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SUMMARY

Discrete-event simulation is a commonly used technique to model changes

within a complex physical systems as a series of events that occur at discrete points

of time. As the complexity of the physical system being modeled increases, the

simulator can reach a point where it is no longer feasible for it to run efficiently on one

computing resource. A common solution is to break the physical system into multiple

logical processes. When breaking a simulation over multiple computing nodes, care

must be taken to ensure the results obtained are the same as would be obtained from

a non-distributed simulation. This is done by ensuring that the events processed

in each individual logical process are processed in chronological order. The task is

complicated by the fact that the computing nodes will be exchanging timestamped

messages and will often be operating at different points of simulation time. Therefore,

highly efficient synchronization methods must be used. It is also important that the

logical processes have a capable means to transport messages among themselves or

the benefits of parallelization will be lost.

The objective of this dissertation is to design, develop, test, and evaluate tech-

niques to improve the performance of large-scale discrete-event simulations. The

techniques include improvements in messaging passing, state management, and time

synchronization. Along with specific implementation improvements, we also examine

techniques on how to effectively make use of resources such as shared memory and

graphical processing units.

x



Techniques to improve the performance of Large-Scale Discrete-Event Simulation

Brian Paul Swenson

99 Pages

Directed by Professor George F. Riley

Discrete-event simulation is a commonly used technique to model changes

within a complex physical systems as a series of events that occur at discrete points

of time. As the complexity of the physical system being modeled increases, the

simulator can reach a point where it is no longer feasible for it to run efficiently on one

computing resource. A common solution is to break the physical system into multiple

logical processes. When breaking a simulation over multiple computing nodes, care

must be taken to ensure the results obtained are the same as would be obtained from

a non-distributed simulation. This is done by ensuring that the events processed

in each individual logical process are processed in chronological order. The task is

complicated by the fact that the computing nodes will be exchanging timestamped

messages and will often be operating at different points of simulation time. Therefore,

highly efficient synchronization methods must be used. It is also important that the

logical processes have a capable means to transport messages among themselves or

the benefits of parallelization will be lost.

The objective of this dissertation is to design, develop, test, and evaluate tech-

niques to improve the performance of large-scale discrete-event simulations. The

techniques include improvements in messaging passing, state management, and time

synchronization. Along with specific implementation improvements, we also examine

techniques on how to effectively make use of resources such as shared memory and

graphical processing units.



CHAPTER I

INTRODUCTION

Discrete-event simulation is a commonly used technique to model changes within a

complex physical systems as a series of events that occur at discrete points of time.

The events are processed in a time-stamp order and no changes to the state of the

system can occur between consecutive events. The simulator is made up of a future

event list, a simulation time, and the state of the physical system being modeled.

When the simulator processes an event, it sets the the simulation time to the time

within the timestamp of the earliest event in the future event list. Afterward the

simulator updates the state of the physical system in response to the information

contained within the event being processed. As an event is processed, the corre-

sponding change in the physical state of the system may result in one or more new

events to be generated in the future. The simulator will continue to run until it has

completely exhausted the future-event list or until it processes an event with a stop

request.

As the complexity of the physical system being modeled increases, the simulator

can reach a point where it is no longer feasible for it to run efficiently on one computing

resource. A common solution is to break the physical system into multiple logical

processes. Each logical process is responsible for controlling a specific section of the

overall system. Each logical process is made up of a local simulation time, a future-

event list for the events pertaining to the section of the system it is responsible for,

and the state of the system it is responsible for. The logical processes communicate

state changes to one another through the use of time-stamped messages.

When breaking a simulation over multiple computing nodes, care must be taken to
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ensure the results obtained are the same as would be obtained from a non-distributed

simulation. This is done by ensuring that the events processed in each individual

logical process are processed in time-stamp order. The task is complicated by the

fact that the computing nodes will be exchanging time-stamped messages and will

often be operating at different points of simulation time. Therefore, highly efficient

synchronization methods must be used. It is also important that the logical processes

have a capable means to transport messages among themselves or the benefits of

parallelization will be lost.

1.1 Contributions

The objective of this dissertation is to design, develop, test, and evaluate techniques

to improve the performance of large-scale discrete-event simulations. The techniques

include improvements in messaging passing, state management, and time synchroniza-

tion. Along with specific implementation improvements, we also examine techniques

on how to effectively make use of resources such as shared memory and graphical

processing units (GPUs). The primary contributions of this work are:

• To improve the message passing performance for simulators running on multi-

core systems with available shared memory, we developed a new zero-copy mes-

sage passing approach specifically designed for the needs of distributed discrete-

event simulators. This approach was compared to alternative available zero-

copy approaches and to the traditional approach of serialization followed by

a bulk memory copy. We show that our approach provides consistent perfor-

mance, as would be expected of a zero-copy approach, and outperforms the

traditional serialization and bulk copy approach in multiple simulation environ-

ments.

• We performed a study to determine if conservative time-synchronization tech-

niques could be used to run large-scale distributed discrete-event simulations

2



entirely on a GPU designed for three-dimensional gaming. Three unique and

different approaches for event list management were examined and compared.

Using the PHOLD benchmark we were able to process events at a rate of ap-

proximately 122 million per second on a simulation containing over 16 million

logical processes. Furthermore, specific discrete-event simulation considerations

are discussed in relation to GPU architecture. This work lays the ground work

for future research to fully utilize the massive parallel processing abilities on

GPUs for large-scale discrete-event simulation.

• We demonstrated how GPUs can be used by CPU-based discrete-event simu-

lators for increased performance. We developed an add-on to the popular ns-3

discrete-event network simulator that allows users to utilize the BRITE topol-

ogy generator to generate highly-customizable, large-scale topologies in ns-3.

We then developed another GPU-based module to perform global routing be-

tween all of the nodes in the network. We show that our routing module is

substantially faster than the global-routing module included in ns-3 and can

even outperform the highly-efficient nix-vector routing implementation also in-

cluded in ns-3. This work has lead to numerous discussions on how other ns-3

modules can utilize GPUs for processing highly-parallel tasks such as propaga-

tion loss and even topology generation.

• We examined the two conservative-time synchronization implementations pro-

vided with ns-3 for distributed discrete-event simulation. The implementations

were tested in a number of different topology configurations in order to provide

simulation users insight into which implementation to use for running their

large-scale simulations. Furthermore, after examining both of the implementa-

tions, we were able to propose improvements to each to significantly increase

their performance in certain simulation scenarios. We discuss the improvements
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and provide experimental results that demonstrate the improvement.

1.2 Dissertation organization

The remainder of this dissertation is organized as follows. Chapter 2 provides an

overview of the background and related work in the area of distributed discrete-

event simulation. Chapter 3 gives a description of our new approach to zero-copy

message passing, designed specially for the demands of distributed discrete-event

simulation, and compares its performance to other available methods. In chapter 4, we

examine the feasibility of running large-scale simulations on GPUs as well as provide

groundwork to support future research in this area. In chapter 5, we demonstrate

how GPUs can be used in a supporting role to a CPU-based large-scale simulation.

Here the GPU is used exclusively to quickly calculate routing information. Chapter

6 compares the conservative-time synchronization implementations in the network

simulator ns-3 and provides enhancements to both that lead to significant performance

increases in certain scenarios. Finally, chapter 7 concludes this dissertation.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

2.1 Discrete-event simulation

Discrete-event simulation is a technique to model the operation of a physical system

as a discrete sequence of events. Changes to the state of the system are made by

events that are processed in time-stamp order. Between consecutive events within

the simulation, no change in state occurs. The events are stored in time-stamp order

in an events list. The three main pieces of the simulator are the state, the event

list, and the clock, which represents the current simulation time. Prior to processing

each event, the simulator updates the current simulation time to the time within the

timestamp of the event. As each event is processed, new events can be scheduled in

the future. Ensuring that the events are processed in chronological order is known

as enforcing the causality constraint. A discrete-event simulator will continue to run

until it is stopped or it runs out of events in the event list.

2.2 Parallel discrete-event simulation

As the size and the complexity of the models within the simulation grow, the simula-

tion can reach a point where it is no longer feasible to run on one computing resource.

In parallel discrete-event simulation (PDES), the standard solution is to parallelize

the simulation by partitioning the model into multiple logical processes(LPs), each of

which is run on a separate computing resource. Each LP has a local simulation time

and an event list which will only contain the events that are to be processed on that

particular LP. An LP will communicate an event impacting another LP through the
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transmission of a time-stamped message. It is mandatory that a distributed simu-

lation produce the same results as a corresponding sequential simulation; therefore,

causality must be enforced within the LPs. Specifically, an LP must be prevented

from advancing too far ahead of other LPs, such that it receives an incoming event

from another LP that contains a timestamp less than the current simulation time.

To enforce the property of causality among LPs, distributed simulators make use

of synchronization algorithms. These algorithms can be classified into two groups:

optimistic and conservative.

2.2.1 Optimistic time-synchronization algorithms

Optimistic synchronization allows LPs to progress independently of one another for

short periods of time, which can result in possible causality violations. If an LP pro-

cesses an event out-of-order, i.e., it later receives an event with an earlier timestamp

than its current local time from another LP, the LP must undo, or rollback, its local

state to its state prior to processing the out of order event. The newly received event

with the earlier timestamp can then be processed, and the LP will resume processing

events in its event list, possibly reprocessing events that were rolled back if they are

still valid given the update to the state of the LP by the new message.

The Time Warp mechanism [32] is the most commonly implemented optimistic

time-synchronization algorithm. In the original proposal, the LP saves a copy of its

entire state prior to the processing of each event. Then,if the LP needs to rollback, it

discards its local state and reloads the saved state prior to the processing of the out-

of-order event. In the original paper it was assumed that the state of the process was

saved after the processing of every event. However, later works offered less demanding

state-saving techniques [4] [74].

Regardless of the method used to save the state of the LP, over time this results

in a large demand on memory resources. In order to minimize the amount of state

6



storage for each LP, a global-virtual time (GVT) is maintained within the system. The

GVT is a timestamp which contains the earliest timestamp of all of the unprocessed

events in the system. Since no event with a timestamp earlier than the GVT will ever

appear in the event list of a particular LP to cause a rollback, any state saved prior

to the GVT can be removed. This procedure of reclaiming memory is referred to as

fossil collection [24].

More recently, simulations using Time Warp have made use of reverse computation

[60]. In reverse computation, the LP performs the inverse of events that have been

processed out of order, effectively allowing the LP to run backwards in time to the

point where it has processed an out-of-order event. However, for this process to

succeed, reverse computation code must be written for each event type. Attempts

have been made to create a compiler that automatically generates the reverse code for

events. Perumalla [62] created source-to-source compiler for a subset of the C language

that was demonstrated within the Georgia Tech Time Warp [16], an optimistic time

synchronization simulator. Also work has begun on the development of a reversible

C++ compiler [72]; however, frequently the generation of reverse events must be done

manually due to the complexities of trying to generate reverse execution code from a

language that was designed for forward only computing.

Languages that have been from designed from the start to ensure correct and

efficient reversibility do exist. One such example is Janus [40], and another is R [21].

However these languages are restrictive the operations they perform, for example in

Janus all variables must be global integers, and often their use is not practical for

large complex systems.

2.2.2 Conservative time-synchronization algorithms

With conservative time-synchronization algorithms, each LP has to determine when

an event is safe to process. An event is safe only when it can be guaranteed that
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the LP will not receive events from other LPs with timestamps less than the event

being considered. In this way, the LP guarantees that all of its events are processed

in order. These algorithms can be classified as being either synchronous or asyn-

chronous. Synchronous algorithms require simultaneous participation from each of

the LPs in the system. Asynchronous algorithms do not have the global communi-

cation requirement of synchronous algorithms instead synchronization is achieved by

LP peer-to-peer communication. Conservative time synchronization algorithms must

be sure to avoid deadlock, a situation where none of the LPs have a safe event to

process and are waiting for updates from other LPs in order to continue.

One of the most popular conservative time synchronization algorithms is the

Chandy-Misra-Bryant (CMB) algorithm. The CMB algorithm was developed inde-

pendently by Chandy and Misra [12] and Bryant [9]. The CMB algorithm in an exam-

ple of an asynchronous conservative time synchronization algorithm. The algorithm

handles time synchronization and deadlock prevention by its use of null messages.

The null message contains the the timestamp of the smallest unprocessed event on

the sending LP plus the lookahead between the sending and receiving LP. The looka-

head between two LPs is the minimum simulation time between the timestamp for

an event on the sending LP and the timestamp on the subsequent event it generates

on the receiving LP. The lookahead is closely related to the physical properties of the

system being modeled. For example the lookahead between two communication nodes

in a network simulator would be the speed of light delay between the two nodes. One

important limitation of the CMB algorithm is that it cannot guarantee to prevent

deadlocks if there are any cycles of logical processes with zero lookahead [24].

In the original algorithm proposal, after an LP processes an event, a null message

is sent to each of its neighbors. Upon reception, the receiving LP knows that it can

safely process the events in its event list up until the time in the null message without

fear of receiving a message with an earlier timestamp from the sending LP. If the

8



receving LP has multiple neighbors it uses the minimum null message timestamp

value as its safe time. The obvious problem with this approach is that this greatly

increases the amount of cross LP traffic. An alternative approach, proposed later by

Mirsa [45], allows LPs to process events until no more are safe. At that point the LP

requests null messages from its neighbors.

The other class of conservative time-synchronization algorithms are considered

to be synchronous. To determine if an event is safe, the LP finds the lowest-bound

timestamp (LBTS) on all possible events that it may receive in the future. This

process is similar to how the GVT is calculated for optimistic time-synchronization

algorithms. How this bound is determined is dependent on the particular algorithm

used. Several algorithms for finding LBTS values [66] [42] [38] [7] exist. Another

important consideration for this type of conservative simulation algorithms is how

they deal with transient messages. Transient messages are messages that have been

sent by one LP, but have not yet been processed by the receiving LP. These need to

be considered because the event with the lowest time stamp may be in one of these

messages.

2.2.3 Maximizing lookahead

For conservative time synchronization algorithms lookahead is an essential attribute

for improved performance in parallel discrete-event simulation [22]. This value de-

fines the amount of asynchrony among the distributed models in the system. Max-

imizing its value reduces the frequency of synchronization and increases the overall

performance of the simulator by maximizing the amount of time each LP instance

is processing internal events. A parallel simulation environment with minimal or no

lookahead would essentially run as a non-parallel simulation with the additional over-

head of LP communication. Due to its importance, there have been numerous studies

that have examined techniques for maximizing lookahead values dynamically during
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simulation runtime, a technique referred to as dynamic lookahead extraction [59].

This technique has been shown to be vital in distributed wireless network simulation

where the distances between communicating nodes is small, resulting in a minimal

lookahead due solely to wireless propagation delay [39]. Researchers also have used

information such as queuing delay to inflate the lookahead value higher than the static

value assigned [76].

2.2.4 Non-CPU hardware support for parallel discrete-event simulation

There has also been work examining how hardware can be used to increase the per-

formance of parallel discrete-event simulation. This hardware can be optimized for

particular functions, allowing it to perform them faster than can a CPU. The Roll-

back Chip [25] was proposed by Fujimoto to help optimistic Time Warp simulations

by reducing the overhead of state saving and rollback. It was found that the use of

this chip greatly improved the simulator’s performance.

On the conservative side of time synchronization, a hardware supported global

synchronization unit was proposed by Lynch and Riley [41]. The chip allows individ-

ual LPs to calculate LBTS as needed, without the overhead cost of global synchro-

nization. The chip contains three sets of registers files, one for minimum outstanding

event (MOE), one for minimum outstanding message (MOM) and finally one for tran-

sient message count (TMC). Each LP in the simulation has a register in each file.

Both the MOE register file and the MOM register file have N-1 comparators that can

compute the minimum value in the register file in lg(N) stages. To find the smallest

outstanding timestamp in the system, a MinimumTimestamp instruction is provided

which returns the minimum of the MOM and MOE register files. It was found that

the use of this unit reduced runtime by as much as 50% in tests performed with

GTNetS [64].

A new area of research that has become popular as of lately is utilizing general
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purpose graphical processing units (GPGPU) within the realm of PDES. The first

work on this was done by Perumalla [63] who used a GPGPU based discrete-event

simulator to simulate a diffusion process. The work was done prior to the arrival of

technologies such as CUDA and OpenCL and therefore used Brook and was executed

on the DirectX 9 runtime. It was found that the GPGPU version of the simulator

outperformed a similar simulator run on a CPU by almost two fold.

With the advent of GPGPU enabling technologies such as OpenCL and CUDA

research into using GPGPUs for PDES has greatly increased. One example of a PDES

simulator that makes extensive use of GPGPUs is Cunetsim [67]. Cunetsim [67] is

a hybrid CPU-GPU network co-simulator where LPs process events using the GPU

and time synchronization is done on the CPU. The authors use conservative time

synchronization to ensure a casual ordering of events. The authors report substantial

speedup [5] compared to non-GPGPU network simulators such as ns-3 and Singalo

[17].
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CHAPTER III

A NEW APPROACH TO ZERO-COPY MESSAGE

PASSING

There are two main methods available to take advantage of the multiple cores on

today’s CPUs. The first is the thread model in which each logical process (LP)

runs on its own thread within one operating system process. With multi-threaded

applications, data can easily be passed between concurrently running threads using

simple C type pointers. This allows the threads to communicate using messages of

any size at the cost of passing a 32 or 64 bit pointer.

The alternative is the multi-process model where each logical process runs in

its own individual operating system process. With multi-process applications, the

process of passing messages becomes more complicated. The operating system runs

each individual process in its own virtual address space, and any pointers created in

a process will reference a virtual address, not a physical address. Since the mappings

between virtual and physical addresses might be different for each process, pointers

created by one process and passed to another might refer to a completely different

physical location in memory for the receiver. Therefore, standard C type pointers

can not be used as a means to pass messages between individual processes.

Both the multi-threaded and multi-process distributed simulation approaches are

commonly used. In general, a distributed simulation using multiple threads will

need all event handlers and the event scheduling engine to be aware of the need for

multiple-access interlocking to prevent simultaneous updates and potential deadlocks.

In contrast, when distributing the simulation in separate address spaces, only those

portions of the simulation that send events and the portion that advances simulation
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time needs to be aware of the distributed execution. Further, if the original simula-

tion package was not designed with distributed execution in mind, the multi-process

approach is in general considerably easier to implement. ns-2 [48] is an example of

a simulation environment that was not in fact designed originally to execute in a

distributed fashion, but was later adapted to execute with multiple processes and

disjointed address spaces.

A common API to use when working with multi-process simulations is the well–

known Message Passing Interface (MPI) [20]. However, a significant overhead for

MPI based applications is in message passing between the disjointed address spaces.

Even in a tightly coupled, shared memory environment, the messages must be copied

into a shared memory region. The copying of the entire message must be done

because simple, C type pointers use virtual addresses which have no meaning once

the pointer is passed to another process. Thus a common approach is to first serialize

the message and its data and perform a memory copy of the serialized message to

a shared memory location, where it then can be retrieved and deserialized by the

receiving process. While this technique works and is in common use, a large processing

cost can be incurred due to the amount of data being copied between processes. In

the cases where these messages are large and must be passed frequently, this becomes

a significant limiting factor in overall application performance.

An alternative approach is to use shared memory and smart pointers. With this

method, data that needs to be shared with other processes can be created in a shared

memory region that is accessible by every process. Then when a message needs to be

passed, the owner can pass to the receiver a specialized smart pointer. These smart

pointers allow the processes to pass only metadata for messages being exchanged,

rather than the complete message. The receiving process can then access the original

copy of the data stored in the shared memory using the smart pointer and normal

dereferencing semantics. This greatly reduces the amount of data that needs to
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be passed between applications. This technique is referred to as zero-copy message

passing.

This chapter presented a new implementation for zero-copy message passing in

introduced [69]. This is not the first work to implement a zero-copy message passing

approach. Boost Interprocess offers a smart pointer design that allows shared mem-

ory usage. Also provided by Boost is a general purpose, shared-memory allocator.

However, it will be shown that the implementation provided by Boost does not per-

form well in memory-intensive applications, like distributed simulators. Furthermore,

Boost’s implementation does not scale well to a large number of LPs. In contrast, the

new zero-copy approach described is designed to function on a large number of LPs in

a memory demanding environment.Using this new approach, performance of PDES

applications on multi-core architectures is greatly improved, allowing for longer and

more detailed simulations.

3.1 Traditional message passing

Commonly, messages have been passed between individual processes by copying the

entire content of the message to a sharedmemory region accessible by both the sender

and the receiver. However the data to be transferred must first be formatted in a way

that allows it to be meaningful to a receiver. This formatting, called serialization, or

marshalling, generally copies each individual data item for all messages (and deref-

erencing pointers as needed) to a sequential array of bytes, which are then copied to

the shared memory region.

In some cases, it is possible to marshall the data directly to the shared memory

region, eliminating one of the memory copies needed. However this is rarely a triv-

ial process because complex data objects generally make extensive use of pointers,

references to other locations in memory. The data referenced from these pointers

must also be copied into the buffer because, as mentioned previously, the pointer
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Figure 1: The transfer of a complex object between logical processes with disjoint
address spaces. (a) The complex object is serialized. (b) The serialized data is first
copied to shared memory and then copied into the memory space of LP B. (c) The
data is finally deserialized and the object is ready to be used
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will no longer be valid once the data is transferred to a different process. Thus the

serialization process, in most cases, involves numerous and often recursive memory

copies. Once the data to be sent has been serialized, it can then be transferred to

the receiver. However, before the receiver can make use of what it has received, it

must first deserialize, or unmarshall, the data. This is basically a reversal of the

serialization process and therefore frequently requires multiple memory allocations to

restructure complex objects back into their original form.

This process is depicted in Figure 1. While this procedure works as intended, the

time to complete this marshalling and copying process is non-negligible and increases

linearly with the size and complexity of the message.

3.2 Zero-copy message passing

Zero-copy message passing improves the performance of parallel simulations in a

multi-process environment utilizing two main components: shared memory and smart

pointers. First, rather than copying the data to shared memory, the data is created in

shared memory, which can be accessed directly by the receiving process. As standard

C type pointers cannot be utilized in this type of environment, zero-copy utilizes a

smart pointer which is aware of the shared memory nature of the underlying data,

and which has normal pointer semantics for dereferencing the pointer to access in-

dividual data items. Using the smart pointer eliminates the need for performing an

expensive memory copy. Furthermore, the smart pointer can be equipped with refer-

ence counting semantics, which results in the underlying shared memory area being

freed when all smart pointers pointing to the same area have gone out of scope. In

this section we will describe our implementation of zero-copy and compare it to the

implementation found in the Boost Interprocess C++ Library.
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Figure 2: Difference between standard C/C++ pointer and offset pointer

3.3 Boost.Interprocess C++ library

Boost provides an extensive library for working with shared memory [26]. These

classes can greatly simplify the task of working with shared memory. The follow-

ing paragraphs discuss the Boost offset pointer and the Boost managed memory

segment classes, which when used together can form a zero-copy implementation.

In Boost, the smart pointer that works with shared memory is the offset pointer.

The offset pointer stores the distance from the offset pointers address to the object

the pointer refers to. This allows objects created in shared memory to refer to each

other regardless of which base address the shared memory segment is mapped into

the processes address space. An example of this is shown in figure 2. Here you can see

two processes have mapped a shared memory segment into their local address space.

The regular pointer, create by process A, is not valid for process B since it mapped

the shared memory segment to a different base address. Therefore the data to which

the pointer should point is not at the address contained within the pointer. With the

offset pointer, both processes can correctly address the referenced data regardless of
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Figure 3: Offset pointer with multiple shared memory segments

where a process maps the shared memory segment. The only requirement is that the

entire shared memory segment is mapped into a contiguous block of addresses.

To the programmer, the pointer functions equivalently to a normal pointer and can

be coupled with a reference counting pointer to supply automatic garbage collection.

The problem with this design is that for it to work correctly, all of the objects have

to be stored in the same shared memory segment. There is no guarantee that the

difference in base addresses of two shared memory segments mapped into the address

space of a process will be the same between processes. This issue is depicted in figure

3. Therefore, in most cases, only one shared memory segment can be used for all LPs.

A pool of shared memory is obtained in Boost using managed-memory segments.

Once a pool is available, objects can be created using the segments allocator. The

segments provide an allocate method that takes as a parameter a byte size and

returns a void pointer to a chunk of memory that size if it is available in the seg-

ment. The segments also provide a templated construct method which will create
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an instance of the object specified in shared memory and return a pointer to it. Man-

aged memory segments in Boost also allow the programmer to create named shared

memory objects. A string name can be given to any object created in shared memory.

This name can then be used by any process that connects to the memory segment

to find the object in shared memory. While the Boost shared memory segment offers

many useful features, it is unable to perform satisfactorily in a memory intensive

environment, as we will show. In addition, as mentioned above, due to how Boosts

smart pointer interacts with memory segments, only one such segment can typically

be used in an application.

This has two major consequences. First, access to critical sections of code in the

segments allocator can become a major bottleneck as the number of LPs increase. Sec-

ond, if the memory in the one shared memory segment is exhausted, the application

has no choice but to terminate since shared memory segments are not dynamically

expandable.

3.4 Zero-copy message passing optimized for simulation

We present a new implementation for zero-copy message passing that is optimized

for the demands of PDES and addresses the shortcomings of the Boost Interprocess

implementation. In our implementation, each LP is given its own shared memory

segment which we refer to as a shared heap. We also provide a custom offset smart

pointer to interact with these shared heaps. Our smart pointer also has reference

counting semantics to ensure memory is deallocated once it is no longer in use. In

the following sections we describe the pieces of our implementation and demonstrate

its usage.

3.4.1 Custom smart pointer

Similar to the Boost implementation, to reference items in shared memory, our zero-

copy message passing technique utilizes smart pointers. These smart pointers are
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GetPointer():void

BPtr

heapItem: HeapItem*

lp:int

offset: int

AddRef():void

DropRef():void

Figure 4: UML Diagram of BPtr, the offset pointer used in our implementation

necessary because, as discussed previously, standard C type pointers contain a vir-

tual address which may be meaningless when passed between process boundaries.

The smart pointers used in the zero-copy approach get around this limitation by

passing the metadata necessary for the receiving process to obtain the data that it

was intended to receive. The smart pointer created for zero-copy message passing

technique is called BPtr and its UML diagram is shown in figure 4.

The smart pointer is made up of three data items. The integer LP stores the

heap number of the shared heap which contains the actual data being referenced.

The offset stores the integer index of the heap item in the data owner’s shared heap.

Details of heap items will be presented in the next section. The smart pointer also

contains a heap item pointer to the heap item referenced by the heap number and

offset stored in the smart pointer. This heap item pointer is updated automatically

by the smart pointer whenever the smart pointer is copied so it always points to the

correct heap item, even when the pointer is passed across process boundaries.

The main difference between our pointer and the Boost offset pointer is that

our pointer stores the heap number along with the offset. This offers two major

advantages. First it allows our pointers to point to objects in separate shared memory

segments. This eliminates many of the concurrency issues experienced with the Boost

managed memory segment allocator. The second advantage is that new heaps can be

created during runtime if shared memory resources are exhausted. A request is made
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GetData(): char*
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mutex: pthread_mutex_t
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data: char[DATA_SIZE]

timeToZero: float

Figure 5: UML Diagram of a heap item which stores data to be shared between LPs

to the kernel for more shared memory and once it is received the heap structure can

be setup and be given a unique heap number. At that point the only thing left to be

done is to notify all of the processes to connect to the new heap and add it into their

heap cluster.

When a copy of the smart pointer is made, only the heap number and offset data

items are copied. Then the GetPointer function is called, which gets the heap item

pointer. It does this by indexing the HeapCluster array using the LP to acquire a

reference to the correct heap and then using the offset to address it to the correct heap

item. Another feature of the smart pointer class is that it automatically handles the

reference counting for the heap item. The assignment operator and copy constructor

have been overloaded to atomically increase the reference count of the appropriate

heap item when a new reference to the heap item is made. Similarly, the virtual

destructor for any BPtr object will decrement the reference count appropriately.

3.4.2 Shared heaps

As previously mentioned, in our zero-copy implementation each LP is given its own

shared heap for memory allocation. Each shared heap is made up of a group of heap

items. It is in these heap items that the data to be shared is stored. The heap items

are indexed according to the offset from the start of the heap. It is in these heap

items that the data to be shared is stored. The heap items are indexed according
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to the offset from the start of the heap. A UML diagram of a heap item is shown

in figure 5. The Create method returns a special templated pointer object called a

BPtr which refers to an individual heap item.

The heap item is made up of multiple data items. It stores the number for the

logical process it belongs to as well as its index number in the shared heap. The

data field is where the actual data for the heap item is stored. The reference count

specifies the number of smart pointers that are currently referencing the data in the

heap item. This is used to determine when the heap item is no longer in use and

can be recycled. This number is atomically incremented and atomically decremented

whenever the heap item is copied or when it goes out of scope. Finally each heap

item contains a timeToZero timestamp.

The timeToZero timestamp is used for simulators which use an optimistic time

synchronization algorithm. As discussed previously, there are situations when opti-

mistic simulators need to rollback due to the generation of a causality error. During

this rollback, it may be necessary for the simulator to reacquire dynamically created

objects that had previously been freed. This is true regardless of if the simulator is

reverting to a previous saved state or performing reverse computation. In order to

assist in this process, a heap item will not be immediately available for reuse once its

reference count goes to zero. Instead the heap item will store the current simulation

time for its LP in the time to zero field and will go into a dormant state, preserving

itself and the data it contains. The heap item will stay in this state until the GVT of

the system is greater than its stored timeToZero timestamp. Only after this happens

will the heap item be made available for reuse. Because of this, it is necessary for the

simulation to provide the shared heaps updated values for the GVT whenever they

are calculated. For simulators that use a conservative time synchronization algorithm,

the timeToZero timestamp is not used. It could either be removed or the GVT for

all the heaps in the system could be set to infinity at startup. Either way, heap items
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that have their reference count go to zero will immediately be available for reuse.

Since the concept of rollback does not exist in conservative time synchronization,

there is no need to postpone garbage collection.

In our ZeroCopy implementation, the heap items are preallocated. The sizes for

the heap items and the number to create can be configured by the user prior to

runtime. For example, the user could setup heap items for small blocks (50 bytes),

medium blocks (500 bytes), and large blocks (5,000 bytes). When an object is created,

the heap will return the smallest size that the instance of the object will fit into. By

preallocating the blocks, we can provide extremely efficient allocation and deallocation

routines since the blocks are of a fixed size and are stored sequentially in memory.

When a shared memory pool is requested from the linux kernel, the exact size must

be specified and once it is allocated, it cannot be modified. Therefore we feel it

makes sense to split the pool into blocks immediately, especially since the user of the

simulator should have a general idea of the size of objects he/she needs to create prior

to runtime.

Every logical process in the simulation has its own shared heap, which is initialized

at initialization time. The heaps are created in shared memory and the permissions

are set so every LP can access every other LP’s shared heap as well as its own.

Once all of the logical processes finish creating their own shared heaps, all logical

processes make attachments to all other shared heaps. Each LP stores pointers to each

of these heaps in a global variable called HeapCluster. A diagram of this is shown

in figure 6. Here two LPs have finished setting up their individual shared heaps and

have stored pointers to both shared heaps in their HeapCluster, which is a global

array of pointers to the heap object for all logical processes. In our implementation,

each process maintains the array of virtual memory pointers to all shared memory

regions in the order of the logical process number of the creating LP. This is shown

in figure 7.
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Figure 6: Layout of Shared Heaps
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While both LPs have pointers to the same shared heap, the actual virtual address

of the shared heap will typically be different. When a process attaches to a shared

memory segment, the shared memory is mapped into the process’s virtual address

space and there is no guarantee that it will map to the same location for each process

that attaches to it. This is why we cannot simply pass normal C/C++ pointers to

data items in the shared memory across logical process address spaces.

3.4.3 Using zero-copy message passing in simulation

In our zero-copy message passing design, when a new message is created (presumably

to later be passed to another process), a special constructor method, called Create, is

used rather than the normal C++ new operator. The Create method is functionally

equivalent to new, excepting that the memory is allocated from a pre-existing shared

memory we call the shared heap, rather than from the normal memory heap used by

new.

Once created, the smart pointer behaves syntactically the same as any other

pointer. When the smart pointer is dereferenced, it uses the stored LP to connect

to the shared heap of the process that created the data and then uses the stored

offset to obtain the heap item. The appropriate operators have been overloaded in
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Listing 3.1: Smart Pointer example

//Create a new packet object using the smart pointer
BPtr<Packet> packet = Create<Packet>();

//The pointer now functions syntactically the same as a regular pointer
packet−>SetDestIP(”192.168.1.5”);
packet−>SetSize(”200kB”);
cout << ”My destination IP is: ” << packet−>GetDestIP() << endl;
cout << ”My size is: ” << packet−>GetSize() << endl;

//The smart pointer class automatically handles reference counting.
//Here the reference count is increased to 2.
BPtr<Packet> anotherRef = packet;

//And now decreased back to 1
anotherRef = NULL;

//Below the reference count is decremented, which results in a zero refcount .
//The current simulator time is saved into the HeapItem’s time To Zero field .
//If this isn ’ t done explicitly , it will occur automatically when the smart pointer

goes out of scope.
packet = NULL;
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Figure 8: The transfer of a complex object between logical processes using zero-copy.
(a) The object is created in LP A’s shared heap and is accessed by LP A via the smart
pointer. (b) The smart pointer is copied to shared memory and then copied into the
memory space of LP B. (c) Using the smart pointer, LP B can directly access the
object in LP A’s shared heap. The object itself is never moved or copied.
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the smart pointer definition to allow access to all class member functions and data in

the referenced class.

Listing 3.1 shows an example of creating a Packet object for a network-simulator

using the smart pointer class. Figure 8 shows a message being passed using a smart

pointer. Note that the actual object referenced by the pointer is neither moved nor

copied.

3.5 Evaluation

The first evaluation of our new zero-copy implementation used a custom simula-

tor which we named SimpleSim. SimpleSim is a simple distributed discrete-event

simulator that functions similarly to the PHOLD PDES benchmark [23]. In our im-

plementation, the simulator enforces causality using a conservative lower bound time

stamp (LBTS) algorithm that exchanges timestamp and message count information

between LPs in a common shared memory region. Each LP starts off with one event

inserted into its event queue. The timestamp for the first event is chosen randomly

within the first five simulation seconds.

When handling an event, SimpleSim always creates one new message and sends it

to an LP chosen randomly from a uniform distribution. It then examines the size of

its event queue. If the size is less than a predefined constant value, it creates another

message which is also sent to a randomly chosen LP. It is possible that the LP can

choose itself. Since the size of the event lists for the LPs will grow at approximately

the same rate due to the random nature in which the recipients are selected, this

prevents unbounded growth in the total number of events for any individual LP.

Included in the message sent to the recipient is a timestamp, a unique ID, and a

pointer to an arbitrarily sized chunk of data, which represents the data to be passed

to the receiving LP. The timestamps for the new events are chosen from a uniform

distribution of 1 to 5 seconds in the future. Added to the timestamp is a predefined
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constant lookahead value. The unique ID was used mainly for testing purposes.

When SimpleSim receives a new message, it removes the message from the queue

and schedules a new event in its event list for the timestamp specified in the message.

The individual simulators continue to process and create events until a predefined

stop time is reached.

Three versions of SimpleSim were created. The first version is an MPI implemen-

tation that copies the entire contents of the message to the receiving process. The

other two versions both use a zero-copy technique. The second version uses the Boost

Interprocess library and the third version uses our zero-copy implementation.

We created this simulation because it allowed us to easily vary the size of data

being passed between processes. In most cases, the message being passed to the

receiving process is a complex object with multiple nested pointers. However, in this

simulation, the message that is being transferred is uninitialized memory. Thus, there

is no serialization step prior to the memory being copied. This also means that there

is no de-serialization step. Thus, any speedup observed is due only to the lack of a

bulk-memory copy.

For the first experiment with SimpleSim, the number of LPs was held constant at

eight and the size of the message was scaled from 500 to 50,000 bytes. The simulator

was set to run for 25,000 simulator seconds. The maximum event-list size where LPs

stopped sending a second message was set to 5,000 and the lookahead value was set to

five seconds. All simulation configurations were run ten times and the average result

was recorded. Figure 9 shows the run time of the three approaches for a variety of

message sizes. As expected, for the two zero-copy approaches, the execution time is

nearly constant regardless of data size. Again this is because the data is not being

copied along with the message but instead is being referenced directly from the shared

heap where it was created. By comparison, the execution time of the MPI full copy

approach is growing approximately linearly with the size of the data being sent. The
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Figure 9: The runtime of SimpleSim with 8 logical processes, varying message size
using MPI, Boost Interprocess and our custom zero-copy approach

results also show that our approach outperforms MPI full copy when the message is

larger than approximately 3,000 bytes and outperforms Boost’s implementation by

almost ten times.

For the second experiment with SimpleSim, we wanted to examine how each sim-

ulator instance scaled as the number of LPs participating in the experiment was

increased. The size of the data being transferred was fixed to 7,000 bytes. Again

the simulator was set to run for 25,000 seconds of simulator time and the maximum

event list and lookahead values were set at 5,000 and 5 respectively. Figure 10 shows

the results of our experiment. The data clearly shows that the Boost implementation

scaled much more poorly than either of the other two. This is presumably because,

as discussed previously, the Boost implementation is limited to only one shared mem-

ory segment. However even when the Boost version is performing at its peak, our

implementation outperforms it by almost six times.
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Figure 10: The runtime of SimpleSim with a message size of 7000 bytes, varying the
number of logical processes using MPI, Boost Interprocess and our custom zero-copy
approach. Data collected for 2, 4 and 8 LPs

3.5.0.1 GTNetS

The Georgia Tech Network Simulator (GTNetS) [64] is a full-featured network sim-

ulator for modeling large-scale topologies. GTNetS offers packet level tracing and

models packets with protocol data units (PDUs) that are added and removed as the

packet moves up and down the protocol stack. Similar to SimpleSim, GTNetS also

uses conservative time synchronization. We chose to test our zero-copy approach

on GTNetS because the messages passed between processes in GTNetS are complex

packet objects that contain multiple PDU objects that must be serialized prior to

transfer.

For our GTNetS experiments we created a star topology for each LP. The hubs

for each of the stars was then connected to form a clique. Each star was given N-1

nodes where N was the number of LPs participating in the simulation. Each node of

a star was configured to send UDP traffic to a node in a different LP. Therefore each
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Figure 11: The runtime of GTNetS varying the number of logical processes using
MPI, Boost Interprocess and our custom zero-copy approach. Data collected for 2, 4
and 8 LPs.

LP was sending UDP traffic to every other LP using one of its nodes. Each node

was also given a UDP sink to receive data being sent to it. Each UDP packet sent

was configured to hold 1,024 bytes of data and each sender was configured with an

On/Off Application to use approximately 20% of the available bandwidth. Senders

were configured to start at a random time with the first half second of simulation

and the simulation was configured to run for 5,000 simulation seconds. All simulation

configurations were run ten times and the average value was recorded.

Figure 11 shows the results of this experiment. Again, the Boost version of the

simulator scaled worse than the other two versions. Our version of zero-copy outper-

forms the MPI full copy version even though the message size is less than 1,100 bytes.

This is due to the fact that the MPI version has to serialize/deserialize the complex

packet hierarchy before and after transferring it. This demonstrates that the effec-

tiveness of our approach improves as the complexity of the objects being transferred

increases.
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3.6 Discussion

This chapter presented a new approach to zero-copy message passing on a many-

core architecture was presented. The effectiveness of this approach was demonstrated

using distributed discrete-event simulation. While other approaches to zero-copy mes-

sage passing exist, this new approach has been shown to achieve better performance,

especially in the case where many processes are attempting to allocate memory. This

approach requires little additional effort on the part of the software developer when

creating a new message passing application. This only significant different that affects

the software programmer is the use of a special custom smart pointer object instead of

normal pointers. This smart pointer has been enhanced to include reference counting

semantics which will automatically free shared heap memory once all references to a

given object have gone out of scope. Finally, in order to be compatable with opti-

mistic time synchronization algorithms, this zero-copy approach allows for retaining

of freed memory contents until certain GVT values have been reached, allowing for

freed memory to automatically be restored in the event of a rollback.
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CHAPTER IV

LARGE-SCALE DISCRETE-EVENT SIMULATION

UTILIZING CUDA WITH CONSERVATIVE TIME

SYNCHRONIZATION TECHNIQUES

Parallel discrete-event simulation is a technique frequently used to speed up simu-

lations by partitioning a simulation into logical processing units which are executed

on separate processors. A large amount of research has gone into techniques and

optimizations on how do this most efficiently on CPUs. However, significantly less

research has gone into how this could be accomplished using the massive parallel

processing abilities of GPUs. This chapter analyzed and compared three different

techniques for running large-scale discrete-event simulators on GPUs using conserva-

tive time synchronization techniques and the NVIDIA CUDA [54] API.

4.1 CUDA Overview

This section provides an overview of CUDA and the underlying GPU architecture.

The architecture discussion will cover the NVIDIA Kepler [51] GPU architecture

since it was used exclusively for the testing of the simulators presented in this work,

although some details may be true of other architectures as well. Knowledge of these

topics is necessary to understand the design choices of the simulator.

4.1.1 CUDA Execution Model

CUDA is a general purpose parallel computing platform and programming model

that can be used to exploit the massive parallel execution abilities of NVIDIA GPUs.

When using CUDA, the GPU can be viewed as a coprocessor with the ability to

launch a large number of threads in parallel. Code written to execute on the GPU,
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Figure 12: An example execution grid consisting of 6 blocks, each with 256 threads.

known as a kernel, is compiled to a GPU specific binary. During program execution,

the compiled kernel and the data to be processed are uploaded to the GPU. After

invoking a kernel, the CPU can either continue processing other tasks, including

possibly launching other kernels, or wait until all kernel executions are complete.

Listing 4.1: Example grid creation

kernelFunction<<<6,256>>>(kernel parameters);

Kernel launches from the CPU are accompanied by a programmer provided grid.

A grid is comprised of a blockCount and a blockSize which refers to the number

of threads in each block. The block size has a maximum value of 1024 in current

hardware and should always be evenly divisible by 32 based on how the threads are

executed on the hardware. The value is typically used as a tuning parameter since

some workloads can be executed more efficiently with more blocks of a smaller block

size. In C/C++, a grid is specified within triple angle brackets following the function

name as shown in listing 4.1. In this example, a grid with 6 thread blocks, each

containing 256 threads, is created as shown in figure 12.
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4.1.1.1 GPU Thread Execution

GPUs are comprised of an array of multi-threaded streaming multiprocessors (SM).

In the Kepler architecture, each SM is made up of 192 single-precision cores and

64 double-precision cores. Each SM also contains 32 special function units and 32

load/store units. The special function units provide support for functions like sine,

cosine and square root. During execution, each block of the grid is assigned to an SM

and will stay with that SM until it has completed execution. Each SM is capable of

holding up to 16 blocks or 2048 threads, based on whichever limit is reached first.

Thread execution within the SM occurs in groups of 32 threads, which is known

as a warp. Based on this grouping scheme, all block sizes should be evenly divisible

by 32. Otherwise, some warps will have unused threads. Threads are grouped into a

warp sequentially by their thread identifier. For example, the 255 threads in block 0

from figure 12 will be split into eight warps: T0-T31, T32-T63, T64-T95, T96-T127,

T128-T159, T160-T191, T192-T223, and T224-T255. The threads within the warp are

executed in a pattern similar to the single instruction multiple data (SIMD) pattern in

Flynn’s taxonomy [19]. However, unlike standard SIMD where every thread executes

every instruction, programmers using CUDA have the ability to insert divergent code

paths into their CUDA kernels. NVIDIA refers to this execution pattern as single

instruction multiple thread (SIMT). It is handled at the hardware level by enabling

and disabling certain threads within the warp during execution. While this design

provides the programmer with greater flexibility in kernel design, care must be taken

to avoid potentially large performance consequences.

Listing 4.2: Example of thread divergence

\\obtain threadId in block

int myId = threadIdx.x;

if(myId % 2 == 0)
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doMethodA();

else

doMethodB();

Listing 4.2 shows a classical example of thread divergence. In this listing, the

threads with an even identifier execute doMethodA while the threads with an odd

identifier execute doMethodB. Since the warp executes in a SIMD fashion and consists

of threads with sequential thread identifiers, the warp must execute both doMethodA

and doMethodB. During the execution of doMethodA, the threads with an odd thread

identifier are disabled as shown in figure 13a. During the execution of doMethodB, the

threads with an even thread identifier are disabled as shown in figure 13b. Assuming

both methods are of equal size, the throughput of the kernel is effectively halved. In

cases where there is a deep nesting of conditional statements, the situation becomes

even worse. The warp has to sequentially step through every execution path taken

by any of its threads, disabling and enabling threads as needed. Given its potential

for severely limiting kernel performance, there has been a good deal of research on

techniques to limit thread divergence [27] [68] [75] [15] [8].

Listing 4.3: Kernel with no divergence penalty

\\obtain warpId with integer division

int myWarpId = threadIdx.x / 32;

if(myWarpId % 2 == 0)

doMethodA();

else

doMethodB();

Frequently, the cost of conditional branches within a kernel can be mitigated by

thoughtful algorithm selection. In listing 4.2, the intent of the kernel was to have

half of the threads within a block perform one function and have half of the threads
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Figure 13: The cost of thread divergence within a warp. (a), (b) Show the result
of a naive conditional statement within a warp. The darker threads are disabled.
(c) Results of a modified conditional statement where there is no thread divergence
within a warp
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perform another. If the author was using a block size that would produce an even

number of warps, the kernel shown in listing 4.3 would be a better option. In this

listing, the condition is based on the identifier of the warp which can be obtained by

the provided thread identifier. By making this change, all of the threads within a

warp will execute only one of the functions and none of the warps will be forced to

step through both, as shown in figure 13c.

The example kernels above are intentionally trivial to demonstrate the basic issue

of branch divergence. The CUDA compiler, nvcc, will attempt to minimize the cost

of divergent branches in areas where it is able. One area where this type of optimiza-

tion would play a role in the context of discrete-event simulation would be in event

handling code. A kernel that is tasked with updating the state of a large number of

LPs based on the next event type of a particular LP would benefit by grouping each

event type in a separate group of warps. This implementation would prevent warps

from sequentially executing each and every event handler.

4.1.1.2 GPU Memory

To do anything useful, most kernels are going to have to access memory. This fact

presents another area where care must be taken to avoid potentially large perfor-

mance degradation. There are six different types of memory within the CUDA API:

global memory, texture memory, constant memory, shared memory, local memory,

and registers. The memory types vary in scope, size, and optimal usage patterns.

Not all of the types will be covered in this section; however, a full description of each

can be found here [56].

When a thread block has been assigned to an SM, the threads within that block

are considered to be ”in-flight.” An ”in-flight” thread has its own private copy of the

non-shared variables used within the kernel. These private copies are stored in the

block registers. If the registers overflow, the excess is moved to local memory. In the
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Kepler architecture, each SM is supplied with 65,536 32-bit registers, and each thread

is capable of addressing up to 255.

Constant memory provides fast read-only memory that can be cached at each SM.

It is best used when every thread within a warp is reading from the same address

because the results of each read are broadcast to each thread within the warp [13]. If

every thread in a warp were to read a separate address from constant memory, the

accesses would be serialized, i.e. not done in parallel. If this type of memory access

pattern is needed, a better choice would be shared or global memory.

Intra-block thread communication can be achieved with the usage of shared mem-

ory. Variables declared with the shared attribute within a kernel are allocated

in shared memory which resides inside the SM. Since it has faster access than global

memory, it is commonly used to implement programmer controlled caches. The

amount of shared memory per SM is configurable on the Kepler architecture. 64

KB per SM can be allocated between shared memory and a non-programmer con-

trolled, on SM, L1 cache which is used only for local memory on most Kepler based

GPUs. However, certain Kepler cards are configurable to allow global and local mem-

ory reads to be cached in the L1 cache [51].

Despite the name, local memory is physically stored in global memory and has the

same latency when it is not cached in the L1 cache. As mentioned previously, local

memory is used when there is insufficient register space for the threads of a block.

Local memory will also sometimes be used for large structures and arrays declared

within a kernel. The issue for arrays is that registers can not be dynamically indexed.

Thus, the only type of arrays that can be stored in registers are those that are only

accessed using constant indexes. The NVIDIA compiler provides options that allow

a programmer to view the number of registers and the amount of local memory used

by each kernel.

Global memory is the largest and highest latency memory pool available to a
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kernel. Large datasets that are passed from the CPU to the GPU for processing are

typically, at least initially, stored into global memory. When a warp encounters a

global memory read or write, the number of memory transactions needed to complete

the action for all threads depends on the size of the element accessed and the address

each thread is using. Global memory can be accessed by the warp in transactions of 32,

64, or 128 bytes. Optimal global memory throughput is achieved if the warp threads

make coalesced memory transactions. A coalesced transaction occurs if the memory

access is aligned and threads within the warp make contiguous address requests. The

benefit of a coalesced memory access is that the warp can satisfy the requests from

all 32 threads with one access to global memory. Given the high latency of global

memory, this setup is highly desirable. If the transaction can not be coalesced, the

warp will have to make multiple, serialized requests to global memory in order to

satisfy the requests from the threads. See listing 4.4 for an example of a coalesced

memory read. Assuming the base address of data is a multiple of 32, each warp

running this kernel performs one 32-byte read. Figure 14a shows how this will look

for warp 0. In Figure 14b, the threads are not reading increasing consecutive address;

however, the accesses are still contiguous. Therefore, the warp will be able to perform

one 32-byte read. Figure 14c represents a worst-case scenario. The threads within

the warp are reading from addresses that are spread throughout global memory. The

warp will need to make 32 serialized 32-byte memory accesses to global memory. Each

32-byte access only returns 4-bytes, the size of a float, of data that is actually needed.

The NVIDIA CUDA Best Practices Guide [55] gives priorities to techniques that can

be used to optimize kernel execution time. Not surprisingly, ensuring global memory

accesses are coalesced is given their highest priority.

Listing 4.4: Example of a coalesced memory access

__global__ void myKernel(float* data)

{
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int myIdx = threadIdx.x;

float myData = data[myIdx];

}

4.1.2 Kernel Programming and Libraries

When programming on a CPU, greater performance may be available if the program-

mer is willing to move to a lower level of hardware abstraction. For certain time

critical sections of code, the best option may be inlined assembly. This option is also

available within CUDA kernels via the parallel thread execution [52] (PTX) instruc-

tion set architecture. PTX assembly can be inserted inline by wrapping it within an

asm statement. The nvcc compiler also can optionally output the PTX assembly for

compiled kernels. This can be extremely useful during kernel optimization.

On the alternative side of the spectrum there are many highly optimized CUDA

based libraries that can be used for a wide variety of parallel tasks. Two popular

examples include CUB [57] and cuRAND [50] which were used within the simulators

created for this work. CUB, or CUDA Unbound, is a parallel algorithm library

specifically designed for CUDA. CUB offers architecture specific optimizations and

provides a large number of configurable options one can use to fine tune an operation

to achieve maximum performance. Another extremely popular and well supported

option in this realm is Thrust [53]. Thrust is designed to appear to be similar to

the C++ STL. It provides options to do all of the things that CUB can accomplish

and more. Another potential benefit for Thrust is that it can be made to operate

with CUDA, TBB [29] and OpenMP [6]. However, Thrust seemed to lack the tuning

options available in CUB and in our testing CUB outperformed it.

The cuRAND library was used for pseudorandom number generation within the
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T0 T31T1 T2 T3 T4 T5 ...Warp 0

Global Memory ...data

Assuming data[0] is on an address that is a multiple of 32, the warp 
will make one coalesced 32 byte access to read data from all threads. 

T0 T31T1 T2 T3 T4 T5 ...Warp 0

Global Memory ...data

Assuming data[0] is on an address that is a multiple of 32, the warp 
will make one coalesced 32 byte access to read data from all threads.

(a)

(b)

T0 T31T1 T2 T3 T4 T5 ...Warp 0

Global Memory ... ... ...

Each thread within the warp is accessing memory in a way that can't 
be coalesced.  The warp will make 32 serialized 32-byte memory 
accesses, each returning only 4 bytes (sizeof(float)) of needed data.

(c)

Figure 14: Memory coalescing examples
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simulation. The default XORWOW [46] algorithm was used, and each LP was as-

signed a unique sequence number to ensure their values were not statistically corre-

lated. The only negative with the use of this library is that the size of the random

state for each LP is not a size that allows coalesced reads and writes to memory from

a warp. Depending on the specific needs on the quality of random numbers needed for

the simulation, this overhead could be reduced by sharing the random state among

several LPs.

4.2 Simulator Overview

Three different implementations of a CUDA based parallel discrete-event simulator

were created and compared for this work. Each simulator uses the same synchronous

conservative LBTS algorithm to enforce time causality among the LPs. All three

of the simulators utilize the CUB parallel algorithms library for common parallel

algorithms such as sort and reduce. The main difference between the three simulators

is how each organizes the event list between processing of events. In this section, an

overview of the simulators is given, and the differences among the three simulators

are explained.

For all three versions of the simulator, the state of each LP and the event list are

stored in global memory on the GPU. Each LP stores its current time, the number

of events it has processed, and the state of its random number generator. One event

list stores all of the events for the LPs. Storing all of the events in one global event

list makes calculating the lowest timestamp an efficient operation since the events

are in a contiguous block that can be easily coalesced. As events are processed, the

memory is reclaimed and reused. As such, the individual running the simulator must

pre-allocate enough memory to handle the maximum number of events that could

ever be in the simulator at any point in time. However, it is typically not overly

difficult, and this type of approach is also used by other discrete-event simulators
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such as ROSS [11].

4.2.1 Memory Organization

As discussed in the previous section, it is highly beneficial to have warps perform

coalesced global memory accesses. In order for this method of access to occur, the

objects being accessed are limited to certain sizes. Listing 4.5 shows a sample layout

for an event list. This type of layout is known as an array of structures.

Listing 4.5: Array of Structures

struct Event {

//unique event id

uint32_t event_id;

//lp that should process this event

uint32_t event_lp;

//time the event should execute

float event_time;

//random event data

int event_data_a;

int event_data_b;

};

Event event_list[256];

Each Event object in this example is 24 bytes. A warp attempting to read or

write data into this event list will be required to perform 32 32-byte global memory

accesses because the structure is not a size that can be coalesced into a single memory
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transaction. An alternative layout is shown in listing 4.6. This type of layout is known

as a structure of arrays.

Listing 4.6: Structure of Arrays

struct EventList {

uint32_t event_id[256];

uint32_t event_lp[256];

float event_time[256];

int event_data_a[256];

int event_data_b[256];

};

EventList event_list;

By laying the data out in this manner, all memory operations performed on the

event list can be coalesced because all of the data is stored in contiguous arrays of

4 bytes. The only downside to this approach is that it makes it somewhat more

difficult to sort the data since parts of each event are located in five different arrays.

However, since this is such a standard way to store composite data types in GPU

memory, numerous approaches exist. All three of the simulators created used this

approach to organize data in GPU memory.

4.2.2 Simulator Execution

At the start of execution, the CPU allocates space on the GPU for the LP state

and the event list. Simulator specific constant data like the number of LPs and the

simulation stop time are copied into GPU constant memory so it is quickly accessible

to all threads. The CUB parallel library requires that temporary work memory used

by its algorithms be allocated ahead of time. The library is used within the event

processing loop so having the ability to do this is quite beneficial. Once this memory
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has been allocated, the CPU calls an initialization kernel which assigns initial values

to the GPU memory that was allocated. The initialization kernel also creates a stop

event for each LP in the simulation. Kernel calls in CUDA are asynchronous and

control returns immediately to the CPU once the request for kernel invocation has

been completed. Therefore, following the initial kernel invocation, the CPU pauses

and waits for it to complete before proceeding into the event processing loop.

The overall structure of the event processing loop is the same for all three versions

of the simulator and is shown in pseudocode in listing 4.7. At the beginning of the

loop, the smallest timestamp within the simulation is determined by performing a

parallel reduction on the entire event list. If this value is greater than the specified

stop time, then the simulation is complete and control is passed out of the loop.

If there are more events to process, the event list is processed so events that are

considered safe can be executed during the final kernel which executes the safe events

and updates the state within the LPs.

Listing 4.7: The main event processing loop

while(true)

{

min_timestamp = reduce(event_list.event_time, min)

if(min_timestamp >= stop_time)

break

//this part varies by simulator

processed_event_list()

process_safe_events(m_timestamp)

}

The difference among the three simulators occurs within the process event list

method. All three versions sort at least part of the event list. The sort that was
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used is the Device::Radix sort provided within the CUB library. On more recent

hardware, this sort has been shown to be able to sort approximately 2.12 billion 32-

bit unsigned integers per second [44]. When sorting the event list, the simulators use

a 64-bit sort instead of a 32-bit because they are sorting by the destination lp and

the event time. Radix sorts do work with floating point values as long as they aren’t

negative. Thankfully that is never an issue when measuring time. In the next three

subsections further details are provided for each simulator.

4.2.2.1 Simple Simulator

The first of the simulators is referred to as the simple simulator because it does

the least amount of manipulation to the event list prior to event execution. The first

step that it takes is to sort the event list so it is ordered by LP identifier and then

time as shown in figure 15a. Once the events are sorted it then scans the event list

to find the first entry by each LP which is stored as an offset as shown in figure 15b.

During process safe events each LP in run on a thread. The LP reads its offset,

which can be coalesced, and then reads in the event, which most likely will not be

coalesced because there will typically be more than one event per LP. The LP then

determines if the event is safe to process based on the smallest timestamp and the

lookahead.

4.2.2.2 Partition Simulator

The second simulator differs from simple simulator in that it attempts to reduce the

uncoalesced memory reads and writes that occur during the event processing phase.

The simulator first performs a sort on the event list. Then, instead of writing an

offset, this simulator marks the first event for each LP. See figure 16b for an example.

After this is complete a CUB Device::Partition is used to move all of the marked

events to the front of the event list as shown in figure 16c. Since every LP is given an

end event, every LP will have at least one event so the process safe events kernel
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Figure 15: Simple Simulator: (a) The event list is first sorted. (b) Then an offset to
the first event for each LP is calculated
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will always be able to achieve coalesced read and writes for both LP and Event data.

4.2.2.3 Reduce Simulator

The final simulator does the most amount of processing on the event list prior to

proceeding into the event processing phase. After the lowest time stamp is calculated

a kernel is invoked that examines every event in the event list and marks it if it is

within the safe window for that LP. Obviously, multiple events could be marked per

LP. Subsequently, another kernel partitions the event list based on the marks as was

done in 16b-c. This kernel also returns N, the number of events that were marked.

This is followed by radix sort which only sorts the first N events within the event list.

A scan of the sorted event list is then performed to mark the first event for each LP

and then the event list is partitioned again. In the end, there is one event for each

LP that has a safe event at the front of the event list.

The reduce simulator does the same thing as the partition simulator with

the addition of an initial partition to filter out events outside the safe window. The

initial partition has two major consequences. First, if there are a significant number

of events outside the safe window, subsequent manipulations of the event list are

much faster since they are dealing with fewer events. Second, there are likely to be

LPs without an event within the first N events of the event list because they may all

be at the back of the list due to the partitioning. That was not the case with the

partition simulator because every LP had at least an end event. Therefore the

nice coalesced memory accesses to both the event list and the LP state are no longer

guaranteed.

4.3 Evaluation

The PHOLD benchmark [23] was used to test the performance of the three simulators.

During execution, as each LP processes an event it creates a new event. The new

event will occur at some fixed amount of time in the future plus some random amount
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Figure 16: Partition Simulator: (a) The event list is first sorted. (b) The first event
for each LP is marked. (c) A partition is used to pull the marked events to the front
of the event list.
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of padding. The fixed amount of padding is added to the random time to prevent

instantaneous events. The LP will then either send the event off to some randomly

selected peer or place the event in its own queue. Since each LP is given an individual

pseudorandom number stream, the number of events that will be processed at each

LP will be the same across all three simulators for a given seed and simulation size.

For the first set of experiments the simulation was run for 240 seconds, the looka-

head was 4.0 seconds, and the local insertion rate was .9. The number of LPs par-

ticipating in the simulation was varied from 1,024 to approx 16.8 million. Twenty

execution runs were performed for each configuration and the run times were aver-

aged. The experiments were run using a NVIDIA GeForce GTX TITAN Black using

CUDA driver version 6.5. The GPU has 6GB of memory, 2880 CUDA Cores and a

clock rate of 980 MHz.

Table 1 shows the number of events processed by each simulator. The numbers

are the same for each simulator type because the same seed and sequence numbers

were used for the LPs to ensure that each simulator is performing the same amount

of simulation work. The totals are shown here for verification purposes. Table 2 and

figure 4.3 show the number of events each of the simulators were able to process every

wall clock second. The data clearly shows that the reduce simulator was the most

efficient when the number of events in the event queue became extremely large. The

ordering is reversed at the lowest number of LPs tested, the partition simulator

was the fastest while the reduce simulator was the slowest.

4.4 Discussion

For comparison of performance, two other works that examined the execution rate

of a PHOLD simulation are provided. Both of these solutions made use of multiple

CPU cores as opposed to a single GPU. While there has been some valid criticism

provided for direct CPU/GPU comparisons [36], given the relatively simple nature
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Figure 17: The rate at which each simulator instance is able to process events by
simulation size. The rate is in events per second.
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Table 1: PHOLD: Total number of events processed

LPs Simple Partition Reduce

210 190,928 190,928 190,928
212 765,704 765,704 765,704
214 3,057,536 3,057,536 3,057,536
216 12,237,808 12,237,808 12,237,808
218 48,950,952 48,950,952 48,950,952
220 195,858,164 195,858,164 195,858,164
222 783,491,776 783,491,776 783,491,776
224 3,133,755,472 3,133,755,472 3,133,755,472

Table 2: PHOLD: Events per second

LPs Simple Partition Reduce

210 451,635 530,356 352,006
212 1,423,474 1,523,474 1,132,698
214 5,928,275 6,214,504 4,277,518
216 14,270,830 14,568,819 17,187,933
218 26,037,740 24,974,976 42,330,466
220 33,768,649 32,213,513 84,421,622
222 37,697,887 36,272,767 111,646,684
224 36,367,972 34,893,635 122,218,111

of the PHOLD benchmark, few of the typical concerns are valid. Specifically there

is no large amounts of data that are being passed back and forth between the CPU

and GPU during simulation execution. Not measuring this transfer time is a frequent

criticism of CPU/GPU performance comparisons.

Barnes, Jefferson, Carothers and LaPre [3] ran the PHOLD simulation on 1,966,080

cores using the ROSS simulator on a Blue Gene/Q Super Computer. They managed

to achieve a sustained rate of 504 billion events per second. While there is a fairly

large gap between their event rate and ours, there is also a fairly large price gap

between a Blue Gene/Q Super Computer and the GTX graphics card that we used.

Another difference between this work and ours is that they used a Time Warp opti-

mistic synchronization algorithm. Performance of simulators using this synchroniza-

tion algorithm can vary significantly depending on the frequency and severity of the
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rollbacks that must be handled.

Recent work by Ivey, Swenson and Riley [30] examined PHOLD performance on

distributed ns-3 which, like this work, uses conservative time synchronization. ns-3

allows the simulation user to choose between using null message or a granted time

window algorithm for time synchronization. Using up to 1,024 cores they reported

event rates of up to 27 million events per second.

In other related GPU work, Kunz et al.[34] proposed a scheme that would use the

SIMD characteristics of GPUs to perform large-scale, cost-effective parameter studies.

Their method allowed users to concurrently execute multiple runs of a simulation

using different parameters. This type of simulation approach fits well into the SIMD

architecture of the GPU and the authors reported considerable speed-up compared

to serial execution. This work differs in scope from ours since our efforts focus on

using the parallel computation abilities of a GPU to run large single simulations.

Park and Fishwick[58] examined using GPUs for simulating a queuing network.

In their work the future event list (FEL) is decomposed into multiple subFELs so

it can be processed in parallel by multiple threads. Their approach also utilized a

time approximation scheduling routine in order better group events into safe time

windows. Our approach differs in that it uses no time rounding and our event list is

not subdivided.

Perumalla et al.[61] used a time-stepped approach to create a large-scale GPU traf-

fic simulation based on a queueing model. By using this type of approach, the authors

did not have manage a sorted event list nor did they have to keep track of individual

vehicles. The road topology was broken into nodes which contained floating-point

values representing the flow of vehicles into and out of each road segment. Each time

step is broken into two phases, a split phase and a gather phase. While this approach

may be faster than a discrete-event simulation, it allows for oddities such as vehicles

splitting into multiple pieces only to be recombined at their final destination. In their
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work they reported simulating up to 2 million nodes representing the road network

of the state of Texas.

This chapter presented three techniques for handling large-scale discrete-event

simulations on a GPU using conservative time synchronization. Using these tech-

niques we are able to achieve an event rate of over 120 million events per second

simulation approximately 16.7 million logical processes. These results indicate that

GPUs can be a good fit for large-scale discrete-event simulation and further research

should be performed on this subject.
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CHAPTER V

SIMULATING LARGE TOPOLOGIES WITH BRITE AND

CUDA DRIVEN GLOBAL ROUTING

Due to the complexities of the internet, the use of simulation tools is essential for

examining the effectiveness of new protocols and the practicality of new internet

applications. In many cases, in order to get a full understanding of the impact of the

new protocol or application, the simulation needs to be performed on a large-scale

topology with many competing sources of traffic. However, constructing large-scale

topologies that exhibit the same characteristics of real networks is not a trivial task.

Furthermore, once the topology is constructed, the generation of the routing tables

needed to direct packets across the network can be extremely time intensive. The

goal of this work is provide ns-3 users with the means to be able to generate large-

scale typologies which are representative of real networks and simulate them in a time

efficient manner.

This chapter presented two new models for the popular ns-3 [49] network simula-

tor are introduced [70]. The first module is an ns-3 interface to the BRITE topology

generator library. BRITE allows users to quickly create customizable, large-scale

topologies for simulation. Our module takes the topology generated by BRITE and

creates an identical representation in ns-3. Our module also provides helper methods

which makes it easy for the user to configure the nodes in the generated topology.

Futhermore, the BRITE module also works with MPI, allowing even larger networks

by spreading the processing burden across multiple CPUs. The second module is a

new global routing module that has been specifically designed to work with large-scale
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topologies. This module takes advantage of the massive parallel execution architec-

ture of GPUs using NVIDIAs CUDA programming model. Using our new global

routing module, we are able to perform global routing tasks at a rate much faster

than is possible with the current global routing protocol in ns-3.

5.1 BRITE

BRITE [43], the Boston University Representative Internet Topology Generator, is

a common tool for generating realistic internet topologies for simulation. BRITE

is a widely used topology generator that is used in many simulation applications

such as ns-2 [48], GTNetS [64], SSF [31] and OmNet++ [71]. Topology construction

in BRITE is highly customizable and is controlled by user provided configuration

scripts. Included in BRITE is a front-end GUI to ease the process of creating these

configuration files. Using BRITE, a wide variety of different topologies can be gener-

ated including scale free (power law) networks which are commonly seen within the

internet [2].

BRITE uses two main algorithms for placing nodes in generated topologies, the

Waxman [73] model and the Barbasi-Albert [2] model. The Waxman model is based

originally on the Erdös-Renyi [18] random graph model. The Waxman model differs

from the Erdös-Renyi random graph model in that all generated nodes are placed on

a plane and connectivity between nodes is based on euclidean distance. Specifically,

the probability that two nodes, x and y, are connected is given by the formula:

P (x, y) = αe−d/βL (1)

where d is the distance from node x to node y, L is the euclidean diameter of the

network, and α and β are parameters.

The other model used by BRITE is the Barbasi-Albert model. This model can be
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used to create scale-free networks. This model uses incremental growth and preferen-

tial attachment to create topologies which conform with a power law. In this model,

nodes are connected to the topology incrementally. As each node is added, it is more

likely to connect to nodes that are highly connected. Specifically, the probability that

node x, which is joining the network, is connected to node y, a node already in the

network, is given by:

P (x, y) =
dy∑
k∈V dk

(2)

where di is the degree of node i and V is the set of nodes already in the network.

Therefore the denominator is the sum of the outgoing edges of all nodes already in

the network.

There are three major types of topologies available in BRITE: Router, Autonomous

System (AS), and Hierarchical which is a combination of AS and router. For the

purposes of ns-3 simulation, the most useful topologies are likely to be Router and

Hierarchical because both of these result in a graph of routers. Router level topologies

are generated using either the Waxman model or the Barbasi-Albert model. Each

model has different parameters that effect topology creation and these are specified

in the configuration file. For flat router topologies, all nodes are considered to be in

the same AS.

Hierarchical topologies contain two levels. First there is a top level AS topology,

which can be constructed using either the AS-Waxman model or the AS-Barbasi-

Albert model. These models are equivalent to the router level versions of the models.

After the top level is constructed, for each node in the AS graph, a router level

topology is constructed. These router level topologies can be created using a different

model and different parameters than used in the AS model. BRITE then connects the

different router level topologies using the original AS model as a guide. The algorithms

used to make these connections were borrowed from the GT-ITM topology generator
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[10]. At this point the topology is fully connected and BRITE moves on to assigning

bandwidths.

Once the topology is generated, the next step BRITE performs is to assign band-

widths to the links. BRITE offers four different possible distributions for assigning

bandwidths: Constant, Uniform, Exponential and Heavy-tailed. The parameters

used to control these distributions, BWdist, BWmin and BWmax, are specified in

the BRITE configuration file. It should be noted that BRITE treats bandwidth values

as unit-less. How ns-3 handles these values will be explained in in the next section.

5.2 BRITE integration with ns-3

The ns-3 interaction with BRITE occurs through the BriteTopologyHelper class.

The construction of the BRITE topology is controlled by a user provided configuration

file. Therefore the constructor for the helper takes as a parameter a string specifying

the path to a BRITE configuration file. Users can also optionally specify a BRITE

seed file to be used in construction of the topology. During topology construction,

BRITE uses a pseudo-random number generator and therefore seeds are needed to

create different topologies with similar characteristics.

An alternative to providing a seed file is to use ns-3s uniform distribution random

number generator to automatically generate the seed values required by BRITE. An

instance of this class is instantiated within the topology helper. The helper class

provides an accessor method called AssignStreams to set the stream value of the

generator. If a BRITE seed file is not passed in via the constructor, the helper will

use the random number generator to generate the seed values. When the BRITE

library executes, it automatically generates a file named lastSeedFile that contains

the seeds used in the generation of the last topology. Therefore, if an experimenter

wanted to save the seed values in order to regenerate the same topology again, they

could save a copy of this file prior to another invocation of the BRITE library.
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Once an object of type BriteTopologyHelper has been created and configured,

the next step is to actually create the new topology. To facilitate this, a method called

BuildBriteTopology is provided by the helper class. There are two versions of this

method. Both versions accept as a parameter an InternetStackHelper instance.

This stack is installed on all nodes created in the BRITE topology.

The BRITE module has also been designed to optionally work with MPI. One ver-

sion of BuildBriteTopology accepts an unsigned int representing the system count.

Each AS in the generated topology is assigned a system number based on a modulus

divide. Then, when the helper is generating the ns-3 topology, ns-3 nodes are created

on the system corresponding to the system number of the AS they belong to. The

system number given to an AS can be found by using the GetSystemNumberForAs

method provided by the helper.

The BriteTopologyHelper uses the BRITE library to generate a topology and

then uses this BRITE topology to generate an equivalent version in ns-3. Every node

in the BRITE topology has a matching node in the ns-3 topology. Every link in the

BRITE topology is represented by a point to point link in the ns-3 topology. When

assigning bandwidths to the point to point links in the topology, the helper assumes

the values provided by BRITE are specified in Mbps. Therefore, when creating a

BRITE configuration script, it is important to specify the bandwidth parameters in

Mbps.

Listing 5.1: Example using ns-3’s new BRITE API

//Add required header files

#include "ns3/brite-module.h"

// Invode the BriteTopologyHelper and pass in a BRITE configuration file

// This will use BRITE to build a graph from which we can build the

// ns-3 topology

BriteTopologyHelper bth (confFile);
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InternetStackHelper stack;

// The following builds the BRITE topology and then creates a ns-3

// representation. The stack helper is passed in so all newly

// created nodes can have a stack installed prior to links being

// created

bth.BuildBriteTopology (stack);

Ipv4AddressHelper address;

// A small subnet is used because all of the point to point links

// created in the topology are assigned IP addresses as a separate

// network. Therefore by using a small subnetwork we don’t waste

// any of the address space

address.SetBase("10.0.0.0", "255.255.255.252");

bth.AssignIpv4Address (address);

// Iterate through all of the nodes in the BRITE generated topology

for(uint i = 0; i < bth.GetNAs(); ++i)

for(uint j = 0; j < bth.GetNNodesForAs(i); ++j)

{

//perform action on all nodes in topology

Ptr<Node> node = bth.GetNodeForAs (i, j);

}

// Iterate through all of the leaf nodes in the BRITE generated topology

for(uint i = 0; i < bth.GetNAs(); ++i)

for(uint j = 0; j < bth.GetNLeafNodesForAs(i); ++j)

{

//perform action on all leaf nodes in topology

Ptr<Node> leaf = bth.GetLeafNodesForAs (i, j);

}
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In the process of topology generation, BRITE classifies nodes depending on their

connectivity in the network. Router level nodes are classified into one of the following

categories: Leaf, Border, Backbone, Stub and None. Typically when working with

BRITE generated topologies the most useful of these are the leaf nodes. The leaf

nodes can be used to attach any other ns-3 topology, including other ns-3 BRITE

topologies. To provide access to the leaf nodes, the BriteTopologyHelper class

provides a GetLeafNodeForAs method which accepts as parameters an AS number

and a leaf node index. Access to all of the nodes in the topology is available using

the GetNodeForAs method. See listing 5.1 for an example.

Once the ns-3 version of the topology has been generated, the next step is to

assign IP addresses to the nodes in the newly created topology. This is accomplished

using the method AssignIpv4Addresses or AssignIpv6Addresses, provided by the

helper. When assigning IP addresses to the interfaces in the topology, each point

to point link is treated as a separate network. Therefore it is important, especially

for Ipv4, to set the size of the subnetwork to an appropriate size. Otherwise a large

portion of the available address space will be wasted.

5.3 Floyd-Warshall and CUDA

The Floyd-Warshall algorithm is a dynamic programming algorithm that can be used

to solve the all-pairs shortest path problem on a graph. The algorithm runs in θ(N3)

time where N is the number of nodes in the graph to be solved. The algorithm

operates on a NxN matrix. The initial matrix is an adjacency matrix where cell(i,j)

specifies the weight of the edge going from node i to node j. If nodes are not directly

connected, the initial value for the cell is infinity. The algorithm then proceeds as

follows:

Basic Floyd-Warshall

1: for k = 1 to N do
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2: for i = 1 to N do

3: for j = 1 to N do

4: if W[i][k] + W[k][j] ¡ W[i][j] then

5: W[i][j] = W[i][k] + W[k][j]

6: end if

7: end for

8: end for

9: end for

In general terms the algorithm works as following. At each step, k, the distance

from i to j, for all pairs in the matrix, is checked to see if it can be improved by

using vertex k as a intermediate. A full description of the algorithm and a proof of

its correctness was described by Corman [14].

This algorithm is an attractive fit for CUDA because all of the comparisons along

i and j for a given k are completely independent and can be performed in parallel.

Furthermore, the algorithm contains no divergent paths, one if and no else, so it maps

extremely well into CUDA’s SIMD execution architecture.

The Floyd-Warshall algorithm provides the distance on the shortest path between

all pairs. However for routing we are interested in the actual path itself. Thank-

fully with a slight modification, the Floyd-Warshall algorithm can provide enough

information to generate the shortest path:

Floyd-Warshall with Path

1: for k = 1 to N do

2: for i = 1 to N do

3: for j = 1 to N do

4: if W[i][k] + W[k][j] ¡ W[i][j] then

5: W[i][j] = W[i][k] + W[k][j]

6: next[i][j] = k
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7: end if

8: end for

9: end for

10: end for

Here variable next is another NxN matrix. The values for next are initialized

to j for all cell(i,j). Following the completion of the algorithm, next will contain the

highest index vertex, k, that i must travel through along the shortest path to j. The

next matrix also contains the highest index vertex, k1, that i must travel through

along the shortest path to k and so on. Using this information, it is possible to

determine the next hop for i along the shortest path to j.

Figure 18 provides an example of this process. Following the completion of the

Floyd-Warshall algorithm (b), for node 5 to travel to node 6 it must travel through

node 3, which is a neighbor of node 5, but it is not along the shortest path. The

next matrix is examined to determine the shortest path from node 5 to node 3 and

it is found that it is through node 1. The matrix is again examined to determine the

shortest path from node 5 to node 1 and it is found that it is through node 1. Node

1 is now saved as the next hop on the shortest path from node 5 to node 6.

5.4 Generation of routes

The first step performed with our new routing process is to examine the ns-3 node

topology and generate the information required for routing. Three main pieces of

information are gathered in this process. First is an IP address to node number map.

In order to reduce the amount of data that needs to be transferred to the GPU device

and to speed up the route computation, we compute routes node to node as opposed

to net device to net device. Because of this, we need an efficient way to translate a

net devices IP address to a node number. This map is generated once, stores all of

the IP address in the topology and is made available to all nodes participating in the
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Figure 18: An example showing how FW can be used to construct shortest paths. (a)
Initialization. (b) The results in the original adjacency matrix and the next matrix
following the FW algorithm. (c) The final routes computed.
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global routing.

The second piece of information generated in this process is the global adjacency

matrix. This NxN matrix is used as the input to the Floyd-Warshall algorithm.

To gather this information, we cycle through the net devices on a node and compile

a list of adjacent net devices. Once this information is obtained, we fill out that

nodes corresponding row in the adjacency matrix. Currently we are assigning each

link with a weight of one; however, that is not a requirement. The way the kernel is

programmed, it will work with any integer weight.

Finally, for each node, we create and store a partial routing table containing

only its immediate neighbors. The information is stored in a map indexed by the

neighbors node number and contains the interface number and the remote IP address

of the adjacent device. This map allows us to quickly obtain the next hop routing

information we need when it becomes time to route a packet. At this point all of the

necessary information has been gathered from the ns-3 topology and control is passed

to the shared library where the routes are computed.

Once control has been passed to the shared library, the first thing it does is allocate

memory on the GPU for the adjacency matrix and the next matrix. Again, these are

both N xN integer matrices. Next the adjacency matrix, generated from the ns-3

topology, is copied to the GPU device and the next matrix is initialized. Since the

next matrix has a large number of values that must be initialized, this is done via a

separate CUDA kernel program. This allows this process to occur quickly since each

value can be initialized by an individual CUDA thread.

At this point, processing of the Floyd-Warshall algorithm can begin. As men-

tioned previously, during each step of the Floyd-Warshall algorithm all of the values

in the working adjacency matrix need to be checked to see if a shorter path is found

from vertex i to vertex j using vertex k as an intermediate. For a given k, all of the

paths in the working matrix can be updated in parallel but synchronization needs
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to occur after each value for k. Since it is quite possible the number of paths in the

topology will exceed the maximum number of threads per block, we cannot perform

the entire algorithm with one kernel call. This is because it is not possible to synchro-

nize between blocks within a kernel. The blocks may be scheduled in any order, in

series, or in parallel. This is dependent on the GPU architecture and how the blocks

are assigned to the available SMs. The CUDA API does however provide a way

to synchronize between blocks outside of the kernel. The CudaDeviceSynchronize

method halts CPU execution until all blocks submitted for execution finish.

Therefore our implementation makes a separate kernel call for each value of k and

synchronizes at the CPU level after each call. There is some slight overhead for each

kernel call; however, no data is being transferred between the CPU and GPU during

this time so the performance impact is minimal.

Following the execution of the algorithm, the original adjacency matrix now con-

tains the distance of the shortest path between each i, j pair and the next matrix

contains the highest vertex index that i must travel through along the shortest path

to j. The shortest path distance information stored in the original adjacency matrix

is no longer needed for routing and is therefore discarded. The information that is

needed is in the next matrix. However it is still not in the correct form. We are

looking for next hop information and it is currently giving us a node that is po-

tentially many hops down the line. However, as mentioned in the discussion of the

Floyd-Warshall algorithm, next hop information for each pair can be obtained us-

ing the next matrix. This next hop information for each pair can be determined

independently and therefore we use another CUDA kernel program to perform this.

Now that a next hop for each pair of vertices has been calculated, the next matrix

is copied back from the GPU to the CPU and passed back from the shared library

to the helper. The helper then stores it in a location that is globally accessible to all

nodes participating in the global routing.
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5.5 ns-3 routing implementation

Like all routing protocols in ns-3, our /tt Ipv4FwCudaRouting module derives from

the /tt ns3::Ipv4RoutingProtocol base class and therefore implements RouteOutput

and RouteInput. RouteOutput is called when a packet is provided by the transport

layer and provides a route towards the destination. RouteInput is called when a

packet arrives at a NetDevice and a decision must be made to either forward the

packet onward or pass it up to the transport layer.

For RouteOutput and in the case where RouteInput is forwarding a packet, an

instance of ns3::Ipv4Route must be assembled to provide the next hop information

for the packet. Along with the source and destination for the packet, the information

needed for this object is the output device and the next hop IP address. Our im-

plementation obtains this information as follows. First the destination IP address is

looked up in the global IP address to node number translation map to get the destina-

tion node number. Then the next hop for the destination node from the current node

is looked up in the next matrix. Now that we have the next hop node number we use

it to index the local routing table for this node to get the correct output device and

remote IP address. At this point all of the information needed to route the packet

has been obtained.

5.6 Evaluation

All of the experiments performed in this section were run on the Georgia Tech PACE

computing cluster. The CPUs on the nodes we used are six-core AMD Opteron

Processors running at 2.4 GHz. Each node has a total of 64 GB of available RAM.

The GPUs used were T10 Tesla Processors with Compute Capability 1.3 and a total

of 4 GB of available global memory.

For the first experiment we wanted to see how the current Ipv4 global routing

implementation in ns-3 would perform with a BRITE generated topology with a
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Figure 19: The run time of our test simulation varying the total number of nodes in
the topology using Ipv4GlobalRoutingHelper::PopulateRoutingTables()

large number of nodes. For this experiment we used the BRITE hierarchical model

with the AS-Barbasi-Albert model as the top level and used the Waxman model for

the routers in each AS. We generated a total of 10 AS and the total number of nodes

per AS was varied on each run. For each AS, we attached a node containing a UDP

packet sink and a UDP source to the first leaf node. Each source was configured to

send one packet of 100 bytes to every other sink. We did not set a stop time for the

simulation, therefore it will run until the event list is exhausted. The complexity of

the setup is admittedly simple, however the purpose of the experiment is to measure

the time needed to generate the routing tables for the topology.

Figure 19 shows the results of this experiment. We varied the number of nodes

from 1,000 to 4,000 nodes. We had originally hoped to go even larger; however, we

began to run into wall clock time limits on the server on which the program was

running. The results clearly show that there is a prohibitive cost when using the

current global routing protocol with a large number of nodes. Even with the smallest
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Figure 20: The run time of our experiment varying the total number of nodes in the
topology using nix-vector routing and our CUDA global routing

topology we tested, 1000 nodes, the time to run a simulation which sends 90 packets

is almost a 1/2 hour (1566 seconds).

For the second experiment we wanted to compare how our new CUDA global

routing module compared to ns-3’s Ipv4 global routing and also how it compared

to nix-vector routing. nix-vector [65] routing does an on demand BFS to find the

shortest path from source to sink. It then stores the steering information to guide

the packet along that path within the packet itself. The node that generates the

nix-vector also caches it so future transfers are done without the need for another

BFS. For this experiment we used the same setup as in the previous experiment. We

ran each iteration of the experiment ten times and took an average of the results.

The results can be seen in figure 20.

The results show that both nix-vector routing and CUDA global routing clearly

outperform the current global routing implementation for large topologies in ns-3.
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Figure 21: The run time of our experiment varying the number of TCP senders using
Nix-Vector routing and our CUDA global routing

For 4000 nodes the run time for global routing was three orders of magnitude higher.

Also, the results showed that our CUDA routing protocol outperformed nix-vector

routing by between 3 and 3.5x for every topology size we tested. The important thing

to remember here is what is being calculated in each simulation. In the nix-vector

experiment, the shortest path is being calculated for ten pairs of nodes; however, in

the CUDA routing experiment the shortest path is being calculated for every pair of

nodes in the topology.

For the third experiment we fixed the number of nodes in the BRITE topology to

5,000. The same hierarchical model that was used in the previous two experiments

was used. In addition, we then added a variable number of sending and receiving

pairs to leaves in the generated topology. The minimum number of pairs we used was

10 and the maximum was 1000. Each sender was configured to send one packet via

TCP to its receiver. By doing this we were able to vary the number of routes that

the nix-vector protocol needed to calculate. Each configuration was run ten times

and the results were averaged. The results can be seen in figure 21. As expected,
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for both experiments as the number of senders and receivers was increased, the run

time of the experiments also increased. This is expected because the simulation has

to handle more packet traffic and a greater number of nodes. However, as the results

in figure 7 show, this has a much greater effect on the nix-vector protocol.

5.7 Discussion

In this chapter presented two new ns-3 modules. The first was a new BRITE module

which allows ns-3 users to take advantage of the topology generation features of the

BRITE topology generator. Also preseented was a new CUDA driven global routing

protocol which demonstrated substantial speedup compared to the current global

routing protocol in ns-3 when simulating large topologies, such as those created with

BRITE. This new routing protocol also showed a significant speedup to Nix-Vector

routing despite the fact it is calculating and storing many more routes. It provides

a solid example of how GPUs can be used in combination with CPUs in order to

achieve a faster overall simulation.

73



CHAPTER VI

PERFORMANCE OF CONSERVATIVE

SYNCHRONIZATION METHODS FOR COMPLEX

INTERCONNECTED CAMPUS NETWORKS IN NS-3

Large-scale network simulations are frequently needed to gain a full understanding

of the environment being simulated. Due to limited resources on a single computing

node and to reduce over all simulation run time, simulations may instead be dis-

tributed over multiple processing nodes. While this provides a powerful framework

for utilizing a greater amount of computing resources, the nature of executing these

simulations across multiple nodes demands that consideration by taken to ensure

that the results of these distributed simulations match results that would have been

produced by a single sequential simulator. This chapter examines the two conser-

vative synchronization implementations available in the popular network simulator

ns-3. ns-3 provides the option for the user to chose which of the algorithms to use

for a particular simulation; however, little information is given on which algorithm

is the better choice. We examine the performance of both distributed schedules in

an effort to gauge specific features of an overall distributed network topology that

warrant the use of one synchronization method over the other. While examining each

implementation, improvements were made which resulted in better performance.

In the following sections we describe how both of these algorithms are implemented

in ns-3. More general background on each algorithm can be found in the background

chapter.
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6.1 ns-3’s granted time window implementation

The ns-3 granted time window algorithm and its accompanying MPI interface enlist

a system for LPs to determine a granted time window for which they may safely

process events in simulation timestamp order by achieving a global consensus among

all LPs. During initializing the simulator beings by calculating the lookahead and

initial granted time based on remote channel delays in the specified network topology.

Distributed simulations in ns-3 currently only support remote point-to-point links

between LPs, and as such, lookahead values are only derived from channels configured

in this way. At the start of simulation, each LP examines the nodes within it to

determine the shortest propagation delay between its nodes and any nodes in any

adjacent LP. This value becomes the lookahead for that particular LP. To maintain

adequate performance, LPs that do not possess inter-task links are given lookahead

and initial granted values equivalent to the maximum lookahead from all LPs that

do possess inter-task links in order to allow all tasks to advance in simulation time

at similar rates. Once simulation execution begins, an LP will process the events

in its event list until it reaches the end of its granted time window. When an LP

has not more events within its granted time window, the synchronization phase will

begin. The LBTS values will be gathered from all LPs using an MPI AllGather call,

effectively blocking individual LPs until all LPs reach this point in execution of the

code. A check that the total count of completed received and completed transmitted

messages are equal is executed to ensure that transient messages are not awaiting

delivery by MPI. If transient messages exist in the system, each LP enterrs a phase

where it stops sending traffic and completes all of its reads. Subsequently, another

call to MPI AllGather is made to verify that all transient messages are out of the

system and gather the LBTS for the system. The minimum of these LBTS values

will be summed with the LP’s lookahead to determine the current granted simulation

time within which an LP may process its events. Multiple calls to MPI AllGather
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are sometimes necessary to ensure that the system can obtain an accurate snapshot

and to obtain the correct LBTS values. Following this synchronization process, if the

next event time lies within the granted window, the next event will be processed, and

the simulation will continue.

6.2 ns-3’s null message implementation

For ns-3.19, an additional distribution implementation was incorporated which pro-

vides a null message synchronization option following the Chandy/Misra/Bryant

(CMB) algorithm [12] [9]. Unlike the granted time window algorithm, which is con-

sidered a synchronous algorithm due to its use of global communication, the CMB

algorithm is asynchronous, only requiring peer-to-peer communication between neigh-

boring LPs to preserve global causality.

Similarly to the granted time window implementation, an LP participating in

the null message synchronization simulation begins by scanning the nodes within its

topology to find external links to remote LPs. It groups all of the links to remote LPs

into bundles according to which LP it connects. It then determines the minimum

propagation delay value for each bundle. This value becomes the lookahead between

the two LPs. Prior to the start of simulation, the LP queues a null message to the

remote LP on each bundle with a timestamp of the lookahead value. The implemen-

tation also schedules a future null message to be sent to the remote LP when the

sender’s local simulation time reaches the minimum propagation delay to the remote

LP. When this null message is sent, assuming no transfer of packets between the two

LPs has occurred, the sender will continue to send null messages to the remote LP

every lookahead period. When a packet is transferred between the two LPs, the next

pending null message to be sent is canceled. Following the transfer of the packet, a

new null message is scheduled to be sent to the remote LP after the next lookahead

period.
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In ns-3.19, the simulation will only stop under the null message synchronization

for a specified simulation stop time. Otherwise, the simulation will continue to run,

simply passing null messages between LPs, until the simulator reaches the ns-3 defi-

nition of infinity. This drawback can be a hindrance when using the ns-3 null message

synchronization because a user must either specify a stop time or allow the simulation

to reach infinity, a task which can be significantly time-consuming. This issue is not

present in the ns-3 implementation of the granted time window algorithm as LPs will

reach a consensus that the simulation is globally complete when all LPs have empty

event queues.

6.3 Evaluation

The performance study demonstrated in this paper examines the runtime and memory

usage of multiple instances of the well known DARPA campus network topology [47]

shown in Figure 22. These are all connected in a ring topology as shown in Figure 23.

Simulations are implemented using a modified version of nms-p2p-nix-distributed.cc

from ns-3.19. A single campus network consists of 3 networks connected to a central

network Net 0, which serves as the entry and exit point of data travelling between

campus networks. Connecting each campus network at Router 0 in Net 0 involves

a 2Gbps point-to-point link with a 200ms propagation delay. Within each campus

network, routing nodes are connected to one another via 1Gbps point-to-point links

with 5ms delays. The components labeled LAN in Figure 22 are actually 42-node local

area networks (LAN) with each node individually connected to its respective router

via 100Mbps point-to-point links with 1ms delays. In total, each campus network is

composed of 538 nodes.

For these experiments, a modified version of the nms-p2p-nix-distributed.cc sim-

ulation script distributed with the ns-3 release has been used. The first modification

implemented enabled the addition of multiple chords between members of the ring
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Figure 22: The DARPA campus network topology is composed of three networks
which connect to Net 0, the entry and exit point for the campus network. Net 1
consists of 2 routers and four ”server” nodes while Nets 2 and 3 connect a number
of routers to multiple LAN networks consisting of 42 nodes each. Routers and server
nodes are connected via 1Gbps point-to-point links with 5ms delays. LAN nodes
connect to their associated routers with 100Mbps point-to-point links with 1ms delays.
Data flowing into and out of the campus network travels a 2Gbps point-to-point
channel with a 200 ms delay.
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topology. A parameter named nConCon signifies the number of ”consecutive connec-

tions” that each campus network will employ to connect to multiple campus networks.

In this way, nConCon equal to 1 represents the original topology and can be used as a

basis for comparing results produced by increasing the nConCon value. An example

showing multiple consecutive connections can be seen in Figure 23.

Figure 23: Multiple campus networks are connected in a ring topology with nConCon
being the number of consecutive connections from one campus network to another
campus network. For example, when nConCon=3, campus network 1 will connect to
campus networks 2, 3, and 4, campus network 2 will connect to campus networks 3,
4, and 5, etc.

Each of the 42 nodes in each LAN in Nets 2 and 3 is given a UDP packet sink.

For each packet sink added, an on-off application is installed on a randomly selected

server node in Net 1. Each server node sends data to one of the sinks in the next cam-

pus on the ring. These applications oscillate between configurable periods of on time,

during which data is sent, and off time, during which no data transmission occurs.

Furthermore, for each additional consecutive connection for an LP, an additional on-

off application is created on a server node in Net 1 and configured to send data to

the campus network on the other end of the connection. The duty cycle is config-

ured such that only one on-off application from each campus network is transmitting
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data out of that campus network at a time with each application being granted an

equal amount of time to transmit. This setup ensures that the traffic in and out

of each campus network effectively remains the same while externally presenting the

distributed simulation implementations and the distributed systems on which they

execute with new choices and challenges concerning their synchronization.

One other parameter is considered in this experiment which enables control of how

much data is being sent remotely for each LP. When creating each on-off application,

a uniformly random number is generated. If the random number is less than the

specified remote percentage, the application will send data to a remote campus net-

work. If the random number is greater than the remote percentage, the application

will send data to one of its local LANs.

For routing traffic between the nodes ns-3’s nix-vector routing protocol was used.

nix-vector [65] routing does an on demand BFS to find the shortest path from source

to sink. It then stores the steering information to guide the packet along that path

within the packet itself. The node that generates the nix-vector also caches it so

future transfers are done without the need for another BFS.

All of the experiments performed for this work were initially run on a machine with

dual hex-core Intel Xeon E5-2620s running at 2.0 GHz. The machine was configured

with 64 GBs of RAM. The experiments were all run using ns-3.19 with optimized

build settings.

For the first experiment, a topology of 24 campus networks was created, for a

total of 12,912 ns-3 nodes. Each on-off application was configured to send .5 MB to

its chosen packet sink. For this experiment all on-off applications were configured to

send data to their local LAN. In this configuration the simulation is embarrassingly

parallel as there is no cross LP traffic. By performing this experiment, the cost of

synchronization among the LPs can be measured. The consecutive connection pa-

rameter was varied from 1 to 23. The corresponding run time for each configuration
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is shown in Figure 24. As expected for both synchronization types, as the number

of consecutive connections is increased, the run time is increased due to the added

number of on-off applications and packet traffic. However, the results show that the

granted time window application scales better as the connectivity of the topology

increases. This trend is expected because the number of null messages that the CMB

algorithm needs to send increases with the connectivity of the graph. For the granted

time window algorithm, the number of nodes participating in the MPI Allgather is

the same for each experiment. It should be pointed out that this type of situation

is ideal for the granted time window algorithm. Due to the lack of transient mes-

sages, during synchronization it only needs to perform one MPI Allgather, a rather

expensive operation, in order to obtain an accurate snapshot for LBTS calculation.

For the second experiment, a topology of 8 campus networks was created, for a

total of 4,304 ns-3 nodes. The number of consecutive connections was set to one

making a standard ring topology. Each on-off application was configured to send a

maximum of 50 kilobytes. In this experiment, the percentage of remote traffic each LP

sends was varied. For the results presented here, each configuration was run 10 times,

and the average result was recorded. The results are shown in Figure 25. As shown in

the graph, as the percentage of remote data increases, the performance of the granted

time window decreases. Part of this decrease is likely due to the increase in frequency

of transient messages during the synchronization phase causing the need for a second

MPI Allgather. The run times for CMB simulations do increase, as expected since

the number of packets that need to be serialized and sent is increasing; however,

the increase is much less noticeable. One benefit for the CMB algorithm in this

experiment is that as the number of packets being sent to remote LPs increases, the

number of null messages it needs to send to those LPs decreases.

Following the examination of the results of the second experiment, the signifi-

cant increases in run time for the granted time window experiments were deemed
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Figure 24: Simulation run time in seconds as a function of the number of consecutive
connections. The total number of campus networks is 24 with each campus network
residing on its own LP.

Figure 25: Simulation run time in seconds as a function of the percentage of remote
traffic. The total number of campus networks is 8 with each campus network resid-
ing on its own LP and only one consecutive connection between campus networks
(nConCon=1 from Figure 23).
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unexpected; therefore, the experiment was repeated using a dedicated computing

cluster rather than the original computing resource that employed shared memory.

This computing cluster, managed by the Georgia Tech Partnership for an Advanced

Computing Environment (PACE), provides dedicated cores as individual LPs. These

cores are gathered for MPI job execution from a collective of six-core 2.4 GHz AMD

Opteron 8431 processors. Ten time trials for each percentage of remote traffic were

executed for both the null message and granted time window algorithms. As shown

in Figure 26, a different picture is revealed as compared to that shown in Figure 25.

The run times for the granted time window simulations were greatly improved.

Figure 26: Simulation run time in seconds as a function of the percentage of remote
traffic. This experiment utilized a cluster of computing resources rather than a shared
memory resource. The total number of campus networks is 8 with each campus
network residing on its own LP and only one consecutive connection between campus
networks (nConCon=1 from Figure 23). Vertical bars represent the standard error of
the sample mean.

The main difference between the two experiments is how MPI is utilized. For a

many-core machine, as was used in the experiment depicted in Figure 25, MPI uses

shared memory to pass data between the LPs. For the second cluster experiment,

data sent between the LPs is passed across the network. The data obtained shows

that the granted time window algorithm is performing poorly only when MPI is using

83



shared memory. The shared memory experiment was repeated on another machine to

verify that faulty operation was not inhibiting the first machine; similar results were

obtained. All of these experiments were performed using OpenMPI 1.4.3.

In ns-3, the granted time window and null message algorithms check for received

MPI messages at different frequencies. The null message algorithm checks for MPI

received messages every time it processes an event. The granted time window imple-

mentation only checks for incoming messages once it determines it has no more safe

events to process. We hypothesized that the longer run-times on the shared memory

machine were due to excessive buildup of unprocessed MPI messages. For the next

experiment, the granted time window algorithm was changed to check for new mes-

sages after processing each event. The same experiment as the last two was performed

on the many-core shared memory machine. The time trials were again repeated 10

times across the percentages of remote traffic to better gauge the confidence of the

results. The results are shown in Figure 27.

Figure 27: Simulation run time in seconds as a function of the percentage of re-
mote traffic. This experiment utilized a shared memory resource but implemented
a fix that checked for received MPI messages more frequently. The total number of
campus networks is 8 with each campus network residing on its own LP and only
one consecutive connection between campus networks (nConCon=1 from Figure 23).
Vertical bars represent the standard error of the sample mean.
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As shown by Figure 27, the results of the granted time window algorithm on a

many-core shared memory computer were greatly improved by increasing the fre-

quency with which each LP checks for received messages. These results support the

hypothesis that the delay was due to excessive buildup of MPI messages. As Figure 27

shows, after the modification, the performance for both synchronization algorithms

is effectively identical for this configuration. The granted time window algorithm

experienced a 15.6x speedup compared to the original run-times measured on the

simulations with exclusively remote traffic.

The next experiment performed examined whether increasing the frequency with

which the granted time window algorithm checked for incoming messages had any

negative consequences on a larger network topology run on a computer cluster. In this

experiment 32 LPs were created for a total of 17,216 nodes. Each on-off application

was configured to send 50 kilobytes to its selected target. All targets were in remote

LPs. The number of consecutive connections was varied from 5 to 30. Again each

configuration was run 10 times. The results are shown in Figure 28. The results

indicate for the configurations that were tested, no performance penalty was incurred

by increasing the polling frequency for new messages. In fact for all of the connection

configurations, a small performance increase in the modified granted time window

implementation was observed compared to the original implementation.

Upon further inspection of the null message implementation it was determined the

number of null messages sent between the LPs could be reduced and the lookahead

could be dynamically increased by examining other characteristics rather than just

speed of light delay between the LPs. The point-to-point channels in ns-3 are FIFO;

there, in the simple case where one channel connects two LPs, once an LP schedules

a packet receive event from its neighbor, it doesn’t need any more null messages from

that neighbor until after it has executed the receive event. Another way to look at this

is, if the neighboring LP always has at least one packet in its output queue destined
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Figure 28: Simulation run time in seconds as a function of the number of consecutive
connections. This experiment utilized a cluster of computing resources rather than
a shared memory resource. The total number of campus networks is 32 with each
campus network residing on its own LP. Vertical bars represent the standard error of
the sample mean.

for the LP, the neighboring LP shouldn’t need to send any null messages because it’s

constantly scheduling future packet receptions.

The original null message implementation in ns-3 did reschedule pending null

message transmissions when sending a packet. However it rescheduled them to the

sum of currentSimulationTime and speedOfLightDelay. For example, if the delay

between the two LPs is 1 ms, but due to the size of the packet or the bandwidth of

the device, the packet won’t be fully received, last bit arrival time, for 40 ms, the

implementation will send 39 unnecessary null messages.

Table 3: Original Null Message Implementation

LPs Total Messages Run Time (s)

8 239,104 0.172
16 478,208 0.175
32 956,416 0.175
64 1,912,832 0.184

128 3,825,664 0.185

Table 3 shows total number of null messages sent during the simulation and the
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wall clock runtime for a fairly simple example with a variable number of LPs. Each

LP contains one node and all of the nodes are connected in a ring. Each LP sends

UDP data to its neighbors on each side. Therefore all of the queues connecting LPs

will always have at least one packet, assuming the LP’s applications generate data

faster than the rate the devices can transfer. For example, the speed of light delay

between the LPs is 2 ms, the net devices send at a rate of 10kbps and the applications

generate data at a rate of 1Mbps. 30 seconds of simulation time were simulated and

the experiments were run on the Cab [35] computing cluster at Lawrence Livermore

National Laboratory.

Table 4: Modified Null Message Implementation

LPs Total Messages Run Time (s)

8 32 0.097
16 64 0.101
32 128 0.098
64 256 0.100

128 512 0.102

The null message implementation was then modified to use the maximum of the

channel delay and the complete packet transfer time at the time to schedule the next

null message after a packet transfer. Due to the speed that the applications are

sending traffic there will be a 2 ms delay before the first packets arrive in the queues.

Afterward the queues on the net devices will always contain at least one packet and

no more null messages should be needed. The results of this experiment are shown in

table 4. Each LP in the simulation sends a null message at time 0 and at time 2 due

to the rate at which application is producing data. If the application rate is increased

to 5Mbps, the total number of null messages for each run is zero.
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6.4 Discussion

This chapter examined and compared the two conservative time-synchronization al-

gorithms available in ns-3.19. We performed experiments varying network connectiv-

ity and remote traffic percentage. The most interesting result was how poorly the

granted time algorithm performed on the many-core machine using OpenMPI 1.4.3.

Given these results, ns-3 users using this type of machine configuration would be

best served by using the new null message algorithm or modifying the granted time

window algorithm as we did.

The null message algorithm possesses drawbacks as well. As mentioned earlier,

the algorithm is dependent on the simulation user to set an appropriate stop time.

This requirement does not exist for the granted time window algorithm since it au-

tomatically exits once the simulation ends. In simulations with a fixed amount of

data needing to be sent, overestimating the stop time could result in the simulator

spending an excessive amount of time just passing null messages and not doing any

actual simulation. Forgetting to set a stop time will result in a simulation that will

run until the time variable overflows.

The changes we made to the two implementations provided significant speedup

for certain scenarios. For the granted time window implementation, execution time

was greatly reduced by more frequent polling by MPI for received messages. This was

especially the case on the many-core machines. The change did not cause any other

noticeable performance degradation. The change to the null message implementation

greatly reduced the number of excess null messages that needed to be sent between

LPs that frequently sending packets. A further improvement for this will be discussed

in the future work section.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

This dissertation studied techniques to improve the performance of large-scale discrete-

event simulations. In this final chapter, the contributions of this work are summarized

and possible future work is discussed.

7.1 Contributions

Chapter 3 proposed a new approach to zero-copy message passing specifically de-

signed for simulators running in a multi-core environment. We demonstrated the

effectiveness of this approach by implementing it in two separate discrete-event simu-

lators. The approach was compared to another zero-copy implementation made with

Boost.Interprocess and also the standard approach of message serialization and bulk

copy. Our approach was extremely effective compared to the other two. While the

Boost.Interprocess design is zero-copy the architecture of their memory allocator has

significant consequences on its ability to scale to a larger number of logical processes.

While the serialization and bulk copy approach may be effective for small items with

a limited amount of referential data, our approach provided consistent results for all

message types including large messages with containing numerous references.

Chapter 4 demonstrated how conservative time-synchronization techniques can be

used to run large-scale discrete-event simulations entirely on a graphical processing

unit developed and marketed for three dimensional gaming. We examined multiple

approaches for handling the future event list in the simulation and demonstrated

examples where each could be effective. This work clearly shows there is a large

amount of potential for graphical processing unit-based discrete-event simulators.

The future work section will discuss possible future improvements.
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Chapter 5 provided an example of how CPU-based discrete-event simulators can

effectively utilize graphical processing units to process large parallel workloads. The

work resulted in two new modules for the open-source ns-3 project. The first allows

ns-3 users to easily create highly customizable large-scale network topologies that

closely resemble what is typically found on the internet. The second provides a way

to quickly perform static route computation for all of the nodes in the network. Our

CUDA based global routing module was able to outperform the included global rout-

ing module by over three orders of magnitude for large topologies and was found to

be faster than the single-source, single-destination on-demand nix-vector implemen-

tation. These additions make it much easier and less time-consuming for network

researchers to perform large-scale network simulations using ns-3.

Chapter 6 compared the conservative time-synchronization implementations pro-

vided with the ns-3 network simulator. ns-3’s documentation currently provides little

to no instruction on when to chose one over the other. We examined both using a

frequently used campus-based topology building block. For the work, we performed

experiments on a large variety of topology configurations varying a large number

of network parameters. While more research needs to be done provide an absolute

decision criteria, we provided numerous insights to help users decide on which imple-

mentation to use for their large-scale network simulations. Furthermore, we devel-

oped improvements to both implementations that are capable of providing significant

speedups under certain conditions without any noticeable performance impact in gen-

eral performance.

7.2 Future work

There is a significant amount of future work that can be done on the development of

CUDA based discrete-event simulators. With each new release of the CUDA API, it

becomes increasingly easier to harness the full capabilities of the device. Furthermore,
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unlike CPU architecture which has become somewhat stagnant due to die size con-

stants, lack of effective thermal management, and lack of any real competition among

manufactures, GPU architectural advances are occurring at a steady pace. There

are frequent product releases which are constantly pushing the envelope. The GPU

cards are frequently being equipped with more cores that are more powerful than

the previous top-of-the-line design. With the increasing availability of inexpensive

hi-resolution 4K displays and predicted future advancements in display technology,

this is a trend that is likely to continue.

A large amount of research could also be done on how to effectively utilize multi-

GPU environments for discrete-event simulation. Newer MPI implementations includ-

ing OpenMPI and MVAPICH2 have a CUDA-aware functionality [13]. Previously it

was necessary to copy data from GPU device memory to CPU host memory in order

to send it via MPI to a remote machine. Once on the other machine, it would then

need to be transferred from CPU host memory to GPU device memory in order to

be processed by the remote GPU. With a CUDA-aware MPI implementation, GPU

memory can be directly passed to MPI without staging it in host memory [33]. This

provides performance benefits and makes it easier for the developer. However, before

a multi-GPU setup can be used in discrete-event simulation, algorithms need to be

developed for remote event passing that do not result in severe thread divergence or

inefficient memory usage.

The improvement to ns-3’s null message implementation reduced the number of

MPI messages, due to the decrease in the number of null messages being sent, and

allowed the LP to provide a larger dynamic lookahead to its neighbor. However the

improvement only considers the current packet on the wire being transferred. Since

the ns-3 queues are FIFO, and since there is currently no way for a packet to not

arrive at a remote LP once it is placed into a queue leading to that LP, the entire

queue could be analyzed to provide an even larger dynamic lookahead. This could
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also possibly be combined with bulk sending of multiple packets to gain even more

performance by further reducing MPI traffic.
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