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DESIGN ANALYSIS METHODOLOGY FOR COMPOSITE ROTOR BLADES 
C.t%' 

LAWRENCE W. REHFIELD 
")•. 

 
School of Aerospace Engineering, Center for Rotary Wing Aircraft Technology, Georgia 

en Institute of Technology, Atlanta, Georgia 30332. 

INTRODUCTION  

Composite material systems are now the primary materials for helicopter rotor 
system applications. Bearingless rotor designs proposed for the. LHX helicopter are an 
example. In addition to reduced weight and increased fatigue life, these materials provide 
designs with fewer parts which means increased service life and improved maintainability. 
Also, in terms of manufacturing, it is possible to achieve more general aerodynamic shapes 
including flapwise variation in planform, section and thickness. 

The aeroelastic environment in which rotor blades operate consists of inertial, 
aerodynamic and elastic loadings. Because of the directional nature of the composite 
materials, it is possible to construct rotor blades with different ply orientations and hybrid 
combinations of materials exhibiting coupling between various elastic modes of deformation. 
For example, plies with fiber orientations placed appropriately in the upper and lower 
portions of the blade can produce elastic coupling between twist and flapwise bending or 
between twist and extension. This provides a potential for improving the performance of a 
blade through elastic tailoring of the primary load-bearing structure. 

A working definition of elastic tailoring is the use of structural concept, fiber 
orientation, ply stacking sequence and a blend of materials to , achieve specific performance 
goals. In the design process, materials and dimensions are selected to yield specific elastic 
response characteristics which permit the goals to be achieved. Common choices for goals 

for the application of elastic tailoring are the creation of favorable deformations, often for 
the purpose of preventing or controlling aeroelastic phenomena or vibration, and damage 
tolerance. 

Current design practice for composite rotor blades is to treat them similar to metal 
designs. The only distinguishing feature is that the effective extensional modulus is not 
related to the shear modulus. This, approach, therefore, does not permit description of 
general composite layups and cannot be applied if unusual ply layups are introduced in order 
to create favorable elastic coupling for enhanced performance. 

A composite rotor blade structural model and corresponding theory are presented 
herein which are created to accurately, but simply, characterize response. Simplicity is 
achieved by considering a primary structural box or single closed-cell spar, the primary load 
bearing element, as a thin walled beam made of an arbitrary composite layup. The full 
potential is included to account for the influences of elastic tailoring. In addition, two 
nonclassical influences - - - transverse shear deformation and torsion-related warping - -are 
included in the theory as these effects are far more pronounced for laminated composite 
materials than for monolithic metallic materials. 

EARLIER WORK  

Any acceptable theoretical model must account for the anisotropic character of 
composite materials. In addition, in order to be of use in design, it should be simple and 
reliable so that a clear physical picture of the cause-effect relationship between 
configuratiion and response is obtained. An early model of this type has been used by 
Weisshaar for the study of aeroelastic tailoring of lifting surfaces. He uses an engineering 
beam theory that incorporates a plate-like behavioral model to represent the structure. The 
torsional stiffness, therefore, is underestimated as the enhanced stiffness of closed cell 
construction is not represented. 

In recent work on vibration tailoring, Weisshaar and Foist
2 describe and compare 

three different stiffness models that have been used in tailoring studies. Two of them are 



plate-like and the gird is a closed cell model. The latter is of the type developed by 
Mansfield and Sobey . 

The pioneering work of Mansfield and Sobey 3  is of particular interest because it is 
intended for rotor blade applications. The model represents the load bearing structure or spar 
as a closed cell cylindrical tube with its thin wall constructed of composite plies. This is a 
Batho-Bredt type of thin wall structural theory that is commonly used for aeronautical 
structures. The authors have a very clear idea of the potential of elastic tailoring for rotor 
blades and discuss pitch-flap (torsion-bending) and pitch-stretch (torsion-extension) elastic 
coupling in some detail. The influence of actual aerodynamic forces is not considered so the 
discussion is conceptual. • 

The type of structural model utilized in Reference 3 is appropriate for preliminary 
design studies. However, the theoretical development is unusual, sometimes hard to follow as 
ad hoc assumptions are strategically introduced and inconsistent regarding some details. A 
clear, straightforward and consistent theory does not emerge. Two special cases are 
analyzed - - - (I) bending and twisting by constant moments and (2) bending and twisting by 
transverse shear forces on cantilever beams. The latter case is used to determine the shear 
center for the section. In the first case, the shear flow is taken to be constant around the 
section of the tube. This assumption, of course, does not apply to the second case and, 
although not specifically stated, it must be modified in that instance. In spite of these 
troublesome points and some apparent sign errors and omissions in the equations of the text, 
this is an extremely important work and serves as a foundation for the present study. It has 
been extended by Mansfield to two-cell construction. 

An important conclusion emerging from Reference 3 is that the effect of initial 
pretwist on longitudinal tension is small and can be discounted in preliminary design. 

Other European researchers in References 5 and 6 present numerical models based 
upon finite element idealizations for composite rotor blades. Large scale simulation is 
utilized in place of insight. These I Methods are more appropriate for the analysis of 
configurations that have been designed by other, simpler methods. Such approaches will not 
be considered here. 

Hong and Chopra
7 

have conducted a pioneering study of the influence of ply Iayups on 
the aeroelastic stability of a composite rotor blade in hover. The structural heart of the 
blade is taken as a closed cell rectangular box. Stability is studied as the ply layups of the 
sides of the 8box are varied. The analysis is based upon the nonlinear kinematics of Hodges 
and Dowell . Unfortunately, the configurations studied do not resemble practical 
configurations that can be easily manufactured by the usual means. The analytical results do 
illustrate, however, that ply orientation effects are extremely important and offer great 
promise for enhancing performance. 

Very title detail on the actual analysis is provided by the authors in Reference 7 or 
its predecessor . It is not clear what structural theory or appro4imations were actually 
made. It apears that a thin walled theory of the Mansfield and Sobey type was not used from 
the Appendices in Reference 9. Consequently, a realistic appraisal of the results is difficult. 

Recent theoretical research 10 has contributed a new appreciation for nonclassical 
effects in structural behavior. The nonclassical influences relevant to rotor blades are those 
due to transverse shear, bending-related warping, stretching-related warping and torsion-
related warping. Laminated composites are in general strong and stiff in the plane of 
lamination and weak and flexible in the transverse direction. Consequently, transverse shear 
deformation becomes much more pronounced. Bending-related section warping also affects 
response in a similar way, but it is due to the fact that bending strain does not strictly 
correspond to planar deformation. Torsion-related warping arises whenever a section is 
restrained against out of plane deformation. The key to improving the stress predictive 
capability of a theory is to account for these effects correctl iy. A theory of the thin walled 
closed cell type has been developed by Valisetty and Rehfield which is based upon a proven 
methodology for accounting for nonclassical effects in bending theories. 

2 



Results presented in Reference Il indicate the great promise of tailoring to alter 
behavior and that the nonclassical effects are probably small for main rotor blades. A 
modern glass-epoxy material system is assumed along with typical blade dimensions based 
upon those of the CH-47 main rotor blade. 

STRUCTURAL MODEL AND KINEMATICS  

Model, Coordinates and-Overview  

The variety of the types of construction, materials and structural concepts that have 
been employed for composite rotor blades prevent the development of a single, all-
encompassing theory. Instead, a general approach  will be adopted which can be tailored to 
the unique features of any particular concept, manufacturing methodology and choice of 
materials. Attention is restricted to the most commonly used type of blade, one which 
utilizes a single closed cell thin walled spar as the primary load bearing and stiffness 
producing element. An example appears in Figure I, the main rotor blade of the CH-47. 

The spar is modeled as a closed cell thin walled beam of the classical aeronautical 
type. The wall construction is of general laminated composite construction which allows the 
flexibility for elastic tailoring. The model and coordinate system are shown in Figure 2. The 
coordinate directions x, y and z have displacement components u, v and w associated with 
them. The circumferential coordinate is imbedded in the middle surface of the wall. 

The objective is to create a theoretical model suitable for representing composite 

rotor blade designs. The level of detail or definition is envisaged as appropriate for overall 
stress analysis and sizing in preliminary design, dynamic stability analysis and elastic 
tailoring. The model is beam-like with response determined as a function of the axis 
coordinate x. 

The essential structural features of the model can be established on the basis of 
static considerations and small displacement response. The scope of this paper is confined to 
these limitations. The fundamentals consist of the definition of generalized displacements, 
corresponding generalized internal forces and the force-deformation equations which relate 
them. 

Geometrical Matters and Transverse Displacement Components  

Letix  ,7 and7 be unit vectors in the coordinate directions. From any point on the 
beam reference Yoxis, tie x-axis, the centerline of closed curve defining the beam cross 
section is determined by the position vector r from the axis. It is written as 

= 7 y(s) 	z(s) 

The unit tangent vector, t, to the cross section closed curve (CSCC) is defined as 

dr 	c:4y 	dz 
t = 

 —
ds 

= i
y s 

+ 1
z 

A unit normal vector, n, radially directed toward the center of the cross section is 
constructed from i

x 
and t. 

dz 
= -rx x t = --,-+ 

y as z ds 

(I) 

(2) 

(3) 
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With this definition, the normal projection of the radius vector, r te , is easily determined. 

r n  - r71 	= - (z 	y c4) 
	

(4) 

It is useful in geometrically describing motion due to twisting of the cross section about the 
beam axis. 

The beam undergoes stretching, bending, twisting and transverse shearing. The 
displacement vector, u, is 

U =U+I V +I 
x y Zw 

Bending and twisting of any cross section are properly represented by transverse displacement 
components of the form 

v = V(x) - zri)(x) 	 (6) 

w = W(x) + ycl)(x) 	 (7) 

where V and W are transverse displacement components of the beam axis and (I) (x) is the 
twist angle, which is assumed to be a small angle, positive for counter-clockwise rotation 
consistent with s in Figure 2. 

The Axial Displacement Component  

The tangential component of displacement, v t , is 

v 	 V: IX+ W dz + r 
t 

= 	= 	s 	n (8) 

Let y 0  (x) and y
o 

(x) be the transverse shear strains of any cross section, which are 1  
assumed to be

)0
' uniform qr each cross section; that is, due to transverse shear, the cross 

section remains planar. Further, let y(x) be the shear strain due to twisting. In the usual 
theory of torsion of thin walled beams of isotropic materials, the shear flow and, hence, the 
shear strain are independent of s. Consequently, the twisting contribution 1(x) is consistent 
with this observation. Therefore, from the stress transformation law and elementary physical 
considerations, the membrane shear strain in the beam wall, y xs , is  

o 	o dz 
= Yxyds + Yxzdi +Y 

 From strain-displacement considerations 

0 
y 
 xs = 
	+ 

u ,s v t,x 

If any effects of taper of the cross section along the length of the beam are ignored, Equation 
(8) yields 

v 	 dz + r  
t,x 	V ,x ds W,x ds 	n ,x 

(5) 

(9) 

(10) 
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Equations (9) - (II) result in 

u  = 	
- 	

) c4x + (vo 	dz 
,s 	xy 	,x s 	' xz W ,x) 	rn$ 

Define the section rotations, B 
y 

and B
z
, as 

Sy 1 

 

0 
y 	xz 	,x 

0 v  
3  z Yxy 	,x 

The axial displacement component must be continuous around the circumference of 
the cross section. Consequently, 

u
,s ds 	0 

which results in 

2A 
y (x) =—S 

c 	,x 

where 

2Ae  = fr n ds 

c = fds 

The enclosed area of the cross section is A e  and c is the circumference of the CSCC. 

Integration of Equation (12) and Use of Equations (13), (14) and (16) produce the 
following result: 

u = U(x) + y $ + 	+ (1),x  
z 

z 
 y (19) 

where U(x) is the extension of the axis and 4) is the torsion-related warping function. The 
latter is defined as 

2A 
= 	ce  s - 2c1) 	 (20) 

where 

(21) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 



is the sectorial area swept out as s increases. 

The warping function satisfies the equation 

1 4) ds = 0 	 (22) 

which is consistent with Equation (15). 

In the classical St. Venant theory of torsion of beams under end torques, cl) x, the rate 
of twist, is constant. Consequently, in that case, no axial strain is produced by twisting. In 
the present theory, is allowed to vary arbitrarily so that nonuniform warping effects are 
accounted for on a rational basis. 

EQUATIONS OF EQUILIBRIUM 

Strains 

The displacement field is defined by Equations (6), (7) and (19) and the membrane 
shear strain in Equation (9). If Equations (13), (14) and (16) are utilized, the membrane shear 
strain may be written as 

2A 
oxs 	z v,x) g, (sy  w,x)  dsz 	ce (1)  

The membrane axial strain is 

c o 	u = U + y$ + 43 + 
xx 	,x 	,x 	z,x 	yo,x 	,xx 

The strain and displacement fields are completely specified by the six kinematic 
variables 

U, V, W,(1) , 13 y , B z  

These variables will be varied in order to derive the governing equilibrium equations and 
natural boundary conditions in terms of naturally defined generalized internal forces. 

Stress Resultants and Generalized Internal Forces  

The beam reacts external forces by membrane action in the wall. For thin walled 
beams, local shell bending and twisting moment resultants can be ignored. Consequently, only 
the membrane stress resultants N xx , N and N s  need be considered. Furthermore, by virtue 
of the beam-like geometry, the hoop stress restiltant N s  is quite small and will be ignored. 
(This assumption would be abandoned if the cell' was presiurized.) Thus 

N55 	
0 	 (25) 

The variation of the internal strain energy, C, is 

(23) 

(24)  

6 



6 1.3 = 	
(N xx ) 

6  e
oc 

 + N 
xs 

6  y
xs 
 )ds dx 
	

(26) 

where L is the beam length. The following generalized internal forces arise naturally from 
Equations (23), (24) and (26): 

N = f N ds 
>o< 

Q =f Nxs  d ici  s r 

=IN d
z ds 

xs Ts- 

2A 

c
e 
iN 

xs 
 ds 

M = N_ z ds 

=fNxx  y ds 

=fr Nxx p ds 

The direct torque expression (30) can be put in a more familiar form by defining the 
mean shear flowas 

xs 

= I  IN d 
xs 	xs ds 

Consequently 

M
x  = 2A

e 
lqxs 

which is the obvious counterpart of Bredt's formula for constant shear flow. The systematic 
approach utilized herein avoids the confusion regarding shear flow that emerges from 
Reference 3. 

The generalized warping force 0 is defined naturally as a consequence of the form 
of the axial displacement component. ItA i

t 
 s the continuous counterpart of the warping group 

of forces utilized in,classical aeronautical structural analysis to study shear lag effects due to 
restrained warping'. Its units are force-(length) 

Virtual Work of External Forces  

In order to fix ideas, let the end of the beam corresponding to x = L be subjected to 
net force and moment resultants R, 	,.ZS , M , g and M . The end x = 0 will be supported. 
I_n addition, an effective applied traction 	the after surface of the beam with components  

a  nx ' a ny and a nz is considered. The virtual work of the external forces, 6 W e, is 

y 

(Axial Force) (27)  

(Chordwise Shear Force) (28)  

(Flapwise Shear Force) (29)  

(Direct Torque) (30)  

(Flapwise Bending Moment) (31) 

(Chordwise Bending Moment) (32)  

(Generalized Warping Force) (33)  

(34)

 (30A) 

7 



6We = 	N 6U(L) + 	6V(L) + 	SW(L) 

Igx  6 cp(L) + gy  S8y(L) + gz  68 z(L) 

+ ffrnx d u + cTny6v + nz 6 w)ds dx 	 (35) 

From the applied surface tractions and the form of the displacement field, the 
following definitions for generalized external loadings follow directly: 

qx =fcTnx ds 	
(Distributed Axial Force) 	 (36) 

qy  =fo n y  ds 	 (Distributed Chordwise Axial Force) 	(37) 

I-- 
% = a  nz ds 	

(Distributed Flapwise Axial Force) 	 (38) 

mx l(Trnzy - o'n yz ) d s 	(Distributed Torque) 	 (39) 

my  -ifo' ny  z ds 	 (Distributed Flapwise Bending Moment) 	(40) 

m
z 

= crnx y ds 	 (Distributed Chordwise Bending Moment) f 	 (41) 

qw = cTnx 1P  ds 	
(Generalized Distributed Warping Force) 	(42) 

All of the above are familiar with the exception of the generalized distributed warping force 
qw . It is the external counterpart of Q w . 

Governing Equations and Boundary Conditions  

The governing equations of equilibrium and natural boundary conditions are derived 
from the Principle of Virtual Work, which is 

= SWe 	 (43) 

As a result of the definitions (27)-(33), the variation of the internal strain energy (26) 
is written as 

L 

60 = f [N 6U
,x 

 + 
y 
 (65

z 
 +6V ,x) 

0  

+ 0 (613 + 6 W ) + M 	+ M 65 
z 	y 	,x 	x ,x 	y y,x 

+ M 65 	+ 	6 4) 
z z,x 	w 	,xx 

(44) 
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With the aid of the definitions (36) - 42), the virtual work of the external forces (35) 
is 

6We  = 17/ 6 U(L) + 	sv(..) + az  6 w(L) 

+ g 6 	+ 
Y 	

(L) + a
z z 

 6 (L) 
Y  

[ + 16  q
x  6U + q 6V + q

z 6W + qw 6 (1),x  y 
o , 

+ m 
x  6(I)+ m 

y 
 68 

 y 
 + m 

z
6B 1 dx 

Application of the calculus of variations and the usual assumptions regarding 
continuity result in the following equations of equilibrium: 

N,x + qx  = 0 	 (x - Force) 

Q>,,x + qY 
 = 0 	 (y - Force) 

Q z,x  + qz  = 0 	 (z-Force) 

M - Q 	 (x - Torque) 
x,x w,xx + mx  - qw,x  = 0 

My,x - Qz  + my 
 = 0 	 (y - Moment) 

Mz,x - Qy  + mz  = 0 	 (z - Moment) 

The corresponding boundary conditions are obtained as well. The natural boundary 
conditions emerge at x = L by virtue of choice for applied and resultants at that section. The 
results are 

N = fq.  

= gy 

Q = z 	z 

M - Q 	= 	+ q 
x w,x 	x w 

=  M y 
M

z 
= 

z 

9 

(45) 

(46)  

(47)  

(48)  

(49)  

(50)  

(51) 

(52)  

(53) 

(54)  

(55) 

(56)  

(57)  



N 
xx 

N 
ss 

N 
xs 

= 

A ll 

A l2 

A
l6 

A 12 

A22 

A26 

A 16  

A26 

A 66- 

(60) 

o = 0 
	

(58) 

As an alternative to the above, geometric boundary conditions may be prescribed. 
The counterparts to Equations (52) - (58), respectively, are to prescribe U, V, W, 

y 
 ,a z  and 

cl) ,x . These alternatives in the present development correspond to the end x = 0. 

Most of these results are familiar and require no explanation. Equations (49), (55) and 
(58) involving torque are unusual and require comment. From Equations (49) and (55), there is 
an equivalent internal torque, (M 

x 
 ) 
eq , that reacts the external loads. It is 

(MX) = M - 
 eq 	x 	w,x 

(59) 

The first contribution is the direct, St. Venant contribution which is familiar. The second 
contribution is the secondary torque due to restrained or nonuniform warping. It is less well 
known and seldom is developed in the manner used here. The presence of q w  in equation (55) 
is variationally consistent; it is likely to be zero in most applications. 

Equation (58) is equivalent to permitting the cross section at the end to be free to 
warp. This is the usual "free end" condition. If warping is restrained, d1 3  must be set to zero, 
as is clear from the form of u, Equation (19). In principle a prescribed' value, could be 
imposed at an end. It is difficult to think of such a case in practical applications. 

GENERALIZED FORCE-DEFORMATION RELATIONS  

Constitutive Relations  

Up until this point, the theory created is general -- - no specification to composite 
materials has been introduced. Composite thin walled construction is characterized by the 
membrane stiffness matrix A which relates the stress resultants to the membrane strains. 
The constitutive relations are 

The convention for labeling the A-stiffness coefficients is the standard one given in 
Reference 13. 

For a laminate of N plies, the stiffnesses are determined by simply adding the plane 
stress stiffnesses, CI. ij, for each ply. Thus 

N 	(k) 

A11 = 
E G.. hk 	(i,j = I, 2, 6) 	 (61) 

k=1 

where h
k 

is the thickness of the k-th ply. The ply stiffnesses depend upon the material 
system, material form (fabric or tape, for example) and fiber orientation. 

The equations can be reduced with the aid of Equation (25). The hoop strain s °  can 
ss 

be eliminated since N
ss 

 is zero. It is found to be 

1 0 



° 	- (A e°  + A y °  )/A 
ss 	12 xx 	26 xs 22 

Consequently, the remaining equations may be written 

(62) 

N 
xx 

IN 
xs 

K I1 K 12 	{ -xx} 

K 12 	K
22 	

y 0 
XS 

( 63 ) 

The K-stiffnesses correspond to uniaxial extension and shear. They are 

2 
K

11 = A ll  - (A l2) /A22 

K1 2.  = A 16  - A
l2

A 26 /A22  

2 
K

22 
= A

66 (A 26) /A22 

For the familiar case of isotropic materials, the above reduce to 

= E h, K 12  = 0, K22  = Gh 	 (67) 

where E is Young's modulus, G is the shear modulus and h is the wall thickness. 

The shear-extension coupling stiffness K r  is responsible for elastic tailoring. It 
vanishes for locally balanced laminates for whit', A t , and A ie  are zero. The use of 
unbalanced angle ply layups, therefore, is the fundamental mech&(ism employed in tailoring 
at this level of modeling. For this reason, care must be exercised in manufacture to properly 
account for the tendency of warping in the design of tooling. 

Generalized Strains  

The deformation-related variables or generalized strains  that are natural to consider 
are easily identified from the strain expressions (23) and (24). Arrayed in a vector u they are 

U 
= 	0 y 0 (I) 	 (I) ) -r 

- 	,x xy xz ,x y,x z,x ,xx (68 ) 

Choice of Axes  

The x-axis or beam axis has not been concretely specified other than to require that 
it be parallel to the span. It is convenient to choose it in such a way that 

K ll 	- 0 y s - 

and 

fK
II z ds = 0 

(64)  

(65) 

(66)  

(69A)  

(69B)  

1 1 



This choice defines the tension axis  . This is the axis for which the application of a resultant 
tensile force will not produce any bending.  For general elastic coupling, a twist may be 
produced, however. 

The tension axis is the counter part of the centroidal axis for homogeneous, isotropic 
beams. 

It is also possible to define the y-axis and z-axis as principal flexural axes which 
uncouple bending about these orthogonal axes in the cross section. The necessary condition is 
that 

jcyz K 11  ds = 0 
	

( 7 0 ) 

As for the tension axis, twist may accompany bending about these axis for unbalanced angle 
ply layups. 

The above choices for the axis system are adopted. 

Generalized Force-Deformation Relationships  

A generalized internal force vector, F, that corresponds to u is obtained from 
Equations (27) - (33). It is 

F=NQ
y  Oz  Mx  My  Mz  Qw

)T  

The beam stiffness matrix,  C, is defined such that 

F= C u -  

It is a 7 x 7 symmetric matrix which is constructed in a straightforward, consistent manner. 

Determination of the C. elements proceeds as follows: (I) the strains from Equations 
(9) and (24) are substituted in equations (63); (2) these results are inserted into Equations 
(27) - (33); and (3) the stiffness elements are identified directly. Because of the choice of 
axes defined by Equations (69)-(70) 

C - C - C - 0 
15 - 	16 - 	56 - 

( 7 3 ) 

There are , therefore, in general, 25 independent stiffnesses to be determined. 

For convenience, the equations for the stiffnesses are given in the Appendix. The 
classical St. Venant theory of bending and torsion is recovered if y °  , -y°z  and dp are set to 
zero in u, Equation (68), and the second, third and seventh equatigs in the sylgm (72) are 
ignored. 

SUMMARY AND CONCLUDING REMARKS  

A complete, variationally consistent static theory that is valid for small 
displacements of single closed cell composite beams of arbitrary ply layup has been 
developed. Such a beam model serves as a first approximation to many commonly used rotor 
blade configurations. The fundamental mechanism for elastic tailoring appears in the wall 
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(71) 

( 7 2 ) 



coupling stiffness K 12, which is commonly associated with unbalanced ply layups. The 
nonclassical influences of transverse shear strain and nonuniform torsion related warping are 
accounted for in a simple, rational manner. 

Initial pretwist has been ignored, partially based upon the desire for brevity and 
partially based upon the findings of Reference 3. Dynamics and nonlinear geometric effects 
due to large displacements have likewise not been considered for brevity. All of these issues 
will be considered in future work. 

The foundation provided by the present work provides consistency and clarity, as well 
as a straightforward development that facilitates understanding. The "mystery" of elastic 
tailoring, hopefully, has been diminished as well. 
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APPENDIX: STIFFNESS COEFFICIENTS 

C
11 =

K 11 K ds f 

fC
12 

= K 12  ids 

C
I3 = Ki2 ds  ds 

2A 
C14 

= .7s 	

K12 ds 

C 15 
= C

16 = 0 

C I7 = f K 11 1.1) ds 

= K22(g)2  ds C22 

C23  = 	2  K2 4)(0- 1 	ds 

C24 = 

2A ce 

K22 Z1 ds d  

C2 = K I2 ca z ds  i 

C26 = K12 ds y ds 

C27 =1K 12  ZI)ds 

C33  =1;2242 ds 

fC34  = 2A ce K22  Ifds 

C35 =1K120 
z ds 

C36 = f KI2CDY ds 

C37 =K12 
 211.)ds 1 

4A 2  

C44 = c2e K22 ds  

(Extensional Stiffness) (A-I) 

(Coupling Stiffness) (A-2)  

(Coupling Stiffness) (A-3)  

(Coupling Stiffness) (A-4)  

(Choice of Axes) (A-5)  

(Coupling Stiffness) (A-6)  

(Transverse Shear Stiffness) (A-7)  

(Transvere Shear Stiffness) (A-8)  

(Coupling Stiffness) (A-9)  

(Coupling Stiffness) (A-10) 

(Coupling Stiffness) (A-11) 

(Coupling Stiffness) (A-12) 

(Transverie Shear Stiffness) (A-13) 

(Coupling Stiffness) (A-14) 

(Coupling Stiffness) (A-I5) 

(Coupling Stiffness) (A-I6) 

(Coupling Stiffness) (A-17)  

(Torsional Stiffness) (A-18) 
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2Ae

C45 = 

2A f 
z ds 

2A r  

C46 = 	YK I2 Y ds  

2Ae  
C 47  = 	K 1 2  ds 

C55  = fKil  z2  ds 

C56  = 0 

C57 =f 
ziU ds 

C66 = K
ii  y2  ds 

C 67  =f K 11  y 11)ds 

C77  =f K il  kl) ds 

(Coupling Stiffness) (A-I9) 

(Coupling Stiffness) (A-20)  

(Coupling Stiffness) (A-21)  

(Bending Stiffness) (A-22)  

(Choice of Axes) (A-23)  

(Coupling Stiffness) (A-24)  

(Bending Stiffness) (A-25)  

(Coupling Stiffness) (A-26)  

(Warping Stiffness) (A-27)  

Figure I. CH-47 Composite Main Rotor Blade Section 

x,u 

Figure 2. Closed Cell Thin Wall Beam Model 
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