdown of

these agents.

The wrapper is a bi-directional information exchange layer which shields the re-

source and model from the computing backbone. The main role of the wrapper is

data exchange and conditioning.

The second element, the model, adds context to the information provided by

the agent. Models include behavior and implementation information. The former is a

mathematical formulation, engineering principle, or geometrical construction describ-

ing explicitly what the resource does. The latter captures execution characteristics:
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RESOURCE
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Figure 24: Notional Agent Con�guration

variable de�nition, �le descriptions, units, executions characteristics, and platform

dependencies.

Using Java, this model is easily generated by the Javadoc utility. Javadoc is

the tool for generating API documentation in HTML format from �doc� comments

in source code. These �doc� comments include, but are not necessarily limited to,

identi�cation of parameters and methods provided by the wrapper and resource.

Lastly, the resource is the computer program. Typically these are o�-the-shelf

analysis codes. Examples include ASTROS, ANSYS etc. Basically any command line

executable code can be wrapped with an agent and exposed for distributed computing.

7.4 Framework Design and Components

As in any object-oriented coding project, the extensibility and ease of reuse of the

code hinges on the initial design of the class structure. For stand-alone programs, the

designer must decide how much extensibility is necessary or desired. Non-extensible,

one-time use code can often be a quick and dirty design just to satisfy current needs.

On the other hand, building extensibility into the class structure requires a higher

level of elegance. The design of a systems analysis API must be formulated with

extensibility as the primary driver of the design because the designer will want to be

able to easily incorporate new systems analysis methods and agents into the API as
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they are developed. Also, the framework is designed to be a toolbox of functionality,

thus reuse is inherently implied.

There are many published references on object-oriented design patterns and heuris-

tics [38, 72, 95, 129] available to the designer to aid in the development of extensible

class structures. Ultimately though, all of these patterns and heuristics employ one

or both of the fundamental reuse mechanisms that form the basis of all true object-

oriented programming languages: composition and inheritance. The level of reuse and

extensibility exhibited by a design are directly related to the intelligent application

of inheritance and e�cacious use of composition.

In the design of the class structure for the distributed framework, there were two

important heuristics on the use of inheritance and composition that were employed:

1. Dependencies or associations between classes should be linked through interfaces

or abstract classes not concrete classes.

2. Build complex functionality into a class through the aggregation of simpler,

functionality focused classes.

Granted, these rules of thumb can not be blindly followed. For instance, a major

caveat associated with item one is related to the depth of the inheritance hierarchy

used to de�ne the interface and functionality of the actual concrete subclasses. The

deeper the hierarchy, the more di�cult it is for the user to navigate the class structure

and determine at what level of abstraction to program to.

Item two on the other hand has the drawback that developing too focused of class

functionality can result in an explosion of the number of classes. Thus it is necessary

to decide the level of functionality that a class contains before it is advantageous to

spawn some of that functionality o� into a new class. Once spawned, composition

can then be used to include the new class functionality into the original class, thus

completely hiding the details of the implementation to the user class.
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Figures 25 and 26 show UML (Uni�ed Modeling Language) [95] diagrams outlining

the basic class structures for the client and the sever side APIs in the distributed

framework. Examining these two �gures will show clear examples of how these two

object-oriented design heuristics where used.

7.4.1 The Client Side API

As can be seen in Figures 25 and 26, the core functionality of the distributed frame-

work can be easily divided into two separate collections of classes, the client and server

APIs. The client API is the library of classes which the user directly programs with

when performing a systems analysis. The main functionality of this API is primar-

ily centered around one type of class, the design space explorer (DSE) classes. The

Code classes and the Metamodel classes are simpler in nature and designed to work

in conjunction with the execution of the design space explorer classes. Note - Figure

25 is actually a subset of the total client side API. This subset was chosen as a rep-

resentative portion of the actual API because it demonstrates all of the fundamental

design issues that went into the creation of the client side API.

The main focus of Figure 25 is the AbstractDSE class. The AbstractDSE is an

abstract class that provides all of the core functionality that all DSE subclasses will

need. This includes data management tasks such as persistence and data storage,

serial and parallel execution of code and metamodels, and creation of the XML input

�les for the Code classes. The only functionality that the AbstractDSE class is lacking

is the intelligence to perform a speci�c design space exploration. DoeDSE is an

example of a class that inherits from the AbstractDSE class and adds the ability

to conduct a design of experiments (DoE) analysis around any Code or Metamodel

object.

Other DSE type classes that are not shown on Figure 25 but are included in the

actual client side API include a Monte Carlo class, various types of optimizer classes
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Figure 25: Client Side UML Diagram
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Figure 26: Server Side UML Diagram
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(i.e. Genetic Algorithm and Sequential Quadratic Programming optimizer classes)

and a one shot code executor class that performs a single execution of a code (this

is handy for debugging a code class and its distributed agent counterpart). And as

was stated earlier, all these classes inherit from a similar parent class, namely the

AbstractDSE class.

The reason for this inheritance hierarchy is due to the nature of how one would

perform many of the operations encapsulated in the design space explorer classes.

Fundamentally all design space exploration methods revolve around the same three

tasks:

1. Selection of settings for the design variables.

2. Generation of an XML input �le for a Code object (based on the selected design

variable values).

3. Collection (and manipulation if necessary) of the resultant responses from the

execution of the Code object.

For instance, the selection of the design variable settings for a design of experiments

is done a priori and stored in an array (or in this case in a DoeDataHandler object),

and each run of the DoE represents a new unique setting to execute the Code object

with. A Monte Carlo simulation and an optimization process on the other hand both

generate the settings of the design variables on the �y as they are interacting with

the code object. Regardless, all of these design space exploration techniques still

need to generate design variable settings, create XML Code object input �les and

collect/interpret the resultant response data.

Based on this abstraction of the core functionality, one can quickly see two primary

bene�ts of this approach:

• Any error correction due to bugs and improvements to this code only need to be

165



done in one place and will automatically propagate to the inheriting subclasses

(after recompilation that is).

• Any future class that codes to the interface of the AbstractDSE parent class

can substitute one DSE object for another with out changing any code, this

promotes �exibility in the API.

In addition to supplying its subclasses with core functionality, the AbstractDSE class

also de�nes several overloaded, abstract methods1 that every class that inherits from

the AbstractDSE class must implement. These abstract methods are the methods

that de�ne how each DSE subclass creates its next setting of design variables. Since

each of these execution methods will most likely be di�erent for each type of DSE

subclass, requiring that each inheriting DSE subclass provide its own under lying

implementation is all that can be initially de�ned.

As was stated before, the Code and Metamodel classes are simpler in nature

and designed to work in conjunction with the execution of the design space explorer

classes. The concrete Code subclasses (i.e. the AnsysCode class in Figure 25) act as

the front end bridge between the design space explorer objects residing on the client

computer and the Agent objects residing on the server. To the user, a Code object is

merely a local implementation of their favorite code to be used in conjunction with

any DSE object. They need not have any idea as to how or where the actual code is

implemented.

7.4.2 The Server Side API

The primary functionality of the client side API was centered around the design space

explorer classes. On the server side, the only classes that are exposed by the Tomcat

sever are the Agents. Thus designing an agent interface and class structure that can

1It is these method de�nitions, lacking any de�ned or underlying implementation, that make the
AbstractDSE class an abstract class.
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be extended to wrap any engineering code is particularly important.

Creating an extensible class structure that can be wrapped around any command

line executable engineering code really comes down to two primary tasks:

• Determination of the common tasks that all agents will need to perform to

execute an engineering code

• Creation of a collection of classes that minimizes the amount of new code that

needs to be generated for each new agent to be added

Identi�cation of the common tasks that all agents will need to perform, again can

be broken down into several subparts. This list of functionality de�nes much of the

basic internal structure that all agents will be built upon. Figure 26 visually echoes

this list.

1. Update the agent's internal �XML'ized� 2 engineering code input �le via an

InputUpdater type class.

2. Convert the updated, �XML'ized� input �le into a native code input �le via an

InputBuilder type class.

3. Execute the engineering code with the newly created, native input �le via an

Executor type class.

4. Extract the desired data from the code output text �le and summarize the

collected data into an XML �le to be returned on the SOAP call via an Out-

putParser type class.

Since each agent will have to perform these basic tasks in one form or another and

each task is wholly di�erent in nature, it is advantageous to separate each task into

2An �XML'ized" input �le, refers to an engineering code input �le that has been manually con-
verted into an XML �le, with XML tags surrounding and identifying the input variables that are to
be updated.
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its own class, thus using composition to build these functionalities into the agent.

Using composition in this way is a direct adherence to heuristic two, de�ned at the

beginning of this section.

Now that the basic functionality and structure of the agent has been laid out,

agent design task two comes into play - minimize the amount of new code that needs

to be generated to create a new agent class. This design task is not so much related to

the class structure of the agent, but rather at the actual underlying implementation

of the agent and how that implementation can be extended to work for all agents.

At this point it is important to discuss the common paradigm used to update

and/or create a text input �le for an engineering code and how this new agent struc-

ture deviates from that paradigm. Typically one of two approaches are used, either

the programmer parses the input �le into an in-memory data structure that can be

updated and then written out as an updated input �le or a complicated text �le pars-

ing and updating scheme is created that can be applied to any input text �le (this is

the approach that ModelCenter uses). Approach one inherently violates agent design

task two as a new parsing and data structure would need to be created for every type

of agent subclass. Approach two, on the other hand, is much more in-line with agent

design task two because it can be applied to just about any engineering text input

�le. However, this still requires that the engineer create a fully robust text �le parsing

and updating scheme. This is the approach that the author initially examined but

abandoned due do implementation di�culties.

An alternative approach to the text �le parsing and updating scheme was alluded

to earlier, namely create an XML'ized input �le and transform that �le into a native

text input �le. Initially, this new approach would actually seem to be more di�cult

because now two classes are needed rather than one. One class for the updating

of the XML'ized input (an InputUpdater type class) and another class to convert

the XML'ized input �le into the native input �le (an InputBuilder type class). This
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however does not actually turn out to be the case. As it turns out, each class in and

of themselves are relatively easy to create. The primary reason for this is due to the

use of the XML data structure employed for the new input �le.

Creating a robust text �le parser is not a particularly easy task, however by using

XML as the base data structure for the XML'ized input �le, the framework can use

readily available, professionally developed XML parsers and manipulation APIs to

update and convert the XML'ized input �le into a native text input �le. This is

the primary reason that XML was chosen as the native data format for the entire

framework architecture.

An additional bene�t to using XML as the base data structure is related to the

type of information that can be included in an XML �le. An XML �le contains not

only the desired XML'ized input �le information but it can also include metadata on

that information. This metadata can take the form of information on converting the

XML �le to the native text �le, it can also be used to embed information into the

�le to add intelligence to the Agent. Traditionally metadata for a native text input

�le would take the form of comments and the like (that is if the engineering code

supports comments in its input �les), however this XML metadata can be much more

in depth and allow the developer/user to categorize and use it in any conceivable

fashion. Plus, the beauty of this is that the XML parser and InputUpdater class will

totally ignore any additional metadata that it does not know what to do with. Thus,

the metadata can just be for the user or creator of the XML'ized input �le.

Earlier, it was stated that two new classes would need to be created to facilitate

this new input �le updating and creation paradigm. However, due to the rather

generic nature of the new XML'ized input �le (which can be applied to any text �le

based engineering code input �le) the InputUpdater class can be used to update any

XML'ized input �le. Thus, the user will only need to create the InputBuilder class for

each agent, but even this class can be abstracted to work for any Agent of a particular
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type (i.e. ANSYS, ASTROS, etc.).

7.5 Summary

An overview was given of the di�erent alternatives to an integrating computational

framework. The seven conceptual elements of a good MDO environment were iden-

ti�ed and it was illustrated that these elements can be captured with a design tool

made of open-source elements.

In this chapter a distributed computing framework was introduced which incor-

porates the latest computational techniques and more importantly, a mind-set em-

phasizing �exibility, modularity, portability, and re-usability. With the described

object-oriented tools, such a framework can now truly be built for the �rst time by

non-computer scientists.

The chapter illustrates that usage of open-source tools are a valid alternative

to commercial packages. Added advantages are the access to source code which is

extremely useful when developing new design space exploration processes such as the

ones developed for this thesis. It is important to stress however that for out-of-the-

box performance the commercial applications can not be beat. They perform very

well and for most problems are the optimal solution.

Growth potential of the open-source framework was allowed for from the outset.

Future work will include adding new design space explorer functionality, focusing more

on the optimization and statistical capabilities of the framework. These improvements

will add signi�cant computing and analytical force and make the comparison with the

commercial alternatives much more competitive.

The framework laid out in this chapter will form the core of the tool set used

to collect and analyze the data for the validation of the hierarchical design space

exploration process. Unfortunately, not all of the code that was developed for the

new framework can be included in the thesis, doing so would add roughly 200 more
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pages to the appendices.
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Chapter VIII

VALIDATING THE HIERARCHICAL DESIGN

SPACE

EXPLORATION PROCESS

This chapter applies the hierarchical design space exploration (Hi-DSE) process de-

veloped in Section 6.3 to the two test cases discussed in Section 6.4.3. For each test

case a thorough description of the model used with the Hi-DSE process will be given,

followed by a thorough review of actually applying the Hi-DSE process to the model

and the results of the validation process.

8.1 Test Case 1

8.1.1 The Hollow I-beam Test Model

The hollow I-beam test model is a parametric, �nite element model that is a stand-in

for the actual nozzle model. Its primary development goal was to facilitate testing and

development of the lumped parameter modeling (LPM) and graph-based partitioning

(GBP) methods.

The hollow I-beam is spatially partitioned in a similar fashion as the nozzle model

and has all of the same characteristic variables as the nozzle model. The model is

partitioned into six spatial zones. In each spatial zone, the wall thicknesses, internal

and external temperatures, and the internal and external heat transfer coe�cients

are allowed to vary. Thus the model has 30 independent variables. The responses are

also collected in a zonal fashion. The maximum temperature and stress from each

zone is collected, giving the model 12 independent responses. The total run time for
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the hollow I-beam model is approximately 1.5 minutes on a vintage 2006 computer.

Section 6.4.3 stated that �nite element models can exhibit numerical noise sim-

ply by modifying the �nite element mesh applied to model. The fully parametric

formulation of the model helps to alleviate this problem. A parametric de�nition

enables the use of a prede�ned, mapped mesh. A mapped mesh is a �nite element

grid that is uniquely de�ned based on the geometric de�nition of the model. Thus as

the geometry of the model changes (e.g. by changing the wall thickness of a zone),

the essential layout of the grid does not change. Granted the size and spacing of the

elements and nodes do change but their relative relationship to one another and to

the model does not. A mapped mesh is in contrast to a free-form mesh, which are

typically generated automatically by the �nite element code and will change from one

run to the next. The numerical noise associated with variations in the �nite element

grid discussed in Section 6.4.3 is primarily associated with free-form meshes.

Figure 27 is a rendering of the hollow I-beam test model with the various ge-

ographic zones labeled. The complete ANSYS APDL [5] macro for creating and

analyzing the model can be found in Appendix C.

8.1.2 Applying the Hi-DSE Process to the I-beam Problem

This section will outline the main points of applying the hierarchical design space

exploration process to the hollow I-beam test case. Not all of the steps of the process

will be explicitly outlined, only those that are either signi�cant deviations from stan-

dard design and analysis of experiments or are important for independent recreation

of the validation process.

The �rst step in any design space exploration process is to de�ne the desired

variables and responses to investigate and the ranges over which those variables will

be varying. Table 4 summarizes the I-beam input variables and ranges. Each of the

sub-analyses all use these basic de�nitions.
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Figure 27: The Hollow I-beam Test Model

Table 4: I-beam Variable De�nitions and Ranges
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The next step in the Hi-DSE process is to create the design of experiments to use as

the initial screening test to determine the system partitions. For the I-beam model,

the screening test was a hybridized design consisting of a resolution IV fractional

factorial and an �optimal� latin hypercube of the same size. The fractional factorial

design contained 30 factors and 63 runs. The design was created using Design Expert

7.0 [158]. The optimal latin hypercube was �optimal� in the sense that the design was

created to minimize the pair-wise correlations between the columns. Matlab 7.0.1's

�lhsdesign� function was used to create the design. It too has 30 factors and 63 runs.

Thus the hybridized screening design contained a total of 126 runs (the �rst 63 were

the fractional factorial and the last 63 the optimal latin hypercube).

The data collected from the screening test was used to determine the sparsity of

the I-beam system. As described in the Hi-DSE process in Section 6.3, an ANOVA

analysis was used with a main e�ects only linear model to determine the signi�cant

e�ects for each response. The non-partitioned graph of the system can be seen in

Figure 28.

The picture on the right hand side of Figure 28 is a sparse matrix plot of the sys-

tem. A sparse matrix plot is a square plot were the vertices of a graph are enumerated

along both the rows and the columns. Each grey box represents a connection or edge

between two vertices. For instance, row one has a grey box in the 19th column, thus

there is an edge connecting vertex 1 and vertex 19 in the graph on the left hand side

of Figure 28. The graph and sparse matrix plot contain exactly the same data but

provide two di�erent ways to view it. The usefulness of the sparse matrix plot will

be shown when the partitions of the system are created.

What is interesting about the graph in Figure 28 is the four non-connected vertices

shown in the upper right hand corner of the graph. Those four vertices are variables

that do not have a signi�cant impact on any of the 12 responses of the system. Those

variables are: external heat transfer coe�cient for zone 1 (vertex #7), external heat
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Figure 28: I-beam System Graph and Matrix Plot

transfer coe�cient for zone 2 (vertex #8), internal heat transfer coe�cient for zone

6 (vertex #6) and internal heat transfer coe�cient for zone 8 (vertex #24).

Typically in a screening analysis, any variables that are not signi�cant across all

responses are left out of design of experiments for the subsequent data collection and

model building process. Thus the initial screening data must be discarded. Alterna-

tively, if all of the variables were found to be signi�cant, then the initial screening

data could simply be augmented with new data to create the full model. This would

be 100% data utilization.

Recall that one of the primary goals of the development of the Hi-DSE process was

to create models as e�ciently as possible, thus any data that is collected should be

used to create the lumped parameter model. Consequently all the variables will need

to be assigned to partitions in the subsequent analyses. The existence of insigni�cant

variables possess some problems for the min-cut algorithms used to partition the

system graph. Because the insigni�cant variables do not contain any connections to

any other variables, they are not part of any sub-graphs of the system. Thus, the
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Figure 29: Interactions Missed and Runs Saved per Partition Count

min-cut algorithms will randomly assign unconnected variables to a sub-graph. When

this occurs, it is in the best interest of the model builder to �intelligently� re-assign an

unconnected variable to an appropriate subgroup. Note - a sub-graph is synonymous

with partition or variable subgroup.

With the sparse nature of the system determined, the system partitioning process

can occur. Since it only takes a second to create a potential set of partitions, es-

sentially all of the partitions can be created. The question becomes, which set of

partitions should be chosen? Figure 29 is a plot of projected runs saved and potential

interactions captured versus partition count for the I-beam system.

In Figure 29, the projected runs saved is estimated by comparing the current

number of runs from the screening test plus the additional runs required for a set of

partitions to the projected total number of runs for the complete system. For a given

number of variables, the runs required can be roughly estimated using an estimate of

the runs required of a quadratic model. In Figure 29, the fraction of runs saved for a

given number of partitions is estimated with Equation 28.
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f = 1−
Nscreening +

∑m
i=1

(ni+1)(ni+2)
2

(ntotal+1)(ntotal+2)
2

(28)

where,

f = fraction of projected runs saved for a given partition set

Nscreening = current number of runs for the screening DoE

ni = variable count for subgroup, i

m = the number of subgroups in a set of partitions

ntotal = total number of variables for the system

In Figure 29, the fraction of interactions captured is estimated by Equation 29.

The number of �potential missed interaction� is essentially the number of edges cut

by the min-cut algorithm.

f =
Itotal − Imissed

Itotal

(29)

where,

f = fraction of interactions captured for a given set of partitions

Itotal = total number of potential interactions in the system

Imissed = number of potential interactions missed due to partitioning

Using Figure 29 as a guide, after seven subgroups of variables, the fraction of

interactions captured starts to drop o� quickly and the potential run savings does

not increase much. Based on Baker's analysis of the impact of missed interactions on

the accuracy of the UTE method1, it is logical to assume that the more interactions

that are directly neglected, the more the accuracy of the model will be negatively

impacted. Thus it seems from Figure 29 that seven is the maximum number to

consider. Now the question is, which of these to choose?

1See Sections 3.4 and 3.5
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Figure 30: Partitioned Sparse Matrix Plots

This is where engineering intuition and considerations of the total computational

budget for the analysis come into play. Logically, fewer numbers of subgroups equates

to more directly captured interactions but also implies a larger computational expen-

diture. To aid in the decision making process, Figure 30 shows the matrix plots of

the I-beam system for the �rst six partition sets. From the upper left to lower right,

the number of subgroups per partition set is two, three, four, �ve, six and seven

subgroups. In Figure 30, any grey square that is not included in one of the block di-

agonal structures is a potential interaction that will not be captured by the proposed

partition set.

Recall in Section 6.4.2, one of the proposed means of validating the graph-based

partitioning method was to compare the accuracy of the partitions determined via

the GBP method with partitions based on engineering intuition. The two engineer-

ing intuition partitioning schemes were variable-type partitions and subsystem type
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partitioning. As it turns out, the min-cut six and min-cut seven partitions are almost

exactly the same as the subsystem type partitioning scheme created using engineering

intuition!

There are a couple of minor di�erences between the subsystem partitions and

the min-cut partitions but the di�erences are primarily due to how the min-cut al-

gorithm assigned the unconnected variables to subgroups. Using a little logic and

re-assigning the unconnected variables to more appropriate subgroups, the mincut-6

partitions produced very close to the subsystem partitioning scheme. The mincut-7

partitioning scheme also produced a subsystem partitions, but only amongst the con-

nected variables, the unconnected variables were actually grouped together in their

own separate subgroup. For a complete summary of the min-cut partitioning results

see Appendix A. The summary in Appendix A includes the variables assigned to

each partition, the partitioned graphs as well as the sparse matrix array for each set

of partitions. The variables per partition in Appendix A are the exact same grouping

that the author used to assess the accuracy of the min-cut partitions.

Having collected the initial screening data and determined the sets of partitions to

use for the validation process, the individual subgroup analyses can now be performed.

Each subgroup of variables identi�ed by the graph-based partitioning were evaluated

using an appropriately sized minimum resolution V CCD2 from Design Expert 7.0.

While one subgroup was being analyzed the variables assigned to the other groups

were held constant at their nominal values. After the data for each of the subgroups

was collected, Design Expert 7.0 was then used to create standard quadratic response

surface equations (RSE). These RSEs represent the ỹi = gi(xi) functions discussed in

Section 6.1.

With the ỹi = gi(xi) functions created for each subgroup, the ỹ regression arrays

2CCD means central composite design. See Myers (2002) [109] for a good discussion on central
composite designs.
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Table 5: Variable-type and Subsystem Partitions for I-beam Model

can be created using the initial screening data. The resultant regression arrays were

then analyzed in Design Expert 7.0 to create the y = f(ỹ) functions for each of the

twelve responses of the system.

As a comparison for validation purposes, the min-cut based lumped parameter

models were compared to two full scale all-at-once analyses as well as the LPMs cre-

ated using the variable-type and subsystem partitioning schemes. Table 5 shows the

partitioning of each of the variables for the variable-type and subsystem partitioning

methods.

The two full scale metamodels were created using a 527 run minimum run reso-

lution V CCD from Design Expert 7.0 and a 527 run optimal latin hypercube from

Matlab's �lhsdesign�. These two full scale models were used for comparison because

they represent models created using more traditional response surface methodology

(RSM)[109]. In fact, the minimum run resolution V CCD model is considered to be
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the baseline that all the other models will be compared to.

To keep the comparison of one method to another as objective as possible, the

exact same model building process was used in every case. The metamodel creation

process used Design Expert 7.0 as the analysis engine and all metamodels were cre-

ated using a standard quadratic response surface equation. Each RSE was created

without using Design Expert's stepwise regression, thus each metamodel is a full rank,

quadratic RSE. Full rank meaning that every term in a standard quadratic RSE is

estimated.

The actual numerical accuracy of the traditional RSEs and the LPM based meta-

models was conducted using 5,000 random, o�-design points from the actual I-beam

model. For each of the 5,000 points, the predicted value from the metamodel was

compared to the actual value from the I-beam test model and the relative di�erence

between the two estimates was used to characterize the error.

εi =
Ai − Pi

Ai

(30)

where,

εi = relative error for o�-design point, i

Ai = actual value for o�-design point, i

Pi = predicted value for o�-design point, i

Using the relative error rather than the absolute error, εi = Ai−Pi, provided a nice

means to compare errors between metamodels but it also allowed for error comparisons

to be conducted between responses for the same metamodel type because the relative

error value is non-dimensional. In addition, the non-dimensional relative error also

allowed for the accuracy of a given metamodel to be assessed for all the responses at

one time. The response combined error or cumulative error measurement provided a

clear means of deducing which partitioning scheme was the overall best. The reason
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that this is important is that a set of partitions may be optimal for one response

and not another, and in general we want a set of partitions that is �good� across all

responses at the same time.

Table 6 is a complete summary of the cumulative error of the results for each

of the metamodels compared in this assessment. The �rst or top sub-table is the

total cumulative error summary for across all twelve responses at the same time,

sub-table two is the cumulative error for the stress responses and likewise sub-table

three is the cumulative error for the temperature responses. For the complete error

results, Appendix A summarizes results for each metamodeling method applied to

the I-beam problem broken down by individual response. In addition, actual versus

predicted charts and the histograms of the error for each response are shown for every

metamodel type.

In Table 6 the primary means of comparing one method to another is via the

�variance ratio� column. In every sub-table, the variance of one metamodeling method

is referenced to the variance of the baseline method, the minimum run resolution V

CCD analysis. The variance ratio is calculated as the ratio of the variance of the

baseline to the variance of the alternative method. This means that a variance ratio

greater than one implies that the baseline method has a wider distribution of error

than the alternative method. For two error distributions with equals means, a wider

error distribution is not as good as a narrower error distribution. The wide versus

narrow implies that the wider distribution is more likely to have higher error rates

for a random o�-design point than the narrower distribution.

Examining the histograms of the error values in Appendix A for each response and

metamodel type will show that each relative error distribution is essentially centered

around zero, is symmetrical and roughly normally distributed. Consequently the 95%

con�dence bounds for the variance ratios of the error shown in Table 6 can be used to

determine if one method is statistically more accurate that another [17]. Statistical
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Table 6: I-beam Model Error Summary
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di�erence implies that the con�dence intervals do not overlap, if they do then one

can not say that the error rates are statistically di�erent [59]. Note however, the

very large data set that was used to create the error data results in considerable

statistical power for the variance ratio test. With enough data, two essentially equal

distributions can be shown to be statistically di�erent, consequently one needs to

compare the con�dence intervals on the variance ratios as being �essentially di�erent�

and not necessarily statistically di�erent [59].

8.2 Test Case 2

8.2.1 The Torsional Vibration System Test Problem

A closed form model based on a torsional vibration system (TVS) is also proposed for

the validation process. The TVS model is a doubly cantilevered system comprised of

two disks and three shafts. The two disks are made of steel and aluminum and the

shafts are made of steel, titanium and aluminum. The TVS model has 18 variables

and 3 responses (high and low natural frequency and system weight) and the entire

behavior of the system can be captured in a series of closed form equations. Figure

31 is a basic sketch of the TVS system.

The closed form nature of the TVS model actually provides a nice test case for

assessing the graph-based partitioning method. Since all of the equations are known a

priori, the exact sparse matrix representation of the system can easily be created. The

exact sparse structure can then be compared against the sparse structure predicted

from the graph-based partitioning analysis. This will provide further validation of

the graph-based partitioning method.
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Figure 31: Torsional Vibration System Test Model

The following are all of the equations that de�ne the torsional vibration system.

ki =
πGidi

32li
i = 1 . . . 3 (31)

where,

ki = shaft i spring constant, [lbs/in2]

Gi = shaft i modulus of rigidity, [lbs/in2]

di = shaft i diameter, [in]

li = shaft i length, [in]

Mj =
πρjtj

g

(
Dj

2

)2

j = 1 . . . 2 (32)
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where,

Mj = disk j mass , [lbs · sec2/in] or [slug]

ρj = disk j density, [lbs/in3]

tj = disk j thickness, [in]

Dj = disk j diameter, [in]

g = acceleration due to gravity, [386.4 in/sec2]

Jj =
1

2
Mj

(
Dj

2

)2

j = 1 . . . 2 (33)

where,

Ji = disk j mass moment of inertia, [slug · in2]

a = 1

b =
k1 + k2

J1

+
k2 + k3

J2

(34)

c =
k1k2 + k2k3 + k3k1

J1J2

where,

a = intermediate constant

b = intermediate variable, [1/sec2]

c = intermediate variable, [1/sec2]

ωlow =

(
−b−

√
b2 + 4ac

2a

)1/2

flow =
2π

ωlow

(35)
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where,

ωlow = low frequency period, [sec]

flow = low natural frequency, [radians/sec]

ωhigh =

(
−b +

√
b2 + 4ac

2a

)1/2

fhigh =
2π

ωhigh

(36)

where,

ωhigh = high frequency period, [sec]

fhigh = high natural frequency, [radains/sec]

W =
3∑

i=1

πλili

(
di

2

)2

+
2∑

j=1

πρjtj

(
Dj

2

)2

(37)

where

W = total system weight, [lbs]

λi = shaft i density, [lbs/in3]

8.2.2 Applying the Hi-DSE Process to the TVS Problem

This section will outline the main points of applying the hierarchical design space

exploration process to the torsional vibration system (TVS) test case. Not all of the

steps of the process will be explicitly outlined, only those that are either signi�cant

deviations from standard design and analysis of experiments or are important for

independent recreation of the validation process.

As we will see from this validation process, the TVS model is not a good candidate

for use with the Hi-DSE process. The primary reason that it was included was not

188



Figure 32: TVS Model True Graph and Matrix Plot

necessarily to show how good or bad of models the Hi-DSE method can create but

rather to characterize a system that is not well suited for partitioning.

To show why this is true, Figure 32 is the graph and matrix plot of the system of

equations for the TVS model summarized in Section 8.2.1. It is quite clear from the

graph that the TVS model is not a good candidate for partitioning. Primarily because

there are not any easily identi�able sub-graphs. In addition, the matrix plot is almost

completely one solid block of grey which implies that every variable is connected to

every other variable.

In light of this information, lumped parameter models can still be created for the

system although we would expect the resultant metamodels to be of poor quality.

To begin the Hi-DSE process with the TVS problem the initial screening data needs

to be collected. Table 7 shows the variables and ranges that were used for the TVS

model.

The initial screening design of experiments used to determine the sparsity of the

TVS model was a resolution IV fractional factorial design from Design Expert 7.0

combined with an optimal latin hypercube. The design consisted of 18 factors and

78 runs, 39 runs for the fractional factorial and 39 for the latin hypercube portion.

Using the data collected from the initial screening test, an ANOVA analysis with a
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Table 7: TVS Model Variable and Range De�nitions

Figure 33: TVS Model Experimentally Determined Graph and Matrix Plot

main e�ects only linear model was then used to determine the experimentally derived

graph of the system. The results of the ANOVA analysis actually showed that of all

the 18 variables, only the six variables associated with the disks had any signi�cant

impact on the variability of the the responses. Figure 33 is the graph and matrix plot

of the TVS system based on the ANOVA analysis.

Although Figures 32 and 33 do not look exactly the same, they both do have one

common characteristic, namely, the complete lack of any sub-graphs. The primary

similarity is the tight interconnectedness that both graphs exhibit.
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Table 8: TVS Model Variable-type and Subsystem Partitions

Clearly, by looking at the graph in Figure 33 one would expect the min-cut algo-

rithms to have troubles creating any meaningful partitions. For one, there are only

six interconnected variables. Secondly, the non-connected variables will be randomly

assigned to a subgroup. Thus the graph-based partitioning portion of the Hi-DSE

process is useless for this problem.

Earlier it was stated that lumped parameter models can still be created for the

system even given its strong interconnectedness. However, the partitions used with

the LPM process will be solely based on engineering intuition. To create lumped

parameter models of the TVS problem, the same variable-type and subsystem parti-

tioning schemes discussed for the I-beam problem will be used. Table 8 shows how

the variables are partitioned for each of theses partitioning schemes.

The accuracy analysis method used for the TVS problem was exactly the same as

the one that was used for the I-beam test case. 5,000 o�-design points were created

from the true model and the relative error of each of the metamodels was assessed.

Table 9 is the complete error summary for the TVS model analysis. The actual

versus predicted charts and the histograms of the error for each response are shown

191



in Appendix B for the TVS model analysis.

8.3 Discussion of the Test Case Results

This section will use the results of the applying the Hi-DSE process to the two test

cases to qualify the last of the un-addressed research hypotheses. First, Section 8.3.1

will address the following research hypothesis:

• Using the GCF method as a prototype, it is hypothesized that the intermedi-

ate to top-level mapping will indirectly account for any neglected interactions

between low-level design variables in disjoint groups.

Next, Section 8.3.2 will address the last two hypotheses. Those hypotheses are:

• It is hypothesized that a screening test using a low resolution DoE with ANOVA

can be used to determine the underlying sparse structure of the black box

system, which then can be partitioned using a graph-based min-cut algorithm.

• It is hypothesized that since the data from a screening test, which is to be used

to tear the system into disjoint subgroups, inherently contains the connectivity

information; this data can also be used to create the intermediate to top-level

mappings which are designed to account for the impact of system tearing.

8.3.1 Validating Hypothesis 2.1

The primary motivation behind hypothesis 2.1 was to �nd a means to account for

important interactions without resorting to variable redundancies between the parti-

tions. The reason being that while variable redundancies improve the accuracy of the

partitioned metamodel, they quickly negate any potential e�ciency improvements

that the method o�ers over traditional metamodeling approaches. Thus the lumped

parameter model was developed to indirectly account for missing interactions via
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Table 9: TVS Model Error Analysis Summary

193



the intermediate to top-level mappings while at the same time exhibiting excellent

e�ciency improvements over traditional methods.

Based on the results in Table 6, the lumped parameter model's means of account-

ing for the important yet missing interactions appears to be a good approach. For each

of the various partitioning schemes, the variance of the error of the resultant LPMs

across all of the responses is as good or better than that of the baseline method, the

all-at-once minimum run resolution V CCD. In addition, all of the LPMs perform

much better than the metamodels created using the other all-at-once approach, the

optimal latin hypercube based metamodels.

One point needs to be made concerning the di�erences in the results in the second

sub-table (the middle table) and the third sub-table (the bottom table ) in Table 6.

First, it seems that for the stress responses (the middle table), all of the LPMs are

su�ciently better than the baseline method with �rst place going to the mincut-6

partitions because it has good overall accuracy and the most run savings. Comparing

this to the temperature response results (bottom table), the LPM error results are

all over the board with no clear, best method.

However, the results stated in the table do not illuminate the whole picture.

Examining any of the temperature response �gures in appendix Section A.2.2 will

show that every single metamodeling method applied to the I-beam problem produced

actual versus predicted results that were excellent. Every model builder would be

elated as to have actual versus predicted charts that look that good. Consequently

only the stress responses are important for comparing one method versus another.

The individual stress response charts in appendix Section A.2.2 tell a di�erent

story, particularly the zone 5 and zone 7 stresses. For some of the partitioning

schemes, the resultant LPM zone 5 and zone 7 stresses are quite good and for oth-

ers they are not. For instance compare the zone 5 and zone 7 stresses between the

mincut-4 and mincut-5 partitioning schemes. Tables 10 and 11 in appendix Section
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Figure 34: I-beam Model Response Clusters

A.2.1 show that the zone 5 stress for mincut-4 partitions is better than that of the

baseline while the zone 5 stress for the mincut-5 partitions is worse than the baseline.

For the zone 7 stresses the trend is completely the opposite, the mincut-5 performs

better while the mincut-4 is worse. This seems to be a rather perplexing trend since

the I-beam model was designed to be completely symmetrical. As will be shown,

the variations are due to the di�erences between the two partition sets and which

interactions each set directly accounts for.

Figure 34 shows the locations of the clusters of nodes that each response was

taken from. These locations represent the maximum stress points in each zone for

the baseline model. The baseline model being the model resulting from setting each

of the input variables at their nominal setting. Nominal meaning the setting equal

to the average of a variable's maximum and minimum values in Table 4. The points

labeled �Fixed Point� in Figure 34 are the locations where the model was �xed to
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constrain the deformation at those points.

Examining the variable grouping for the mincut-4 and mincut-5 partitions in Fig-

ures 38 and 39 in appendix Section A.1, we can see that in the mincut-4 set, the zone

1 and zone 5 wall thicknesses are grouped together and in the mincut-5 set they are

not. This implies then that there is a direct zone 1-zone 5 wall thickness interaction

for the mincut-4 set but not for the mincut-5 set.

As it turns out, the wall thickness parameters have the single largest impact on

the stress responses, which makes perfect sense. Looking at Figure 34, we can see

that the zone 1 response cluster is located very close to the zone 5 response cluster.

Consequently it is not surprising that by not directly accounting for the zone 1 and

zone 5 wall thickness interaction, the mincut-5 partition set exhibits worse relative

error values for the zone 5 stress response.

Just the opposite can be shown for the zone 7 stress response. For the mincut-

5 partition set, zone 2 and zone 7 wall thickness are grouped together, and in the

mincut-4 partition set they are not. Thus we can see in Table 11 that the mincut-

5 partition set performs much better for zone 7 stress response while the mincut-4

partitions do not. Thus the missing, direct zone 2-zone 7 wall thickness interaction

is negatively a�ecting the accuracy of the zone 7 stress response for the mincut-4

partitions set.

Even though the relative errors for the mincut-5, zone 5 stress are higher than

that of the baseline, the actual overall error values are not particularly bad. Looking

at the error distribution for zone 5 stress in Figure 70 in appendix Section A.2.2, the

maximum error value looks to be about 9% relative error. It also appears to be some

what of an outlier. Examining the actual histogram data used to create that chart

shows that the maximum error recorded was 9.3% and there are only four points

out of 5,000 that have error values greater then 7.25%. In addition, the standard

deviation of the error for the mincut-5, zone 5 stress response is only 1.3 times as
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large as the baseline. The baseline zone 5 stress response standard deviation being

only 1.64%, thus in general, the mincut-5, zone 5 stress is not all that bad.

While an examination of the zone 5 and zone 7 stress responses seems to indicated

that missing interactions can explain why one set of partitions seems to do much better

than another; the same type of analysis for the zone 1 and zone 2 stress responses do

not lead to the same conclusion. It seems logical that since the zone 1 and zone 5

response clusters are so close, problems with the zone 5 stress responses should also

show up in the zone 1 stress responses. However this is not the case at all. Reviewing

Table 10 indicates that all of the partitioning schemes exhibit less error than the

baseline method for zone 1 stress. Likewise, since the zone 2 and zone 7 response

clusters are so close, the zone 2 stresses should exhibit similar error distributions as

zone 7 stresses, but again they do not.

Examining the results for all the other responses in Tables 10 and 11, it appears

that other than for the zone 5 and zone 7 stress responses, all of the lumped parameter

based models perform better than the baseline method. In addition all the LPMs have

anywhere from 18% to 45% run savings.

Moving on to the torsional vibration system test case results in Section 8.2.2.

Unfortunately the results for the LPMs are not nearly as good as they are for the

I-beam test case. But this was to be expected based on the graph of the system shown

in Figure 32. The graph in Figure 32 is that of a very tightly coupled system, there

are no obvious sub-graphs to partition the system into. Consequently both of the

partitioning schemes applied to this system performed quite poorly. One can then

draw that conclusion, that for tightly coupled systems, partitioned metamodels are

not a good choice for reducing the data required to analyzed the system. Tightly

coupled systems seem to be limited to metamodeling techniques that account for all

interactions directly.

In light of these examinations, it seems that reserved support can be given to
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hypothesis 2.1. It appears in general, that the lumped parameter models are able to

indirectly account for missing interactions and typically produce better results than

traditional methods. The argument that the LPMs are indirectly accounting for the

interactions is based on that fact that for most cases the LPMs perform as good

or better than the all-at-once approaches, and the all-at-once approaches inherently

account for these interactions. Thus the lumped parameter models must also be

accounting for these interactions.

Also the fact that Baker had to resort to using variable redundancies to get (assum-

ingly) equal accuracy with UTE method as compared with an all-at-once approach,

and the lumped parameter models do not, further supports the claim that the inter-

mediate to top-level mappings are accounting for these interactions. �Assumingly�

was added in the previous sentence because Baker did not actually quote the accu-

racy of the all-at-once method that he was using for comparison. Thus, it is assumed

that by adding the variable redundancies that he was able to match the all-at-once

accuracy with the UTE method.

The �reserved� support for hypothesis 2.1 is because in some cases, the lumped

parameter models do not work as well as one would like. Those cases seem to be

related to instances where strong coupling exists. Examples of those cases include

the entire torsional vibration system and to the apparently strong (yet not necessarily

symmetrical) coupling between the zones 1 zone 5; and zones 2 and 7 in the I-beam

test case.

Assertion: Baker showed that important, neglected interactions do have a negative

impact on the overall accuracy of a partitioned metamodel.

Assertion: Adding variable redundancies between the partitions improved the ac-

curacy of the UTE metamodel but did so at the cost of degraded e�ciency of

the method.
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Research Question 2.1: Is there a way to account of potentially important inter-

actions without resorting to variable redundancy between the partitions?

Research Hypothesis 2.1: Using the GCF method as a prototype, it is hypothe-

sized that the intermediate to top-level mapping will indirectly account for any

neglected interactions between low-level design variables in disjoint groups.

Validity of Hypothesis 2.1: Based on the accuracy results of the I-beam problem,

it appears that the lumped parameter models are able to indirectly account for

missing interactions and typically produce better metamodels than traditional

methods. This statement is based on the fact that the traditional all-at-once

methods inherently capture all important interactions.

Although for tightly coupled systems such as the TVS model, the lump para-

meter model is not a good candidate for creating partitioned metamodels.

8.3.2 Validating Hypotheses 3.1 and 3.2

This section will address the last two un-addressed hypotheses in this thesis. Those

hypotheses are:

• It is hypothesized that a screening test using a low resolution DoE with ANOVA

can be used to determine the underlying sparse structure of the black box

system, which then can be partitioned using a graph-based min-cut algorithm.

• It is hypothesized that since the data from a screening test, which is to be used

to tear the system into disjoint subgroups, inherently contains the connectivity

information; this data can also be used to create the intermediate to top-level

mappings which are designed to account for the impact of system tearing.

First hypothesis 3.1, yes it does appear that a low resolution screening test can be used

to determine the underlying sparse structure of system, and actually it seems to work
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pretty well. Essentially this hypothesis is concerned with using a graph to visualize

the results from an ANOVA analysis across all responses at the same time. The whole

goal of ANOVA is to determine which factors are important to which response. Since

most factors are rarely important to all the responses, creating a sparse matrix with

these results is quite straight forward. It is actually kind of surprising that no one in

the literature seems to have combined ANOVA with graph theory before.

Comparing the true graph (Figure 32) and the experimentally derived graph (Fig-

ure 33) of the TVS problem shows the strength of the method. The true graph obvi-

ously shows all of the potential interactions, whether they are signi�cant or not. The

experimental graph on the other hand not only shows the interconnectedness between

the important factors, but also separates the non-signi�cant factors from the signif-

icant ones automatically. Thus model builder immediately knows how to proceed.

If the graph is tightly coupled, weed out the insigni�cant factors and proceed with

an all-at-once approach. If the graph contains several clear sub-graphs, partition the

system and apply the Hi-DSE process to create a lumped parameter model.

As far as the use of the min-cut algorithm is concerned. It seems that for systems

that are good candidates for partitioning, such as the I-beam problem, the resultant

partitions produced will work well with the lumped parameter model. The results in

Table 6 from Section 8.1.2 show that in general all of the sets of partitions created with

the min-cut algorithm produce LPMs that are as good or better than metamodels

based on traditional metamodeling approaches. Also the min-cut produced two sets

of partitions that essentially matched those created using engineering intuition.

Assertion: A systems decomposition method for sparse systems is a logical means to

partition the inputs for large scale metamodeling, however there is not enough

known about the initial sparsity of the system.
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Research Question 3.1: Given the black box nature of analyses used in metamod-

eling, how can their underlying sparse structure be determined?

Research Hypothesis 3.1: It is hypothesized that a screening test using a low

resolution DoE with ANOVA can be used to determine the underlying sparse

structure of the black box system, which then can be partitioned using a graph-

based min-cut algorithm.

Validity of Hypothesis 3.1: Yes, a low resolution design of experiments can be

used with ANOVA to determine the underlying sparse nature of the system.

Combining the results of ANOVA with graph theory provides the model builder

with a clear path of how to proceed with any subsequent model building. If the

graph is tightly coupled, weed out the insigni�cant factors and proceed with an

all-at-once approach. If the graph contains several clear sub-graphs, partition

the system and apply the Hi-DSE process to create a lumped parameter model.

In addition, based on the accuracy results of the I-beam test case, the min-cut

algorithm will �nd good sets of partitions to use with a LPM.

Using the discussion from Section 8.3.1 and the results of addressing hypothesis 3.1,

validating hypothesis 3.2 is quite straight forward. Section 8.3.1 showed that in

general the lumped parameter model's means of indirectly accounting for interactions

via the intermediate to top-level mappings did create accurate metamodels. Thus

it appears that the inherent connectivity information contained in the screening test

data was transferred to the intermediate to top-level mappings. In addition, the same

data that was used to create the partitions was also used to create the intermediate

ỹ regression arrays. Consequently hypothesis 3.2 is indeed a true statement.

Assertion: The use of the data from a screening test is proposed to perform two

di�erent operations in the new large scale metamodeling method: one for par-

titioning or tearing the system and another for determining the intermediate to
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top-level mappings.

Research Question 3.2: Is it possible to use the same screening test data, that

was collected for use with the lumped parameter method, to also determine the

sparse nature of the system for partitioning?

Research Hypothesis 3.2: It is hypothesized that since the data from a screening

test, which is to be used to tear the system into disjoint subgroups, inherently

contains the connectivity information; this data can also be used to create the

intermediate to top-level mappings which are designed to account for the impact

of system tearing.

Validity of Hypothesis 3.2: It does appear, that based on the accuracy results of

the min-cut based lumped parameter models for the I-beam test case, the same

data that is used for the graph-based partitioning analysis can also be used to

create the intermediate to top-level mappings without any signi�cant impact

on the accuracy of resultant the lumped parameter model.
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Chapter IX

CONCLUSIONS AND OBSERVATIONS

9.1 Review of Research Questions and Hypothe-

ses

This section outlines a map of the thesis built around the research questions and

hypotheses identi�ed throughout the entire thesis. Each research question will be

stated in context to the section that it was initially posed in. Following that, each

research hypothesis will then been linked to the section that addressed the validity

of the speci�c research question/hypothesis.

The following research question and hypothesis were posed in Section 1.5 and

subsequently addressed in Section 2.4. The two assertions that spurred the subsequent

research question and hypothesis were based on the need to combine a multi-physics

�nite element analysis with an appropriate probabilistic design method to adequately

assess the probabilistic nature of the life of the nozzle. The statement of the hypothesis

was made based on the author's experience of using probabilistic design methods used

with �nite element models.

Research Question and Hypothesis:

Assertion: A spatially partitioned �nite element model was created to address

the complex operating environment that a nozzle is exposed to. This model

has 52 variables, 255 responses and takes 3.5 hours to run.

Assertion: To capture the probabilistic nature of the life of nozzle, a proba-

bilistic design method is needed. The primary methods are direct Monte

Carlo, indirect Monte Carlo and analytic reliability methods.
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Research Question 1: Which of the three primary probabilistic design meth-

ods is most applicable for the nozzle problem?

Research Hypothesis 1: Given the computational nature of the nozzle model,

it is hypothesized that an indirect Monte Carlo simulation technique is

most likely the best probabilistic design method to use.

Validity of Hypothesis 1: Based on the results of probabilistic method com-

parison, two requirements drove the down selection process, the need to

simultaneously handle multiple responses and method e�ciency. Of all

the methods only traditional Monte Carlo simulation used in conjunction

with metamodeling concurrently addressed both of the requirements. Con-

sequently, the hypothesis that an indirect Monte Carlo method based on

traditional Monte Carlo and metamodels is indeed a valid statement.

The following research question and hypothesis were posed in Section 1.5 and subse-

quently addressed in Section 3.4. The assertion that drove the subsequent research

question and hypothesis were based on a simple estimation of the projected com-

putational expensive required to create metamodels of the nozzle problem. A fairly

conservative estimate was on the order of 5,000 hours. Thus, it was felt that any ad-

ditional information about the system that could be used to create the metamodels

would reduce the total computational expense.

Research Question and Hypothesis:

Assertion: Given the constraints imposed by the nozzle model's complexity,

traditional statistical linear metamodeling methods are not e�cient enough

to be used with the model. Consequently a large scale metamodeling

method is necessary to reduce the total computational expense as much as

possible.
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Research Question 2: Which large scale metamodeling procedure is best to

address the characteristics of the nozzle model?

Hypothesis 2: Given the spatially partitioned nature of the �nite element

model, it is hypothesized that a partitioned metamodeling scheme seems

like a logical choice for reducing to the total number of runs required to

create an accurate metamodel.

Validity of Hypothesis 2: For the most part, it does appear that a parti-

tioned metamodeling approach does make the most sense for the analysis.

The primary reason being, the alternative approach for building metamod-

els of large scale systems, supersaturated designs with stepwise regression,

may not reliably create metamodels that represent the true nature of the

system. The reason for this is due to the complex aliasing structure of

supersaturated designs.

However, none of the current large scale metamodeling methods meet all of

the needs of the nozzle problem. Consequently, a new partitioning method

is needed to be able to fully leverage the partitioned nature of the nozzle

model.

The following research question and hypothesis were posed in Section 3.5 and was

addressed in Section 8.3.1. The assertions that spurred the research question and

hypothesis were a result of reviewing the accuracy analysis that Baker used to validate

the UTE method. In that analysis he concluded that missing interactions due to

partitioning were negatively impacting the accuracy of the UTE metamodels.

Research Question and Hypothesis:

Assertion: Baker showed that important, neglected interactions do have a

negative impact on the overall accuracy of a partitioned metamodel.
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Assertion: Adding variable redundancies between the partitions improved the

accuracy of the UTE metamodel but did so at the cost of degraded e�-

ciency of the method.

Research Question 2.1: Is there a way to account for potentially important

interactions without resorting to variable redundancy between the parti-

tions?

Research Hypothesis 2.1: Using the GCF method as a prototype, it is hy-

pothesized that the intermediate to top-level mapping will indirectly ac-

count for any neglected interactions between low-level design variables in

disjoint groups.

Validity of Hypothesis 2.1: Based on the accuracy results of the I-beam

problem, it appears that the lumped parameter models are able to indi-

rectly account for missing interactions and typically produce better meta-

models than traditional methods. This statement is based on the fact

that the traditional all-at-once methods inherently capture all important

interactions.

Although for tightly coupled systems such as the TVS model, the lump

parameter model is not a good candidate for creating partitioned meta-

models.

The following research question and hypothesis were posed in Section 3.5 and was ad-

dressed in Section 6.1. The assertion that drove this research question and hypothesis

was based on the primary limitation of using the GCF method. The limitation being

the lack of a means to create metamodels of analyses that do not have any readily

identi�able intermediaries around which to create the intermediate to top-level map-

pings. This research question and hypothesis were the primary motivation for the

research that lead to the development of the new large scale metamodeling method
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in Section 3.5.

Research Question and Hypothesis:

Assertion: Baker used a screening test to determine important, neglected in-

teractions and then used variable redundancy to account for these interac-

tions.

Assertion: In the hypothesized method built on the GCF model, these in-

teractions will be indirectly accounted for via interactions between the

intermediate responses in the intermediate to top-level mapping.

Research Question 2.2: Can the data from screening test be used to deter-

mine the intermediate to top-level mappings for systems without identi�-

able intermediaries?

Research Hypothesis 2.2: It is hypothesized that since the data from a screen-

ing test data inherently contains the connectivity of the system, this data

can be used to create the intermediate to top-level mappings for systems

that do not have readily identi�able intermediaries.

Validity of Hypothesis 2.2: The logical development of the lumped parame-

ter model (LPM) demonstrates how data from a screening test can be used

to create the intermediate to top-level mappings for systems that do not

have readily identi�able intermediaries.

Partitioning the inputs to a screening test into their constitutive sub-

vectors and individually evaluating these sub-vectors with the ỹi = gi(xi)

functions will create the ỹ regression arrays. The ỹ regression arrays can

then be combined with the response data from the screening test to create

the y = f(ỹ) intermediate to top-level mappings.

The following research question and hypothesis were posed in Section 1.5 and subse-

quently addressed in Section 4.5. These two assertions were the result of the proposing
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to use a partitioned metamodeling approach to create metamodels of the nozzle prob-

lem and realizing that there is a need for a method to help determine a good set of

partitions.

Research Question and Hypothesis:

Assertion: A partitioned metamodeling approach is proposed to reduce to

total number of runs required to create metamodels of the nozzle model.

Assertion: The electrical engineering community has been using partitioning

techniques for many years to analyze VLSI circuits.

Research Question 3: Is there a way to quantitatively �nd an good set of

partitions to use with the partitioned metamodeling process?

Research Hypothesis 3: It is hypothesized that a method from the electrical

engineering community for partitioning VLSI circuits could potentially be

adopted for �nding an optimal set of partitions for use with partitioned

metamodeling.

Validity Hypothesis 3: In general, this research hypothesis seems to be true.

The sparse matrix and graph theoretic methods have all the necessary

characteristics for a partitioning scheme for large scale metamodeling.

However, the lack of initial knowledge about the sparse structure of the

black-box systems used with metamodeling seems to preclude their use.

The following research question and hypothesis were posed in Section 4.5 and was ad-

dressed in Section 8.3.2. The assertion that spurred the subsequent research question

and hypothesis was made after reviewing the common sparse matrix methods used

for decomposing large scale systems into smaller disjoint subsets.
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Research Question and Hypothesis:

Assertion: A systems decomposition method for sparse systems is a logical

means to partition the inputs for large scale metamodeling, however there

is not enough initially known about the sparsity of the system.

Research Question 3.1: Given the black box nature of analyses used in meta-

modeling, how can their underlying sparse structure be determined?

Research Hypothesis 3.1: It is hypothesized that a screening test using a

low resolution DoE with ANOVA can be used to determine the underlying

sparse structure of the black box system, which then can be partitioned

using a graph-based min-cut algorithm.

Validity of Hypothesis 3.1: Yes, a low resolution design of experiments can

be used with ANOVA to determine the underlying sparse nature of the

system.

Combining the results of ANOVA with graph theory provides the model

builder with a clear path of how to proceed with any subsequent model

building. If the graph is tightly coupled, weed out the insigni�cant factors

and proceed with an all-at-once approach. If the graph contains several

clear sub-graphs, partition the system and apply the Hi-DSE process to

create a lumped parameter model.

In addition, based on the accuracy results of the I-beam test case, the

min-cut algorithm will �nd good sets of partitions to use with a LPM.

The following research question and hypothesis were posed in Section 4.5 and was

addressed in Section 8.3.2. The following assertion was made after realizing that to

maximize the e�ciency of the new large scale metamodeling method, all data collected

from the system needed to be used to create the metamodels of the system.
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Research Question and Hypothesis:

Assertion: The use of the data from a screening test is proposed to perform

two di�erent operations in the new large scale metamodeling method: one

for partitioning or tearing the system and another for determining the

intermediate to top-level mappings.

Research Question 3.2: Is it possible to use the same screening test data,

that was collected for use with the lumped parameter method, to also

determine the sparse nature of the system for partitioning?

Research Hypothesis 3.2: It is hypothesized that since the data from a screen-

ing test, which is to be used to tear the system into disjoint subgroups,

inherently contains the connectivity information; this data can also be

used to create the intermediate to top-level mappings which are designed

to account for the impact of system tearing.

Validity of Hypothesis 3.2: It does appear, that based on the accuracy re-

sults of the min-cut based lumped parameter models for the I-beam test

case, the same data that is used for the graph-based partitioning analysis

can also be used to create the intermediate to top-level mappings without

any signi�cant impact on the accuracy of resultant the lumped parameter

model.

9.2 Contributions of this Thesis

The primary contributions of this thesis are the lumped parameter model (LPM) and

the graph-based partitioning (GBP) methods for black-box systems. The secondary

contribution of this thesis the formulation of the hierarchical design space exploration

(Hi-DSE) procedure that provides the model builder with a step-by-step process for

creating partitioned metamodels of large scale systems.
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However, one could argue that the research that went into addressing the initial

three research questions and hypotheses summarized in Section 9.1 would constitute

a contribution. For instance, the simple (albeit tedious) task of summarizing the

literature necessary to answer and validate research question 1 and hypothesis 1

can be considered a contribution. Future researchers, tackling similar problems, can

use the literature search on probabilistic design methods from Chapter 2 to point

themselves in the direction of the salient references. In addition, they can use the

qualitative down selection in Section 2.4 to gauge their own problem. Although the

conclusions shown in Table 1 of the characteristic of probabilistic methods mapped to

the characteristics of the nozzle model are primarily qualitative in nature, the stated

rankings are either based on the author's experience or statements and conclusions

drawn from the literature. Thus they can be used as a gauge for future problems.

Along a similar vein, the literature search that went into addressing research ques-

tion 2 and hypothesis 2 which was associated with reviewing and selecting a large scale

metamodeling technique for the nozzle problem is also a contribution. To the author's

knowledge, this type of information has not been summarized before and constitutes

the only methods currently stated in the literature for creating metamodels of large

scale systems.

The literature search associated with the development of the graph-based parti-

tioning method for black-box systems is not especially informative for engineering

community as a whole (especially for electrical engineers). However for statistical

model builders, the review of where these methods came from and how they can be

easily adapted for determining the structure of large scale systems is important. Thus

for a small portion of the engineering community, the literature search for answering

and addressing research question 3 and hypothesis 3 is a useful contribution.

Thus, the contributions of this thesis can be summarized as:

1. The development of the lumped parameter method.
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2. The development of the graph-based partitioning scheme for black-box systems.

3. The formulation of the hierarchical design space exploration procedure for large

scale systems.

4. A thorough summary of the primary probabilistic design method and their

applicability for use with large scale systems.

5. A thorough review of the currently available large scale metamodeling methods

and their weaknesses.

6. A review of the sparse matrix methods for systems decomposition and how they

can be used to quantify the sparse nature of a black-box system.

9.3 Conclusions and Observations

The �rst conclusion or observation that needs to be made about the primary contri-

butions for this thesis is how it relates to the problem that initiated the work. Recall

the primary goal for developing these new methods was to enable the probabilistic

li�ng the �rst stage nozzle on the new H machine. The motivation being that the

traditional metamodeling methods were not e�cient enough and thus a new method

that was just as accurate but signi�cantly more e�cient was desired. Consequently

the author used the nozzle problem as a driver and created the hierarchical design

space exploration process which used a graph-based partitioning scheme to create

lumped parameter models of the system.

Although the nozzle problem was the motivator, the methods developed are com-

pletely generic and, in general, can be applied to any large scale system. That is the

true strength of this work. The methods contained in this thesis address not only the

nozzle problem but allow a model builder to systematically tackle all sorts of large

scale problems.
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The reason being is because the lumped parameter model was developed in a very

generic manner without reference to any particular system, characteristic of a system

or model for that matter. This is in contrast to say the spatially partitioned models1

which were developed by leveraging a natural phenomena to create a partitioned

model of the system. Consequently, as long as the system makes logical sense to

partition, the lumped parameter model is a good candidate for creating metamodels

of that system.

The generality of the lumped parameter model and its partitioned nature produce

two additional characteristics that were not leveraged in this thesis but should be

mentioned none-the-less. First, because the lumped parameter model was developed

without any speci�c functional mapping in mind, it can be used with any type of

metamodeling scheme. While all of the validation for the LPM was done using re-

sponse surface equations, it could have just as easily been done using kriging models,

neural nets, or even gaussian processes.

Even better still, each of these modeling types can be heterogeneously combined

to create one speci�c lumped parameter model. Thus, during the lumped parameter

building process, if any speci�c model used to create the ỹi = gi(xi) or y = f(ỹ)

functions is not meeting expectations, upgrading to a higher �delity model is straight

forward and does not require the modi�cations of any of the lower level functions.

However, if a low-level ỹi = gi(xi) is changed, the associated ỹ regression arrays should

also be recreated and analyzed. But if the process is automated, then upgrading the

localized metamodeling type is not a signi�cant undertaking.

The second important characteristic that was not directly addressed in this thesis

was how the lumped parameter model supports �localized� incremental model build-

ing. In a typical incremental modeling process the modeler collects some data, �ts

a model, checks its quality and iterates with more data until a su�ciency accurate

1See Section 3.3.1 for a review of the spatially partitioned model.
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metamodel is created. At each iteration of the process all the variables have to be

re-analyzed at the same time, thus the required data per iteration grows like the data

requirements needed to �t a model as the system size grows. Contrast this to the

localized, incremental modeling building enabled by the lumped parameter model.

As an example, assume that we have partitioned our system, analyzed each of the

subgroups and created the ỹi = gi(xi) functions. In the evaluation of the subgroup

functions, we see that for the current data collected, one or two of the subgroups is

not producing particularly good metamodels. To improve these functions all we have

to do is locally add more data to just the under performing subgroups, not to all the

subgroups. Thus the localized incremental model building enabled by the lumped

parameter model allows for additional data to be collected in a targeted fashion,

which reduces that total data required as compared to a typical incremental model

building process.

While the lumped parameter models are generically applicable, the graph-based

visualization and partitioning method for black-box systems is probably the most

useful piece of work to come out of this thesis. Its utility can immediately been seen

simply by looking at Figures 28 and 33. Figure 28 is essentially the result of twelve

di�erent Pareto analyses wrapped into one graph.

A Pareto chart is a simple bar chart that summarizes the results of an ANOVA

analysis for a given response. Each bar is ordered from left to right or top to bottom

based on length. The length of each bar is equates to how much variability of the

response is associated with the e�ect assigned to that bar. Thus examining several

Pareto charts back-to-back next requires the user to have to remember which e�ects

were predominate from one chart to the next. For two or three responses, this is

pretty easy but for 12 or 255 in the case of the nozzle problem, it becomes a little

tedious.

Fortunately the graph-based method tells you all of that information instantly and
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concisely. It tells you not only which factors have potentially important interactions

via their connectedness; it also tells you which factors are not important to any of

the twelve responses at the same time. Thus with this information in hand, the

model builder can easily make a decision of how to proceed next in model building

process. As was stated in Section 8.3.2, if the graph is tightly coupled, weed out the

insigni�cant factors and proceed with an all-at-once approach. If the graph contains

several clear sub-graphs, partition the system and apply the Hi-DSE process to create

a lumped parameter model. Its that simple.

The previous comments were related to how the graph shows you the interconnect-

edness between the variables. But as was shown in Section 6.3, the incidence matrix

created from the ANOVA results can also be used to examine the interconnectedness

between the responses. The response adjacency matrix is created by reversing the

order of the matrix multiplication used to transform the incidence matrix into the

variable adjacency matrix. The vertices in the graph based on the response adjacency

matrix are now the responses and the edges connecting the vertices present shared

variables. Therefore, two responses that are connected share at least one variable

that is statistically signi�cant to both responses. Unfortunately the author does not

immediately know how to leverage this information but new things are created all

the time without an immediate application. The glue on the back of sticky notes is

an excellent example.

9.4 Closing Remarks

The �nal section in this thesis will address a very important question that should

be addressed in every Ph.D. thesis. That question is: Is this work actually Ph.D.

degree worthy? To answer this question �rst the goal of what a Ph.D. dissertation

should accomplish needs to be discussed. From the Georgia Institute of Technology

dissertation guidelines [41], the �rst bullet states: �Doctoral research should provide
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a useful educational experience for the student emphasizing creativity, independent

action and learning, research methodology and scholarly approach�.

So does the work presented in this thesis meet these fundamental characteristics?

First, yes the work that went into completing this thesis can de�nitely be classi�ed

as an �education experience�, for two reasons.

One, from a purely literal interpretation of educational experience, the process

of �nding and reviewing the background literature necessary to successfully pose

and solve problems addressed in this thesis was de�nitely an educational experience.

Before the literature search was started, the author knew very little about the analytic

reliability methods, other large scale metamodeling methods, sparse matrix methods

and graph theory. Now however, the author would consider himself not necessarily

an expert in any of these topics, but rather an informed researcher that can talk

intelligently enough to know their realm of applicability and inherent limitations.

Second, the educational experience associated with learning how to do research

was probably the most valuable aspect of the work that produced this thesis. The

primary reason being is because the author executed the research process completely

wrong and now knows how to do it right.

When the motivating statement of work was initially posed for doing li�ng of the

�rst stage nozzle on the H machine, the author almost immediately settled on the

hierarchically partitioned metamodel solution path without actually doing much of

an initial background literature search. Consequently, the better part of a six months

was spent trying to support the proposed solution with references from the literature.

Fortunately, the author initially made some good choices and �nding support was not

too di�cult. However, he did learn from his mistakes and when the research to solve

the problem of �nding a good set of partitions was initiated, a thorough literature

search found a potential solution that was easy to adapt to the problem.
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As far as the other primary characteristics that a Ph.D. dissertation should pos-

sess, the author feels that yes, the work in this thesis is both creative and indepen-

dent and contains the necessary ingredients to be classi�ed as exhibiting a research

methodology and scholarly approach. Meeting the characteristic of independence is

easy, other than discussions with other researchers to circumvent roadblocks that al-

ways pop-up, the work in this thesis is solely that of the author. Creativity is a little

more subjective, what is a creative solution for one student may be pedestrian for

another. However, discussions between the author and several statistics professors at

Georgia Tech indicated that the work for this thesis was completely new and had not

been demonstrated in the literature, that is to their knowledge anyway.

The scholarly approach is addressed by both the thoroughness of the literature

search as well as the posing of the research questions and hypotheses. Good research

questions and the subsequent hypotheses should on the one hand be testable, that

is can they be proved or disproved, and on the other hand, interesting enough to be

non-trivial. That is not have obvious solutions but still be solvable. The research

questions and hypotheses in this thesis seem to �t that requirement. When posed,

they all were a logical extension of the background information that preceded their

posing. In addition, they were all solvable either by literature search or by testing.

Consequently the author feels that this thesis meets the requirements of a scholarly

approach.

Of the other items in the Georgia Tech dissertation guidelines, two more need

direct addressing. These items are: �the research should possess the major charac-

teristics of the scienti�c method, namely objectivity and reproducibility�; and �the

dissertation should re�ect a level of competence indicative of a signi�cant achievement

beyond the masters level�.

First, the author made every attempt, when comparing the new methods devel-

oped to current standard methods, to be as objective as possible. The exact same
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analysis procedure was used for every assessment and standard techniques were used

whenever possible. As far as reproducibility is concerned, the steps that the author

used to assess each of the methods were summarized as close a possible to the actual

procedure used and all of the pertinent code and process steps necessary to reproduce

the work have been included.

Second, this research completed for this thesis is de�nitely above the research

required for a master thesis. To the author's understanding, a masters thesis is

primarily associated with applying the state-of-the-art in a given �eld to a problem of

interest, that is, a masters thesis is a research study. A Ph.D thesis on the other hand

is intended to extend the state-of-the-art in a given �eld, to produce new knowledge or

understanding that �lls a gap or a lack of knowledge in the �eld. This thesis certainly

does the latter. The development of the lumped parameter model and the extension

of graph-based partitioning to metamodeling adds new knowledge to the �eld of large

scale systems analysis. These methods enable a model builder to analyze and create

metamodels of large scale systems that were previously di�cult or impossible analyze.

The new methods o�er a step-by-step approach for creating partitioned metamodels of

a system at are both more e�cient to create and o�er as good or better accuracy than

traditional metamodeling methods. Consequently, the author feels that the research

completed for this thesis does indeed extend the state-of-the-art in large scale model

building and thus, is Ph.D. quality work.
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Appendix A

I-BEAM TEST CASE RESULTS

This appendix contains all of the results from validation process for the the I-beam

test case. Section A.1 shows the graphs, matrix array plots and variables assigned to

each of the partitions for the complete graph as well as each of the partitioned graphs

created using the min-cut graph partitioning algorithms.

Section A.2.1 contains the individual response error summaries for each of the

metamodel types. Each table contains the mean, standard deviation and variance of

the percent error for each of the individual stress and temperature responses for the

I-beam test case. The cumulative error summaries for each of the metamodel types

are summarized in Table 6 in Section 8.1.2.

Section A.2.2 contains the actual versus predicted charts for each response and

metamodel type. In addition, the histograms of the relative error distributions for

the validation data are also shown.
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A.1 Min-cut Partition Summary

Figure 35: Complete Graph Results
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Figure 36: Mincut-2 Results
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Figure 37: Mincut-3 Results
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Figure 38: Mincut-4 Results223



Figure 39: Mincut-5 Results
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Figure 40: Mincut-6 Results
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Figure 41: Mincut-7 Results226



A.2 Complete Error Results for each Response

per Metamodel Type

Section A.2.1 contains the individual response error summaries for each of the meta-

model types. Each table contains the mean, standard deviation and variance of the

percent error for each of the individual stress and temperature responses for the I-

beam test case. The cumulative error summaries for each of the metamodel types are

summarized in Table 6 in Section 8.1.2.

Section A.2.2 contains the actual versus predicted charts for each response and

metamodel type. In addition, the histograms of the relative error distributions for

the validation data are also shown.
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A.2.1 Tables of Individual Response Error Summaries

Table 10: Zones 1, 2 and 5 Stress Response Error Summary
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Table 11: Zones 6, 7 and 8 Stress Response Error Summary
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Table 12: Zones 1, 2 and 5 Temperature Response Error Summary

230



Table 13: Zones 6, 7 and 8 Temperature Response Error Summary
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A.2.2 Charts of Individual Metamodeling Scheme Error Distributions

Figure 42: All-at-once Min. Run Res. V CCD Error Distributions - Stresses Zone

1, 2, 5
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Figure 43: All-at-once Min. Run Res. V CCD Error Distributions - Stresses Zone

6, 7, 8
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Figure 44: All-at-once Min. Run Res. V CCD Error Distributions - Temperatures

Zone 1, 2, 5
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Figure 45: All-at-once Min. Run Res. V CCD Error Distributions - Temperatures

Zone 6, 7, 8
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Figure 46: All-at-once Optimal Latin Hypercube Error Distributions - Stresses Zone

1, 2, 5
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Figure 47: All-at-once Optimal Latin Hypercube Error Distributions - Stresses Zone

6, 7, 8
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Figure 48: All-at-once Optimal Latin Hypercube Error Distributions - Temperatures

Zone 1, 2, 5
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Figure 49: All-at-once Optimal Latin Hypercube Error Distributions - Temperatures

Zone 6, 7, 8
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Figure 50: Variable-type Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 51: Variable-type Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 52: Variable-type Partitioning Error Distributions - Temperatures Zone 1,

2, 5
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Figure 53: Variable-type Partitioning Error Distributions- Temperatures Zone 6, 7,

8
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Figure 54: Subsystem Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 55: Subsystem Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 56: Subsystem Partitioning Error Distributions - Temperatures Zone 1, 2, 5
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Figure 57: Subsystem Partitioning Error Distributions - Temperatures Zone 1, 2, 5
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Figure 58: Mincut-2 Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 59: Mincut-2 Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 60: Mincut-2 Partitioning Error Distributions - Temperatures Zone 1, 2, 5

250



Figure 61: Mincut-2 Partitioning Error Distributions - Temperatures Zone 6, 7, 8
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Figure 62: Mincut-3 Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 63: Mincut-3 Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 64: Mincut-3 Partitioning Error Distributions - Temperatures Zone 1, 2, 5
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Figure 65: Mincut-3 Partitioning Error Distributions - Temperatures Zone 6, 7, 8
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Figure 66: Mincut-4 Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 67: Mincut-4 Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 68: Mincut-4 Partitioning Error Distributions - Temperatures Zone 1, 2, 5

258



Figure 69: Mincut-4 Partitioning Error Distributions - Temperatures Zone 6, 7, 8
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Figure 70: Mincut-5 Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 71: Mincut-5 Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 72: Mincut-5 Partitioning Error Distributions - Temperatures Zone 1, 2, 5
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Figure 73: Mincut-5 Partitioning Error Distributions - Temperatures Zone 6, 7, 8
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Figure 74: Mincut-6 Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 75: Mincut-6 Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 76: Mincut-6 Partitioning Error Distributions - Temperatures Zone 1, 2, 5
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Figure 77: Mincut-6 Partitioning Error Distributions - Temperatures Zone 6, 7, 8
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Figure 78: Mincut-7 Partitioning Error Distributions - Stresses Zone 1, 2, 5
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Figure 79: Mincut-7 Partitioning Error Distributions - Stresses Zone 6, 7, 8
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Figure 80: Mincut-7 Partitioning Error Distributions - Temperatures Zone 1, 2, 5
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Figure 81: Mincut-7 Partitioning Error Distributions - Temperatures Zone 6, 7, 8
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Appendix B

TVS TEST CASE RESULTS

This appendix contains actual versus predicted charts from the validation process for

the the TVS model test case. Section B.1 contains the actual versus predicted charts

for each response and metamodel type. In addition, the histograms of the relative

error distributions for the validation data are also shown.
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B.1 Charts of Individual Metamodeling Scheme

Error Distributions

Figure 82: All-at-once Min. Run Res. V CCD Error Distributions
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Figure 83: All-at-once Optimal Latin Hypercube Error Distributions
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Figure 84: Variable-type Partitioning Error Distributions
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Figure 85: Subsystem Partitioning Error Distributions
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Appendix C

THE HOLLOW I-BEAM ANSYS MACRO

! Changes for 6-3-2005, Jack Zentner:

! �xed temp and heat transfer coe� mappings

! �xed missing comma in the zone 7V thermal bc' table

! implemented the nodal zone mapping correctly (removed zones 3 and 4 from zones

! 5 and 7, respectively)

! re-implemented the selection of the max stress node per zone

! seperated out zones 3, 4, 5V and 7v into their own zones.

! upgraded model RSE equations

!10.17.02 simp44:

! Compared to simp40 single nodes are considered to be a cluster

!providing main independent variables

! dealing with transitional areas: variables like

! TINT, HINT,TEXT,HEXT will have independent values for zones 1,2,5,7,6,8

! while tranzition between those values will be given by linear

! function

!check where how to get the running time

/PREP7

*SET,TEXT1,1500.0

*SET,TEXT2,1500.0

*SET,TEXT5,1500.0
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*SET,TEXT6,1500.0

*SET,TEXT7,1500.0

*SET,TEXT8,1500.0

*SET,HEXT1,800

*SET,HEXT2,800

*SET,HEXT5,800

*SET,HEXT6,800

*SET,HEXT7,800

*SET,HEXT8,800

*SET,TINT1,900

*SET,TINT2,900

*SET,TINT5,900

*SET,TINT6,900

*SET,TINT7,900

*SET,TINT8,900

*SET,HINT1,800

*SET,HINT2,800

*SET,HINT5,800

*SET,HINT6,800

*SET,HINT7,800

*SET,HINT8,800

*SET,TH1,0.25

*SET,TH2,0.25

*SET,TH5,0.25

*SET,TH6,0.25
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*SET,TH7,0.25

*SET,TH8,0.25

*SET,TH3,1.1

*SET,TH4,1.1

*SET,LENGTH,8

*SET,HEIGHT,8

*SET,WB,8

*SET,WT,8

*SET,DB,1.75

*SET,DT,1.75

*SET,DW,2

*SET,RAD,0.5

*SET,CRYSANG,45

*SET,PRESIN,100

*SET,PRESDEL,200

*SET,THDIV,2

*SET,WDVUPT,10

*SET,WDVUPS,4

*SET,WDVUPB,4

*SET,WDVLOT,10 ! note: changed on 10.13.02 to maintain the symmetry of the mesh!

*SET,WDVLOS,4

*SET,WDVLOB,4
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*SET,WDVWEB,6

*SET,WDVFIL,3

*SET,LENDIV,20

*SET,NNUMB,8

*SET,FILEST,'stress'

*SET,FILEEXT,'dat'

*CFOPEN,FILEST,FILEEXT

MPREAD,mp2,lis

*SET,CFAC,3600*144

*SET,HEXT1,HEXT1/CFAC

*SET,HEXT2,HEXT2/CFAC

*SET,HEXT5,HEXT5/CFAC

*SET,HEXT6,HEXT6/CFAC

*SET,HEXT7,HEXT7/CFAC

*SET,HEXT8,HEXT8/CFAC

*SET,HINT1,HINT1/CFAC

*SET,HINT2,HINT2/CFAC

*SET,HINT5,HINT5/CFAC

*SET,HINT6,HINT6/CFAC

*SET,HINT7,HINT7/CFAC

*SET,HINT8,HINT8/CFAC

! CROSS SECTION IS de�ned by points numeration is from left upper

! corner in rows FIRST OUTER CONTOUR, ALSO ONLY THE GEOMETRY IS DE-

FINED AT THIS

! POINT, MORE kp MAY BE REQUIRED FOR NICE MESH
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K,1,-WT/2,0,HEIGHT/2

K,4,WT/2,0,HEIGHT/2

K,5,-WT/2,0,HEIGHT/2-DT

K,6,-RAD-DW/2,0,HEIGHT/2-DT

K,7,RAD+DW/2,0,HEIGHT/2-DT

K,8,WT/2,0,HEIGHT/2-DT

K,101,-RAD-DW/2,0,HEIGHT/2-DT-RAD! AUXILIRARY POINT (CENTER FOR THE

FILLET)

K,9,-DW/2,0,HEIGHT/2-DT-RAD!

K,102,RAD+DW/2,0,HEIGHT/2-DT-RAD! AUXILIRARY POINT (CENTER FOR THE

FILLET)

K,10,DW/2,0,HEIGHT/2-DT-RAD

K,11,-DW/2,0,-HEIGHT/2+DB+RAD!lower part

K,103,-RAD-DW/2,0,-HEIGHT/2+DB+RAD!lower part

K,12,DW/2,0,-HEIGHT/2+DB+RAD!lower part

K,104,RAD+DW/2,0,-HEIGHT/2+DB+RAD!lower part

K,13,-WB/2,0,-HEIGHT/2+DB

K,14,-RAD-DW/2,0,-HEIGHT/2+DB!lower part

K,15,RAD+DW/2,0,-HEIGHT/2+DB!lower part

K,16,WB/2,0,-HEIGHT/2+DB

K,17,-WB/2,0,-HEIGHT/2

K,20,WB/2,0,-HEIGHT/2

LSTR,1,4 !to simplify meshing

LSTR,1,5

LSTR,4,8

LSTR,5,6

LSTR,7,8

LARC,6,9,101,RAD
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LARC,10,7,102,RAD

LSTR,9,11

LSTR,10,12

LARC,11,14,103,RAD

LARC,12,15,104,RAD

LSTR,13,14

LSTR,15,16

LSTR,13,17

LSTR,16,20

LSTR,17,20

! internal contour

K,21,-WT/2+TH5,0,HEIGHT/2-TH6

K,22,WT/2-TH5,0,HEIGHT/2-TH6

K,23,-WT/2+TH5,0,HEIGHT/2-DT+TH5

K,24,-RAD-DW/2,0,HEIGHT/2-DT+TH5

K,25,RAD+DW/2,0,HEIGHT/2-DT+TH5

K,26,WT/2-TH5,0,HEIGHT/2-DT+TH5

K,27,-DW/2+TH2,0,HEIGHT/2-DT-RAD!

K,28,DW/2-TH1,0,HEIGHT/2-DT-RAD

K,29,-DW/2+TH2,0,-HEIGHT/2+DB+RAD!lower part

K,30,DW/2-TH1,0,-HEIGHT/2+DB+RAD!lower part

K,31,-WB/2+TH7,0,-HEIGHT/2+DB-TH7

K,32,-RAD-DW/2,0,-HEIGHT/2+DB-TH7

K,33,RAD+DW/2,0,-HEIGHT/2+DB-TH7

K,34,WB/2-TH7,0,-HEIGHT/2+DB-TH7

K,35,-WB/2+TH7,0,-HEIGHT/2+TH8

K,36,WB/2-TH7,0,-HEIGHT/2+TH8
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LSTR,21,22

LSTR,21,23

LSTR,22,26

LSTR,23,24

LSTR,25,26

LARC,24,27,101,TH3!note that TH3 here actually de�nes the radius for the inside

LARC,25,28,102,TH3

LSTR,27,29

LSTR,28,30

LARC,29,32,103,TH4!note that TH4 here actually de�nes the radius for the inside

LARC,30,33,104,TH4!

LSTR,31,32

LSTR,33,34

LSTR,31,35

LSTR,34,36

LSTR,35,36

A,1,4,22,21

A,1,21,23,5

A,22,4,8,26

A,5,23,24,6

A,25,26,8,7

A,24,27,9,6

A,25,7,10,28

A,9,27,29,11

A,28,10,12,30

A,11,29,32,14

A,30,12,15,33

A,13,14,32,31
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A,15,16,34,33

A,13,31,35,17

A,34,16,20,36

A,35,36,20,17

!meshing parameters

!THICKNESS: 33,34,35,36,37,38,39,40,41,42,43,44..48

LSEL,S� ,33,48

CM,LTHICK,LINE

LSEL,S� ,1,17,16! lines 1,17

CM,LWUPT,LINE! top of the upper �ange

LSEL,S� ,2,3

LSEL,A�,18,19

CM,LWUPS,LINE !sides of the upper �ange

LSEL,S� ,4,5

LSEL,A�,20,21

CM,LWUPB,LINE !"bottoms" of the upper �ange

LSEL,S� ,6,7

LSEL,A�,22,23

LSEL,A�,26,27

LSEL,A�,10,11

CM,LWFIL,LINE ! �llets

LSEL,S� ,8,9

LSEL,A�,24,25
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CM,LWWEB,LINE !"bottoms" of the �ange

LSEL,S� ,12,13

LSEL,A�,28,29

CM,LWLOB,LINE !"bottoms" of the �ange

LSEL,S� ,14,15

LSEL,A�,30,31

CM,LWLOS,LINE !sides of the lower �ange

LSEL,S� ,16,32,16! lines 16,32

CM,LWLOT,LINE! top of the LOWER �ange

ALLSEL,ALL

LESIZE,LTHICK�,THDIV

LESIZE,LWUPT�,WDVUPT

LESIZE,LWUPS�,WDVUPS

LESIZE,LWUPB�,WDVUPB

LESIZE,LWLOT�,WDVLOT

LESIZE,LWLOS�,WDVLOS

LESIZE,LWLOB�,WDVLOB

LESIZE,LWWEB�,WDVWEB

LESIZE,LWFIL� ,WDVFIL

ASEL,S� ,1,16

CM,AROOT,AREA

ALLSEL,BELOW,AREA

ET,1,SHELL57
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MSHAPE,0,2D

MSHKEY,1 !

AMESH,ALL

ET,2,SOLID70

TYPE, 1

EXTOPT,ESIZE,LENDIV/2,0,

EXTOPT,ACLEAR,1

VEXT,ALL��LENGTH/2

*GET,NUMNOD,NODE�COUNT

! *****

! The following section of code de�nes the nodal componets associated with a

! given zone

!selecting nodal components based on the location

NSEL,S,LOC,Z,HEIGHT/2-TH6,HEIGHT/2

CM,NZONE6,NODE

NSEL,S,LOC,Z,-HEIGHT/2,-HEIGHT/2+TH8

CM,NZONE8,NODE

NSEL,S,LOC,Z,HEIGHT/2-DT-RAD,HEIGHT/2-DT+TH5

! the small delta (0.01) is to make sure that the nodes on the border of

! zones 3 and 5 are included in zone 5

NSEL,U,LOC,X,-DW/2-RAD+.01,DW/2+RAD-.01

CM,NZONE5,NODE

NSEL,S,LOC,Z,-HEIGHT/2+DB-TH8,-HEIGHT/2+DB

! the small delta (0.01) is to make sure that the nodes on the border of

! zones 4 and 7 are included in zone 7
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NSEL,U,LOC,X,-DW/2-RAD+.01,DW/2+RAD-.01

CM,NZONE7,NODE

NSEL,S,LOC,Z,-HEIGHT/2+DB+RAD,HEIGHT/2-DT-RAD

NSEL,R,LOC,X,-DW/2-RAD,0

CM,NZONE2,NODE

NSEL,S,LOC,Z,-HEIGHT/2+DB+RAD,HEIGHT/2-DT-RAD

NSEL,R,LOC,X,0,DW/2+RAD

CM,NZONE1,NODE

NSEL,S,LOC,Z,HEIGHT/2-DT-RAD,HEIGHT/2-DT+TH5

CMSEL,U,NZONE5

CMSEL,U,NZONE2

CMSEL,U,NZONE1

CM,NZONE3,NODE

NSEL,S,LOC,Z,-HEIGHT/2+DB-TH7,-HEIGHT/2+DB+RAD

CMSEL,U,NZONE7

CMSEL,U,NZONE2

CMSEL,U,NZONE1

CM,NZONE4,NODE

NSEL,S,LOC,Z,HEIGHT/2,HEIGHT/2-DT

CMSEL,U,NZONE6

CMSEL,U,NZONE5

CMSEL,U,NZONE3

CM,NZONE5V,NODE
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NSEL,S,LOC,Z,-HEIGHT/2,-HEIGHT/2+DB

CMSEL,U,NZONE8

CMSEL,U,NZONE7

CMSEL,U,NZONE4

CM,NZONE7V,NODE

! ******

!Lumps all of the back face areas created from the VEXT command into

!one compoent called ATIP

ASEL,S� ,17!tip:

ASEL,A�,22,78,4

CM,ATIP,AREA

ASEL,S� ,49

!error - CM,AZONE1,AREA !external surface for zone 1 (X- POSITIVE)

CM,AZONE2,AREA !external surface for zone 2 (X- NEGATIVE)

ASEL,S� ,47

!error - CM,AZONI1,AREA !INTERNAL surface for zone 1

CM,AZONI2,AREA !INTERNAL surface for zone 2 (X- NEGATIVE)

ASEL,S� ,51

!error - CM,AZONE2,AREA !external surface for zone 2 (X- NEGATIVE)

CM,AZONE1,AREA !external surface for zone 1 (X- POSITIVE)

ASEL,S� ,53

!error - CM,AZONI2,AREA !external surface for zone 2 (X- NEGATIVE)

CM,AZONI1,AREA !external surface for zone 2 (X- POSITIVE)
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ASEL,S� ,41

CM,AZONE3L,AREA !external surface for zone 3 (Z- POS) -left(adjacent to zone 2)

ASEL,S� ,43

CM,AZONE3R,AREA !external surface for zone 3 (Z- POS) -right(adjacent to zone 1)

ASEL,S� ,39

CM,AZONI3L,AREA !INTERNAL surface for zone 3 (Z- POS) -left(adjucent to zone 2)

ASEL,S� ,45

CM,AZONI3R,AREA !INTERNAL surface for zone 3 (Z- POS) -right(adjucent to zone 1)

ASEL,S� ,57

CM,AZONE4L,AREA !external surface for zone 4 (Z- NEG) -left(adjucent to zone 2)

ASEL,S� ,59

CM,AZONE4R,AREA !external surface for zone 4 (Z- NEG) -right(adjucent to zone 1)

ASEL,S� ,55

CM,AZONI4L,AREA !INTERNAL surface for zone 4 (Z- NEG) -left(adjucent to zone 2)

ASEL,S� ,61

CM,AZONI4R,AREA !INTERNAL surface for zone 4 (Z- NEG) -right(adjucent to zone 1)

ASEL,S� ,25,27,2!azone5 33,36,25,27

CM,AZONE5V,AREA ! external 5 vertical (tranzitional part)

ASEL,S� ,33,36,3

CM,AZONE5H,AREA !EXTERNAL actually it looks like we need further
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!split zones 5 and 7 into two 5v and 7v(vertical, where transition

!takes place and 5h and 7h (horizontal where BC are constant)

ASEL,S� ,23,29,6!AZONI5 23,31,35,29

CM,AZONI5V,AREA !INTERNAL

ASEL,S� ,31,35,4

CM,AZONI5H,AREA !INTERNAL

ASEL,S� ,18

CM,AZONE6,AREA !external surface for zone 6 !Z POSITIVE

ASEL,S� ,20

CM,AZONI6,AREA !INTErnal surface for zone 6

ASEL,S� ,63,67,4! zone7 67, 75,63,73

CM,AZONE7H,AREA !EXTERNAL HORIZ

ASEL,S� ,73,75,2

CM,AZONE7V,AREA !EXTERNAL VERT

ASEL,S� ,64,69,5! ZONI7 71, 64,69,77

CM,AZONI7H,AREA !INTERNAL HORIZ

ASEL,S� ,71,77,6

CM,AZONI7V,AREA !INTERNAL

ASEL,S� ,80

CM,AZONE8,AREA !external surface for zone 8 Y NEGATIVE
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ASEL,S� ,79

CM,AZONI8,AREA !INTErnal surface for zone 8

! now let us create total components

CMSEL,S,AZONE1 !EXTERNAL

CMSEL,A,AZONE2

CMSEL,A,AZONE3L

CMSEL,A,AZONE3R

CMSEL,A,AZONE4L

CMSEL,A,AZONE4R

CMSEL,A,AZONE5H

CMSEL,A,AZONE5V

CMSEL,A,AZONE6

CMSEL,A,AZONE7H

CMSEL,A,AZONE7V

CMSEL,A,AZONE8

CM,AZONE,AREA

CMSEL,S,AZONI1 ! INTERNAL

CMSEL,A,AZONI2

CMSEL,A,AZONI3L

CMSEL,A,AZONI3R

CMSEL,A,AZONI4L

CMSEL,A,AZONI4R

CMSEL,A,AZONI5H

CMSEL,A,AZONI5V

CMSEL,A,AZONI6

CMSEL,A,AZONI7H
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CMSEL,A,AZONI7V

CMSEL,A,AZONI8

CM,AZONI,AREA

ALLSEL,ALL

!this is a solution part

/SOLU

ANTYPE,STATIC

!�rst let us de�ne regular (constant) bc's:

SF,AZONE1,CONV,HEXT1,TEXT1

SF,AZONI1,CONV,HINT1,TINT1

SF,AZONE2,CONV,HEXT2,TEXT2

SF,AZONI2,CONV,HINT2,TINT2

SF,AZONE5H,CONV,HEXT5,TEXT5

SF,AZONI5H,CONV,HINT5,TINT5

SF,AZONE6,CONV,HEXT6,TEXT6

SF,AZONI6,CONV,HINT6,TINT6

SF,AZONE7H,CONV,HEXT7,TEXT7

SF,AZONI7H,CONV,HINT7,TINT7

SF,AZONE8,CONV,HEXT8,TEXT8

SF,AZONI8,CONV,HINT8,TINT8

! we are de�ning tables for transitioning area

! let us make sure that z is always increasing

! here we have transtion in the �llets

*DIM,HFTBE3L,TABLE,2� ,Z! H for tranzitional area 3,left external

*DIM,TMTBE3L,TABLE,2� ,Z! T for tranzitional area 3,left external

HFTBE3L(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT! kp 9 and 6 respectively

HFTBE3L(1,1)=HEXT2,HEXT5 ! transition from zone 2 to 5
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TMTBE3L(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT! kp 9 and 6 respectively

TMTBE3L(1,1)=TEXT2,TEXT5 ! transition from zone 2 to 5

SF,AZONE3L,CONV,%HFTBE3L%,%TMTBE3L%

*DIM,HFTBE3R,TABLE,2� ,Z! H for tranzitional area 3R external

*DIM,TMTBE3R,TABLE,2� ,Z! T for tranzitional area 3R external

HFTBE3R(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT! kp 10 and 7 respectively

HFTBE3R(1,1)=HEXT1,HEXT5 ! transition from zone 1 to 5

TMTBE3R(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT! kp 10 and 7 respectively

TMTBE3R(1,1)=TEXT1,TEXT5 ! transition from zone 1 to 5

SF,AZONE3R,CONV,%HFTBE3R%,%TMTBE3R%

*DIM,HFTBI3L,TABLE,2� ,Z! H for tranzitional area 3l internal

*DIM,TMTBI3L,TABLE,2� ,Z! T for tranzitional area 3l internal

HFTBI3L(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT+TH5! kp 27 and 24 respectively

HFTBI3L(1,1)=HINT2,HINT5 ! transition from zone 2 to 5

TMTBI3L(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT+TH5! kp 27 and 24 respectively

TMTBI3L(1,1)=TINT2,TINT5 ! transition from zone 2 to 5

SF,AZONI3L,CONV,%HFTBI3L%,%TMTBI3L%

*DIM,HFTBI3R,TABLE,2� ,Z! H for tranzitional area 3R internal

*DIM,TMTBI3R,TABLE,2� ,Z! T for tranzitional area 3R internal

HFTBI3R(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT+TH5! kp 28 and 25 respectively

HFTBI3R(1,1)=HINT1,HINT5 ! transition from zone 1 to 5

TMTBI3R(1,0)=HEIGHT/2-DT-RAD,HEIGHT/2-DT+TH5! kp 28 and 25 respectively

TMTBI3R(1,1)=TINT1,TINT5 ! transition from zone 1 to 5

SF,AZONI3R,CONV,%HFTBI3R%,%TMTBI3R%

*DIM,HFTBE4L,TABLE,2� ,Z! H for tranzitional area 4l external
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*DIM,TMTBE4L,TABLE,2� ,Z! T for tranzitional area 4l external

HFTBE4L(1,0)=-HEIGHT/2+DB,-HEIGHT/2+DB+RAD! kp 14 and 11 respectively

HFTBE4L(1,1)=HEXT7,HEXT2 ! transition from zone 2 to 7

TMTBE4L(1,0)=-HEIGHT/2+DB,-HEIGHT/2+DB+RAD! kp 14 and 11 respectively

TMTBE4L(1,1)=TEXT7,TEXT2 ! transition from zone 2 to 7

SF,AZONE4L,CONV,%HFTBE4L%,%TMTBE4L%

*DIM,HFTBE4R,TABLE,2� ,Z! H for tranzitional area 4R external

*DIM,TMTBE4R,TABLE,2� ,Z! T for tranzitional area 4R external

HFTBE4R(1,0)=-HEIGHT/2+DB,-HEIGHT/2+DB+RAD! kp 15 and 12 respectively

HFTBE4R(1,1)=HEXT7,HEXT1 ! transition from zone 1 to 7

TMTBE4R(1,0)=-HEIGHT/2+DB,-HEIGHT/2+DB+RAD! kp 15 and 12 respectively

TMTBE4R(1,1)=TEXT7,TEXT1 ! transition from zone 1 to 7

SF,AZONE4R,CONV,%HFTBE4R%,%TMTBE4R%

*DIM,HFTBI4L,TABLE,2� ,Z! H for tranzitional area 4l internal

*DIM,TMTBI4L,TABLE,2� ,Z! T for tranzitional area 4l internal

HFTBI4L(1,0)=-HEIGHT/2+DB-TH7,-HEIGHT/2+DB+RAD! kp 32 and 29 respectively

HFTBI4L(1,1)=HINT7,HINT2 ! transition from zone 2 to 7

TMTBI4L(1,0)=-HEIGHT/2+DB-TH7,-HEIGHT/2+DB+RAD! kp 32 and 29 respectively

TMTBI4L(1,1)=TINT7,TINT2 ! transition from zone 2 to 7

SF,AZONI4L,CONV,%HFTBI4L%,%TMTBI4L%

*DIM,HFTBI4R,TABLE,2� ,Z! H for tranzitional area 4R internal

*DIM,TMTBI4R,TABLE,2� ,Z! T for tranzitional area 4R internal

HFTBI4R(1,0)=-HEIGHT/2+DB-TH7,-HEIGHT/2+DB+RAD! kp 33 and 30 respectively

HFTBI4R(1,1)=HINT7,HINT1 ! transition from zone 1 to 7

TMTBI4R(1,0)=-HEIGHT/2+DB-TH7,-HEIGHT/2+DB+RAD! kp 33 and 30 respectively

TMTBI4R(1,1)=TINT7,TINT1 ! transition from zone 2 to 7
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SF,AZONI4R,CONV,%HFTBI4R%,%TMTBI4R%

*DIM,HFTBE5,TABLE,2� ,Z! H for tranzitional area 5v external

*DIM,TMTBE5,TABLE,2� ,Z! T for tranzitional area 5v external

HFTBE5(1,0)=HEIGHT/2-DT,HEIGHT/2! kp 5 and 1 respectively

HFTBE5(1,1)=HEXT5,HEXT6 ! transition from zone 5 to 6

TMTBE5(1,0)=HEIGHT/2-DT,HEIGHT/2! kp 5 and 1 respectively

TMTBE5(1,1)=TEXT5,TEXT6 ! transition from zone 5 to 6

SF,AZONE5V,CONV,%HFTBE5%,%TMTBE5%

*DIM,HFTBI5,TABLE,2� ,Z! H for tranzitional area 5v internal

*DIM,TMTBI5,TABLE,2� ,Z! T for tranzitional area 5v internal

HFTBI5(1,0)=HEIGHT/2-DT+TH5,HEIGHT/2-TH6! kp 23 and 21 respectively

HFTBI5(1,1)=HINT5,HINT6 ! transition from zone 5 to 6

TMTBI5(1,0)=HEIGHT/2-DT+TH5,HEIGHT/2-TH6! kp 23 and 21 respectively

TMTBI5(1,1)=TINT5,TINT6 ! transition from zone 5 to 6

SF,AZONI5V,CONV,%HFTBI5%,%TMTBI5%

*DIM,HFTBE7,TABLE,2� ,Z! H for tranzitional area 7v external

*DIM,TMTBE7,TABLE,2� ,Z! T for tranzitional area 7v external

HFTBE7(1,0)=-HEIGHT/2,-HEIGHT/2+DB! kp 17 and 13 respectively

HFTBE7(1,1)=HEXT8,HEXT7 ! transition from zone 7 to 8

TMTBE7(1,0)=-HEIGHT/2,-HEIGHT/2+DB! kp 17 and 13 respectively

TMTBE7(1,1)=TEXT8,TEXT7 ! transition from zone 7 to 8

SF,AZONE7V,CONV,%HFTBE7%,%TMTBE7%

*DIM,HFTBI7,TABLE,2� ,Z! H for tranzitional area 7v internal

*DIM,TMTBI7,TABLE,2� ,Z! T for tranzitional area 7v internal

!error - HFTBI7(1,0)=-HEIGHT/2+TH8-HEIGHT/2+DB-TH7! kp 35 and 31 respectively
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HFTBI7(1,0)=-HEIGHT/2+TH8,-HEIGHT/2+DB-TH7! kp 35 and 31 respectively

HFTBI7(1,1)=HINT8,HINT7 ! transition from zone 7 to 8

!error - TMTBI7(1,0)=-HEIGHT/2+TH8-HEIGHT/2+DB-TH7! kp 35 and 31 respectively

TMTBI7(1,0)=-HEIGHT/2+TH8,-HEIGHT/2+DB-TH7! kp 35 and 31 respectively

TMTBI7(1,1)=TINT8,TINT7 ! transition from zone 7 to 8

SF,AZONI7V,CONV,%HFTBI7%,%TMTBI7%

AUTOTS,ON

NSUBST,50

KBC,0

EQSLV,PCG

SOLVE

�nish

/POST1

*DIM,NDTEMP,ARRAY,NUMNOD

*VGET,NDTEMP(1),NODE�TEMP

/PREP7

ETCHG,TTS! changing the elements to structural

LSCLEAR,ALL! clearing the loads

/SOLU

ANTYPE,STATIC

!LDREAD,TEMP,1��TEST,RTH ! for some reason it still uses the name "�le"

!LDREAD,TEMP,1��FILE,RTH ! for all the extensions so we go along with that

LDREAD,TEMP,1���le,rth

SFA,AZONE�PRES,PRESIN+PRESDEL

SFA,AZONI�PRES,PRESIN

DA,AROOT,UY,0 ! only in Y-direction whole section is restricted
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DK,1,ALL,0

DK,20,ALL,0

CMSEL,S,ATIP

NSLA,S,1

DSYM,SYMM,Y

ALLSEL,ALL

AUTOTS,ON

NSUBST,50

KBC,0

EQSLV,PCG

SOLVE

/post1

!10.17.2 let us de�ne the goals in postprocessing information

*DIM,SRES,ARRAY,10

*DIM,TRES,ARRAY,10

*DIM,INOD,ARRAY,10

*DIM,NCOOR,ARRAY,10,3

! This is the code to �nd the node in a given zone with the max stress

! CMSEL,S,NZONE1

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(1),SORT�MAX !maximum value

! *GET,INOD(1),SORT�IMAX !corresponding node

! *GET,NCOOR(1,1),NODE,INOD(1),LOC,X

! *GET,NCOOR(1,2),NODE,INOD(1),LOC,Y

! *GET,NCOOR(1,3),NODE,INOD(1),LOC,Z

! *SET,TRES(1),NDTEMP(INOD(1))! its temperature
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! CMSEL,S,NZONE2

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(2),SORT�MAX !maximum value

! *GET,INOD(2),SORT�IMAX !corresponding node

! *GET,NCOOR(2,1),NODE,INOD(2),LOC,X

! *GET,NCOOR(2,2),NODE,INOD(2),LOC,Y

! *GET,NCOOR(2,3),NODE,INOD(2),LOC,Z

! *SET,TRES(2),NDTEMP(INOD(2))! its temperature

! CMSEL,S,NZONE3

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(3),SORT�MAX !maximum value

! *GET,INOD(3),SORT�IMAX !corresponding node

! *GET,NCOOR(3,1),NODE,INOD(3),LOC,X

! *GET,NCOOR(3,2),NODE,INOD(3),LOC,Y

! *GET,NCOOR(3,3),NODE,INOD(3),LOC,Z

! *SET,TRES(3),NDTEMP(INOD(3))! its temperature

! CMSEL,S,NZONE4

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(4),SORT�MAX !maximum value

! *GET,INOD(4),SORT�IMAX !corresponding node

! *GET,NCOOR(4,1),NODE,INOD(4),LOC,X

! *GET,NCOOR(4,2),NODE,INOD(4),LOC,Y

! *GET,NCOOR(4,3),NODE,INOD(4),LOC,Z

! *SET,TRES(4),NDTEMP(INOD(4))! its temperature

! CMSEL,S,NZONE5

! NSORT,S,EQV,0,0 !�rst
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! *GET,SRES(5),SORT�MAX !maximum value

! *GET,INOD(5),SORT�IMAX !corresponding node

! *GET,NCOOR(5,1),NODE,INOD(5),LOC,X

! *GET,NCOOR(5,2),NODE,INOD(5),LOC,Y

! *GET,NCOOR(5,3),NODE,INOD(5),LOC,Z

! *SET,TRES(5),NDTEMP(INOD(5))! its temperature

! CMSEL,S,NZONE6

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(6),SORT�MAX !maximum value

! *GET,INOD(6),SORT�IMAX !corresponding node

! *GET,NCOOR(6,1),NODE,INOD(6),LOC,X

! *GET,NCOOR(6,2),NODE,INOD(6),LOC,Y

! *GET,NCOOR(6,3),NODE,INOD(6),LOC,Z

! *SET,TRES(6),NDTEMP(INOD(6))! its temperature

! CMSEL,S,NZONE7

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(7),SORT�MAX !maximum value

! *GET,INOD(7),SORT�IMAX !corresponding node

! *GET,NCOOR(7,1),NODE,INOD(7),LOC,X

! *GET,NCOOR(7,2),NODE,INOD(7),LOC,Y

! *GET,NCOOR(7,3),NODE,INOD(7),LOC,Z

! *SET,TRES(7),NDTEMP(INOD(7))! its temperature

! CMSEL,S,NZONE8

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(8),SORT�MAX !maximum value

! *GET,INOD(8),SORT�IMAX !corresponding node
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! *GET,NCOOR(8,1),NODE,INOD(8),LOC,X

! *GET,NCOOR(8,2),NODE,INOD(8),LOC,Y

! *GET,NCOOR(8,3),NODE,INOD(8),LOC,Z

! *SET,TRES(8),NDTEMP(INOD(8))! its temperature

! CMSEL,S,NZONE5V

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(9),SORT�MAX !maximum value

! *GET,INOD(9),SORT�IMAX !corresponding node

! *GET,NCOOR(9,1),NODE,INOD(9),LOC,X

! *GET,NCOOR(9,2),NODE,INOD(9),LOC,Y

! *GET,NCOOR(9,3),NODE,INOD(9),LOC,Z

! *SET,TRES(9),NDTEMP(INOD(9))! its temperature

! CMSEL,S,NZONE7V

! NSORT,S,EQV,0,0 !�rst

! *GET,SRES(10),SORT�MAX !maximum value

! *GET,INOD(10),SORT�IMAX !corresponding node

! *GET,NCOOR(10,1),NODE,INOD(10),LOC,X

! *GET,NCOOR(10,2),NODE,INOD(10),LOC,Y

! *GET,NCOOR(10,3),NODE,INOD(10),LOC,Z

! *SET,TRES(10),NDTEMP(INOD(10))! its temperature

! This is the current code that speci�es a given node per zone to extract

! the "max" stress and temp from. The node point chose corresponds to the

! max stress node based on the baseline input variable settings

*SET,INOD(1),94

*SET,INOD(2),100

*SET,INOD(3),92
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*SET,INOD(4),141

*SET,INOD(5),70

*SET,INOD(6),3

*SET,INOD(7),136

*SET,INOD(8),219

*SET,INOD(9),40

*SET,INOD(10),193

*DO,I,1,10

*GET,SRES(I),NODE,INOD(I),S,EQV !maximum value

*GET,NCOOR(I,1),NODE,INOD(I),LOC,X

*GET,NCOOR(I,2),NODE,INOD(I),LOC,Y

*GET,NCOOR(I,3),NODE,INOD(I),LOC,Z

*SET,TRES(I),NDTEMP(INOD(I))! its temperature

*ENDDO

ALLSEL,ALL

*VWRITE,INOD(1),TRES(1),SRES(1),NCOOR(1,1),NCOOR(1,2),NCOOR(1,3)

(F10.0,2X,E14.6,2X,E14.6,2X,E14.4,5X,E14.4,2X,E14.4)

�nish
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