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I. Introduction  

However difficult the fundamental problems of theoretical computer science 

may seem, there is very little to suggest that they are anything more than 

knotty combinatorial problems. So, when we look for reasons for our inability 

to resolve P = NP and related questions, we most likely find them dealing with 

a lack of understanding of particular computational problems and their lower 

bounds. This is the sense of Hoperoft's prediction: "...within the next five 

years, nobody will prove that any of these problems takes more than let's say 

n 2  time. I think that's a reasonably safe conjecture and it also illustrates 

how little we know about lower bounds." [MT]. Hoperoft's guess is uncanny 

in its accuracy -- after six years and considerable effort by many researchers, 

his conjecture remains unchallanged. 

The results in this paper offer a possible explanation for our failure 

to resolve these problems. Roughly, the main result of the sequel links 

lower bounds and a branch of mathematical logic known as model theory. In par-

ticular, we prove that the existence of nonpolynomial lower bounds is equiv-

alent to the existence of nonstandard models of a sizable fragment of 

arithmetic. Since these are deep logical issues and there are very few tech-

niques for handling them, and since the nonstandard models in question are non-

effective, it seems plausible that this linking of complexity theory and logic 

explains our failure to obtain nontrivial lower bounds. 

One of the aims of mathematical logic is to clarify the relation between 

mathematical theories and their interpretations -- or models. In logic, a 

theory is simply a collection of statements and all of their logical consequences, 

that is, a collection of (nonlogical) axioms closed under the relation "P. 
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Models are the structures in which theories are interpreted. 

Plane geometry is such a mathematical theory. In antiquity, the relation 

between Euclidean geometry and its models was considered obvious, and this 

relationship was even further clarified by. the arithmetization of geometry. 

It was therefore a shock to the mathematical world when, in 1868, Beltrami 

announced that geometry can have more than one model -- a very strange one 

at that since in his model the parallel postulate is false. Since the parallel 

postulate is certainly true in the standard model of geometry, its negation is 

not provable -- the parallel postulate is consistent with Euclidean geometry. 

On the other hand, since the negation of the parallel postulate is also true 

in a (nonstandard) model, its negation (i.e., the parallel postulate itself) 

is not provable. More recently, Cohen [Co] proved that both the axiom of 

choice and generalized continuum hypothesis cannot be proved from the remain- 

ing axioms of set theory -- Cohen introduced a radically new concept called 

forcing to construct nonstandard models with prescribed properties. The first 

such result for formal arithmetic was obtained by Paris and Harrington [PH]. 

They proved that a modest generalization of the finite Ramsey theorem of 

combinatorics is not decided by Peano arithmetic. Sheperdson [Sh] discusses 

the unprovability of induction schemes and such statements as Fermat's Last 

Theorem, for the case n = 3, from weak fragments of arithmetic. 

This property of statements of a theory is called independence: a 

statement is independent from a theory T if the statement cannot be proved 

or disproved within T. Of course, Godel proved that every sufficiently 

powerful theory must leave infinitely many statements unresolved in this way. 

In current terminology, however, a qualitative distinction is usually drawn 

between formal undecidability and interesting independence theorems. In the 
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Godel-style formal undecidability theorems, one explicitly formulates a 

diagonalizing statement and using the properties of the axiom system in 

question, encodes that statement as a formal statement of the theory. In 

independence results whatever diagonalization is present in the proof, is 

well-hidden. One begins with a fixed (true) formal statement -- whose 

formalization has not been obtained with a knowledge of the axioms to be used --

and using model theoretic techniques, shows an interpretation in which the 

statement fails to hold (cf. [DL] for a survey of these results). Therefore, 

independence results seem to exhibit the following characteristics. 

(1) There is no direct diagonalization. That is, the statements 

whose independence is to be proved do not refer explicitly to, 

say, halting computations. 

(2) The independent statements are interesting in their own right. 

In set theory, for instance, independent statements often rep-

resent useful infinitary combinatorial principles. 

(3) The independence of a statement is sensitive to the underlying 

theory. In formal undecidability results one can add additional 

axioms to the theory, encode the independent statement for the 

new theory and retain its undecidability. In interesting inde-

pendent theorems, however, the independence of the statement from 

a set of axioms characterizes the power of the axioms; changing 

the underlying theory by adding more axioms decides the statement 

in the expanded theory. 

Except for the discussion of Hoperoft and Hartmanis [HH] and the results 

of Lipton [Li], we are aware of no other results that relate the basic issues 

of complexity theory to independence or nonstandard models. The impact of 
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our results is that proving lower bounds on certain computational problems 

is as hard as showing that a certain true sentence is independent from a 

powerful theory. In particular, we show that for certain S, S 	P (i.e., S 

is intractible) exactly when a particular true sentence A s  related to S must 

be false in a nonstandard model of arithmetic. Furthermore, this model must 

be noneffective. The various proofs of this result yield existential proof 

techniques for showing that problems are solvable in polynomial time. An 

interesting aspect of this result is that it apparently does not generalize 

much beyond polynomial time computation. That is, it does not relativize in 

any obvious way, nor is it possible to formally substitute many other time 

classes for P in the statement of the theorem. 

II. Definitions  

The definitions from complexity theory are standard [BL]. P denotes the 

set of problems solvable in deterministic polynomial time. NP denotes the 

problems solvable in nondeterministic polynomial time, and coNP denotes the 

set of problems whose complements lie within NP. The inclusions 

P c NP n coNP c NP 

are obvious. Although it is widely believed that both inclusions are strict, 

the results to be quoted below are interesting even if, say, P = NP n coNP. 

We will return to this point later. 

Our logical notation is standard (see [Ba]). Our language is any 

acceptable first order language with arithmetical symbols and quality. We 

use V for universal quantification and 3 for existential quantification. 

Among other symbols, x,y,z are used for variables, and the infix symbols 
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+ and x and 2-- are used for addition and multiplication and subtraction, suc 

and pred for the successor and predecessor functions, and 0 for the constant 

zero. 

Let T be a set of formulas, then T 	4) indicates that (I) is a logical 

consequence of T. A theory is simply the set of formulas which are logical 

consequences of T. Since the set of theorems of the theory is uniquely char-

acterized by T, we identify the two. A theory is consistent if 0=1 is not 

among its theorems. A formula (I) is independent of the theory if neither (I) 

nor 	is a theorem. If T is a theory, Ti-(1) denotes the result of adjoining 

(t) as an axiom. Thus (I) is independent of T if both T+q) and T+'4 are consistent. 

A model of a theory T is an interpretation of the individuals, functions and 

relations of the underlying language such that each 4  c T is true. A set 

of formulas has a model if and only if it is consistent. In addition to this 

basic fact, we will use the 

Compactness Theorem [BS]: Let T be a set of formulas. T has a model iff 

every finite subset of T has a model. 

We will deal with a subtheory of (complete) arithmetic. Of course the 

standard model of this theory is the integers N = {0,1,2,...} with the remain-

ing symbols interpreted in the obvious way. Any model *N (with + interpreted 

as *+, etc.) which is not isomorphic to N is said to be nonstandard. Since 

*N may be uncountable it is not surprising that nonstandard models of 

arithmetic can exist. Skolem [SK], however, showed that countable non-

standard models are possible. We will discuss these more fully in Section IV. 

For now it will be sufficient to note that if *N is a countable nonstandard 

model of arithmetic *N-N consists of nonstandard objects which are infinite 

relative to N; i.e., if a c *N-N, a > n, for each M c N. Henceforth 
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*N (or *N 0 ,*N 1 ) always denotes such a model. 

We will now define a particular theory PT. The language for PT includes 

symbols for all the functions and predicates which are countable in poly-

nomial time. The axioms of PT are all true sentences of the form 

(3x)(Vy)A(x,y), 

where A is quantifier-free (as usual x and y may denote several occurrences 

of bound variables). A formula with such a quantifier is called an EA formula. 

Similarly an AE formula contains the quantifier prefix V3 . The theory PT 

is quite powerful. It includes the theory studied by Skolem [Skl] -- which 

he felt represented an important part of constructive number theory. Hilbert, 

Herbrand, Kreisel and Scott [Sc] have also studied systems much weaker than 

PT (Sh]. Perhaps more relevant to our discussion, the PV system of Cook [Ckl, 

Ck2] is also weaker than PT. The axioms of PT include all the recursive 

equations that define the functions and predicates included in PT. Moreover, 

PT contains the induction axiom 

A(0) A (Vx)[A(x)  4- A(x+1)] -4- (tty)A(y)• 	(*) 

where A is a quantifier-free. To see this just note that (*) is equivalent 

to 

(3x)(vY)i'A(0) y (A(x) A rA(x+1))v A(Y)]• 

For model-theoretic purposes the axioms PT can be replaced by their universal 

members without changing the degree of the theory: both axiomatizations are 

equivalent. The theory which Skolem studied can be formed by (*) and the 

recursive definitions of the functions successor, addition, multiplication, 

subtraction and integer division. Cook's PV theory is related to PT, but 

notice that PT is not even recursively enumerable (inclusion of an axiom 

depends upon its truth), so that PT is a vastly more powerful theory. Indeed 
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it is not obvious how to deal with independence from PT using other than 

model-theoretic techniques -- since PT is not recursively enumberable, it 

is not clear how diagonalization can work at all: 

III. Main Result  

Our main result is that the intractability of any S c NP n coNP is 

equivalent to the existence of a nonstandard model for PT in which a certain 

sentence AS' related to S, fails; i.e., PT + ivA is a consistent theory. 

Let S be fixed and let A(x,y), B(x,y) be defined as follows: 

(3y)A(x,y) iff x c S, 

and 

(3y(B(x,y) iff x j S. 

Now form AS (AB): 

As (A,B) 	(Vx)[(3Y)A(x,Y)V (3z)B(x,z)] 

Notice that, when interpreted in N, N 	AS(A,B) since in N 

As (A,B) *-÷ (Vx)(xES v xtS). 

Theorem. Let S c NP n coNP. Then the following statements are equivalent: 

(1) S c P. 

(2) PT H As (A,B), for some A,B in the language of PT. 

Proof of (1) => (2):  If S c P, there are polynomial time predicates A,B so 

that x E S iff A(x) and x 	S iff B(x). 

Hence 
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(vx)[(3y)A(x) V (3z)B(x)] 

is an axiom of PT. 
o 

Proof of (2) => (1): 

We will present three proofs of the converse. What is needed in all three 

cases is to pass from PT 1--- A s (A,B) to a true formula 

n 	 m 
(Vx)( V A(x,f i (x)) v V B(x,g i (x))) 

i=1 	 i=1 

where the terms 
fi,gi 

are in the language of PT. Hence x c S is decided by 

checking 

n 
V A(x,fi (x)) 
i=1 

and 

m 
V B(x,g i (x)) 
i=1 

If (3) is true x E S and if (4) is true x I S, and since all terms and 

predicates are polynomial time computable, S c P. 

Proof A: 

Let (Vx)(3Y)r(x,y) denote As (A,B), so that PT I-- (Vx)(3Y)r(x,y), 

and suppose that 

n 
PT 11 (vx)(y r(x,f i (x)), 

1=1 
n=1,2,... 

(3)  

(4)  
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where f 1 ,f2 ,... are terms of PT. Define the theory T* by 

T* = PT + %r(c,f1 (c)) +...+ rt,r(c,fn (c)) +... 

where c is a new constant, not appearing in PT. We first claim that T* is 

consistent, for if not 

PT + %r(c,f 1 (c)) +...+ r■T(c,fm(c)) F- 	0=1 

by compactness and hence 

n 
PT E V r(c,f i (c)) 

i=1 

which implies 

m 
PT 1— -(Vx) V r(x,fi (x)), 

i=1 

establishing the claim. Choose any model M for 1.* and let Mc  be the submodel 

generated by c. Since PT is open, M c  1= PT and thus Mc 	(3y)r(c,y). But 

by our choice of c, Mc  i= (dy)%r(c,y). S 6 P now follows as described above. 

Proof B: 

We need to recall the following fact, often called the Kleene-Herbrand-

Gentzen Theorem [K1]. 

Lemma 	If T is a consistent collection of EA formulas and T 	(Ix)(1y)(1)(x,y) 

where (I) is open, then for some terms over the terms of T, their compositions 

and definition by cases, say fl,...,fm, 
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m 
V (g x,f i (x )) 
1=1 

is true. 

Roughly speaking, this allows us to make the existential quantifiers 

explicit in a quite constructive fashion. Without the restriction on T the 

lemma is easily seen to be false. Since PT satisfies the hypothesis for T 

and A(A,B) is AE, S c P follows by (3), (4) as described above. 

0 

Proof C:  

The application of the Kleene-Herbrand-Gentzen Theorem can be replaced 

by an application of the "pure" Herbrand Theorem [Stl] as in Proof B to 

conclude PT 	"S e  P. 

Notice that Proof A is nonconstructive and involves compactness arguments. 

The provability of ,I, s (A,B) in this setting constitutes a "pure" existence proof 

for polynomial time algorithms. The provability of A s (A,B) in the setting of 

Proofs B and C constitutes a constructive existence proof for polynomial time 

algorithms. (The apparent simplicity of Proof B compared to Proof A lies in 

the great power of Herbrand's Theorem, which has played a basic role in 

various consistency proofs in logic. The proof of Herbrand's Theorem is based 

on a very careful analysis of how T can prove \fx)(]y)(1)(x,y)). However, the 

running times of polynomial time algorithms produced in this way may be very 

bad indeed. In fact, the best known boundiS of order 

2 

2 • 
	

( 5 ) 

n 
2 
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where the depth of nesting of the stack of 2's is bounded by the number of 

inferences in the shortest proof of As (A,B) in PT. These upper bounds are 

the best known to logicians, although the lower bound literature is very 

sparse (Statman has obtained this polynomial as a lower bound [St] although 

for a theory much less relevant to complexity theorists). It has been often 

noticed that, although there are problems with very large polynomial 

running times, the only naturally occuring problems in P have "small" poly-

nomial complexity. This gap has helped to sustain a certain feeling that 

membership in P is sufficient for computational tractability. If indeed the 

polynomial bounds (5) cannot be locally reduced, this is compelling evidence 

that P is much too extensive 

This theorem above does not apply to arbitrary complexity classes. It 

is apparently rather highly specialized for polynomial-like complexity classes. 

At concrete levels, the theorem can be made to work for the following com-

plexity classes: 

2poly-log 

linear 

n 1-1-6 

Unlo (k)  k 	g 	n  

How about those problems for which lower bound proofs have already been 

supplied? t 	The theorem does not hold for any elementary lower bound 

(functions which consist of bounded nestings of exponentials do not have the 

(This issue was raised by R. E. Tarjan. 
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closure properties required by Herbrand's Theorem). On the other hand, the 

A sentence for those sets which have provable nonelementary lower bounds 

[MS] are false in the standard model of T, and so the issue of independence 

does not even arise for those problems. In short, the theorem cannot apply 

to a class of lower bounds F if the functions in F are not closed under 

compositon and definition by cases, or if determinism and nondeterminism are 

not distinguished at complexity F. 

By identical arguments we can show that PT is also related to "P = NP." 

Let us say that a theory T can verify that NP is closed under complements 

if for S c NP 

T 	"S c coNP." 

Corollary. PT can verify that NP is closed under complements iff P = NP. 

By "checking" the theorem against the well-known problems which lie in 

NP n coNP (e.g., Primes, Linear Programming, Breaking Public Key Crypto- 

system [Ri]), a great deal of information can be obtained about the nonstandard 

models whose existence is so intimately connected to lower bounds. We have 

the corollaries: 

Corallary. If Primes is not in P, then there is a nonstandard model of PT 

in which primes need not have primitive roots [Pr]. 

Corollary. If Linear Programming is not in P, then there is a nonstandard 

model of PT in which for some point y and some point-set X whose convex 

hull does not contain y, there is no separating hyperplane through y [Do]. 

Since both of these corollaries negate properties which hold in the 

standard integers, it is difficult to imagine the models in which they fail. 
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Moreover, the classical techniques for constructing nonstandard models do not 

work at the simple level of ts (A,B). For example, forcing is a technique that 

can be applied to formulas very high in the analytical hierarchy [Bu]. It is 

generally acknowledged by logicians that there are few techniques for con-

structing such nonstandard models, yet the theorem cited above asserts that 

a byproduct of any lower bound proof is an existence proof for such nonstandard 

models. 

Finally, we note that although we are unable to extend these results to 

Peano Arithmetic, we can extend the theory PT slightly to include theories 

with the property that all terms which grow slowly are easy to compute. Thus 

we have corresponding independence results for theories of +, x and poly-

nomially honest functions. For instance, suitable theories are theories of 

+,x,x: 	 and 
	

4-,X9X
y+1  

IV. Nonstandard Models  

In this section we will describe a result, due to R. Solovay, showing 

that from the standpoint of constructing nonstandard models the theory PT is 

almost as strong as Peano Arithmetic (PA, for short). We begin with a 

digression on the nature of nonstandard models of PA and fragments of arithmetic. 

The classical observation of Skolem was that a countable nonstandard 

model of PA could be obtained simply by applying compactness to the set of 

formulas 

PA + (a>0) + (a>1) + (a>2) + 

It is consistent to assume, then, that there exists a "nonstandard object" a 

which is greater than all standard integers. Such a model *N contains N as 

an initial segment and has an ordering *< extending < to *N-N. The global 
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structure of *N is remarkable. Define for x,y c *N xEy to mean that x and 

y differ by a standard integer, i.e., for some n c N: 

x*-y = n 
	

or 	y*-x = n. 

*N/E is a set of equivalence classes called blocks (each is order isomorphic 

to N). N is a block. Also *< totally orders blocks like the rationals (i.e., 

blocks are densely ordered). Nonstandard integers cannot be described by 

formulas of PA and any formula true of infinitely many integers must also hold 

at some b c *N-N. 

Nonstandard models for fragments of arithmetic also contain infinite, 

nonstandard objects but may have vastly simpler structure. Consider the 

(infinite) axiom system: for all n, m c N, 

sucm (0)+0 = sucm (0), 

suc
m
(0)+suc(suc

m
(0)) = suc(suc

m+n
(0)), 

suc
n
(0)x0 = 0, 

suc
n
(0)xsuc(suc

m
(0)) = suc

n (0)xsucm(0)+suc
n
(0), 

suc
n
(0) 	suc

m
(0), for m # n, 

(kk)(x < suc
m
(0) 4-÷ V x = suc 1 (0)), 

0<i<m 

.(t6c)(x < sucm (0) V  sucm(0) < x). 

A nonstandard model for this theory is 

*N = N u {03}, w t N with *suc(w) = 0, 

*suc(m) = suc(m) for all in c N and *+, *x defined by the following tables 
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difficult as independence proofs. This in itself leads to interesting spec-

ulations, but we feel the real force of these results lies in the link they 

create between the relatively new (and rather concrete) problems of computer 

science and some classical questions at the foundations of mathematics. We 

will mention just a few possibilities which ensue from such a link. 

(1) It is possible that the methods of mathematical logic may help us 

resolve such questions as whether or not P = NP. 

(2) Since lower bound proofs are equivalent to independence proofs, 

it is possible that the lower bound statements themselves are 

independent from PA or similar theorems. We make the following 

conjecture: "P = NP" is independent of PT. 

(3) Following the measuring of (2), a viable approach to lower bounds 

might be to look for consistency with theories such as PA and PT. 

(4) It is possible that a nontrivial lower bound will be proved, providing 

an entirely new method of building nonstandard models for arithmetic. 

(5) It is possible that T 	As(A,B) implying the existence of a poly- 

nomial but quite useless algorithm for S. 

(6) The main result of Section III together with Solovay's result comes 

very close to explaining the difficulty in obtaining lower bounds: 

any such proof must implicitly construct a noneffective system. 

This makes it seem far less likely that the finite combinatorial 

methods of the sort which have been applied in extant lower bound 

proofs will be able to prove nontrivial lower bounds are NP-complete 

problems. 
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11. Introduction  

The main results of this paper demonstrate 
the consistency of "P = NP" and a variant of 
"NP 	coNP" with certain natural fragments of 
number theory to be defined precisely in the se-
quel.t Consistency results represent an approach 
to the lower bound problems of complexity theory 
which points to a number of interesting lines of 
inquiry. Our ultimate goal is to make precise the 
difficulty of proving certain nontrivial lower 
bounds. Among the possibilities which follow from 
this approach are: 

(1) that logical techniques may help us resolve 
the P = NP question, 

(2) that showing why certain arguments must 
fail may lead to mathematical tools capable 
of resolving the problems, and 

(3) that the special character of model theo-
retic methods in complexity theory may lead 
to new results which are of purely logical 
interest. 

We will address these possibilities below. 

Roughly speaking, a statement 4, is consistent 
with a mathematical theory

4 
 T (usually written 

"T + 	is consistent") if the addition of cp as an 

*
This work was supported in part by the US Army 
Research Office, Grant No. DAAG29-76-C-0024 and by 
the National Science Foundation Grants MCS-78-81486 
and MCS-78-07379. Our work was facilitated by the 
use of Theory Net, NSF Grant MCS-78-01689. 

t
We have tried to keep the logical background self 
contained -- when we fail in this, a good reference 
is the encyclopedic [2]. 

axiom of T does not lead to a contradiction. We 
will write E 	to mean that the statement II) is 
a logical consequence of the collection E of 
statements -- of course, we always assume a form-
alization in an appropriate system of first order 
logic. T + cp is consistent if 

T + (1) 	0= 1; 

alternatively, T + (1) is said to be consistent if 
it is possible to find an interpretation of 
T + (1) in which the statements in T u {4}  are si-
multaneously true, i.e., a model of T + (1). If 
T + 	is consistent, there are two additional 
possibilities: 

(1) T 	to: that is, not only is there a model 
of T + (I), but every model of T is also a 
model of q, so T can totally resolve cp. 

(2) T + 	gb is consistent: that is, neither 
T (0 nor T 4, so no argument in-
volving only T can resolve (I) -- in this 
case q  is said to be independent of T. 

Consistency and independence have come to be 
topical issues in computer science, combinatorics 
and related fields. The impetus perhaps derives 
from the discovery by Paris [3] that certain na-
tural combinatorial principles cannot be proved 
or disproved in Peano Arithmetic. Hartmanis and 
Hoperoft [4] suggested that relativized P = NP 
questions may be formally undecidable. This theme 
was more fully developed in [5]. Lipton [6] was 
the first to use model theoretic techniques to 
prove the consistency of a complexity - theoretic 
statement with an interesting fragment of arith-
metic. A formal connection between independence 
and lower bound problems was announced in [1]. 

We will proceed as follows. Two theories, 
ET and PT, will be defined. Intuitively, these 
theories correspond to constructive components of 
the first order theories of exponential time and 
polynomial time, respectively. It was shown in 
[1] that in a certain sense PT is the character-
izing theory of P = NP type problems by showing 
that P = NP exactly when a certain true sentence 
AS' where S is NP-complete, is provable in PT. So, 

in particular, proving nonpolynomial lower bounds 
is equivalent to constructing certain nonstandard 
models of PT. (Nonstandard models of PT are dis-
cussed in Section 3.) There are two ways to in-
terpret such a result. If T (I) is equivalent  



to, say, P = NP, then a way of showing 
that P # NP is to prove that T + -10 is consistent. 
On the other hand, if P = NP, then T + "P # NP" 
could still be consistent. A new understanding of 
polynomial time computation may result by looking 
at nonstandard interpretations of the notion of 
efficiency, that is, by showing that T + "P = NP" 
is consistent. In either case, the crucial step 
is a consistency proof. In Sections 4 and 5 we 
prove that ET + "P = NP" is a consistent theory, 

eLther toward an independence result or 
lr.e unlikely alternative: P = NP. The correspond-
ing result for NP # coNP and PT is proved in Sec-
tions 6 and 7. This result carries some interest 
due to the recent announcement of a polynomial 
time algorithm for linear programming [7], which 
has cast doubt on some widely held opinions con-
cerning the complexity of problems in NP n coNP._. 
The proof employed in Section 7 introduces a quan-
tifier elimination technique that may prove use-
ful for constructing other models. The final 
section compares the independence techniques most 
widely used for independence proofs in number 
theory with the techniques most likely to yield 
progress in complexity theory, concluding that 
technical breakthroughs may be required. 

2. Preliminaries  

Our logical notation is standard (see, e.g., 
[2]). Our underlying language is any acceptable 
first order language with arithmetic symbols and 

equality. We use the symbols x+y,
* , xxy, 

c
x
(c>2 a constant), min(x,y), max(x,y), all with 

the usual intended interpretation. We use x, y, 
z for variables and a, b, c, and sometimes a, for 
constants. 

A theory T is simply a set of formulas closed 
under 	We usually identify T with a set of 
axioms TA : 

T = {401TA f- 4, } 

If TA  I--- 0, then 	is a theorem of T. T is said 

to be consistent if 0 = 1 is not among the theor-
ems of T. There is a unique inconsistent theory: 
it contains all formulas. T + 0 denotes the 
theory resulting from T A  u {0. A formula 0 is 

independent of T if T + 	and T + 	are con- 
sistent. 

A model of a theory T is an interpretation 
(in ordinary mathematics) of the individuals, 

** 
functions, and relations 	such that each 	e T 
is true. More precisely, let (M,F,R) be a system 
of individuals, M, functions on M, F, and rela-
tions on M, R. We denote such a system simply by 

M when no confusion results. Let WO be an atomic 
*
xly is defined to be x-y if x>y, and 0 otherwise. 

** 
When necessary we denote the interpretation of 

a symbol in an interpretation M by appending M as 
a superscript. 
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formula with free variables it, and let -A" be a vec-

tor of elements of M, IzI = Iai. Then 	is 

satisfied by a in M, written 

M I= (Dial, 

M . 
if 	is true in M when x l  is interpreted as a l , 

x
2 

as a 2, etc. For remaining 0, M I= 0[ -.;] is 

defined by induction: 

(i) if 0 = 00  v 0 1  then M 	0[a] iff 

M 	(1) (P] v M 	(P l [a]; 

(ii) if 	= —'00, then M 	cp[] iff 

M kt (1) 0M; 

and 

(iii) if (I) = (Vx j )00 , then M 	0[7A-] iff 

for all m c M 

M 

If M I= 0[a] for all -a% then 	is true in M and 

M I= 0. (M is said to be a model of 0). Obvious-

ly if 	is a sentence, then M 	0 if M = 0[ - ] 

for any a. A set of formulas E has a model M if 
for every 	e E, (I) is true in M. There are three 
essentially equivalent formulations of the re-
lationship between I= and I--. Let E be a collec-
tion of formulas: 

Deduction Theorem.  E is consistent iff each 
finite subset of E has a model. 

Completeness Theorem.  E is consistent iff E has 
a model. 

Compactness Theorem.  E has a model iff each 
finite subset of E has a model. 

Basic to our development is a number theory; 
that is, a theory of the system N = {0,1,2,...1. 
The most celebrated theory of the natural numbers 
is Peano Arithmetic (PA), i.e., the usual recur-
sive definition of N, +, x together with mathe-
matical induction. A related but immensely more 
powerful number theory is complete arithmetic (CA): 

CA = {01W=0}. 

Important subtheories of PA can be obtained by 
constraining the prefix of a prenex formula. A 
quantifier Q is said to be bounded if it is equiv-
alent to writing 0(x<t)0(x), where t is a term not 
containing x; a bounded formula contains only 
bounded quantifiers. If 	is a bounded formula, 
then 3x 	and Vx 	are respectively E l  and il l  

formulas. The following table defines E2 ,H2 ... . 



E
n 

n 

n+1 
 

n 

 

n+1 
E
n 

   

We usually reserve the notation En , E n  for the 

n 	ani f(peE n 
We will deal with other subtheories of CA. 

The first such theory is PT, the open theory of 
polynomial time [1]. The language of PT includes 
symbols for all the functions and predicates com-
putable in polynomial time. The axioms of PT are 
all true sentences of the form 

( 3x)(4) A(7‹. , -.);) 9' 

, 
when A is quantifier-free and x, y may denote 
several occurrences of the bound variables. 

A theory similar to PT but weaker in a certain 
sense is the open theory of exponential time, ET. 
The language of ET is comprised of the predicates  

of PT and the functions x+y, 	xxy, cX (c>2), 
min(x,y), and max(x,y). The axioms of ET are all 
true sentences 

t(3 A(X), 

where A is quantifier-free. For instance, if Fer-
mat's last theorem is true, then ET contains the 
axioms 

xn + yn 	zn 	
x x y x z = 0, n = 3,4,5,... 

N = 10,1,2,...) is called the standard 
model of CA (and also PA). Any modems of CA 

(with + interpreted as 
*
+, etc.) which is not iso-

morphic to N is said to be nonstandard. By the 
Lowhenheim-Skolem Theorem there are infinitely many 
nonstandard models of CA, but countable nonstan-
dard models are also possible. We will discuss 
nonstandard models more fully in Section 3. 

3. PT and Nonstandard Models  

The main result of [1] establishes a relation-
ship between lower bound problems in comnlexity 
theory and independence problems in the founda-
tions of mathematics. In particular, the existence 
of non-polynomial lower bounds for certain combi-
natorial problems is equivalent to the existence 
of certain nonstandard models of PT: for any 
S c NP n coNP there is a fixed true sentence AS

, 
related to S, so that S is intractable exactly 

A formula with such a quantifier prefix is called 
an EA formula. Similarly, an AE formula contains 
the quantifier prefix V3 . 
Note that the axioms of PT can be replaced by their 
universal members without changing the theory. 

	 1  
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when there exists a nonstandard model of PT in 
which A fails -- i.e., when PT + -IA is a con- 

sistent theory. 

More precisely, let S be fixed and let 
A(x,y), B(x,y) be defined as follows: 

(1) (3y)A(x,y) iff x c S, 

and 

(2) (3y)B(x,y) iff x ¢ S. 

Now, form AS'  (A B)* • 

AS' 
(A B) = (Vx)((3y)A(x,y) v (3z)B(x,z)). 

Notice that 

N 	As (A,B), 

since in N 

As (A,B) ++ (Vx)(xeSvx/ S) 

Theorem 3.1 [1]. Let S E NP n coNP. Then the 
following statements are equivalent. 

(1) S c P. 

(2) PT 	As(A,B), for some A, B in the 

language of PT. 

By a similar result it can be shown that PT 
is also related to "P = NP." Let us say that a 
theory T can verify that NP is closed under com-
plement if for S e NP 

T 	"S E coNP." 

Theorem 3.2. PT can verify that NP is closed 
under complements iff P = NP. 

Skolem [18] is credited with the classical 
observation that nonstandard models of arithmetic 
exist. Of course, in one sense one obtains non-
standard models quite easily. Just apply the 
Lowenheim-Skolem Theorem to PA to get uncountable 
models which cannot be isomorphic to N. Skolem's 
method is to get a countable nonstandard model of 
PA by simply applying the Compactness Theorem to 
the set of formulas 

PA + (a > 0) + (a > 1) + 

So it is consistent to assume that there 
exist "nonstandard objects", each greater than 
all of the standard integers. Every such model 
*N contains N as an initial segment and has an 

; ordering *< extending < to *N-N. The global 
structure of *N is quite remarkable. Define, for 
x, y c *N, x E y to mean that x and y differ by a 

1 standard integer: 

Ix *- .0 *< n, for some n e N. 

*N/E is a set of equivalence classes called blocks. 
N is a block. Each block # N is order isomorphic 

LACLthe 	 (positive and negative) integers. By 



extension, *< also total orders blocks. Further-
more, the blocks are densely ordered. In summary, 
the order type of *N is 

w 	(*w 	w), 

(see, e.g., [19]). 

An important logical property of *N is that 
the standard objects cannot be characterized. 

Lemma 3.3 (Robinson's Overspill Lemma).Let *N be 
any nonstandard model of PA. Then for all form-
ulas 0(x): 

(i) N # fa 1 *N 	0(x)[a]}, and 

(ii) if *N 1  0(x)[n] for infinitely many 
n e N, then for some a E *N-N, 
*N 1= 0(x)[a]• 

Proof. Part (ii) follows easily from (i). To see 
WTiTi) holds, suppose that such a 0 exists. Then 
0(0), and for all n e N, 0(n) but for 
y t N, -10(y); hence 
*N 	0(0) A (vx)(0(x) + 0(x+1)). But then 

*N 1= .(Vx)0(x), a contradiction. 

This result is much stronger than it appears 
at first glance. There is a precise sense in 
which no formal system can define N. (cf. [20]). 

A useful construction in model theory for 
building nonstandard models of arithmetic is the 
ultraproduct construction. We sketch here the 
Boolean-valued treatment suggested by Scott (See 
[20] for detailed development). Let I be an 
arbitrary index set and let 

M = II M i  
iEI 

denote the infinite product of the structures M i , 

i e I. If the sets M., I, are infinite, then the 
1 

elements of M, its relations and functions are in-
finite vectors. The central notion of the ultra-
product construction involves reducing the product 

M by identifying those -X. , y c M which differ only 

on a set of measure zero. First assign a Boolean-

value
t 

0:0]] to each formula 0 of the language of 
M as follows. 

	

(1) 	EA(a,b)1 = fi E I 1 A
M. 

1 (a
M. 

1 ,b
M. 

1 )1 

M. 	M. 

	

(ii) 	a=b]] = fi c I la 1  = b 1 } 

(iii) 11--, (P1 = I - 101 
tBoolean values are always in the complete Boolean 

algebra 2 /  = {S 1 S c I}. See [2] for relevant 
definitions. For notational convenience, we 
assume that our underlying language contains a con-
stant symbol for each element of M. Free variables 
are handled similarly. 
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(iv) 110 0  v 0 1 1 = 1001 u 110-1 11 

(v) E (3x)0(x)M = Um E Can] . 
a 

It is an easy consequence of (i)-(v) that for any 

a0'""an c M  

0(a 0 ,...,a n )]] = {i I M i 	[a 401 (i),...,aMn (i)] 

Since each formula is thus assigned a Boolean 

value in 2 I , we now need only consistently assign 
"true" to those Boolean values that represent 

truth i.e., by a homomorphism H:2
I
+{0,1} which 

defines the ultrafilter F = {S 1 H(S) = 1}. We 
then form the quotient structure M/- F , where - F  

is the equivalence defined by 

xm"F ym  iff jl  x=y]] c F. 

( "F 
must also be extended to functions and re-

lations). For simplicity the reduced structure is 
denoted by M/F. This is the ultraproduct of 
{M.1}.'ET modulo F. The following result is basic. 

Os' Theorem. Let 0 be a formula with free vari-
ables x 	

' 
. x

n' 
 and let 

i a. = x.
M/F 

 , 1 = 0„..n. 
1 

Then 

M/F 	O[ao ,...,a n ] iff E0(xo ,...,x n )1 E F. 

To obtain a nonstandard model of PA, let 
I = w, M i  = N (all i e I) and let F be any non-

principal ultrafilter (i.e., F, {Kcw1xc IC} 
for any x e w). 	See [20] for a proof of 
this fact. 

In [1], we discussed examples of nonstandard 
models of fragments of arithmetic. If a subtheory 
T of CA is weak enough, T may have nonstandard 
models with very simple structure, e.g., *N may 
result by simply adjoining a single nonstandard 
point to N and extending +, x to N u fwl. Since 
there are constructive definitions of such ex-
tended models, a problem which is equivalent to 
the existence of such a *N may be resolved by en-
tirely constructive means. 	PT, on the other 
hand,has only nonstandard models which are non-
effective in the sense that at least one of *+ 
and *x must be nonrecursive. This result is due 
to Solovay. 

Theorem 3.4.[1]. If PT = M and +M , xM  are both re-
cursive functions with respect to an effective 
enumeration of M, then M = {0,1,2,...}, that is, 
M is (isomorphic to) the standard model. 

Notice that Theorems 3.1 and 3.4 together do 
not quite imply that proving a nonpolynomial lower 
bound requires nonconstructive arguments. On the 
other hand, any such proof necessarily implies 
the existence of certain noneffective functions. 
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4. Consistency of ET + "P = NP"  

Recall that ET is the theory of true 
sentences 

where 0 is quantifier free and contains only 
terms formed from +, 1 , x, exp, min, max, and 
polynomial time computable predicates. For con-
venience in this section and in the remaining 
,,tinns we let a denote a special fixed constant 

sloes not otherwise appear in ET, or in PT. 

When it is convenient, we will confuse a term 
of ET with the function it denotes in N. We will 
also require a few preliminary facts about terms 
in ET. 

Lemma  4.1. Let f(x), g(x) be terms of ET. Then 
for sufficiently large x either f(x) is a constant 
or f(x) + 0,  and is monotone (more precisely, 

f(x) > log
(k) 

x).
t 

Further, for all x > x 0  either 

f(x) > g(x) or f(x) < 
g(x). tt 

Proof. This is essentially a result due to 
Hardy [24]. 	Let us say that an elementary  
function (what Hardy called a logarithmico-expon-
ential function) is one which can be obtained 

from +, 	x, and cx  for any constant c > 2. 
Hardy proved that 

(i) beyond some point every elementary func-
tion is monotone and tends to a definite 
limit (including possibly ± 00); 

(ii) if f(x) 	is elementary then for some k, 

The lemma follows from (i) and (ii) provided only 
that for each term f

1
(x) there is an elementary 

f
2
(x) so that f

1
(x) = f

2
(x) for all sufficiently 

large x. But this is equivalent to showing that 
,, min, max do not lead outside the class of 
elementary functions. Let f l  and f2  be elemen- 

tary. Then 

h(x) = f l (x) - f2 (x) 

is elementary and so either h(x) < 0 or h(x) > 0, 
for x > x 0 . If h(x) < 0 then f 1 [) 	f

2
(x) 	0. 

If h(x) > 0 then f 1
(x) = f

2
(x) = h(x). 

In both cases f
1
(x) = f

2
(x) is eventually defined 

by an elementary function. 

The arguments for min, max are similar. 

t 
F (k) (x) denotes F(F...F(x)...). 

k -times. 
ttThe asymptotic behavior of a function F: N 4- N 

is always phrased in terms of F(x) for all x 
greater than some x0  e N. The choice of x 0  is 

implicit in the definition of the property and 
x0  will always be used in this way without fur- 
0 ther-explanation. 

We will call any term f(x) 4 0,  of ET nontriv-
ial; otherwise it is trivial. Also, for any term 
Tri), k c N, and finite A c N we write <f,k,A> 
when for all x > x

0 
 the value of f(x) mod k can be 

computed from 

{x modtItcA}. 

In particular, if <f,k,A> and x 	y mod t for all 
E A, then f(x) = f(y) mod k provided x is large 

enough. 

Lemma 4.2. For any term f(x) and k e N, there is 
a set A such that <f,k,A>. 

Proof. First notice that if (k 1 ,k2 ) = 1 and 

<f,k i ,A l >, <f,k2 ,A2> then <f,k 1 k 2 ,A l uA2>. There- 

fore, we can assume that k = p n , p a prime. We 
proceed by induction on the structure of the 
term f(x) 

(1) f(x) is 1 or x. Then A = {p n } suffices. 

(2) f(x) is g(x) + h(x). Then <g,p n ,A 1 > and 

<h,p n
,A2> and so, <f,p

n
,A l uA2>. 

(3) f(x) is g(x) x h(x). This follows as in 
case (2). 

(4) f(x) is g(x) = h(x). By Lemma 4.1, f(x) 
eventually becomes either 0 or g(x) - h(x). 
Both cases follow as above. 

(5) f(x) is min(g(x),h(x)) or max(g(x),h(x)). 
This is similar to case (4). 

(6) f(x) is cg (x) (c > 2). By Lemma 4.1 either 
g(x) 4 0,  monotonically or it is constant, 
in which case there is nothing to do. If 

plc then f(x) mod p n  is 0 for all x 
sufficiently large. If on the other hand 

ptc, then f(x) mod p n  is determined by 

g(x) mod 0(pn ), where 4  is Euler's phi 
function. But since there is an A such 

that <g,0(p n ),A>, it follows that 

<f,p ,A>. 

Lemma 4.3. If f(x) is nontrivial and A c N is an 
arithmetic progression (a.p.), then there is an 
a.p. A0  c A and k c N such that for all x E A0 , 

f(x) 1 0 mod k. 

Proof. LetA= {cm +dlm> 0},c> 0,d> O. 
Also, let g(x) = f(cx+d). Since g is nontrivial, 
g(x0 ) 	0 for some x 0 , so let g(x0 ) 1 0 mod k. 

By Lemma 4.2 there is a B c N such that <g,k,B> 
All x e B are > 0 so define b as the product of 
all elements of B, 

b = IIB. 

f(x) > log
k
(x), when x > x 0 . 



By the definition of B, x E x 0  mod b implies 

g(x) = g(x0 ) mod k, provided x is large. Choose 

AO  = fc(bm + x 0 ) + d I m > m0}, m0  E N.__ 

Clearly AO  c A. Moreover 

f(c(bm + x0 ) + d) E g(bm + x0 ) mod k 

▪ g(x0 ) mod k 

▪ 0 mod k. 

We define a class of formulas, P: P is the 
smallest class of ET formulas such that 

CO every ET predicate is contained in P, 

(ii) P is closed under Boolean operations, 

(iii) if 4)(x) e P, then (3x<a)(q(x)) e P. 

Intuitively, P corresponds to predicates in P, 
since all quantifiers involved in the definition 
of P may be thought of as "finite" searches 
through P-time predicates. 

We are now ready to state the main result of 
this section. 

Theorem 4.4. Let A be a predicate so that 

! (3y)(A(x,y))} 

is NP-complete. Then for some 4)(x) e P 

ET + (Vx)((3y)A(x,y) 	cb(x)) 

is consistent. 

Proof. We will construct a nonstandard model in a 
sequence of lemmas. 

Lemma 4.5. There is a model M of ET with a M  non-
standard such that: 
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integer k so that f.(x) 1 0 mod k, for all x c A i 

 In this case, choose 

Ti 	1 
= T.-1 + "f.(a) 1 0 mod k" + "a > i". 

Notice that N = T i  for each i provided only that 

a
N  > i lies in the a.p. A i . Therefore by the 

Deduction Theorem 

T = T0 4 T
1 

4 ... 

is a consistent extension of ET. 

Our next step is to suppose that all quanti-
fier-free sentences 4)(a) are RE-listed 4) 1 42 ... . 

Now, proceed in stages to extend T. by adding at 

each stage O i  or -,cb i  according to whether the 

resulting theory is consistent. Let T denote the 
resulting theory. I is clearly consistent. 

Let M' = T and define M c M' to be 
M= {f 1 (a) I i e N}. Since T is an open theory, 

M = T. M clearly satisfies restriction (i). 

Since T = T., M 	T. and so M satisfies restric- 

tion (ii). Finally, an examination of the con-
struction above reveals that it is arithmetically 
definable, so restriction (iii) is also met. 

M will henceforth denote the model construc-
ted above. We now show that it is also the model 
required by the theorem. 

Lemma 4.6. 

(i) The standard elements of M are defined by 
a formula in P. 

(ii) There is a formula 8(x) e P so that 

M 	(1)(a) 	B( r(!)(a) 1 ) 

for cp(a) any quantifier- free sentence. 

(i) M = {f(a) I f(x) is a term of ET} 

(ii) if f(x) is trivial, then M 	f(a) = 0; 
otherwise, for some k c N, 
M 	f(a) 1 0 mod k. 

(iii) {q(a) I o(a) is a quantifier-free sen-
tence and M 	got)) is arithmetically 
definable. 

Proof. We construct M in stages. Let To  = ET 

and A0 
	 1 =N.Ateachstagei,T.is a theory and 

A. is an a.p. We assume that the terms of ET 

have been arranged into an RE listing 

f 1 (x),f2 (x),... 

Assuming stage i-1 is completed, proceed with 
stage i as follows. If f i (x) is trivial, then de-
fine 

T i  = Ti-1 + "f i (a) = 0""a in, 

and let Ai  = A i _ 1 . If fi (x) is nontrivial then by 

Lemma 4.3 there is an a.p. A i  c A i _ 1  and an 

Proof. 

Of Part (i). Let R(x,y) denote x < log* y and 
define 

, if n = 0 

Zen-1 (x) , if n > O. 

We claim that x is standard iff M 	R(x,a). 

Suppose that x = m e N. It is easy to see that 
for some n 	N 

ET 	R(m,n) 

and also that 

ET 	R(x,y) A z > y + R(x,z) 

But M 	a > n and thus M = R(m,a). If x is 

standard M 	R(x,a). If x is nonstandard we 
cannot have M 	R(x,a). Suppose otherwise. By 
Lemma 4.5, x = f(a) for some nontrivial f(x). So, 
by Lemma 4.1, there is a k such that 

e
n
(x) 
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f(w) > log (k)w. It is easy to verify that 

ET 	e
k

(f(w)) > w 

and for some n, 

ET I- R(x,z) A e
k
(x) > z + z > n. 

a we geL she contradiction M 	a < n. 

Of Part (ii). 

The truth of f(a) in M is definable by an 
arithmetical formula by Lemma 4.5. Since Part (i) 
establishes that the standards in M are definable, 
the 	arithmetical definition can be relativized 
to the standards in M. 	 ❑ 

We will now show that 
M 	(BY)A(x,Y) 	(3i)(3j) (E (x,i,a) A 

BrA(f i (a),f j (a)) 1 ), 	 (4.1) 

where i, j e N and E(x,i,a) is 

(V100a)(t x mod k ++ B(rt E f i (a)mod 10)) 

where k, t c N. By Lemma 4.6, this will imply 
that for some 	c P, 

M 	(3Y)A(x,Y) 	(I)(x)• 

The key to proving (4.1) is that for any i 	N, 

M 	x = f i (a) ++ E(x,i,a). 	 (4.2) 

To see this, suppose that (4.2) is true. If 

M 	(3y)(A(x,y)), then, by Lemma 4.5, 

M k  A(f i (a),fj (a)) A x = f i (a), 

for all i, j. 

Then by Lemma 4.6, 

M 	B(rA(f i (a),f j (a)) 1 ) A E(x,i,a), 

establishing (4.1) in one direction. The opposite 
direction is similar. 

Suppose first that M 	x = f i (a). Then 

clearly for any standard k, t 

M PtExmodk++tEf i (a) mod k. 

From the definition of E and Lemma 4.6, 

M E(x,i,a). On the other hand, suppose that 

M 	x # f i (a). We will show M Y  E(x,i,a): sup- 
pose not. By Lemma 4.5 there is a j such that 

M 	x = fj (a). Lemma 4.1 allows us to assume 

that eventually either f i (x) > f.(x) or 

f i (x) < f.
J (x). The cases are essentially symmetric 

 
so assume that f i (x) > fj (x) for x > x 0 . Let f(x) 

betheterinf.(x)Lf.(x). Observe that f(x) can- 

not be trivial. For suppose that f(x) is trivial. 
Lemma 4.5 shows that M 	f(a) = O. 

We have 

ET 	x > xo 	fi (x) > fj (x)  

and 

ET .1- xly.. Onx>y÷x= y 

Hence since a is nonstandard and M 	ET, it 
follows that M p f i (a) = fj (a). 

But then M 	f i (a) = x, a contradiction. 

Therefore, f(x) is nontrivial. By Leme 4.5, 
there is a k such that M = f(a) 1 0 mod k. We 
have al so 

ET 	x > x0  + f i (x) > f j (x), 	(4.3) 

ET 	0 E x mod k v 1= x mod k v 

v(k-1) H x mod k, 	 (4.4) 

and 

ET 1-y>zAxEymodkAz=zmodk+ 

(y = z) 	0 mod k. 	 (4.5) 

SinceMP ET, it follows thatMPtEf i (a)mod k, 

for some t. 	The definition of E, 
Lemma 4.6, and the assumption that E(x,i,a) is 
true in M together imply M 	t E x mod k or, 
equivalently, M 	t E fj (a) mod k. 

By the theorems of ET (4.3)-(4.5), 

M 	(f i (a) = fj (a)) E (t = t) mod k, 

contradicting M p f(a) 1 0 mod k. 

5. Extending ET  

The methods used in the proof of Theorem 4.4 
can be used to obtain more general results. For 
instance, ET can be extended by the addition of 
any recursively enumerable list of recursive 
predicates; the resulting theory remains consis-
tent with "P = NP". 

The process of adding new functions to ET is 
much more delicate. The proof of Theorem 4.4 
depends critically on the structure of the terms 
of ET. The chief difficulty in proving Theorem 
4.4 is accounting for the fact that the terms of 
ET can grow very quickly; this forces us to test 
the truth of x = f i (a) indirectly. Clearly, the 

procedure which evaluates y = f i (a) and then 

checks y = x does not necessarily run in poly-
nomial time. Besides growth, the terms of ET are 
subject to another complexity: the presence of 
in the terms of ET and the complex cancellation 
it allows. In order to underscore the problems 

introduces, we will briefly study another theory 
T. This theory contains all those predicates 
computable in polynomial time; additional ones can 
be added as discussed above. 	A recursive func- 
tion A(x) that tends to infinity monotonically 
but arbitrarily slowly (for example, A(x) = log*x) 
is fixed. The terms of T are then built up from 
+ and x (but not 1 ) and any recursively enumerable 
list of recursive functions that satisfy 

(*) if a term f(x) is unbounded, then 
f(x) > A(x) for x sufficiently large; 
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(**) the predicate f i (x) = y (as a function of 

x,y,i) can be computed in time e m (y + i) 

for some constant m. 

Before proceeding it is necessary to define a 
predicate "x 6 y" and a function "r(x,y)": 

x e y if and only if x = 1y1 + t and the tth 

Llt of y as a binary number is a 1. 

fining r(x,y) there are two cases to consider. 
it Ix # ly1 then r(x,y) = Ixl IYI 1 ; 

second if Ix! = IY1, then r(x,y) = Ix' + t where 
t is the first bit position where x and y differ; 
if no such position then £ is lyl + 1. 

Note that if lx = lyl and x # y then there is a 

y < 2 • 1x1 such that 

r(x,y) c x 	r(x,y) 	y 

The reason for the unusual definitions used here 
is a technical one; the function r(x,y) satisfies 
(*) and so we can assume that T contains it. 
r(x,y) cannot be defined to be the first position 
where x and y differ without violating (*). 

We are finally ready to state our theorem: 

Theorem 5.1. T + "P = NP" is a consistent theory. 

Proof. The initial part of this proof follows 
closely that of Theorem 4.4. Let M be the model 
of T constructed as in Theorem 4.4. Thus in M the 
set of standards has a P definition -- this uses 
property (*) of T. Also M 	B(W) 4-4 ctl for any 
quantifier free O. The plan is to finish the 
proof as before, but with a new twist: we can no 
longer use the residue method to check x = f i (a) 

quickly. 

Our way around this difficulty is based on 
(**) and the function r(x,y). 	Let E0 (x,i,a) de- 

notetheformilax ,-- f.(a); let E
n
(x,i,a) denote 

the formula 

3k(E n_ 1 (1x1,k,a) A B( r fk(a)=Ifi(01 1 ) A 

Ix' (VO(VY < 2' ')E n_ 1 (y,t,a) 

[yex 	B(rft. (a) c (Yar)]) 

where as before k and t range over only stand-
ards. The theorem will follow once we have proved 
two claims: first, that M 	En (x,i,a) 	x = 

fi (a) for any fixed n; second, that for n large 

enough E n (x,i,a) is in P. 

We fill first show that E
n
(x,i,a) 	x = 

f i (a) is true in M for any n > O. For n = 0 this 

is obvious. Suppose therefore that n > 0 and that 
M 	.(a). Then an easy argument based on 

the inductive hypothesis and the definition of B 
establishes M 	E

n
(x,i,a). On the other hand, 

suppose that M 	x # fi (a) and M 	En(x,i,a). By 

assumption, there is a k so that E n _ 1 (1x1,k,a); 

hence, by induction M J  Ix' = fk (a), 

M 	fk (a) = If i (a)1, and M 	Ix! = If i (a)1. 	As 

discussed above it then follows in M that there 

is a y < 2 1x1 such that y = r(x,f i (a)) and 

y E x 4-4 y # f i (a). 

By the construction of M there is a t so that 
y = ya). So by induction M = En_ 1 (y,t,a). But 

then in M, 

y c x 4-4- B(rft (a) E f i (a)t) 

4-4 ft (a) e  f i (a) 

Y c  f i (a), 

which is a contradiction. 

It remains only to prove the second claim: 
E
n
(x,i,a) 	is in P for n large enough. By (**), 

y = f i (x) can be computed in time em (y + 1) for 

some m. It is also easy to see that E n (x,i,a) can 

be computed in polynomial time plus the time re-
quired for the Eo (y,j,a) used. But an inspection 

of these formulas shows that E
0 
 (y,j,a) is used 

only when y < log
(n)

x. So let E(x,y,j,a) be 

E
0 
 (y,j,a) if y < log

(n)
x and false otherwise. 

Then E(x,y,j,a) can be computed in time polynomial 
in e

m
(y+j). Since j is a standard, 

em (y+i ) < em (2y ) + em ( log (n)a ) 

(for if y is a nonstandard, 2y > y + j; otherwise 

log (n) a > y + j). Then for n large enough this is 
polynomial in lx1. Thus En (x,i,a) is in P for n 

large enough. 

6. Model-Completeness  

A good intuitive basis for understanding the 
P = NP problem lies in quantifier elimination: if 
(3y)B(x,y) defines an NP-complete set, P = NP 
exactly when (Vx)(A(x) 4-4 (3y)B(x,y)). This is 
the essence of Theorem 3.1. 

There is a well-developed model theory of 
quantifier-elimination. We will sketch the basic 
theory in this section -- the numbered theorems 
will be used in Section 7. For a more complete 
discussion, see Maclntyre's survey article in [2], 
or the more detailed treatment in [25]. 

Let T 0 , T
1 
 be theories over the same language 

L. Then T 1 
is said to be model-consistent relative 

to T
0 
 if for all models M

0 
 of T

0 
 there is a model 

of T1  extending M 0 . Let M be a structure and 

denote by LANG(M) the language of M; i.e., the 
language obtained from L by adding constants for 
each element of M. Define the diagram of M, 
DIAG(M), to be the set of all atomic formulas in 
LANG(M) and their negations which hold in M. 
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Lemma  5.1 [25] 	 In other words, M 0  6 E(T) if 

(i) T
1 

is model-consistent relative to T
0 
 iff 	 M

0 
 is a structure of the proper type, 

for each model M of T 0, T
1 

+ DIAG(M) is a 
(ii) M1 	T for some M 1 	M0 , 

consistent theory. 

(ii) T 1  is model-consistent relative to T o  iff 	
and 

 
(iii)for any model M 1  of T, if M 1  D M0 , then 

for each universal sentence t, T l  

i o  { O. 	
M0  is existentially complete in M -  

	

Notice that by Lemma 6.1 (ii) if the univer- 	 Our claim that model-completeness implies a 
sal members of T

1 
are contained in the universal 	form of quantifier elimination is now provided 

members of T 	then every model of T is embedded 	
by the following theorem, sometimes called 

	

0' 	 0 	 Robinson's Test. 
in a model of T

1. 
Theorem 6.3. [25] T is model-complete iff when- 

Let M0 , M
1 
 be structures for the same lang- 	ever M0, M 1 are models of T and M

0 
 c M 1 , then MO 

 
uage with MO  c M. M 1  is an elementary extension 	is existentially complete in M l . 

of MM < M 	if for all sentences t defined 
0' 0 	1 , 	 A theory T 1  is said to be a model-companion  

in M
1, 

M
1 	

t iff M
0 
 {= t. The theory T is 

of T when 
called model-complete if whenever M 0, M 1  are 	 0  

models of T and MO  c M 1 , then MO  < M 1 . The term 	 (i) TO  and T
1 
are mutually model-consistent 

 

"complete" is explained by the following charac- 	 (ii) T
1 

is model-complete. 
terization. 

Lemma 6.2. [25] T is model-complete iff M F T 
implies T + DIAG(M) is a complete theory.t 

This should be compared with Lemma 6.1 (i). 

More directly, the relationship with 
quantifier-elimination is via the concept of 
existential completeness. A substructure M 0  c M 1  

is existentially complete in M 1  if every existen-
tial sentence t defined in M 0  and such that 

M
1 I= t is also true in M 0. Existential complete- 

ness is the model theoretic generalization of al-
gebraic closure of a field k (by, for instance, 
the Hilbert Nullenstatz): if {pi},  {qj } are 

polynomials with coefficients in k and if in some 
extension L of k there are elements a',a' 	a' 

1 	2'"'' 
such that  

Lemma 6.4. [25] If T 1  is a model-companion of T0 , 

then E(T0 ) = 	I M 	T1 }. 

A collection of structures K is a generalized  
elementary class (EC LI ) if for some set of 

sentences E 

K = {M I M 	E}; 

i.e., if the property of being a structure in K 
is a first order property. 

For example, the collection of all commutative 
fields of characteristic zero is EC A . 

Lemma 6.5 follows from K  os' s Theorem. 

Lemma 6.5. [26] If K e EC6 , then K is closed 

under formation of ultraproducts. 

= 0, 	all i 	 Lemma 6.6. [25] T has a model companion iff 
E(T) e ECA . 

# 0, 	all j 
The final fact concerning existential com- 

then there are already a i  c k (1 < i < n) such 	 pleteness is due to Robinson.  

that 	 Lemma 6.7. [27] There is a fixed 
sentence t such that for all M c E(I1 2 ), M 	t[m] 

p i (a l ,...,a n ) = 0, 	all i 

qj (a l ,...,a n ) # 0, 	all j 

Let E(T) be the class of existentially complete 
models for T. 

That is, for any 0, either 	4 or 1-1 0. 

if and only if m is nonstandard. 

Lemma 6.7 has the corollary that no non-
standard models of arithmetic can be existen-
tially complete structures. 



7. On the Consistency of PT + "NP 	coNP" 

Let A(x) -4- m as slowly as desired. As in 
Section 3, we let As (A,B) be a predicate so that 

As (A,B) 	[(Vx)((3y)(1y1 < lxI A( I x1)  A A(x,y)) 

(3z)(tz1 < IxIA(lxI) A B(x,y))]. 

First, note that even though PT contains no 
A,  vmtc.•5 for exponential formation the 

, 
predicate 	< Ix'

X( i x1) 
 can be expressed in PT. 

For Instance, the following predicates express 
this relationship 

(i) log y < A(log x) x log x 

"i ) 	iyil" (
ixl )  < 'xi- 

It is not necessary to be able to actually 
construct the exponential terms. 

We use NTIME(f(n)) to denote the problems 
solved in nondeterministic f(n) time. Similarly 

for coNTIME(f(n)). Note that NTIME(n X(n) 
 ) major- 

izes NP as closely as desired. If 

PT F- "NTIME(n
A(n)

) = coNTIME(n
A(n)

)" then for 
every model M of PT, it is the case that for each 
A 

M 	As (A,B) 

for some B, and conversely. 

Theorem 7.1. PT + "NTIME(n
x(n)

) # coNTIME(n
X(n)

) 
is consistent. 

Proof. We assume 

PT 1— "NTIME(t) = coNTIME(t)", 

where t(n) = n
A(n)

. Choose a constant a, not 
appearing in PT, and let BAa  be the axiom 

( fx )( 1x 1 < 1 , 1 A (Ia l )), 
bounding the individuals x. 

Lemma 7.2. PT + BA
a 

and PT are mutually model-

consistent. 

Proof. Since any model of PT + BA a  is also a 

model of PT, it is sufficient to show that any 
model of PT can be extended to a model of 
PT + BA

a . Let M 	PT and let M = fm0'
m
11

...). 

Then 

PT + DIAG(M) + A a > m i  
i<k 

is consistent for each standard k. Thus by 
compactness 

PT + DIAG(M) + A a> m 
meM 

is consistent,with model, say, M0 . Let M
a 

c M
O 

be the substructure generated by M u {a). Since 
PT is open, Ma 	PT. Since A -4- m slowly, 

A(a) 2:kcNimpliesa<te N, so A(a) is non- 
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standard. Notice that M
a 

contains only elements 

of the form 

x = h(a,m1 ,...,m
k
), 

for PT terms h(xI"
.
'' xk+1' 

) so that 1x1 < 'al
s 

 — 
for some s e N. Hence 

M, 	(Vx)(1x1 < lal A(lal) ). 

Thus PT + BA
a 

is consistent. 

Lemma 7.3 PT + BA
a 

is model-complete. 

Proof. Choose M
0 
 c M

1 
 so that M

0 	
PT + BA

a 
and M

1 	
PT + BA

a
. Clearly, if 	is any exis- 

tential sentence defined and true in M
0' 
 then 

M 1  = (1) since MC  c M 1 . We proceed by induction 

to apply Robinson's Test. Let cp(x,a) be open 
and consider (Vx)4)(x,a) which by BAa  is equivalent 

in any model to 

(Vx)(1x1 < 1a1 A(W) 	qh(x,a)), 

which we abbreviate 

(V1x1 < 1x1 A( I a l ) )4)(x,a). 

Since 4)  is some A in PT and NTIME(n A(n) ) = 

coNTIME(n
X(n)

), there is some B in PT such that 

(31x1 < la1 A(1 ' 1) )B(x), 

or 

IA(Ial)) ' 
(31x1 < lx,c1), 

which is existential. 

At the induction step, consider (vx)gx,a), 
which, by the construction above, is equivalent 
to 

(VIXI < lal Xial ?)( 3 1Y1 < 1 0 1 A( al) )Cc (X,Y,U), 

which, since NTIME(nA(n) ) = coNTIME(nX(n) ), is in 
turn equivalent to 

(V1x1 < lai A(1°0 )(fAYl .  < loD (lal) )v)(x,y,a), 

and this is equivalent to an existential sentence. 

The proof is now nearly complete. Since we 
have just shown that PT + BAa  is a model com- 

panion for PT, E(PT) e EC
A , by Lemma 6.6 and so 

by Lemma 6.5 is closed under function of ultra-
, products. 

Lemma 7.4. N c E(PT) 

Proof. Suppose otherwise, and let M F-  PT be an 
extension of N. Let (]x)(1)(x) be defined in N 
with 
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II = (3x)0(x) and N 11 (3x)q(x). 

But then, N = (vx) —10(x), so (41x) 	0(x) is an 

axiom of PT, contradicting our choice of 0. 

Now, choose a nonprincipal ultrafilter F on 

2w , so that NW/F s E(PT). Since the universal 

members of 11 2 are also axioms of PT, 
NW/F E E(11 2 ) 

by Lemma 6.1. By Lemma 6.7 the nonstandards have 
a first order definition in any M c E(II2 ), but 

the overspill lemma holds in N W/F, which is a --
contradiction. 

An analysis of the above proof suggests that 
it is not very sensitive to our choice of PT as 
the underlying theory. To make this apparent, 
let C be a class of functions defining time 
classes, and let C

A 	
C represent a class which 

majorizes C arbitrarily closely. For example, if 

C = U {x
k
lk > 0}, CA = x

x(x) 
is a possible 

choice. 

Theorem 7.5. Let T be any theory and NTIME(C) be 
any nondeterministic time class such that 

(i) all predicates in T are computable in 
deterministic time C, 

(ii) every term in T is eventually bounded by a 
function in C, 

(iii) if 0 is open, N =0, then T 

Then T + "NTIME(C) # coNTIME(C)" is consistent. 

Proof. The proof parallels the proof of Theorem 
7.1. 

❑ 

A major open problem left unresolved here is 
the relationship between 

PT + "NP # coNP" 

and 

PT + "NTIME(n
X(n)

) # coNTIME(n
A(n)

)" 

In general, we would like to know: is it possible 
that 

T 	NTIME(C) = coNTIME(C) 

but 

T 	NTIME(C A ) # coNTIME(CA )? 

8. On Independence Theorems in Complexity Theory  

Hartmanis and Hoperoft [4] have pointed out 
that it is quite easy to obtain independence re-
sults in complexity theory. Unfortunately, the 
methods of [4] do not seem to be well-adapted to 
our problems. First, we are not concerned with 
simple undecidability. That is, we cannot choose 
a theory and encode the undecidable statement into 
the theory. This rule also rules out relativi-
zation-style results as in [28]. Second, we must 
work with specific fragments of number theory,  

e.g., 11 2 , ET, PT, or PA. 

Until Paris' announcement [3] that a minor 
generalization of the finite Ramsey theorem is 
independent of PA, there were no natural examples 
of mathematical statements which are independent 
of PA whose undecidability did not follow from 
explicit encoding and diagonalization. This was 
especially surprising in view of the extant in-
dependence results for geometry and various set 
theories. 

Following [3], O'Donnel [29] announced a 
"programming language theorem" which cannot be 
resolved in PA. We will have more to say about 
these proofs in a moment. 

The only remaining methods available for con-
structing nonstandard models of PA do not lead to 
sharp independence results. Let us look very 
briefly at forcing. In 1963, Cohen [22] proved 
that ZFC, a standard set theory, is consistent 
with 

2 	> 

To prove this, Cohen constructed a nonstandard 
model of ZF by proceeding roughly as follows. 
The standard countable model contains w; to get 

2w  to be larger than the continuum, it is only 
necessary to put into w some subsets not in 

74:1 . Since the result may not be a model of ZFC 

any more, some closure operations must be carried 
out. The technique of forcing allows one to con-
struct larger and larger such models without vio-
lating the essential properties of the model. 
Robinson [30] has adapted this process to model 
theoretic construction. Let T be fixed. Using 
recursion-theoretic arguments, one proceeds from 
a set of forcingconditions (finite fragments of 
diagrams of models of T) to construct approxi-
mations to the diagram of the original model. 
These are internal arguments which argue explicit-
ly about the structures of a model. Unfortunately 
such methods require a certain technical complex-
ity on the part of the statement which is to hold 
in the nonstandard model. 

By contrast the independence results of [3] 
rely on a tradition in proof theory dating from 
Gentzen [31]. In his proof of the consistency 
of number theory, Gentzen provided a rate-of-
growth characterization of provability. It is 
possible to associate ordinal numbers with proofs 
in PA that indicate the "complexity" of the proof. 
No provable formula of PA can implicitly or ex-
plicitly mention the ordinal of its proof. There-
fore, properties of functions which grow more 
quickly than the ordinals assigned to the proofs 
of those properties cannot be decided 	in PA. 
This growth argument approach has been the prin-
ciple tool in recent independence results. 

Let M be a finite set of integers. Define 
f(n) to be the size of the smallest M such that 
for every n-coloring of the complete hypergraph 
with vertices M and hyperedges of degree n, there 
is a monochromatic H c M with IHI > min(H) and 

IHI > n+1. In [32] it is shown that for some 
m, an) < fm(n), where 
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x + 2, if i = 0 

f.(x) 

[
fi-1

](x) (2), otherwise 

kneorem 8,1. [32] Let g be a recursive function. 

"r9 1  is total" if g(n) < f(n) for all n > n o . 

Suer: results are also characterizations of 
r.u.F.bility of PA + 

Theorem 8.2. [32] Let N 	(Vx)(3y)A(x,y) where 
A is quantifier-free. 

Then 

PA + H 1 1- (bx)(3y)A(x,y) 

1 . 11.  

N 	A(x,g(x)) 

implies g(x) < fn (x) for some m e N. 

This device is exploited by O'Donnell to show 
that 

PA + H
1 

I/ 	All programs in L terminate", 

by showing that the programming language L defines 
functions violating the bounds in 8.1, 8.2. 

Theorem 8.2 has special relevance. We cannot 
hope to prove the independence result of Section 3 
by the methods of [32] since we explicitly assume 
that the Skolem function g(x) is polynomial in x. 

Indeed there seems to be no source of 
independence results 

PA 	( 1g 1 ) 

where (t,  is a property and g is of polynomial 
growth. If techniques can be developed to deal 
with slowly growing albeit very irregular Skolem 
functions, the result should be a new method of 
building nonstandard models. This would appear 
to require new technical breakthroughs. 
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