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Summary 

This dissertation examines some issues concerning fault tolerance in distributed com­

puting systems using the election problem as a test bed. The first problem investi­

gated is the average-case behavior of algorithms for election on asynchronous rings of 

processors. An algorithm with good worst-case and good average-case message com­

plexity is obtained. It is demonstrated by extensive simulations that the average-case 

message complexity of the algorithm appears to be very close to the theoretical op­

timal. The availability of such algorithms is important for practical applications and 

their existence is interesting since it contradicts the common belief that algorithms 

with better worst-case message complexity perform less well in the average case. 

The impact of inexact knowledge by processors is examined. Specifically, the 

election problem is considered for asynchronous rings with one possible fail-stop link 

failure when a lower bound and/or an upper bound on ring size are known to all 

processors. It is shown that a good lower bound is most useful in designing algorithms 

with good worst-case message complexity. However, the availability of upper bound 

is only useful if the upper and lower bounds are sufficiently close. Even a very tight 

upper bound is not helpful if it is not combined with a good lower bound. 

The impact of the additional knowledge of the identifiers of two neighbors is also 

examined. It is shown that this knowledge affects the solvability of the problem but is 

not helpful in improving the worst-case message complexity if the problem is solvable 

without that knowledge. 

xi 



Tolerating link failures on square meshes of processors is studied, again using the 

election problem. While conceptually simpler algorithms are obtained using election 

algorithms on rings, a more sophisticated algorithm with better worst-case message 

complexity is also obtained for the case with a smaller number of faulty links. 

Several interesting open problems are discussed for each issue investigated. 
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Chapter 1 

Introduction 

A distributed system is a set of autonomous processors that communicate using a 

communication network. There are many advantages to distributed systems: Some 

resources can be shared by many processors (e.g., printers). Computation speed 

can be improved by load sharing. Furthermore, failures of system components (such 

as processors and communication links) can be tolerated using redundancy of those 

components [37]. 

A distributed system can adapt to failures in two ways. One way is having fault-

tolerant software that can operate continuously and correctly even if failures occur. 

The second alternative is temporarily halting normal operation and reconfiguring the 

system. This reconfiguring can be managed by a single processor called the "leader". 

The procedure that elects a leader is called an election [18] and is the focus of this 

dissertation. 

The problem of election has been studied extensively since it is one of funda­

mental problems of distributed computing systems. This dissertation examines some 

issues concerning fault tolerance in distributed computing systems using the election 

problem as a test bed. 

Brief descriptions of the contents of the chapters in this dissertation are as fol­

lows. Chapter 2 gives some definitions that are used through out the dissertation. 
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Chapters 3 summarizes previous work. 

Chapter 4 considers the average-case message complexity (i.e., expected number of 

messages for an execution of algorithms) of election algorithms for asynchronous rings. 

It is important for practical applications to have algorithms with good average-case 

message complexity. It is especially desirable for algorithms to have good average-

case and worst-case message complexity. Chapter 4 considers the question of whether 

there exist election algorithms that are optimal (or near optimal) in average-case 

message complexity and whose worst-message complexity is also near optimal. The 

existence of such algorithms is very interesting, since it is commonly believed that 

algorithms with good worst-case message complexity perform worse in the average 

case [31]. Chapter 4 considers the above question in failure-free asynchronous rings 

of processors. The question is answered positively by presenting an algorithm whose 

average-case and worst-case message complexities are both near optimal. 

Chapter 5 considers processor's knowledge of ring size on the possibility and com­

plexity of ring election algorithms. The number of messages needed for an execution 

of a distributed algorithm depends on parameters such as the assignment of the iden­

tifiers to processors, characteristics of the communication system (e.g., synchrony 

and topology), and the local knowledge of processors in distributed systems such as 

the number of processors in a distributed system. There have been many studies on 

the effect of these parameters on the message complexity [15, 24, 28, 32]. Chapter 5 

considers the case where each processor's knowledge of the number of processors in 

distributed systems is inexact. Each processor knows a lower bound and an upper 

bound of the number of processors instead of an exact number. Also, knowledge of 

identifiers of two neighbors are considered. Asynchronous rings of processors with one 



link failure are used as an example. Lower bounds on worst-case message complexity 

and two asymptotically tight upper bounds are obtained. An impossibility is also 

presented. 

Chapter 6 considers election algorithms for asynchronous square meshes of pro­

cessors in which some links may fail undetectably. Several cases on the relation of ,̂ 

the maximum number of faulty links, to the number of processors are considered with 

assumptions that t and its relation to the number of processors in the network are 

known to all processors. Several algorithms and an impossibility result are presented 

for the election problem in such systems. 

Chapter 7 gives conclusions and lists several open problems. 



Chapter 2 

Definitions and a Model 

2.1 Distributed Systems 

A distributed system is a set of processors and a set of communication links that 

connect them. Each processor has its own computing unit and local memory that 

are not shared with any other processor. Processors communicate with each other 

by passing messages along communication links. Since a distributed system can be 

considered as a network of processors, the term network is used instead of distributed 

system in much of literature. 

A communication link can be either bidirectional or unidirectional. If both pro­

cessors connected to a communication link can send and receive messages over the 

link, the link is bidirectional. If one processor can only send messages and the other 

can only receive them, the link is unidirectional. 

Distributed systems are either synchronous or asynchronous. A distributed system 

is synchronous if there is an a priori known (to all processors) bound on the delivery 

time for all messages that are delivered. (Some messages might not be delivered in the 

presence of faults.) If there is no such bound for a distributed system, the distributed 

system is asynchronous. 

The underlying graph of a distributed system is the topology of the system. Typical 



topologies of distributed systems include rings, complete graphs, and meshes. 

A distributed system is said to have a global sense of direction if links are labeled 

to capture some amount of topological information [39]. A ring has a global sense 

of direction if links are labeled as follows: all links are labeled as "left" and "right". 

Let Pi.,Pj,Pk be any three consecutive processors in a ring, then pj's "left" link is the 

"right" link of pi and pj's "right" link is the "left" link of p^. A square mesh has a 

global sense of direction if a processor can distinguish its four links by its names (such 

as up, down, left, right) in uniform fashion. Let P\TP2^P3^ and p^ be the processors 

that are connected to a processor pi with p^'s "up", "right", "down", and "left" links, 

respectively. Then, p^'s "up" link pi 's "down" link, pi's "right" link is pi 's "left" link, 

Pi's "down" hnk is pi 's "up" Hnk, and p.'s "left" hnk is pi 's "right" link. 

2.2 Faults 

Both processors and links in a distributed system can fail in various ways. Link 

failures, which are considered in this dissertation, can be fail-stop^ intermittent, or 

Byzantine. The fail-stop failure is the most benign failure type [40]. A failed link 

stops delivering messages and never delivers messages again. A faulty link of fail-stop 

failure fails before the start of an execution of an algorithm. The Byzantine failure 

is most malicious failure type. A failed link can perform any malicious behavior 

such as altering messages or sending false information. The intermittent failure is 

more malicious than fail-stop failures but less malicious than Byzantine failures. In 

the intermittent failure, a failed link stops delivering messages and never delivers 

messages again like fail-stop failure. But links of intermittent failure can fail at any 



time of an execution of an algorithm. 

In the presence of faults, distributed algorithms are hard to design. The impos­

sibility result by Fisher, Lynch, and Paterson [14] implies that the election problem 

is unsolvable on asynchronous systems with one processor failure that may fail dur­

ing a execution. Link failures are hard to tolerate if communication is asynchronous 

because failed links cannot be distinguished from slow ones. 

2.3 Distributed Algorithms 

A distributed algorithm for a distributed system consists of n copies (where n is the 

number of processors in the system) of a deterministic local program, each of which 

is assigned to one processor in the system. The programs are ordinary sequential 

programs with communication statements. The communication statements of a pro­

cessor are of the form of "send a message M over the link /" or "receive a message M' 

from the link /", where / is a link that connects the processor to another processor. 

2.4 The Election Problem 

Election is the problem of choosing a unique processor from the processors in a dis­

tributed system of n processors. Each processor has a unique identifier or id chosen 

from a totally ordered set. It is assumed that all processors are identical except for 

their identifiers. 

A distributed algorithm A solves the election problem if all executions of the 

programs terminate and the following conditions are satisfied after they do: 



• exactly one processor (called a leader) in the network is in a distinguished state 

called elected] and 

• the identity of the leader is known to all processors connected to the leader. 

2.5 Measures 

There are several measures for the complexity of distributed algorithms. One of the 

commonly used measures is worst-case message complexity, which is an upper bound 

on the number of messages sent during any execution of an algorithm. 

The maximum number of bits necessary to represent a message is another fre­

quently used measure. In some situations, a trade-off between the number of messages 

and the size of the largest m^essage is possible by encoding more information into a 

larger size message, and fewer messages can be sent. Therefore, it is important to 

try to minimize both measures. In this dissertation, worst-case message complexity 

is used as a principal measure and size of the longest message is also analyzed. 

Besides the worst-case complexity and the message size, the average-case message 

complexity is also of interest. The average-case message complexity of an algorithm is 

the expected number of messages for an execution of the algorithm. More formally, it 

is defined as follows. Let A be an algorithm that is executed on a distributed system 

of n processors. Let a random variable )t̂ n[-4] be the number of messages sent during 

an execution of A. Let / „ be a subset of inputs to the algorithm. Then average-case 

message complexity of algorithm A is defined by 

77;:[̂ ] = E{finlA]} = Y.^- ^Hf^n[A] = k], 
k 



where E{-} denotes expected value and Pr{-} denotes probability with respect to 

a probability distribution over In [42]. Note that a typical /„ for an asynchronous 

distributed system is the set of all assignment of identifiers to the n processors. 

The following defines more precisely the average-case message complexity of algo­

rithms that elects a leader in an asynchronous rings of processors. For asynchronous 

deterministic algorithms, the behavior of a processor depends on inputs to the algo­

rithm and the order in which messages are received. While inputs may be fixed, the 

order in which messages are received may vary in every execution. However, the order 

in which messages are received by a processor does not vary for unidirectional rings of 

processors where messages on every link are delivered in FIFO order. Therefore, the 

behavior of a processor in algorithms that elects a leader in an asynchronous rings 

processors depends only on the assignments of identifiers. Similarly, the exact number 

of messages required to elect a leader with algorithm A depends on permutations of 

identifiers of all processors in the ring. 

Assume that all ring permutations are equally likely. Then, 

where Jnk is the number of ring permutations of size n in which k messages are 

exchanged by algorithm A. 

2.6 A Model of Distributed Systems 

A communication network consists of a set of n processors P = {pi-,P2i''' ^Pn} and 

a set of links, each of which connects two processors. A network is modeled as a 



graph G = (V, .E), where \V\ = n, each vertex represents a processor, and each edge 

represents a link between two processors. 

Each processor pi has an unique identifier from a totally ordered set. Every 

processor pi also has two buffers (SendBuffer-(l), ReceiveBuffer-(l)) for every link / 

that connects one processor to another. It is assumed that all buffers are first-in 

first-out (FIFO). 

An execution of a communication statement "send a message M over link /" by 

processor pi results in two communication events: a Message-Send event that places 

message M into the SendBuffer-{l) and a Message-Transfer event or a Message-

Loss event for message M. A Message-Transfer event removes a message from 

SendBuffer^{l) and places the message into the ReceiveBufferj(l) (if link / connects 

processors pi and pj). A Message-Loss event removes a message from SendBuffer-{l) 

and discards it. Either of a Message-Transfer event or a Message-Loss event for 

message M will occur eventually after Message-Send event for message M. This 

takes indefinite amount of time. This fact captures the asynchronous nature of the 

communications considered. 

This dissertation considers fail-stop link failures that occur before execution of 

a distributed algorithm begins. If a Message-Transfer event occurs for a link, then 

there will be no Message-Loss events for the link during the execution of an algorithm. 

Also, if a Message-Loss event occurs for a link, then there will be no Message-Transfer 

events for the link. This captures the nature of fail-stop link failures. 

An execution of a communication statement "receive a message M over link /" 

by processor pi results in a communication event Message-Receive that removes one 



message in ReceiveBuffer -{l) if there is one available. If there is more than one mes­

sage, the messages are removed in FIFO order. If there is no message, the execution 

has no effect. Contents of message M are available in local memory after the message 

is removed from the buffer. 

A link / is said to be faulty if there is one or more Message-Loss events for the 

link / during an execution of an algorithm. 

10 



Chapter 3 

Literature Survey 

The problem of election has been studied extensively on many different topologies 

with various settings of parameters such as synchrony [16] and the availability of a 

sense of global direction [28, 39]. Some important results that are related to this 

dissertation are summarized in the following sections. 

3.1 Reliable Networks 

This section presents some results for the election problem in various topologies with­

out any failures. 

3.1.1 Ring Networks 

A ring of processors is said to be bidirectional if all links in the ring are bidirectional. 

A ring of processors is said to be unidirectional if all links in the ring are unidirectional 

and a message sent by a processor can be delivered to its originator only by passing 

through all other processors in the ring. 

The election problem for rings of n processors has received considerable attention 

since the first algorithm by LeLann for unidirectional rings [27]. The problem has 

been studied for bidirectional as well as unidirectional rings. 

11 



The first lower bound of ^nlogn + 0{n) on worst-case message complexity was 

established by Burns [7] for bidirectional asynchronous rings when the size of the ring 

is not known to processors. Pachl et al. [33] showed average-case and worst-case lower 

bounds of nHn ~ .693n logn + 0(n)^ for asynchronous unidirectional rings when the 

size of the ring is not known to processors. For comparison-based algorithms, i.e., 

algorithms are restricted to using only comparisons between identifiers of processors, 

Frederickson and Lynch [16] proved a lower bound of ^n log n-\-0(n) on the worst-case 

message complexity for synchronous bidirectional rings. This lower bound also applies 

to the asynchronous systems. Pachl et al. [33] showed an average-case lower bound 

of ^nlogn -\- 0{n) for bidirectional rings. This was later improved by Bodlaender [5] 

to ^nHn ~ .34671 log n + 0(n). 

An algorithm for the unidirectional case that asymptotically meets the worst case 

lower bound was first obtained by Peterson [36] with 1.44071 logn + 0{n). It is later 

improved by Dolev et al. to 1.356/1 log TI + 0(n) [12]. The average-case upper bound 

of 0.69371 log n -\- 0(n) for the unidirectional case was achieved by Chang and Roberts 

[8]. However, its worst-case message complexity is 0{n^). 

Tables 1 and 2 present some significant results for both unidirectional and bidi­

rectional cases. 

3.1.2 Complete Networks and Bounded Degree Networks 

Korach et al. [25] obtained an fl{n\ogn) lower bound on worst-case message com­

plexity for the election problem on a complete network of processors. 

Afek and Gafni [3] and Peterson [35] presented algorithm for the election problem 

^Hn is the n'^ Harmonic number. 

12 



U p p e r Bounds 

Average Worst 
LeLann (1977) O(n^) 0{n^) 
Chang k Roberts (1979) nHr^i^ .693ri log n + 0(n)) 0(71^) 

Peterson (1982) .943n log n + 0 ( n ) t 1.440n log n + 0(n) 

Dolev et al. (1982) .967n log n + 0 ( n ) t 1.356n log n + 0 ( n ) 

Lower Bounds 

Average Worst 

Burns (1980) 
Pachl et al. (1984) 

^n logn + 0 ( n ) + 
nHn(^ .693n\ogn ^ 0{n)) 

jEmpirical results by Everhardt (1984). 
|Also holds for bidirectional rings. 

Table 1: Previous Work for Unidirectional Rings 

U p p e r Bound 

Average Worst 
Hirschberg k Sinclair (1980) 8n log n + 0{n) 
Santoro et al. (1982) 1.89ri log n + 0(n) 
van Leeuween k Tan (1985) 1.440nlog n + 0(n) 
Lavault (1989) \^/2nHr^{^ .490n log n + 0(n)) ]n^  

Lower Bound 

Average Worst 
Burns (1980) \n log n + 0(n) 
Pachl et al. (1982) | log n + 0(n) 
Bodlaender (1988) \nHn{^ Mln log n + 0{n))  

Table 2: Previous Work for Bidirectional Rings 

13 



on synchronous and asynchronous complete networks that require 0(n log n) messages 

in the worst case. Loui et al. [28] showed that 0(72) messages suffice for election on 

asynchronous complete networks if a global sense of direction is available. (A complete 

network has a global sense of direction if the links of every processors are labeled as 

follows: A directed Hamiltonian cycle H is fixed and each link of every processor u 

is labeled according to the distance in H from u to processor adjacent via the link.) 

For asynchronous square meshes of n processors (a square of n processors, with 

\/n processors on each side, where each column and each row form a ring), Peterson 

[35] showed that election is possible with 0{n) messages. 

3.1.3 Arbitrary Networks 

For an arbitrary connected asynchronous network with n processors and e communi­

cation links, it has been shown that 0(72 log n + e) messages are sufficient to elect a 

leader [17]. It has also been shown that any algorithm that solves the election prob­

lem for asynchronous networks whose topologies are not known to processors must 

use each communication link at least once [17, 25]. This lower bound holds even if 

synchrony is assumed [38]. 

3.2 Unreliable Networks 

The impossibility result of Fisher et al. [14] implies that, if a processor may fail by 

stopping during an execution of an algorithm, then no election algorithm exists for 

asynchronous networks even if all links are reliable. On the other hand, the algorithms 

of Pease et al. [34], Dolev et at. [10], Dolev and Strong [11], and Coan [9] can be 

14 



modified to obtain election algorithms for synchronous complete networks with any 

type of processor failures. 

The following sections summarize some results for networks with link failures. 

3.2.1 Ring Networks with Link Failures 

Goldreich and Shrira [19, 21] studied the election problem in asynchronous rings with 

one undetectable fail-stop link failure. (More than one such failure will disconnect 

the network.) For the case in which the size n of the ring is known to all processors, 

they presented an algorithm with worst-case message complexity of 0 ( n l o g n ) . For 

the case in which the size of the ring is not known to processors, they obtained an 

algorithm of worst-case message complexity of 6(72^) with the additional assumption 

that each processor knows the identifiers of the two processors adjacent to it. 

3.2.2 Complete Networks with Link Failures 

Abu-Amara [1] considered asynchronous complete networks with t undetectable fail-

stop link failures and obtained an algorithm with worst-case message complexity 

0{nt -\- 72 log n). Masuzawa et al. [29] studied asynchronous complete networks with 

t fail-stop link failures with the assumption of a global sense of direction. They pre­

sented an algorithm whose worst-case message complexity is Q[nt -\-1 logf), provided 

that t < n — \. 

15 



Chapter 4 

Average-Case Behavior of Election 
Algori thms on Rings 

4.1 Introduction 

As shown in the Chapter 3, there has been much research on the election problem for 

rings of processors. For unidirectional asynchronous rings, asymptotically optimal 

average-case message complexity algorithm and asymptotically worst-case message 

complexity algorithms have been presented [8, 12, 36]. 

The worst-case message complexity of Chang and Roberts's algorithm is 0{n^) [8] 

but it is optimal for average-case message complexity for unidirectional asynchronous 

rings. The algorithm by Lavault [26], whose average-case message complexity is 

asymptotically optimal for bidirectional rings, also has worst-case message complexity 

0{n') [6], 

Average-case behaviors of asymptotically optimal worst-case algorithms were stud­

ied by Everhardt [13] with an empirical method. (The average-case message complex­

ity was obtained by applying least-square method on the average number of messages 

for ring sizes ranging 5 to 200. The average number of messages for a size of ring is 

obtained by averaging the number of message over different assignment of identifiers 

to processors in the ring.) Everhardt's empirical results gave the average-case message 

16 



complexities of algorithms by Dolev et al. [12] and Peterson [36] as .%7n log n-\-0(n) 

and .943nlogn + 0 ( n ) , respectively. 

As observed above, known algorithms with "good" average-case message complex­

ity (those of Chang and Roberts and of Lavault) behave poorly in the worst case. Also, 

the algorithms with the best known worst-case message complexity behave poorly in 

the average case. The availability of algorithms that have good average-case as well 

as worst-case behavior has significant meaning because of their practical importance. 

Furthermore, the existence of such algorithms is interesting because it is commonly 

believed that algorithms with better worst-case message complexity perform less well 

in the average case [30]. 

This chapter presents an algorithm for unidirectional rings and reports on sequen­

tial simulations that were used to analyze the algorithm's average-case behavior with 

statistical methods. A mathematical analysis of its average-case complexity would 

involve complicated techniques from the theory of combinatorial enumeration; how­

ever a statistical analysis suggests that the algorithm behaves nearly optimally in the 

average case. Also, it is shown by mathematical analysis that worst-case message 

complexity of the algorithm is approximately 1.440nlog n -(- 0(n). 

This chapter considers the election problem on asynchronous unidirectional rings 

of processors. A processor receives messages from one link and sends messages on 

the other link. A message sent by a processor can return to its sender after passing 

through all other processors in the ring. The size of the ring is not known to any 

processor, but the topology of the network is known to every processor. An algorithm 

is assumed to start up spontaneously. This is reasonable for ring networks, because 

the first message sent by initiator(s) of an algorithm can serve as a "wakeup" message 

17 



without increasing the message complexity. 

The next section isolates the technique by which optimal average-case message 

complexity is achieved in the algorithm by Chang and Roberts. An improved algo­

rithm is developed by applying similar techniques in Section 4.3. Section 4.4 analyzes 

by statistical methods the average case behavior of several algorithms, including the 

proposed algorithm. 

4.2 Previous Algorithms and the Saving Tech­

nique 

Electing a leader includes reducing the size of the number of candidates processors 

down to one and detecting the termination of the algorithm [4]. 

Termination detection for rings of processors is simpler than other networks. An 

elected processor sends a special declaration message that carries its identifier to 

one of its adjacent processor and terminates its execution of the algorithm. Upon 

receiving the message, a processor relays the message to another adjacent processor 

and terminates its execution of the algorithm. As long as the ring is connected, all 

processors in the ring eventually receive the special message and execution of the 

algorithm terminates. 

In some algorithms for unidirectional rings, reducing the number of candidates 

processors is done as follows. Initially, all candidates processors are in active state 

and may later become passive; only one processor remains active through the algo­

rithm. A processor maintains a temporary identifier (tid) that is initially its own. An 

active processor compares its tid with its adjacent processor's tid (called nid) and 
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determines whether to remain active and which tid to use according to some subset 

of the following rules: 

D An active processor remains active if tid is less than nid and sets tid to nid. 

A An active processors remains active if tid is greater than nid and keeps same tid. 

G An active processor remains active if tid is greater than nid and sets tid to nid. 

L An active processor remains active if tid is less than nid and keeps same tid. 

The first and the second rules are called "descending (D)" and "ascending (A)" rules, 

respectively. Note that if all processors observe the first (or second) rule there are some 

consecutive processors in a ring whose identifiers form a descending (or ascending) 

sequence, the maximum tid in the sequence is compared to all other tid^s in the 

sequence and the processor with the maximum tid remains active, respectively. The 

third and the fourth rules are called "greater than (G)" and "less than (L)" rules, 

respectively. Several algorithms could be designed using one or two of the above rules. 

Peterson's algorithm [36] uses A and D rules. 

Algorithm D (Figure 1) for unidirectional rings is designed using the "descending" 

rule. Initially, all processors in the ring are active. The number of active processors 

is reduced in the following way. Every processor maintains a local variable tid that 

is initially its own id. Only active processors initiate messages containing their tid''s 

and those are forwarded to the next active processor by passive processors. Upon 

receiving a message, an active processor compares its tid with delivered id (stored in 

a variable nid of the receiver). It becomes passive if nid is smaller than tid-^ otherwise 

it remains active, and sets its tid to nid ("descending" rule). In other words, the tid 
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Algor i thm D 
tid <— id; 
state <— active; 
send{tid); 
while (true) do 

receive{nid)] 
if (nid = id) then 

"Declare elected" 
else if (the received message is the declaration message) then 

"Set leader's identifier, and forward the identifier, and exit" 
else 

case state of 
active: 

if {nid > tid) then 
tid <— nid; 
send{tid); 

else 
state <— passive; 

passive: 
send{nid); 

Figure 1: Algorithm D 
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of an active processor is forwarded to the next active processor and is then compared 

to that processor's tid. 

The termination of the algorithm is detected by checking if the message received 

is the one sent by itself or a declaration message. Note that only active processors do 

the other comparisons; passive processors only relay messages. Also, note that any 

set of adjacent processors that form a descending chain of id''s have same tid at the 

end of execution of the Algorithm D. 

The u^'^ phase of an active processor begins after it receives its u^'^ message. The 

u^'^ phase of a passive processor begins immediately before it receives its {u -\- 1)̂ ^ 

message. Note that a message that is delivered to an active processor in its phase u 

is originally sent by another active processor that enters its u^^ phase by sending the 

message. This is clear since passive processors do not initiate messages. 

The following shows it is shown that the tid of a passive processor is less than 

that of the next active processor to its right. Let p i , . . . , p ^ , • • •, j9„ be processors that 

forms a ring of size n. Let tidu{pi) be the tid of an active pi in its phase u and 

let tid{pi) be the tidu{pi) if the phase p is the last phase in which pi was in active. 

Consider a segment pi, • • • ,pk, • • • ,pj of a ring during an execution of algorithm D, 

where processors pi and pj are active in phase u, while all other processors in the 

segment are passive. Then, tid{pk) < tidu{pj) for i < k < j . This is obvious when 

u = 1. Assume this is true for the phase u — 1. Let Pk^i • • • iPkm (̂  ^ ^h ^ j 

for 1 < h < m) be the processors that become passive in the phase u — 1. Then, 

tid(pk^) < tid(pk^) < • • • < tid(pk^) = tidu(pj): since Pk^,- •• ,Pkm become passive and 

Pj is active in phase u — I. Therefore, the claim is true for the phase u. Also, it is 

true for later phases since passive processors never changes their tid. 
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With this observation, algorithm D can be modified to eliminate some messages 

by selectively forwarding messages at passive processors. A passive processor relays 

only messages with nid that is greater than its tid instead of always relaying incoming 

messages. This technique is called the ''saving technique". 

Since the initial value of tid of a processor is its id and tid is not changed if 

nid < tid^ all messages are forwarded up to the processor whose id is greater than that 

of the original sender. Algorithm D with the saving technique is exactly Chang and 

Roberts's algorithm, which is optimal in average-case message complexity. Figure 2 

shows Chang and Roberts's algorithm. 

Chang and Roberts's algorithm (algorithm D with the saving technique) has opti­

mal average-case message complexity. The following shows that the saving technique 

does not increase the worst-case message complexity. 

Consider executions of algorithms D and Chang and Roberts's algorithm on same 

ring. If a processor is active and sends a message in phase p during an execution 

of Chang Sz Roberts's algorithm, then the processor is active in phase u during an 

execution of algorithm D. Also, a message sent by an active processor in phase u 

in Chang and Roberts's algorithm travels at most as far as the message sent by the 

same processor in the same phase of algorithm D. Thus, the saving technique does 

not increase the worst-case message complexity of the original algorithm. 

4.3 The New Algorithm 

As shown in the previous section, the saving technique is useful in achieving good 

average-case complexity while it does not increase the worst-case message complexity. 
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Algor i thm Chang & Robert s 
tid <— id; 
state ^ ACTIVE; 
send{tid); 
while (true) do 

receive{nid); 
if [nid = id) then 

"declare elected" 
else if (the received message is the declaration message) then 

"Set leader's identifier, and forward the identifier, and exit" 
else 

case state of 
active: 

if {nid > tid) then 
tid <— nid\ 
senditid)] 

else 
state ^ PASSIVE; 

passive: 
if {nid > tid) then 

send{nid); 

Figure 2: Chang & Roberts's Algorithm 
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This section first presents a simple algorithm (called DG; see Figure 3) that is similar 

to algorithm D, but its worst-case message complexity is 0{n\og n) instead of O(n^). 

The algorithm is then improved by applying the saving technique. 

Algor i thm D G 
tid <— id; 
state <— active; 
parity <— true; 
send{tid); 
while (true) do 

receive{nid); 
if [nid = id) then 

"declare elected"; 
else if (the received message is the declaration message) then 

"Set leader's identifier, and forward the identifier, and exit" 
else 
case state of 

active: 

if ((nid < tid) ® parity)^ then 
tid <— nid; 
send{tid); 

else 
state <— passive; 

parity <— -'parity; 
passive: 

send{nid); 

I ® denotes exclusive or. 

Figure 3: Algorithm DG 

4.3.1 Algorithm DG 

In algorithm D, the rule for a processor to remain active is that the received tid 

is should greater than its own tid (D rule). Let p-[,---pn be processors such that 
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processors pi and pi are adjacent to each other if j = (z -|- 1) mod 72 in a ring of n 

processors. If id{pi) < id[p2) < • • < id[pn), an execution of algorithm D on the ring 

uses 0{n^) messages. To avoid this, algorithm DG adopts another rule by which a 

processor may remain active even if the received id is less than its own tid (G rule). 

Algorithm DG applies these two rules in alternate phases. Since both rules require 

to set tid to nid^ both rules can be adopted in algorithm DG using a variable parity. 

(See Figure 3.) 

This reduces the worst-case message complexity to O(n logn) . Note that active 

processors set their tid''s to a received id using both rules. 

4.3.2 Algorithm DGS 

To apply the saving technique, the following uses an observation that is similar to 

that for algorithm D. Let p^, • • • ,pjti ? •' ' ^Pkmi''' iPj t>e a segment of a ring, where 

Pi and pj are active at the end of phase w — 1, the processor pjt, (1 < / < m) are 

processors that became passive in phase iz — 1, and all other processors in the segment 

are passive from the beginning of that phase. Assume that parity is false ("greater 

than" rule applied) in phase u — 1. Since Pk^-,''' ,Pkm became passive and pj is active 

in phase w — 1, tid(pk^) > •• > tid(pk^) = tidu-i{pj). Then tid(pki) — ^^^uiPj) 

holds for all 1 < / < m at the beginning of phase u. If tidu-\(pi) > tid(pk^) for some 

1 < / < m at the beginning of the phase u, then tidu-i[pi) > tidu[pj) and pj remains 

active in the phase u. Thus, the saving technique can be applied. The message sent 

by Pi can be stopped at pk^ in phase u. Note that, if the message sent by pi stops 

earher in phase iz, then processor pj remains active in phase u since it does not receive 

a message in phase u. 
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With this observation, algorithm DG can be improved as follows. Since messages 

are stopped early only at processors that became passive in the last phase, another 

state recent is introduced to distinguish such processors from other passive processors. 

(Processors p^, (1 ^ ^ ^ ^ ) become recent in the above example.) Recent processors 

become active if they receive an id greater than tid when the value of parity is true. 

Passive processors relay messages as always. 

A message that stops at active processor p^ in algorithm DG stops at a recent 

processor p^i in the modified algorithm. Thus, the recent processor p^i needs to act 

as if it were the active processor pj. The active processor pj needs only to relay 

messages in the modified algorithm. Since pj does not receive messages in phase u, pj 

remains active and the parity of pj does not change in phase u. Thus, the algorithm 

is modified so that every message contains its sender's parity as part of a message. 

An active processor compares its parity with that contained in the message received. 

If the two parities are different, the processor becomes passive. It is possible that 

some recent processors do not receive a message in a phase. These processors become 

passive in the following phase. Thus, every recent processor compares its parity with 

one contained in the message received (if it receives one) and become passive if the 

values are different. 

A similar modification is also possible for phases in which the value parity is 

false. For phases with false parity, recent processors become active if md is less than 

tid; otherwise they become passive. Algorithm DG with the saving technique is the 

algorithm DGS (Figure 4). 

Note that some messages could be saved in every phase (this contrasts with al­

gorithm DG). A similar technique is used in the algorithm of Dolev et al. [12], but 
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Algor i thm D G S 
state ^ ACTIVE; 
tid <— id; 
parity <— true; 
senditid^ parity); 
while {true) do 

receive{nid, nparity); 
if [nid = id) then 

"declare elected"; 
else if (the received message is the declaration message) then 

"Set leader's identifier, and forward the identifier, and exit" 
else 

case state of 
active: 

if [nparity ^ parity) then 
state <— passive; 
sendinid^ nparity); 

else if [{nid < tid) ® parity) then 
state <— recent; 

else 
parity <— -^parity; 
tid <— nid; 

recent: 
if [[nparity ^ parity) A [[nid > tid) ® nparity)) then 

tid <— nid; 
state <— active; 
send{tid, nparity); 

else 
sendinid^ nparity); 
state <— passive; 

endif; ' 
passive: 

sendinid^ nparity); 

Figure 4: Algorithm DGS 
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saving is possible only in every other phase in that algorithm. Recently, Higham 

presented an algorithm where messages are stopped earlier in every phase [22]. This 

algorithm is similar to algorithm DGS. It was claimed that the worst-case message 

complexity is 1.27277, log n-\-0{n). Unfortunately, this algorithm contains a non-trivial 

error, has been 

Figure 5 shows executions of algorithms DG and DGS on a ring of 13 processors. 

In both tables, the first lines shows the zVf's of processors in the ring. Each of following 

9 1 8 11 5 7 13 4 10 3 6 12 2 
T - 9 - - 11 - - 13 - 10 - - 12 
F - 9 11 - 10 
T 10 - 11 
F - 10 
T 10 

An Execution of Algorithm DG 

9 1 8 11 5 7 13 4 10 3 6 12 2 
T R 9 R R 11 R R 13 R 10 R R 12 
F - R - 9 - 11 - R - 10 
T 10 - R - 11 -

F R - 10 -

T 10 

An Execution of Algorithm DGS 

Figure 5: Sample Executions of Algorithms DG and DGS 

lines show tid''s of each processor at the end of successive phases. "T" and "F" in the 

first column of each line represent the values (true and false, respectively) of parity 

used in that phase. If a processor is active at end of a phase, a number (indicating 
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the processors' tid) is shown. Processors in recent state (for algorithm DGS only) are 

denoted "R" and passive processors are denoted "-". In the execution of algorithm 

DGS, a blank means the corresponding processor did not receive a message in that 

phase. (Every processor receive a message in any phase of an execution of algorihtm 

DC.) 

4.3.3 Worst-Case Message Complexity of Algorithm DGS 

The worst-case message complexity of algorithm DG will be shown to be 0{n\ogn), 

and so is that of the algorithm DGS, since the new saving technique does not increase 

the worst-case message complexity. (The proof of this is similar to that for Chang 

and Roberts's algorithm). 

An analysis of worst-case message complexity of algorithm DG follows. Let u be 

the maximum number of phases for an execution of algorithm DG on a given ring. 

Number the phases in reverse order so that u is the first phase and 1 is the last phase 

(phase u -^ 1 denotes before the start of the algorithm). Let nik be the number of 

active processors at the end of the phase k. Then, mi — 1 and niu+i = n. Let pi 

and pj be two active processors at the beginning of the phase k such that pj receives 

a message from pi in the phase. Assume that pj is active at the end of the phase 

k. Then there is at least one active processor between pi and pj in phase /: + 1-

Otherwise, pj received a message from pi in the phase k-\-l and tidk(pj) = tidk-\(pi). 

Then pi cannot remain active since the parity of phase k is different from that of 

phase k -^1. Thus, a processor may remain active only if there there is at least one 

processor that became passive in the previous phase. This means that the number of 

processors remaining active at the end of phase k is at most the number of processors 
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that became passive during the phase k -^ 1. In other words, rrik < 'rnk+2 — fTT'k+i-

Or, mk+2 ^ ^ f̂c+i + ^̂ fc- This gives a Fibonacci progression, so that ruk > î fc+i 

where Fk is the k^'^ Fibonacci number. Fu+i = 7?(</'""^^ — <^"'̂ ^), where 0 = ^"^^ and 

<̂  = ^ ^ . Since |(/)^+^| < 1 for n > 0, w < 1.440 log n + 0(1) is obtained by taking 

logarithms. Since every phase requires n messages, the total number of messages is 

1.440n log n -|- 0 ( n ) , where 0{n) messages also includes messages needed to broadcast 

the id of leader to all other processors. 

4.3.4 Correctness of Algorithm DGS 

Algorithm DGS is correct if algorithm DG is correct. This follows from the fact 

that the number of active processors which are active in phase i of an execution of 

algorithm DGS is same as that of algorithm DG, since the there is only one active 

processors at the end of an execution of algorithm DG. 

The correctness of algorithm DG follows from the fact that the number of ac­

tive processors in each phase decreases as an execution proceeds and that only one 

processor receives a message that carries its own id. The first fact comes by noting 

that there always is a processor with maximum (or minimum) tid among all active 

processors in any phase. The processor with maximum (or minimum) tid in a phase 

causes at least one processor to become passive in the phase. The processor with 

maximum (or minimum) tid remains active in the next phase. 

The second fact can be shown as follows. Assume that there were two or more 

processors that received messages that carry their own id. Let p^ and pj be such 

processors and let id{pi) and id{pj) be their «Ws, respectively. Then, pi and pj are 

both active when they receive messages carrying their own tid^s in any phase of an 
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execution of the algorithm. Without loss of generality, it can be assumed that pj is 

to the right of p^ and a processor receives a message from its left link. Since messages 

are dehvered in FIFO order on a link, the message carrying id(pj) will be delivered 

to PJ before the message carrying id(pi). Therefore, pi cannot be active when the 

message carrying its own id is delivered. Thus, only one processor sees the message 

carrying its own id. If there is only one active processor in any phase, that processor 

will declare itself elected in the next phase. 

T h e o r e m 4.3.1 Algorithm DGS solves the election problem correctly with worst-case 

message complexity 1.440nlog n + 0(n). 

4.4 Analysis of Average-Case Message Complex-

ity 

As shown in Chapter 2, the average-message complexity 7^[^] of an election al­

gorithm A for unidirectional rings is defined as follows by assuming that all ring 

permutations are equally likely: 

1 ^ . _ 1 

\-tn\ K [n - i). , 

where Jnk is the number of ring permutations of size n in which k messages are 

exchanged by algorithm A. 

The function f(n) = Ji^lA] is of interest. A regression analysis was performed to 

analyze the average-case behaviors of three algorithms: Chang and Roberts's algo­

rithm, Peterson's algorithm, and algorithm DGS. The regression analysis of Chang 
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and Roberts's algorithm was performed as an indicator of reliability of the analy­

sis. The function f(n) is modeled with the regression equation (3o + Pin + /?2^1ogn. 

This regression equation is used since the worst-case message complexities of the an­

alyzed algorithms and the average-case message complexity of Chang and Roberts's 

algorithm are expressed with the function. 

As shown in Figures 6 and 7, the standard deviation of the number of messages 

is not constant with ring size. Thus, the weighted least square method is used for 

the regression. To increase the reliability of analysis, large sample sizes are chosen so 

that the result of regression will be very close to the theoretical analysis for Chang 

and Rober t s ' s a lgor i thm. 

The average number of messages for each algorithm is calculated by sequential 

simulation of each algorithm. Ring size n is sampled from 21 to 2400 (including mul­

tiples of 50, powers of 2, and Fibonacci numbers). The average number of messages 

for each n is the average of lOOn random permutations. Permutations of identifiers 

are obtained by an algorithm that generates random cyclic permutations. All sim­

ulations were performed on a Sequent Symmetry with 10 processors. The results of 

the regression analysis are shown in Figures 8, 9 and 10. 

The result for Chang and Roberts's algorithm is almost same as that of the the­

oretical analysis. The simulation gives .693nlog72 -|- .572n + .852, while theoretical 

analysis gives .693nlogn + .577n -f .5. This suggests that the regression analysis is 

reliable, since the same number of samplings is done for all algorithms. (Reliability 

of the regression analysis is heavily dependent on the sample size.) 

For Peterson's algorithm, Everhardt [13] obtained (3-2 = .943 by statistical anal­

ysis. (This result is obtained by 10 simulations for n < 20 and n /2 simulations for 
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U p p e r Bounds 

Average Worst 
LeLann (1977) 0{n^) O(n^) 
Chang k Roberts (1979) ,693n log n + 0(n) 0(n'^) 

Peterson (1982) .873nlog n + 0 ( n ) f 1.440nlog n + 0 ( n ) 

Doleve ta l . (1982) .967nlog n + 0 ( n ) t 1.356nlog n + 0 ( n ) 

Algorithm DGS .694n log n + 0{n) f 1.440n log n + 0(n) 

Lower Bounds 

Average Worst 
Burns (1980) ^n log n + 0(n)§ 
Pachlet al. (1984) .693nlog n + Q(n)  
tEmpirical results of this chapter. 
JEmpirical result by Everhardt (1984). 
§For bidirectional rings. 

Table 3: Upper and Lower Bounds for Unidirectional Rings 

71 > 20 for n ranging from 5 to 200.) The result obtained here is /?2 = .873, which 

should be more accurate since a larger range of ring size were used and more simula­

tions were performed for each ring size. The results from the regression analysis for 

algorithm DGS strongly suggest that the algorithm is very close to optimal within 

lower order terms in the average case complexity. (The simulation of algorithm DGS 

gives .694nlog n + .849n + .704.) The results are summarized in Table 3 with related 

previous results. (The contributions of this chapter are boxed.) 

Every message in algorithm DGS contains the tid of its sender and the value of 

parity of the phase. Therefore, the size of each message is 6 + 1 bits where b is the 

length of longest identifier. Note that any comparison algorithm needs b bits for every 

message, since identifiers of processors should be exchanged for comparisons. 
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4.5 Concluding Remarks 

This chapter presented an election algorithm on unidirectional rings of processors. 

While mathematical analysis of the average-case message complexity is an open prob­

lem, statistical analysis suggests that the algorithm has essentially the same average-

case message complexity as Chang and Roberts's algorithm. Also, the algorithm has 

O(n logn) worst-case message complexity while the Chang and Roberts's algorithm 

has O(n^). This algorithm is important since it has good average-case message com­

plexity as well as good worst-case complexity. This is done at the cost of one more 

bit for every message. This result is interesting because it is contrary to the common 

belief that algorithms with good worst-case complexity perform worse in the average 

case. 

The simulation result for Peterson's election algorithm should be more accurate 

than the previous simulation result [13], since a larger sample size and a more sophis­

ticated analysis were used. 
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Chapter 5 

Election on Faulty Rings with 
Incomplete Size Information 

5.1 Introduction 

In many previous studies of the election problem in the ring network, it has been 

assumed that every message sent over a link is eventually delivered. This chapter 

considers rings in which this assumption need not hold. It is assumed that a link may 

be faulty and messages sent over the link might not be delivered. (If there are two 

more more faulty links, there are disconnected processors.) This situation is especially 

interesting in the case of asynchronous rings, since failed links cannot be detected in 

these networks [20, 23, 41]. 

Election involves two main tasks: resolving the competition between candidates 

for a leader (usually all processors participating the election are candidates at the 

beginning of an algorithm) and detecting termination of the algorithm [4]. For rings 

of processors without failures, termination can be detected when a message returns 

to its sender after passing though all other processors. This may not be possible if 

one or more links may fail. 

It has been shown that election is impossible in an asynchronous ring with one 

fail-stop link failure if the size of ring is not known to processors [20]. Thus, the 
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knowledge of the size of the ring is important if there are faulty links. This chapter 

considers cases where the size of the ring is known to processors in inexact form, i.e. 

the lower bound and/or the upper bound of the size are known to processors instead 

of the exact value of the size. 

Even for the cases in which the size of the ring is not known to processors, the 

election problem may be solvable if some other information is available: for example, 

if each processor knows identifiers of two neighbors. Goldreich and Shrira [20] showed 

that there is an algorithm with worst-message complexity of 0{n^) for this case. 

This chapter considers the following cases on a lower bound I and an upper bound 

u of t he size n: 

• every processor knows i and u such that i = u 

• every processor knows i and u such that ^ > | 

• every processor knows i and u such that ^ < | 

• every processor knows i but does not know u. 

(Note that a processor always knows that the lower bound is at least 1, since it knows 

that it is part of the ring.) As shown in Table 4, there are many cases depending on 

the relationship between i and u and the availability of two neighbors' identifiers. (For 

all cases, it is assumed that every processor knows its own identifier.) This chapter 

examines all possible cases and reports upper bounds, matching lower bounds, and 

impossibility results. 

Goldreich and Shrira [20, 21] considered some of these cases. They showed that 

worst-case message complexity is Q(n\ogn) when the exact size of the ring is known 
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u = oo i < ^ 
— 2 

U> t> ^ £ = u 

0(n2) t 

Impossible^ 

Knows Neighbors 

Does Not Know 
Neighbors 

0 ( n l o g n + (n — i)n) 

Impossible 

0 ( n l o g n ) 0 ( n l o g n ) 

T For the case i = 1. 

Table 4: Cases Considered in this Chapter 

to all processors. (This also holds for the case in which the identifiers of its two 

neighbors are also known to each processor; election is possible without this addi­

tional knowledge. Furthermore, the identifiers of neighbors for every processor can 

be discovered with 0(n) messages.) 

Goldreich and Shrira showed that worst-case message complexity is 0(n^) if every 

processor knows its own identifiers and identifiers of its two neighbors but the size of 

the ring is not known. They proved that it is impossible to elect a leader if the only 

input to every processor is its own identifier. 

This chapter presents an algorithm with worst-case message complexity 0(n log n) 

that solves election problem for all cases with 0(72 log n) in the Table 4. Note that 

the algorithm with worst-case message complexity 0{n log n) by Goldreich and Shrira 

does not work for all of those cases. An algorithm with worst-case message complexity 

O(nlog 72 + (n — i)n) is also presented in this chapter. This algorithm solves election 

problem for the two cases; u = oo with the knowledge of two neighbors' identifiers 

and ^ < I with the knowledge of two neighbors' identifiers. Note that the algorithm 

by Goldreich and Shrira with 0(n^) worst-case message complexity does not work for 

all cases that the O(nlogn -j- (n — t)n) algorithm covers. It is shown that election is 

impossible for two other cases. 
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5.2 Preliminaries 

This section describes the assumptions made in this chapter. The definition of the 

election problem is given in Chapter 2. 

It is assumed that rings are asynchronous and bidirectional. It is also assumed 

that a processors can distinguish its two links. Thus, a processor can relay a message 

by receiving a message from a link a send it over the other link. Also, a processor can 

return a message received over the link from which it is receive. All message over a 

link are subject to delivery in FIFO order. 

The type of link failure considered in this chapter is fail-stop link failure. Since 

the communication is asynchronous, faulty links are not detectable [20]. It is assumed 

that there is at most one faulty link in a ring. Thus, all processors in a ring remain 

connected by non-faulty links. 

5.3 Algorithms with Worst-Case Message Com­

plexity O(nlogn) 

This section presents algorithms that solves the election problem for the following 

four cases: 

1. A lower bound I and an upper bound u of the size of ring such that ^ > | are 

known to all processors; 

2. the exact size of ring is known to all processors; 

3. same as the case 1 with additional knowledge of neighbors' identifiers; 
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4. same as the case 2 with additional knowledge of neighbors' identifiers. 

An algorithm (called algorithm Rl) for the first case is presented. It will be shown 

that the algorithm can be used for other cases. 

5.3.1 Description of Algorithm Rl 

Algorithm Rl is shown in Figures 11 and 12. 

In describing algorithm Rl, the following conventions are used. Two links of a pro­

cessor are referred with names left and right. The statement "send {vari, • • •, varf^; linky^ 

is to be interpreted as ""send a message whose content is var in direction link (link 

is left, right, or both). The statement "receive [vari,-• • ^varf^-^linky is to be in­

terpreted as "receive a message and store the contents of the message to variables 

var I, • • •, vark, and store the link from which the message is received into link. 

Before describing the algorithm, some concepts should be defined. Throughout 

an execution of algorithm Rl, processors can be in an active, passive, or elected 

state. Initially, all processors are active. As the algorithm proceeds, active processors 

become passive. Eventually, one active processor remains active, and this processor 

becomes elected. During an execution of the algorithm, each processor is in some 

local phase. The value of the current phase is stored in a local variable phase. 

The algorithm operates in three stages. In the first stage, the number of active 

processors is decreased to some constant by sending 0{n log n) messages. In the 

second stage, the number of active processors is further decreased to some smaller 

constant by sending another 0(72 log ri) messages. Finally, the number of active pro­

cessors becomes one in the third stage with 0{n) messages. The only active processor 
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Algor i thm Rl 
state <— active; my Id <— id; phase <— 0; stageS <— false; 
ISize <r- 0; rSize <— 0; ILinkOk <— false; rLinkOk <— false; 
nSent <— 0; received <— 0; 
NewPhase: 
if [staged) then 

received <— received -\- 1; 
if (received = nSent) then 

Declare "elected"; 
else if (the received message is the declaration message) then 

"set leader's identifier and exit" 
else /* received < nSent */ 

goto Wait; 
phase <r- phase A- 1; 
if (phase > 1) then 

if (receivedLink = left) then 
ISize <r- \otherDist\ + 1; 

else /"*" receivedLink = right */ 
rSize <— \otherDist\ + 1; 

if (phase < [log^J) then /=*= the V stage =*=/ 

send (^1,phase,myId,2P^'''^ - l;both); 

else if (ISize + rSize + 1 < ^) then /* the 2"̂ ^ stage */ 

send (2,phase,myId,lSize+ [^"(^^^"^^+/^^^^+^^1;/eft); 

send {2, phase,my Id,r Size + \^—^^^ J —'-I; right); 

else /* ISize + r^z^e + 1 = ^ */ /* the S''̂  stage */ 
staged <— ^rwe; 
if (ILinkOk) then 

send {3, phase, my I d,oo; left); 
nSent <— nSent + 1; 

if (rLinkOk) then 
send {3, phase, my I d,oo; right); 
nSent <— nSent + 1; 

Figure 11: Algorithm i^l 
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Wait: 
receive {other Round^ other Phase^ other Id, other Dist; received Link) \ 
if {otherPhase > phase) then 

if [receivedLink = left) then 
ILinkOk <— true\ 

else /* receivedLink = right */ 
rLinkOk <— true] 

if [[[otherPhase^ other Id) = [phase^myld)) A [state = active)) then 
goto NewPhase; 

else if [[otherPhase^ other Id) > [phase,my Id)) then 
state <— passive] 
/* forward the message */ 
if [otherRound < 2) then 

if [otherDist = \) then 
if [receivedLink = left) then 

receivedLink <— right] 
else /* receivedLink = right */ 

receivedLink <— /e/^; 
else /* otherRound = 3 */ 

if [[receivedLink — left) A -^ILinkOk) then 
receivedLink <— right] 

else if [[receivedLink = right) A -^ILinkOk) 
receivedLink <— /e/t; 

if [receiveLink = left) then 
receivedLink <— h^/i^; 

else 
receivedLink <— /e/t; 

send {otherRound, otherPhase, other Id, otherDist — 1] receivedLink): 
goto Wait; 

Figure 12: Algorithm -Rl (continued) 
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at the end of the third stage declares itself elected by broadcasting its identifier to all 

processors in the ring. 

The following mechanism for "forwarding" messages is used in first two stages. 

Let pi-i,pi,pi^i be three consecutive processors in a ring; forwarding a message is 

defined as follows: Upon receiving a message M that contains distance d (that is a 

part of a message) from Pi_i, processor pi sends M with new distance d — \ io pij^\ if 

d ^ 1, or sends M with new distance <i — 1 to pi_i \i d = 1. Note that when a message 

returns to the processor that originates the message, d <{) and |<i| + 1 is the number 

of different processors it passes through. (Similarly, upon receiving a message M that 

contains distance d from Pi+i, processor pi sends A/ with new distance d — i io pi-\ 

if <i ̂  1, or sends M with new distance d — \ to pi^i '\i d = 1.) 

Throughout an execution of the algorithm, active processors become passive by the 

following rule (called the "killing rule"). During an execution of the algorithm, each 

active processor pi replies to incoming messages. Let otherPhase and otherld be parts 

of an incoming message. Let phase and myld be the local phase and the identifier 

of processor Pi, respectively. If {otherPhase, otherld) is greater than {phase, myld) 

(in lexicographic order) then pi becomes passive and the message is forwarded. If the 

pair {otherPhase, otherld) is less than the pair {phase, myld), the incoming message 

is not forwarded but is discarded. If an active processor receives a message carrying 

myld, it enters the next phase. Passive processors always forward a received message. 

The first stage operates as follows. Upon entering phase v, an active processor pi 

sends messages to both directions to distance d = 2^ — I and waits for the return of 

one of these messages. If one such message returns, pi enters phase v -\- 1. 

The concept of segment is used in describing the algorithm. Every active processor 
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has its own segment. At the beginning of the algorithm, the segment of a processor 

Pi is Pi itself. Assume that an active processor pi receives a message m that was 

originated by itself in phase p, and enters the phase p + 1. The segment of pi at the 

end of phase p is defined as the union of the set of all processors that received the 

message m and the segment of pi at the beginning of phase p. 

Note that active segments are not processor disjoint. Let pi^Pk^, • "" ^Pkm^Pj t>e part 

of a ring, where pi and Pj are active and all others are passive. Then, pi^pk^, • • • ,p^^ 

and Pkii'' • tPkmtPj c^" be two active segments with active processors pi and pj , re­

spectively. The forwarding mechanism ensures that there is only one active processor 

in a segment. 

The size of the segment is maintained with two variables ISize and rSize at every 

active processor. When a message returns back to its sender by the forwarding mech­

anism, a variable ISize (or rSize) at the active processor is updated to |D2,s^| -f 1 that 

is the number of processors on the right (or left, respectively) of the active processor 

in the segment. 

At the end of the last phase (phase [log^J) of the first stage, the size A: of a 

segment (the number of processor in the segment) of an active processor is |2'-^°^^-' < 

k < |2U°s^J _ (The size of the segment of a processors is minimal if all messages return 

to the processor during the first stage in one direction. It is maximum if the messages 

return to the processor in the last two phases of the first stage in different directions.) 

Processors that reach phase [log^J start the second stage. 

During the second stage, an active processor tries to increase the size of its segment 

to i. Upon entering phase v in the second stage, an active processor pi tries to extend 

the size of its segment by half of J /2 = ((• — k)/2 (where k is the size of its segment) 
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by sending messages in both directions to distance [c?/2] (starting from processors at 

the end of the segment) beyond both end processors of the segment. If one of these 

messages returns, pi enters phase v -\- 1. 

Since the segments of active processors are not processor disjoint, there can be 

more than one active segment of size I with an active processor even if ^ > u/2. 

(This is discussed in detail in the proof of the correctness.) The active processor 

of a segment of size I cannot declare itself as elected since there could be one more 

such processor, even though the number of segments of size i is bounded by some 

constant. If the active processors with segments of size £ simply broadcast their zc '̂s, 

the processors that receive these ?! J's cannot determine whether there is more than one 

such processor. Thus, it is necessary to further reduce the number of active processor 

to one. This the task of the third stage. 

The third stage adopts a forwarding mechanism different from the one used in the 

first two stages. During the first stage, a message returns to its sender after traveling 

a specified distance. In the third stage, a message returns back to its sender if the 

message reaches a link that was not specially marked during the second stage. A link 

is said to be "proven non-faulty", if it has delivered at least one message that is sent 

by a processor in the phase greater than or equal to that in which the message was 

initiated. 

Let pi-i,pi,pi+i be three consecutive processors in a ring, then forwarding a mes­

sage in the third stage is defined as follows: Upon receiving a message (m) from Pi_i, 

processor pi sends (m) to p^+i if its left (or right) link is proven non-faulty and the 

message is received from its right (or left, respectively). Otherwise, pi sends (m) back 

to Pi-i. (Similarly for messages received from Pi+\.) 
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A variable ILinkOk (rLinkOk) at every processors is set to true if a processor 

receives a message that is sent by another processor in the phase greater than or equal 

to its own phase from its left (or right, respectively) link. These variables are used 

by the forwarding mechanism in obvious way. 

The same killing rule as the one used in the first two stages is used for the third 

stage. Upon entering the third stage, an active processor sends messages over the links 

that are proven non-faulty. Since all active processors are connected by proven non-

faulty links in the third stage (this is proved in the following section), the forwarding 

mechanism ensures that messages sent by an active processor are delivered to its 

nearest active processor. Also, the killing rule ensures that messages sent by the 

processor with the largest id among those that enter the third stage are returned to 

its sender either by being echoed or by circling whole ring. 

5.3.2 Correctness of Algorithm Rl 

This section proves the correctness of algorithm Rl. The first two lemmas show that 

there is at least one active processor that starts the third stage. The following lemma 

proves that at least one active processor is not prevented from entering the next phase 

by the faulty hnk during the first two stages. 

L e m m a 5.3.1 Let L be the last phase of the second stage. Then, there is at least 

one of the messages sent by an active processor in phase v (1 < v < L) does not 

encounter the faulty link. 

Proof. Let pi be an active processor in its phase 1 < v < L. If there is no faulty 

hnk in the ring, then the lemma is trivial. Assume that there is one faulty link in the 
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ring. There are two cases determined by v. 

• If 1 < V < [logfj, then processor pi sends messages in both directions to 

distance d = 2'' - 1 < 2Li°s^J-i < [^/2J. Let fi and / , be the numbers of 

processors connected by non-faulty link on the left-hand side and on the right-

hand side of the active processor pi, respectively. Since there are at least i 

processors in the ring and all processors are connected by non-faulty links, 

fi-\- fr>^-l- Thus, either 

fi > f ^ ] > [f J > d, or 

Since d is the maximum distance that a message that is sent by pi can travel, 

the lemma follows. 

• If [log/J < V < L, then an active processor pi sends messages in both directions 

to distance d = \{l — k)/2] (k is the size of the segment of pi) starting from 

processors at the end of its segment. Let / / (or /^) be the number of processors 

connected by non-faulty links on the left-hand (or right-hand-side, respectively) 

of Pi but do not belong to its segment. Since there are at least i processors in 

the ring and all processor are connected by non-faulty links, / / + /^ ^ ^ — ^• 

Since / / and /^ are integers, either 

// > M=d,or 

= <l. fr > [ ¥ 

Since d is the maximum distance that a message that is sent by pi can travel 

outside its segment, the lemma follows. • 
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This lemma demonstrates the importance of the second stage. If the size of a 

segment is greater than £/2, both // and fr could be less than d and the first stage 

cannot guarantee that there exists at least one message that returns to its sender. 

The next lemma proves that there is at least one processor that starts the third 

stage. 

L e m m a 5.3.2 / / there is one or more processors active in phase v < L, there is at 

least one active processor that enters phase f + 1. 

Proof. The lemma follows from Lemma 5.3.1 if there is only one active processor in 

phase V. Assume that there is more than one processor active in phase u and that there 

is currently no processor active in a phase greater than v. The forwarding mechanism 

ensures that the message containing [Other Phase^ Other Id) is not stopped by any 

processor whose (phase,id) is less than (Other Phase, Other Id). Let pi have the 

largest id among the processors active in phase v. Then Lemma 5.3.1 implies that 

the messages sent by p^ are not stopped by any processor in that phase. Also, at least 

one message does not encounter the faulty link. Thus, at least one message returns 

to processor pi and the perocessor enters phase i; + 1. • 

Lemma 5.3.2 implies that there are at least one processor that starts the third 

stage. The following lemma proves that at most three processors do so. 

L e m m a 5.3.3 At most three processors start the third stage. 

Proof. Assume that four processors start the third stage. Let Pa;,, • • • , Px2:'''-, Px^ •,'''•, 

p^4, • • • be a ring and that only processors Px, (1 < « < 4) start the third stage. Let 

ĉ j (1 ^ j ^ 4) be the number of processors between px^ and px^ (j = (i mod 4) + 1) 

for 1 < z < 4. Since there are at most 2i— 1 processors in the ring (recall ^ > | > | ) , 
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«i + «2 + ct3 + «4 ^ 2i — 5. Since the size of the segment of each p^^ is I at the 

beginning of stage 3, 

a4 + «i > ^ - l (1) 

«i + «2 > ^ - l (2) 

«2 + «3 > ^ - l (3) 

a3 + «4 > ^ - l . (4) 

By adding up (1), (2), (3) and (4), 

2(ai + a2 + «3 + «4) > 4^ - 4 = 2(2£ - 2). 

This is a contradiction to a^ + ^2 + «3 + «4 < 2^ — 5. Thus, it is clear that no more 

than three processors can start the third stage. Thus, the lemma follows. • 

Lemmas 5.3.2 and 5.3.3 imply that at least one and at most three processors start 

the third stage. The following lemmas prove that there is only one active processor 

at the end of the third stage. 

L e m m a 5.3.4 Any two processors that enter the third stage are connected by proven 

non-faulty links. 

Proof. All links within the segment of any active processor are proven non-faulty, 

since the active processor has received messages from processors at both ends of the 

segment. 

By definition, the size of the segment of any active processor that enters the third 

stage is L There are at most 2i — \ processors in the ring. Thus, at least one 

processor belongs to both segments. Since both links of any processor that belongs 

to both segments are non-faulty links, the lemma follows. • 
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Since the faulty link fails before the beginning of the execution of the algorithm 

and any two active processors that enter the third stage are connected by non-faulty 

links, any message sent by an active processor in the third stage can reach all active 

processors. 

The following lemma can now be proved. 

Lemina 5.3.5 There is always exactly one processor at the end of the third stage. 

Proof. Consider the processors in the highest phase during an execution of the algo­

rithm. By Lemma 5.3.4, any two processors that start the third stage are connected 

by proven non-faulty links. Let Pt be the active processor with the largest id among 

the active processors at the beginning of the third stage. The killing rule ensures that 

all other processors become passive by receiving message(s) from pi. Also, pi receives 

all messages that it sent at the beginning of the stage. (Note that , if all links in a 

ring are proven non-faulty, the two messages return back to pi without changing their 

directions.) • 

The following correctness theorem follows the above lemma. 

T h e o r e m 5.3.1 Let R be a asynchronous bidirectional ring with at most one fail-

stop link failure that fails before the start of an algorithm (if it ever fails). If every 

processor in R knows an upper bound it and a lower bound i such that I > u/2^ and 

u and i are same for all processors, then algorithm Rl solves election on R. 

Proof. It is clear that there is only one processor that can declare itself as a leader 

by the above lemma 5.3.5. Since all processors are connected even if there is one link 

failure, the elected leader can send its id to all other processors in the ring. Every 
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processor can terminate its execution of the algorithm when it is informed of the 

leader's id. • 

5.3.3 The Message Complexity of Algorithm Rl 

This section analyzes the worst-case message complexity of algorithm Rl and the size 

of the largest message used in the algorithm. 

L e m m a 5.3,6 Let L be the last phase of the second stage. Let k be the size of an 

active segment at the end of phase v (1 < v < L). Let I be an interval of k consecutive 

non-faulty links and k -\- I processors. Then at most two processors in I enter phase 

v-\-l. 

Proof. Let pi , • • • ,Pi,- • • ,Pk+i be an interval 7. Assume that processor p^ (1 < i < 

k -\- 1) enters phase v -\- 1. Then the message that contains phase v and id(pi) (where 

id{pi) is the id of processor pi) has been forwarded by either pi or Pk+i, since the size 

of the segment is k. Then, the processor that forwards the message is not in a phase 

greater than v and the processor is in passive state after forwarding the message. The 

lemma follows. • 

The following lemma counts the number of processors entering phase v (denoted 

by Uy) during the first stage of an execution of algorithm Rl. 

L e m m a 5.3.7 Let 1 < v < [log^J. Then, n^ < 2 [n /2^] . 

Proof. Consider a partition of the ring into processor-disjoint intervals each consist­

ing of 2^ — 1 non-faulty links, and an interval consisting of less than or equal to 2^ — 1 

non-faulty links. The faulty link (if it exists) does not belong to any of these intervals. 
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The total number of such intervals is [ri/2^]. Since the size of an active segment in 

phase V < [log^J is 2^, the lemma follows by Lemma 5.3.6. • 

The following corollary follows immediately from the lemma. 

Corollary 5.3.1 There are constant number of processors that enter the phase [log^J 

(in the second stage). 

Proof. By Lemma 5.3.7, the number of processors that enter phase [log i\ is at most 

( n 

= 4 ^ + 2. 

Since it is assumed that ^ > | , the inequality i < n < u < 2i holds. Thus, at most 

10 processors enter the second stage. D 

Corollary 5.3.1 shows that only constant number of active processors enter the 

second stage. Lemma 5.3.3 implies that at most three processors start the third stage. 

The following lemma proves that the worst-case message complexity of algorithm Rl 

is 0 (n log n). 

L e m m a 5.3.8 Let R be a asynchronous bidirectional ring with one fail-stop link 

failure that occurs before the beginning of the algorithm (if ever). Every processor 

in the ring knows the upper bound u and the lower bound I of the ring size, and 

I > u/2. Then algorithm Rl solves election on R with worst-case message complexity 

0(n log n). 

Proof. It is first shown that the number of messages sent in the first stage of any 

execution of algorithm Rl is O(n logn) . Let rUy be the number of message sent in 
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phase V (I < V [log i\). Every processor that enters phase v sends messages to distance 

2^ — 1 to both directions. Then, ruy < n ,̂ • 4 • 2^, where Uy is the number of processors 

active in phase v. By Lemma 5.3.7, 

rriy < 2 }V+2 
2v 

< 2"+^ ( — + 1 

2v 

n 

= 8n + 2 v+3 

Since the first stage has [log^J — 1 phases, the number of messages sent during the 

first stage in an execution of algorithm Rl is O(n logn) . 

In each phase of the second stage, every active processor sends messages to distance 

less than i in both directions. Let L be the last phase of the second stage. By 

Corollary 5.3.1, only a constant number of processors enter each phase v ([log^J < 

V < L). Thus, the number of messages sent in every phase of the second stage is 

0{n). 

In the second stage, the size of a segment increases up to i starting from 2'-^°^^-J/2. 

Let ky be the size of an active segment in phase v ([log^J < v < L). Then, ky^i = 

ky+ ^^Y^ — ^'^Y^ . Thus, there are clog n (c is some constant) phases in the second 

stage. Therefore, the number of messages sent during the second stage of an execution 

of algorithm R\ is O(n logn) . 

As shown above, 0{n\ogn) messages are sent during the first and the second 

stage. There are at most three processors that initiate at most two messages in the 

third stage. The messages in the third stage travel distance at most n. Thus, 0[n) 

messages are sent during the third stage. The lemma follows. • 
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Note that messages sent by an active processor in a phase of the second stage 

travels distance less than i. 

By recalling a result (by Goldreich and Shrira [21]) that the election problem 

on asynchronous bidirectional rings with at most one fail-stop faulty link requires 

Vt(n log n) messages in the worst case, this section concludes with the following theo­

rem. 

T h e o r e m 5.3.2 Let R he a asynchronous bidirectional ring with one fail-stop link 

failures that occurs before the start of an algorithm if it ever fails. Assume that every 

-processor in the ring knows an upper bound u, a lower bound i of the ring size and the 

relation i > u/2, while the exact size of the ring is not known to any processor. The 

worst-case message complexity of any algorithm that solves election on R is 0 ( n log n). 

An analysis of the size of the largest message follows. There are four fields in every 

messages (except the one that carries the leader's identifier). A message field stage 

that distinguishes messages used in different stages need at most two bits, since there 

are four stages (including the stage that is used to broadcast the id of the elected 

leader to all other processors). Let b be the length of the longest identifier. Then, a 

message field my Id requires b bits. Since there are clog £ phases in every execution of 

the algorithm (for some constant c), a message field phase requires O(loglogn) bits. 

Clearly, every distance that a message is sent is bounded by the size of the ring n. 

Thus, a message filed dist requires O(log72) bits. Therefore, the total number of bits 

for a message is 6 + 0{\og n). 
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5.3.4 Other Cases with Q{n log n) Worst-Case Message Com­

plexity 

This section shows that algorithm Rl can be used for the other three cases that also 

require 0 ( n l o g n ) messages in the worst case. 

It is clear that algorithm .Rl can be used in the case where the exact size n of 

the ring is known to all processors by setting I = u = n. Goldreich and Shrira [20] 

presented an algorithm for this case. But their algorithm does not work if lower 

and upper bounds [i and u) are given instead of the exact size n of the ring, since 

their algorithm relies on the information of the exact size n. Again, the lower bound 

r i (n logn) is valid for this case [21]. It is also clear that the algorithm .Rl works 

without the knowledge of identifiers of neighbors. 

The above upper bounds are asymptotically optimal. When identifiers of its two 

neighbors are known to all processors, the election problem requires Q{n\ogn) mes­

sage in the worst case because the lower bound for election problem with comparison 

based algorithms by Frederickson and Lynch [16] holds even if the identifiers of two 

neighbors are known to all processors in a ring. (Note that finding identifiers of two 

neighbors takes 0{n) messages if there are no faulty links in a ring.) 

5.4 Algorithms with Worst-Case Message Com­

plexity 0{nlogn + (n — i)n) 

This section presents an algorithm that solves election problem in the following two 

cases: 
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• the identifiers of both neighbors and a lower bound i are known to all processors 

(no upper bound is known), 

• the identifiers of two neighbors and an upper bound u and a lower bound i such 

that I < u/2 are known to all processors. 

An algorithm (called algorithm R2) for the first case is presented in the following 

section. It is clear that algorithm R2 can be used for the second case since that 

provides more information. 

5.4.1 Description of Algorithm R2 

Algorithm R2 is based on algorithm Rl. Since £ < u/2^ segments of processors active 

at the end of the second stage might not overlap when algorithm Rl is executed. 

Therefore, the third stage of algorithm Rl might not reduce the number of active 

processor to one. Algorithm R2 use the same first two stages used in the algorithm 

Rl but executes a procedure (called procedure P , see Figures 13 and 14) instead of 

the third stage of algorithm Rl. 

Let segments be defined as in algorithm Rl. Then, left end (or right end) of a 

segment is the processor at the left (or right, respectively) end of the segment. Also, 

left (or right) neighbor of a segment is the processor to the left (or right, respectively) 

of the left (right) end of the segment. Two variables SegLeftId and SegRightId used to 

keep left and right neighbors' identifiers. Also, two message fields leftld and rightid 

are used to carry those information. 

Procedure P relies on the following fact. If the size of a segment is n — 1 (for 

n > 2), the left neighbor of the segment is the right neighbor of the segment. Thus, 
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Procedure P 
last <r— false; 
send {phase, leftld, my Id, rightid, ISize; left); 
send {phase, leftld, my Id, right Id, rSize; right); 
Wait for return of both messages and update SegLeftId and SegRightId; 
send {phase, leftld, myld, rightid, ISize + 1; left); 
send {phase, leftld, myld, right Id, rSize + 1; right); 
goto Wait; 
NewPhase: 
phase <— phase -\- 1; 
if [receivedLink = right) then 

SegRightId <— otherRightId; 
else /* receivedLink = left */ 

SegLeftId <— otherLeftId; 
if [receivedLink = right) then 

rSize —̂ \otherDist\ + 1; 
else /* receivedLink = left */ 

ISize <r- \otherDist\ + 1; 
if {last) then 

"Declare elected"; 
else if (the received message is the declaration message) then 

"Set leader's identifier, and forward the identifier, and exit" 
else if (SegLeftId = SegRightId) then 

last <r- true; 
send {phase, leftld, myld, rightid, ISize + 1; left); 
send {phase, leftld, myld, rightid, rSize + 1; right); 

Figure 13: Procedure P 
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Wait: 
receive {other Phase, otherLeftId, otherld, other Rightid, other Dist] received Link) \ 
if [[[other Phase, other Id) = [phase,my Id)) A [state = active)) then 

goto NewPhase; 
else if [[other Phase, other Id) > [phase,my Id)) then 

state <— passive; 
/* forward the message *"/ 
if [otherDist = 1) then 

otherLeftId <— I eft Id; 
otherRightId —̂ rightid 
if [receivedLink = left) then 

receivedLink <— right; 
else /* receivedLink = right *"/ 

otherDir <— /e/^; 
if [receiveLink = left) then 

receivedLink <— n^/i^; 
else 

receivedLink <— /e/t; 
send {other Phase, otherLeft, other Id, other Right, other Dist — 1; otherDir); 

goto Wait; 

Figure 14: Procedure P (continued) 
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it is possible for a processor to decide when to terminate an algorithm by checking 

the condition SegLeftId = SegRightld. Note that, if n < 2, election is trivial since 

all processors can determine n from their neighbors' identifiers and also know the 

identifiers of all processors, 

The forwarding mechanism used in procedure P is similar to the one used in the 

second stage of algorithm Rl. But both messages sent by the active processor of a 

segment try to extend the size of the segment by one. When a message travels back 

to its sender, it carries the identifier of the left (or right) neighbor of the processor 

from which it starts to travel back. The killing rule used is in procedure P is exactly 

the same as that of algorithm Rl. 

Procedure P operates as follows: Upon entering the procedure P , every active 

processor sends two message in both directions to collect identifiers of left and right 

neighbors of the segment. Upon entering a new phase in procedure P , every active 

processor sends out messages in both directions to a distance that expands the size of 

current segment by 1 and waits for return of one of those messages. If such a message 

returns, the processor enters the next phase. 

Eventually, the size of segment grows to n — 1 and the left neighbor and the 

right neighbor of the segment are the same processor. If this condition occurs at a 

processor, the processor enters the next phase. There are at most two such processors 

since the size of segment is n The processor that receives one more message declares 

itself elected. 
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5.4.2 Correctness of Algorithm R2 

The correctness of algorithm R2 is partly based on that of algorithm Rl since the 

first and second round of the two algorithms are same. Lemma 5.3.2 implies that at 

least one processor that executes procedure P. 

The following lemmas show that at least one active processor declares itself elected 

during an execution of procedure P. 

L e m m a 5.4.1 Let L be the last phase (declaration phase) of procedure P. If there 

is at least one processor active in phase v < L, at least one active processor enters 

phase V + 1. 

Proof. If there is only one processor active in phase v, the lemma is trivially true. 

Assume that more than one processor is active in phase v and that there are currently 

no processors in phases higher than v. Let pi be the processor with the largest id 

among the processors active in phase v. The killing rule ensures that a message sent 

by PJ is not stopped by any other processor. 

Every active processor in phase v sends two message each of which tries to extend 

the size of the segment by one. It is clear that at least one of these messages does 

not try to cross the faulty link. Thus, at least one message returns back to its sender. 

The lemma follows. • 

It has been shown that at least one processor enters the last phase of procedure 

P. The following lemma proves that detecting the termination is possible. 

L e m m a 5.4.2 During an execution of procedure P in algorithm R2 on a ring of size 

n, the size of an active processor's segment is n — 1 if and only if the processor has 

S eg Left Id = SegRightld. 
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Proof. Let pi be such an active processor. Since SegLeftId (or SegRightId) is the 

identifier of the left (or right, respectively) neighbor of the segment of p,-, SegLeftId = 

SegRightId when the size of segment is n — 1. The other direction is trivially true. • 

The correctness theorem of the algorithm R2 follows immediately from above 

lemmas. 

Theorem 5.4.1 Let R be a asynchronous bidirectional ring with at most one fail-stop 

link failure that fails before the start of an algorithm (if ever). If every processors in 

R knows the identifiers of its two neighbors and a lower bound I, then algorithm, R2 

solves election on R. 

Proof. Lemma 5.4.1 implies that at least one active processor enters the last phase 

of procedure P. Since the size of the segment of the processor that enters the last 

phase is n, there is only one such processor by the definition of segment. Thus, the 

theorem follows. • 

5.4.3 Analysis of Algorithm R2 

This section analyzes the worst-case message complexity and the size of the largest 

message of algorithm R2. 

L e m m a 5.4.3 The number of messages sent during an execution of procedure P in 

algorithm R2 is 0{(n — i)n). 

Proof. It is clear that the size of the segment of an active processor in the k^'^ phase 

of procedure P is £ -\- k. Let n^ be the number of active processors in the k^^ phase 

of procedure P. Then, Uk < 2 U ^ (the proof is similar to that of Lemma 5.3.7). 
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Since messages sent by an active processor in the A;*̂  phase travel distance at most 

2(£ + k), the number of message sent during an execution of procedure P is less than 

or equal to E?=i 2(^ + k)2 \j^] = 0((n - £)n). • 

Lemma 5.3.8 implies that the first and second stages of algorithm R2 require 

0{n\ogn) messages in the worst case. The following theorem follows immediately. 

T h e o r e m 5.4.2 Let R be a asynchronous bidirectional ring with one fail-stop link 

failure that occurs before the beginning of the algorithm (if ever). Every processor in 

the ring knows the identifiers of its two neighbors and a lower bound £. There exists 

an algorithm that solves election on R with worst-case message complexity 0{n\og n-{-

(n — ^)n). 

An analysis of the largest message size is as follows. There are two message fields 

(leftld and rightid) that are only used in procedure P. Since those two fields carry 

the identifiers, 2b (where b is the length of the longest identifier) additional bits are 

required. Thus, the maximum number of bits required for messages exchanged during 

an execution of algorithm R2 is 3b + 0(log n). 

5.5 A n Q{n\ogn + (n — i)n) Lower B o u n d 

This section proves a lower bound on the worst-case message complexity for the 

following cases: 

• the identifiers of neighbors and an upper bound u and a lower bound £ such 

that I < u/2 are known to all processors, 

• the identifiers of its two neighbors and a lower bound i is known to all processors. 

66 



The proof of the lower bound for the first case is also valid for the second case, since 

less information is available in the second case. 

Let R be an asynchronous bidirectional ring of size n with at most one fail-stop 

link failure that fails before the start of an algorithm (if ever). Let a k-segment be k 

consecutive processors {k < n) connected by non-faulty links from R. Let A be an 

algorithm that correctly solves the problem of election on R in which the identifiers 

of neighbors, a lower bound i, and an upper bound u [i < u/2) are known to all 

processors but the exact size n is not. 

At any point of an execution of an algorithm A, a /j-segment is said to have a 

potential leader if there is at least one processor in the /c-segment that can correctly 

determine the identifier of the eventual leader without receiving any more messages 

if the size of ring is exactly k. It is clear that there should be a A;-segment having 

potential leader(s) at the end of any execution of an algorithm that elects a leader on 

rings of size k. 

The following lemma shows the existence of an ^-segment with potential leader(s) 

during some executions oi A on a, ring of size n. 

L e m m a 5.5.1 There exists at least one i-segment with potential leader(s) regardless 

of u and n, during some executions of A on R. 

Proof. If 72 = ^, there is only one /-segment in R. Since algorithm A correctly elects 

a leader when n = i^ the f-segment has potential leader(s) at termination regardless 

of u. 

Consider an execution of algorithm A on ring /?' = p^j, • • •, ps^ of size i such that 

the link between processors ps^ and p^̂  is the faulty link and every processor know u 
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and L Then, Psi i *" * -iVsi is a /-segment with a potential leader(s) at some point of 

the execution. Now, consider a ring R" = pi,- • • ^ps^,- • • ,Psf,- • • ,Pn where the links 

between processors Ps^-i and ps^ between processors Pg^ and Ps^+i are very slow (one 

may be the faulty link). Then, there is an execution of algorithm A on R" such that 

Pgf and Ps(+i becomes an /-segment with potential leader since faulty links and slow 

links are not distinguishable. Thus, lemma holds for any u and n such that u > n > i. 

D 

The following lemma proves that algorithm A requires at least (n — i)n messages. 

L e m m a 5.5.2 Let R be an asynchronous bidirectional ring with at most one fail-stop 

link failure that fails before the start of an algorithm (if ever). Let A be an algorithm 

that solves election on R when a lower bound i and an upper bound u (i < u/2) are 

known to all processors but the exact size n is not. Then some executions of A on R 

requires ft{{n — i)n) m,essages. 

Proof. By Lemma 5.5.1, there is at least one /-segment with a potential leader. If 

n = i, the lemma is trivial. Assume n > i. Since 2i < u, there may be more than 

one /-segment with a potential leader in the ring. Therefore, an /-segment cannot 

decide the leaders id. Thus, at least one /-segment should receive more messages. 

Let Pa^r--,Pai,Ps,.--- ,Pse,Pb,r-- ,Pby (where x -\- y -\- i = n &nd \x - y\ e {0,1}) 

be a ring such that Psi,- • • ,Psi is an /-segment that receives more messages. Let the 

Hnk between processor pa^ and p^y be the faulty link. (Note that the faulty link could 

be any link not in the /-segment.) Consider an execution of algorithm A in which 

messages sent by processors pa, and pb, are delivered to some processor between those 

two processors after the /-segment is formed in ascending order of i. Messages that are 

sent by Pa, and pb, should be delivered to one of processors pa^,- • • ,ps^,- • • ^Pse^ ' ' ^Pb,-



Thus, the number of messages required is Q{{n — l)n) since i -\- 2i — I messages are 

needed for 1 < i < D 
2 

By recalHng the result (by Goldreich and Shrira [21]) that election requires Q(n log n) 

messages when the size of ring is known to any processors, the following corollary im­

mediately follows. 

Corollary 5.5.1 Let R be an asynchronous bidirectional ring with at most one fail-

stop link failure that fails before the start of an algorithm (if ever). Let A be an 

algorithm that solves election on R when a lower bound i and upper bound u (I < ul2) 

are known to all processors but the exact size n is not. Then, any execution of A on 

R requires rt{n log n -\- {n — l)n) messages. 

This section concludes with the following two theorems. 

T h e o r e m 5.5.1 Let R be an asynchronous bidirectional ring with at most one fail-

stop link failure that fails before the start of an algorithm (if ever). Then, election 

requires 0 ( n log n -\- (n — i)n) messages in the worst case if every processor in R knows 

identifiers of two neighbors, a lower bound i, and an upper bound u (i < u/2). 

Proof. By Theorem 5.4.2, there is an algorithm that solves the election problem on 

R when every processor in R knows identifiers of two neighbors and a lower bound i. 

Thus, the theorem immediately follows from Corollary 5.5.1. • 

T h e o r e m 5.5.2 Let R be an asynchronous bidirectional ring with at most one fail-

stop link failure that fails before the start of an algorithm (if ever). Then, election 

requires Q(n\ogn + (n — ^)n) messages in worst case if every processor in R knows 

identifiers of two neighbors, a lower bound I, and an upper bound u and such that 

^ — 2 
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Proof. The election requires (](72 log 72+ (7? — )̂72) message since Corollary 5.5.1 holds 

even if an upper bound is not available to every processors. Also, election is possible 

with worst-case message complexity O(nlog n -\- {n — i)n) by Theorem 5.4.2. • 

5.6 An Impossibility Result 

There are two remaining cases: 

• the identifiers of two neighbors, an upper u of the size of the ring, and the exact 

size n are not known but a lower bound i is known to all processors, 

• the identifiers of two neighbors are not known but an upper bound u and a 

lower bound i of the size of the ring is known such that i < u/2. 

Goldreich and Shrira [20] showed that election is impossible in the first case for £ = I. 

The following theorem proves that election is impossible in the second case as 

well. 

T h e o r e m 5.6.1 Let R be a asynchronous bidirectional ring with at most one fail-

stop link failure that fails before the start of an algorithm (if ever). Then there is 

no distributed algorithm, that solves election on R, if every processor knows its own 

identifier and an upper bound u of the size of R such that ^ < | -

Proof. Assume to the contrary that there is such an algorithm A. Consider ^ ' s 

executions on two different rings Pi • • • Pz • • • Pn (where the link between Pn and pi is 

the faulty link) and Pn+i, • • • iPj-,' • • •,P2n (where the link between p„ and pi is the 

faulty link). Assume also that the two rings have disjoint sets of identifiers. Since 

algorithm A solves the problem, leaders pi (1 < i < n) and pj {n -\- I < j < 2n) are 
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elected from each execution. Now consider another execution of algorithm A on the 

ring pi • • • Pi • • • pn,Pn+i, • • • P2n: wheie the link between pn and pn+i is very slow and 

the link between pi and p2n is faulty. The algorithm should elect a leader since £ < n 

and u > 2n. Since the slow link and the faulty Hnk can not be distinguished, two sets 

of processors (pi, • • •, pn and pn+i, • • •, P2n) may act as in their original executions and 

elect two leader pi and pj in a ring. This is a contradiction and the theorem follows. 

D 

The above theorem holds even if upper bound u is not known to all processors, 

since u can be considered as oo if w is not known. Note that theorem implies the 

impossibility result by Goldreich and Shrira. The reverse is not true. 

5.7 Concluding Remarks 

This chapter considered the effect of incomplete knowledge of network size on the 

election problem for asynchronous rings of processors with at most one undetectable 

fail-stop link failure. All possible cases of a lower bound £ and an upper u are 

considered. The availability of two neighbors' identifiers are also considered for each 

case, since election becomes possible with this additional information for some cases. 

The results are summarize in Table 5. 

The quality of a lower bound £ (how close it is to the size n of a ring) directly 

^<f u>i> ^ 

Know Neighbors 

Does Not Know Neighbors 

Q(n log n + (72 — i)n) 

Impossible 
Q{n log n) 

Table 5: Election with Incomplete Knowledge of Ring Size 
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affects the worst-case message complexity while an upper bound u does not. On the 

other hand, election is not possible even if a lower bound is very close to n if the 

exact size of the ring is not known and the known upper bound is not tight enough 

(i.e., u > 2£), without additional information such as identifiers of two neighbors. 

Note that all results by Goldreich and Shrira [19, 20, 21] are subsumed by the above 

results. 
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Chapter 6 

Election on Square Meshes with Link 
Failures 

6.1 Introduction 

This chapter considers the election problem for asynchronous square meshes with fail-

stop link failures. Since the communication is asynchronous, the failed links cannot 

be detected. 

As shown in Chapter 3, link failures have been studied by several researchers 

recently. While Peterson [35] and Abu-Amara [2] considered the election problem 

for asynchronous and synchronous square meshes without failures, this chapter con­

siders asynchronous square meshes with undetectable fail-stop failures. Note that 

the fail-stop failure of a link can be easily detected in synchronous systems by send­

ing messages over the link and waiting for the acknowledgment from the processor 

connected by the link. 

Three cases are considered: t < \/n, t < 1y/n^ and t > 1\fn^ where i is the number 

of maximum faulty links in a square mesh and n is the number of processors in the 

square mesh. An algorithm of worst-case message complexity O(nlog^) is obtained 

for the case i < y/n. When t < 2y/n, an algorithm of worst-case message complexity 

0{n log n) is presented. For the case t > ly/n^ an impossibility result is obtained. 
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The algorithms are correct even for cases in which some processors are completely 

disconnected due to faulty links. The algorithm for the case t < y/n cannot be used 

for the case t < 1\fn. The algorithm for the case i < 1\fn can be used for the case 

i < \/n but may have worse performance. 

Section 6.2 presents some assumptions made for this chapter and defines square 

meshes. Section 6.3 presents an algorithm for the case t < y/n. The algorithm for 

the cases t < 2y/n and the impossibility results are given in Sections 6.4 and 6.5, 

respectively. 

6.2 Preliminaries 

A square mesh of n processors is defined as a wrap-around square of n processors, 

with y/n processors on each side, with each row and each column forming a ring. 

(Figure 15 shows a square mesh of n processors.) Each row of processors is called 

a horizontal ring and each column of processors is called a vertical ring. As shown 

in Figure 15, vertical rings are denoted by Vi (1 < i < \/n) and horizontal rings are 

denoted by hj (1 < j < y/n). The processor that belongs to the vertical ring Vi and 

horizontal ring hj is denoted by pij. 

The communication in square meshes is asynchronous and bidirectional. Messages 

sent over a link are delivered in the order they are sent (FIFO). Any links may fail by 

stopping and but the total number of failed link cannot be greater than t. The value 

of t and the relation between t and n (such as t < y/n) are known to all processors, 

but the value of n is not known. The lower bound on size n based on t (such as t^) 

is known to all processors. It is assumed that all faulty links fail before the start of 
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Figure 15: A Square Mesh of Size n 

an algorithm. 

It is assumed that a sense of global direction is available. The sense of global 

direction in square meshes means that a processor can distinguish its four links by its 

names (such as up, down, left, right) in uniform fashion. For example, a processor's 

right link is the left link of the processor that is connected by that link. Also, the 

topology of the network is known to all processors. Finally, it is assumed that all 

processors in the mesh start an algorithm spontaneously. (This assumption can be 

relaxed as explained later.) 

In evaluating algorithms, worst-case message complexity is used as a primary 

measure. The maximum size of messages is also considered. 
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6.3 An Algorithm for the case of ^ < yjn 

6.3.1 Overview of Algorithm M l 

A high level description of algorithm M l , which solves the election problem on square 

mesh of n processors with i < y/n, is presented in this section. A detailed description 

of the algorithm follows in the next section. 

Algorithm Ml is based on Peterson's election algorithm [35] for square meshes 

without failures. Peterson's algorithm works as follows: The algorithm proceeds in 

phases. Each processor in phase i sends a message distance d (d = a\ where a is 

some constant) to right, then d down, d left, and finally d up back to itself. In other 

words, each processor is trying to mark off the boundary of a square distance c? on a 

side. Some squares will overlap each other, and only one square among overlapped 

squares can be completed. Processors that complete their squares move to the next 

phase. Eventually, there will be a few processors that see "wrap around" (i.e., the 

message sent by a processor returns back to its sender from its left rather from the 

below), and one of those processors is elected after constant number of phases. 

Peterson's algorithm is not correct in the presence of link failures, since it is 

possible that the only processor that can move to some phase i cannot complete the 

square because of a faulty link and the algorithm would not proceed. Since there 

are at most t link failures, this situation can be avoided if each processor sends ^ + 1 

messages that follow different paths. There are two main difficulties in implementing 

this idea. A processor needs to send messages to t + 1 different paths, but each 

processor has only four links. Also, a naive implementation of this idea could be 

"send at least ^ + 1 messages following different paths for each message in Peterson's 
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algorithm". But this results in an algorithm with worst-case message complexity 

0{nt) since worst-message complexity of Peterson's algorithm is 0{n). 

Algorithm Ml overcomes these problems as follows. First, the algorithm builds 

groups of ^ -f 1 consecutive processors in vertical rings. No faulty links are present 

between processors in such a group (called a "trying segment"). Then, each trying 

segment tries to mark off ^ -f 1 squares as shown in Figure 16. In the figure, the 

thick line denotes a trying segment. All processors in a trying segment share same 

id (called tid of the square) when they mark off their squares. All processors in the 

trying segment try to mark off squares of different side distance (their boundaries are 

shown as arrowed lines). Since there are at most / faulty links and no boundaries 

of squares by a processor cross each other, at least one square can be completed 

if the largest square distance is less than ^yn. (In the figure, the shaded square is 

completed by the second processor from the bottom with smaller size than the one 

currently being tried to mark off.) When a square is completed, all processors in the 

trying segment try to mark off larger squares. 

Algorithm Ml consists of three stages. Each stage is implemented as a separate 

procedure: procedure BuildSeg for the first stage, procedure Compete for the second 

stage, and procedure PostWrapAround for the last stage. There are ^/n concurrent 

and independent executions (one for each vertical ring) of procedure BuildSeg, while 

the other two procedures are executed only once during an execution of algorithm 

Ml. 

Spontaneous start-up of procedure BuildSeg (the first stage) by all processors 

is assumed. If some processors started independently, each could send "start up" 

messages in all four directions. Upon receiving a "start up" message, a processor 
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Figure 16: A Trying Segment 

relays the message to all four directions except the direction from which it received 

the message (if it has not done so) and starts the algorithm. This start-up procedure 

requires 0(n) messages, since every link transmits the "start up" message at most 

twice. 

Any processor that finishes execution of a procedure enters the next stage and 

starts to execute the appropriate procedure. If a processor receives a message used 

in lower stage than that which it is currently executing, it ignores and discards the 

message. If a processor receives a message used in higher stage than it is currently 

executing, the processor terminates the execution of the current procedure and starts 

the appropriate procedure by responding to the message received. 
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Algorithm Ml 
/* Code for processor pij */ 
Stage 1: /* Construct "trying segments" */ 
Execute procedure BuildSeg on vertical ring VJ; 
Stage 2: /* Reduce the number of "trying segments" to some constant. */ 
Execute procedure Compete; 
Stage 3: /* Reduce the number of "trying segments" to one. */ 
Execute procedure Post Wrap Around; 

Figure 17: Algorithm Ml 

The following describes the main task of each stage of algorithm Ml (see Fig­

ure 17). Mechanisms to accomplish these tasks are explained in the following section. 

The goal of first stage (procedure BuildSeg) is to build trying segments. At the end of 

the first stage, there are at most \/n/{t^ 1)^ active processors (since a trying segment 

consists of ^ + 1 processors) and at least one active processor in a vertical ring without 

faulty links. Once a trying segment is built, every processor in the trying segment 

starts to execute procedure Compete (the second stage). 

Upon entering the second stage, all processors in a trying segment try to mark off 

the boundaries of squares of side distances from d to d -'r t (initially d = t ^ \). As 

the algorithm proceeds, the number of active trying segments that are trying to mark 

off squares decreases while squares get larger. If distance d for a processor becomes 

greater than or equal to ^/n^ all processors in the trying segment detect this and enter 

the third stage (procedure PostWrapAround). As will be shown later, only constant 

number of trying segments start the procedure Post Wrap Around. 

In the third stage, every processor in a trying segment tries to mark off a cross of 

distance ^/n as shown in Figure 18. In the figure, a trying segment is shown by the 
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dark line and the shaded squared is a square marked off before the start of procedure 

PostWrapAround. Wrap-around is the condition that occurs when a stage 2 message 

sent by a processor in the same direction passes through all processors in the ring and 

returns to its originator without changing direction. Processors that see wrap-around 

conditions on both horizontal and vertical rings are called wrap-around processors. 

Note that wrap around processors are not in a trying segment; their function is to 

provide link-disjoint crosses. (In the figure, wrap around processors are marked by 

circles.) 

The number of active segments is reduced in procedure PostWrapAround in ex­

actly same way as in procedure Compete. Since procedure PostWrapAround starts 

with a constant number of active segments, the number of active segments is reduced 

to one in a constant number of phases. After a constant number of phases, processors 

in the only trying segment declare their common tid as leader's id by sending the 

leader's id to all processors in the mesh and the algorithm terminates. 

6.3.2 Detailed Description of Algorithm M l 

In describing algorithm Ml, the following conventions are used. The four links of a 

processor are referred with names right, down, left, and up and assumed to be num­

bered 0, 1, 2, and 3, respectively. Note that this is possible since the availability of a 

global sense of direction is assumed. The statement "send (s; vari, • ••, vark] diri, • • •, dir^y 

is to be interpreted as "send a message for the stage s whose content is vari, • • • , vark 

to directions diri, • • •, dirr (1 < r < 4)". The statement "receive {vari, • • •, vark; diry 

is to be interpreted as "receive a message and store the content of the message to vari­

ables var-i, • • •, vark, also store the direction from which the message is received into 
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Figure 18: A Trying Segment after Wrap Around 

dir^\ Upon receiving a message, the stage for which the message is sent is checked 

first. If the message is for the same stage as the stage the receive statement is exe­

cuted, then the message is interpreted as stated above. If the stage is lower, then the 

message is ignored. If the stage is higher, then the appropriate procedure is invoked. 

6.3.2.1 Descript ion of Procedure Bui ldSeg 

The main tasks of procedure BuildSeg are building trying segments and reducing 

the number of active processors. Recall that a trying segment \s t -\- 1 consecutive 

processors within a vertical ring without faulty links between them. It is necessary 

to find such groups of processors in every vertical ring. It is desirable not to have too 

many trying segments initially, since too many trying segments could result in higher 

worst-case message complexity. 
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Procedure BuildSeg (Figure 19) is based on election algorithm DG (for unidirec­

tional rings) presented in Chapter 4. Note that most of the efficient ring election 

algorithms can be used as a base of this procedure. 

Procedure BuildSeg is executed concurrently and independently on every vertical 

ring. (Processor pij participates in an execution of procedure BuildSeg on vertical 

ring Vj.) A processor is in active or passive state during an execution of the procedure. 

The state of a processor is stored in the local variable state. Initially, all processors 

are active. Processors operate in phases. (A local variable phase stores a processor's 

phase number.) A local variable tid is used to store the temporary identifier of a 

processor. Initially, tid of a processor is set to its own identifier. To achieve (9(n log n) 

worst-case message complexity, a variable parity is used. The parity is true for every 

other phase starting from the first phase. It is false for all other phases. 

Upon entering a new phase z, an active processor sends its tid over its up link 

and waits for a message to be delivered over its down link. If a processor receives a 

message carrying tid that is greater (or less, respectively) than its current tid when 

parity is true (or false, respectively), then it sets its tid to the value of received tid 

and starts the next phase. Otherwise, it becomes passive. Passive processors always 

relay messages that are received. The procedure BuildSeg proceeds up to phase 

logj, t^ (where (j) = ^ ^ ^) or until a leader of the ring is elected (the original election 

algorithm DG proceeds until a leader is elected). Note that some processors may not 

reach phase log^ t^ because of faulty links. 
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Procedure Bui ldSeg 
phase <— 0; 
tid <— id; 
state <— active; 
parity •«— true; 
done <— false; 
send{tid; up); 

while (^done A (phase < log^^^|)) do 

receive{nid; OtherDir); 
phase <— phase -j- 1; 
if (nid = id) then 

done <— true; 
case 5^a^e of 

if ((nid > tid) ® parity^) then 
h e ? <— 72ZC?; 

send{tid; up); 
else 

5^a/e <— passive; 
parity <— -^parity; 

passive: 
send{nid; up); 

if (state = active) then 
Build a "trying segment" by sending a special message over up link; 

denotes exclusive or. 

Figure 19: Procedure BuildSeg 



6.3.2.2 Bui lding a Trying Segment 

An active processor that enters phase log^ t^ or that becomes a leader starts to 

build a trying segment. Since there are at least t passive processors above an active 

processor and t is known to all processors, an active processor is able to build a trying 

segment. An active processor builds a trying segment as follows. Upon entering phase 

log^ t^ or becoming a leader, an active processor sends a special message "build 

segment" with distance d = t and its tid over its up link and waits for its return. 

Upon receiving a special message from its down link, a passive processor relays the 

message over its up link with distance d — \ '\i d ^ {). The passive processor that 

receives a special message "build segment" with <i = 0 and passive processors that 

wait for the return of the special message perform the following actions: 

• sets its TryNum to t — d, 

• sets its tid with delivered tid, 

• returns the message with d -\- 1 over its down link, and 

• starts the next stage (procedure Compete). 

The active processor that initiates the special message does the same except relay the 

message over their down link. 

Thus, there there are / passive processors above the active processor, a trying 

segment is successfully built. All processors in the trying segment start the next 

stage. Note that any up links to a passive processor are non-faulty, since a processor 

becomes passive only by receiving a message and all faulty links fail before the start 

of an algorithm. 
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6.3.2.3 Descript ion of Procedure C o m p e t e 

The main task of procedure Complete is to decrease the number of active trying 

segments to some constant. Procedure Compete (Figures 20 and 21) also proceeds 

in phases. (Note that no active or passive states are used in procedure Compete.) 

Upon entering phase i (Compete starts it execution with phase = 1), a processor in 

a "trying segment" in phase i tries to mark off the boundary of a square with side 

d = (t -\- \)c^~^ -\- 2TryNum (c is a constant whose value will be discussed later). This 

is done with two variables Dist (the distance to travel) and Dir (the direction that 

it is sent to). With those two variables, a message can be sent distance [c?/2j to right 

then d down, d left, d up and \d/2\ right again to the starting processor. (Refer to 

Figure 16.) 

Before a processor starts to mark off a square, it checks whether a wrap-around 

condition occurs. Since the size of square mesh is not known to processors, a processor 

checks the wrap-around condition by sending a message. This is the task of function 

IsWrapAround . When procedure Is Wrap Around is invoked with d, it sends out a 

special message of type "Checking" to right with distance d and tid of the processor. 

Upon receiving a message with type "Checking", a processor sends it to right with 

d — 1 li d ^ 1. If d = 1, the processor returns the message back to left. When a 

message with same tid is received from the left link, the a wrap-around condition 

occurs and the procedure IsWrapAround returns true, otherwise it returns false. 

If a call to function IsWrapAround returns true, the processor informs other pro­

cessors in the trying segment. All processors in the trying segment then enter the 

third stage. 

Competition between trying segments in stages 2 and 3 is resolved as follows. (This 
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P r o c e d u r e C o m p e t e / * Code for processor pij */ 
MyPhase ^ 1; 
M O V E O N : 

if (TryNum - 0) then 
send {2; MoveOn, MyPhase; 3> /* 3 = up */ 

else if (0 < TryNum < t) tiien 
send {2; MoveOn, MyPhase-, i, 3) /* 1 = down */ 

else 
send {2; MoveOn, MyPhase;!}; 

repeat 
DidSeeSmaller ^ false; WasSeenBySmaller ^— false; SawNone ^ false; 
Dist ^ (/ + \)c^yP^^'^-^ + 2 • TryNum; 

if (IsWrapAround(Dist)) then goto Exit; 
send {2; Looking, MyPhase,tid,TryNum, \Dist/2];0); /* 0 = right */ 
repeat 

receive (Stage; Type, Other Phase, OtherTryNum, Other Id,Other Dist; Other Dir); 
if ({Type = MoveOn) A (OtherPhase > MyPhase)) then 

MyPhase ^ OtherPhase; goto MoveOn; 
if ((tid 7̂  Otherld) A (OtherPhase > MyPhase)) then 

goto Relay; 
else if (OtherPhase = MyPhase) then 

case Type of 
Looking, SawSmaller : 

if (Otherld > tid) then 
goto PreRelay; 

else if (tid = Otherld) then 
if (Type = Looking) then 

SawNone <— true; 
else 

DidSeeSmaller ^ true; 
else 

WasSeenBySmaller <— /rwe; 
SeenbySmaller : 

WasSeenBySmaller ^ true 
until (SawNone V {DidSeeSmaller A WasSeenBySmaller)) 
MyPhase ^ MyPhase + 1; goto MoveOn; 

until (false) 
E X I T : 

Inform all processors in the trying segment to start Stage 3; 

F igure 20: P rocedure C o m p e t e 
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P R E R E L A Y : Type —̂ SawSmaller] 
R E L A Y : 

SentSeenby —̂ false; My Phase <r— Other Phase; Saveld <r— Other Id; 
if [OtherDist = 0) then 

SaveDist ^ (t ^ i^^otherPhase-i ^ 2 • OtherTryNuTTi; 

if {Dir = 3) then 
SaveDist —̂ [S'at'eDz5i/2j; 

SaveDir —̂ (Dz'r + 1 ) mod 4; 
else 

SaveDist —̂ OtherDist — 1; 
SaveDir —̂ (Dz'r + 2) mod 4 

send (2; Type^ MyPhase, Saveld, OtherTryNum, SaveDist; SaveDir); 
repeat 

receive {Type, OtherPhase, Otherld, OtherTryNum, OtherDist; OtherDir): 
if ({Type = MoveOn) A {OtherPhase > MyPhase)) then 

My Phase —̂ OtherPhase; goto MoveOn; 
if {OtherPhase > MyPhase) then 

goto Relay; 
if {OtherPhase = MyPhase) then 

if {Otherld > Saveld) then 
goto PreRelay; 

else if {-^SentSeenBy) then 
send (2; SeenBySmaller, MyPhase, Saveld; SaveDist); 
SentSeenBy —̂ irwe; 

until (false) 

Figure 21: Procedure Compete (continued) 
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is the same mechanism used in Peterson's algorithm.) If a message does not encounter 

the boundary of other active processor, it completes its boundary and enters the next 

phase. (Note that boundaries of processors in the same trying segments never cross 

each other on the same phase since all paths in a trying segment are link disjoint.) If 

it encounters the boundary of a processor with smaller tid, then it continues marking 

the boundary, but with message type SawSmaller. If it encounters the boundary of 

a processor with larger tid^ then it sends a message of type SeenBySmaller along the 

boundary of the other processor. The boundary of the processor with the smaller tid 

will not be completed. A processor will go on to the next phase without changing its 

tid if the processor receives messages of types SawSmaller and SeenBySmaller. 

To tolerate link failures, all processor in a trying segments enter the next phase if 

at least one of them completes its square. They enter the next phase only once, even 

if more than one of them completes its square. This task is accomplished as follows. 

Upon completing its square, a processor in a trying segment enters the next phase 

and sends messages of type MoveOn carrying its new phase to all processors in the 

trying segment. When a processor in the trying segment receives a MoveOn message, 

the processor compares its own phase with delivered one. If the delivered phase is 

greater than its own phase, the processor enters a new phase and relays the message 

to rest of processors in the trying segment. Otherwise, the message is discarded. 

The algorithm continues in this way until d becomes greater than or equal to ^/n 

for some processors; wrap-around occurs at this point. Note that no wrap-around 

occurs during any execution of procedure Compete, since the possibility of wrap­

around is checked earlier. 



6.3.2.4 Descript ion of Procedure PostWrapAround 

The main task of procedure PostWrapAround is to decrease the number of active 

trying segments to one. PostWrapAround operates similarly to Compete, but it 

executes only some constant q phases. (The value of q is given in the following 

section.) The main difference from Compete is the shape of paths that processors in 

a trying segment mark off. While a square is marked off in Compete, a cross, which 

consists of one vertical ring and one horizontal ring, is marked off in PostWrapAround. 

(Refer to Figure 18.) All other mechanisms remain same (including the mechanism 

for resolving competition between active trying segments). 

A cross is marked as follows. A processor in a trying segment sends a message to its 

right to distance Dist = y/n-\- (̂  + 1) + TryNum to mark off a horizontal ring. (Since 

a wrap-around condition is detected in procedure Compete, the size of the square 

mesh is now available.) If a processor receives a message with Dist > 1, it relays 

the message in the same direction with distance Dist — 1. Eventually, a processor 

receives a message with Dist = 1. Note that this processor (called the wrap-around 

processor) is not the processor that initiated the message. (This is necessary to have 

all crosses be link disjoint.) If a processor receives a message with Dist = 1, the 

processor send a message to its down link with Dist = y/n. The message eventually 

returns to its sender and a cross is marked if it does not see other boundaries with 

greater tid. 

Note that no two wrap-around processors are in same horizontal ring or in same 

vertical ring. Thus, all crosses are link disjoint. This ensures that at least one cross 

for a segment can be completed. 

Upon entering PostWrapAround, processors in an active trying segment send t-\-\ 
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messages to their right to mark off crosses. If one of the crosses is completed, the 

wrap-around processor sends a message back to a processor in the trying segment. 

Upon receiving such a message, all processors in a trying segment enter the next 

phase. (Note this is done exactly the same way as in Compete.) Since there are only 

a constant number of active segments that start Post Wrap Around, only a constant 

number of phases are necessary to reduce the number of active trying segments to 

one. Eventually one active trying segment enters the last phase, and processors in 

the trying segment declare their tid as the leader's id. 

6.3.3 Correctness of Algorithm Ml 

This section proves the correctness of algorithm Ml. First, the existence of a trying 

segment is shown in the following lemma. 

L e m m a 6.3.1 There is at least one trying segment at the end of an execution of 

BuildSeg of algorithm Ml. 

Proof. Since there are at most t faulty links and t < ^/n, there is at least one 

vertical ring without faulty links. Thus, at least one execution of BuildSeg proceeds 

to phase log^ t^ or terminates with an elected leader. If a leader is elected in a ring, 

there should be at least t passive processors above the leader. The number of passive 

processors between any two active processors is at least t. Therefore, at least one 

trying segment is built at the end of the first stage (BuildSeg) of algorithm Ml. • 

The following lemma shows that at least one message originated by a trying seg­

ment in stages 2 and 3 does not see any faulty links. 
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L e m m a 6.3.2 There is at least one message (among messages that are originated by 

processors in a trying segment in each phase of stages 2 and 3) that does not encounter 

faulty links during an execution of algorithm. Ml. 

Proof. It is clear that all paths that messages from a trying segment follow are link-

disjoint on a phase. There are t -\- 1 processors in a trying segment while there are 

at most t link failures in a whole square mesh. Thus, at least one message does Qot 

encounter faulty links. • 

As shown above, no trying segment is prevented from entering the next phase by 

faulty links. The following lemma shows that there is at least one trying segment 

that enters PostWrapAround. 

L e m m a 6.3.3 Assum,e that there is at least one trying segment that enters phase u, 

during an execution of Compete of algorithm Ml. Then, there is at least one segment 

that enters phase w + 1, 

Proof. If no processor in an active trying segment sees a boundary of a processor that 

belongs to another active trying segment, the active trying segment enters the next 

phase. (A processor belongs to a trying segment's boundary if the variable Savedid 

is tid of the trying segment.) 

Assume that there is more than one active trying segment that enters phase u 

of Compete. Lemma 6.3.2 implies that, for each such trying segment, at least one 

processor does not have faulty links on the boundary of its square. Assume that these 

processors see another active processor's boundary. Let p^,pi+i, • • • ^Pi+i be processors 

from different active trying segments that see another processor's boundary. Then, it 

can be assumed that tid{pi) < tid(pi^i) < • • • < tid(pi^i) since all td''s are different. 
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Let processor pi see processor pj (i < j < i -{- I). Then pj will enter the next 

phase, unless it saw PA; (j < ^ < ^ + 0- ^̂  ^o Pj ( ^ ^ J < ^ + 0 enters the next phase, 

Pi+/ should have seen by at least one pj (i < j < i ^ I) and it saw at least one pk 

(i < k < i -{-1). Thus, processor pi+i enters the next phase. The lemma follows. • 

The above lemma implies that there is at least one trying segment that starts the 

third stage (Post Wrap Around). 

L e m m a 6.3.4 Only a constant number of trying segments enter Post Wrap A round 

during an execution of algorithm Ml. 

Proof. Let Ai be the maximum number of active trying segments of phase i. Assume 

that the first wrap-around occurs in phase v. Then, Ai+i < n/d^ -}- (Ai — n/df)/2, 

where di is the side distance of the smallest square that is marked off in phase i. The 

first term is the maximum number of active trying segments that can enter phase 

i + 1 because they saw no other processors. The second term is the maximum number 

of active trying segments that can enter phase 2 + 1 because they have completed 

a square. These are at most half of active segments that see some other segments, 

since at least one other segments should become passive if boundaries of two segment 

across. Hence, 

1 l .n 

~ 2'̂ ""̂  2 5? 

.2 2^+1 ' (̂  + 1)2 Vc^V ' \2' J \2-c 
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n / I I f c^ \ \ 
+ -T7 

< . ^ . . (-TT ) I 1 + — ^ 1 , since ĉ  < 2 

n /̂  1 ^ / 2 + ĉ  

(t + i)2 Vc2^7 V 2 ( 2 - c 2 ) y 

Since V is the first wrap around phase, dy = [t -\- l)c^~^ > y/n. Thus, Ay = 2(̂ 2̂ %') ^^^ 

some constant 1 < c < \/2- The lemma follows. D 

It has been shown that at least one and at most some constant number of trying 

segments enter PostWrapAround. 

L e m m a 6.3.5 There is exactly one trying segment at the end of the execution of 

PostWrapAround of algorithm Ml. 

Proof. A proof similar to the one for the Lemma 6.3.3 can be used to prove that 

there is at least one trying segment at the end of PostWrapAround. (Note that the 

PostWrapAround operates in the same way as Compete. The only difference is the 

path that a message follows in PostWrapAround is a cross while it is a square in 

Compete.) 

Assume that there is more than one active trying segment that finishes the last 

phase p of PostWrapAround. Since all active trying segments during an execution 

of PostWrapAround mark off crosses that wrap-around, only one processor from one 

trying segment can see no other processor's boundary (if there is more than one, 

those should cross each other). Only half of remaining can enter the next phase since 

tid of one segment should be less than that of the other, so Ai^i < \Ai/2]. Thus, 

the number of active trying segment decreases towards one. Let q be the number of 
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phases that procedure PostWrapAround executes. Then, by letting q > log 2(̂ 2̂ %) 

only one processor can be elected. • 

This section concludes with the following correctness theorem that immediately 

follows the lemma above. 

T h e o r e m 6.3.1 Let N be an asynchronous bidirectional square mesh with at most 

t < y/n fail-stop link failures that occur before the start of an algorithm. Then algo­

rithm Ml correctly solves the election problem on N. 

6.3.4 Message Complexity of Algorithm M l 

This section gives an analysis of worst-case message complexity of algorithm M l . 

Analysis of each procedure in algorithm M l is given in order. 

L e m m a 6.3.6 The number of messages sent during an execution of procedure Build-

Seg of algorithm Ml is 0{n\ogt). 

Proof. There are \/n executions of procedure BuildSeg each of which needs (9( - /̂n log t) 

messages each in the worst case. Thus, the number of message sent is O(nlog^). • 

L e m m a 6.3.7 The number of messages sent during an execution of Compete of al­

gorithm Ml is 0{n). 

Proof. The number of trying segments Ai active in phase i is bounded by 

( "- ] (±t^] 
V(^-f l)2(c2(^-i))y \2(2-c^)J 

by Lemma 6.3.4. 

94 



A square with side distance d causes Sd messages. Of these, id messages are needed 

to mark off its boundary with "Looking" or "SawSmaller" messages and another Ad 

message are needed for "SeenbySmaller" messages. Since there are t-\-l processors for 

a trying segment, a trying segment causes Sd{t-\-1)-\-2{t-\-1)'^ messages. The 2(^ + 1)^ 

messages are needed when processors that mark off larger squares make turns. 

Let dt be the smallest square marked off during phase i. Then, d^ = {t -\- l )c '~^ 

Let rrii be the number of message sent on phase i. Then, 

m, < A,(8^,-(i + l) +2(^ + 1)2) 

(t + l)2(c20-l)) V2(2-C2) 
2 

Let p be the phase when a wrap-around first occurs. Then the total number of 

messages m^ sent during Compete is 

mt = Y^ rrii 
i=l 

^ E8n(:^+ ' 
1=1 

= 8n i-iu^ri-i. 
C - 1 V CPJ c2 - 1 V C'^P. 

Since c is some constant greater than 1, n^ is 0{n). The lemma follows. • 

L e m m a 6.3.8 The number of messages sent during an execution of Post Wrap Around 

of algorithm Ml is 0{n). 

Proof. A trying segment that is marking off crosses requires 8>/n -f 2((t -f 1) -f 

TryNum) messages. For the first term, half of these are needed to mark its bound­

ary with "Looking" or "SawSmaller" messages and the other half are needed for 
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"SeenbySmaller" messages. The second term is due to the distance between the wrap 

around processors and the corresponding processor in the trying segment. There are 

^ + 1 processors, each of which tries to mark off a cross. Thus, the maximum number 

of messages needed for a trying segment becomes 0{n) by recalling that t < y/n. 

There are a constant number of trying segments active in each phase. Also, there 

are a constant number of phases in an execution of procedure PostWrapAround. 

Thus, the total number of messages required for procedure PostWrapAround is 0(n). 

For the declaration (notifying the id of the elected leader to all processors that 

are connected to the leader), at most two messages are needed for a link since every 

processor relays the informed leader's id to all links except the one that the id is 

received from. Thus, the declaration also needs 0{n) messages. The lemma follows. 

D 

The following theorem immediately follows. 

T h e o r e m 6.3.2 The number of messages sent during an execution of algorithm Ml 

is 0 ( n log t). 

An analysis of the number of bit required for the longest message follows. Since 

there are only a constant number of message types, only a constant number of bits 

are necessary to distinguish different types of messages. But distance information 

(that a message can travel) requires O(logn) bits. Thus, the size of longest message 

is 0(log n + 6), where b is the length of largest identifier. 
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6.4 An Algorithm for the Case of i < 2^Jn 

This section considers the case in which i is less than 2\ /n. Obviously, algorithm M l 

does not work for this case, since algorithm M l requires i < y/n. 

Since there are y/n horizontal rings and ^/n vertical rings, at least one ring (vertical 

or horizontal) does not contains faulty links \i t < 2y/n. Note that the size of square 

meshes can be obtained by executing an election algorithm (such as algorithm DG, 

which does not work correctly if there are faulty link in a ring) on every vertical and 

horizontal ring, since at least one of them will successfully elect a leader. 

Algorithm M2 elects a leader on such a square mesh based on the above fact. In 

the following an outline of algorithm M2 is described. (Since all procedures are based 

on algorithm described in previous chapters, a detailed description is omitted.) 

Algorithm M2 operates in three stages. The main task of first stage is to find 

the size of a square mesh. This is done by executing election algorithm DG on every 

vertical and horizontal ring, independently and concurrently. Since there is at least 

one ring without faulty links, at least one execution correctly terminates. The elected 

leader of the ring sends a message to calculate the size of the ring (thus the size of the 

square mesh) and inform all connected processors the size of the ring. Upon learning 

the size of the ring, all connected processors in the ring relay the size to all processors 

in the square mesh. Note that there are some processors that are connected to the 

ring, since there are 2y/n links that from a ring. 
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Algor i thm M2 /* Code for processor pij ^I 
Stage 1: 
Execute algorithm DG on horizontal ring hi and vertical ring Vj\ 
if (elected leader) then 

Inform all processors in the mesh of the size of the square mesh; 
Stage 2: 
Execute procedure HElection on horizontal ring hi] 
Stage 3: 
Execute procedure VElection on vertical ring Vj] 

Figure 22: Algorithm M2 

6.4.1 Description of procedure HElection 

Upon receiving a message that carries the size of the square mesh, a processor starts 

the second stage (procedure HElection) on its horizontal ring. Procedure HElection 

is based on algorithm R\ described in Chapter 5. Algorithm Ri elects a leader on 

an asynchronous bidirectional ring with at most one fail-stop link failure that occurs 

before the start of an algorithm. Since the size of ring is obtained in stage 1, HElection 

successfully elects a leader if there is only one link failure on the horizontal ring. 

The only modification to the algorithm is that messages informing processors of 

the leader's id mark links as follows. A message marks the link that it just traversed 

as "found non-faulty" if the link is not already marked as "assumed faulty". Note 

that a link is marked by two processors that is connected by the link. Thus, it is 

possible that a message crosses the link to find that the link is marked as "assumed 

faulty" by the processor at the other end. In this case, the message stops its travel 

without changing the mark. The necessity of this will become clear. Upon receiving 

a message containing the leader's z'o?, a processor enters the third stage (procedure 
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VElection). 

Since there are ^Jn horizontal rings, \/n copies of HElection are executed. At 

least one copy of execution terminates on a horizontal ring, since there is at least 

one horizontal ring containing at most one faulty link. Horizontal rings on which the 

execution of HElection is terminated are called candidate rings. The leader's id of a 

candidate ring is called the id of the candidate ring. 

6.4.2 Description of Procedure VElection 

The goal of the third stage is to elect one of the candidate rings. This is done by 

executing algorithm Rl on every vertical ring. Since at least one vertical ring contains 

at most one faulty link, at least one execution terminates with the elected leader's 

id that is one of candidate ring's id. It must be ensured that all executions are 

performed on the same set of candidate rings, since there are y/n such executions. 

(Note that there could be some horizontal rings on which the execution of HElection 

never terminates. Also, not all processors in a horizontal ring are informed of the 

leader's id at the same time.) 

The following ensures that that the same set of candidate rings is used for all 

executions of VElection as follows. Upon starting procedure VElection, processor pij 

sends two messages in both directions on horizontal ring hi. These messages follow 

a link if the link is marked as "found non-faulty". It returns to its sender if a link is 

marked as "found non-faulty" after marking that Hnk as "assumed faulty". When the 

message returns to its sender, it keeps track of the number of links marked as "found 

non-faulty". (If there are no links that are marked as "found non-faulty", the message 

eventually returns to pij after passing through all processors in the horizontal ring.) 
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Processor pij sets its state to active if at least \/n — 1 links are marked as "found 

non-faulty"; otherwise, it sets its state to passive. If there are at least y/n — 1 "found 

non-faulty" links, the election on hi should be completed and the leader id should be 

available to all processors in the ring. An active processor waits for the leader's id of 

its horizontal ring if it is not available. 

There are yjn executions of VElection. Thus, at least one of those executions 

terminates with a leader. Since all executions are performed on the same set of 

candidate rings, all terminated executions share the same leader's id. After a leader 

is elected, its id is sent to all processors that are connected to the leader in the square 

mesh. 

6.4.3 Correctness of Algorithm M2 

To show the correctness of algorithm M, it should be first proved that the same set 

of candidate rings is used for all executions of procedure VElection of algorithm M2. 

Assume that there is a candidate ring hi whose id is used for processor pi^'s 

execution of VElection but not in processor p^^'s execution. There should be at least 

one link in hi that piy found marked as "assumed faulty" but piy did not. 

Assume that pi^ checks the link before piy. When pi^ checks the link, it should 

be marked as "found non-faulty", otherwise piu mark is "assumed faulty". Since the 

link is marked as "found non-faulty", it can not be marked as "assumed faulty" later. 

Thus, piu should use /ij's id for election on its vertical ring. This is a contradiction. 

Assume that p^y checks the link before p^u- After piy checks the link, it should be 

marked as "found non-faulty". Once a link is marked as "assumed faulty", it cannot 

be changed. Thus, piu cannot use /i^'s id for election on its vertical ring. This is a 
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contradiction. 

Since the algorithm i^l correctly elects the leader, the above lemma implies the 

correctness of VElection. By recalling the correctness of algorithm DG, the correct­

ness of algorithm M2 follows immediately. 

There are 2y/n executions of algorithm DG that each requires 0{\/nlogn) mes­

sages. 0{n) messages are needed to broadcast the size of square mesh to all connected 

processors. Thus, the first stage requires O(n logn) messages. 

There are ^/n executions of HElection that each requires 0{^/n\ogn) messages. 

Thus, the second stage also needs O(n logn) messages 

At most 2y/n message are required to deterraine the state of each processor. Since 

there are \/n processors in each vertical ring, this requires 0{n) messages. Thus, 

VElection needs O(y/n\ogn) messages. Since there are y/n execution of VElection, 

the worst-case message complexity of the third stage is 0(72 log rz). 

Therefore, worst-case message complexity of algorithm M2 is O(n logn) The fol­

lowing theorem summarizes the results of this section. 

T h e o r e m 6.4.1 Let jV be a square mesh of n processors with at most t < 2y/n fail-

stop link failures that occur before an execution of an algorithm. Then, algorithm M 

correctly solves election problem with worst-case message complexity 0{n\ogn). 

6.5 An Impossibility Result 

The following theorem shows a case in which election is impossible on square meshes. 

Theorem 6.5.1 Let N be an asynchronous square mesh with t > 2y/n fail-stop link 

failures. Assume that every processor know its own identifier, and t and its rlation 
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to n. Then there is no distributed algorithm for electing a leader on N. 

Proof. Assume the contrary, that there is an algorithm A that elects a leader in 

such networks of size n. Consider executions of algorithm A on four different square 

meshes (say Mi, M2, M3, and M4) of size n such that no two id^s of all four square 

meshes are the same. Then, algorithm A should elect a leader correctly on each of 

four square meshes if 2y/n. are faulty links (per mesh). 

J-n H 

T 
J-n 

I 

w^'wV 

M, M' 

2-7^ 

M, M. 

27" 

Figure 23: An Impossible Case 

Now, consider a square mesh of size An in which all processors in the four square 

meshes of size n preserve the relative positions of the processors in each mesh of size n. 

(See Figure 23.) In the figure, the four squares are drawn with solid lines and dotted 

lines are links that connect them to make a square mesh of size An. Assume that 

bottom 2\/n and left vertical 2\/n thick dotted Hnks are faulty links. Also, assume 
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that thin dotted links that connect square meshes of size n are very slow links. Note 

that each square meshes of size n has 2y/n are faulty links. 

Consider an execution of algorithm A on the square mesh of size 4n. Since faulty 

links and slow links are not distinguishable, processors in a square mesh of size n may 

act exactly the same as in the original execution. Thus, there could be four leaders 

elected. This is a contradiction and the theorem follows. • 

6.6 Concluding Remarks 

This chapter considered the election problem on asynchronous bidirectional square 

mesh networks with fail-stop link failures. Two algorithms and an impossibility result 

were obtained. 

For the case t < y/n (t is maximum number of faulty link allowed), an algorithm 

with worst-case message complexity of 0{n log t) is presented. An algorithm with 

worst-case message complexity of O[n\ogn) is obtained when t < 2\/n. It is shown 

that the election is impossible ii t > 2>/n. 

The lower bound of the election problem on asynchronous square meshes with 

t < y/n appears to be difficult but an interesting open problem. The existence of 

algorithms with better worst-case message complexity for cases y/n < t < 2y/n is 

also an interesting open problem. It is conjectured that there is an algorithm with 

worst-case message complexity 0{n log t) for square meshes with at most t < y/n 

intermittent (as opposed to fail-stop) link failures. 
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Chapter 7 

Conclusions 

This dissertation examined some issues concerning fault tolerance in distributed com­

puting systems were examined. The first problem investigated was average-case be­

havior of algorithms for election on asynchronous rings of processors. An algorithm 

with good worst-case and good average-case message complexity was obtained. It 

was demonstrated by extensive simulations that average-case message complexity of 

the algorithm appears very close to the theoretical optimum. Theoretical analysis 

of average-case behavior of the algorithm is an interesting open problem. Also, the 

existence of similar algorithms on square meshes should be interesting since a square 

mesh can be viewed as a ring of rings. 

The impact of inexact knowledge of processors was examined. Specifically, the 

election problem on asynchronous rings was considered with one possible link failure 

when a lower bound and/or an upper bound on ring size is known to all processors. 

It was shown that a good lower bound is most useful in designing algorithms with 

better worst-case message complexity. The availability of upper bound is useful only 

if the upper bound and the lower bound are sufficiently close. Even a very tight upper 

bound is not helpful if not combined with a good lower bound. 

The impact of the additional knowledge of the identifiers of two neighbors was also 

examined. There are cases where the election problem is not solvable without this 
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knowledge. But this additional knowledge is not helpful in improving the worst-case 

message complexity if the problem is solvable without the knowledge. Investigating 

the impact of inexact knowledge of size on different topologies is an interesting open 

problem. 

Tolerating link failures on square meshes of processors was also studied. While 

conceptually simpler algorithms were obtained using election algorithms on rings, 

a more sophisticated algorithm with better worst-case message complexity is also 

obtained for the case with smaller number of faulty links. The lower bound of the 

election problem in square mesh with link failures is still not solved. The existence of 

algorithms with better worst-case message complexity than the algorithm presented 

for the case t > y/n is also an interesting open problem. 
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