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SUMMARY

The Internet continues to evolve without a mechanism to provide performance guar-

antees or explicit feedback to applications. In this context, the only way to monitor the

state of the network is through end-to-end measurement and inference. The available band-

width (avail-bw) is considered an important metric to characterize the dynamic state of a

network path. Even though its end-to-end measurement has been the focus of extensive

research during the last 15 years, it is only recently that its direct measurement has become

possible, largely as a result of our research.

In this thesis, we focus on developing estimation methodologies and tools for measuring

the avail-bw accurately, quickly, and without being intrusive to the rest of the network

traffic. First, we present an end-to-end methodology, called Self-Loading Periodic Streams

(SLoPS), to determine whether the avail-bw is greater than a given rate based on the one-

way delays of periodic packet streams. The basic idea in SLoPS is that the one-way delays

of a periodic packet stream show an increasing trend when the stream’s rate is higher than

the avail-bw. The SLoPS methodology is the cornerstone of the two avail-bw estimation

tools, pathload and pathvar, that we develop to estimate the average avail-bw and its

variation range, respectively. Pathload uses SLoPS coupled with a binary probing algorithm

to estimate the average avail-bw. Pathvar implements two techniques, non-parametric and

parametric, to estimate the variation range of avail-bw in a user specified time scale.

We verify the accuracy of the tools using simulation, testbed and Internet experiments.

We identify that Interrupt Coalescence (IC), a technique implemented in network cards to

reduce interrupt overhead, is a factor affecting the accuracy of most avail-bw estimation

tools. We present an algorithm which can detect and discard the packets that were affected

by IC, thereby minimizing the effect of IC on avail-bw measurements. The key idea in this

algorithm is based on the signature that IC leaves on the dispersion and one-way delays of

packet streams.
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We also use Pathvar to evaluate the variability of the avail-bw with both simulations

and measurements in Internet paths. We identify four factors that play a crucial role in

the variability of the avail-bw: traffic load, number of competing flows, rate of competing

flows, and the measurement time scale.

We then review several avail-bw estimation techniques and tools developed in the last

4-5 years. We argue that some key issues regarding the avail-bw definition, estimation, and

validation remain vague or misinterpreted. We identify ten misconceptions, in the form of

fallacies or pitfalls, that we consider as most important and explain them, with analysis

and/or simulations, to enhance the understanding of avail-bw as a useful metric.

Finally, we present an application of avail-bw estimation in video streaming. Specifically,

we show that the avail-bw measurements can be used in the dynamic selection of the best

possible overlay path. We compare the performance of various measurement-based path

selection techniques for video streaming in terms of perceived video quality. The avail-bw

based scheme results in better perceived video quality than path selection algorithms that

rely on jitter or loss-rate measurements.
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CHAPTER I

INTRODUCTION

Since the inception of ARPAnet in the 1960s, networks running TCP/IP technology grew

from a few networks to approximately 20000 networks today and from a few hundred

hosts to over 400 million hosts [29]. During the same time, the number and types of

services/applications that are available over the Internet have grown from news, gopher

and email to interactive video conferencing, video streaming, and P2P file transfer. All

these applications have different Quality of Service (QoS) requirements from the network.

For example, video streaming requires low jitter and loss rate, while P2P file transfers care

more about throughput. Similarly, different classes of Internet users have different require-

ments. Companies that use VoIP in place of conventional telephone have more stringent

QoS requirements from the network than a user at home using the Internet mostly for web

browsing.

A network-centric approach to support the different QoS requirements of users/applications

is to build service differentiation mechanisms in the Internet infrastructure. The Intserv [13,

89, 91] and Diffserv [62, 10] architectures were developed within IETF during the 1990s to

provide such service differentiation. The main premise in these approaches was that dif-

ferent applications have different resource requirements and the objective of the network

should be to provide different QoS guarantees or assurances. Intserv was an end-to-end

(e2e) approach that provides service differentiation by reserving resources on an e2e basis

for each flow. Diffserv, on the other hand, aggregates flows into few classes at the network

edges and provides service differentiation between different classes of service on a per-hop

basis. However, deployment of both these approaches has been very limited so far. This

is due to several factors including signaling overhead and inter-domain deployment issues

with Intserv, and the inability to provide e2e assurances with Diffserv.

Another approach to deal with the diverse QoS requirements of users and applications
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is to assume that the network only provides a common basic service for all traffic and build

mechanisms in the end-hosts or applications to dynamically detect and adapt to changing

network conditions. Such an end-centric approach requires that the hosts or applications

have a way to infer network conditions. In the past, there have been several proposals that

required routers to send information to sources/senders about the network state [74, 43].

These proposals have, however, not been deployed and/or enabled in the routers, and the

Internet still remains a black box from the end-host perspective. The lack of explicit feedback

from the network infrastructure has been the main motivation for researchers to focus on

designing algorithms and tools that can monitor the network state through e2e measurement

and inference.

End-to-end network path performance can be characterized by several network-level

metrics: loss rate, delay, TCP bulk transfer capacity (BTC), capacity and avail-bw. All

the metrics, with the exception of avail-bw, have one limitation: they are not a direct

indicator of traffic load; losses can be random and/or happen after a link has been congested;

delay may be dominated by propagation latencies; BTC depends on several factors such as

send/receive windows size and TCP stack; the capacity, by definition, does not take traffic

load into account. The avail-bw, on the hand, is a direct measure of the additional load

that a network path can carry before it becomes saturated. Figure 1 illustrates the basic

concept of the e2e avail-bw in a three-hop path.

30Mbps

S R

Fast Ethernet

100

DS3

Cross-Traffic

10

Ethernet

36

Figure 1: The e2e avail-bw in this 3-hop path is 6 Mbps.

The concept of avail-bw is not something new and has been of central importance

throughout the history of packet networks, in both research and practice. In the con-

text of transport protocols, the robust and efficient use of avail-bw has always been a major
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issue, including Jacobson’s TCP [30]. The avail-bw is also a crucial parameter in capac-

ity provisioning, routing and traffic engineering, QoS management, streaming applications,

server selection, and in several other areas.

Researchers have been trying to create e2e measurement algorithms for avail-bw over

the last 15 years. From Keshav’s packet pair [45] to Carter and Crovella’s cprobe [14], the

objective was to measure e2e avail-bw accurately, quickly, and without affecting the traffic

in the path, i.e., non-intrusively. What made the measurement of avail-bw hard is, first,

that there was no consensus on how to precisely define it, second, that it is a dynamic

metric, and third, that it exhibits high variability in a wide range of timescales.

1.1 Early work on Available Bandwidth Estimation

Although there are several bandwidth estimation tools, most of them measure capacity

rather than avail-bw. Specifically, pathchar [31], clink [18], pchar [57], and the tailgating

technique of [49] measure per-hop capacity. Also, bprobe [14], nettimer [48], pathrate [16],

and the PBM methodology [70] measure end-to-end capacity.

Allman and Paxson noted that an avail-bw estimate can give a more appropriate value for

the ssthresh variable, improving the slow-start phase of TCP [4]. They recognized, however,

the complexity of measuring avail-bw from the timing of TCP packets, and focused instead

on capacity estimates.

The first tool that attempted to measure avail-bw was cprobe [14]. cprobe estimated the

avail-bw based on the dispersion of long packet trains at the receiver. A similar approach

was taken in pipechar [41]. The underlying assumption in these works is that the dispersion

of long packet trains is inversely proportional to the avail-bw.

Dovrolis et al. [16], however, showed that the previous assumption is not true. The dis-

persion of long packet trains does not measure the avail-bw in a path; instead, it measures

a different throughput metric that is referred to as Asymptotic Dispersion Rate (ADR). [16]

also showed a result for a single-hop path that can be used to determine the available band-

width given the input stream rate, output stream rate and narrow link capacity. Though

this result is only valid for single hop path, it has been used by several techniques, described

3



in chapter 7 as direct probing approach, that have been proposed in the last few years.

Another technique, called TOPP, for measuring avail-bw was proposed in [59]. The key

idea in TOPP is: the ratio of input to output probing rate is smaller than one if the input

probing rate is greater than avail-bw, otherwise it is equal to one. TOPP uses sequences of

packet pairs sent to the path at increasing rates. From the relation between the input and

output rates of different packet pairs, it is possible to estimate the avail-bw and the capacity

of the tight link in the path. In certain path configurations, it is also possible to measure

the avail-bw and capacity of other links in the path. However, the TOPP approach has one

major limitation. TOPP is basically a methodology, which shows the feasibility of key idea

described earlier for avail-bw estimation, and not a complete algorithm to estimate avail-bw.

In a network path, output probing rate is affected by number of factors, in addition to tight

link avail-bw, such as interference from cross traffic packets at non-tight links, burstiness

of cross traffic, etc. TOPP methodology does not include an algorithm to measure the

avail-bw in real network path. Additionally, its approach of using the relation between the

input and the output rates, however, introduces errors in th estimation. We will return to

the previous points in chapter 7.

1.2 Contributions

The key contributions of this thesis are:

• Establishing the precise definition of the avail-bw and designing SLoPS methodology

for avail-bw estimation.

• Design and development of tool, called Pathload, for estimating average avail-bw.

• Formulating avail-bw as a random process and developing two algorithms to measure

the variability of avail-bw process. Implemented these algorithms in a tool called

Pathvar.

• Study of effect of Interrupt Coalescence on the accuracy of bandwidth estimation tools

and design of an algorithm to enable bandwidth estimation tool to function accurately

in presence of IC.
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• Study of the variability of avail-bw process.

• Demonstrate the performance improvements achieved in video streaming by using

avail-bw as opposed to simpler metrics such as network loss rate and delay.

1.2.1 Avail-bw Estimation Methodology: SLoPS

Our first contribution is an e2e methodology, called Self-Loading Periodic Streams (SLoPS),

for measuring avail-bw [33]. The basic idea in SLoPS is that the one-way delays of a periodic

packet stream show an increasing trend when the stream’s rate is higher than the avail-bw.

SLoPS has numerous applications, such as server selection, routing in overlay networks, rate

adaptation in video streaming, and we show one such application of SLoPS.

1.2.2 Average Available Bandwidth: Algorithm and Tool

We have implemented SLoPS in a tool called Pathload [33]. Pathload implements an iter-

ative algorithm to estimate the average avail-bw [33]. We have evaluated the accuracy of

the tool with both simulations and experiments over real-world Internet paths. Pathload

has also been verified and shown to be more accurate than other tools by independent re-

searchers [80]. We show that Pathload is non-intrusive, meaning that it does not cause a

significant increase in the network utilization, average delays, or loss rate.

1.2.3 Available Bandwidth Variation Range: Algorithm and Tool

Next, we view the avail-bw as a stationary random process. We focus on the e2e estima-

tion of the variability of the avail-bw marginal distribution. Specifically, we develop two

techniques to estimate the percentiles of avail-bw distribution. The first is iterative and

non-parametric, meaning that it is more appropriate for very short time scales (typically

less than 100ms), or in bottlenecks with limited flow multiplexing (where the avail-bw dis-

tribution may be non-Gaussian). The second technique is parametric, because it assumes

that the avail-bw follows the Gaussian distribution, and it can produce an estimate faster

because it is not iterative. The two techniques have been implemented in a measurement

tool called Pathvar [35]. Pathvar can track the avail-bw variation range within 10%-20%,

even under non-stationary conditions. Finally, we identify four factors that play a crucial
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role in the variation range of the avail-bw: traffic load, number of competing flows, rate of

competing flows, and of course the measurement time scale.

1.2.4 Effect of Interrupt Coalescence on Bandwidth Estimation Tools

The accuracy of bandwidth estimation tools can be affected by several factors which are

beyond the control of measurement tools. We show [72] that Interrupt Coalescence (IC),

a technique implemented in network cards to reduce interrupt overhead, is one such factor

affecting the accuracy of most avail-bw estimation tools. We first explain how IC works in

two popular Gigabit Ethernet controllers. Then, we identify the negative effects of IC on

active and passive network measurements. Specifically, we show that IC can affect active

bandwidth estimation techniques, causing erroneous measurements. It can also alter the

packet interarrivals in passive monitors that use commodity network interfaces. Based on

the “signature” that IC leaves on the dispersion and one-way delays of packet trains, we

show how to detect IC and how to filter its effects from raw measurements.

1.2.5 Misconceptions in Available Bandwidth

We review several avail-bw estimation techniques and tools developed in last 4-5 years [34],

mostly after the publication of Pathload. We show that some key issues regarding the

avail-bw definition, estimation, and validation remain vague or misinterpreted. We then

identify ten misconceptions and clarify them using analysis and/or simulations to enhance

the understanding of avail-bw as a useful metric.

1.2.6 Video Streaming using Avail-bw

Finally, we present a adaptive path selection approach using avail-bw estimation to maxi-

mize perceived quality of streaming video. Selecting one of several Internet paths is currently

possible using multihoming and/or overlay routing infrastructures. Specifically, we conduct

an experimental comparison of various measurement-based path selection techniques for

video streaming. The path selection is based on the measurement of network-layer metrics,

such as loss rate, jitter or available bandwidth, while the video quality is evaluated based

on the VQM tool. Our experiments show that the most effective technique for adaptive
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path selection relies on the inference of a lower bound of the available bandwidth. We also

show how to perform such measurements using video packets, eliminating the measurement

overhead in the selected path.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the SLoPS methodology

that infers whether the available bandwidth is greater or smaller than a given probing rate.

Chapter 3 presents a tool, called Pathload, to estimate the average available bandwidth.

Chapter 4 presents a tool called Pathvar to estimate the variation range of avail-bw. In

Chapter 5, we present the effect of interrupt coalescence on the accuracy of bandwidth esti-

mation tools. Chapter 6 presents an application of avail-bw estimation to video streaming

in the Internet. Chapter 7 discusses other recent bandwidth estimation proposals and clar-

ifies some misconceptions in the area of available bandwidth estimation. Finally, chapter 8

presents a summary of the contributions of this thesis and some issues that deserve further

research.
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CHAPTER II

SELF LOADING PERIODIC STREAM (SLOPS)

In this chapter, we first define the avail-bw in an intuitive but precise manner. The definition

does not depend on higher-level issues, such as the transport protocol or the number of flows

that can capture the avail-bw in a path. Next, we present an original end-to-end avail-bw

measurement methodology, called Self-Loading Periodic Streams or SLoPS. The basic idea

in SLoPS is that the one-way delays of a periodic packet stream show an increasing trend

when the stream’s rate is higher than the avail-bw. SLoPS methodology is the core of two

avail-bw estimation tools that are presented in chapter 3 and 4.

2.1 Definitions

A network path P is a sequence of H store-and-forward links that transfer packets from

a sender SND to a receiver RCV . We assume that the path is fixed and unique, i.e., no

routing changes or multipath forwarding occur during the measurements. Each link i can

transmit data with a rate Ci bps, that is referred to as link capacity. Two throughput

metrics that are commonly associated with P are the end-to-end capacity C and available

bandwidth A. The capacity is defined as

C ≡ min
i=1...H

Ci (1)

and it is the maximum rate that the path can provide to a flow, when there is no other traffic

in P.

Suppose that link i transmitted Ciui(t0, t0 + τ) bits during a time interval (t0, t0 + τ).

The term ui(t0, t0+τ), or simply uτ
i (t0), is the average utilization of link i during (t0, t0+τ),

with 0 ≤ uτ
i (t0) ≤ 1. Intuitively, the avail-bw Aτ

i (t0) of link i in (t0, t0 + τ) can be defined

as the fraction of the link’s capacity that has not been utilized during that interval, i.e.,

Aτ
i (t0) ≡ Ci [1− uτ

i (t0)] (2)
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Extending this concept to the entire path, the end-to-end avail-bw Aτ (t0) during (t0, t0 + τ)

is the minimum avail-bw among all links in P,

Aτ (t0) ≡ min
i=1...H

{Ci [1− uτ
i (t0)]} (3)

Thus, the end-to-end avail-bw is defined as the maximum rate that the path can provide to

a flow, without reducing the rate of the rest of the traffic in P.

To avoid the term bottleneck link, that has been widely used in the context of both

capacity and avail-bw, we introduce two new terms. The narrow link is the link with the

minimum capacity, and it determines the capacity of the path. The tight link, on the other

hand, is the link with the minimum avail-bw, and it determines the avail-bw of the path.

The parameter τ in (3) is the avail-bw averaging timescale. If we consider Aτ (t) as a

stationary random process, the variance Var{Aτ} of the process decreases as the averaging

timescale τ increases. We note that if Aτ is self-similar, the variance Var{Aτ} decreases

slowly, in the sense that the decrease of Var{Aτ} as τ increases is slower than the reciprocal

of τ [53].

2.2 Self-Loading Periodic Streams

In this section, we describe the Self-Loading Periodic Streams (SLoPS) measurement method-

ology. A periodic stream in SLoPS consists of K packets of size L, sent to the path at a

constant rate R. If the stream rate R is higher than the avail-bw A, the one-way delays

of successive packets at the receiver show an increasing trend. We first illustrate this fun-

damental effect in its simplest form through an analytical model with stationary and fluid

cross traffic. Then, we show how to use this ‘increasing delays’ property in an iterative

algorithm that measures end-to-end avail-bw. Finally, we depart from the previous fluid

model, and observe that the avail-bw may vary during a stream. This requires us to refine

SLoPS in several ways, that is the subject of the next section.

2.2.1 SLoPS with fluid cross traffic

Consider a path from SND to RCV that consists of H links, i = 1, . . . ,H. The capacity of

link i is Ci. We consider a stationary (i.e., time invariant) and fluid model for the cross traffic
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in the path. So, if the avail-bw at link i is Ai, the utilization is ui = (Ci−Ai)/Ci and there are

ui Ci τ bytes of cross traffic departing from, and arriving at, link i in any interval of length

τ . Also, assume that the links follow the First-Come First-Served queueing discipline1, and

that they are adequately buffered to avoid losses. We ignore any propagation or fixed delays

in the path, as they do not affect the delay variation between packets. The avail-bw A in

the path is determined by the tight link t ∈ {1, . . . ,H} with2

At = min
i=1...H

Ai = min
i=1...H

Ci (1− ui) = A (4)

Suppose that SND sends a periodic stream of K packets to RCV at a rate R0, starting

at an arbitrary time instant. The packet size is L bytes, and so packets are sent with a

period of T = L/R0 time units. The One-Way Delay (OWD) Dk from SND to RCV of

packet k is

Dk =
H

∑

i=1

(
L

Ci
+

qk
i

Ci
) =

H
∑

i=1

(
L

Ci
+ dk

i ) (5)

where qk
i is the queue size at link i upon the arrival of packet k (qk

i does not include packet

k), and dk
i = qk

i /Ci is the queueing delay of packet k at link i. The OWD difference between

two successive packets k and k + 1 is

∆Dk ≡ Dk+1 −Dk =

H
∑

i=1

∆qk
i

Ci
=

H
∑

i=1

∆dk
i (6)

where ∆qk
i ≡ qk+1

i − qk
i , and ∆dk

i ≡ ∆qk
i /Ci.

We can now show that, if R0 > A the K packets of the periodic stream will arrive

at RCV with increasing OWDs, while if R0 ≤ A the stream packets will encounter equal

OWDs. This property is stated next with the proof.

Proposition 1 If R0 > A, then ∆Dk > 0 for k = 1, . . . K − 1. Else, if R0 ≤ A, ∆Dk = 0

for k = 1, . . . K − 1.

Proof:

1In links with per-flow or per-class queueing, SLoPS can obviously monitor the sequence of queues that
the probing packets go through.

2If there are more than one links with avail-bw A, the tight link is the first of them, without loss of
generality.
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At the first link

Case 1: R0 > A1.

Suppose that tk is the arrival time of packet k in the queue. Over the interval [tk, tk + T ),

with T = L/R0, the link is constantly backlogged because the arriving rate is higher than

the capacity (R0 +u1 C1 = C1 + (R0−A1) > C1). Over the same interval, the link receives

L + u1 C1 T bytes and services C1 T bytes. Thus,

∆qk
1 = (L + u1 C1 T )− C1 T = (R0 −A1)T > 0 (7)

and so,

∆dk
1 =

R0 −A1

C1
T > 0. (8)

Packet k + 1 departs the first link Λ time units after packet k, where

Λ = (tk+1 + dk+1
1 )− (tk + dk

1) = T +
R0 −A1

C1
T (9)

that is independent of k. So, the packets of the stream depart the first link with a constant

rate R1, where

R1 =
L

Λ
= R0

C1

C1 + (R0 −A1)
. (10)

We refer to rate Ri−1 as the entry-rate in link i, and to Ri as the exit-rate from link i. Given

that R0 > A1 and that C1 ≥ A1, it is easy to show that the exit-rate from link 1 is larger

or equal than A1
3 and lower than the entry-rate,

A1 ≤ R1 < R0. (11)

Case 2: R0 ≤ A1.

In this case, the arrival rate at the link in interval [tk, tk +T ) is R0 +u1 C1 ≤ C1. So, packet

k is serviced before packet k + 1 arrives at the queue. Thus,

∆qk
1 = 0, ∆dk

1 = 0, and R1 = R0 (12)

Induction to subsequent links The results that were previously derived for the first link can

be proved inductively for each link in the path. So, we have the following relationship

3
R1 = A1 when A1 = C1.
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between the entry and exit rates of link i:

Ri =











Ri−1
Ci

Ci+(Ri−1−Ai)
if Ri−1 > Ai

Ri−1 otherwise
(13)

with

Ai ≤ Ri < Ri−1 when Ri−1 > Ai (14)

Consequently, the exit-rate from link i is

Ri ≥ min{Ri−1, Ai} (15)

Also, the queueing delay difference between successive packets at link i is

∆dk
i =











Ri−1−Ai

Ci
T > 0 if Ri−1 > Ai

0 otherwise
(16)

OWD variations If R0 > A, we can apply (14) recursively for i = 1, . . . (t− 1) to show that

the stream will arrive at the tight link with a rate Rt−1 ≥ At−1 > At. Thus, based on (16),

∆dk
t > 0, and so the OWD difference between successive packets will be positive, ∆dk > 0.

On the other hand, if R0 ≤ A, then R0 ≤ Ai for every link i (from the definition of

A). So, applying (15) recursively from the first link to the last, we see that Ri < Ai for

i = 1, . . . H. Thus, (16) shows that the delay difference in each link i is ∆dk
i = 0, and so

the OWD differences are ∆dk = 0.

One may think that the avail-bw A can be computed directly from the rate at which the

stream arrives at RCV . This is the approach followed in packet train dispersion techniques.

The following result, however, shows that, in a general path configuration, this would be

possible only if the capacity and avail-bw of all links (except the avail-bw of the tight link)

are a priori known.

Proposition 2 The rate RH of the packet stream at RCV is a function, in the general case,

of Ci and Ai for all i = 1, . . . ,H.

This result follows from the proof of proposition 1 (apply recursively Equation 13 until

i = H).
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2.2.2 An iterative algorithm to measure A

Based on Proposition 1, we can construct an iterative algorithm for the end-to-end mea-

surement of A. Suppose that SND sends a periodic stream n with rate R(n). The receiver

analyzes the OWD variations of the stream, based on Proposition 1, to determine whether

R(n) > A or not. Then, RCV notifies SND about the relation between R(n) and A. If

R(n) > A, SND sends the next periodic stream n+1 with rate R(n+1) < R(n). Otherwise,

the rate of stream n + 1 is R(n + 1) > R(n).

Specifically, R(n + 1) can be computed as follows,

If R(n) > A,Rmax = R(n);

If R(n) ≤ A,Rmin = R(n);

R(n + 1) = (Rmax + Rmin)/2; (17)

Rmin and Rmax are lower and upper bounds for the avail-bw after stream n, respectively.

Initially, Rmin=0 and Rmax can be set to a sufficiently high value Rmax
0 > A.4 The algorithm

terminates when Rmax − Rmin ≤ ω, where ω is the user-specified estimation resolution. If

the avail-bw A does not vary with time, the previous algorithm will converge to a range

[Rmin, Rmax] that includes A after dlog2(R
max
0 /ω)e streams.

2.2.3 SLoPS with real cross traffic

We assumed so far that the avail-bw A is constant during the measurement process. In

reality, the avail-bw may vary because of two reasons. First, the avail-bw process Aτ (t) of

(3) may be non-stationary, and so its expected value may also be a function of time. Even

if Aτ (t) is stationary, however, the process Aτ can have a significant statistical variability

around its (constant) mean E[Aτ ], and to make things worse, this variability may extend

over a wide range of timescales τ . How can we refine SLoPS to deal with the dynamic

nature of the avail-bw process?

To gain some insight into this issue, Figures 2, 3, and 4 show the OWD variations in

three periodic streams that crossed a 12-hop path from Univ-Oregon to Univ-Delaware. All

4A better way to initialize R
max is described in chapter 3.
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Figure 2: OWD variations for a periodic stream when R > A.
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Figure 3: OWD variations for a periodic stream when R < A.
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Figure 4: OWD variations for a periodic stream when R ./ A.

three streams have K=100 packets with T=100µs. The 5-minute average avail-bw in the

path during these measurements was about 74Mbps, according to the MRTG utilization

graph of the tight link. In Figure 2, the stream rate is R=96Mbps, i.e., higher than the

long-term avail-bw. Notice that the OWDs between successive packets are not strictly

increasing, as one would expect from Proposition 1, but overall, the stream OWDs have a

clearly increasing trend. This is shown both by the fact that most packets have a higher

OWD than their predecessors, and because the OWD of the last packet is about 4ms larger

than the OWD of the first packet. On the other hand, the stream of Figure 3 has a rate

R=37Mbps, i.e., lower than the long-term avail-bw. Even though there are short-term

intervals in which we observe increasing OWDs, there is clearly not an increasing trend in

the stream. The third stream, in Figure 4, has a rate R=82Mbps. The stream does not

show an increasing trend in the first half, indicating that the avail-bw during that interval

is higher than R. The situation changes dramatically, however, after roughly the 60-th

packet. In that second half of the stream there is a clear increasing trend, showing that the

avail-bw decreases to less than R.

The previous example motivates two important refinements in the SLoPS methodology.

First, instead of analyzing the OWD variations of a stream, expecting one of the two cases
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of Proposition 1 to be strictly true for every pair of packets, we should instead watch for the

presence of an overall increasing trend during the entire stream. Second, we have to accept

the possibility that the avail-bw may vary around rate R during a probing stream. In that

case, there is no strict ordering between R and A, and thus a third possibility comes up,

that we refer to as ‘grey-region’ (denoted as R ./ A).

2.3 Summary

In this chapter, we described an orignal end-to-end available bandwidth measurement

methodology, SLoPS, based on the idea that one-way delays of a periodic stream show

an increasing trend if the stream rate is greater than avail-bw. An end-to-end avail-

bw measurement methodology, such as SLoPS, can have numerous applications, such as

bandwidth-Delay-Product in TCP, overlay networks and end-system multicast, rate adap-

tation in streaming applications, end-to-end admission control, server selection and anycast-

ing, and verification of SLAs. In the next chapter, we present design of average avail-bw

estimation tool called Pathload.
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CHAPTER III

AVERAGE AVAIL-BW ESTIMATION: PATHLOAD

In this chapter, we present the algorithm design and its implementation in a tool, called

Pathload, to estimate average avail-bw. An important feature of Pathload is that, instead of

reporting a single figure for the average avail-bw in a time interval (t0, t0 + Θ), it estimates

the range in which the avail-bw process Aτ (t) varies in (t0, t0 +Θ), when it is measured with

an averaging timescale τ < Θ. The timescales τ and Θ are related to two tool parameters,

namely the ‘stream duration’ and the ‘fleet duration’.

Pathload has been verified experimentally, by comparing its results with MRTG uti-

lization graphs for the path links [65]. We have also evaluated Pathload in a controlled

and reproducible environment using NS simulations. The simulations show that Pathload

reports a range that includes the average avail-bw in a wide range of load conditions and

path configurations. The tool underestimates the avail-bw, however, when the path includes

several tight links. The Pathload measurements are non-intrusive, meaning that they do

not cause significant increases in the network utilization, delays, or losses.

We have used Pathload to estimate the variability (or ‘dynamics’) of the avail-bw in

different paths and load conditions. An important observation is that the avail-bw becomes

more variable as the utilization of the tight link increases (i.e., as the avail-bw decreases).

Similar observations are made for paths of different capacity that operate at about the same

utilization. Specifically, the avail-bw shows higher variability in paths with smaller capacity,

probably due to a lower degree of statistical multiplexing.

Finally, we examined the relation between the avail-bw and the throughput of a ‘greedy’

TCP connection, i.e., a persistent bulk transfer with sufficiently large advertised window.

Our experiments show that such a greedy TCP connection can be used to roughly measure

the end-to-end avail-bw, but TCP saturates the path, increases significantly the delays and

jitter, and potentially causes losses to other TCP flows. The increased delays and losses in
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the path cause other TCP flows to slow down, allowing the greedy TCP connection to grab

more bandwidth than what was previously available.

3.1 Measurement tool: Pathload

We implemented SLoPS in a tool called Pathload. Pathload consists of two components:

process SND running at the sender and process RCV running at the receiver. The tool

uses UDP for the periodic packet streams. Additionally, a TCP connection between the two

end-points serves as a ‘control channel’. The control channel transfers messages regarding

the characteristics of each stream, the abortion or end of the measurement process, etc. In

the following, we describe Pathload in detail.

3.1.1 Clock issues

SND timestamps each packet upon its transmission. So, RCV can measure the relative

OWD Dk of packet k, that differs from the actual OWD by a certain offset. This offset is

due to the non-synchronized clocks of the end-hosts. Since we are only interested in OWD

differences though, a constant offset in the measured OWDs does not affect the analysis.

Clock skew can be a potential problem,1 but not in Pathload. The reason is that each

stream lasts for only a few milliseconds (§3.1.2), and so the skew during a stream is in the

order of nanoseconds, much less than the OWD variations due to queueing.

3.1.2 Stream parameters

A stream consists of K packets of size L, sent at a constant rate R. The reason for sending

a stream with constant rate is: stream duration is related to the averaging timescale, which

corresponds to the duration over which the relationship between rate R and avail-bw A is

examined. R is adjusted at run-time for each stream, as described in §3.1.5. The packet

inter-spacing T is normally set to Tmin, which is based on the minimum possible period

that the end-hosts can achieve. The packet inter-spacing is constant for all the packets in

the stream to achieve a constant rate R. Given R and T , the packet size is computed as

L = R T . L, however, has to be smaller than the path MTU Lmax (to avoid fragmentation),

1And there are algorithms to remove its effects [69].
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and larger than a minimum possible size Lmin=200B. The reason for the Lmin constraint

is to reduce the effect of Layer-2 headers on the stream rate (see [68]). If R < Lmin/Tmin,

the inter-spacing T is increased to Lmin/R. The maximum rate that Pathload can generate,

and thus the maximum avail-bw that it can measure, is Lmax/Tmin.

The stream length K is chosen based on two constraints. First, a stream should be

relatively short, so that it does not cause large queues and potentially losses in the path

routers. Second, K controls the stream duration V = KT , which is related to the averaging

timescale τ (see §3.3.3). A larger K (longer stream) increases τ , and thus reduces the

variability in the measured avail-bw. In Pathload, the default value for K is 100 packets.

3.1.3 Detecting an increasing OWD trend

Suppose that the (relative) OWDs of a particular stream are D1, D2, . . . , DK . As a pre-

processing step, we partition these measurements into Γ =
√

K groups of Γ consecutive

OWDs. Then, we compute the median OWD D̂k of each group. Pathload analyzes the set

{D̂k, k = 1, . . . ,Γ}, which is more robust to outliers and errors.

We use two complementary statistics to check if a stream shows an increasing trend.

The Pairwise Comparison Test (PCT) metric of a stream is

SPCT =

∑Γ
k=2 I(D̂k > D̂k−1)

Γ− 1
(18)

where I(X) is one if X holds, and zero otherwise. PCT measures the fraction of consecutive

OWD pairs that are increasing, and so 0 ≤ SPCT ≤ 1. If the OWDs are independent, the

expected value of SPCT is 0.5. If there is a strong increasing trend, SPCT approaches one.

The Pairwise Difference Test (PDT) metric of a stream is

SPDT =
D̂Γ − D̂1

∑Γ
k=2 |D̂k − D̂k−1|

(19)

PDT quantifies how strong is the start-to-end OWD variation, relative to the OWD absolute

variations during the stream. Note that −1 ≤ SPDT ≤ 1. If the OWDs are independent,

the expected value of SPDT is zero. If there is a strong increasing trend, SPDT approaches

one.
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Figure 5: Comparison of PCT and PDT for a stream with increasing OWD trend.

There are cases in which one of the two metrics is better than the other in detecting an

increasing trend. For instance, Figure 5 shows two 12-packet streams with an increasing

OWD trend. In Figure 5-a, PCT would detect the increasing trend but PDT would not,

while the opposite would be the case in Figure 5-b.

In Pathload, we characterize the trend in a stream as follows. When one of the PCT and

PDT metrics reports ‘increasing trend’, while the other is either ‘increasing’ or ‘ambiguous’,

the stream is characterized as type-I (for ‘increasing’). Similarly, when one metric reports

‘non-increasing’ trend, while the other is either ‘non-increasing’ or ‘ambiguous’, the stream

is characterized as type-N (for ‘non-increasing’). If both metrics report ‘ambiguous’, or

when one is ‘increasing’ and the other is ‘non-increasing’, the stream is discarded. We show

the sensitivity of Pathload results to PDT threshold in the next section.

3.1.4 Fleets of streams

Pathload does not determine whether R > A based on a single stream. Instead, it sends

a fleet of N streams, so that it samples whether R > A N successive times. All streams

in a fleet have the same rate R. Each stream is sent only when the previous stream has

been acknowledged, to avoid a backlog of streams in the path. So, there is always an idle

interval ∆ between streams, which is larger than the Round-Trip Time (RTT) of the path.

The duration of a fleet is U=N(V + ∆)=N(KT + ∆). Given V and ∆, N determines the
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fleet duration, which is related to the Pathload measurement latency. The default value for

N is 12 streams. The effect of N is discussed in §3.3.4.

The average Pathload rate during a fleet of rate R is

NKL

N(V + ∆)
= R

1

1 + ∆
V

In order to limit the average Pathload rate to less than 10% of R, the current version of

Pathload sets the inter-stream latency to ∆ = max{RTT, 9V }.

If a stream encounters excessive losses (>10%), or if more than a number of streams

within a fleet encounter moderate losses (>3%), the entire fleet is aborted and the rate of

the next fleet is decreased.

Grey-region If a large fraction f of the N streams in a fleet are of type-I, the entire

fleet shows an increasing trend and we infer that the fleet rate is larger than the avail-bw

(R > A). Similarly, if a fraction f of the N streams are of type-N, the fleet does not show

an increasing trend and we infer that the fleet rate is smaller than the avail-bw (R < A).

It can happen, though, that less than N × f streams are of type-I, and also that less than

N × f streams are of type-N. In that case, some streams ‘sampled’ the path when the

avail-bw was less than R (type-I), and some others when it was more than R (type-N). We

say, then, that the fleet rate R is in the ‘grey-region’ of the avail-bw, and write R ./ A.

The interpretation that we give to the grey-region is that when R ./ A, the avail-bw process

Aτ (t) during that fleet varied above and below rate R, causing some streams to be of type-I

and some others to be of type-N. The averaging timescale τ , here, is related to the stream

duration V . We discuss the effect of f on Pathload results in the next section.

The previous three cases are illustrated in Figures 6 and 7. Figure 6 shows the PCTs for

three fleets (with N=20 streams), while Figure 7 shows the PDTs for the same fleets. In the

first fleet (R=94Mbps, A=75Mbps), all streams are characterized as type-I. In the second

fleet (R=80Mbps, A=74Mbps), 11 streams are type-I, 6 are type-N, and 3 are discarded.

So, in this case, the rate R is in the grey-region of the avail-bw (R ./ A). In the third fleet

(R=40Mbps, A=74Mbps), all streams are characterized as type-N.
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Figure 6: PCTs for three fleets (20 streams each).

3.1.5 Rate adjustment algorithm

After a fleet n of rate R(n) is over, Pathload determines whether R(n) > A, R(n) < A, or

R(n) ./ A. The iterative algorithm that determines the rate R(n + 1) of the next fleet is

quite similar to the binary-search approach of (17). There are two important differences

though.

First, together with the upper and lower bounds for the avail-bw Rmax and Rmin,

Pathload also maintains upper and lower bounds for the grey-region, namely Gmax and

Gmin. When R(n) ./ A, one of these bounds is updated depending on whether Gmax <

R(n) < Rmax (update Gmax), or Gmin > R(n) > Rmin (update Gmin). If a grey-region

has not been detected up to that point, the next rate R(n + 1) is chosen, as in (17),

half-way between Rmin and Rmax. If a grey-region has been detected, R(n + 1) is set half-

way between Gmax and Rmax when R(n) = Gmax, or half-way between Gmin and Rmin

when R(n) = Gmin. It is important to note that this binary-search approach succeeds in

converging to the avail-bw, as long as the avail-bw variation range is strictly included in the

[Rmin, Rmax] range. The experimental and simulation results of the next section show that

this is the case generally, with the exception of paths that include several tight links.
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Figure 7: PDTs for three fleets (20 streams each).

The second difference is that Pathload terminates not only when the avail-bw has been

estimated within a certain resolution ω (i.e., Rmax − Rmin ≤ ω), but also when Rmax −

Gmax ≤ χ and Gmin − Rmin ≤ χ, i.e., when both avail-bw boundaries are within χ from

the corresponding grey-region boundaries. The parameter χ is referred to as grey-region

resolution.

The tool eventually reports the range [Rmin, Rmax].

3.1.6 Measurement latency

Since Pathload is based on an iterative algorithm, it is hard to predict how long will a

measurement take. For the default tool parameters, and for a path with A≈ 100Mbps and

∆=100ms, the tool needs less than 15 seconds to produce a final estimate. The measurement

latency increases as the absolute magnitude of the avail-bw and/or the width of the grey-

region increase, and it also depends on the resolution parameters ω and χ.

3.1.7 Response to packet losses

After each stream is received, RCV measures the loss rate that the stream experienced. If

a stream encountered moderate losses (<3%), the stream is marked as lossy. If more than

a certain fraction of streams have been marked as lossy, then RCV informs SND to abort
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Figure 8: A context switch at the sender.

the remaining streams of the fleet. Also, if a stream encountered excessive losses (> 10%),

the fleet is immediately aborted. The rate R at which the fleet was aborted becomes the

new upper bound Rmax of the rate adjustment algorithm.

3.1.8 Detection of a sender context switch

Pathload checks whether a context switch occurred at SND while a stream was being sent.

Suppose that ti is the transmission time of packet i from SND. ti is carried in packet i.

RCV compares the sending times of consecutive packets to see whether ti+1 − ti > T + W ,

where W is maximum allowed deviation from the target period T . If ti+1 − ti > T + W ,

Pathload takes the ‘pessimistic’ approach that SND was switched out after sending the ith

packet of a stream. Then, RCV splits the received stream into two substreams, one between

packets 1 and i, and another between packets i+1 and K. If a substream includes less than

K/2 packets, it is discarded from the OWD analysis. In the current version of Pathload, W

is set to 10ms.

Figure 8 shows an illustration of a 30-packet stream in which a context switch occurred

at SND. Packets 1-15 are sent before SND is switched out, while the remaining 15 packets

are sent after it runs again. Both substreams show a increasing trend, indicating that a

queue was building up at the tight link. In this example, we assume that the avail-bw
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Figure 9: A context switch at the receiver.

changed between the two substreams, causing different increasing slopes in the OWDs of

the two substreams.

3.1.9 Detection of a receiver context switch

Pathload also checks whether a context switch occurred at RCV while a stream was being

received. Suppose that ai is the arrival time of packet i at theRCV Pathload process. IfRCV

is switched out while receiving a stream, some of the stream packets will be accumulated in

a kernel buffer at the receiving host. When RCV runs again, those packets are transferred

from kernel to user space with a spacing of Q µs, where Q is the latency of the recvfrom

system call. Typically, Q is a few microseconds, and it can be measured at RCV before the

measurements start. So, RCV can detect a local context switch comparing the arrival times

of consecutive packets. If ai+1 − ai ≈ Q, packets i and i + 1 are marked as backlogged at

the kernel, and they are discarded from the OWD analysis.

Figure 9 shows an illustration of a 30-packet stream in which a context switch occurred

at the receiver. Based on the arrival timestamps ai, RCV determines that the context switch

affected packets 11-14, and discards them from the OWD analysis. Packet 15 and onwards

arrive at the receiver after RCV started running again. Hence, their OWD measurements

are not affected by the previous context switch. Notice that we do not need to analyze
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Figure 10: Simulation topology.

packets 15-30 as a separate substream.

3.2 Verification

The objective of this section is to evaluate the accuracy of Pathload with both NS simulations

[64], and experiments over real Internet paths.

3.2.1 Simulation results

The following simulations evaluate the accuracy of Pathload in a controlled and reproducible

environment under various load conditions and path configurations. Specifically, we imple-

mented the Pathload sender (SND) and receiver (RCV) in application-layer NS modules.

The functionality of these modules is identical as in the original Pathload, with the excep-

tion of some features that are not required in a simulator (such as the detection of context

switches).

In the following, we simulate the H-hop topology of Figure 10. The Pathload packets

enter the path in hop 1 and exit at hop H. The hop in the middle of the path is the tight

link, and it has capacity Ct, avail-bw At, and utilization ut. We refer to the rest of the links

as non-tight, and consider the case where they all have the same capacity Cnt, avail-bw

Ant, and utilization unt. Cross-traffic is generated at each link from ten random sources

that, unless specified otherwise, generate Pareto interarrivals with α=1.9. The cross-traffic

packet sizes are distributed as follows: 40% are 40B, 50% are 550B, and 10% are 1500B. The

end-to-end propagation delay in the path is 50 msec, and the links are sufficiently buffered

to avoid packet losses.

We next examine sensitivity of Pathload results to f and PDT threshold, the effect of
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Figure 11: Simulation results for different values of fraction f .

cross-traffic load in the tight and non-tight links on the accuracy of Pathload, i.e., the effect

of ut and unt, as well as the effect of the number of hops H. Another important factor is

the relative magnitude of the avail-bw in the non-tight links Ant and in the tight link At.

To quantify this, we define the path tightness factor as

β =
Ant

At
≥ 1 (20)

Unless specified otherwise, the default parameters in the following simulations are H=5

hops, Ct=10Mbps, β=5, ut=unt=60%, f=0.7, PCT threshold=0.55 and PDT threshold=0.4.

Figure 11 shows the sensitivity of Pathload range to f . The reported Pathload range

is a result of a single run of Pathload. Since Ct=50Mbps, and ut=unt=60%, the average

avail-bw in the path is At=20Mbps. The key thing to note in this figure is that a higher

value of f increases the width of the grey region and hence the estimated avail-bw range.

The reason is that, for a given R and A, a higher f implies a larger fraction of streams must

be of type-I if R > A ( type-N if R < A) and hence harder to characterize entire fleet as

increasing (non-increasing).

Figure 12 shows the sensitivity of Pathload range to PDT threshold for a single run

of Pathload. The simulation parameters are same as before and only PDT algorithm is

used to detect trend in the stream. The main observation in figure 12 is that Pathload
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Figure 12: Simulation results for different values of PDT threshold.

underestimates the avail-bw for very low values of PDT threshold and overestimates the

avail-bw for high values of PDT threshold. To understand this, note that a stream has

increasing trend if Spdt > PDT threshold. A lower PDT threshold means that a stream can

be marked of type-I even if R < A. Similarly, a higher PDT threshold implies that a stream

can be marked as type-N even if the trend R > A but the delay trend were not strictly

increasing. Sensitivity analysis of PCT threshold showed similar trend as PDT threshold,

however we did not to include the results due to space constraint.

Figure 13 examines the accuracy of Pathload in four tight link utilization values, ranging

from light load (ut=30%) to heavy load (ut=90%). We also consider two cross-traffic models:

exponential interarrivals and Pareto interarrivals with infinite variance (α=1.5). For each

utilization and traffic model, we run Pathload 50 times to measure the avail-bw in the path.

After each run, the tool reports a range [Rmin, Rmax] in which the avail-bw varies. The

Pathload range that we show in Figure 13 results from averaging the 50 lower bounds Rmin

and the 50 upper bounds Rmax. The coefficient of variation for the 50 samples of Rmin and

Rmax in the following simulations was typically between 0.10 and 0.30.

The main observation in Figure 13 is that Pathload produces a range that includes the

average avail-bw in the path, in both light and heavy load conditions at the tight link. This
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Figure 13: Simulation results for different traffic types and tight link loads.
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Figure 14: Simulation results for different non-tight link loads.

is true with both the smooth interarrivals of Poisson traffic, and with the infinite-variance

Pareto model. For instance, when the avail-bw is 4Mbps, the average Pathload range in the

case of Pareto interarrivals is from 2.4 to 5.6 Mbps. It is also important to note that the

center of the Pathload range is relatively close to the average avail-bw. In Figure 13, the
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Figure 15: Simulation results for different path tightness factors β.

maximum deviation between the average avail-bw and the center of the Pathload range is

when the former is 1Mbps and the latter is 1.5Mbps.

The next issue is whether the accuracy of Pathload depends on the number and load

of the non-tight links. Figure 14 shows, as in the previous paragraph, 50-sample average

Pathload ranges for four different utilization points unt at the non-tight links, and for two

different path lengths H. Since Ct=10Mbps and ut=60%, the end-to-end avail-bw in these

simulations is 4Mbps. The path tightness factor is β=5, and so the avail-bw in the non-tight

links is Ant=20Mbps. So, even when there is significant load and queueing at the non-tight

links (which is the case when unt=90%), the end-to-end avail-bw is quite lower than the

avail-bw in the H − 1 non-tight links.

The main observation in Figure 14 is that Pathload estimates a range that includes

the actual avail-bw in all cases, independent of the number of non-tight links or of their

load. Also, the center of the Pathload range is within 10% of the average avail-bw At. So,

when the end-to-end avail-bw is mostly limited by a single link, Pathload is able to estimate

accurately the avail-bw in a multi-hop path even when there are several other queueing

points. The non-tight links introduce noise in the OWDs of Pathload streams, but they do
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not affect the OWD trend that is formed when the stream goes through the tight link.

Finally, we examine whether the accuracy of Pathload depends on the path tightness

factor β. Figure 15 shows 50-sample average Pathload ranges for four different values of

β, and for two different path lengths H. As previously, Ct=10Mbps, ut=60%, and so the

average avail-bw is At=4 Mbps. Note that when the path tightness factor is β=1, all H

links have the same avail-bw Ant=At=4Mbps, meaning that they are all tight links. The

main observation in Figure 15 is that Pathload succeeds in estimating a range that includes

the actual avail-bw when there is only one tight link in the path, but it underestimates the

avail-bw when there are multiple tight links.

To understand the nature of this problem, note that an underestimation occurs when

Rmax is set to a fleet rate R, even though R is less than the avail-bw At. Recall that Pathload

sets the state variable Rmax to a rate R when more than f=70% of a fleet’s streams have

an increasing delay trend. A stream of rate R, however, can get an increasing delay trend

at any link of the path in which the avail-bw during the stream is less than R. Additionally,

after a stream gets an increasing delay trend it is unlikely that it will loose that trend later

in the path. Consider a path with Ht tight links, all of them having an average avail-bw At.

Suppose that p is the probability that a stream of rate R will get an increasing delay trend

at a tight link, even though R < At. Assuming that the avail-bw variations at different

links are independent, the probability that the stream will have an increasing delay trend

after Ht tight links is 1− (1− p)Ht , that increases very quickly with Ht. This explains why

the underestimation error in Figure 15 appears when β is close to one (i.e., Ht > 1), and

why it is more significant with Ht=7 rather than with 3 hops.

3.2.2 Experimental results

We have also verified Pathload experimentally, comparing its output with the avail-bw shown

in the MRTG [65] graph of the path’s tight link. MRTG is a widely used tool that displays

the utilized bandwidth of a link, based on information that comes directly from the router

interface [65]. Specifically, MRTG periodically reads the number of bytes sent and received

from the router’s Management Information Base using SNMP. The default measurement
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Table 1: Measurement hosts and their locations.

Host Location

strauss Univ.Delaware, Newark DE, USA

wayback Univ.Oregon, Eugene Or, USA

agwnia Univ.Crete, Heraclion, Greece

vergina Aristotle Univ. (AUTH), Thessaloniki, Greece

scylla Univ.Ioannina, Ioannina, Greece

period is 5 minutes, and thus the MRTG bandwidth readings should be interpreted as 5-min

averages. If the capacity of the link is also known, the avail-bw in the same time interval is

the capacity minus the utilized bandwidth.

Figure 16: Example of an MRTG graph for a 14Mbps link. The x-axis is measured in
hours.

Figure 16 shows a snapshot of an MRTG graph for a 14Mbps duplex link. The two

curves (shaded vs line) refer to the two directions of the link (IN vs OUT).

MRTG offers a primitive way to verify Pathload measurements, based on 5-minute avail-

bw measurements for individual links. In the paths that we experiment with, we have access

to MRTG graphs for most links in the path (especially for the most heavily utilized links),

as well as information about their capacity. The tight link remains the same for the duration

of many hours in these paths, and so the measurement of end-to-end avail-bw is based on a

single MRTG graph. Even though this verification methodology is not too accurate, it was

the only way in which we could evaluate Pathload in real and wide-area Internet paths.

An MRTG reading is a 5-minute average avail-bw. Pathload, however, takes about 10-

30 seconds to produce an estimate. To compare these short-term Pathload estimates with

the MRTG average, we run Pathload consecutively for 5 minutes. Suppose that in a 5-min
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(300sec) interval we run Pathload W times, and that run i lasted for qi seconds, reporting

an avail-bw range [Rmin
i , Rmax

i ] (i = 1, . . . W ). The 5-min average avail-bw R̂ that we report

here for Pathload is the following weighted average of (Rmin
i + Rmax

i )/2:

R̂ =
W
∑

i=1

qi

300

Rmin
i + Rmax

i

2
(21)

The names and locations of the five hosts that we used in these experiments are given

in Table 1. Three hosts are located at Greek universities, connected through the academic

& research network GRNET [22]. The U-Delaware host (strauss) and the U-Oregon host

(wayback) are connected through the Abilene network, while the Abilene is connected to

GRNET through the Dante (now GEANT) network in Europe. The underlying routes in

these paths are almost always the same. In these experiments, the resolution parameters

were ω=1Mbps and χ=1.5Mbps, and f , PCT, and PDT thresholds were 0.7, 0.6 and 0.5,

respectively.
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Figure 17: Verification experiment in Path #1

Figure 17 compares the MRTG and Pathload measurements for twelve 5-min intervals

at the path from U-Ioannina to AUTH in Greece. The tight (and narrow) link in this path
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Figure 18: Verification experiment in Path #2

is the access link that connects Univ-Ioannina to GRNET (C=8.2 Mbps). The Pathload

measurements are within the MRTG range in 9 out of 12 runs. The errors in the remaining

3 runs are less than 0.5Mbps.

Figure 18 refers to the path from U-Oregon to U-Delaware. An interesting point about

this path is that the tight link is different than the narrow link. The former is an IP-over-

SONET 155Mbps OC3 link that connects the Oregon GigaPOP to the Abilene, while the

latter is a Fast Ethernet interface (100Mbps). The best resolution we could get from the

MRTG readings in this case is 6Mbps. The Pathload measurements are within the MRTG

range in 10 out of 12 runs, with an error of less than 2Mbps in the remaining runs.

Figure 19 refers to the path from U-Delaware to U-Crete. The tight & narrow link is the

access link that connects U-Crete to GRNET (C=12.4Mbps). The Pathload measurements

are within the MRTG range in 9 out of 12 cases, with marginal errors in the remaining

runs.

Figure 20 refers to the path from U-Ioannina and U-Crete. The tight & narrow link is

the U-Ioannina access link. The Pathload measurements are within the MRTG ranges in
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Figure 19: Verification experiment in Path #3

11 out of 12 runs.

Finally, Figure 21 refers to the path from U-Ioannina to U-Oregon. Again, the tight link

is the U-Ioannina access link. The Pathload measurements are within the MRTG ranges in

8 out of 12 runs, with an an error of less than 0.5Mbps in the remaining runs.

More recently, Pathload has also been evaluated by independent researchers and it has

been shown to be more accurate compared to other tools [80, 23]. Figure 22 illustrates a

result from a study done Shriram et al. comparing the performance of Pathload with more

recent avail-bw estimation tools.

3.3 Available bandwidth dynamics

In this section, we use Pathload to evaluate the variability of the avail-bw in different

timescales and operating conditions. Given that our experiments are limited to a few

paths, we do not attempt to make quantitative statements about the avail-bw variability

in the Internet. Instead, our objective is to show the relative effect of certain operational

factors on the variability of the avail-bw.

In the following experiments, ω=1Mbps and χ=1.5Mbps. Note that because ω < χ,

Pathload terminates due to the ω constraint only if there is no grey-region; otherwise, it
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Figure 20: Verification experiment in Path #4

exits due to the χ constraint. So, the final range [Rmin, Rmax] that Pathload reports is

either at most 1Mbps (ω) wide, indicating that there is no grey-region, or it overestimates

the width of the grey-region by at most 2χ. Thus, [Rmin, Rmax] is within 2χ (or ω) of the

range in which the avail-bw varied during that Pathload run. To compare the variability of

the avail-bw across different operating conditions and paths, we define the following relative

variation metric:

ρ =
Rmax −Rmin

(Rmax + Rmin)/2
(22)

In the following graphs, we plot the {5,15, . . . 95} percentiles of ρ based on 110 Pathload

runs for each experiment.

3.3.1 Variability and load conditions

Figure 23 shows the CDF of ρ for a path with C=12.4Mbps in three different utilization

ranges of the tight link: u=20-30%, 40-50%, and 75-85%. Notice that the variability of

the avail-bw increases significantly as the utilization u of the tight link increases (i.e., as

the avail-bw A decreases). This observation is not a surprise. In Markovian queues, say

in M |M |1, the variance of the queueing delay is inversely proportional to the square of

the avail-bw. The fact that increasing load causes higher variability was also observed
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Figure 21: Verification experiment in Path #5

for self-similar traffic in [53]. Returning to Figure 23, the 75-percentile shows that when

the avail-bw is around A=9Mbps (u=20-30%), three quarters of the measurements have

a relative variation ρ ≤0.25. In heavy-load conditions (u=75-85%) on the other hand,

when A=2-3Mbps, the same fraction of measurements give almost five times higher relative

variation (ρ ≤1.3).

We observed a similar trend in all the paths that we experimented with. For users, this

suggests that a lightly loaded network will not only provide more avail-bw, but also a more

predictable and smooth throughput. This latter attribute is even more important for some

applications, such as streaming audio/video.

3.3.2 Variability and statistical multiplexing

In this experiment, we run Pathload in three different paths, (A), (B), and (C), when the

tight link utilization was roughly the same (around 65%) in all paths. The capacity of

the tight link is 155Mbps (A), 12.4Mbps (B), and 6.1Mbps (C). The tight link in (A)

connects the Oregon GigaPoP to the Abilene network, the tight link in (B) connects a

large university in Greece (Univ-Crete) to a national network (GRnet), while the tight link

in (C) connects a smaller university (Univ-Pireaus) to the same national network. Based
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Figure 22: Pathload evaluation result from Shriram et al. [80]
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Figure 23: Variability of avail-bw in different load conditions.

on these differences, it is reasonable to assume that the degree of statistical multiplexing,

i.e., the number of flows that simultaneously use the tight link, is highest in path (A), and

higher in (B) than in (C). Figure 24 shows the CDF of ρ in each path. If our assumption

about the number of simultaneous flows in the tight link of these paths is correct, we

observe that the variability of the avail-bw decreases significantly as the degree of statistical
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Figure 24: Variability of avail-bw in different paths.

multiplexing increases. Specifically, looking at the 75-percentile, the relative variation is

ρ ≤0.4 in path (A), it increases by almost a factor of two (ρ ≤0.74) in path (B), and by

almost a factor of three (ρ ≤1.18) in path (C). It should be noted, however, that there may

be other differences between the three paths that cause the observed variability differences;

the degree of statistical multiplexing is simply one plausible explanation.

For users, the previous measurements suggest that if they can choose between two

networks that operate at about the same utilization, the network with the wider pipes, and

thus with a higher degree of statistical multiplexing, will offer them a more predictable

throughput. For network providers, on the other hand, it is better to aggregate traffic in a

higher-capacity trunk than to split traffic in multiple parallel links of lower capacity, if they

want to reduce the avail-bw variability.

3.3.3 The effect of the stream length

Since V =KT , the stream duration V increases proportionally to the stream length K. With

a longer stream, we examine whether R > A over wider timescales. As mentioned in the

introduction, however, the variability of the avail-bw A decreases as the averaging timescale

increases. So, the variability in the relation between R and A, and thus the variability of
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Figure 25: The effect of K on the variability of the avail-bw.
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Figure 26: The effect of N on the variability of the avail-bw.
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the Pathload measurements, is expected to decrease as the stream duration increases.

Figure 25 shows the CDF of ρ for three different values of K in a path with C=12.4Mbps.

During the measurements, A was approximately 4.5Mbps. The stream duration V for

R = A, L=200B, and T=356µs is 18ms for K=50, 36ms for K=100, and 180ms for K=500.

The major observation here is that the variability of the avail-bw decreases significantly as

the stream duration increases, as expected. Specifically, when V =180ms, 75% of the mea-

surements produced a range that is less than 2.0Mbps wide (ρ ≤0.45). When V =18ms, on

the other hand, the corresponding maximum avail-bw range increases to 4.7Mbps (ρ ≤1.05).

3.3.4 The effect of the fleet length

Suppose that we measure the avail-bw Aτ (t) in a time interval (t0, t0 + Θ), with a certain

averaging timescale τ (τ < Θ). These measurements will produce a range of avail-bw

values, say from a minimum Aτ
min to a maximum Aτ

max. If we keep τ fixed and increase

the measurement period Θ, the range [Aτ
min, Aτ

max] becomes wider because it tracks the

boundaries of the avail-bw process during a longer time period. An additional effect is that,

as Θ increases, the variation of the width Aτ
max − Aτ

min decreases. The reason is that the

boundaries Aτ
min and Aτ

max tend to their expected values (assuming a stationary process),

as the duration of the measurement increases.

The measurement period Θ is related to the number of streams N in a fleet, and to

the fleet duration U = N(V + ∆). As we increase N , keeping V fixed, we expand the

time window in which we examine the relation between R and A, and thus we increase

the likelihood that the rate R will be in the grey-region of the avail-bw (R ./ A). So, the

grey-region at the end of the Pathload run will be wider, causing a larger relative variation

ρ. This effect is shown in Figure 26 for three values of N . Observe that as the fleet duration

increases, the variability in the measured avail-bw increases. Also, as the fleet duration

increases, the variation across different Pathload runs decreases, causing a steeper CDF.

3.4 TCP and available bandwidth

We next focus on the relationship between the avail-bw in a path and the throughput of a

persistent (or ‘bulk’) TCP connection with arbitrarily large advertised window. There are
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two questions that we attempt to explore. First, can a bulk TCP connection measure the

avail-bw in a path, and how accurate is such an avail-bw measurement approach? Second,

what happens then to the rest of the traffic in the path, i.e., how intrusive is a TCP-based

avail-bw measurement?

It is well-known that the throughput of a TCP connection can be limited by a number

of factors, including the receiver’s advertised window, total transfer size, RTT, buffer size

at the path routers, probability of random losses, and avail-bw in the forward and reverse

paths. In the following, we use the term Bulk Transfer Capacity (BTC) connection (in

relation to [58]) to indicate a TCP connection that is only limited by the network, and not

by end-host constraints.
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Figure 27: Available bandwidth and BTC throughput.

Let us first describe the results of an experiment that measures the throughput of a

BTC connection from Univ-Ioannina (Greece) to Univ-Delaware. The TCP sender was a

SunOS 5.7 box, while the TCP receiver run FreeBSD 4.3. The tight link in the path has a

capacity of 8.2Mbps. Consider a 25-minute (min) measurement interval, partitioned in five

consecutive 5-min intervals (A), (B), (C), (D), and (E). During (B) and (D) we perform a
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Figure 28: RTT measurements during the experiment of Figure 27.

BTC connection, and measure its throughput in both 1-sec intervals and in the entire 5-min

interval. During (A), (C), and (E), we do not perform a BTC connection. Throughout the

25-min interval, we also monitor the avail-bw in the path using MRTG data for each of the

5-min intervals. In parallel, we use ping to measure the RTT in the path at every second.

Figure 27 shows the throughput of the two BTC connections, as well as the 5-min average

avail-bw in the path, while Figure 28 shows the corresponding RTT measurements.

We make three important observations from these figures. First, the avail-bw during

(B) and (D) is less than 0.5Mbps, and so for most practical purposes, the BTC connection

manages to saturate the path. Also note, however, that the BTC throughput shows high

variability when measured in 1-sec intervals, often being as low as a few hundreds of Kbps.

Consequently, even though a bulk TCP connection that lasts for several minutes should be

able to saturate a path when not limited by the end-hosts2, shorter TCP connections should

expect a significant variability in their throughput.

Second, there is a significant increase in the RTT measurements during (B) and (D),

2This will not be the case however in under-buffered links, or paths with random losses [50].
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from a ‘quiescent point’ of 200ms to a high variability range between 200ms and 370ms. The

increased RTT measurements can be explained as follows: the BTC connection increases its

congestion window until a loss occurs. A loss however does not occur until the queue of the

tight link overflows3. Thus, the queue size at the tight link increases significantly during

the BTC connection, causing the large RTT measurements shown. To quantify the queue

size increase, note that the maximum RTTs climb up to 370ms, or 170ms more than their

quiescent point. The tight link has a capacity of 8.2Mbps, and so its queue size becomes

occasionally at least 170KB larger during the BTC connection. The RTT jitter is also

significantly higher during (B) and (D), as the queue size of the tight link varies between

high and low occupancy due to the ‘sawtooth’ behavior of the BTC congestion window.

Third, the BTC connection gets an average throughput during (B) and (D), that is about

20-30% more than the avail-bw in the surrounding intervals (A), (C), and (E). This indicates

that a BTC connection can get more bandwidth than what was previously available in the

path, grabbing part of the throughput of other TCP connections. To see how this happens,

note that the presence of the BTC connection during (B) and (D) increases the RTT of all

other TCP connections that go through the tight link, because of a longer queue at that

link. Additionally, the BTC connection causes buffer overflows, and thus potential losses

to other TCP flows4. The increased RTTs and losses reduce the throughput of other TCP

flows, allowing the BTC connection to get a larger share of the tight link than what was

previously available.

To summarize, a BTC connection measures more than the avail-bw in the path, because

it shares some of the previously utilized bandwidth of other TCP connections, and it causes

significant increases in the delays and jitter at the tight link of its path. This latter issue

is crucial for real-time and streaming applications that may be active during the BTC

connection.

3Assuming Drop-Tail queueing, which is the common practice today.
4We did not observe however losses of ping packets.
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3.5 Is Pathload intrusive?

An important question is whether Pathload has an intrusive behavior. There are several

ways to define intrusiveness for a avail-bw estimation tool. For instance, the tool can be

characterized as intrusive depending on whether it injects probing traffic into the network

i.e., based on active or passive nature of estimation methodology, or based on whether the

peak probing rate is greater than a certain threshold. We define intrusiveness based on

whether the probing causes a significant decrease in the avail-bw, and increased delays or

losses. The intuition behind this definition is that a slight increase in average delay or loss

rate will not have any significant impact on the data traffic in a network path.

Figures 29 and 30 show the results of a 25-min experiment, performed similarly with the

experiment of §3.4. Specifically, Pathload runs during the 5-min intervals (B) and (D). We

monitor the 5-min average avail-bw in the path using MRTG (Figure 29), and also perform

RTT measurements in every 100ms (Figure 30). The RTT measurement period here is ten

times smaller than in §3.4, because we want to examine whether Pathload causes increased

delays or losses even in smaller timescales than one second.
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Figure 29: Available bandwidth measurements.
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Figure 30: RTT measurements during the experiment of Figure 29.

The results of the experiment are summarized as follows. First, the avail-bw during (B)

and (D) does not show a measurable decrease compared to the intervals (A), (C), and (E).

Second, the RTT measurements do not show any measurable increase when Pathload runs.

So, Pathload does not seem to cause a persistent queue size increase, despite the fact that it

often sends streams of higher rate than the avail-bw. The reason is that each stream is only

K=100 packets, and a stream is never sent before the previous one has been acknowledged.

We also note that none of the Pathload streams encountered any losses in this experiment.

None of the ping packets was lost either.

Next, we examine the overhead and the measurement latency of Pathload using the

simulation setup described in §3.2.1. Specifically, we simulate the 3-hop topology of Fig-

ure 10. The hop in the middle of the path is the tight link, with a capacity of 10 Mbps.

The non-tight link capacity is 100 Mbps and the end-to-end propagation delay in the path

is 50 msec. Cross traffic is generated at each link from 5 exponential sources. For each

utilization, we run Pathload 10 times to measure the avail-bw in the path.
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Figure 31 shows the average measurement latency of Pathload with respect to the aver-

age utilization. As discussed in §3.1.6, it is difficult to predict the latency of a Pathload run

due to iterative nature of the algorithm. We, however, know that the measurement latency

of Pathload depends on both the fleet duration U and the number of fleets F , and it can be

expressed as U ×F . As described in §3.1.4, the fleet duration is given as U = N(KT + ∆),

which is independent of the average utilization (or avail-bw). The value of F , however,

depends on the average avail-bw and generally increases with the average avail-bw. The

increase in value of F explains the observed increase in measurement latency of Pathload.
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Figure 31: Measurement latency in a 100 msec round-trip time path.

Figure 32 shows the overhead of Pathload, measured in terms of the average sending

rate, under different average utilization at the tight link. Note that the average sending rate

is always less than the average avail-bw in absolute terms. In relative terms, the average

sending rate is less than 25% of the average avail-bw in the majority of cases.

3.6 Summary

In this chapter, we showed the implementation of SLoPS in a tool called Pathload. We

showed through simulations that Pathload accurately measures avail-bw under varying load

conditions and path configurations. Additionally, we verified the tool experimentally on
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Figure 32: Average sending rate in a 100 msec round-trip time path.

several Internet paths and also show that Pathload is non-intrusive. We also examined the

variability of avail-bw using Pathload in different paths and load conditions. Finally, we

also examined the relationship between persistent TCP throughput and avail-bw. In the

next chapter, we present algorithms and a tool to estimate variability of avail-bw.
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CHAPTER IV

AVAILABLE BANDWIDTH VARIATION RANGE ESTIMATION:

PATHVAR

4.1 Variation Range of Avail-bw

Several estimation techniques and tools based on active measurements have been developed,

including Delphi [77], TOPP [59], Pathload [33], IGI/PTR [25], Pathchirp [78], Spruce [81],

and Bfind [3], for the estimation of avail-bw. All previous work aimed to estimate the

average avail-bw, largely ignoring that the avail-bw is a time-varying quantity, defined as

an average over a certain measurement time scale. If we view the avail-bw as a stationary

random process, the second-order statistics, namely the variance of the marginal distribution

and the autocorrelation function, are needed for a more complete characterization of the

avail-bw process. In this work, we focus on the end-to-end estimation of the variability of

the avail-bw marginal distribution, leaving the identification of the correlation structure for

future work.

The avail-bw, especially in sub-second scales, can exhibit significant variations around

its time average, making the latter a rather poor-quality estimator or predictor. To illus-

trate this point, Figure 33 shows the avail-bw time series, and the corresponding marginal

distribution, for two measurement time scales: 20msec and 1sec. This time series was ob-

tained from a packet trace collected at an OC-3 link, and it thus represents an exact (rather

than estimated) sample path of the avail-bw process in that link. Notice that the 10%-90%

variation range of the distribution in the 20msec scale is approximately 30Mbps to 75Mbps,

while the average avail-bw is 52Mbps. We anticipate that information for the variation

range of the avail-bw distribution will actually be more important for some applications

than an estimate of the mean. For example, a video streaming application with a nominal

transmission rate of 3Mbps may prefer to use a path with average avail-bw 5Mbps and a

49



very narrow variation range, rather than a path with average avail-bw 10Mbps but a varia-

tion range of 1Mbps to 20Mbps. Also, the measurement time scale is an application-specific

parameter, and it represents the minimum time interval in which the avail-bw variations

matter for a particular application.
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Figure 33: Top: Time series of the avail-bw process at an OC-3 link in two measurement
time scales. Bottom: Empirical CDFs of the two time series.

4.1.1 Definitions

We first define the avail-bw at a network link and then at an end-to-end path. Suppose

that a network path consists of H store-and-forward first-come first-served links. A link i

has an instantaneous utilization ui(t) at time t; ui(t)=0 if the link is idle and ui(t)=1 if the

link transmits a packet at time t. The average utilization ui(t, t + τ) of link i during the

time interval (t, t + τ) is

ui(t, t + τ) =
1

τ

∫ t+τ

t

ui(t) dt (23)

We refer to τ as the measurement time scale.

The available bandwidth Ai(t, t+ τ) of link i during the time interval (t, t+ τ) is defined

as the average residual capacity in that interval,

Ai(t, t + τ) = Ci[1− ui(t, t + τ)] (24)
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Consider now a network path that traverses a sequence of H links. The end-to-end available

bandwidth A(t, t+τ) of the network path during (t, t+τ) is defined as the minimum avail-bw

among the H links in the same interval,

A(t, t + τ) = min
i=1...H

Ai(t, t + τ) (25)

We refer to the link with the minimum avail-bw as tight link and denote its capacity by Ct.

The link with the minimum capacity is referred to as narrow link and has a capacity Cn.

Note that, in general, the narrow and tight links can be different. Also, all existing avail-bw

estimation techniques assume that the tight link has much lower avail-bw than the other

links. Otherwise, the path avail-bw may be limited by more than one links. Furthermore,

if there are multiple bottlenecks in a path then all existing avail-bw estimation techniques

suffer from underestimation errors, which is discussed in chapter 7. In this chapter, we

adopt the assumption that the path has a clearly distinguishable tight link, meaning that

the avail-bw in all other links is significantly larger.

The average end-to-end avail-bw A(t, t + τ) is a function of time t and therefore it can

be viewed as a random process Aτ (t), where τ is the measurement time scale. If we assume

that this process is stationary and identically distributed along the time axis, then at any

time instant t the process is described by the same random variable Aτ . Let Fτ (a) be the

cumulative distribution function of Aτ , where Fτ (a) = P (Aτ ≤ a). The p-th percentile of

the avail-bw random variable Aτ , with p ∈ (0, 1), is the value Ap
τ such that Fτ (A

p
τ ) = p; in

the rest of the chapter we assume that Ap
τ is unique.

Our main objective is to estimate the variability of Aτ . One possibility could be to

estimate the variance of Aτ . That would be the obvious variability metric if we knew that

the avail-bw distribution is symmetric around the mean and close to Gaussian. A more

general metric, however, is a percentile-based definition of variability. Specifically, if pL is a

low probability and pH is a high probability, then we can define the variation range of Aτ as

the interval [AL
τ , AH

τ ], where AL
τ and AH

τ are the pL and pH percentiles of Aτ , respectively.

In the rest of this chapter, unless noted otherwise, we assume that the user is interested in

the 10%-90% variation range, i.e., pL=0.1 and pH=0.9. Of course the actual definition of
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the variation range would be application-specific.

Some further discussion on the relation between the measurement time scale τ and the

variability of the avail-bw process is important. The mean of Aτ does not depend on τ .

The variance σ2
τ=Var[Aτ ], however, depends strongly on τ and on the correlation structure

of the random process Aτ (t). In general, as τ increases, the variance σ2
τ decreases. The

speed with which the variance decreases, however, depends on the correlation structure of

the underlying process. For instance, the variance of a self-similar process decreases much

more slowly with τ than the variance of an IID process [66]. We return to this point in

§ 4.6.3.

4.1.2 Main Contributions and Overview

In this chapter, we first present a measurement technique, referred to as percentile sampling,

that can associate a given probing rate with a percentile of the avail-bw distribution. We

then use percentile sampling to design two estimation algorithms for the avail-bw variation

range.

The first algorithm is iterative in nature. We refer to it as non-parametric, because

it does not assume a specific avail-bw distribution. The non-parametric algorithm is more

appropriate for very short values of the measurement time scale (typically less than 100msec)

or in bottlenecks with limited flow multiplexing, where the avail-bw distribution may be

non-Gaussian.

The second algorithm is parametric, because it assumes that the avail-bw follows the

Gaussian distribution. This assumption is typically valid when τ >100-200msec and when

the tight link carries a significant amount of aggregated traffic [46]. The parametric algo-

rithm can produce an estimate faster than the non-parametric algorithm because it is not

iterative.

The two estimation algorithms have been implemented in a measurement tool called

Pathvar. We have validated Pathvar with simulations and testbed experiments using real-

istic Internet traffic. Pathvar can track the actual avail-bw variation range within 10-20%,

even under non-stationary conditions.
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Finally, we focus on four factors that can significantly affect the variation range of the

avail-bw. These factors are the traffic load, number of competing flows, rate of competing

flows, as well as the measurement time scale. The results of that study explain why the

avail-bw appears as less or more variable depending on the load conditions and the degree

of statistical multiplexing at the tight link.

A related area in the literature is that of traffic modeling and analysis, and in particular,

the measurement of the second-order statistics (variance and autocorrelation) in various

time scales using packet traces. That area, which started with the seminal Bellcore work [53],

revealed that the traffic count process at a network link is asymptotically self-similar. The

reader is referred to [66] for a survey of the related literature. Our approach and objectives

in this work are significantly different. First, instead of passive traffic measurements at a

single link we are interested in the active estimation of the avail-bw in an end-to-end path.

Second, instead of focusing on the scaling properties of the avail-bw process, we focus on

the variability of the marginal distribution at a given time scale. Third, our high-level goal

is to develop tools that can be used in practice to measure important path characteristics,

rather than to statistically characterize or model network traffic.

The rest of the chapter is structured as follows. The percentile sampling technique

is described in §4.2. §4.3 presents the non-parametric estimation algorithm, while §4.4

presents the parametric algorithm. The implementation of Pathvar, and a few typical

validation results, are summarized in §4.5. Finally, we examine the four factors that affect

the variability of the avail-bw process in §4.6.

4.2 Percentile sampling

In this section, we first describe the basic technique of percentile sampling, which forms

the basis of the proposed estimation algorithms in the next two sections. A number N of

probing streams of duration τ and rate R are sent to a path. Each stream provides an

indication of whether the avail-bw in the corresponding time interval is higher than R. The

resulting N binary samples are used to estimate the percentile of the avail-bw distribution

that corresponds to rate R. We also derive the required number of samples N for a given
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maximum error, assuming independent sampling.

4.2.1 Basic idea

Consider a network path. The avail-bw random process measured in time scale τ is Aτ (t).

As mentioned in the Introduction, we assume that this process is stationary and identically

distributed. Given the previous assumptions, we can focus on the random variable Aτ and

on its time-invariant marginal distribution Fτ .

The sender transmits a probing packet stream of rate R and duration τ during (t, t+ τ)

to the receiver. If M is the packet size, then the interarrival between successive packets is

M/R and the number of probing packets is d τR
M
e. The avail-bw during (t, t + τ) is given

by a realization of the random variable Aτ . The receiver classifies the stream as type-G if

it infers that the probing rate R is greater (or equal) than Aτ . Otherwise, the stream is

classified as type-L (for “lower”). The exact algorithm for the classification of a stream as

type-G or type-L is described in the technical report [36]. At a high level, the algorithm

is based on the statistical analysis of the one-way delays of the stream’s probing packet,

similar to the approach taken in [33].

We use the indicator variable I(R) to represent whether a stream is of type-G (I(R) = 1)

or type-L (I(R) = 0). If Fτ (a) is the Cumulative Distribution Function (CDF) of Aτ , we

have that

I(R) =











1 with probability Fτ (R)

0 with probability 1− Fτ (R)

So, the expected value of I(R) is E[I(R)] = Fτ (R).

A single probing stream can only tell us if the probing rate R is greater than the realiza-

tion of the avail-bw random variable in the corresponding time interval. To accumulate N

such samples, the sender transmits N identical probing streams1. The indicator variable for

each stream is denoted by Ii(R). Because different streams will sample different realizations

of Aτ , some streams may be classified as type-G and others as type-L. Let I(R,N) be the

1The time period between streams should be sufficiently long for the streams to not get queued behind
each other while in transit.

54



number of streams of type-G, i.e., I(R,N) =
∑N

i=1 Ii(R). The expected value of I(R,N) is

E[I(R,N)] =

N
∑

i=1

E[Ii(R)]

= Fτ (R)N (26)

The following proposition summarizes the basic idea of percentile sampling:

Proposition 3 For a stationary avail-bw process, the fraction I(R,N)/N of type-G probing

streams of rate R is an unbiased estimator of p = Fτ (R).

Proposition 3 provides us with a mapping from a given probing rate R to the corre-

sponding cumulative probability in the avail-bw distribution. Since our goal is to estimate

a given percentile of the avail-bw distribution, we are interested in the inverse mapping,

from a certain probability to the corresponding probing rate. We present two algorithms

that perform this inverse mapping in § 4.3 and § 4.4.

It is important to note that Equation (26) does not require the statistical independence

of the N avail-bw samples. Therefore, Proposition 3 can be used even without information

about the (generally complex and unknown) correlation structure in the process Aτ (t).

4.2.2 How large should N be?

Proposition 1 refers to the expected value of I(R,N). The obvious question is how large

should the sample size N be so that the fraction I(R,N)/N is a good approximation of

Fτ (R)? In this section, we derive the minimum value of N that is required for a given error

tolerance.

Suppose that we aim to estimate the p-th percentile of Aτ , denoted by Ap
τ . Let ρ be the

maximum allowed percentile error in the estimation of Ap
τ . This means that probing rate R

would be an acceptable estimate of Ap
τ if the corresponding fraction I(R,N)/N is between

p− ρ and p + ρ. So, a rate R will be correctly mapped to the p-percentile as long as

Prob[N(p− ρ) ≤ I(R,N) ≤ N(p + ρ)] > 1− ε (27)

where ε is a small mis-classification probability.
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Figure 34: Nmin as a function of ρ for p = 0.9 and ε = 0.05.

To derive the previous probability, we need to make the additional assumption that

the binary outcomes Ii(R) of the N probing streams are independent. If that is the case,

then I(R,N) follows the binomial distribution with a success probability of Fτ (R). So, the

probability that i out of N streams are of type-G is given by

P [I(R,N) = i] = (N
i )Fτ (R)i[1− Fτ (R)]N−i (28)

From Equations (27) and (28), we can calculate the minimum value Nmin of streams

required for a given error tolerance ρ and a given mis-classification probability ε. The

probability Fτ (R) is determined based on the percentile that we aim to estimate. For

instance, if we are interested in the 90% percentile then Fτ (R)=0.9. Figure 34 shows Nmin

as a function of ρ for ε=0.05 and for estimating the 90% percentile. As expected, N increases

quickly as we decrease the error threshold ρ. Specifically, as ρ becomes less than 4%, we

need more than 100 samples (or probing streams).

In practice, generating a large number of probing streams increases the measurement

overhead and it slows down the estimation process. Our objective in this work is to design a

measurement tool that can track the avail-bw variation range in real time, even if the latter

changes with time. For this reason, we prefer to use a relatively small number of probing
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streams, even if the resulting error tolerance ρ is significant. Specifically, in the rest of the

chapter we typically use N = 40− 50 streams, limiting the maximum percentile error ρ to

about 0.05-0.06.

4.3 Non-parametric estimation

In this section, we present a simple iterative algorithm for the estimation of the varia-

tion range [AL
τ , AH

τ ] in a given time scale τ . We refer to the following algorithm as non-

parametric, in the sense that it does not assume a specific marginal distribution for the

underlying avail-bw, or, equivalently, for the traffic at the tight link.

4.3.1 Algorithm

Suppose that we want to first estimate the higher bound AH
τ of the variation range. If

AH
τ is the p-th percentile, then p=Fτ (A

H
τ ). The basic idea in the following algorithm is to

iteratively adjust the probing rate R so that, based on Proposition 1, the fraction of probing

streams that are of type-G is approximately p.

Specifically, in the n-th iteration of the algorithm the sender transmits N streams of rate

Rn to the receiver. The receiver classifies each stream as type-G or type-L, and calculates

the fraction fn = I(Rn, N)/N of streams that are of type-G. Based on Proposition 1, the

expected value of fn is equal to Fτ (Rn). So, if the rate Rn is close to the target percentile

AH
τ , we expect that fn would be approximately equal to p. Similarly, if Rn is larger than

AH
τ then fn is expected to be higher than p, while if Rn is less than AH

τ then fn is expected

to be lower than p. The information about fn is delivered back to the sender, which then

sets the probing rate Rn+1 accordingly.

In more detail, if fn is within p ± ρ, where ρ is a maximum percentile error, the rate

Rn is reported as an estimate of the p-th percentile and the probing rate remains the same,

i.e., Rn+1 = Rn. If fn > p + ρ, the sender needs to reduce the probing rate. Similarly, if

fn < p− ρ, the sender needs to increase the probing rate. The probing rate ratio Rn+1/Rn

in the next iteration is based on the difference fn − p. This is just a heuristic, but it

is reasonable given that we do not have additional information about the shape of the

underlying avail-bw distribution.
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To avoid strong oscillations, we impose an upper bound on the rate variation between two

successive iterations through a parameter b. A larger value of b allows faster convergence,

especially under non-stationary conditions, but it also increases the estimation error. As

will be shown later, a value of b around 0.10-0.20 is a good trade-off between accuracy and

responsiveness, at least based on our validation experiments.

Algorithm 4.3.1 shows the pseudo-code of the non-parametric algorithm. The input

parameters are the number of streams N , the probability p that corresponds to the desired

percentile, and the error tolerance ρ. To measure the variation range [AL
τ , AH

τ ], the algorithm

is executed twice in each iteration: N streams with probing rate RH to estimate AH
τ (p =

pH) and another set of N streams with rate RL to estimate AL
τ (p = pL). The two sets of

streams can be interleaved so that the reported estimates of the variation range cover the

same time interval.

The non-parametric algorithm is iterative, and so it will be unable to track the avail-bw

variation range if the latter does not remain roughly constant during at least a few iterations.

The total probing duration for each iteration of the previous algorithm is 2N(τ + Tidle),

where Tidle is the idle time which may be introduced between successive streams to reduce

intrusiveness. For N=50, τ=20msec, and Tidle=80msec, two successive iterations of the

previous algorithm will sample the same avail-bw distribution as a long as the underlying

avail-bw process remains stationary for at least 10 seconds.
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Algorithm 4.3.1: Non-parametric(N, p, ρ)

repeat






































































































































































































































Send N streams of duration τ at rate Rn

I(Rn, N)← 0

for i← 1 to N

do











if stream[i] = type-G

then I(Rn, N)← I(Rn, N) + 1

fn ← I(Rn, N)/N

if fn > p + ρ

then











diff ←MIN(b, fn − p)

Rn+1 ← Rn ∗ (1− diff)

else if fn < p− ρ

then











diff ←MIN(b, p− fn)

Rn+1 ← Rn ∗ (1 + diff)

else











Rn+1 ← Rn

output Rn

4.3.2 Estimation with non-stationary load in single-hop path

In this section, we show examples of how the previous algorithm performs in a single-hop

path with non-stationary traffic load that includes level shifts and short spikes. To make

sure that the traffic load is realistic, we use packet traces captured by NLANR-MOAT at

various OC-3 links (BWY-1063326722-1, COS-1049166362 and BWY-1063304167-1) [63].

Since we know the actual traffic load, we can calculate the exact 10%-90% percentiles of
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Figure 35: Actual and estimated variation range when b=.05

the avail-bw distribution, and so we can validate the previous estimation algorithm. In the

following, the measurement time scale τ is 100msec. In the experiments of this section we

make sure that the the classification of streams in type-G or type-L is always correct, by

comparing the actual avail-bw in each probing interval with the probing rate.

To create non-stationary traffic loads, we merge different NLANR traces. Each trace is

90sec long, while the avail-bw process in each trace is stationary. The non-stationary traffic

time series shown in Figure 35 and 36 was composed as follows: trace-1 was “played-back”

twice, followed by trace-2 twice, followed from 20sec of trace-3 (to create the spike that

occurs at t=360sec), and finally 50sec of trace-2 again.

The time series of the actual 10%-90% variation range was measured by segmenting

the traffic trace in successive intervals of length 2Nτ . At each segment, we calculate the

empirical CDF of the avail-bw measured in time intervals of length τ . So, each successive

interval of length 2Nτ results in a single measurement of the actual variation range in the

time scale τ . The corresponding estimated variation range is inferred from the previous

non-parametric algorithm using the same measurement time scale (τ) and measurement

period (2Nτ).
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Figure 36: Actual and estimated variation range when b=.15

Figures 35 and 36 show the actual and the estimated 10%-90% variation range for two

values of b. Notice that, overall, the estimation algorithm is able to successfully track the

avail-bw variation range. During stationary time periods, the estimation error is less than

5%. The estimation errors are larger, however, during level shifts and short spikes.

The accuracy and responsiveness of the algorithm depend on b. The parameter b deter-

mines the maximum allowed rate variation in two successive iterations. When the avail-bw

process is stationary, and the estimated variation range is already close to the actual varia-

tion range, a lower b performs better because it causes lower oscillations around the actual

percentiles. For instance, the Root Mean Square Error (RMSE) of the estimated AH
τ during

the first 180 sec of the trace in Figure 35 is 2.4 for b=0.05 and 4.4 for b=0.15. The RMSE

values for AL
τ are 2.1 and 3.6, respectively.

On the other hand, a higher value of b is better during initialization, or when the traffic

load exhibits frequent level shifts or spikes. For instance, notice the spike that occurs in

the time interval [360,390] in Figures 35 and 36. Such an intense traffic spike can be due to

a route flap or some form of network anomaly. With b=0.05 the estimation algorithm does

not track successfully the magnitude of the traffic spike, while with b=0.15 the algorithm is
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much more responsive. We note that the selection of b should be made based on the nature

of the network path that is to be monitored. As it happens with most estimation tools,

their accuracy depends on the calibration of certain parameters in the specific environment

where these tools are to be used.

4.4 Parametric estimation

In this section, we present a parametric estimation algorithm that is based on the assump-

tion that the avail-bw marginal distribution is Gaussian. This is a reasonable assumption

for links with a large degree of flow multiplexing (high “vertical aggregation”) and for suf-

ficiently long measurement time scales τ (high “horizontal aggregation”). The Gaussian

assumption in the context of network traffic and the required degrees of vertical and hor-

izontal aggregation have been examined in [46] and the references therein. Specifically,

the measurements presented in [46] show that the vertical aggregation of at least 25 users,

with an aggregate average traffic rate of 25Mbps, is a good fit with the Gaussian model

in time scales that are longer than 128msec. Also, the Gaussian model is a good approx-

imation when the measurement time scale is longer than 1sec and the aggregate average

rate is as small as a few Mbps. When it is not likely that the previous conditions hold, the

non-parametric algorithm of the previous section should be used instead.

4.4.1 Algorithm

A Gaussian distribution is completely described by its mean and variance. Furthermore, the

knowledge of any two percentiles of the Gaussian distribution is sufficient to compute the

mean and variance. The basic idea in the following algorithm is to estimate two arbitrary

percentiles of the avail-bw distribution based on Proposition 1. Then, we use these two

percentiles to estimate the mean and variance of Fτ , and finally we estimate the user-

specified variation range [AL
τ , AH

τ ].

In more detail, suppose that the avail-bw distribution has mean µ and variance σ2
τ

in the time scale τ . Exactly as in the non-parametric algorithm, the sender generates N

probing streams of rate R1 and then it calculates the fraction f1 of streams that are of type-

G. Based on Proposition 1, the expected value of this fraction is equal to the cumulative
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probability Fτ (R1) that corresponds to rate R1. So, if N is sufficiently large, we expect that

f1 ≈ Fτ (R1). The previous process is repeated for a different probing rate R2, resulting

in an additional constraint f2 ≈ Fτ (R2). With the previous two constraints, we can then

calculate the standard deviation and the mean of Fτ as follows:

στ =
R1 −R2

φ−1(f1)− φ−1(f2)
(29)

µ = R1 − στφ
−1(f1) (30)

where φ−1 is the inverse of the standard normal distribution CDF. Finally, the percentiles

that correspond to the variation range are:

AH
τ = µ + στφ

−1(pH) (31)

AL
τ = µ + στφ

−1(pL) (32)

It is important to note that the probing rates R1 and R2 need not be equal to AH
τ or

AL
τ , respectively. Instead, it is sufficient to choose R1 and R2 so that the corresponding

percentiles p1 and p2 are significantly different, i.e., |p1 − p2| > ρ. Furthermore, we can

choose R1 and R2 so that they are at the left half of the Gaussian distribution. Doing so

reduces the intrusiveness of the measurements, because the probing streams are of lower

rate than the average avail-bw.

In practice, the probing rates R1 and R2 can be chosen to track two low percentiles,

say the 20% and the 40%. This can be achieved by adjusting the two rates at the end of

each repetition of the algorithm, based on the estimated Gaussian distribution. Notice that

even with this optimization, the parametric algorithm remains non-iterative because the

estimate of the variation range in each repetition of the algorithm does not depend on the

estimate in the last repetition.

The pseudo-code for the parametric algorithm is given in Algorithm 4.4.1. As in the

non-parametric algorithm, the transmission of the N streams of rate R1 can be interleaved

with the streams of rate R2.
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Algorithm 4.4.1: Parametric(N, pH , pL, p1, p2)

repeat










































































































































































































































































































Send N streams of duration τ at rate R1

Send N streams of duration τ at rate R2

I(R1, N)← 0

for i← 1 to N

do











if stream[i, R1] = type-G

then I(R1, N)← I(R1, N) + 1

f1 ← I(R1, N)/N

I(R2, N)← 0

for i← 1 to N

do











if stream[i, R2] = type-G

then I(R2, N)← I(R2, N) + 1

f2 ← I(R2, N)/N

στ ← R1−R2

φ−1(f1)−φ−1(f2)

µ← R1 − στφ
−1(f1)

AH
τ ← µ + στφ

−1(pH)

AL
τ ← µ + στφ

−1(pL)

R1 ← µ + στφ
−1(p1)

R2 ← µ + στφ
−1(p2)
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Figure 37: Estimated and actual 10-90% variation range with Gaussian traffic.

4.4.2 Validation examples

In this section, we illustrate the accuracy of the parametric algorithm for both Gaussian

and non-Gaussian avail-bw distributions. We are again interested in the 10%-90% variation

range. The probing rates are chosen based on the 10% and 40% percentiles, i.e., p1=0.10

and p2=0.40. The actual variation range is measured by calculating the empirical CDF in

successive time windows of length 2Nτ , as described in § 4.3.2.

Figure 37 shows the actual and the estimated variation range for an OC-48 NLANR

packet trace (IPLS-CLEV-20020814-091000-1). The measurement time scale is τ=250msec.

To examine whether the avail-bw distribution is Gaussian in that time scale, we calculate

the kurtosis and skewness of the corresponding distribution. A Gaussian random variable

has a skewness of zero and a kurtosis of 3. In this trace, the skewness and kurtosis are

0.21 and 3.15, respectively, meaning that the avail-bw distribution is reasonably close to

Normal even though it is not a perfect match. The main observation in Figure 37 is that

the parametric algorithm can closely track the variation range within 5% or better. The

RMSE for this trace is 1.1.

On the other hand, Figure 38 shows the actual and estimated variation range for an

OC-3 packet trace (ANL-1070464136) that deviates significantly from the Gaussian model.
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Figure 38: Estimated and actual 10-90% variation range with non-Gaussian traffic.

The measurement time scale in this case is τ=50msec, while the skewness and kurtosis are

0.46 and 5.23, respectively. Although the parametric algorithm is still able to track the

variation range, there is a non-negligible bias in the estimation of the lower percentile, and

the estimation error is significantly larger (RMSE=4.9) compared to the case of Gaussian

traffic.

4.5 Pathvar

We have implemented both the non-parametric and parametric estimation algorithms in

a tool called Pathvar. Pathvar consists of two components: the sender is responsible for

transmitting the probing streams, while the receiver analyzes the One-Way Delays (OWDs)

in each stream and determines whether a stream is of type-G or type-L. The two peers use

a TCP connection to reliably transfer control messages and UDP datagrams for the probing

streams. The number of streams N , stream duration τ , and the avail-bw variation range

probabilities (pL, pH) are the key Pathvar inputs.

N determines the number of probing streams of a certain rate R that the sender will

transmit to the receiver in each iteration. As described in § 4.2.2, N determines the accuracy

with which we can infer the probability Fτ (R) that corresponds to the probing rate R.
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Based on the results of § 4.2.2, Pathvar uses N = 40 targeting for an error tolerance ρ =

0.05−0.06 in the estimation of Fτ (R). The stream duration τ determines the measurement

time scale for the average avail-bw, and it has to be chosen by the user based on the

application requirements. We note however that τ should not be more than a few hundreds

of milliseconds. The reason is that high-rate probing streams that last for too long can be

network intrusive, causing congestion and packet losses.

Pathvar sends a total of 2N streams in each iteration: N streams at each of two different

rates (as described in Sections 4.3 and 4.4). A stream is sent only when the previous stream

has been acknowledged by the receiver, meaning that the duration of each iteration is

2N(τ + RTT ), where RTT is the Round-Trip Time between the two peers. Additionally,

the probing streams of the two rates are interleaved, i.e. a stream of rate R1 is followed

by a stream of rate R2, so that Pathvar probes the avail-bw distribution with the two

rates almost simultaneously. After all 2N streams are received, the receiving peer examines

whether each stream is of type-G or type-L, as described in [36], based on the detection of

an increasing trend in the one-way delays of the probing packets.

Pathvar invokes either the non-parametric or the parametric algorithm depending on the

specified time scale τ . If the latter is larger than 100msec, we prefer to use the parametric

algorithm for three reasons. First, based on the measurement results of [46], we expect that

in those time scales the avail-bw process will be sufficiently close to Normal. Second, with

large values of τ , and consequently with long probing streams, the parametric algorithm

gives us the advantage that we can select lower probing rates, reducing the intrusiveness

of the measurements. Third, the non-parametric algorithm is not iterative and so it is less

dependent on the stationarity assumption; that assumption can be questioned when τ is

large.

In Pathvar, the sender timestamps each probing packet just before transmission. Upon

arrival, the receiver records the arrival time and measures the OWD. The measured OWD

differs from the actual OWD due to the clock offset between the two measurement peers.

However, since we are only interested in the OWD differences, the clock offset does not

affect the measurements as long as it is constant. The presence of clock skew does not affect
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Pathvar because the stream duration is less than a second, while the typical magnitude of

clock skew in modern quartz clocks is in the order of only a few microseconds per second.

Context switching is another source of errors in the OWD measurements because buffering

of packets in the kernel adds a variable delay component in the measured OWDs. Pathvar

implements simple techniques to detect context switching and remove its effects, similar

with the techniques developed for Pathload [32]. Finally, in the current version of Pathvar,

the initial probing rates have to be provided by the user based on past experience with the

measured path.

4.5.1 Testbed examples

We have evaluated the accuracy of Pathvar with both simulations and testbed experiments.

The tight link at the testbed is a Fast Ethernet segment between two switches. The traffic

at the tight link is generated by replaying the aggregate packet stream observed in NLANR

traces. So, the packet sizes and interarrivals are based on realistic Internet traffic. To create

non-stationary traffic conditions, and in particular level shifts, we concatenate traces with

significantly different load.
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Figure 39: Pathvar experiment with non-parametric algorithm.

Figure 39 shows the actual and estimated 10%-90% percentile range, measured in a
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time scale τ=40msec, for a non-stationary traffic load. The estimation in Figure 39 is

performed with the non-parametric algorithm (b=0.2). A first observation is that, during

the stationary epochs, Pathvar tracks the actual variation range within 10% or better. A

second observation is that after level-shift events, the non-parametric estimation algorithm

needs some considerable amount of time (100-200sec) to reconverge to the correct variation

range. This delay can be reduced by using a larger value of b, but with an associated cost

in the accuracy of the estimation during stationary periods. A future improvement that we

consider is to dynamically increase b, upon the detection of frequent level-shifts or other

forms of non-stationarity, and to gradually decrease b when the avail-bw remains at the

same level.
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Figure 40: Pathvar experiment with parametric algorithm.

In Figure 40, we use the parametric algorithm instead. The actual and estimated 10%-

90% percentile range are measured in a time scale τ=250msec. The traffic load is non-

stationary (generated from replaying multiple times a 90-sec NLANR trace), but with a

marginal distribution that is quite close to the Gaussian model.

A first observation is that the tool needs about 2N(τ + RTT )=55 seconds to generate

each estimate of the variation range. Notice that this large latency is not an intrinsic

characteristic of the parametric algorithm, but it is due to the large measurement time scale
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τ and the associated long duration of each probing stream. Second, the estimation error

is in the order of 10-20%. The reader should not conclude that the parametric algorithm

is less accurate than the non-parametric algorithm. In general, the accuracy of the two

algorithms is comparable when they are both applied on the same traffic and with the same

value of τ , as long as the traffic process is stationary and Gaussian.
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Figure 41: Non-parametric and parametric estimates of 20% percentile for τ=40msec.
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Figure 42: Non-parametric and parametric estimates of 20% percentile for τ=140msec.
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Next, we compare the accuracy of the parametric and non-parametric algorithms under

the same traffic load. In the following graphs, we show a single avail-bw percentile, rather

than a variation range, to avoid cluttering. For each algorithm, we show the time series

of the 20-th percentile avail-bw estimates, as well as the 95-th Confidence Intervals (CI) of

those estimates.

Figures 41 and 42 show the effect of the measurement time scale τ on the accuracy of the

two algorithms. The traffic is generated by replaying the NLANR trace MRA-10621841.

The 20-th percentile of the avail-bw distribution during the entire trace is 67.0Mbps at

τ=40msec, and 72.1Mbps at τ=140msec. The non-parametric algorithm estimates this

percentile quite accurately in both measurement time scales. The parametric algorithm, on

the other hand, is accurate when τ=140msec, but it underestimates the given percentile

when τ=40msec. The reason is that in that shorter measurement time scale, the traffic

deviates significantly from the Normal distribution.
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Figure 43: Non-parametric and parametric estimates of 20% percentile for low vertical
aggregation.

Figures 43 and 44 show the effect of the degree of statistical multiplexing (“vertical

aggregation”) on the accuracy of the two algorithms. To generate traffic with a lower

degree of multiplexing we replay 20 large flows extracted from an NLANR trace, and to
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Figure 44: Non-parametric and parametric estimates of 20% percentile for high vertical
aggregation.

generate traffic with higher multiplexing we replay approximately 3000 smaller flows from

the same trace. The 20-th percentile of the avail-bw distribution during the entire trace is

45.9Mbps and 44.9Mbps, respectively. In both cases, the average traffic rate (and avail-bw)

is about the same. The non-parametric algorithm produces accurate estimates of 20-th

percentile with both degrees of multiplexing. The parametric algorithm, on the other hand,

is accurate only when the traffic is highly aggregated. The reason is that in the latter the

traffic deviates significantly from the Normal distribution.

To summarize the experiments of this section, the parametric algorithm performs better

than the non-parametric algorithm under non-stationary conditions (especially level shifts

and traffic spikes) because it is not iterative. On the other hand, if the traffic is not Gaus-

sian because of low horizontal or vertical aggregation, then the non-parametric algorithm

performs better. Obviously, the accuracy of Pathvar is worse when both previous assump-

tions do not hold, i.e., with non-stationary and non-Gaussian traffic. This may be the case

in paths where the tight link is the host network interface or a LAN link. In such environ-

ments, the traffic load is sporadic, generated by only a few high-throughput flows, and so

the resulting avail-bw process can be both non-stationary and non-Gaussian.
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4.5.2 Internet Experiments

We have also used Pathvar to measure the avail-bw variation range in several Internet paths.

The objective of these experiments is not to perform validation, given that we do not know

the actual avail-bw distribution, but to observe how the avail-bw variation range changes

with time in real Internet paths. In this section, we show some preliminary results from two

Internet paths between Georgia Tech (in Atlanta GA) and two universities in Greece (in

Ioannina and Heraclion-Crete). In both cases, we have evidence that the tight link is the

campus access link of the Greek universities (based on the corresponding MRTG graphs).
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Figure 45: Variation range estimates at the Internet path from Georgia Tech to University
of Ioannina.

Figure 45 shows the estimated 20%-80% variation range of the avail-bw for the path from

Georgia Tech to University of Ioannina over a two-hour time period. The time reported

in the x-axis refers to local time in Greece. The measurement timescale is 40msec and the

estimates are obtained using the non-parametric algorithm. A first observation is that the

avail-bw gradually increases, especially after 240pm. A second, more interesting observation

is that the variation range decreases as the average avail-bw increases. We discuss the

relation between avail-bw variability and tight link utilization in the next section.

Figure 46 shows the estimated 20%-80% variation range for the avail-bw for a path

from University of Crete (UoC) in Heraclion to Georgia Tech over a three-hour window.
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Figure 46: Variation range estimates at the Internet path from University of Crete to
Georgia Tech.

The time reported in the x-axis refers to local time in Greece. The measurement timescale

is 40msec and the estimates are obtained using the non-parametric algorithm. A first

observation is that the avail-bw shows a sharp increase at 8:00am. We confirmed this

unusual behavior with the MRTG graph of the UoC campus access link. One possible

explanation is that certain applications (e.g., p2p file transfers) are blocked during working

hours. Another interesting observation is that even though the average avail-bw is roughly

constant between 6:00am and 8:00am, the variation range fluctuates significantly. This

illustrates that estimating only the average avail-bw may be an insufficient indicator for the

load of a network path.

4.6 Variability factors

The previous sections focused on the estimation of the avail-bw variation range through

end-to-end measurements. Which are the factors, however, that affect the variability of the

avail-bw distribution? Why does the traffic appear to be more “bursty” in some paths than

in other paths? Two pieces of conventional wisdom are that “heavier load conditions also

produce wider traffic variations” and that “a higher degree of multiplexing makes the traffic

smoother”. Under which conditions, however, are these statements true?
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In this section, we focus on four different factors, and show how they affect the variability

of the avail-bw distribution. These factors are the traffic load at the tight link, the number

of competing flows, the rate of competing flows, and of course the measurement time scale.

The first three factors are related to the traffic characteristics at the tight link, while the

last factor is related to the way the avail-bw is measured. Even though these factors have

been examined in different contexts before, our focus here is specifically on the way these

factors affect the variation range of the avail-bw distribution.

The following results are based on a simulation study in which we measure the avail-bw

variation range as we vary each of the previous four factors. Specifically, we have imple-

mented an NS module for Pathvar that is identical to the actual prototype described in § 4.5.

Unless noted otherwise, we use the following parameters in the simulation: τ=50msec and

N=40 streams. The simulation topology includes a tight link with capacity Ct=50Mbps.

The traffic at the tight link is generated by a large number of edge nodes, and it resembles

short HTTP flows running over TCP NewReno. Each such flow transfers 10-15 packets

from a server to a client through the tight link, sleeps for a random time interval (that is

adjusted based on the desired average load), and then repeats the previous cycle. Note that

each time when the flows wakes up from sleep, it goes through a slow start phase.

During each simulation Pathvar runs M=25 consecutive times, estimating a 10%-90%

variation range [AL
τ (i), AH

τ (i)], for i = 1 . . . M , after each run. To summarize the M ranges

into a single figure, we calculate the average width V̂ of the estimated variation ranges as

follows

V̂ =

∑M
i=1(A

H
τ (i) −AL

τ (i))

M
(33)

We also calculate the standard deviation Ê of these M samples, to quantify their dispersion

around V̂ .

The following simulations also serve as a validation study of Pathvar. To do so, we

collect a traffic trace at the tight link during the simulation and then measure the width

V = AH
τ −AL

τ of the actual variation range [AL
τ , AH

τ ]. The comparison of V̂ with V indicates

whether Pathvar can successfully estimate the avail-bw variation range width.
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Figure 47: Effect of tight link utilization on the variation range width (left Y-axis) and
CoV (right Y-axis).

4.6.1 Effect of tight link utilization

The first factor we consider is the average utilization u at the tight link. From queueing

theory we know that the variance of the queueing delay or backlog in most queueing systems

increases as the utilization increases [11]. How does the utilization affect the avail-bw

variability however?

In Figure 47, we show the estimated and the actual variation range width for six values of

u. The utilization is controlled by adjusting the number of TCP clients. The measurement

time scale is τ=30msec. The first observation, in terms of validating Pathvar, is that the

actual variation range width V is very close to the estimation V̂ , and always within a range

of ±Ê/2.

Second, the variation range width increases with u up to a certain point. After that

point, the variation range width decreases with u. The point of the maximum variability

in this particular simulation occurs when the utilization is around 70%, but this depends

on the measurement time scale and on the characteristics of the traffic mix. What is the

reason for this non-monotonic variation of V with u? Intuitively, when u is relatively low,
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i.e., in light load conditions, V increases with u because of the increasing variability in

the offered load. With Poisson traffic, the variance of the offered load increases linearly

with the average traffic rate. As u approaches 100%, however, the tight link often becomes

saturated. During the time periods that the tight link is saturated, the departure rate at

the output of the tight link remains constant, and so the avail-bw variability drops. In the

extreme case that the tight link is always fully utilized, the avail-bw remains constantly

zero, and so its variability is also zero. Note that it is important to distinguish between the

traffic variability at the input of a link versus at the output. Even if the input rate has high

traffic spikes, the traffic rate at the output is essentially “clamped” by the link capacity. It

is this clamping effect that causes the variation range reduction at high loads. This effect

has been also studied in [87], examining the relation between load and traffic variance.

It is interesting that the Coefficient of Variation (CoV) of the traffic at the output of the

tight link follows a different trend than the variation range (see Figure 47). Specifically, the

CoV, which is defined as the standard deviation of the avail-bw over the average avail-bw,

increases monotonically with u. This trend should not be misinterpreted as an indication

that heavier loads cause wider traffic variability. This is only true in relative terms, when

the avail-bw variability is normalized by the average avail-bw. In absolute terms, instead,

the avail-bw variability reaches its maximum when the link is significantly loaded but not

congested.

4.6.2 Statistical multiplexing effects and scaling models

Another conventional wisdom is that a higher degree of statistical multiplexing, under the

same load conditions, makes the traffic smoother. To examine the validity of this statement,

we first need to clarify what it means to increase the degree of multiplexing at a link.

We distinguish between two scaling models. In the first, referred to as “capacity scaling”,

we increase the capacity of the tight link proportionally to the number of competing flows.

The average rate of each flow, as well as the utilization of the tight link, remain constant. In

the second, referred to as “flow scaling”, we increase the number of competing flows at the

tight link while proportionally decreasing their average rate; the capacity and utilization of

77



10 50 100 150 200 250 300
Capacity of Tight Link (Mbps)

0

2

4

6

8

10

12

14

V
ar

ia
tio

n 
Ra

ng
e 

W
id

th
 (M

bp
s) V 

V̂ ± Ê/2
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Figure 48: Effect of capacity scaling on the variation range width (left Y-axis) and CoV
(right Y-axis).

the tight link remain constant. Note that in both scaling models the number of competing

flows at the tight link increases, while the utilization of that link remains the same.

4.6.2.1 Capacity Scaling

To simulate capacity scaling, we increase the number of TCP clients U proportionally to the

capacity Ct of the tight link. Specifically, U is increased from 3 to about 90, Ct is increased

from 10Mbps to 300Mbps, while the tight link utilization is kept constant at 50%. Each

TCP client transmits an average of 1000 packets, then sleeps for a random time interval

between 2-5 secs, and then repeats the previous cycle. The capacity of the access link of

each client is fixed to 2Mbps, and the average rate of each TCP flow also remains constant.

Figure 48 shows the effect of capacity scaling on the avail-bw variation range width

and CoV. Interestingly, capacity scaling has a different effect on the avail-bw variability,

depending on whether we look at the variation range width or at the CoV. The former

increases with Ct, while the latter decreases. To understand why, suppose that Xi is the

traffic process generated by flow i, while Y =
∑U

i=1 Xi is the aggregate traffic process at

the tight link generated by U flows. If the U flows are independent, which is a reasonable
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Figure 49: Effect of flow scaling on the variation range width (left Y-axis) and CoV (right
Y-axis).

assumption when the tight link is not congested, and if we assume for simplicity that

the flows are identically distributed with Var[Xi] = Var[X], then we have that Var[Y ] =

UVar[X]. So, the variation range width of Y will increase with U . Actually, if Y is Gaussian,

then the width V of a symmetric variation range is proportional to the standard deviation

of Y .2 In that case, V increases proportionally to
√

U . The CoV of the avail-bw, on the

other hand, is equal to

CoV =

√

C − UVar[X]

C − UE[X]
=

√

UVar[X]

C − UE[X]
(34)

In capacity scaling, U increases proportionally with C, and so the CoV decreases as 1/
√

C.

So, the relative variability of the avail-bw decreases with capacity scaling, even though the

absolute width of the variation range increases.

4.6.2.2 Flow scaling

To simulate flow scaling, we increase the number of users U (TCP clients) decreasing propor-

tionally the average traffic rate of each user. This rate reduction is achieved by decreasing

2For instance, if Y is Gaussian, then it is easy to calculate that the 10%-90% variation range width is
equal to 2.56σ, where σ is the std-deviation of Y .
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the capacity Ce of the edge link that connects each user to the tight link. The throughput

of the TCP transfers is determined by Ce in these simulations. Figure 49 shows the effect of

capacity scaling on the avail-bw variation range width and CoV. In the case of flow scaling,

note that both the absolute variation range as well as the CoV decrease as the number of

users increases.

An interesting question is, why does the variation range width decrease with flow scaling,

but it increases with capacity scaling? Consider again the simple model of the previous

paragraph. The variance of Y is Var[Y ] = UVar[X], assuming independence among the U

users. The difference with capacity scaling, however, is that in flow scaling the variance

Var[X] of each flow decreases as U increases. This is at least the case for most traffic

processes: their variance decreases as the average rate decreases. In the Poisson process,

the variance is simply equal to the average rate. In the Poisson Pareto Burst Process [95],

which creates self-similar traffic, the variance is proportional the square of the average rate.

As long as Var[X] decreases faster than the increase in U , the variance Var[Y ] will decrease

as we increase the number of users. This is the case for the traffic mix that we simulate in

Figure 49, or for the Poisson Pareto Burst Process. On other hand, this would not be the

case for the Poisson process, in which Var[Y ] remains constant as we increase U .

The fact that the CoV decreases with flow scaling also depends on the relation between

U and Var[X]. As in the previous paragraph, the avail-bw CoV is given by (34). Since

the denominator (average avail-bw) remains constant, the CoV decreases if the variance of

individual flows decreases faster than the flow average rate.

4.6.3 Effect of measurement timescale

As mentioned in the Introduction, the variability of the avail-bw decreases with τ . The rate

of decrease, however, can be very different depending on the correlation structure of the

underlying traffic process. If Aτ (t) is an IID random process, then the variance decreases

inversely proportional with the length of the averaging time scale

Var[Akτ ] =
Var[Aτ ]

k
(35)
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Figure 50: Effect of time scale τ on the variation range width.

On the other hand, if Aτ (t) is an exactly self-similar process with Hurst parameter 0.5 <

H < 1, the variance decreases slower

Var[Akτ ] =
Var[Aτ ]

k2(1−H)
(36)

A tool such as Pathvar can estimate the variation range in different time scales. Con-

sequently, it is possible to infer through end-to-end measurements whether the avail-bw

process is an IID or a self-similar process, and in the latter, to measure the local Hurst

parameter in a certain range of time scales.

Figure 50 shows the actual and the estimated variation range width of the avail-bw in

six measurement time scales: τ=50, 100, 200, 300, 400, and 500msec. As we expected, V

decreases with τ . More interestingly, however, the decrease rate is consistent with a self-

similar process with Hurst parameter H=0.7. Of course this scaling behavior is valid locally

in the previous range of τ ; the Hurst parameter may be different in larger time scales.
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4.7 Pathvar Overhead and Latency

In this section, we focus on the overhead and the measurement latency of both the algorithms

implemented in Pathvar. We use the simulation setup as described in §4.6.

Figure 51 shows the measurement latency of Pathvar when the non-parametric algorithm

is used to estimate the variation range. The measurement latency of the non-parametric

algorithm depends on the number of iterations needed for converging to a avail-bw variation

range estimate. The number of iterations increase with the cross traffic rate in the path,

since it requires more iterations to converge to the thresholds used for the classification of

a stream as type-G or type-L [36]. This explains the decreasing trend in the measurement

latency as the avail-bw increases. As discussed in §4.3, the probing duration for each

iteration is 2N(τ + Tidle). For the values of various parameters used in this simulation

(N = 50, τ = 20msec, and Tidle = 80msec), each iteration takes about 10 seconds. Based on

10sec per iteration, the number of iterations vary approximately from 15 to 11 in Figure 51.
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Figure 51: Measurement latency for the non-parametric algorithm.

The measurement latency for the parametric algorithm does not vary with avail-bw and

is equal to 2N(τ +Tidle). This is because the parametric algorithm is non-iterative in nature.
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Figures 52 and 53 show the overhead of Pathvar, expressed in terms of average sending

rate, for the non-parametric and the parametric algorithm, respectively. In both cases, the

average sending rate is less than 30% of the average avail-bw.
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Figure 52: Average sending rate for the non-parametric algorithm.
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Figure 53: Average sending rate for the parametric algorithm.
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4.8 Summary

This chapter focused on the estimation of the avail-bw variation range using end-to-end

network measurements. To the extent of our knowledge, this is the first work that aimed to

measure the variability of the avail-bw, rather than its mean. We developed and evaluated

two complementary estimation algorithms. The selection among the two algorithms de-

pends on the measurement time scale, the degree of multiplexing at the tight link, and the

stationarity of the traffic at the measured path. The accuracy of the proposed algorithms

will probably be satisfactory for most applications, with relative errors up to 10-20%.
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CHAPTER V

EFFECTS OF INTERRUPT COALESCENCE ON NETWORK

MEASUREMENTS

The arrival and departure of packets at a Network Interface Card (NIC) are two events that

the CPU learns about through interrupts. An interrupt-driven kernel, however, can get in a

receive livelock state, where the CPU is fully consumed with processing network interrupts

instead of processing the data contained in received packets [61]. In Gigabit Ethernet (GigE)

paths, 1500-byte packets can arrive to a host in every 12µs. If the interrupt processing

overhead is longer than 12µs, receive livelock will occur when an interrupt is generated for

every arriving packet.

The system overhead for each arriving packet consists of a context switch, followed by

the execution of the network interrupt service routine, followed by another context switch.

In order to reduce the per-packet CPU overhead, and to avoid receive livelock, most high-

bandwidth network interfaces today (in particular GigE cards) use Interrupt Coalescence

(IC). IC is a technique in which NICs attempt to group multiple packets, received in a short

time interval, in a single interrupt. Similarly, at the sending host, the CPU learns about

the departure of several packets through a single interrupt. IC is not a new technique. It

becomes common whenever a new LAN technology brings the network speed closer to the

CPU speed; for instance, it was also used in the early days of Fast Ethernet NICs [61].

In this work, we identify and describe the negative effects of IC on both active and

passive network measurements. Specifically, IC can affect active bandwidth estimation

techniques, when the latter ignore the possibility of IC at the receiver’s NIC [40]. Bandwidth

measurements are classified as either capacity estimation or available bandwidth estimation.

For a recent survey, we refer the reader to [73]. Capacity estimation is based on the analysis

of dispersion measurements from back-to-back packet pairs and packet trains. Available

bandwidth estimation, on the other hand, is based on the relation between the departure
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and arrival rates of periodic packet streams.

We have modified our previous capacity and available bandwidth measurement tech-

niques, presented in [17] and [33] respectively, so that they can provide accurate estimates

in the presence of IC. For capacity estimation, a sufficiently long packet train can provide

a clear IC signature, in which packets are received in successive bursts at a certain time pe-

riod. Based on this signature, we can detect IC, filter our the erroneous measurements, and

estimate the correct path capacity. For available bandwidth estimation, we can similarly

detect the IC signature in the one-way delay measurements of periodic packet streams. It

is then simple to ignore the one-way delay measurements that have been affected by IC,

and to determine whether the remaining measurements show an increasing trend.

IC can also affect passive measurements that use commodity NICs for packet trace

capture. The reason is that IC can alter the packet interarrivals in the monitored traffic

stream. We finally show that IC can be detrimental to TCP self-clocking, causing bursty

delivery of ACKs to the sender and bursty transmission of data segments.

The rest of the chapter is structured as follows. §5.1 explains how IC works in two

popular GigE controllers. §5.2 illustrates the negative effects of IC in both active and

passive network measurements, and it describes how to filter dispersion and one-way delay

measurements in the presence of IC.

5.1 Description of Interrupt Coalescence

The basic objective behind IC is to reduce the number of network interrupts generated in

short time intervals (in the order of a few hundereds of microseconds). This can be achieved

by delaying the generation of an interrupt for a few hundreds of microseconds, expecting

that more packets will be received in the meanwhile. Most GigE NICs today support IC

by buffering packets for a variable time period (dynamic mode), or for a fixed time period

(static mode) [27, 82]. In dynamic mode, the NIC controller determines an appropriate

interrupt generation rate based on the network/system load. In static mode, the interrupt

generation rate or latency is set to a fixed value, specified in the driver.

Users (with root privileges) can modify the default controller behavior by changing
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the parameters provided by the NIC drivers. For instance, the driver for the Intel GigE

E1000 controller [28] provides the following parameters for adjusting the IC receive (Rx)

and transmit (Tx) operations:

• InterruptThrottleRate: the maximum number of interrupts per second. It is imple-

mented by limiting the minimum time interval between consecutive interrupts.

• (Rx/Tx)AbsIntDelay: the delay between the arrival of the first packet after the last

interrupt and the generation of a new interrupt. It controls the maximum queueing

delay of a packet at the NIC buffers.

• (Rx/Tx)IntDelay: the delay between the last arrival of a packet and the generation

of a new interrupt. It controls the minimum queueing delay of a packet at the NIC

buffers.

Note that the previous parameters can be combined to meet constraints on the maxi-

mum interrupt rate and on the maximum/minimum IC-induced queueing delays. In case

of conflict, InterruptThrottleRate has a higher precedence than (Rx,Tx)AbsIntDelay and

(Rx,Tx)IntDelay parameters.

Packet arrival
Time

RxAbsIntDelay

Interrupt generated

Timer expire

RxIntDelay

Case I

Case II

Figure 54: Illustration of IC with RxAbsIntDelay (Case I) and with RxIntDelay (Case II).

Figure 54 illustrates the interrupt generation process at the receiving host with only

the RxIntDelay or RxAbsIntDelay constraint. In case I, the RxAbsIntDelay timer is set to

expire after a certain delay since the arrival of the first packet after the last interrupt. All
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the subsequent packets are buffered at the NIC buffers, and they are delivered with the next

interrupt. If the minimum packet spacing at the given NIC is T , the maximum number of

packets that may need to be buffered is RxAbsIntDelay/T . In case II, every packet arrival

resets the RxIntDelay interrupt timer. Consequently, if packets arrive periodically with

a lower dispersion than RxIntDelay, the interrupt generation can be delayed indefinitely,

causing NIC buffer overflows.

The SysKonnect GigE NIC [83] provides two parameters: moderate and intpersec. Mod-

erate determines whether IC is enabled, and whether it is in static or dynamic mode. Int-

persec determines the maximum interrupt generation rate in static mode. It is similar to

the InterruptThrottleRate of the Intel GigE NIC.

5.2 Effects of Interrupt Coalescence

In the following, we explain how IC can affect active and passive measurements as well

as TCP self-clocking. We also describe the IC signature on packet train dispersion and

one-way delay measurements, and show how to filter out the effects of IC.

5.2.1 Capacity Estimation.

Active bandwidth estimation tools use the received dispersion (interarrival time spacing) of

back-to-back packet pairs (or trains) to estimate the end-to-end capacity of a network path

[73]. The basic idea is that, in the absence of cross traffic, the dispersion of a packet pair is

inversely proportional to the path capacity. Note that the received dispersion is typically

measured at the application or kernel, and not at the NIC. If the receiver NIC performs IC,

however, the packet pair will be delivered to the kernel with a single interrupt, destroying

the dispersion that the packet pair had at the network.

Figure 55 shows the cumulative dispersion of an 100-packet Ethernet MTU (1500B)

train, with and without IC, at the receiver of a GigE path. The capacity estimate, as

obtained without IC, is quite close to the actual capacity of the path (about 1000Mbps).

In the case of IC, however, we see that the application receives 10 to 12 packets at a very

high rate (unrelated to the network capacity), separated by about 125µs of idle time. Note

that, if a bandwidth estimation tool would attempt to measure the path capacity from the
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Figure 55: Cumulative dispersion in an 100-packet train with and without IC.

dispersion of packet pairs, it would fail miserably because there is not a single packet pair

with the correct dispersion.

5.2.1.1 Detection of IC:

In the presence of IC, many packets will be delivered from the NIC to the kernel, and then

to the application, with a single interrupt. We refer to the packets that are transferred to

the application with a single interrupt as a burst. The dispersion of successive packets in

a burst, measured at the application layer, will be equal to the latency T of the recvfrom

system call. A measurement tool can measure T , and so it can determine which packets of

a received train form a burst.

The presence of IC at the receiver NIC can be detected by sending a long back-to-back

packet train from the sender to the receiver. If IC is enabled, the receiving application will

observe a sequence of bursts of approximately the same length and duration. For example,

Figure 56 shows that bursts of 10-12 packets arrive roughly every 125µs. A packet train of

about 50 packets would be sufficient to detect the IC signature reliably.

An important point here is that a context switch at the receiver can cause a somewhat

similar signature with IC. Figure 56 illustrates that context switching can also force several

consecutive packets to be delivered to the application with the recvfrom period. However,
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as shown in Figure 56, there is a clear difference between the signatures of context switching

and IC. The former is a probabilistic event that only affects a subset of successive packets,

starting from a random initial location in the packet train. The latter is a deterministic

event that affects all the packets of a packet train, starting from the first, and creating a

regular pattern of burst lengths and durations.
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Figure 56: The signatures of context switching and interrupt coalescence in the cumulative
dispersion of a packet train.

5.2.1.2 Estimation with IC:

Our capacity estimation tool, pathrate [2], uses the dispersion of consecutive packets in 50-

packet trains to detect the presence of IC. To estimate the path capacity in the presence of

IC, pathrate relies on the interarrivals between successive bursts. Without significant cross-

traffic, the dispersion between the first packet of two consecutive bursts is equal to BL/C,

where B is the length of the first burst, L is the packet size, and C is the path capacity.

The train length should be sufficiently long so that at least two bursts are observed in each

received train. Pathrate sends multiple packet trains and finally reports the median of the

resulting capacity estimates.
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5.2.2 Available Bandwidth Estimation.

Available bandwidth estimation tools examine the relationship between the send rate Rs

and receive rate Rr of periodic packet streams in order to measure the end-to-end available

bandwidth A [73, 59, 67, 25]. The main idea is that when Rs > A, then Rr < Rs; otherwise,

Rr = Rs. Furthermore, when Rs > A, the queue of the tight link builds up, and so packet

i experiences a larger queuing delay than packet i − 1. Consequently, when Rs > A, the

One-Way Delay (OWD) of successive probing packets is expected to show an increasing

trend. On the other hand, if Rs < A, the OWDs of probing packets will be roughly equal.

Pathload [33] and pathchirp [78] estimate the available bandwidth of a path by analyzing

OWD variations.
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Figure 57: OWDs in 100-packet train with and without IC.

Figure 57 shows the OWDs of a periodic 100-packet Ethernet MTU stream with and

without IC. The sender timestamps and transmits packets at 1.5Gbps. The available band-

width in the path is about 940 Mbps. The OWDs of successive packets, without IC, are

clearly increasing showing that the probing rate is greater than the available bandwidth.

However, in the presence of IC, packets are buffered at the NIC until the interrupt timer

expires. Then, the packets are delivered back-to-back to the kernel, and then to the ap-

plication. We refer to all successive packets delivered with a single interrupt as a burst.

Among the packets of a burst, the first experiences the largest queueing delay at the NIC,
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while the last observes the minimum (or zero) queueing delay at the NIC. Notice that the

increasing OWD trend of the packets within a burst has been destroyed due to IC.

Suppose that sk is the send time of the k’th packet in a certain burst, while t is when

the interrupt is generated. Also, let r be the latency to transfer a packet from the NIC to

user space, and g be the period between successive packets at the sender. Then, the OWD

of the k’th packet will be given by

dk = t + k ∗ r − sk

= t + k ∗ r − (s1 + k ∗ g)

and so the relative OWD of packet k + 1 will be

dk+1 − dk = r − g (37)

From Equation (37), we see that if g > r, the successive OWDs in the same burst are

decreasing. In the experiment of Figure 57, we have that g = 8µs, r ≈ 3µs, and so there is

a clear decreasing trend in the OWDs of each burst.

Note that tools that only use packet pairs, such as [67, 78], or short packet streams

(less than about 10 packets in our GigE cards) will fail to detect IC, since none of the

packet pairs, or short streams, shows a correct OWD trend. On the other hand, notice

that, although the OWD trend is destroyed in short timescales, the overall increasing trend

in the OWDs is still preserved. Based on this observation, we have included an algorithm

in Pathload to detect IC and measure available bandwidth even in the presence of IC.

5.2.2.1 Estimation with IC:

Pathload uses the same technique as pathrate (see §5.2.1.1), to detect whether the receiver

NIC performs IC. When that is the case, Pathload filters out the OWD measurements that

have been affected the most from IC. As explained in the previous paragraph, the queueing

delay at the NIC is minimum (or zero) for the last packet of a burst. So, Pathload rejects

all OWD measurements except the last of each burst. From the remaining measurements,

we can then examine whether an increasing OWD trend exists or not.
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5.2.3 Passive measurements

Passive monitors are often used to collect traces of packet headers and interarrivals. Several

studies have focused on the traffic statistical characteristics (burstiness) in short timescales,

by analyzing such packet traces. However, if the traces have been collected with commodity

NICs that perform IC, then the packet interarrivals can be significantly altered. First, IC

can make several packets appear as if they form a burst, even though that may not be

the case. Second, IC can affect the correlation structure of packet interarrivals in short

timescales.

We emphasize that special-purpose passive monitors typically timestamp each packet at

the NIC, and so they avoid the negative effects of IC [19].

5.2.4 TCP self-clocking

Another negative effect of IC is that it can break TCP self-clocking [30]. Specifically, the

TCP sender establishes its self-clock, i.e. determines how often it should be sending packets

based on the dispersion of the received ACKs. To preserve the dispersion of ACKs at the

sender, or the dispersion of data segments at the receiver, packets must be delivered to TCP

as soon as they arrive at the NIC. IC, however, results in bursty delivery of data segments

to the receiver, destroying the dispersion that those packets had in the network. The bursty

arrival of segments at the receiver causes bursty transmission of ACKs, and subsequently

bursty transmission of more data segments from the sender. The problem with such bursts

is that TCP can experience significant losses in under-buffered network paths, even if the

corresponding links are not saturated [92].

Figure 58 shows the CDF of ACK interarrivals in a 10-second TCP connection over

a GigE path. Without IC, most ACKs arrive approximately every 24µs, corresponding

to the transmission time of two MTU packets at a GigE interface. This is because TCP

uses delayed-ACKs, acknowledging every second packet. With IC, however, approximately

65% of the ACKs arrive with an erratic dispersion of less than 1µs, as they are delivered

to the kernel with a single interrupt. These “batched” ACKs trigger the transmission of

long bursts of data packets from the sender. Note that the rest of the ACKs, even though
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non-batched, they still have a dispersion that does not correspond to the true capacity of

the path, misleading the TCP sender about the actual rate that this path can sustain.
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Figure 58: CDF of ACK interarrivals in a 10-second TCP connection over a GigE path.

5.3 Summary

IC is used to reduce the interrupt processing overhead and becomes necessary when the

minimum packet interarrival latency becomes comparable to the per-packet interrupt pro-

cessing overhead. Unfortunately, IC can affect active network measurement tools that use

closely spaced packet pairs, trains, or streams. In particular, capacity and available band-

width estimation techniques can provide incorrect results if they ignore IC. On the positive

side, we developed a simple algorithm to detect the presence of IC, and to filter out the

erroneous dispersion or one-way delay measurements caused by IC.
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CHAPTER VI

APPLICATION OF AVAIL-BW ESTIMATION: VIDEO STREAMING

6.1 Introduction

As the “last mile” access capacity continues to grow, IP video streaming becomes more

popular among users and content providers. Many experts believe that IPTV is the next

“killer-application” in the Internet [15]. However, supporting video streaming and IPTV

presents significant challenges. IP networks often suffer from several network impairments,

including packet losses, significant jitter and one-way delays, as well as outages of un-

predictable duration. Additionally, most IP networks today do not offer deterministic or

statistical QoS guarantees.

Since the early nineties, several approaches for adaptive video streaming applications

have been proposed. One approach is to adjust the encoding scheme and/or video frame

rate in response to changes in the network state [38, 42, 76, 8]. The main drawback of

such schemes, however, is that the perceived video quality varies with time, causing user

dissatisfaction. Another class of approaches is to use proactive error correction techniques,

such as Reed-Solomon FEC codes, or to retransmit lost packets through standard ARQ

schemes [75, 47, 39]. The major drawback of FEC schemes is that they introduce bandwidth

overhead even when the network does not drop packets. The drawback of retransmissions

is that they require a playback delay of a few round-trip times, additional state/buffering

at the sender, and reverse-path traffic (e.g., negative ACKs). Another approach is to mask

the effect of lost or discarded (i.e., late) packets through the use of codec-specific error

concealment techniques [79, 51]. The effectiveness of such techniques is limited however.

Even though IP networks typically use a single path from one host to another, the

recent popularity of multihoming and overlay networks allows content providers to choose

between several network paths towards a given receiver [94]. Such path diversity gives

video streaming one more adaptation option: to dynamically switch from one path to
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another depending on the observed (or predicted) performance in the candidate paths. This

technology uses network-level measurements, such as loss or jitter, and it has been shown

that it can quickly react to congested paths or outages [86, 5]. A variation of this approach

is to combine path diversity with Multi-Description Coding (MDC) techniques [9, 7, 93],

and use multiple paths simultaneously. The studies in this area rely on loss rate, delay

or TCP throughput measurements, and they typically perform these measurements using

“dummy” probing packets.

In this work, we consider an overlay-based video streaming architecture in which the

objective is to maximize the perceived video quality through dynamic overlay path selection.

A novel aspect of our study is that the network measurements that drive the path selection

process rely on available bandwidth (avail-bw) estimation. The avail-bw of a network path is

defined as the residual capacity at the path’s bottleneck, and so it represents the maximum

additional load that the path can carry before it becomes saturated [33]. The reason we focus

on avail-bw is because this metric can determine whether a path has enough capacity to carry

a video stream before we switch the stream to that path. Other network-layer metrics, such

as jitter or packet loss rate, can only determine whether a path is already congested, causing

degradation in the video quality at the receiver [84, 85, 12]. We also show how to modify

an existing avail-bw estimation technique, described in [33], so that the measurements are

performed using application packets, rather than “dummy” probing packets, eliminating

the measurement overhead in the currently selected path. We evaluate the video quality

based on the VQM technique described in the ITU-T recommendation J.144 [1]. It has

been shown that VQM is superior to other video quality metrics, such as PSNR, because

the VQM score is more representative of the user-perceived video quality [56]. With a

series of repeatable experiments in a controlled environment we compare the VQM score

of path selection schemes based on jitter, loss rate, and various percentiles of the avail-bw

distribution. The main result of this experimental study is that performing path selection

based on the estimated lower bound of the avail-bw variation range performs significantly

better in terms of VQM score, path switching frequency, and probability of aborting an

ongoing video stream.
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The rest of the chapter is organized as follows. §6.2 presents an overlay-based video

streaming architecture. §6.3 describes the path selection techniques that we evaluate. The

experimental methodology is described in §6.4, and the results are presented in §6.5. §6.6

gives a brief comparison between adaptive path selection and a simple (but commonly used)

FEC scheme. We conclude in §6.7.

6.2 VDN architecture and in-band measurements

In this section, we present the high-level architecture of an overlay-based video streaming

architecture, referred to as the Video Distribution Network (VDN). A content provider con-

structs a VDN by deploying several overlay nodes that will act as either overlay ingress/egress

nodes or as intermediate nodes (see Figure 59). Each VDN node runs a Measurement Mod-

ule (M-module) to measure the performance (jitter, loss rate, avail-bw) of the overlay links

from that VDN node to its neighbors. The VDN also runs a link-state protocol so that

each node is aware of the latest state in all VDN links. We only consider VDN paths with

at most one intermediate overlay node, based on the results of [94]; additional intermediate

nodes are rarely needed in practice. The path of a video stream is determined at the ingress

VDN node, i.e., we use source routing. The egress VDN node removes any VDN headers

and delivers the stream to the receiver.

For the purposes of this chapter, the most important aspect of the VDN architecture

is the M-module. In our implementation, the M-Module relies on active measurement to

estimate the packet loss rate, jitter, and the avail-bw variation range at a given overlay link.

The loss rate is measured as the fraction of lost packets in a 1-Mbps stream of 1500-byte

packets. The jitter is estimated as the maximum absolute difference between the spacing of

consecutive packets at the receiver relative to their spacing at the sender, using the same

probing stream. The avail-bw variation range is measured as described in chapter 3 and

chapter 4.

One feature of the M-Module is that it uses the application’s video packets to perform in-

band network measurement. The in-band approach eliminates the measurement overhead,

at least in the path that is currently selected for video streaming (we still use out-band
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Figure 59: VDN architecture.

measurements with empty probing packets in paths that do not transfer any video streams).

Using video packets for the estimation of loss rate or jitter is relatively straightforward. The

estimation of avail-bw, on the other hand, requires shaping the video stream at a different

rate than the transmission rate at the sender. In the following paragraph we describe how

the M-module shapes the video stream to a particular rate at the input of each overlay link.

Suppose that N video packets of size L arrive at a VDN node at a rate Rv. The arrival

time of the ith packet is tai . The objective of the local M-module is to shape those N

packets at a probing rate Rp, so that it can measure whether Rp is smaller or larger than

the avail-bw in the outgoing overlay link. To do so, the N incoming packets are delayed

so that their output spacing is L/Rp. If tdi is the departure time of the ith packet, then

tdi − tdi−1 = L/Rp and tdi = tai + δi, where δi is the delay introduced to the ith packet. For

instance, if Rp > Rv, the M-module shapes the packet stream by introducing a decreasing

amount of delay in successive packets; otherwise, the M-module introduces an increasing

amount of delay in successive packets (see Figure 60). The M-module adds the value δi into

the VDN header of packet i. In some cases, the receiving application may demand that the

video stream arrives at the rate Rv in which it was sent to (e.g., for clock synchronization).

In that case, the egress VDN node can reshape the video stream rate back to the initial
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Figure 60: Shaping of video packets to a probing rate Rp for avail-bw estimation.

transmission rate at the sender, by delaying each packet by D−δi, where D is the maximum

cumulative delay that can be introduced to the packet from the M-modules at the ingress

and intermediate nodes and δi is the corresponding cumulative delay that the ith packet

experienced.

6.3 Path selection schemes

In this section, we describe the four path selection schemes we evaluate. The schemes are

distinguished based on the choice of the key measured network performance metric.

Loss based path selection (LPS): In LPS, we monitor the average loss rate in all

candidate paths during 3-second periods. The path with the minimum loss rate is selected.

If the currently used path has zero loss rate, then we do not switch to another path even if

there are other loss-free paths.

Jitter based path selection (JPS): The jitter of successive packet pairs is also mea-

sured over 3-second periods. The path with the minimum 90th percentile of jitter measure-

ments is selected. If the minimum jitter is practically the same in more than one paths,

then JPS selects the path with the lowest loss rate. If the loss rate is also equal, then JPS

stays at the current path if that is one of the best paths, or it randomly picks one of the

best paths otherwise.

Avail-bw based path selection (APS): This scheme has two variations. In the first,

we use the average avail-bw (A-APS). In the second, we use the lower bound of the avail-bw
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Figure 61: Testbed.

variation range (L-APS) (see 4 for more details). A new avail-bw estimate results in almost

every 3 seconds, similar to LPS and JPS. If the avail-bw estimate (average or lower bound)

in the currently selected path is greater than twice the video transmission rate, then we

stay in that path. Otherwise, we choose the path with the highest avail-bw estimate; note

that this may still be the currently selected path.

6.4 Experimental setup

We have evaluated the performance of the previous path selection schemes with controlled

experiments in the testbed of Figure 61. The video stream is transmitted from node B to

E through either the direct path, or through the path that traverses node D. The video

stream is a 2-minute clip formed by combining SMPTE test video sequences [20], namely

flower garden, susie, birches and football, and encoded in MPEG-2 with average rate 6Mbps.

The VLC player [88] transmits the stream to the network. The stream is initially routed

through the direct path. The M-modules run at nodes B, D, and E, and they perform both

network measurement and the path selection process. Both paths carry cross traffic and

they are occasionally congested. The cross traffic in each path is generated by replaying

NLANR packet traces, collected from various university access links [63]. The average cross

traffic rate is set to the desired value by scaling the packet interarrivals by the appropriate

factor.
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We compare the performance of various path selection algorithms based on three criteria:

video quality, user-abort probability and path switching frequency. The video quality is

measured using the VQM tool [90], which implements the ITU-T J.144 recommendation [1].

VQM compares the original video stream with the received video stream, and it reports a

metric between 0 and 1. Note that a lower VQM scores correspond to better video quality.

It has been shown that the VQM score correlates very well with the user-perceived video

quality (MOS score). The VQM software supports five models to evaluate video quality,

described in detail in the NTIA Handbook [71]. In this work, we use the television model.

In the following graphs we report the minimum, average, and maximum VQM score from

the five runs of each experiment. The five runs differ in terms of the initial phase between

the video clip and the cross traffic traces.

The user-abort probability focuses on the short-term variations of the VQM score. The

idea is that if the VQM score is too high (poor quality) during a time window, then the user

would either abort the video stream or she would be unsatisfied. We measure the VQM

score of consecutive 10-second video segments. A video stream is considered aborted if one

of the following two conditions is met: either the VQM score in a single segment is larger

than 0.55, or two consecutive video segments have VQM scores larger than 0.35. We chose

these values based on extensive subjective tests of several video streams under different

conditions. To estimate the user-abort probability, we measured the fraction of aborted

video stream in 30 experiments.

The last evaluation metric is the total number of path switching events. Even though

the path switching frequency does not affect the video quality, it is an important aspect of

any dynamic routing mechanism from the network operator’s perspective. Frequent path

switching of large traffic volumes can affect the network stability and traffic engineering.

Consequently, even though our primary interest is to optimize video streaming quality, we

would also like to avoid unnecessary path switching.
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Figure 63: VQM scores for the four path selection schemes.
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6.5 Results

Figures 63, 64 and 65 show the performance of the considered path selection schemes under

different load conditions (i.e., utilization of the bottleneck link in each path). The PSC

trace shown in Figure 62 is replayed at the direct path, while the FRG trace is replayed at

the indirect path. We adjust the average rate of each trace to achieve the desired utilization.

Even though we set the long-term average rate of the two traces at the same value, there

are time periods where one path is congested while the other is not. Note that there are

time periods, mainly in higher load conditions, where both paths are congested. Obviously,

path switching techniques cannot avoid congestion in that case, but they can still choose

the least congested path.

Figure 63 shows the overall VQM score for each path selection scheme. LPS clearly

performs poorly since it only reacts after congestion has affected the currently selected

path. The A-APS scheme does not perform much better than LPS. The reason is that the

average avail-bw does not capture the variability of the avail-bw distribution, and so the

two paths appear as almost equally good in most of the time. The JPS and L-APS schemes

have comparable performance and they are clearly better than A-APS and LPS. This is

because both JPS and L-APS are able to detect the onset of queuing delays in the currently

selected path, before that path becomes congested. Note that L-APS is slightly better than

JPS, especially in the case of 90% utilization.

Figure 64 shows the number of path switching events in the same set of experiments.

The main observation is that L-APS has the lowest path switching frequency. JPS causes

significantly more path changes, and is comparable to A-APS. This is because JPS relies

on a comparison of the maximum jitter in the two paths, and so a minor variation in the

jitter, which can result from an short-lived cross-traffic burst, may trigger JPS to switch

paths. Instead, L-APS does not switch paths if the currently selected path provides a large

safety margin, in terms of avail-bw, for the given video stream rate.

Figure 65 shows the user-abort probability, i.e., the fraction of aborted video streams.

The ranking of the four path selection schemes is as in the case of the long-term VQM score

in Figure 63.
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Figure 64: Path switching frequency.
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Figure 65: User-abort probability.
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Figure 66: Cross traffic traces with instances of non-stationarity.

We next show some results for the traces shown in Figure 66. These traces include

instances of traffic non-stationarity. In the PSC trace, the traffic rate varies abruptly

between 20Mbps and 45Mbps during the second half (level shifts). On the other hand, the

AMP trace exhibits periods of slowly increasing traffic load (notice the traffic “ramp”). We

are interested to examine the effectiveness of the considered path selection schemes under

such traffic conditions. In these experiments, we use the same trace in both paths. In

one path, the trace playback starts from the beginning, while in the other path the trace

playback starts from the middle.

Figures 67 and 68 show the VQM scores for the PSC and AMP traces, respectively.

Note that, overall, the level shifts of the PSC trace cause higher VQM scores compared to

the smoother AMP trace. L-APS performs clearly better in this case than the JPS scheme.

Note that there is a difference in the relative performance of JPS and A-APS in the two

traces. The reason is that, even though JPS is more proactive than A-APS in switching

paths, in the AMP trace the A-APS scheme performs slightly better because it can detect

the slowly decreasing level of avail-bw during the traffic ramp.
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Figure 67: VQM scores for the PSC trace.
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Figure 68: VQM scores for the AMP trace.
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Figure 69: Path switching versus FEC.

6.6 Path switching versus FEC

In this section, we conduct a preliminary comparison between path switching techniques

and FEC-based loss recovery. A commonly used FEC scheme is the Reed-Solomon (RS)

code [75, 47, 39]. In an (n, k)-RS code, n−k out of n packets carry FEC packets. An (n, k)

RS-code can recover from all losses in a block of n packets if at least k of those n packets are

received. The main drawback of FEC-based schemes is their transmission overhead n−k/k.

Here, we evaluate the simplest form of FEC in which n = k + 1. This instance of

RS-coding is equivalent to sending a single parity packet after every k data packets. We

compare the VQM score of this technique with L-APS for two load conditions: 70% and 80%

bottleneck utilization using the NLANR traffic trace (BWY-1063315231). Figure 69 shows

the results for different values of k. At the far left, k=19 corresponds to a transmission

overhead of about 5%, while at the far right, k=1 corresponds to 100% overhead. Note

that path switching with L-APS performs consistently better than FEC, except the case

of k=1. The main reason is that path switching can often avoid congestion altogether,

while FEC attempts to recover from the effects of congestion, which is not always possible.

Additionally, the FEC scheme we evaluate here is not effective in dealing with the bursty

nature of congestion-induced packet losses.
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6.7 Summary

This work focused on the use of measurement-driven path selection techniques for video

streaming. We showed that if the path selection is driven by a conservative estimate of the

available bandwidth, then the resulting video streaming performance is significantly im-

proved compared to other commonly used network metrics. An interesting open problem is

to develop path switching mechanisms that are driven by direct video quality measurements

at the receiver. Another open problem is to evaluate the performance of a hybrid approach

using both FEC and path selection mechanisms.
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CHAPTER VII

RECENT WORK IN AVAIL-BW ESTIMATION

Estimating the available bandwidth (avail-bw) of end-to-end network paths with active

measurements has attracted significant interest recently. Several estimation techniques and

software tools have been developed, IGI [25], Pathchirp [78], Spruce [81], and Bfind [3],

while several more techniques are currently being reviewed or developed. On the positive

side, this work reflects that the networking community recognizes the importance of the

avail-bw metric and its many practical applications. On the negative side, however, we find

that some key issues regarding the avail-bw definition, estimation, and validation remain

vague or misinterpreted in both the general understanding of our community, but also in

published work.

In this chapter, we review the recent work in the area of avail-bw estimation. Addition-

ally, we clarify what we think of as the ten most important misconceptions about avail-bw

estimation. Our objective is not to debunk recent work or to claim that some estimation

techniques (or our estimation technique in chapter 2) are better than others. Actually, the

clarification of the following issues may lead to better estimation techniques, and also, it

may allow a more fair comparison between existing measurement tools.

7.1 Avail-bw estimation at a single link with fluid traffic

All the existing avail-bw estimation techniques are based, at least in terms of their basic

idea, on a single-link model with fluid cross traffic of (constant) rate. Let Ct be the capacity

of that link and Rc be the rate of cross traffic, with the avail-bw being A = Ct−Rc > 0. The

fluid assumption means that during any time interval of length τ , the amount of arriving

cross traffic at the link is Rcτ .

Suppose that we send to this link a periodic probing stream with rate Ri and packet

size L; the length of the stream does not matter at this point. The interarrival between

two consecutive probing packets is δi = L/Ri. The amount of cross traffic that arrives at
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the link during any interval of δi is Xc = Rcδi, and the total amount of traffic that arrives

at the link in the same interval is L + Xc (including one probing packet). On the other

hand, the maximum amount of traffic the link can transmit in the same interval is Ctδi. It

is straightforward to show that if Ri > A, then the link receives more traffic than it can

service, i.e. L + Xc > Ctδi.

In that case, when Ri > A, the extra arriving traffic at the link accumulates at the link’s

buffers, increasing the queue size with every probing packet we send. It is also easy to show

that the queue size increase ∆q during an interval of length δi is

∆q = δi(Ri −A) = L
Ri −A

Ri
if Ri > A (38)

Two ways to detect that Ri > A from end-to-end measurements are through increase in

the One-Way Delay (OWD) of the probing packets, and through a lower output rate Ro at

the receiver compared to the input rate Ri at the sender. Specifically, the OWD increase

∆d between two successive probing packets during an interval of length δi is determined by

the queue size increase in the same interval

∆d =
∆q

Ct
=

L

Ct

Ri −A

Ri
if Ri > A (39)

Also, the interarrival between two consecutive probing packets after the link (at the receiver)

is δo = δi + ∆d, and so the rate with which the probing stream arrives at the receiver is

Ro =
L

δo
=

RiCt

Ct + (Ri −A)
if Ri > A (40)

The key point here is that the output rate is less than the input rate Ro < Ri when Ri > A.

On the other hand, if Ri ≤ A the link can transmit all the received traffic and so ∆q

= ∆d=0, meaning that the OWDs do not increase, and Ro = Ri meaning that the output

rate is equal to the input rate.

We next identify two different avail-bw estimation approaches that are based on the

previous model. All the existing estimation techniques and tools are based on these general

approaches.
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7.1.1 Direct probing

In direct probing, each probing stream results in a sample of the avail-bw. The sender

transmits a periodic probing stream of rate Ri and receiver measures the output rate Ro.

The basic idea is that, if Ri is larger than the avail-bw, Equation (40) can be solved for the

only unknown A

A = Ct −Ri(
Ct

Ro
− 1) (41)

Note that direct probing samples the avail-bw process with each packet train, as long as

the input rate is sufficiently high. The main assumption in the direct probing approach,

however, is that the tight link capacity Ct is known. We will return to this point in §7.3.

7.1.2 Iterative probing

In iterative probing, we do not need to know the capacity of the tight link. The sender

transmits a periodic probing stream k with rate Ri(k). The rate Ri(k) varies either linearly,

or as a function of the outcome of previous streams. If the k’th stream gives Ro(k) < Ri(k),

or if the OWDs of that stream are increasing, then we know that Ri(k) > A; otherwise, it

is Ri(k) ≤ A. The basic idea is that, through a sequence of streams with different rates,

iterative probing can converge to A. Thus, the basic equation behind iterative probing is:

Ro(k) < Ri(k) if Ri(k) > A; else Ri(k) ≤ A (42)

A key point about iterative probing is that it does not sample the avail-bw process; instead,

it only samples whether a rate is larger than the avail-bw or not.

7.2 Classification

We next briefly review and classify each existing avail-bw estimation technique. The tech-

niques are presented in the order in which they were published.

Delphi: Delphi is the canonical example of direct probing [77]. An interesting point about

that work is that it assumes a multifractal model for the path’s cross traffic. Similar to

other direct probing techniques, Delphi assumes that the avail-bw is limited by a single

tight link and that the capacity of the tight link is known or it can be estimated.
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Trains of packet pairs (TOPP): TOPP is the canonical example of iterative probing

[59, 60]. A probing stream at a rate Ri consists of several packet pairs with that rate.

The rate increases linearly in successive streams. TOPP estimates the avail-bw as the

maximum input rate Ri that is not larger than Ro. An interesting point about TOPP is

that it attempts to also estimate the capacity of the tight link, as well as the avail-bw and

capacities of secondary bottlenecks in the path.

Pathload: Pathload is an estimation tool (described in chapter 3) that we developed,

and it is based on iterative probing. A difference with TOPP is that Pathload varies the

probing rate in a “binary search” manner, rather than linearly. Pathload was the first tool

to consider the variability of the avail-bw process, and this is why it estimates a variation

range rather than a single estimate. Furthermore, it infers the relation between the input

rate and the avail-bw based on statistical analysis of the OWD trends, rather than based

on the ratio Ro/Ri. Also, in [33] we considered the effect of the probing stream length on

the variation range of the avail-bw, and explained the differences between TCP throughput

and avail-bw. We will return to the previous points in §7.3.

Pathchirp and S-chirp: Pathchirp is based on iterative probing [78]. Instead of send-

ing periodic packet streams, Pathchirp sends “chirps”, i.e., N packets with exponentially

increasing interarrivals between successive packets. Therefore, the packet pairs of a single

chirp probe the network at a wide range of rates, while a single chirp of length N probes

N − 1 different rates. Note that Pathchirp’s efficiency in terms of the number of probing

rates per packet is due to the use of consecutive packet pairs. Pathchirp reports a single

estimate of the avail-bw during a sequence of chirps.

A similar approach, referred to as Smoothed-chirp (S-chirp), was proposed in [67] and it

is also based on iterative probing.

IGI/PTR: Hu and Steenkiste proposed two estimation techniques (IGI and PTR) in [25].

PTR is quite similar with TOPP, in the sense that it is also based on iterative probing,

performs linear rate variation, and reports a single estimate. A difference with TOPP is
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that it uses packet trains of 60 packets rather than packet pairs.

IGI is harder to classify. It uses an equation that is similar to (41), and so it can be

viewed as direct probing. The input rate Ri, however, is chosen in an iterative manner,

as in TOPP and PTR. It is not clear what is the benefit of also using the direct probing

equation, given that at the end of the iterative phase IGI already has an estimate of A.

IGI also uses packet trains of 60 packets. The capacity of the tight link is estimated using

bprobe, which is an end-to-end capacity estimation tool [14].

Spruce: Spruce is also based on direct probing [81]. Spruce uses 100 packet pairs, instead

of packet trains, to collect its avail-bw samples. The input rate is chosen to be roughly equal

to the tight link capacity, which is assumed to be known. To emulate Poisson sampling,

different packet pairs are spaced with exponential interarrivals.

Bfind: BFind is also based on iterative probing [3]. It differs from previous tools in that

it does not require control at both ends of the path but it is based on ICMP TTL-expired

responses from the intermediate routers in the path. Specifically, the sender probes the end-

to-end path with UDP streams of gradually increasing rate, while monitoring at the same

time the RTTs to successive routers with repeated traceroute measurements. An increase

in the RTT to a particular link reveals an increasing queue size, which implies that the

corresponding input rate is larger than the avail-bw at that link.

In addition to the above tools and techniques, several new tools have appeared in the

literature in last couple of years. Antoniades et al. presented a single-ended avail-bw esti-

mation tool, called abget [6], which uses only TCP packets coupled with iterative algorithm

similar to pathload. Hu et al. proposed a tight link detection tool called pathneck [24],

which is based on direct probing approach. The key assumption in the tool is that the

packet train length will increase only at the link where the avail-bw is less than train rate.

Authors used similar approach in [26].
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7.3 Fallacies and pitfalls 1

7.3.1 Pitfall: Ignoring the variability of the avail-bw process.

Suppose that we collect k independent samples of the avail-bw process Aτ (t). Even if we

could measure each sample with perfect accuracy, the variability of Aτ (t) means that the

sample mean mA(k) will be different than the population mean µA. The variance of mA(k)

is

Var[mA(k)] =
Var[Aτ ]

k
(43)

where the population variance Var[Aτ ] of the avail-bw process depends on the averaging

time scale as discussed in §7.1. The fact that the variance of the sample mean decreases

with the number of samples, or the fact that the population variance decreases with the

time scale τ are basic statistical facts. Unfortunately, the avail-bw estimation literature

includes accuracy comparisons between estimation techniques that use a different number

of samples, or between estimation techniques that use different averaging time scales.
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Figure 70: Relative error β of the sample mean mA for three averaging time scales.

To illustrate the magnitude of the errors that can be caused simply due to sampling,

1We adopt the heading “Fallacies and Pitfalls” from the well-known Computer Architecture textbook of
Hennessy and Patterson.

114



even with perfect measurement of each sample, we analyze an NLANR packet trace from

an internet link2. The trace provides us with accurate knowledge of the avail-bw process

in a wide range of time scales τ . Our experiment consists of collecting sets of k=20 avail-

bw samples from the trace, using Poisson sampling, calculating the sample mean mA, and

then computing the relative error β = ma−µA

µA
, where µA is the mean avail-bw in the trace.

Figure 70 shows the CDF of β for three averaging time scales. Note that unless if τ is 10ms

or more, significant errors should be expected with 20 samples, simply due to the variability

of the avail-bw process. Especially in short time scales, say 1ms, the number of samples

that is required for a reasonably low β (say < 5%) can be in hundreds.

7.3.2 Pitfall: Ignoring the relation between probing stream duration and av-
eraging time scale.

The averaging time scale τ is an important parameter in avail-bw estimation, and we should

expect that different applications will be interested in different values of τ . With the

exception of [33], the intimate relation between τ and the probing stream duration has

been ignored.

It is important to understand that we can control the averaging time scale with the prob-

ing stream duration, since the latter determines the length of the time interval in which

we interact with the cross traffic at the tight link. To illustrate, we performed a single-hop

simulation of direct probing. The capacity of the link is 50Mbps, the average avail-bw is

25Mbps, the cross traffic is Poisson, and the input probing rate is 40Mbps. An avail-bw es-

timate is obtained using direct probing with each stream. The simulations are repeated five

times, for different values of the stream duration (25ms, 50ms, 100ms, 150ms, and 200ms).

We then compare the standard deviation of 100 avail-bw samples with the population stan-

dard deviation (derived from the simulation packet trace) for the corresponding averaging

time scale. Figure 71 shows that the population and sample standard deviations are almost

equal. In summary, the probing duration should not be viewed as an “implementation

2Trace ANL-1070432720 from the OC-3 access link of Argonne National Laboratory. NLANR PMA
project is supported by the NSF (ANI-9807479 and ANI-0129677) and by the National Laboratory for
Applied Network Research.
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Figure 71: The probing stream duration controls the averaging time scale τ .

parameter”, but as the knob that controls the averaging time scale.

7.3.3 Fallacy: Faster estimation is always better.

Some avail-bw estimation tools have been proposed on the premise that they are faster

than other tools. Using fewer streams or shorter streams, however, reduces the estimation

latency with a penalty in terms of accuracy. For instance, decreasing the probing stream

duration decreases the averaging time scale. Since the variance of the avail-bw process

increases with a smaller averaging time scale, it is clear from (43) that the variance of the

avail-bw sample mean would be increased (for the same number of samples). In general, the

stream duration and the number of streams should be inputs to an estimation technique, as

knobs that control the estimation accuracy and the measurement overhead/intrusiveness.

Additionally, comparisons between different techniques should take into account the tradeoff

between estimation latency and accuracy.

7.3.4 Fallacy: Packet pairs are as good as packet trains.

It is true that with fluid cross traffic there is no difference between using packet pairs or

longer trains. In practice, however, the cross traffic consists of packets with discrete packet
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sizes, commonly following a strongly modal distribution. Consequently, the amount of cross

traffic that interferes between each probing packet pair can often take just some discrete

values, such as one 1500B packet, two 40B packets, etc. For a given number of samples,

and for a given avail-bw process, the avail-bw estimation error will be higher when the cross

traffic consists of a few large packets rather than many small packets. In the extreme, if

we could reduce the cross traffic packet size Lc to almost zero, the traffic would behave as

a fluid model.

Table 2: Effect of cross traffic packet size Lc on the relative error β for four sample sizes
k.

k=10 k=20 k=50 k=100

Lc=40B ≈0 ≈0 ≈0 ≈0

Lc=512B 31% 8% 5% 2.5%

Lc=1500B 40% 20% 8% 2%

To illustrate this point, we performed single-hop simulations (with the same topology

and parameters as in the previous paragraph) with three different values of Lc, while keeping

the average avail-bw constant. The probing packet size is L=1500B. Table 2 shows the

relative error β for four sample sizes. Even though packet pairs are able to provide good

accuracy when the cross traffic consists of small packets (40B), the presence of larger packets

makes packet pairs significantly inaccurate.

7.3.5 Pitfall: Estimating the tight link capacity with end-to-end capacity esti-
mation tools.

As previously mentioned, direct probing techniques require the knowledge of the tight link

capacity Ct. It is often assumed that Ct can be estimated with end-to-end capacity estima-

tion tools. The latter, however, would estimate the capacity Cn of the narrow link, which

may be less than Ct. This is often the case, for instance, when Cn is limited by a Fast

Ethernet interface while the tight link is an OC-3 or OC-12 link that has less avail-bw than

the narrow link.
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7.3.6 Fallacy: Increasing One-Way Delays is equivalent to Ro < Ri.

In the fluid model, increasing OWDs is equivalent to Ro < Ri; see Equations (39) and (40).

With real cross traffic, however, the time series of OWD measurements carries much more

information than the ratio of the average input and output rates. The reason is rather

obvious: the OWDs are many values, and so they can be analyzed with statistical tools to

detect trends, measurement noise, level shifts, etc. The ratio Ro/Ri, on the other hand, is a

single number, hiding much information about what happened during that probing stream.
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Figure 72: OWDs for two probing streams of 160 packets.

To illustrate, Figure 72 shows the OWDs for two probing streams of 160 packets. In

the lower time series, we have that Ro < Ri even though Ri < A. The decreased output

rate is due to a sudden increase in the OWDs at the very end of the stream (probably due

to a cross traffic burst). On the other hand, even a simplistic analysis of the OWDs in

that stream would detect that there is no OWD increasing trend, inferring correctly that

Ri < A.

The time series at the top is an example of a clearly increasing OWD trend. In that

case, both the OWD trend and the ratio Ro/Ri would correctly infer that Ri > A.
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7.3.7 Fallacy: Iterative probing converges to a single avail-bw estimate (as
opposed to a variation range).

The fact is that iterative probing converges to an avail-bw range rather than to a single

value. To see this point, recall that with iterative probing each stream of duration τ and

rate Ri(k) can only show if Ri(k) > A(t, t + τ) or not, where t is the arrival time of the

probing stream at the tight link. As we iterate, sending streams with different rates, the

avail-bw process Aτ (t) changes. Consequently, even though a rate Ri(k) may be larger

than A(t1, t1 + τ), it may be less than A(t2, t2 + τ) at some later time t2. Eventually, after

probing at several rates, we can only determine a range (Rτ
L, Rτ

H) in which the avail-bw

process Aτ (t) varies with time. Here, Rτ
L is the lowest probing rate that lead to increasing

OWDs, while Rτ
H was the highest probing rate that did not lead to increasing OWDs. The

range (Rτ
L, Rτ

H) can be viewed as an estimate of the absolute variation range of the process

Aτ (t) during the measurements.
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Figure 73: Variation range of an avail-bw sample path.

To illustrate, Figure 73 shows a sample path of avail-bw measurements using the previ-

ously mentioned packet trace. A (passive) measurement is obtained in every τ=10ms. Note

that the avail-bw in that time scale varies, with significant probability, between 60Mbps

and 110Mbps. This range can be estimated with iterative probing, providing us with useful
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information regarding, not just the average avail-bw, but the range in which the avail-bw

process varies in the time scale that corresponds to the stream duration. Pathload is the

only tool that reports such a variation range [33]. Unfortunately, the Pathload range is often

misinterpreted as a confidence interval, or as a range-estimate for the average avail-bw.

7.3.8 Pitfall: Ignoring the effects of cross traffic burstiness.

With the fluid model of §7.1, we have that Ro < Ri if and only if Ri > A. Due to the

cross traffic burstiness, however, a queue can build up at the tight link during the probing

stream even if Ri < A. This should not be a surprise. We know from basic queuing theory

that queues build up even before a server is 100% utilized, depending on the burstiness

(variance) and correlation structure of the arriving load.
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Figure 74: Effect of cross traffic burstiness.

Returning to the previous single-hop simulation setting, we measured the ratio Ro/Ri

as a function of Ri for three different cross traffic models: Constant-Bit-Rate (periodic),

Poisson, and Pareto ON-OFF3. The mean avail-bw is set to 25Mbps. Figure 74 shows the

resulting average Ro/Ri ratio from 500 samples. With CBR traffic, we are very close to the

fluid model and so the ratio Ro/Ri drops to less than 1.0 only after Ri > A. With the two

3OFF shape parameter=1.5, ON duration uniformly between 1-10 packets.
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other cross traffic models, however, the burstiness of the arriving traffic causes Ro/Ri < 1

well before we reach the avail-bw point.

It is clear that the cross traffic burstiness can cause significant underestimation errors

in both direct and iterative probing techniques. One may think that the burstiness can

be taken into account by using certain thresholds; for instance, to say that Ri > A if

Ro/Ri <0.96. These thresholds, however, depend strongly on the measured path and on

the cross traffic burstiness, as can be seen comparing the Poisson model with the Pareto

ON-OFF model. The fact that traffic burstiness causes underestimation errors in avail-bw

estimation has been formally shown recently by Liu et al. [54], modeling direct probing in

a single-hop scenario.

7.3.9 Pitfall: Ignoring the effects of multiple bottlenecks.

A similar underestimation error can be introduced in the presence of multiple bottlenecks

that have approximately equal avail-bw (multiple tight links). The reason is that, in such

paths, the more links the probing streams go through, the higher the probability that these

streams will interact with cross traffic there, and so the lower their output rate will be.
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Figure 75: Effect of multiple tight links.

Figure 75 shows simulation results for the average ratio Ro/Ri for 500 samples with
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Poisson cross traffic. The cross traffic is one-hop persistent, i.e. it enters the link i and exits

at link i + 1. The main observation is that as the number of tight link increases, the ratio

Ro/Ri at the point Ri = A decreases.

The underestimation errors caused by both traffic burstiness and multiple bottlenecks

can be viewed as artifacts of the simplistic avail-bw definition in (25). If the avail-bw was

defined so that it decreases with the burstiness of the traffic, or with the number of tight

links, then the previous underestimation errors could potentially be reduced or avoided. For

instance, the effective bandwidth metric of [44] captures the maximum load in a queue that

does not violate a certain delay or loss rate constraint, considering the traffic burstiness.

Such different avail-bw definitions, however, would be less practical, because they would

involve the characteristics of the traffic and the load at each link of the path.

More recently, a formal analysis explaining the underestimation errors in the multi-hop

path appeared in [55, 52]. Liu et al. [55] showed analytically that underestimation errors

in the multi-hop path can result from two factors: cross-traffic burtiness and assumption of

single queue path. Furthermore, the underestimation errors in iterative probing class of tools

can be mitigated by the use of longer packet trains as these tools are only affected by cross

traffic burstiness. However, as direct probing class of tools are affected by both the factors

in multi-hop path, it is not possible to overcome errors in them. Lao et al. [52] presented a

more detailed analysis explaining the under estimation problem in iterative probing tools.

7.3.10 Pitfall: Evaluating the accuracy of avail-bw estimation through com-
parisons with bulk TCP throughput.

The related literature makes comparisons between the estimated avail-bw and measured

bulk TCP throughput, as a way to verify or evaluate avail-bw estimation techniques. These

two metrics however are very different, and they should not be expected to be equal. The

throughput of a bulk TCP transfer depends on a number of factors, including socket buffer

sizes at the sender and receiver, avail-bw, amount of buffering in the tight link, type of

competing cross traffic, round-trip time, loss rate, and several more. Even though the

avail-bw is one of these factors, it is certainly not the case that it dominates the others.

We next show some simulation results on the effect of the receiver’s advertised window
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Figure 76: TCP throughput compared to avail-bw.

Wr, as well as on the effect of the cross traffic congestion responsiveness on TCP throughput.

Figure 76 shows the throughput of a bulk TCP transfer as a function of Wr for three types of

cross traffic. The avail-bw is 15Mbps. The cross traffic types are: UDP sources with Pareto

interarrivals, a few persistent TCP transfers limited by their advertised windows, and an

aggregate of many short TCP transfers. Note that the difference between the avail-bw and

the TCP throughput can be positive or negative, and it strongly depends on the congestion

responsiveness of the cross traffic, and on Wr. An extended study of the relation between

avail-bw and TCP throughput can be found in [37].

7.4 Summary

This chapter reviewed recent work in the area of avail-bw estimation. Additionally, it also

identified a number of important misconceptions about avail-bw estimation.
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CHAPTER VIII

CONTRIBUTIONS AND FUTURE WORK

8.1 Research Contributions

The e2e argument has shaped the Internet’s design for the last 20-30 years. The best effort

delivery model of the Internet makes no guarantees about the throughout, delay or loss

rate of a network flow. In this context, e2e estimation methodologies to infer network state

make the design and deployment of advanced services, such as enhanced media services,

feasible in the Internet. In particular, the avail-bw, which is a direct indicator of traffic

load, has been recognized as a useful metric to characterize the network state for over a

decade. However, its e2e estimation has remained an unsolved problem until recently.

In this thesis, we have successfully developed an e2e methodology, called Self-Loading

Periodic Streams (SLoPS), for measuring the avail-bw of a network path. SLoPS is based

on a simple idea: the one-way delays of a periodic packet stream show an increasing trend

when the stream’s rate is higher than the avail-bw. As an e2e measurement methodology,

SLoPS can have numerous applications such as verification of SLAs, routing in overlay

networks and rate adaptation for video streaming.

A major contribution of this thesis is the design and the implementation of algorithms,

based on SLoPS, to measure the average avail-bw and avail-bw variation range. The first

tool, called Pathload, implements an iterative algorithm using SLoPS to estimate the av-

erage avail-bw. The second tool, called Pathvar, implements two estimation algorithms to

estimate the variation range of the avail-bw. We have validated the accuracy of the tools

using analysis, simulation, and extensive experimentation. Pathload, in particular, has also

been experimentally verified by other researchers and has been shown to be the most accu-

rate tool in comparison with other tools. Pathload has been downloaded by more than 6000

users since 2003. Figure 77 shows the download statistics for Pathload since April 2003.

We have identified that Interrupt Coalescence (IC), a technique implemented in network
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cards to reduce interrupt overhead, is a factor affecting the accuracy of most avail-bw

estimation tools. Based on the signature that IC leaves on the dispersion and one-way

delays of packet streams, we developed an algorithm to detect IC and to filter its effects

from raw measurements.

Finally, we have shown an application of avail-bw estimation to improve the perceived

quality of video streaming in the Internet. Our approach is to use overlay path selection

to maximize video quality. We show that the avail-bw based path selection scheme yields

better perceived video quality than path selection algorithms that rely on jitter or loss-rate

measurements. We have also demonstrated that our avail-bw estimation methodologies can

be adapted to use application packets, rather than “dummy” probing packets, eliminating

the measurement overhead.

8.2 Future Directions

This thesis has developed methodologies and algorithms for avail-bw estimation, which

have been deployed both as standalone tools and in an adaptive video streaming appli-

cation. During the process, we have identified two major issues, discussed in chapter 7.

An interesting open question is whether some of the problems we presented, such as the

underestimation errors that can be caused due to traffic burstiness or multiple bottlenecks,
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can be addressed through improved estimation techniques or through statistical processing

of the resulting delay variations.

The second direction emerges the performance of various measurement-driven path se-

lection techniques for video streaming. Our current approach involved measuring the per-

ceived video quality in an offline mode, i.e., after the complete video stream was received;

and the path switching decision was based entirely on network path performance. A pos-

sible extension is to develop path switching mechanisms that are driven by direct video

quality measurements at the receiver instead of network path performance. In addition to

being able to measure video quality in realtime, this would require modeling the correlation

between network path performance and the perceived video quality. Another open problem

is to evaluate the performance of a hybrid approach using both FEC and path selection

mechanisms.

Finally, the third direction is to integrate avail-bw estimation techniques with actual

applications, and to examine the effectiveness of these techniques given the actual accuracy

and latency constraints of real applications. We examined one such application, video

streaming, in this thesis. We believe that there are several more applications, such as

SLA verification, overlay routing, server selection and network anomaly detection, that can

benefit from the use of avail-bw estimation. Using avail-bw estimation for these applications

would, however, require novel tools that can measure avail-bw non-intrusively (possibly in

a passive manner) and/or are only single-ended. For example, a recent tool called abget [6],

which is based on our SLoPS methodology, can form the basis of a server selection scheme.

Integrating avail-bw estimation with these applications, however, would also necessitate

addressing issues of scalability and/or synchronization among various nodes that use avail-

bw information. A recent work by Gao et al. examined the synchronization problem in the

context of multihomed networks [21] and proposed randomization techniques combined with

avail-bw estimation to avoid oscillations. Similarly, more research in other applications avail-

bw estimation might prove valuable in developing novel solutions to improve application

performance.
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