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SUMMARY 

Traditional transit accessibility models often overlook travel behavior and fine-

grained transit characteristics experienced during first and last-mile walking. Existing 

models typically assume travelers choose the shortest walking path to minimize travel time, 

but studies suggest pedestrians do not always follow this pattern. 

This study investigates pedestrian route choice preferences in Chicago, Illinois, 

using a diverse dataset of home-based work walking trajectories collected from a 

smartphone application. The impact of street attributes on route choice is examined, and a 

comparison is made of how built environment factors influence preferences among 

different demographic groups. A path-size logit model with a constrained enumeration 

approach-based choice set is employed for analysis. 

This study also addresses two gaps in pedestrian route choice research. First, unlike 

most studies that use data constrained to a particular study area or limited participant 

groups, this research employs a diverse dataset of actual walking trajectories covering a 

wide range of destinations and participant profiles. Second, this study utilizes GPS data, 

offering more accurate route choice analysis compared to questionnaires. Such surveys 

may suffer from recall bias, and they may not capture route choice variability across 

different times and days.  

The findings from this study indicate that factors such as distance, the number of 

amenities and establishments, sky visibility, greenery, and park accessibility along the 

route significantly influence route choice. While route distance and the number of 



 x 

establishments have a negative impact on preference, other factors positively affect route 

selection. To compare the effect of each variable across gender, age, and income, this study 

has operationalized the coefficients to use the concept of ‘equivalent walking distance.' 

This measure quantifies the incremental disutility resulting from various route attributes, 

represented as an equivalent increase or decrease in walking distance. The analysis shows 

that male pedestrians are more willing to walk further when there is greater sky visibility. 

Similarly, individuals aged over 30 years old tend to walk longer distances with increased 

sky visibility. Notably, we found no significant variables influencing route choice among 

different income groups. 
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CHAPTER 1. INTRODUCTION 

Travelers seek to minimize travel time and distance to maximize their utility; 

however, pedestrian behavior tends to deviate from this pattern. Pedestrians make decisions 

about route selection, walking speed determination, and type and timing of interactions 

with their surroundings before and during walking. Among these choices, a comprehensive 

understanding of pedestrian route choice – notably, how street features influence route 

preferences – can provide valuable insights for designing, planning, and implementing 

sustainable pedestrian environments and equitable urban mobility systems. For instance, 

conventional accessibility measurement models often overlook pedestrian behavior and 

ignore the travel impedance during the first and last-mile trips. Incorporating travel 

impedance by route choice analysis can therefore enhance the accuracy of accessibility 

measurements from the traveler’s perspective. 

Numerous studies have investigated pedestrian route choice behavior using 

disaggregate or micro-level analyses. While distance and travel time are crucial factors in 

route choice, pedestrians often opt for safer, more comfortable, or more interesting routes, 

as long as detours remain within an acceptable range (Sevtsuk & Kalvo, 2021). Various 

street features along the route have been found to be associated with route choice decisions. 

Pedestrians are likely to choose streets with wide, continuous sidewalks on both sides of 

the street for safety and convenience (Rodríguez et al., 2015; Lue & Miller, 2019). 

Additionally, pedestrian amenities and urban design features such as waterfronts, benches, 

and greenery along the sidewalk positively influence route choice decisions. (Dessing et 

al., 2016; Shatu & Yigitcanlar, 2018). Furthermore, a sense of street enclosure, reflecting 
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more detailed visual aspects of streets, has been identified to have impacts on route choice 

preference (Sevtsuk et al., 2021; Basu & Sevtsuk, 2022). 

However, the methods and data used for route choice analysis to date present several 

limitations in fully understanding general pedestrian behavior. Most studies rely on 

qualitative data gathered through questionnaires, commonly using intercept surveys (Guo 

& Loo, 2013; Azegami et al., 2023). These surveys, however, cannot be readily generalized 

to larger areas as they typically cover small, specific locations and involve limited 

participant numbers due to the labor-intensive nature of the process. Intercept surveys also 

depend on self-reported information, which is susceptible to inaccuracies and biases. 

Stated preference surveys, which reduce the burden of in-person data collection and 

allow participants a range of hypothetical alternatives, present their own limitations (Erath 

et al., 2015; Bellizzi et al., 2021). While the survey results provide data about how much 

route attributes were valued by participants, responses may not accurately reflect real-life 

behavior. People might overestimate or underestimate their preferences when not faced 

with tangible choices. Stated preference surveys also fail to capture real-time walking 

conditions, choices, and idiosyncrasies. Recently, smartphone applications have been used 

to collect extensive Global Positioning System (GPS) trajectory data for large-scale route 

choice modeling. However, a fully anonymized dataset, which aims to protect user privacy, 

makes it challenging to infer personal attributes such as demographic information and trip 

purpose. 

This study examines pedestrian route choice preferences in Chicago, Illinois by 

utilizing an extensive dataset of GPS walking trajectories. Since the data includes 
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respondent attributes that supplement traditional travel diary recording, this study explores 

systematic differences in route choice preferences based on personal characteristics. 

Therefore, the research aims to determine how specific street features affect pedestrian 

route choice behavior across demographic groups, including age, gender, and income level. 

With a focus on home-based work trips, the analysis includes various destinations and 

geographies. The explanatory street features are based upon previous literature that 

examined the impact of each such feature on route choice preferences. 

The remainder of this paper is structured as follows: Section 2 provides a review of 

studies focusing on the relationship between route choice decisions, street features, and 

socio-demographic factors, and route choice analysis modeling frameworks. Section 3 

offers a detailed description of the data and methods employed in this paper. In Section 4, 

the model estimation and results are presented, while the final section, Section 5, concludes 

the paper by discussing the limitations of this study and suggesting potential directions for 

future research. 
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CHAPTER 2. RESEARCH BACKGROUND 

This study examines pedestrian route choice preferences by analyzing the impact of 

street attributes on route choice and comparing how these factors influence pedestrians 

across different demographic groups. A GPS dataset is employed to investigate actual 

walking trajectories and personal attributes for each observation, which enables a 

comprehensive analysis of route choice behavior in diverse urban settings throughout the 

city of Chicago and among different participant profiles. Furthermore, by estimating the 

model coefficients of the path size logit model, the concept of an "equivalent walking 

distance" is introduced to represent the incremental disutility resulting from various street 

features and compare the effect of each variable across different demographic groups. 

2.1 Factors Affecting Pedestrian Route Choice 

 The route choice for pedestrians can be understood as the process of choosing a 

route with the highest utility among various options connecting an origin to a destination. 

While minimizing distance and time is often the primary goal, research has shown that 

pedestrians do not always follow the shortest route. Instead, they may prefer routes that are 

safer, more comfortable, or more visually appealing routes than the shortest path. 

Many studies have explored the relationship between street features and pedestrian 

route choice decisions. Broach and Dill (2015) used GPS devices to study the route choices 

of 283 adults, finding that distance, number of turns, elevation gain, and traffic volumes 

were negatively or positively related to route selection. Specifically, the study revealed that 

each additional turn was associated with a decrease in route utility equivalent to 
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approximately 50 meters of distance. Upslopes with a 10 percent gradient were perceived 

as twice as inconvenient as less steep terrain. Guo (2009) employed a path choice model 

to analyze the influence of pedestrian environments on walking utility, revealing that 

factors such as intersection density, sidewalk width, and topography significantly impacted 

route choice utility. The model showed that an increase of one more intersection per 100m 

provided a utility equivalent to reducing travel time by 0.3 minutes, while increasing 

sidewalks by 6 feet offered a utility equivalent to reducing travel time by 0.5 minutes. 

Among a wide range of street features, well-designated crosswalks, as a crucial 

aspect of pedestrian safety, have been shown to play a significant role in route choice 

behavior. Lue and Miller (2019) found that the presence of sidewalks on both sides of a 

street was an important variable in the route choice model in Toronto. Their results 

emphasized the importance of street completeness, with links featuring sidewalks on both 

sides perceived as 33% shorter in length. Similarly, Sevtsuk et al. (2021) discovered that 

sidewalk width had a strong positive effect on route choice in San Francisco. They found 

that a 10-foot increase in sidewalk width could boost the willingness to walk by up to 84 

meters in San Francisco while a more modest 13 meters in Boston (Basu & Sevtsuk, 2022). 

It has also been observed that pedestrians might take slightly longer routes if the sidewalk 

is wider than the width of 1.5m to 3.0m and separated from the road traffic (Muraleetharan 

& Hagiwara, 2007). Moreover, sidewalk continuity and condition have been identified as 

important factors influencing students’ route preferences (Shatu & Yigitycanlar, 2018).  

Although the impact of sidewalk presence has generally been reported as positive, 

some studies have found no such effect or even a negative one (Guo & Loo, 2013; Ozbil 

et al., 2016). Guo & Loo (2013) discovered that sidewalk width had an insignificant impact 
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in New York, while in Hong Kong, it was significant but negatively associated with route 

choice due to omitted key route attributes like pedestrian crowding, hilly topography, and 

pedestrian bridges.  

Pedestrian amenities and urban design features like open spaces, greenery, and retail 

frontages also affect route choice decisions. These factors, visually perceivable while 

walking, can make a route more attractive and, therefore, more likely to be chosen (Ewing 

& Handy, 2009; Shatu et al., 2019). Borst et al. (2009) explored how environmental street 

features affect the walking route choices of elderly residents in Dutch urban districts. The 

study found that older individuals preferred streets with front gardens, dwellings, and 

shops. Similarly, Erath et al. (2015) discovered that pedestrians in Singapore were most 

drawn to routes featuring greenery and retail frontages. Although it is difficult to interpret 

the willingness to walk of each street feature due to the lack of information on the 

measurement method, Sevtsuk et al. (2021) and Basu and Sevtsuk (2022) supported these 

findings with a large dataset of walking trajectories from smartphone applications. Basu 

and Sevtsuk (2022) found that people prefer routes with more vegetation and service 

amenities. In contrast to San Francisco (Sevtsuk et al., 2021), pedestrians in Boston seem 

to favor more exposure to the sky (e.g., streets with lower building edges), indicating a 

preference for openness and less enclosure.  

In addition to the street environmental features, personal attributes and trip 

characteristics influence pedestrians’ route choices. Socio-demographic factors, such as 

age, gender, and income have been found to associate with pedestrian route choice 

decisions positively or negatively. However, the relationship between age and route choice 

decision is complex, with few studies investigating its impact on pedestrian decision-
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making. Liu et al. (2020) examined the relationships between micro-scale built 

environments and pedestrian preferences using a stated choice experiment in Tianjin, 

China. The study found that pedestrians generally preferred functional environments and 

facilities (e.g., greenery, retail shop frontage, lamp density), but the main effects of these 

features did not significantly differ across age and gender categories. Age and route choice 

associations were also non-significant in a study in South Korea (Gim & Ko, 2017). 

However, Brookfield and Tilley (2016) identified that participants aged 65 years and above 

tended to choose routes with high environmental quality, personal security, and pavement 

surface quality. 

Gender differences in route choice were observed in Wickramasinghe & 

Dissanayake’s (2015) study, which found that male pedestrians typically selected routes 

with the quickest path, fewer street crossings, and less crowding, while the availability of 

shops was crucial for female pedestrians. In contrast, Gim and Ko (2017), and Broach and 

Dill (2015) reported no significant differences in route preferences between male and 

female pedestrians. Regarding the income level, Shatu et al. (2019) discovered that higher-

income students were more likely to choose routes with an oversupply of opportunities, 

such as shopping and dining options, and less likely to overestimate route directness. 

The review demonstrates that pedestrians consider a variety of street characteristics 

when selecting routes. Consistently, wider sidewalks, the presence of retail shops, sidewalk 

amenities (e.g., trees), and sky visibility were associated with pedestrian route choice. 

These findings suggest that improved pedestrian amenities and greener environments 

encourage more walking through these areas. However, some inconsistencies in the 

impacts of some environmental features on route choice exist. A plausible explanation is 
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that most of the studies focused on different but specific areas (e.g., schools, downtown) 

and involved a limited number of participants due to the labor-intensive nature of data 

collection. 

This study aims to infer the common pedestrian route choice preferences at a city-

wide scale by encompassing a broad range of geographic locations. The research utilizes 

actual walking trajectories covering the entire city of Chicago rather than focusing on 

specific areas. Moreover, personal attributes – age, gender, and income – for each 

observation will provide further insight into the varying effects of street features on route 

choices among diverse demographic groups. Previous research employing a substantial 

number of actual GPS trajectories encountered difficulties in examining individual 

characteristics or trip purposes due to the anonymized nature of data. While there are 

studies exploring socio-demographic factors in route choice analysis, they typically 

concentrate on a particular group of people or rely on small sample sizes. 

2.2 Route Choice Models 

Assuming that a decision-maker selects the option with the highest utility within a 

choice set (Ben-Akiva & Bierlaire, 2003), the Multinomial Logit (MNL) model, one of the 

random utility theory-based models, has been extensively used in discrete choice analysis. 

In the context of route choice, an individual aims to maximize the utility of a chosen route 

k ∊ R from the set of routes R. The utility of route k is expressed as 𝑈𝑘 = 𝑉𝑘 + 휀𝑘, where 

V presents the deterministic component of utility, and ε denotes the additive random error 

term. Consequently, the probability that an individual selects alternative k ∊ R is: 
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 𝑃𝑘 = 𝑃𝑟(𝑉𝑘 + 휀𝑘 ≥ 𝑉𝑚 + 휀𝑚 ,   ∀𝑚 ∈ 𝑅, 𝑚 ≠ 𝑘) (1) 

Logit models are characterized by their random variable error terms following a 

Gumbel distribution (Ben-Akiva & Lerman, 1985). As a result: 

 
𝑃𝑘 =

𝑒  𝑉𝑘

∑  𝑒 𝑉𝑚 𝑚∈𝑅
 (2) 

For route choice, the deterministic utility of a route is presumed to be strongly 

influenced not only by the travel impedance, which includes fixed attributes such as cost 

and distance, but also by observed route attributes like the presence of trees and sky 

visibility along the route. Given that each link a ∊ k has a fixed travel cost 𝑡𝑎, and the travel 

cost for a route k ∊ R is the sum of the total cost of its links, the travel cost for route k ∊ R 

is computed as: 𝑐𝑘 = ∑ 𝑡𝑎𝑎∈𝑘 . Since 𝑐𝑘  represents the travel cost of the route, the 

deterministic utility of route k ∊ R is given by 𝑉𝑘 =  − 𝜃𝑐𝑘, where 𝜃 > 0 is the logit scaling 

parameter, and the negative sign indicates that high cost corresponds to low utility. Thus, 

if the travel impedance is the only observed component of the utility of a route, then the 

probability of an individual selecting alternative k is: 

 
Pk =

𝑒  − 𝜃𝑐𝑘

∑  𝑒  − 𝜃𝑐𝑚 𝑚∈𝑅

=
1

∑  e − 𝜃(𝑐𝑚 − 𝑐𝑘)
 m∈R

 (3) 

In pedestrian route choice analysis, this function calculates the probability of 

selecting a route based on each alternative’s utility, ultimately identifying the optimal route 

by considering not only travel impedance factors (e.g., cost, distance) but also the 

attractiveness of the specified attributes (e.g., street features). However, the MNL model’s 
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assumption that random error terms are independently and identically distributed (IID) with 

fixed variances (Sheffi, 1985) results in the Independence from Irrelevant Alternatives 

(IIA) property. The MNL model assumes route utilities to be independent, but routes with 

overlapping links share unobserved attributes, violating the assumption that random error 

terms are IID. In other words, when two routes have overlapping links, they may share 

unobserved attributes, leading to a correlation between their utilities. 

To address the IID assumption violation, various MNL model adaptations have been 

introduced to account for correlations between routes’ unobserved characteristics. These 

advanced logit models fall into three categories based on their model structures: 

Generalized Extreme Value-based logit models, Mixed Logit models, and MNL-

modification models (Prashker & Bekhor, 2004). The MNL-modification group includes 

C-Logit (Cascetta et al., 1996), Path Size Logit (Ben-Akiva & Bierlaire, 1999), and 

Generalised Path Size Logit model (Ramming, 2002), which incorporate a correction term 

to adjust route choice probabilities. Duncan et al. (2020) highlighted that these models 

feature simple closed-form expressions, which facilitate relatively simple and rapid 

calculations of route choice probabilities. Additionally, parameter estimation for these 

models is relatively uncomplicated. Therefore, to ensure efficient computation in route 

choice analysis, this study conducts a literature review of three models within the MNL-

modification group.  

2.2.1 C-Logit 

Cascetta et al. (1996) developed a model incorporating a deterministic correction 

by introducing a Commonality Factor (CF). This factor is based on the concept of 
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commonality, which quantifies the degree of similarity among alternatives in the choice 

set. Consequently, the CF value is less than one or may approach zero for overlapping 

routes, making these routes appear less attractive. The authors propose four different forms 

for the CF correction, with one of them defined as: 

 
𝐶𝐹𝑖𝑛 = 𝛽𝐶𝐹 𝑙𝑛 ∑ (

𝐿𝑖𝑗

√𝐿𝑖𝐿𝑗

)

𝛾

𝑗∈𝐶𝑛

 
(4) 

where 𝐿𝑖𝑗 is the length of common links on routes i and j, while 𝐿𝑖 and 𝐿𝑗 denote the total 

lengths of routes i and j, respectively. 𝛽𝐶𝐹 is a coefficient to be estimated, and the parameter 

 may be estimated or constrained to a convenient value. Although Cascetta et al. (1996) 

presented various formulations of the CF factor, the lack of theory or guidance on which 

form of CF should be used is a limitation of the C-Logit methods (Ramming, 2002; 

Frejinger et al., 2009). 

2.2.2 Path Size Logit 

Ben-Akiva and Bierlaire (1998) introduced the Path Size Logit (PSL) model, 

which, like the C-Logit model, incorporates correction terms to account for the correlation 

arising from overlapping alternatives. A correction for overlapping links is achieved by 

adding a factor called “Path Size” (PS), which is then applied to the deterministic part of 

the utility. Therefore, the deterministic component of the utility of route k ∊ R is 𝑉𝑘 =

 − 𝜃𝑐𝑘 + 𝑝𝑘 , where 𝑝𝑘  represents the correction term derived from the PS factor. The 

probability of an individual selecting route k ∊ R is: 
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Pk =

𝑒  − 𝜃𝑐𝑘 + 𝑝𝑘

∑  𝑒  − 𝜃𝑐𝑚 +  𝑝𝑚
 𝑚∈𝑅

 (5) 

The correction term is 𝑝𝑘 =  𝛽 𝑙𝑛(𝑃𝑆𝑘), where 𝛽 ≥ 0 is the parameter of the PS 

factor, and PS is the Path Size factor for route k ∊ R. As a result: 

Pk =
𝑒  − 𝜃𝑐𝑘  + 𝛽 𝑙𝑛(𝑃𝑆𝑘)

∑  𝑒  − 𝜃𝑐𝑚 +  𝛽 𝑙𝑛(𝑃𝑆𝑚)
 𝑚∈𝑅

=
𝑒− 𝜃𝑐𝑘  (𝑃𝑆𝑘)𝛽  

∑ 𝑒− 𝜃𝑐𝑚  (𝑃𝑆𝑚)𝛽   𝑚∈𝑅
=

1

∑  𝑒  − 𝜃(𝑐𝑚 − 𝑐𝑘) (
𝑃𝑆𝑚
𝑃𝑆𝑘

)𝛽
 𝑚∈𝑅

 

(6) 

In the context of route choice, Ben-Akiva and Ramming (1998) assumed that 

decision-makers did not perceive overlapping paths as distinct alternatives. When paths 

overlap, decision-makers perceive these routes as less distinct, causing the perceived utility 

of each route to become more similar. This phenomenon occurs because shared links 

among routes result in a high correlation between them, making it difficult for individuals 

to differentiate between the alternatives based on their attributes.  

The PS factor aims to capture the correlation between similar alternatives and adjust 

the choice probabilities accordingly. This factor can be interpreted as a measure of the 

distinctiveness or uniqueness of routes available to an individual when making a route 

choice decision. A higher PS for a route implies that it has more unique links compared to 

other routes, increasing the likelihood of being chosen. Conversely, a lower PS indicates 

greater overlap with other routes, reducing the probability of selecting that route. The value 

of PS can be greater than 0 but less than or equal to 1, and it is defined by: 
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𝑃𝑆𝑘 = ∑

𝑙𝑎

𝐿𝑘

1

∑ 𝛿𝑎𝑚𝑚∈𝐶𝑛𝑎∈𝛤𝑘

 
(7) 

where, 𝛤𝑘 is the set of links in route k ∊ R. 𝑙𝑎 and 𝐿𝑘 are the length of link a and route k, 

respectively, with the term 
𝑙𝑎

𝐿𝑘
 serving as a weight corresponding to the fraction of route 

impedance coming from a particular link. 𝛿𝑎𝑗  is the link-route incidence variable that 

equals one if link a is on route k and 0 otherwise. ∑ 𝛿𝑎𝑚𝑚∈𝐶𝑛
 is the number of routes in 

choice set 𝐶𝑛 that share link a. 

Figure 1 presents an example of three paths (i.e. routes) for the same origin and 

destination. Path 1 has no overlapping links, eliminating the need for utility adjustment and 

yielding a PS factor of one. In contrast, Path 2 and Path 3 share link b.  

Table 1 presents the results of calculating the PS for each path and the probability 

of choosing each path based on the PSL model and the MNL model, which does not 

Path 1 = link a; length = 12 

Path 2 = link b and c; leng th = 12 

Path 3 = link b and d; leng th = 16 

link b; 

length = 4 

Origin

Destination

link d; length = 12

link c; length = 8

Figure 1 – The overlapping path problem 
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account for PS. In this example, the deterministic utility of every path (i.e. 𝑑𝑘) is captured 

through the travel distance, and the parameter of PS is set to +1.  

Table 1 – Path size factor and the probability of choosing each path 

Path 
Path Size factor accounting for each link 

Path Size 

factor 

link a link b link c link d  

1 

12

12
×

1

(1 + 0 + 0)
 

= 1 
- - - 1.000 

2 - 

4

12
×

1

(0 + 1 + 1)
 

= 0.167 

8

12
×

1

(0 + 0 + 1)
 

= 0.676 
- 0.843 

3 - 

4

16
×

1

(0 + 1 + 1)
 

= 0.125 
- 

12

16
×

1

(0 + 0 + 1)
 

= 0.75 
0.875 

Path 
The Probability of Choosing Each Path Pr [k | 𝐶𝑛] 

MNL model PSL model 

1 49.5% 53.8% 

2 49.5% 45.3% 

3 1.0% 0.9% 

These results indicate that the PSL model adjusts the probabilities to account for 

the correlation between overlapping paths, making Path 1 more attractive than Path 2. Since 

Path 1 and Path 2 have the same length, the MNL model assigns equal probabilities to both 

routes. However, the PSL model increases the probability of selecting Path 1 and decreases 

the probability of selecting Path 2 due to the overlapping link (i.e. link b) between Path 2 

and Path 3.  

In the PS form, each link a in route k ∊ R is penalized based on the number of routes  
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in the choice set that also use that link (i.e. ∑ 𝛿𝑎𝑚𝑚∈𝐶𝑛
). The significance of this 

penalization is weighted according to the prominence of link a in the route (i.e. 
𝑙𝑎

𝐿𝑘
). A 

critical issue with the PSL model is that all routes contribute equally to the PS terms since 

the link-route incidence variable is either 0 or 1. This issue can pose a problem as the choice 

probabilities of realistic routes are affected by link sharing with unrealistic routes (e.g., 

paths with excessively long distances) (Duncan et al., 2020).  

For example, when the travel distance of Path 3 increases due to a length increase 

in link d (from 12 to 36), as shown in Figure 2, the choice probability of Path 3 decreases 

(Table 2). As Path 3 becomes an unrealistic alternative due to its extraordinary length, the 

choice probability of Path 2 should not be penalized for overlapping with Path 3. However, 

the PSL model’s correction terms dictate that Path 3 contributes equally to the PS of Path 

2 regardless of the degree of length increase in link d, resulting in the continuous 

penalization of the choice probability of Path 2.  

 

Figure 2 – The overlapping path problem (increase in the length of Path 3)  

Path 1 = link a; length = 12 

Path 2 = link b and c; leng th = 12 

Path 3 = link b and d; leng th = 40 

link b; 

length = 4 

Origin

Destination

link d; length = 36

link c; length = 8

~ ~
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Table 2 – The probability of choosing each Path (increase in the length of Path 3) 

Path 
The Probability of Choosing Each Path Pr [k | 𝐶𝑛] 

The length of Path 3 is 16 The length of Path 3 is 40 

1 53.8% 54.5% 

2 45.3% 45.5% 

3 0.9% 0.0% 

2.2.3 Generalised Path Size Logit 

Several attempts have been made to reduce the contributions of excessively long 

paths to the PS of more realistic routes in the choice set. Ramming (2002) introduces a 

Generalised Path Size Logit (GPSL) model, which modifies the calculation of the Path Size 

factor. The GPSL model incorporates a weighting function that adjusts the contribution of 

overlapping routes based on their relative dissimilarity, and the GPSL Path Size for route 

k ∊ R is defined as: 

 
𝑃𝑆𝑘

𝐺𝑃𝑆𝐿 = ∑
𝑙𝑎

𝐿𝑘

1

∑ (
𝐿𝑘
𝐿𝑚

)𝜙 𝛿𝑎𝑚𝑚∈𝐶𝑛𝑎∈𝛤𝑘

 

(8) 

noting that when  = 0, the equation is insensitive to length, and the GPSL model is 

equivalent to the PSL model. The contribution of route m to the PS factor of route k is 

weighted according to the ratio between the length of two routes (
𝐿𝑘

𝐿𝑚
)𝜙, thus reducing the 

contributions of long paths to the Path Size factor of short routes.   0 is the Path Size 

contribution scaling parameter to be estimated. 
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Hoogendoorn-Lanser et al. (2005) aimed to define overlap in multimodal networks 

and found that using  value of 14 yielded the best results. However, other studies 

mentioned that the GPSL model could be problematic for large  values, especially when 

overlapping routes only have marginally different distances (Ramming, 2002; Frejinger & 

Bierlaire, 2007). Moreover, the GPSL model has issues with internal inconsistency in 

assessing the feasibility of routes and scaling parameters (Duncan et al., 2020). 

After reviewing the C-Logit, Path Size Logit (PSL), and Generalised Path Size 

Logit (GPSL) models, this study has opted to use the PSL model for route choice analysis. 

Despite the noted limitation of the PSL model, where each route contributes equally to the 

PS factor regardless of its realism, it is deemed suitable for this study. This is because the 

alternative routes considered in this study have lengths similar to those chosen, suggesting 

that none of them are excessively long. In addition, the PSL model is often utilized in 

practice due to its lower computational cost and ease of obtaining parameter estimates. 

Therefore, the choice of the PSL model is expected to provide accurate route choice 

predictions while maintaining computational efficiency for this study. 
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CHAPTER 3. DATA AND METHODS 

3.1 Data 

The study used a dataset of pedestrian GPS traces in Chicago, Illinois, designed to 

complement the traditional travel diary managed by the Chicago Metropolitan Agency for 

Planning (CMAP), known as My Daily Travel Survey 2019. Data collection occurred 

between September 2018 and May 2019, with 12,391 households participating. These 

households were distributed across the nine counties that make up the CMAP survey area. 

Throughout the survey period, app users could record up to 7 days of travel. The 

smartphone app enabled the collection of detailed information about individuals’ stop 

locations. In total, 5,411 participants from 4,397 households downloaded and initialized 

the app, completing their travel reports either entirely or partially. 

During the trip collection, the app leveraged iOS and Android geolocation features 

to automatically track participants' travel. After connecting to the user's travel record and 

obtaining the last known location, the app set a 75-meter auto-start geofence to detect the 

beginning of a trip and provide a level of privacy by not recording trip origins and 

destinations with extreme precision. The app activated when the participant left the 

geofence and collected GPS and accelerometer data at 30-second intervals. Auto-stop 

geofences were established around known locations, prioritized by their proximity to the 

current location. A smaller 50-meter auto-restart geofence was set around the last recorded 

GPS point, with the app collecting 30-second data cycles based on location updates.  
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The dataset contains identifiable user attributes, trip origin type, destination type, and 

trip purpose information. The present analysis only includes walking trips related to home-

based work that occurred within the city of Chicago (Figure 3). The city features an 

extensive transportation network, including the Chicago Transit Authority (CTA) trains, 

buses, and Metra commuter rail. Moreover, Chicago was ranked the 4th most walkable city 

among 2,800 cities in the United States and Canada (Walk Score, 2021) and is located 

within Cook County (excluding the O’Hare International Airport area). 

 

Figure 3 – Study area 
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3.2 Cleaning GPS Data 

Raw GPS traces typically do not align with streets since GPS signals are often noisy 

and can result in inaccurate positioning data. To address this issue, the actual geolocated 

dot-data were map-matched to the Open Street Map Road network by the Hidden Markov 

Map-matching algorithm (Newson & Krumm, 2009), which has previously been applied 

to GPS data (Raymond et al., 2012). This algorithm identifies the most likely continuous 

route using a probabilistic approach based on Hidden Markov Models. It first calculates 

emission probabilities, representing the likelihood of each GPS point being associated with 

nearby street segments. Next, it computes transition probabilities, estimating the likelihood 

of moving from one street segment to another based on the street network connectivity. 

Using such probabilities for the entire GPS trace, the algorithm constructs a probability 

matrix and identifies the sequence of street segments with the highest overall probability, 

representing the most likely connected route. This study used the ‘Open Source Routing 

Machine’ (OSRM) map-matching service to obtain precise representations of pedestrian 

routes. OSRM is an open-source, high-performance routing engine that calculates optimal 

routes and provides routing services using OpenStreetMap data. The study employed 

OSRM as a standalone server and accessed it through its HTTP API. The resulting output 

was saved as a polyline in a shapefile using QGIS. 

Each observation in the data contains a spatial GPS trace, timestamps indicating the 

start and end of the trip, and speed. To prepare the data for this study, first, observed 

trajectories that did not appear to be walk trips or which lacked a distance recorded by the 

phone application were eliminated. Trajectories with travel speed over 4.5 mph were also 

discarded. Additionally, paths with total travel distances less than 0.3 miles or greater than 
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2.0 miles were removed, as short paths often limit path choices, and long paths may 

mistakenly suggest other modes of transportation (e.g., bus, cycling). Second, trips with 

fewer than three GPS points or large gaps between points were filtered out to create a more 

accurate walk trip dataset. Trips with significant gaps between points do not offer sufficient 

accuracy when retracing the path due to the route variability in the gaps. Third, trajectories 

that were more than 50% longer than the shortest paths were eliminated, as these paths 

likely included additional stops or motivations other than direct travel to or from work. 

These paths usually present detours or loop-shaped paths throughout the trip. Fourth, only 

one-way trips were included, excluding round trips, where the origin and destination were 

sufficiently distant. Finally, only trajectories where pedestrians walked on streets, not 

inside buildings or on paths that were not present, were incorporated. Missing walkways 

included footpaths through parks, spaces, or waterfront areas. To collect street view 

images, it was necessary to identify trajectories within the Chicago Road network where 

Google Maps can provide street view images in any direction. Following these constraints, 

560 traces out of the initial dataset of 3,981 were selected. It is important to note that 560 

trips remained across 380 individuals.   

3.3 Alternative Path Generation 

In addition to the actual observed path, reasonable alternative paths should be 

included in route choice analysis. Alternative paths allow a choice model to determine if 

and how specific street features influence route choice preferences. Pedestrians can have 

many routes to choose from, which complicates the creation of explicit route choice sets in 

a model. Furthermore, many alternatives may overlap with the actual route and each other, 

consequently violating the IIA property in choice decisions. Therefore, researchers have 
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employed various techniques to create plausible choice sets in route choice modeling. 

Although the concept of stochastic choice sets appears reasonable, Bovy (2009) discovered 

that most route choice modeling applications in research had applied a deterministic 

approach. Moreover, a relatively small number of alternatives are typically used in route 

choice analysis in practice. 

Deterministic approaches utilize a predefined set of rules that can be consistently 

applied without involving randomness when generating path sets. For example, Ben-Akiva 

et al. (1984) introduced the labeled paths approach, which creates a choice set of optimal 

paths based on various criteria (e.g., travel time, distance, and congestion), where each 

route is the optimal one for its specific criterion. This method accommodates a wide range 

of priorities in seeking routes by applying objective functions such as minimizing travel 

time. The shortest path method finds the path with the minimal length, assuming 

pedestrians walk this path without considering street factors. This study implemented the 

constrained enumeration approach, which identifies all routes between origins and 

destinations that meet specific constraints, such as maximum detour limits or no segment 

repetitions (Prato & Bekhor, 2007).  

Since Chicago’s Street layout closely approximates a perfect grid (Boeing, 2019), it 

is feasible to generate numerous streets of similar lengths but varying street features. Given 

this urban context, all potential routes up to 50% longer than the shortest path were 

identified. Using street network shapefiles containing street centerlines, I eliminated 

highways and highway ramps from the network shapefile to prevent generating alternative 

routes on non-walkable roads. The data provided by the City of Chicago was last updated 

in 2021.  
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Subsequently, three alternatives are randomly selected from the full set for each path. 

If paths overlap with the observed route or other alternative paths by more than 30%, the 

random draw is repeated to maximize the uniqueness of all paths. This iteration is based 

on the methodology proposed by Basu and Sevtsuk (2022) for generating alternative paths, 

as they found that a 25% overlap between alternatives and the actual route was an 

appropriate balance between minimizing overlap and maximizing the diversity of route 

attributes in the choice set. Consequently, the advantage of this approach lies in the random 

draw being conducted from a large set of reasonable paths, reducing the likelihood of 

overlap with the actual path and other alternatives while increasing the diversity of street 

characteristics in the set (Sevtsuk et al., 2021). The final choice set consists of 560 actual 

routes and 1,680 non-chosen alternatives.  

3.4 Collecting Route Variables 

Eight route variables derived from street characteristics are hypothesized to influence 

pedestrian path choice. As discussed in Section 2, variables such as sky visibility, 

greenness, and the number of amenities, have been identified as having a significant impact 

on pedestrian route choice in previous literature. Table 3 provides an overview of these 

variables, including their descriptions and measurement methods. Variables like greenness, 

sky view factor, and the number of amenities and establishments were measured at fixed 

intervals (e.g., 40 meters) along the route, and then averaged to obtain a route-level value. 

For example, for a total route length of 160 meters, variables are measured at three points, 

excluding the origin and destination. Other variables were calculated along the entire route. 
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Table 3 – Route variables 

Variable Description Measurement Method 

Length Route lengths in meters Geometry calculation by R script 

Turns Number of turns along the route R script 

Amenities 
Number of amenities along the 

route 
Google Place API 

Establishments 
Number of corporations along 

the route 
Google Place API 

Sidewalk 
Average area of sidewalks per 

meter 

Geometry calculation by R 

script, using city of Chicago 

records 

Greenness 

Average % of green in Google 

Street View images along the 

route 

% of green pixels measured by 

computer vision analysis 

Sky View Factor 

Average % of sky visibility in 

Google Street View images 

along the route 

% of sky view pixels measured 

by computer vision analysis 

Park 
Average area of accessible parks 

per meter 

Geometry calculation by R 

script, using city of Chicago 

records 

Path Size Factor 
Overlap indicator for alternative 

paths for the same trip 
Python script 
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3.4.1  Length and Turns 

Trip length is the most studied characteristic in route choice analysis since 

pedestrians generally prefer shorter routes. Additionally, the length variable is used to 

apply the ‘equivalent walking distance’ concept to other route variables, providing a 

consistent way of interpreting the estimated parameters of other variables in comparable 

length units (Sevtsuk et al., 2021). The ratio of coefficients of the length variable and 

another route variable can illustrate trade-offs, such as the balance between length and the 

number of turns, demonstrating how much additional length a pedestrian generally 

considers walking to avoid each extra turn. The route length, measured in meters (m), is 

calculated using the ‘sf’ package from R.  

Turns are hypothesized to negatively impact the likelihood of choosing a route. More 

turns lead to cognitive complexity and frustration while walking, as pedestrians should be 

aware of their routes to avoid getting lost or making mistakes, such as missing a turn or 

taking a wrong one. Moreover, turns often involve crossing multiple streets, raising safety 

concerns and increasing waiting time. In this study, a turn is defined as a change in the 

direction of more than 45 degrees but less than 120 degrees along the route. 

3.4.2 Pedestrian Amenities and Urban Design Features 

Greenness and sky view factor represent the extent of visible green space and sky 

view along the walking route, respectively. A semantic segmentation tool was used to 

classify each pixel in an image into a specific category (e.g., sidewalk, sky, tree). Using 

the Street View Static API from Google Maps, Google Street View images were collected 

at 40-meter intervals along the route, with the heading value (e.g., 0 and 180 indicating 
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North and South) set as the road direction, considering that most people look ahead while 

walking. Although there is no strict distance interval for measuring representative street-

level greenery or sky visibility, this approach was considered appropriate. To quantify the 

two variables, the calculation involved determining the percentage of pixels associated 

with each variable against the total pixels of the image (640 × 640). For example, the 

resulting greenness value represents the percentage of pixels in the Street View images 

classified as 'tree,' 'grass,' and 'plant.' Among various semantic segmentation models, the 

Deeplabv3+ model (Chen et al., 2018) and the PSPNet algorithm (Zhao et al., 2017) were 

initially used, as they are widely employed in studies evaluating walking environments 

using street view images. However, after empirically reviewing their performance, the 

PSPNet algorithm was chosen over the Deeplabv3+. Figure 4 illustrates the processing of 

original Street View Images to “greenness” and “sky view” categories using the PSPNet 

algorithm. 

Figure 4 – The semantic segmentation of a Google Street View image, with (a) 

the original image and (b) the segmentation results blended onto the image 

Sky View Factor

Greenness

Location(lat/lng value): 41.95171, -87.6 6414

Heading: 179.67



 27 

The number of amenities and establishments was quantified using the Places API 

from Google Maps. These places within a buffered area along the route (radius = 40m) 

were captured via the API search. Amenities refer to places that provide convenience or 

enjoyment to pedestrians, such as recreational facilities (e.g., gyms, amusement parks), 

services (e.g., laundry, post office), and dining facilities (e.g., café, restaurant). These 

amenities are not counted as establishments, which count the number of places where a 

company conducts its business operations or administrative tasks. The amenities and 

establishments variables are non-overlapping, as the former focuses on commercial spaces 

for pedestrian interaction, while the latter is more concerned with business operations. 

Correlations among amenities and establishments will be discussed in Section 4.2. The 

park index represents park accessibility and is determined by dividing the total area of 

parks located within a 40-meter buffer of the route by the length of the route. 

3.4.3 Sidewalk 

A sidewalk can be defined as an independent, safe walking environment, separated 

from road traffic. While most studies found that pedestrians are likely to choose routes with 

wide, continuous sidewalks adjacent to the street, the associations of such variables are not 

consistent in some studies (Basu et al., 2021). Additionally, a few observations in this study 

revealed that pedestrians walked on trails in parks or along the rivers, which are not 

captured in the Chicago sidewalk records. Consequently, this study aims to capture the 

impact of sidewalk quantity on route choice by measuring sidewalk scale in two different 

ways. 
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First, the sidewalk variable is quantified using a semantic segmentation tool, similar 

to the methods employed for quantifying Greenness and Sky View Factor variables. This 

approach not only detects sidewalks along roads but also identifies other types of walking 

environments not captured in the GIS shapefile provided by the City of Chicago. For 

example, Figure 5 illustrates a pedestrian path identified and measured as the 'sidewalk’ 

SidewalkLocation(lat/lng value): 41.87344, -87.6 5085 

Heading: 87.99

Figure 5 – Street view image captured inside the campus of UIC, with (a) the 

original image and (b) the segmentation results blended onto the image 

Figure 6 – The location of point where the 

image is captured 
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variable through semantic segmentation. However, in Figure 6, the GIS data indicates that 

no sidewalk exists at this location within the University of Illinois, Chicago (UIC) campus. 

While this method of measuring the sidewalk variable offers higher accuracy in 

detecting sidewalks, it has two critical limitations that affect consistent scale measurement 

across all images. First, the sidewalk scale may be distorted due to the law of perspective. 

In the context of street view images, the road width and the lane in which the vehicle is 

traveling can influence the perceived scale of sidewalks. As the distance between the 

camera (mounted on the moving vehicle) and the sidewalk increases, the sidewalk appears 

smaller in the image. Consequently, a wider road can cause the sidewalks on both sides to 

seem narrower than they actually are. 

Additionally, the vehicle’s position on the road can significantly impact the 

perspective and representation of sidewalks in the images. When the vehicle captures 

images near the centerline of the street, the camera is positioned at an equal distance from 

both sides of the road. This position allows for a more symmetrical view of the sidewalks. 

However, when the vehicle captures images while running closer to the edge of the road, 

the perspective distortion may be more pronounced, especially for the sidewalk on the 

opposite side of the road. In this case, the sidewalk closer to the vehicle will appear larger 

in the image, while the sidewalk on the opposite side will appear smaller due to the 

increased distance. Figure 7 represents the case when the sidewalk seems smaller when 

there are more lanes on the road. The road in the left image has about seven lanes, while 

the right has two lanes. Although sidewalks from both images have similar widths, there is 

a significant difference in detection (e.g., the value of the sidewalk variable in the left image 

is 0.011, while for the right image it is 0.091).  
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Figure 7– The sidewalk variable captured on (a) a road with seven lanes and (b) a 

road with two lanes 

Second, capturing images on the road has the possibility of obstructions from parked 

cars, trees, or other stationary obstacles, which could further limit the visibility of 

sidewalks in the images. Such obstacles in the images may lead to incomplete or inaccurate 

sidewalk measurements depending on the location and environment. For example, 

downtown areas typically have higher concentrations of stationary obstacles; conversely, 

suburban areas tend to have fewer obstacles, resulting in clearer views of sidewalks in 

street view images. 

Instead of using a semantic segmentation tool, this study applied the second 

approach, which represents the average sidewalk area per meter of the route within a 20-

meter buffer when calculating the sidewalk variable. This method involves dividing the 

sidewalk area, recorded by the city of Chicago, within the buffered area of a route (radius 

= 20m) by the total length of a trip. 

Sidewalk
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3.5 Path Size Logit Model 

As discussed in Chapter 2, the probability Pr(𝑘 | 𝐶𝑛) that user n choosing a route k 

from the choice set C is: 

 
Pr(𝑘 | 𝐶𝑛)  =

𝑒 𝜇(𝑉𝑘)

∑ 𝑒 𝜇(𝑉𝑚)
 𝑚∈𝐶𝑛

 
(8) 

where 𝐶𝑛 represents the choice set, including the actual chosen route, for user n. The term 

𝜇 is the logit scale term, while 𝑉𝑘 denotes the deterministic utility function of route k, and it is 

expressed as: 

 
Vk = ∑ 𝛽𝑘𝑖𝑋𝑘𝑖 + 𝛽𝑃𝑆  𝑙𝑛(𝑃𝑆𝑘)

8

𝑖=1

 
(9) 

where 𝛽𝑘𝑖  represents a vector of preference coefficients for the eight types of route attributes 

𝑋𝑘𝑖. By assuming that the marginal utility of each attribute is identical for all alternatives and 

does not vary with k, i.e. that 𝛽𝑘𝑖  = 𝛽𝑖, these route variables are considered to be generic 

variables. Although they generally take different values across alternatives, they possess 

the same coefficient.  

𝑃𝑆𝑘 represents the Path Size factor for route k, which accounts for the correlation 

resulting from overlapping alternative routes. Routes with overlapping links become less 

attractive options due to the decreased distinctiveness and increased similarity with other 

routes. Therefore, a higher PS value results in negative utility, as the natural logarithm 
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function (i.e. ln(x)) converges to negative infinity when the x variable gets closer to zero. 

The method for calculating the PS factor can be found in equation (7). 

Some reviews have pointed out a limitation of the PSL model: each route contributes 

equally to the PS factor, suggesting that every route has the same impact on the PS 

calculation within the travel-impedance variable (with a binary value), regardless of how 

realistic that route might be. This issue causes the choice probabilities of realistic routes to 

be negatively affected by link sharing with unrealistic routes, ultimately leading to 

inaccurate route choice predictions. Nonetheless, the PSL model was employed in this 

study because the alternative routes have a length similar to the chosen route, indicating 

that no routes have excessively long distances. Furthermore, this model is commonly 

applied in practice due to its relatively low computational cost and the ease in obtaining 

parameter estimates. 
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CHAPTER 4. RESULTS 

This section describes the pedestrian route choice model, which is estimated from 

GPS data collected in the city of Chicago. The estimated parameters are used to examine 

the concept of “equivalent walking distance” to compare the impact of route variables on 

pedestrian route choices among different demographic groups. 

4.1 Walk Trip Data 

After applying the constraints discussed in Section 3.2, the analysis included 560 tips 

made by 380 individuals. These trips are recorded across the city of Chicago, as shown in 

Figure 8, with user demographics presented in Table 4.  

 

Figure 8 – Observed routes 
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Table 4 – Demographic characteristics of user sample 

 N % 

Gender 380 100% 

Male 192 51% 

Female 188 49% 

Age 380 100% 

14 – 18 4 1% 

19 – 25 69 18% 

26 – 35 165 43% 

36 – 45 68 18% 

46 – 55 44 12% 

56 – 65 20 5% 

66 + 10 3% 

Household Income *379 100% 

Less than $24,999 36 9% 

$25,000 - $49,999  52 14% 

$50,000 - $74,999 78 21% 

$75,000 - $99,999 46 12% 

$100,000 - $149,999 96 25% 

$150,000 or more 71 19% 

Race **378 100% 

White 299 79% 

Others 79 21% 

*    Prefer not to answer (n=1) 

**. Prefer not to answer (n=2) 

 

  

The dataset was derived from survey respondent attributes collected in the ‘My Daily 

Travel Survey 2019,” conducted by CMAP. According to 2019 data, there were 2,409,786 

individuals aged 10 or older living in the city of Chicago, Illinois (U.S. Census Bureau, 

2019). Among them, 1,369,933 were employed and aged over 16 (U.S. Census Bureau, 

2019). According to the My Daily Travel Survey 2019 result, 5.18 percent of work trips in 
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Cook County, Illinois (where Chicago is located) were made by walking mode, which 

suggests that 70,962 Chicago residents may walk to work. For the sample in this study, 380 

individuals reported walking as their primary mode during the survey as they exclusively 

use walking as their mode of transportation. Therefore, as shown in Figure 9, the sample 

size for this study is 380, representing 0.5% of Chicago’s walking commuters. Therefore, 

this convenience sample is used for exploratory analysis of walking trips related to home-

based work trips. Thus, there is no question of extrapolating the results to the entire 

Chicago population (nor even to the population of commuters), but the analysis can still 

provide insight into the walk route attributes considered important in a commuting context. 

 

Figure 9 – Sample representation 

Notably, some individuals in the study sample recorded multiple trips, while 69% of 

the total individuals conducted only one walk trip associated with their commute. Table 5 

represents the distribution of recorded trips per respondent, ranging from 1 to 8. The 

Chicago, Illinois

Total Population (age over 10 years old):

2,409,786

People whose Mode to Work is Walk:

70,962

Sample Size in this Study:

360

Employed Workers:

1,369,933
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problem is that the presence of multiple observations from the same individual means that 

common unobserved characteristics will likely be shared among those observations, 

violating the assumption of independence between observations, which produces 

inconsistent parameter estimates. This is because the observations cluster into groups, with 

potentially a high degree of dependence within each group. For example, consider a 

situation where the 380 individuals in the sample are perfectly representative of the 

population, and each contributes two observations to the sample. Without accounting for 

the intra-person correlation of error terms, the estimation would incorrectly assume there 

are 760 (380 x 2) independent observations. In reality, however, these observations cluster 

into 380 independent groups, each containing two observations from the same individual. 

This affects the calculation of the standard errors of the parameter estimates and can 

potentially lead to biased conclusions. It is important to account for this clustering of 

observations within individuals in order to ensure valid results. 

Table 5 – Distribution of recorded walk trips per respondent (N=380) 

The number of trips per 

participant 

The number of 

participants 

1 263 

2 76 

3 28 

4 9 

5 2 

6 0 

7 1 

8 1 
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To address this issue, this study uses cluster robust standard errors. This approach is 

designed to account for the correlated unobserved variables between observations within 

the same cluster, which is the same individuals in this case, while maintaining the 

independence assumption between different clusters. By using these errors, more accurate 

estimates of the standard errors of the coefficient estimators are obtained, resulting in more 

reliable hypothesis tests and confidence intervals for those estimators. 

4.2 Route Variables 

Table 6 describes the mean value and descriptions of the route variables for the actual 

chosen route and three alternatives used in the model. The alternatives for each observation 

are classified by the value of PS, from low to high. 

The actual chosen trips had an average length of 1,190 meters, which is slightly 

shorter compared to other alternatives. Similarly, the average values for the number of 

turns and greenness in the actual chosen trips are lower than those of the alternatives. On 

the other hand, the sky view factor and the park variable values are higher for the chosen 

routes. The average number of amenities and establishments, and the average sidewalk area 

are comparable between the chosen trips and alternatives.  

Out of all routes (N=2,240), 217 outliers are detected based on the Mahalanobis 

distance when considering the eight types of route variables. While there are multiple 

outliers for each route variable when using the interquartile range (IQR) method, this study 

chose not to exclude them, as each observation has unique and valuable information despite 

its outstanding value.  
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Table 6 – Mean attribute values for the chosen route and alternative routes 

Variable Description 
Mean 

Chosen Alt. 1 Alt. 2 Alt. 3 

Length Route length in meters 1190.3 1215.3 1208.8 1211.0 

Turns Number of turns along the route 2.8 4.0 4.0 3.9 

Amenities 
Number of amenities along the 

route 
45.3 43.8 45.1 42.5 

Establishments 
Number of corporations along the 

route 
41.1 41.4 42.6 41.4 

Sidewalk 
Average area of sidewalks per 

route-meter 
3.1 2.9 3.2 3.1 

Greenness 

Average % of vegetation in 

Google Street View images along 

the route 

15.1 15.7 15.4 15.7 

Sky View 

Factor 

Average % of sky visibility in 

Google Street View images along 

the route 

24.6 24.0 24.0 23.8 

Park 
Average area of accessible parks 

per route-meter 
5.4 5.1 5.3 5.2 

Path Size 
Overlap indicator for alternative 

paths for the same trip 
0.9449 0.9042 0.9045 0.9082 

Figure 8 shows the correlations among route variables for all routes. The average 

sidewalk area is seen to have a strong positive correlation (0.84) with the park variable. 

This correlation may be because both variables are likely influenced by the urban design 

in the area, such as well-planned neighborhoods featuring extensive sidewalks and well-

distributed parks. The number of amenities and establishments showed a strong positive 
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correlation (0.81), as expected, because both variables tend to be clustered in commercial 

or mixed-land use areas. Negative correlations are observed between the greenness/sky 

view factor and the number of points of interests (i.e. establishments and amenities). This 

correlation can be attributed to the characteristics of urban environments; densely built-up 

areas with more points of interests often have taller buildings and less open space, resulting 

in lower sky visibility and greenness. Despite the presence of multicollinearity among the 

route variables, this study included all of them in the route choice model, as they have 

significantly different impacts on pedestrian route choice preferences. 

 

Figure 10 – Route variable correlation matrix 
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4.3 Model Results 

The results of four different models presented in Table 7 include coefficient 

estimates, statistical significance at various confidence levels, and t-statistics based on the 

cluster robust standard errors, which account for repeated choices made by the same 

individual. The model without considering the cluster robust standard errors can be found 

in Appendix A. Additionally, log-likelihood ratio tests and adjusted rho-squared were 

calculated to compare different models against one another to identify the best model for 

evaluating the impact of route variables on route choices.  

First, Model one (M1) considers route length as the only explanatory variable using 

a MNL specification, as the distance is a critical factor in route choice decisions. The 

negative coefficient for route length in M1 indicates that pedestrians tend to choose shorter 

routes. Model two (M2) also includes length as the explanatory variable but employs a PSL 

specification. As the PSL model addresses the overlap issue by incorporating a path size 

factor, it significantly improves in goodness-of-fit. This improvement can be observed 

when comparing the adjusted rho-squared values between the two models, with M2 

showing a higher value of 0.173 compared to M1’s value of 0.005. Although there is 

relatively little overlap among alternatives on average, this result confirms that the PSL 

model, which accounts for correlations arising from overlapping alternatives, better 

explains route choice behavior compared to the MNL model.  

Model three (M3) is a PSL model that includes all eight route variables described in 

Table 7. Most variables are significant at the 10% confidence level, but the 'length' and   

'amenities' variables remain insignificant. Despite M3 having the highest goodness-of-fit 
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Table 7– Parameter estimates for different specifications of MNL and PSL models 
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(with an adjusted rho-squared of 0.235) and lower log-likelihood, it is challenging to select 

this model as the final model due to the statistical insignificance of the 'length' variable. To 

evaluate the impact of route variables on pedestrian route choice using the 'equivalent 

walking distance' measurement, the 'length' variable is essential, as it helps interpret trade-

offs with other route variables and determine how much additional distance an average 

pedestrian would consider walking to avoid unit increases in corresponding route features. 

Consequently, we excluded the 'turns' variable, which significantly reduces the 

significance of the 'length' variable. We then compared the log-likelihood between the 

model without 'turns' and 'amenities' variables and the model excluding only the 'turns' 

variable (the result of the model without 'turns' and 'amenities' variables can be found in 

Appendix B). As the latter model exhibits a lower Akaike Information Criterion (AIC) and 

higher goodness-of-fit, this model (i.e. model four (M4)) is chosen as the final model to 

interpret the impact of each route variable. The exclusion of the ‘turns’ variable, which 

results in an adjusted rho-squared drop from 0.235 to 0.184, may not seem ideal. However, 

M4 is chosen to maintain the significance of the ‘length’ variable, allowing for the 

evaluation of equivalent walking distance and comparison of the impact of route variables 

across different groups of people. M4 also demonstrates a relatively high goodness-of-fit 

(with an adjusted rho-squared of 0.184) compared to the model that includes only the 

'length' variable, and aligns with typical model expectations. In the context of choice 

models, McFadden (1980) considered adjusted rho-squared values between 0.2 and 0.4 to 

be exceptional.  

Most statistically significant variables in M4 exhibit expected signs. As anticipated, 

the route length negatively affects choice, with pedestrians preferring shorter routes. The 
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positive ‘greenness’ coefficient suggests people prefer routes with more visible greenery, 

which provides benefits such as aesthetic appeal, shade, and reduced noise and air 

pollution. Similarly, the positive ‘park’ variable sign indicates that pedestrians prefer 

walking routes with more accessible park areas, which offer relaxation, socializing, and 

aesthetic improvement opportunities. Moreover, some routes in this study were observed 

to cross parks along the Chicago River or Lake Michigan instead of streets. The positive 

‘amenities’ coefficient reveals that more amenities along a route increase its attractiveness 

to pedestrians, with routes offering more recreational facilities, services, and dining options 

more likely to be chosen. Lastly, the correction term derived from the PS factor (i.e. ln(PS)) 

also exhibits a positive and significant effect.  

Although some studies suggested that people prefer routes more enclosed by built 

edges and trees rather than exposed to the sky, the sky view factor variable has a strong 

positive coefficient in this study. One possible reason may be that in the downtown area, 

none of the chosen routes pass by streets with overhead subway tracks, while some 

alternative paths do. Elevated railways can completely block sky visibility, making people 

less likely to prefer walking there. It suggests that pedestrians prefer routes with more sky 

visibility over those completely out of sight, as they can provide a more open and spacious 

feeling. Also, the coefficient sign for the 'establishments' variable is negative, while it was 

expected to be the same as the sign of the 'amenities' variable since pedestrians might find 

routes with more establishments attractive due to increased opportunities for shopping or 

socializing. However, this study suggests that pedestrians prefer routes with fewer 

corporations or businesses, possibly because such routes might be quieter, less congested, 

or less polluted. Similar to the sky view factor, tall buildings are more likely to block sky 
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visibility, as most corporations are located in tall buildings in downtown Chicago.  

Moreover, this study raises the possibility that the negative sign for the 'establishments' 

variable could be attributed to multicollinearity, given the high correlation (0.81) between 

the 'amenities' and 'establishments' variables.  

By calculating the ratio of coefficients for the model parameters, the trade-offs 

between variables can be determined. Previous literature has utilized trade-offs to 

understand pedestrian preferences and behaviors, though they may be referred to using 

different terms. In this study, route length is used as the reference variable so that the effects 

of other route variables can be expressed through 'equivalent walking distance.' The 

concept of equivalent walking distance was used in Basu and Sevtsuk’s (2022) study on 

pedestrian route choice analysis to quantify the perceived effort or disutility associated with 

various route characteristics, enabling a consistent and comparable interpretation of model 

results. For instance, the coefficients in Table 7 suggest that the trade-off between one unit 

of establishment, 𝛽𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 , and walking distance in meters, 𝛽𝑙𝑒𝑛𝑔𝑡ℎ , is: 

𝛽𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡

𝛽𝑙𝑒𝑛𝑔𝑡ℎ 
=

− 0.01641044

− 0.00173766
 ≈ 9.4 

This ratio indicates that the effort of passing one extra establishment is perceived as 

equivalent to 9.4 meters of walking. Conversely, the distance can be perceived as shorter 

in the case of the trade-off between amenities and walking distance, computed as: 

𝛽𝑎𝑚𝑒𝑛𝑖𝑡𝑖𝑒𝑠

𝛽𝑙𝑒𝑛𝑔𝑡ℎ 
=

+ 0.00922258

− 0.00173766
 ≈ − 5.3 
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This implies that pedestrians are willing to extend their walk by 5.3 meters to pass 

by one additional amenity. In other words, a route that passes 10 amenities provides the 

same utility as a route with no amenities that is 53 meters shorter, keeping all other route 

attributes constant. 

The equivalent walking distance for the five route attributes – Greenness, Sky View 

Factor, Park, Amenities, and Establishment – that are statistically significant in the final 

model is presented in Table 8. In addition to the variables already discussed, it is found that 

sky visibility has a considerable impact on the overall utility of a route. A 10-percentage 

point increase in sky visibility along the route is associated with an increase in route utility 

equivalent to reducing the actual walking distance by 556.1 meters, on average. While this 

might seem quite large, accounting for about 50% of the average route length of the sample, 

one possible explanation for this finding is that pedestrians may perceive routes with higher 

sky visibility as more open and spacious, providing a more enjoyable and comfortable 

walking experience. In the context of the study area, unique factors such as the presence of 

elevated railways or tall buildings in downtown Chicago might significantly affect 

pedestrians' perception of sky visibility and their route choices. Moreover, routes that cross 

parks along the lake or river tend to have higher sky visibility, which could make people 

prefer to walk these routes for the pleasant scenery and natural surroundings. Similar to 

sky visibility, a 10-percentage point increase in greenery along the route increases the route 

utility, equivalent to a reduction in actual walking distance of 298 meters. Furthermore, a 

route with a one m2 increase per meter of route length, in the size of a park located within 

the buffered area per meter, is, on average, increases the route utility, equivalent to a 

reduction in actual walking distance of 57.7 meters.  
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Table 8 – Equivalent walking distance 

Variable Length equivalent interpretation in meters 

Greenness 

An average increase in Greenness by 10-percentage 

points along the route is associated with a utility 

increase equivalent to a reduction of: 

298.0 

Sky View Factor 

An average increase in SVF by 10-percentage points 

along the route is associated with a utility increase 

equivalent to a reduction of: 

556.1 

Park 

One m2of increase per meter of route length in park 

size along the route is associated with a utility 

increase equivalent to a reduction of: 

57.7 

Amenities 
Passing one extra amenity is associated with a utility 

increase equivalent to a reduction of: 
5.3 

Establishment 
Passing one extra establishment is associated with a 

utility decrease equivalent to an increase of: 
9.4 

As the equivalent walking distance is based on a utility function calibrated on actual 

pedestrians’ route choices, it can be applied to the preference of specific groups of people 

based on the different utility functions for each group (Basu & Sevtsuk, 2022). Thus, this 

study applies this concept to the final model, which includes the length variable, five other 

route variables (i.e. greenness, sky view factor, park, amenities, and establishments), and 

the PS factor across different demographic groups. 

4.3.1 Gender 

Table 9 presents the results of a route choice analysis by gender, revealing 

differences in preferences for various route variables between males and females. The route 

length has negatively impacted route choice for both males and females. While most varia- 
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Table 9 – Parameter estimates for gender group 

 

 

 

 

 

 

 

 

 

 

bles show distinct differences in strength and significance, only the ‘sky view factor’ 

variable is significant for both groups. Consequently, it is possible to compare this impact 

using the equivalent walking distance concept. Keeping all other route variables constant, 

males more strongly prefer to walk a route with more sky visibility compared to females, 

because a 10-percentage point increase in sky visibility is associated with a utility increase 

equivalent to a reduction of 787.7 meters in walking distance for males, while only 375.3 

meters for women. One of the potential reasons for the gender difference in valuing the sky 

visibility might be that females could be more sensitive to temperature changes or weather 

Variable 
Male Female 

Beta t-stat  Beta t-stat 

Length - 0.001 ~ - 1.7  - 0.002 ** -2.6 

Greenness 6.667 * 2.2  3.881  1.2 

Sky View Factor 11.668 ** 2.9  7.770 ~ 1.9 

Sidewalk - 0.079  -1.5  - 0.091  -0.8 

Park 0.154 * 2.1  0.092  0.9 

Amenities 0.008  1.2  0.015 ~ 2.0 

Establishment -0.021 ** -2.6  - 0.011  -1.3 

ln(Path Size) 14.748 *** 9.3  18.147 *** 10.6 

Final log-likelihood - 335.20  -286.04 

AIC 686.41  588.08 

Adj. rho-squared 0.155  0.206 

Num. obs. 293  267 

Significance level: ~p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 

In the calculation of Adj. rho-squared, the benchmark is the equally-likely model 
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conditions, such as sunlight exposure. Another possible reason could be related to a sense 

of safety, as females might feel more secure with greater enclosure provided by 

surrounding buildings. As a result, although sky visibility is still a desirable attribute for 

women as well, they may have a weaker preference for it in view of these drawbacks. 

4.3.2 Age 

The results of two different models based on the sample of people aged 30 years old 

or younger and people who are over 30 years old are presented in Table 10. Similar to the 

gender group, only the ‘length’ and ‘sky view factor’ variables have a significant impact 

on route choice. As the sign of these coefficients is opposite, the sky view factor helps 

people reduce the perceived length of the walk. On average, individuals aged over 30 years 

old place a greater value on routes having more sky visibility than do those aged 30 years 

old or younger, with the equivalent walking distance for the former group being 869.1 

meters, while the latter group shows 287.2 meters). This difference could be attributed to 

older individuals prioritizing safety and preferring routes with higher sky visibility due to 

increased visibility and a higher likelihood of open spaces. Additionally, age groups may 

have different aesthetic preferences for walking environments, with older individuals 

potentially appreciating more strongly open spaces with greater sky visibility than younger 

individuals do. 
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Table 10 – Parameter estimates for age group 

Variable 
30 years old and younger 31 years and older 

Beta t-stat  Beta t-stat 

Length - 0.003 *** - 3.4  - 0.001 ~ -1.7 

Greenness 2.185  0.6  7.040 * 2.5 

Sky View Factor 7.892 * 2.0  10.743 ** 2.7 

Sidewalk - 0.045  -0.5  - 0.105 ~ -1.8 

Park 0.101  1.1  0.110 ~ 1.9 

Amenities 0.002  0.3  0.015 * 2.2 

Establishment -0.012  -1.2  - 0.021 ** -3.0 

ln(Path Size) 14.655 *** 8.3  17.786 *** 11.0 

Final log-likelihood - 259.74  - 360.99 

AIC 535.48  737.97 

Adj. rho-squared 0.153  0.198 

Num. obs. 228  332 

Significance level: ~p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 

In the calculation of Adj. rho-squared, the benchmark is the equally-likely model 

4.3.3 Income 

Table 11 presents the results of a route choice analysis across different income 

groups. As anticipated, route length has a negative impact on route choice decisions for all 

income groups. However, there are no common variables that are statistically significant 

across all groups, making it challenging to compare the impact of each route variable 

among different income levels. 
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Table 11– Parameter estimates for income group 

Variable 
~ $49,999  $50,000 ~ $99,999 $100,000 ~ 

Beta t-stat  Beta t-stat  Beta t-stat 

Length - 0.003 * - 2.3  - 0.002 ** - 2.9  - 0.001  - 1.2 

Greenness 2.461  0.5  5.222  1.4  6.124 ~ 1.9 

Sky View 

Factor 
10.988 ~ 1.7  12.683 ** 2.9  6.523  1.4 

Sidewalk - 0.073  - 0.2  - 0.081  - 1.1  - 0.080  - 0.9 

Park 0.178  0.6  0.078  1.1  0.154 * 2.1 

Amenities 0.005  0.4  0.010  1.2  0.010  1.4 

Establishment - 0.014  - 0.7  - 0.006  - 0.7  - 0.026 ** - 3.1 

ln(Path Size) 15.992 *** 8.2  15.253 *** 8.3  17.734 *** 8.7 

Final log-

likelihood 
- 147.52  - 191.67  - 277.14 

AIC 311.04  399.33  570.27 

Adj. rho-

squared 
0.163  0.172  0.181 

Num. obs. 134  174  251 

Significance level: ~p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001 

In the calculation of Adj. rho-squared, the benchmark is the equally-likely model 
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CHAPTER 5. CONCLUSION 

This study aimed to enhance the understanding of pedestrian route choice behavior 

by exploring the impact of various street features on route preferences. Utilizing a dataset 

of GPS walking trajectories in Chicago, Illinois, and incorporating personal attributes, the 

study focused on how street features affect pedestrian route choice behavior across 

different demographic groups, such as gender and income level. The findings contribute to 

the existing body of literature on pedestrian route choice behavior by providing valuable 

insights for urban planners and policymakers in designing and implementing sustainable 

pedestrian environments that cater to the needs of specific populations.  

The route choice model in this study tested eight different street features, with six 

variables – route length, greenness, the numbers of amenities and establishments, sky 

visibility, and park accessibility – demonstrating a significant relationship with pedestrian 

route choice in the final model. The model revealed that pedestrians generally prefer 

shorter routes with more greenery, greater sky visibility, increased park accessibility and 

more amenities. Conversely, a greater number of establishments along the route negatively 

impacted route choice decisions. The study also utilized the concept of equivalent walking 

distance to quantify the incremental disutility associated with various street features. For 

example, on average, a pedestrian is willing to walk an additional 5.3 meters to pass by one 

more amenity. 

The analysis further investigated differences in route choice preferences across 

demographic groups, hypothesizing that gender, age, and income play a role in shaping 

pedestrian preferences. The results indicated that males valued sky visibility more than 
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females did. Individuals aged over 30 years old also tended to value sky visibility more 

highly than younger pedestrians did. However, no common variables were found to be 

statistically significant across all income groups, making it difficult to compare the impact 

of route variables among different income levels. 

Despite the study’s findings, some limitations should be acknowledged. First, the 

GPS data may not always be accurate, as signal loss or interference in urban environments 

can result in positional inaccuracies. If an individual is surrounded by tall buildings or 

inside a building, the obstructed sky view may lead to the inaccurate recording of the actual 

routes taken. During the process of cleaning GPS data in this study, several paths had 

significant gaps in distance between GPS points or points are located on the river in 

downtown Chicago. Second, the study did not include enough street characteristics to 

explore pedestrian route choice behavior thoroughly.  The route variables tested in this 

study are focused on stationary objects or places along the street. While people walk along 

the street, they may interact with moving vehicles or other pedestrians. These moving 

objects can also impact walking behavior, regardless of pedestrians’ walking speed. For 

example, the likelihood of choosing a walking route was reported to increase with a 

decrease in vehicle traffic volume (Sevtsuk et al.,2021). Furthermore, some studies found 

that higher pedestrian density along a route leads to a lower likelihood of that route being 

chosen (Bafatakis et al., 2015; Gim & Ko,2017). Third, future research should include 

walking trajectories related to non-commuting trips and those occurring in CMAP survey 

areas, not just the city of Chicago, in order to analyze using larger samples and to better 

reflect general pedestrian route choice behavior. Lastly, another limitation of this study is 

the sensitivity of the equivalent walking distance values to the coefficient of route length. 
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The estimates of equivalent walking distance are heavily dependent on the magnitude of 

the length coefficient, which, in turn, is influenced by the model specification, particularly 

the inclusion or exclusion of variables such as the "turns" variable, as discussed in Section 

4.3. The choice of the model specification can materially influence the coefficient estimate, 

potentially affecting the interpretation of trade-offs between route variables and the 

additional distance an average pedestrian would consider walking to avoid unit increases 

in corresponding route features. To address this limitation, future research could conduct 

sensitivity analyses on the equivalent walking distance values across diverse model 

specifications, assessing the robustness of the findings and providing further insights into 

how different model configurations might impact the results. 
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APPENDIX A. PARAMETER ESTIMATES FOR MODELS 

WITHOUT CLUSTER ROBUST STANDARD ERRORS 

 This appendix illustrates the four different models which do not account for the 

cluster robust standard errors. The estimated coefficient of each variable and the 

performance metrics of each model remains the same as in the Table 7. 
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APPENDIX B. PARAMETER ESTIMATES FOR MODLE WITH SIX 

ROUTE FEATURES (EXCLUDES ‘TURNS’ AND ‘AMENITIES’ 

VARIABLES)  

 This appendix presents the results of a model that incorporates six route features as 

explanatory variables. The purpose of this model is to compare it with another model (i.e. 

M4) that only excludes the 'turns' variable. The comparison reveals that the model with six 

route features has a slightly lower adjusted rho-squared and higher AIC. 
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