
Analyzing and Visualizing Log Files:
A Computational Science of Usability1

Mark Guzdial, Paulo Santos, Albert Badre, Scott Hudson, Mark Gray
GVU Center

College of Computing
Georgia Institute of Technology

Introduction

Researchers in human-computer interactions know that software can easily be instrumented to
create a trace of user events2 in the interface (which we call a log file) for later analysis. Using
these data for studying usability or other HCI questions is certainly attractive.

• The data are cheap – data gathering is totally automated.
• The data are gathered discretely, so the possibility of a Hawthorne effect is diminished.
• Data can be collected outside of the laboratory, while the user is engaged in real tasks, so

the results have greater ecological validity.
The problem has always been what to do with the volume of data that gets generated. With so
much data, it's difficult to determine what's useful and how to display the useful portion in a
meaningful way.

HCI is not the first discipline to be faced with analyzing mountains of data. Meteorologists
gathering a nation or world of weather data, or chemists simulating interactions at the molecular
level must also make sense of large volumes of data. The answer in these fields has been to
harness computational power to create a new kind of science: computational science [8, 31].
Upson et al. [36] provide a diagram of what activities constitute simulation-based computational
science, a modified form of which appears as Figure 1.

• Computer modeling. Based on research, a program is created which performs a numeric
simulation with a specification of the particular domain being studied.

• Computer simulation. The program is run to create data for analysis.
• Computer visualization. The data is analyzed by creating graphic representations of the

data: visualizations. If satisfactory, the visualization is summarized as the results of the
analysis. Otherwise, the cycle begins again with new insight into the problems.

Simulation for studying HCI is a current area of research (see, for example, Peck and John's work
in SOAR [32] or Kieras' work with GOMS [27, 28]). We can imagine using simulation to create
simulated log file analyses for depicting predicted user behavior, which might then be compared to
log files gathered from actual users. However, modeling and simulation do not help in addressing
the primary problem of too much data. Simulation just adds more to the pile.

Visualization seems to offer a better hope. Visualization is about filtering data, mapping the
remaining data to graphics primitives, and rendering the result for repeated playback and study (see
Figure 2 from Upson et al. [36]). Graphic representations of log file data are fairly common in the
literature, but what's missing are the representations which take advantage of human visual
processing in the ways that computer visualizations allow us to. For example, there is little use of
color, the actual screen layout as the geometry for the representation, and dynamic representations
(e.g., animations) – all of which are common characteristics of modern visualizations [3, 4, 12].

1Presented at HCI Consortium Workshop, Feb. 2-6, 1994. The research described was funded in part by a grant
from Intel.
2We can imagine other interfaces where the concept of an event is less obvious, e.g., moving in a virtual reality.
Our focus is on interfaces where events are the focus, e.g., graphical user interfaces.

Page 1

The goal of visualizations is to provide a new way of seeing the data. In the oft-quoted words of
Hamming, "the purpose of computing is insight, not numbers" [21]. In this paper, we will review
the literature on log file analysis; consider how people have visualized log file data and offer a
taxonomy for log file visualizations; and finally present some new methods of visualizing log file
data to describe some of the potential for using visualization to gain insight into log file data.

Previous Work on Log File Analysis

Log file data comes in two types: resulting from generic data collection software (e.g., [20]) and
resulting from software modifications (e.g., [13]).

• Figure 3 is a segment of a log file generated by CHIME [2, 33] which collects log file data
on use of any Macintosh application. The advantages of generic data collection software is
that it can be used to study use of any software, but the disadvantage is that the log file is
typically at a fairly low-level. The data in Figure 3 identify events (ButtonPress), time
stamps, locations of the mouseclicks, and current window identification, but do not
identify what was being clicked.

• Figure 4 is a segment of a log file generated by a multimedia composition application that
was modified to generate log file data. The advantage of this approach is that the semantics
of the user actions can be included in the log file data, such as what operation was selected,
what item was selected, and so on. The disadvantages of this approach are (1) that it
requires access to the source code of an application and (2) that it is difficult to determine
what level of event should be output. If both the low-level events (e.g., mouseclick
locations) and higher-level events (e.g., button name) are output, the volume of data is
even larger. If they are not both output, then there is a danger that the desired data during
analysis will not be available (e.g., you may know what button was pressed, but not where
it was pressed, in order to measure mouse travel).

A good compromise solution is to build the log file generation into the UIMS, as Olsen and
Halverson did in the MIKE UIMS [30]. This approach guarantees that data is automatically
generated, guarantees the kind and level of data available for analysis, and can present some
semantic information as well as low-level data. The disadvantage is that the application must be
written in the given UIMS, so is ineffectyg.

Log files have been analyzed to answer a fairly wide range of questions.
• Usability Measures. Log file data have often been used to compare interfaces or evaluate

the effectiveness of a given interface. Perhaps the most extensive work of this kind is
Olsen and Halverson's work on the MIKE UIMS [30]. The MIKE UIMS gathered data on
a range of metrics, including the time required to perform operations, the extent of screen
updates, and the commands executed by a user. Good used log file analysis to compare the
usability of text editors (in terms of the kinds of commands used) [15]. Gray has used
digitized screen images (a kind of log file in an alternative medium) for determining the goal
tree of students in using an interface [16].

• Usage Patterns. Log files are also often used to characterize usage patterns as part of a
formative evaluation – not to analyze the current interface as much as to inform the design
of the next interface. For example, both Instone et al. [26] and Egan et al. [13] have used
log file analysis to identify when users frequently pair two commands in hypertext
systems, which suggests either that the commands be combined or that the screen be laid
out in such way to make easier the combination of the commands. McDonald et al. [29]
have used log file analysis to construct Pathfinder networks of how UNIX commands are
conceptually related, in order to define conceptually useful hypertext links in a UNIX help
system. Guzdial et al. [18, 19], Dershimer et al. [9, 10], Winne and Gupta [38], and
Horney and Anderson-Inman [24] have all sought to identify usage patterns of groups of
students in order to determine how interfaces might be tuned to different kinds of users.

Page 2

For example, Horney and Anderson-Inman are identifying kinds of readers of hypertext
documents in order to define features that facilitate each kind of reader.

• Inferring knowledge or expertise. Vaubel and Gettys [37], Desmarais and Pavel [11],
Santos and Badre [33], and to a lesser extent, Hammer and Rouse [20] have sought to use
log files to infer knowledge or expertise of users. Vaubel and Gettys infer the text editing
expertise of users by noting key metrics such as the number of requests for help and the
use of "power key" equivalents for menu operations. Desmarais and Pavel study UNIX
command sequences, and given the typical order of UNIX learning, infer what commands
a user already knows. Santos and Badre have been comparing novice and expert users in
terms of the length and composition of their interface chunks. Hammer and Rouse also
compared novice and expert users in terms of the sequence of events characterized as a
Markov chain.

• Ethnographic analysis. As the recent Exploratory Sequential Data Analysis (ESDA)
workshop notes [14], there is a growing interest in studying how the interface relates to
other events around the user. Tools for this kind of analysis are still in development.
Trigg has developed a tool which allows for multiple data streams on a single timeline,
which would permit analysis of log file data juxtaposed with other analyses of the setting
for the interface use [35].

In general, the ESDA workshop noted that tools and methods for supporting log file and similar
analyses are just starting to appear. Most are homegrown for particular purposes. In the following
section, we describe the kinds of visualizations that various researchers have developed for their
analyses.

Current Log File Visualizations

Figure 2 is a depiction of the process of developing and using visualizations in analysis (borrowed
from [36]). For the purposes of this paper, rendering primitives into visualizations and playing
these visualizations back are not the key points. The critical questions for reviewing and
developing new kinds of log file visualizations are filtering and mapping – What data gets studied
(filtering) and how does it appear (mapping)?

We will use filtering and mapping as the dimensions for considering the kinds of visualizations
which have been used in log file analysis. Table 1 summarizes these analyses. Up the left side of
the table are mappings in increasing dimensionality, from scalars through three-dimensions.
Across the bottom are different filters (focii in analyses), both time and space-based.

The filtering categories we define here are based mostly on what exists in the literature, as opposed
to what one might imagine as filtering categories.

• We distinguish between time-based analyses (e.g., considering just the ordering of the
events in the log file3 versus the absolute time of when the events occurred) and space-
based analyses (e.g., considering screen layout). Certainly one can imagine analyses that
consider, for example, both screen layout and absolute time, but we don't see those kinds
of analyses currently reported in the literature. A more complete taxonomy would probably
define three dimensions to input space: time-based (event relative, absolute time, and chunk
relative), space-based (screen relative), and external to the interface (on-line and off-line
events). All three dimensions could play a role in an analysis and a visualization.

3Event-relative ordering is not just a time-based metric, since we can imagine using events to measure events in the
user's input space (e.g., use of the mouse versus use of the keyboard). For our purposes, we will combine time and
space in the term event-relative when considering the user's input event stream.

Page 3

• We also note the importance and feasibility of chunk-based analyses. Olsen and
Halverson's MIKE UIMS [30] explicitly associated events with tasks, allowing for
analysis in terms of tasks (or as their paper put it, "blame" could be assigned to time/effort-
expensive tasks by studying the component events). More recently, Santos and Badre [33]
have developed techniques for identifying chunks from low-level events such as
mouseclicks and key presses. As Olsen and Halverson point out, chunk-based analyses
may be even more meaningful than time-based analyses since they allow for studying
usability in terms of conceptually meaningful units.

The mapping categories are particularly interesting for identifying the focus of recent work in log
file visualizations:

• Scalar. Much of the work in log file analysis has been aimed at producing a number to be
used in quantitative analysis: an expertise level, command frequencies, or the output space
and extent, as examples. While certainly useful for activities such as hypothesis testing,
quantitative analysis is too gross a tool for capturing the kinds of data needed for
determining usage patterns, for example.

• 1-D. The formative evaluation uses of log files are most often concerned with what events
follow what other events – looking at events or screen updates along a timeline. Badre,
Hudson, and Santos have been using one-dimensional timelines based on chunks to
represent and provide access to a control stream [1] (Figure 5).

• 1-D Color and Dynamic. One might imagine that, even in one dimension, using color or
displaying events on a timeline in a dynamic fashion may aid human perception in noting
patterns which might otherwise be missed. We discuss such a visualization technique in
the following section.

• 2-D Abstract . There is a good deal of work studying how we might display log file data
in various abstract two-dimensional representations. These range from a simple table of the
frequency of command pairings (how often command X follows command Y, for all X and
Y) to Markov network charts (Figure 6) showing the observed probability of one command
following another, action code charts (Figure 7) showing the ordering of events indexed by
position in a hypertext database, and process pattern charts (Figure 8) showing the
interleave of events on an absolute time scale.

• 2-D Color and Dynamic. Color might be used to add additional dimensionality to an
abstract two-dimensional visualization. One might also imagine using the geometry of the
screen as part of a dynamic visualization of user events.

• 3-D. Modern visualization techniques allow for complex, photorealistic three-dimensional
images. While these techniques have not yet been used in log file visualizations, we
suggest an application in the following section.

In general, while there have been interesting representations of log file data in the literature, there
has been little use of the power of computational visualizations as of yet. Log file analysis has not
yet developed into a computational science, in the sense of computational chemistry or
meteorology. The following section presents some suggestions and prototypes for how more
advanced visualization techniques might be applied to log file analysis.

New visualization approaches for log file analysis

Our technique for developing the visualizations in this section has been to consider analyses from
the literature and develop alternative visualizations which take advantage of color and dynamics.
As Table 2 describes, we see this activity as adding a higher dimensionality to existing
visualizations, which we hope presents more information while still in a meaningful manner. We
present these visualizations in increasing dimensionality of mapping (output space).

Page 4

Our vision for the use of this kind of visualization is cyclical, as depicted in the Upson et al. figure
(Figure 2). When first faced with log file data, we imagine that analysts and researchers would use
higher-dimensionality visualizations to gain insight into the dataset. During further cycles, the
researchers may drop to lower dimensionality visualizations, to fine-tune the analysis to areas of
interest. Finally, the scalar metrics might be used to compute measures across interfaces or users
for comparison.

1-D Color: Color ESDA Patterns

Exploratory Sequential Data Analysis is concerned with noting patterns in sequential data, like log
files and conversational data [14]. We are interested in the use of color for identifying these
patterns. Figure 9 is a screenshot from a prototype that uses color to highlight patterns in a log
file. The screenshot depicts using color to identify menu use in a multimedia composition system.
The window on the right of Figure 9 displays patterns found in the log file data as colors. The
window on the left defines what data is to be read, the patterns to be noted (currently in a text
programming language format), the colors to be assigned to the patterns, and the time scale for
depicting the patterns. The two time scales highlight different characteristics of the data:

• Time relative compacts the entire log file into the space of the Sequences window (100
segments), using sampling to determine which event colors each line. Time relative would
be important, for example, in noting the dispersement of user events among devices (e.g.,
how much time spent with the mouse, how much time spent with the keyboard, and how
this time was interleaved).

• Entry relative selects only the first 100 entries in the log file and displays those one per line
in the Sequences window. Entry relative highlights the existence of other events which
might be affecting the patterns seen in the Sequences window. For example, there are large
gaps between command uses in Figure 9, which would suggest that perhaps other
significant events are occuring besides those identified which could be influencing menu
use.

2-D Color and Dynamic: Overlapping and Blending Screens

Olsen and Halverson developed some interesting measures of output space and extent to
characterize where the screen is getting updated to determine if the user's attention is getting
stretched across a wide area during interaction with the interface [30]. Rather than identify a
number for the extent, we are using overlapping screens which sum color levels to show areas of
screen updates. Figures 10 and 11 are examples of this approach. We digitized a ten second clip
of a user manipulating an appointment application at four frames per second, then overlaid these
frames where later frames sit on top of earlier frames. We are exploring different ink effects for
highlighting output space and extent.

• In Figure 10, we use an ink effect such that the later frames' colors are blended (addmax-
ed) with the earlier frames such that the resultant color of any pixel is the maximum values
in the source and destination for each of red, green, and blue. Figure 9 is displayed on a
gray scale where white is the maximum color. Thus, white areas in Figure 9 show areas
where either white has been displayed or that the overlaid layers of screens have added up
to white.

• In Figure 11, we use an ink effect such that the later frames' colors are blended (addmin-
ed) with the earlier frames such that the resultant color of any pixel is the minimum of
source and destination on each of the red, green, and blue values. The effect is that we can
"see through" all the layers and see where updates took place: menus dropping, highlight
different days, and dialog boxes.

Neither of these methods are entirely satisfactory, though they indicate promise. We are exploring
alternative blending operations where pixels that do not change are slowly grayed out with
successive layers while changes are highlighted or darkened to make them more pronounced.

Page 5

We are also exploring dynamic representations of overlaid screens, as part of our research into
combining video and log file data [1]. Given a digitized representation of a user's interaction (say,
400 frames from a 100 second session at four frames per second), we are experimenting with
blending ten or more of these frames, by averaging the colors in each set of ten in order to reduce
the number of frames by a magnitude. We are interested in whether the interface expert can get the
same understanding of the user's interactions in less time by viewing the reduced data set. Our
experiments suggest that, again, the kind of blending or averaging function used is critical. It is an
empirical question how far we can compress the video stream with a good blending function that
highlights change.

2-D Dynamic: Mouseclick Locations

Another dynamic representation we are exploring is tracking mouse movement (measured as
distance between mouse clicks). Rather than compute a mouse movement distance (as did Olsen
and Halverson), we are dynamically displaying the mouse movements (at an increased rate) and
representing mouse clicks as a darkening of a partitioned representation of the screen. Figure 12 is
a screenshot of the running visualization, reading from a CHIME log file of a user working with a
Macintosh drawing package. As each mouseclick is encountered in the log file, the partition in
which the mouseclick occurs is darkened, but overall, all partitions are lightened slightly. The
effect is that clicks increase the highlighting (darkening) of any partition, but highlights fade over
time. At any moment, the darkened partitions indicate a working set of recently accessed areas of
the screen, where darker indicates more recent or more frequent use. In the particular visualization
of which Figure 11 is a snapshot, partitions in the upper left are the most often dark because of the
tool bar appearing vertically on the left of the screen.

We are exploring variations for this visualization.
• In cases where there are buttons or toolbars to be clicked, a representation of the typical

screen underlying the partitions would help to make sense of the user's mouseclicks. In
tools such as text editors, the underlying representation may not be as useful.

• Rather than partition the screen statically, we are considering darkening a circle around a
click. In this variation, frequently accessed areas would be blurred, and the shapes and
sizes of the blurs may be more informative than the static partitions.

2-D Dynamic: Visual Command Frequency and Recency

Olsen and Halverson were also concerned with menu operations: command frequency, command
pairs, and position on the menu bar of frequently used commands. Figure 13 uses the same
technique as Figure 12 (partitioning the screen where use darkens but all highlights fade), but on
menus instead of the overall screen. Here, the set of darkened positions indicates commands
which are often used together. This visualization can provide information on how often commands
are used, which commands are used together, and on whether the placement of commands in the
menu is optimal given their frequency of use.

3-D: Mouseclick Depth

Another way of looking at the mouseclicks is in terms of density, as if the mouseclicks pile up on
one another. Figure 13 depicts this kind of visualization, where mouseclicks were recorded for
use of a HyperCard appointment book and then summed along 30x30 pixel partitions. The height

Page 6

of the cones in the visualization indicates the number of clicks in that partition. Figure 14 is the
same visualization viewed from directly above – down the cones onto the underlying screenshot4.

Conclusion

The goal of the visualizations described in this paper are to provide some evidence for the benefits
of developing a computational science of usability based on log file analysis. We feel that there's
untapped potential for making log files work for HCI research and usability in particular through
use of visualization. While we recognize the importance of exploring pattern recognition and
learning routines for making observations on log file data, our current focus is on creating
visualizations which allow humans to use their skills at identifying patterns.

The most critical question to be addressed is probably: What visualizations for what questions?
There is a developing science of visualization which seeks to define what kinds of visualizations
help in drawing out various characteristics of the data (see, [6, 25]). There needs to be a domain-
specific follow-up to this effort which looks at what the visualized characteristics of the data tell us
about usability and usage patterns, and what questions are better addressed using other methods.

References

1. Badre, A.N., S.E. Hudson, and P.J. Santos. An environment to support user interface
evaluation using synchronized video and event trace recording . Georgia Institute of Technology,
GVU Center. Report #GIT-GVU-93-16. 1993.

2. Badre, A.N. and P.J. Santos. A knowledge-based system for capturing human-computer
interaction events: CHIME. Georgia Institute of Technology. Graphics, Visualization, and
Usability Center Technical Report. Report #GIT-GVU-91-21. 1991.

3. Bailey, M., C. Hansen, T.T. Elvins, and M. Krogh. Introduction to Scientific
Visualization: Tools and Techniques. SIGGRAPH 93 Course Notes. Report 1993.

4. Brodlie, K.W., L.A. Carpenter, et al., Scientific Visualization: Techniques and
Applications. 1992, Berlin: Springer-Verlag.

5. Card, S.K., T.P. Moran, and A. Newell, The Pyschology of Human-Computer
Interaction. 1983, Hillsdale, NJ: Lawrence Erlbaum and Associates.

6. Chappel, H. and M. Wilson, Knowledge-based design of graphical responses, in
Proceedings of the 1993 International Workshop on Intelligent User Interfaces, W.D. Gray, W.E.
Hefley, andD. Murray, Editors. 1993, ACM: New York. p. 29-36.

7. Cypher, A., The structure of users' activities, in User Centered System Design, D.A.
Norman and S.W. Draper, Editors. 1986, Lawrence Erlbaum Associates: Hillsdale, NJ.

8. Denning, P., Computing, applications, and computational science. Communications of the
ACM, 1991. 34 (10): p. 129-131.

4Currently, these visualizations are created by hand using an assortment of tools, which accounts for the distortion
of the images and the impreciseness of the match between screen and graph coordinates. We are exploring better
ways of creating these images.

Page 7

9. Dershimer, C. and C. Berger. Characterizing student interactions with a hypermedia
learning environment Paper presented at the American Educational Research Association annual
meeting, San Francisco, CA. 1992.

10. Dershimer, C., C. Berger, and D. Jackson. Designing hyper-media for concept
development: Formative evaluation through analysis of log files Paper presented at the National
Association for Research in Science Teaching annual meeting, Fontana, WI. 1991.

11. Desmarais, M.C. and M. Pavel, User knowledge evaluation: An experiment with UNIX, in
Human-Computer Interaction – INTERACT'87, H.J. Bullinger and B. Shackel, Editors. 1987,
Elsevier Science Publishers, B.V. (North-Holland): p. 151-156.

12. Earnshaw, R.A. and N. Wiseman, An Introductory Guide to Scientific Visualization .
1992, Berlin: Springer-Verlag.

13. Egan, D., J.R. Remde, L. Gomez, T. Landauer, J. Eberhardt, and C. Lochbaum,
Formative design-evaluation of SuperBook. ACM Transactions on Office Information Systems,
1990. 7: p. 30-57.

14. Fisher, C. and P. Sanderson, Exploratory sequential data analysis: Traditions,
techniques, and tools. SIGCHI Bulletin, 1993. 25 (1): p. 34-40.

15. Good, M. The use of logging data in the design of a new text editor. in Proceedings of
CHI'85 . 1985.

16. Gray, W.D., S.A. Byrnes, and N.C. Goldberg, Struggling through with HyperCard: A
study of end-user programming. 1993. Draft.

17. Guzdial, M. and J. Merz, MediaText. Multimedia Composition Software. 1992, Wings
for Learning and Apple Computer.

18. Guzdial, M., C. Walton, M. Konemann, and E. Soloway. Characterizing process change
using log file data. Georgia Institute of Technology. GVU Center Technical Report. Report #93-
44. 1993.

19. Guzdial, M.J. Deriving software usage patterns from log files. Georgia Institute of
Technology. GVU Center Technical Report. Report #93-41. 1993.

20. Hammer, J.M. and W.B. Rouse, Analysis and modeling of freeform text editing behavior,
in Proceedings of the 1979 International Conference on Cybernetics and Society . 1979, Denver.
p. 659-664.

21. Hamming, R.W., Numerical Methods of Scientists and Engineers . 1962, New York:
McGraw-Hill.

22. Hanson, S.J., R.E. Kraut, and J.M. Farber, Interface design and multivariate analysis of
UNIX command use. ACM Transcations on Office Information Systems, 1984. 2(1): p. 42-57.

23. Hay, K.E., P. Weingrad, S. Jackson, R.A. Boyle, M. Guzdial, and E. Soloway, Student
composition of multimedia documents: A preliminary study. Journal of Educational Computing
Research, 1993. .

Page 8

24. Horney, M.A. and L. Anderson-Inman. The ElectroText Project: Hypertext reading
patterns of middle school students. Paper presented at the annual meeting of the American
Educational Research Association, April. San Francisco, CA. Report 1992.

25. Ignatius, E. and H. Senay, Visualization assistant. Workshop on Intelligent Visualization
Systems, IEEE Visualization '93, 1993. San Jose, CA. Oct. 25.

26. Instone, K., B.M. Teasley, and L.M. Leventhal. Empirically-based re-design of a
hypertext encyclopedia . in INTERCHI'93 . 1993.

27. Kieras, D. and P.G. Polson, An approach to the formal analysis of user complexity.
International Journal of Man-Machine Studies, 1985. 22 : p. 365-394.

28. Kieras, D.E., Towards a practical GOMS model methodology for user interface design, in
Handbook of Human-Computer Interaction, M. Helander, Editors. 1988, Elsevier Science
Publishers B.V.: Amsterdam; New York. p. 135-157.

29. McDonald, J.E., K.R. Paap, and D.R. McDonald, Hypertext perspectives: Using
Pathfinder to build hypertext systems, in Pathfinder Associative Networks: Studies in Knowledge
Organization, R.V. Schvaneveldt, Editors. 1990, Ablex: Norwood, NJ. p. 197-212.

30. Olsen, D.R. and B.W. Halverson, Interface usage measurements in a user interface
management system. UIST'88, 1988. .

31. Pagels, H.R., The Dreams of Reason: The Computer and the Rise of the Sciences of
Complexity . 1988, New York: Simon and Schuster.

32. Peck, V.A. and B.E. John. Browser-Soar: A computational model of a highly interactive
task. in CHI'92: ACM Conference on Human Factors in Computing Systems. 1992. Monterey,
CA: ACM.

33. Santos, P.J. and A.N. Badre. Automatic chunk detection in human-computer interaction .
Georgia Institute of Technology. Graphics, Visualization, and Usability Center Technical Report.
Report #GIT-GVU-94-4. 1994.

34. Shute, V.J. and R. Glaser, A large-scale evaluation of an intelligent discovery world:
Smithtown. Interactive Learning Environments, 1990. 1(1): p. 51-77.

35. Trigg, R.H., Computer support for transcribing recorded activity. SIGCHI Bulletin,
1989. 21 (2): p. 72-74.

36. Upson, C., T. Faulhaber, et al., The application visualization system: A computational
environment for scientific visualization. IEEE Computer Graphics and Applications, 1989. 9(4): p.
30-42.

37. Vaubel, K.P. and C.F. Gettys, Inferring user expertise for adaptive interfaces. Human
Computer Interaction, 1990. 5: p. 95-117.

Page 9

38. Winne, P.H. and L. Gupta. Data and graph theory measures for modeling cognitive
strategies in tutorials with STUDY Paper presented at the annual meeting of the American
Educational Research Association, Atlanta, GA. 1993.

Page 10

