
AUTOMATED SUPPORT FOR REPRODUCING AND DEBUGGING
FIELD FAILURES

A Thesis
Presented to

The Academic Faculty

by

Wei Jin

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August, 2015

Copyright c© 2015 by Wei Jin



AUTOMATED SUPPORT FOR REPRODUCING AND DEBUGGING
FIELD FAILURES

Approved by:

Dr. Alessandro Orso, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Taesoo Kim
School of Computer Science
Georgia Institute of Technology

Dr. Milos Prvulovic
School of Computer Science
Georgia Institute of Technology

Dr. Satish Chandra

Samsung Electronics

Dr. Mayur Naik
School of Computer Science
Georgia Institute of Technology

Date Approved: May 1, 2015



I dedicate my dissertation work to my wife, Chenjie Zeng. I would not be able to finish my

work and pursue a doctorate without her support.

I also dedicate my dissertation to my parents. They supported and encouraged me

throughout my study.

iii



ACKNOWLEDGEMENTS

First, I would like to thank my committee members who gave me a lot of great insights and

suggestions during my proposal and thesis writing. The feedbacks from the committee in

the proposal help me shape my thesis.

I also want to deeply appreciate my PhD advisor, Dr. Alessandro Orso. He guided me

through this challenging process and gave me endless precious advices on my research and

study. His guidance helped me build up my research projects and publish papers that lead

to this thesis. I could not achieve this goal without his advices.

I also want to thank my colleges and collaborators during my PhD study. Without their

hard work and discussion, I would not be able to develop these techniques in my thesis and

publish my papers.

I would also like to thank Georgia Tech and NSF for providing financial support during

my study.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I INTRODUCTION AND MOTIVATION . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Statistical Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Ochiai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 OBM (Observation-Based Model) . . . . . . . . . . . . . . . . . . . 12

2.3 MAX-SAT Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 SSA Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

III OVERALL VISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

IV AUTOMATED FIELD FAILURE REPRODUCTION . . . . . . . . . . 20

4.1 My Technique for Reproducing Field Failures . . . . . . . . . . . . . . . . 20

4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Instrumenter and Analyzer Components . . . . . . . . . . . . . . . 21

4.1.3 Execution Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Empirical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 BugRedux Implementation . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Programs and Faults Considered . . . . . . . . . . . . . . . . . . . 27

4.2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.6 Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . 36

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

V AUTOMATED FAULT LOCALIZATION FOR FIELD FAILURES . 38

5.1 F3 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Execution Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Fault Localizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Benchmark of Study . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Experiment Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

VI FURTHER IMPROVEMENT ON FAULT LOCALIZATION . . . . . 64

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Improving Formula-based Debugging . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Clause Weighting (CW) . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.2 On-demand Formula Computation (OFC) . . . . . . . . . . . . . . 67

6.3 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

VII RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Techniques for Reproducing Field Failures . . . . . . . . . . . . . . . . . . 94

7.2 Fault Localization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Formula-based Fault Localization Techniques . . . . . . . . . . . . . . . . . 98

VIIICONCLUSION AND OPEN PROBLEMS . . . . . . . . . . . . . . . . . 100

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vi



LIST OF TABLES

1 Benchmark programs used in my study . . . . . . . . . . . . . . . . . . . . 28

2 Time (%) and space (KB) overhead imposed by BugRedux . . . . . . . . . 31

3 Effectiveness and efficiency of BugRedux in synthesizing executions starting
from collected execution data . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Minimal number of entries in call sequences that are needed to reproduce
observed failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Programs from SIR and exploit-db used in my study . . . . . . . . . . . . . 50

6 Number of failing and passing executions generated by F3 . . . . . . . . . . 51

7 Path Similarity among executions generated by my approach . . . . . . . . 54

8 Ranks of the faulty entity using F3 . . . . . . . . . . . . . . . . . . . . . . . 56

9 Total number of branches exercised by the synthesized passing and failing
executions and size of the corresponding filtering sets . . . . . . . . . . . . . 59

10 Positions of the faulty entity in the ranked list produced by traditional Ochiai,
Ochiai with three filters, traditional OBM, and OBM with three filters . . . 60

11 Positions of the actual faults in the ranked list produced by Ochiai with and
without profiling information . . . . . . . . . . . . . . . . . . . . . . . . . . 61

12 Positions of the actual faults in the ranked list produced by the fault localizer
when using the original Ochiai and OBM techniques with and without grouping 62

13 Results for BA and BA+CW when run on tcas . . . . . . . . . . . . . . . . 83

14 Performance results for BA and OFC on tcas . . . . . . . . . . . . . . . . . 85

15 Average time for processing tcas faults . . . . . . . . . . . . . . . . . . . . . 86

16 Ranking results of OFC+CW on tot info . . . . . . . . . . . . . . . . . . . . 88

17 Results for OFC+CW when run on Redis’s bug . . . . . . . . . . . . . . . . 88

18 Percentage of CPU time spent in the solvers when running OFC on tcas . . 91

vii



LIST OF FIGURES

1 Simple code example to illustrate symbolic execution . . . . . . . . . . . . . 10

2 Overall vision of my techniques . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 High-level overview of BugRedux . . . . . . . . . . . . . . . . . . . . . . . 21

4 The analysis component of BugRedux . . . . . . . . . . . . . . . . . . . . 22

5 High-level overview of F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 A code snippet containing a buffer-overflow bug . . . . . . . . . . . . . . . . 45

7 Overview of on-demand formula computation . . . . . . . . . . . . . . . . . 68

8 Example code in normal (left) and SSA (right) form . . . . . . . . . . . . . 74

9 Control flow graph of P (a) and partial P considered during the first (b) and
second (c) iteration of OFC . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10 Excerpt code of the bug in Redis . . . . . . . . . . . . . . . . . . . . . . . . 89

11 Correlation between the percentage of CPU time spent in the solvers and the
total CPU time for our OFC technique . . . . . . . . . . . . . . . . . . . . . 92

viii



SUMMARY

Software testing activities are generally insufficient in house due to time and resource

limitations. As a result, deployed software is bound to contain bugs and will eventually mis-

behave in the field, which will result in field failures—failures that occur on user machines

after the deployment of software. As confirmed by a recent survey conducted among devel-

opers of the Apache, Eclipse, and Mozilla projects, two extremely challenging tasks during

maintenance are reproducing and debugging field failures. Unfortunately, the information

typically contained in traditional bug reports, such as memory dumps or crash call stacks

is usually insufficient for reproducing the observed field failure, which seriously hinders

developers’ ability to debug such failures.

To address and mitigate the problems of reproducing and debugging field failures, I first

present an overall approach that comprises two techniques, BugRedux and F3, in this

dissertation. BugRedux is a general technique for reproducing field failures that collects

dynamic data about failing executions in the field and uses this data to synthesize executions

that mimic the observed field failures. F3 leverages the executions generated by BugRe-

dux to perform automated debugging using a set of suitably optimized fault-localization

techniques. To assess the usefulness of my overall approach, I performed two empirical

studies of my approach on a set of real-world programs and field failures. The results of

the evaluation are promising in that, for all the failures considered, my approach was able

to (1) synthesize failing executions that mimicked the observed field failures, (2) synthe-

size passing executions similar to the failing ones, and (3) use the synthesized executions

successfully to perform fault localization with accurate results.

The results of my studies and the observations that I made in BugRedux and F3 lead

to another goal of my dissertation—providing a principled and efficient way to identify

potentially faulty statements together with information that can help fixing such state-

ments. To achieve this goal, I propose two techniques to improve the overall efficiency

ix



of formula-based debugging, a principled debugging technique. In particular, on demand

formula computation (OFC) improves by exploring all and only the parts of a program

that are relevant to a failure. Clause Weighting (CW) improves the accuracy of formula-

based debugging by leveraging statistical fault-localization information that accounts for

passing tests. The results of the show that, although my techniques are only a first step

towards making formula-based debugging more applicable, both of them are effective and

can improve the state of the art.

x



CHAPTER I

INTRODUCTION AND MOTIVATION

Quality-assurance activities, such as software testing and analysis, are notoriously difficult,

expensive, and time-consuming. As a result, software products are typically released with

faults or missing functionality. The characteristics of modern software are making the

situation even worse. Because of the dynamic nature, configurability, and portability of

today’s software, deployed applications may behave very differently in house and in the

field. In some cases, these different behaviors may be totally legitimate behaviors that

simply were not observed during in-house testing. In other cases, however, such behaviors

may be anomalous and result in field failures, failures of the software that occur after

deployment, while the software is running on user machines.

Field failures are both difficult to foresee and difficult, if not impossible, to reproduce

outside the time and place in which they occurred. In fact, a recent survey among devel-

opers of the Apache, Eclipse, and Mozilla projects revealed that most developers consider

information on how to reproduce failures (e.g., stack traces, steps to follow, and ideally

even inputs) to be the most valuable and difficult to obtain piece of information in a bug

report [88]. This pressing need is demonstrated by the emergence, in the last decade, of

several reporting systems that collect information (e.g., stack traces and register dumps)

when a program crashes and send it back to the software producer (e.g., [3,6,10]). Although

useful, the information collected by these systems is often too limited to allow for repro-

ducing a failure and is typically used to identify correlations among different crash reports

or among crash reports and known failures [17].

Researchers have also investigated more sophisticated techniques for capturing data

from deployed applications that can help debugging (e.g., [25,28,37,46,58,59,69]). Among

these techniques, some collect only limited amounts of information (e.g., sampled branch

profiles for CBI [58, 59]). These techniques have the advantage of collecting types of data
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that are unlikely to be sensitive, which makes them more likely to be accepted by the user

community. Moreover, given the amount of information collected, it is conceivable for users

to manually inspect the information before it is sent to developers.

Unfortunately, subsequent research has shown that the usefulness of the information col-

lected for debugging increases when more (and more detailed) data is collected. Researchers

have therefore defined novel techniques that gather a wide spectrum of richer data, ranging

from path profiles to complete execution recordings (e.g., [4,25,28,50]). Complete execution

recordings, in particular, can address the issue of reproducibility of field failures. User exe-

cutions, however, have the fundamental drawbacks that they (1) can be expensive to collect

and (2) are bound to contain sensitive data. While the former issue can be alleviated with

suitable engineering (e.g., [4,28]), the latter issue would make the use of these techniques in

the field problematic. Given the sheer amount of data collected, users would not be able to

manually check the data before they are sent to developers, and would therefore be unlikely

to agree on the collection of such data. Although some techniques exist whose goal is to

sanitize or anonymize collected data, they are either defined for a different goal, and would

thus eliminate sensitive data only by chance (e.g., [5, 85]), or are still in their early phase

of development and in need of a more thorough evaluation (e.g., [22, 30]).

In addition to the problem of recreating failures observed in the field, many of these

techniques do not provide any explicit support for understanding the recreated failures, if

they are able to, and their causes. Developers are therefore left with no alternative but to

perform traditional manual debugging.

1.1 Thesis Statement

To address some of the existing problems in reproducing and debugging field failures, my

thesis is to design several different automated techniques that (1) allow developers to in-

vestigate field failures by reproducing them in a faithful way, (2) help developers identify

and understand causes of field failures by improving fault localization techniques, and (3)

ultimately help developers eliminate these causes by providing more useful explanations

of failures and more actionable fault localization reports that can better support program
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repair techniques.

1.2 Approaches

To achieve the first two parts of my thesis statement, I developed techniques that aim to

reproduce field failures and perform fault localization to address the limitations of existing

techniques while only imposing limited overhead on the users and avoiding violating the

users’ privacy.

More precisely, I first aim to develop a set of general techniques that can synthesize,

given a program P , a field execution E of P that results in a failure F , and a set of execution

data D for E, multiple failing executions FAIL and passing executions PASS as follows.

First, FAIL should result in a failure F ′ that is analogous to F , that is, F ′ has the same

observable behavior of F . If F is the violation of an assertion at a given location in P , for

instance, F ′ should violate the same assertion at the same point. Second, PASS should not

trigger any failure of P or not violate any oracle for P . Third, FAIL and PASS should be

actual executions of P , that is, the approach should be sound and generate actual inputs

that, when provided to P , results in the synthesized executions. Fourth, the approach

should be able to generate FAIL and PASS using only P and D, without the need for

any additional information. Finally, D should not contain sensitive data and should be

collectible with low overhead on E.

As a first step towards my goal, in Chapter 4, I present BugRedux, a general technique

for (1) collecting different kinds of execution data and (2) using the collected data to syn-

thesize executions that can reproduce failures observed in the field. Intuitively, BugRedux

can be seen as a general framework parameterized along two dimensions: the kind of exe-

cution data collected and the technique used for synthesizing a failing execution. I present

four variations, or instances, of BugRedux that all share the same synthesis technique

(i.e., symbolic execution) but differ in the kind of execution data they use. Specifically, I

consider four types of increasingly rich execution data: points of failure, call stacks, call

sequences, and complete program traces.

To address the problem of lack of automated debugging support, in Chapter 5, I present
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another technique called F3 (Fault localization for Field Failures), which extends BugRe-

dux by adding to it support for automated debugging.

I devised F3 based on several observations made in my failure reproduction work and

automated debugging in general. The first observation is that the most popular statistical

fault localization techniques (e.g., [12,53,58]) rely on the existence of numerous passing and

failing executions and cannot be applied to individual executions in isolation. This can be

a serious limitation in practice because test suites are often of limited size and, especially,

rarely contain multiple failing tests for the same failure. I defined F3 so that it can suitably

address this limitation. Specifically, I extended BugRedux so that (1) it generates not one

failing execution, but rather a set of executions that “mimic” a failing field execution E and

(2) this set includes both passing and failing executions, such that the failing executions

fail for the same reasons as E, and the passing executions should be “similar” to E. To do

so, I first modified the execution generator in BugRedux so that it tries to synthesize as

many executions as possible for a given set of crash data (i.e., list of goals). In case this

set of executions does not contain any passing one, the algorithm starts eliminating goals

from the list and tries again to synthesize passing executions. Eliminating goals increases

the degrees of freedom of the synthesis, thus increasing the chances of generating passing

executions, at the cost of reducing the similarity between the synthesized executions and

E. The second observation I made from many other researchers’ previous work is that

the output of traditional statistical fault-localization techniques, a long list of program

entities ranked based on their likelihood of being faulty, may be of limited usefulness to

developers [68]. Developers tend to give up when the faulty program entity is not among

the first ones in the list, which is often the case—even when the number of program entities

to inspect before finding the fault is less than 5% of the program, which is considered

a good result in most fault-localization literature, that percentage could correspond to

hundreds of program entities in any non trivial program. To address this second limitation,

in F3, I tailored traditional statistical fault-localization techniques by adding to them several

customizations and optimizations well suited to the sets of executions generated by my
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approach and the failures I target. More precisely, I selected four well known state-of-

the-art fault-localization techniques—Ochiai [11], Observation-Based Model (OBM) [12],

Nashi1, and Naish2 [63]—as baseline techniques and defined three optimizations for these

techniques, namely, profiling, filtering, and grouping, based on my experience with field

failures and my preliminary investigation.

Despite F3 can effectively localize faults of field failures, it still has some limitations that

are inherited from statistical fault localization. First, the granularity of the final reports

generated by F3 is limited to the basic block level because that is the finest level that can

be achieved by leveraging dynamic coverage or profiling information without combining

other debugging techniques. In other words, program entities that come from the same

basic block normally share the same suspiciousness values in the final report generated by

F3. Second, similar to traditional statistical fault localization techniques, the final report

generated by F3 provides limited contextual information of the failure as it only provides a

list of program entities in decreasing order of “suspiciousness” (likelihood of being related to

the failure). As a result, developers have to examine single entities to identify the causes of

the failure without any context, which is very difficult in most cases. Therefore, to mitigate

these limitations in statistical fault localization, there has been a considerable interest in

techniques that can perform fault localization in a more principled way recently (e.g., [26,

39, 54, 76]). These techniques, collectively called formula-based debugging, model faulty

programs and failing executions as formulas and perform fault localization by manipulating

and solving these formulas. As a result, they can provide developers with the possible

location of the fault, together with a mathematical explanation of the failure (e.g., the fact

that an expression should have produced a different value or that a different branch should

have been taken at a conditional statement).

Besides presenting these approaches, I also performed several empirical studies to assess

my approaches. For BugRedux, I performed an empirical study in which I assessed the

trade-offs that characterize the variations of BugRedux with respect to (1) the cost of the

data collection, in terms of space and time overhead (and, indirectly, likelihood to contain

sensitive data), and (2) the ease of synthesizing a failing execution starting from such data.
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In the evaluation, I used an implementation of BugRedux developed for the C language

and applied it to 16 failures of 14 real-world programs. For each failure, I collected the

four different types of execution data, measured the overhead of the collection, and tried

to synthesize an execution that reproduced the failure using such data. Interestingly, my

results show that the richest data, beside being the most expensive to collect and the most

problematic in terms of potential privacy violation, is not necessarily the most useful when

used for synthesizing executions. My results also confirm that, at least for the cases I

considered, information that is traditionally collected by crash-report systems, such as the

call stack at the point of failure, is typically not enough for recreating field failures.

For the current incarnation of BugRedux, I found that the best option in terms of

cost-benefit ratio is the use of call sequences. As the study in BugRedux shows, using

partial call-sequence data BugRedux was able to recreate all of the 16 failures considered,

while imposing an acceptable time and space overhead. This result actually led us to my

second technique F3, in which I directly used the identified partial call-sequence data as

relevant crash data.

To validate F3, I implemented it in a prototype tool and used the tool to perform another

empirical study on a set of programs and failures that I selected from the first study. In my

second study, I assessed (1) whether F3 is actually able to synthesize multiple passing and

failing executions for a given set of crash data, (2) whether these synthesized executions can

be used for fault localization, (3) the degree of similarity between the synthesized passing

and failing executions and how similarity affects fault localization, and (4) whether my

optimizations actually improve the effectiveness of fault localization and to what extent.

The results of my study on F3 are also promising in that, for all the cases considered, F3 was

able to synthesize sets of similar passing and failing executions and use these synthesized

executions to perform effective fault localization. The results also show that my optimized

fault-localization techniques can mitigate the limitations of their traditional counterparts,

at least when applied to the particular set of executions synthesized by F3.
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To assess the effectiveness of OFC and CW, I selected BugAssist as a baseline and con-

sidered four different formula-based debugging techniques: the original BugAssist, BugAs-

sist+CW, OFC, and OFC+CW. We implemented all four techniques in a tool that works

on C programs and used the tool to perform an empirical study. In the study, I first applied

the four techniques to 52 versions of two small programs to assess several tradeoffs involved

in the use of CW and OFC and compare with related work. Our results are encouraging, as

they show that CW and OFC can improve the performance of BugAssist in several respects.

First, the use of CW resulted in more accurate results—in terms of position of the actual

fault in the ranked list of statements reported to developers—in the majority of the cases

considered. Second, CW and OFC were able to reduce the computational cost of BugAssist

by 27% and 75% on average, respectively, with maximum speedups of over 70X for OFC.

To further demonstrate the practicality of CW and OFC, I also performed a case study

on a real-world bug in Redis, a popular open source project. Overall, the results show

that CW and OFC are promising, albeit initial, steps towards more practically applicable

formula-based debugging techniques and motivate further research in this direction.

1.3 Contributions

This thesis dissertation provides the following novel contributions:

• Two general approaches for collecting execution data in the field and leveraging the data

to synthesize executions that reproduce field failures and perform customized statistical

fault localization on the synthesized executions.

• The definition of clause weighting and on-demand formula computation, two approaches

for improving the accuracy and efficiency of formula-based debugging.

• The implementation of all techniques in three prototype tools.

• An empirical study that performs a cost-benefit analysis of BugRedux and its variations

in terms of data collection costs and ability to synthesize failing executions.

• A set of empirical studies that show that F3 can be effectively used on real-world failures

and faults.
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• Initial empirical evidence that CW and OFC are as effective and more efficient than

existing approaches.

The rest of the thesis is organized as follows. Chapter 2 provides some necessary back-

ground information and defines some relevant terminology. Chapter 3 introduces my overall

vision of achieving my overarching goals. Chapter 4 describes the details of my field-failure

reproduction technique, BugRedux, and presents the first empirical evaluation. Chapter 5

describes the details of my fault-localization approach for field failures, F3, and presents the

second empirical evaluation. Chapter 6 discusses the details of the two techniques to im-

prove formula-based debugging, CW and OFC, and the initial evaluation of the techniques.

Chapter 7 puts my research in context by discussing related work. Finally, Chapter 8

concludes the thesis and discusses some future opening problems related to the thesis.
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CHAPTER II

BACKGROUND

Before discussing my approaches, in this chapter, I briefly provide some necessary back-

ground information on symbolic execution, statistical fault localization, MAX-SAT, and

the SSA form and define some terms that I use in the rest of my thesis proposal.

2.1 Symbolic Execution

In its most general formulation, symbolic execution is a technique that executes a program

using symbolic instead of concrete inputs. At any point in the computation, the program

state consists of a symbolic state expressed as a function of the inputs; and the conditions

on the inputs that result in the execution to reach that point are expressed as a set of

constraints in conjunctive form called the path condition (PC) [55]. More formally, the

symbolic state can be seen as a map S :M 7→ E , where M is the set of memory addresses

for the program, and E is the set of possible symbolic values, that is, expressions in some

theory T such that all free variables are input symbolic values.

Both the symbolic state and the PC are built incrementally during symbolic execution,

with PC initialized to true, each input expressed as a symbolic variable, and S initialized

according to the semantics of the language. (In C, for instance, memory addresses not

yet initialized could be mapped to ⊥ to indicate that they are undefined.) Every time

a statement stmt that modifies the value of a memory location m is executed, the new

symbolic value e′ of m is computed according to stmt’s semantics, and S is updated by

replacing the old expression for m with e′ (S ′ = S ⊕ [m 7→ e′], where ⊕ indicates an

update). Conversely, when a predicate statement pred that modifies the flow of control is

executed, symbolic execution forks and follows both branches. Along each branch, the PC

is augmented with an additional conjunct that represents the input condition, expressed in

terms of symbolic state, that makes the predicate in pred true or false (depending on the

branch).
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function foo(int a, int b, int c) {

1. int d = a + 4

2. if (d < b)

3. //do something

4. if (b > 5)

5. //do something

6. else if (a < 5)

7. if (d < c)

8. //do something

9. else

10. //do something

11. else

12. //do something

13. return

}

Figure 1: Simple code example to illustrate symbolic execution

Symbolic execution, when successful, can be used to compute an input that would cause

a given path to be executed or a given statement to be reached. To do so, at program exit

or at a point of interest in the code, the PC for that point would be fed to an SMT solver,

which would try to find a solution for PC. Such a solution would consist of an assignment

to the free variables in PC (i.e., the inputs) that satisfies PC. If such a solution is found,

the corresponding concrete input is exactly the input that causes the path to be executed.

To illustrate symbolic execution with an example, consider the code snippet in Figure 1.

I indicate the symbolic inputs for the parameters a, b, and c with a0, b0, and c0. When

symbolic execution follows path 〈1, 2, 3, 4, 6, 7, 8, 13〉, for instance, the symbolic state at

statement 13 is {[a 7→ a0], [b 7→ b0], [c 7→ c0], [d 7→ a0 + 4]}, and the corresponding PC would

be (a0 +4 < b0)∧ (b0 <= 5)∧ (a0 < 5)∧ (a0 +4 < c0), which corresponds to the conjunction

of the predicates for branches 2T , 4F , 6T , and 7T . A possible solution for this PC is the

set of assignments a0 = 0, b0 = 5, and c0 = 5, which correspond to an input i = {0, 5, 5}

that causes path 〈1, 2, 3, 4, 6, 7, 8, 13〉 to be followed.

2.2 Statistical Debugging

Given the high cost of manual debugging, researchers have investigated and proposed a

countless number of automated debugging techniques that can support developers in their

10



debugging tasks. Fault localization in particular, the task of locating the faulty code entities

responsible for a failure in a program, has received a great deal of attention in the last

decade (e.g., [12, 19, 31, 53, 58]). In F3, I am interested in using statistical approaches to

perform fault localization, also called statistical debugging techniques. At a high level, these

approaches work by observing the behavior of a (ideally) large number of passing and failing

executions, performing statistical inference based on the observed behavior, and using the

results of such inference to rank program entities in terms of their likelihood to be related

to the failure (i.e., their suspiciousness). The program entities would then be presented

to the developers in decreasing order of suspiciousness, and the developers would examine

every entity in that order (again, ideally) and assess whether that entity is faulty.

In F3, I considered various statistical fault-localization approaches. Among the numer-

ous approaches presented in the literature, I chose four representative and well-known fault

localization techniques: Ochiai [11] and OBM [12] by Abreu and colleagues and two optimal

models by Naish and colleagues [63]. (Note that I do not try to consider as many fault-

localization techniques as possible, as my goal is to show that fault localization can success-

fully be used on and optimized for the synthesized executions generated by my approach.)

I choose Ochiai because previous research showed, both empirically and analytically, that

it is quite effective compared to other traditional techniques that use similar metrics [11].

OBM, conversely, is a good representative of a different family of techniques that focus on

models of the program behavior. In addition to these two techniques, I also consider two

other techniques by Naish and colleagues that have been shown to work better than Ochiai

in many cases [63,79]. Since these statistical fault localization techniques focus on different

properties of dynamic executions, they may potentially generate different ranked lists of

suspicious statements for the same failure. I will quickly summarize these four approaches

to make the thesis self contained.

2.2.1 Ochiai

Ochiai [11] is a spectra-based fault-localization technique that leverages coverage informa-

tion in passing and failing runs to compute the suspiciousness of program entities and
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rank them accordingly. The specific formula used by Ochiai was previously used for com-

puting genetic similarity in molecular biology. Like most spectra-based fault-localization

techniques, Ochiai assigns a suspiciousness value to each program entity based on coverage

information and on the following intuition: the higher the number of failing runs that exe-

cuted a program entity, the higher its suspiciousness; conversely, the higher the number of

passing runs that executed a program entity (or the higher the number of failing runs that

did not execute a program entity), the lower its suspiciousness. Accordingly, the formula

used by Ochiai to compute suspiciousness for a program entity en is the following (using

the same notation used in Reference [11]):

suspiciousness(en) =
a11√

(a11 + a01)× (a11 + a10)
(1)

In the formula, a11 indicates the number of failing executions that exercised en, a01

indicates the number of failing executions that did not exercise en, and a10 indicates the

number of passing executions that exercised en. In theory, the approach can be instantiated

for any type of program entity (e.g., statements, functions, branches, or predicates).

2.2.2 OBM (Observation-Based Model)

OBM [12] models the executions in a way that is different from that used in traditional

spectra-based fault-localization techniques. Specifically, OBM considers sets of one or more

entities in the program as independent diagnoses dk for a failure f (i.e., the entities in a dk

set represent possible causes of f ). Each execution is then treated as an observation obs of

the system that can be used to confirm or refuse a set of diagnoses. To do so, OBM uses the

following Bayesian formula, which computes the conditional probability of each diagnosis

to be a possible cause of the failure:

Pr(dk|obs) =
Pr(obs|dk)
Pr(obs)

Pr(dk). (2)

Since OBM assumes that program entities fail independently, the prior probability that

a diagnosis is correct, Pr(dk), and the prior probability that an execution is observed,
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Pr(obs), are constants and identical for all dks. The posterior probability for each observa-

tion conditional to a diagnosis, Pr(obs|dk), is computed based on whether obs is a passing

or a failing run. The conditional probability of each individual diagnosis dk is the product

of Pr(dk|obs) over all observations, as observations are considered to be independent. These

conditional probabilities represent the likelihood of a diagnosis to contain the causes of the

failure and can be used to rank diagnoses.

2.2.2.1 Naish Models

In a recent in-depth investigation of a wide range of statistical fault localization tech-

niques [63], Naish, Lee and Ramamohanarao proposed two novel statistical fault localization

techniques. I refer to them as Naish1 and Naish2 hereafter. Similar to Ochiai, Naish1 and

Naish2 also compute suspiciousness scores based on the same intuition and leverage similar

dynamic coverage information. In particular, Naish1 uses the following metric to compute

suspiciousness:

suspiciousnessNaish1(en) =


0 if anf > 0

anp otherwise

Naish2 uses another optimal metric:

suspiciousnessNaish2(en) = aef −
aep

aep + anp + 1

In these two formulas, I use the original notation used in Reference [63]. Here, anf

stands for the number of failing executions that did not exercise en (i.e., a01 in Ochiai),

anp stands for the number of passing executions that did not exercise en, aef stands for the

number of failing executions that exercised en (i.e., a11 in Ochiai), and aep stands for the

number of passing executions that exercised en (i.e., a10 in Ochiai).

2.3 MAX-SAT Problems

MAX-SAT is the problem of determining the maximum number of clauses of a given un-

satisfiable Boolean formula that can be satisfied by some assignment [20]. An extension of

MAX-SAT is pMAX-SAT, in which clauses are marked as either hard (i.e., clauses that
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cannot be dropped) or soft (i.e., clauses that can be dropped). wpMAX-SAT extends

pMAX-SAT by assigning weights to soft clauses, such that clauses with higher weights are

less likely to be dropped. A solution to a wpMAX-SAT problem is a maximal satisfiable

subset of clauses (MSS) with maximum weight in which all hard clauses are satisfied. The

complement of MSS is called CoMSS. MSS is defined as a maximal set of clauses, in the

sense that adding any of the other clauses in CoMSS would make the set unsatisfiable.

The maximal property of MSS and the minimal property of CoMSS essentially imply that

clauses in CoMSS are responsible for making the formula unsatisfiable. There may be sev-

eral different maximal satisfiable subsets and complementary sets for a given MAX-SAT

problem, and each of these sets can contain multiple clauses.

2.4 SSA Form

Given a program P , the static single assignment (SSA) form of P is a program semantically

equivalent to P in which each variable is assigned exactly once [33]. Because multiple

definitions can reach a join point, for each conditional statement cs, the SSA form contains

one φ function phi for each definition d in the original program that is control dependent

on cs and can reach cs’s join point. phi is located at the join point and selects the correct

definition to use at that point depending on which branch of cs was executed. I refer to

conditional statement cs as phi ’s conditional.

2.5 Terminology

In this section, I will define some terms that I am going to use in the rest of my thesis

proposal.

A control flow graph (CFG) for a function f is a directed graph G = 〈N,E, entry, exit〉

where N is a set of nodes that represent statements in f and E ⊆ N ×N is a set of edges

that represent the flow of control between nodes, and entry ∈ N and exit ∈ N are the

unique entry and exit points, respectively, for the CFG.

An interprocedural control flow graph (ICFG) is a graph built by composing a set CFGs.

To build an ICFG, CFGs are connected based on call relationships between the functions

they represent. If a function f1 calls a function f2, the two CFGs for f1 and f2, G1 and G2,
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are connected as follows: the node n in f1 representing the call site to f2 is replaced by two

nodes nc (call node) and nr (return node), such that all predecessors of n are connected to

nc, and nr is connected to all successors of n. Then, nc is connected to G2’s entry node,

and G2’s exit node is connected to nr. This process is repeated for every call site in the

program.

A conditional statement is a statement whose node has two successors (branches) and

contains a Boolean predicate, whose value determines which branch the execution will fol-

low. (For ease of presentation, I assume that conditional statements with more than two

branches, such as switch statements, are suitably transformed into several conditional state-

ments with just two branches.) Given a conditional statement and a branch for that state-

ment, I refer to the other branch for the same statement as the alternative branch.

Given a program P , a failing execution E of P for a given input I, and the resulting

failure F , I define the following terms. I call F a field failure if it occurred on a user

machine, after P has been deployed. A point of failure (POF) is the statement in P where

F manifests itself. For the sake of the discussion, and without loss of generality, I assume

that a failure corresponds to a failing assertion, and that POF is the statement in which

the assertion fails (all failure conditions can be expressed in the form of assertions in the

code). A failure call stack for F is the ordered list of functions that were on the call stack

when F occurred. Each entry in the list consists of a function and a location in the function

(i.e., either the location of the call to the next function in the list or, for the last entry, the

location of the failure). In the rest of the thesis proposal, I refer to the failure call stack for

F as F ’s call stack or simply call stack, except for cases where the term may be ambiguous.

A call sequence for E is the sequence of calls executed (i.e., call sites traversed) during

E. A complete trace for E is the sequence of all branches (i.e., program predicates and

their outcomes) exercised during E. Obviously, complete traces subsume call sequences.

I use the term execution data for E to refer to any dynamic information collected during

E. Therefore, call sequences and complete traces are examples of execution data. Finally,

a crash report for F is a record that is produced when F occurs and can be later sent to

P ’s developers. Although crash reports can have different formats and contents, I assume
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that a crash report contains at least a POF and a call stack, and possibly some additional

execution data.
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CHAPTER III

OVERALL VISION

In this chapter, I will provide the high-level overall vision of achieving the overarching goals

in my thesis statement and addressing the need of automated support for reproducing and

debugging field failures in a faithful way.

Figure 2 provides the high-level vision to achieve the goals. As the figure shows, there

are three main stages in this overall vision. The stages and generated artifacts on the left

side of the dashed line are generally handled in house, while the ones on the right side of

the line normally happen in the field.

The first stage is Instrumentation, in which my approach takes a software application

built by software developers as input and generates an instrumented version of the applica-

tion as the outcome artifact of the first stage before releasing this application into the field.

During the instrumentation, probes will be inserted into certain places of the application

so that when the released application runs in the field, these probes can collect execution

data and add such execution data into crash reports only when field failures occur. The

instrumentation stage can be instantiated in several different ways based on different types

of dynamic execution data to be collected in the field. I will investigated the use of several

instances of execution data and evaluated their effectiveness in terms of reproducing and

debugging field failures in Chapter 4 and Chapter 5. Since instrumentation is a well assessed

and straight forward technique, in my overall approach, I decide to directly leverage tradi-

tional instrumentation techniques in order to only pose limited overhead into the released

application. The detailed implementation of the instrumentation stage can be found in the

implementation section of Chapter 4.

The other two stages are more important and challenging than Instrumentation and

they are the core components of my research in this thesis dissertation. The second stage

is Field Failure Reproduction, in which my approach takes the generated crash report as
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Figure 2: This is the overall vision of my techniques that contains three main steps.

input and tries to synthesize a set of failing executions of the original application that

“mimic” the original field failures observed in the field and a set of passing executions that

are “similar” to the original field execution. I will give the exact definitions of “mimic” and

“similar” in detailed techniques in Chapter 4 and Chapter 5. These generated executions

are real executions of the application, and thus, the outcomes of this stage are a set of

passing and failing inputs that can result in the generated executions when provided to the

application. There are multiple possible types of techniques to generate these executions

in this framework. In particular, I chose a guided symbolic execution algorithm and I will

discuss my general field failure reproduction technique that is based on this customized

algorithm in Chapter 4. This general technique can be also instantiated in different ways,

like the instrumentation stage, based on which types of execution data are available after

the first stage—Instrumentation.

The third stage is Field Failure Debugging, in which my approach takes the generated

executions from the previous step as input, performs fault localization to compute a list of

likely faults and reports this list to software developers so as to help them understand and

identify the causes of the failure. In this framework, I defined two different fault localization
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techniques to proceed this step. In particular, I first present a customized spectra-based

statistical fault localization technique for field failures in Chapter 5. By leveraging the

generated “similar” passing and failing executions, I defined a customized statistical fault

localization techniques with several optimizations that are based on previous observations.

In this statistical fault localization technique, the output are a list of program entries

with suspiciousness values. To further improve the effectiveness of fault localization, I also

present two novel techniques to improve formula-based debugging in Chapter 6. I define

these two techniques that can address several effectiveness and efficiency issues of previous

techniques by performing the formula-based fault localization in an on-demand manner.

The extended formula-based debugging technique can provide not only suspicious locations

in the program but also some mathematical explanations of the failure. Therefore, these

results and explanations may later help automated patch generation generate valid bug

fixes.

Since the last two stages are designed to be completely automated without any help of

users or developers, they can be performed on either users’ machines or in house depending

on the free computing resources available on users’ machines. If these stages are completed

on users’ side, my approach can directly send the generated list of likely faults back into

house as the outcome of these two stages. Otherwise, the generated crash report will be

sent back in house as the input of these two stages and these two stages can be carried out

in house in this case.

In summary, in this chapter, I proposed an overall vision to address the need of auto-

mated support for reproducing and debugging field failures and mitigate problems intro-

duced by previous techniques that tried to solve these two problems. I will present all tech-

niques mentioned in this overall vision (i.e., a field failure reproduction technique, a statisti-

cal based field failure debugging technique, and two techniques for improving formula-based

debugging) and empirical studies that assess these techniques in the following chapters.
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CHAPTER IV

AUTOMATED FIELD FAILURE REPRODUCTION

4.1 My Technique for Reproducing Field Failures

As stated in the Chapter 3, the first two processes of my overall approach are to recreate field

failures faithfully (i.e., in a way that allows for investigating and debugging them) by using

execution data collected in the field that can be gathered without imposing too much space

and time overhead on field executions. A first important step towards defining a technique

for reproducing field failures is to understand the usefulness of different kinds of execution

data in this context. To this end, I defined a general technique for synthesizing executions

that (1) mimic executions that resulted in field failures and (2) faithfully ] reproduce such

failures. I instantiated several variants of my technique that differ in the kind of execution

data they use, and studied the effectiveness of these different variants. In the rest of this

chapter, I will discuss my field failure reproduction technique and present an empirical

investigation on this technique.

4.1.1 Overview

My general technique for reproducing field failures is called BugRedux. Intuitively, Bu-

gRedux operates by (1) collecting different kinds of execution data and (2) using the

collected data to synthesize real executions that reproduce failures observed in the field.

Figure 3 provides a high-level overview of BugRedux and of the scenario I target.

As the figure shows, BugRedux consists of two main components. The first one is

the instrumenter, which takes as input an application provided by a software developer

and generates an instrumented application that can collect execution data and add such

execution data to crash reports from the field. The second component is the analyzer,

which takes as input a crash report and tries to generate a test input that, when provided

to the application, results in the same failure that was observed in the field. A software tester

can then use the generated input to recreate and investigate the field failure through some
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Figure 3: This is the intuitive high-level overview of BugRedux.

debugging approaches. This general technique can be defined in different ways depending

on the kind of execution data collected and on the technique used for synthesizing execution.

4.1.2 Instrumenter and Analyzer Components

Instrumentation is a well assessed technology, so I do not discuss this part of the technique

further. It suffices to say that BugRedux adds probes to the original program that, when

triggered at runtime, generate the execution data of interest. Conversely, the analyzer is the

core part of the technique and the most challenging to develop. Figure 4, which provides a

more detailed view of the analysis component of BugRedux, puts the problem in context

and lets me discuss how I addressed this challenge. As the figure shows, the inputs to the

analyzer are an application program P , whose execution E produces failure F that I want

to reproduce, and a crash report C for F . The goal of the analyzer is to generate a test

input that would result in an execution E′ that “mimics” E and would fail in the same way.

Given crash report C, the input generator would analyze program P and try to generate

such test input. The exact definition of mimicking depends on the amount of information

about the failing execution E that is available. If only the POF were available, for instance,

E′ would mimic E if it reaches the POF. Conversely, if a complete trace were to be used, E′

would have not only to reach the POF but also to follow the same path as E. This concept

of mimicking is defined within the input generator, which receives the execution data in the

form of a sequence of goals (or locations in the program) to be reached and tries to generate
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Figure 4: This is the detailed view of analysis component of BugRedux.

executions that reach such goals in the right order. If successful, the input generator would

generate a candidate input, and the oracle would check whether that input actually fails in

the same way as E.

In theory, any automated input generation technique (e.g., symbolic execution [55],

weakest precondition analysis [35], or genetic algorithms [47]) could be used in this context,

as long as it can be guided towards a goal (e.g., the point of failure, the entry point of a func-

tion on the failure’s call stack, or a branch within the program). In this part of my overall

technique, I decided to use an approach based on symbolic execution [55]. Specifically, I use

a symbolic execution algorithm customized with an ad-hoc search strategy that leverages

the execution data available expressed as a set of goals. My algorithm, GenerateInputs,

is shown in Algorithm 1. GenerateInputs takes as input icfg, the Interprocedural Control

Flow Graph (ICFG) [13] for program P , and goals list, an ordered list of statements to be

reached during the execution. (The exact content of goals list is discussed in Section 4.1.3.)

Initially, GenerateInputs performs some initializations (lines 2–4). First, it initializes

sym state0 with the initial symbolic state, where all inputs are marked as symbolic. Then,

it initializes states set, a set that will be used to store search states during the execution,

with the initial search state. Entries in states set are quadruples 〈cl, pc, ss, goal〉, where cl

is a code location, pc the Path Condition (PC) for the path followed to reach location cl, ss

the symbolic state right before cl, and goal the current target for this state (used to enforce
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Input : icfg : ICFG for program P
goals list : an ordered list of statements G0, ...Gn

Output: inputf : candidate input for synthesized run

1 begin
2 sym state0 ← initial symbolic values of program inputs
3 states set← (icfg.entry, true, sym state0, G0)
4 curr goal← G0
5 while true do
6 curr state← null
7 while curr state == null do
8 curr state← SelNextState(icfg, states set, curr goal)
9 if curr state == null then

10 if curr goal 6= G0 then
11 curr goal← previous goal in goals list
12 continue

13 else
14 return null
15 end

16 end

17 end
18 if curr state.cl == curr goal then
19 if curr goal == Gn then
20 inputf ← solver.getSol(curr state.pc)

21 if inputf is found then
22 return inputf
23 else
24 remove(curr state, states set)
25 continue

26 end

27 else
28 curr goal← next target in goals list
29 curr state.goal← curr goal

30 end

31 else
32 if curr state.cl ∈ goal list then
33 remove(curr state, states set)
34 continue

35 end

36 end
37 if curr state.cl is a conditional statement then
38 curr state.pc← addConstr(curr state.pc, pred, true)
39 curr state.cl← getSucc(curr state.cl, true)
40 if solver.checkSat(curr state.pc) == false then
41 remove(curr state, states set)
42 end
43 false pc← addConstr(curr state.pc, pred, false)
44 false cl← getSucc(curr state.cl, false)
45 if solver.checkSat(curr state.pc) 6= false then
46 new state← (false cl, false pc, curr state.ss, curr state.goal)
47 insert(new state, state set)

48 end

49 else
50 curr state.ss← symEval(curr state.ss, curr state.cl)
51 curr state.cl← getSucc(curr state.cl)

52 end

53 end

54 end

Algorithm 1: GenerateInputs

the order in which goals are reached). The initial search state consists of the entry of the

program for cl, PC true, symbolic state sym state0, and goal G0. Next, the algorithm

assigns to curr goal the first goal from goals list.

The algorithm then enters its main loop. At the beginning of each loop iteration, Gen-

erateInputs invokes algorithm SelNextState, shown in Algorithm 2. SelNextState looks for

the most promising state to explore in states set. (At the first invocation of SelNextState,

only the initial state is in the states set. The number of states will increase in subsequent in-

vocations, when more of the program has been explored symbolically.) SelNextState selects
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states based on the minimum distance mindis, computed in terms of number of statements

in the ICFG, between each state’s cl and curr goal. To avoid selecting states that have not

reached goals that precede curr goal in goals list, SelNextState only considers states whose

target is curr goal (line 5 in Algorithm 2). If none of these states can reach curr goal (i.e.,

there’s no path between the state’s cl and curr goal in the ICFG), SelNextState returns

null to GenerateInputs. Otherwise, the selected state is returned (line 15 in Algorithm 2).

When GenerateInputs receives the candidate state from SelNextState, it first checks

whether the returned state is null, which means that no state in states set with target

curr goal can actually reach such target. If so, GenerateInputs backtracks by updating

curr goal to the previous goal in the goals list and looking for another path that can reach

that goal (line 11). Conversely, if curr state is not null, GenerateInputs continues the

execution of its main loop.

If curr state’s code location corresponds to curr goal, GenerateInputs updates both

global goal curr goal and local goal curr state.goal to the next goal in goals list (lines

28–29). It then continues the symbolic execution. If the last goal Gn is reached, the

algorithm stops the symbolic execution, feeds the current PC to the SMT solver, and

asks the solver to find a solution for the PC (line 20). If a solution is not found, the

generation of the candidate input is deemed unsuccessful. If curr state’s code location is

not curr goal but another goal in goal list, the algorithm removes curr state from state set

and goes back to the beginning of the main loop (lines 32–34). It does so to avoid that the

execution reaches the goals in the goal list in a different order from the one observed in the

failing execution. If curr state’s code location is a conditional statement pred that involves

symbolic values, the algorithm performs one execution step along both branches, that is, it

updates states’ current location and path condition, checks the feasibility of both branches

using the SMT solver, and removes (or does not add) infeasible states from states set (lines

38–47). (If the SMT solver did not provide an answer for PC, the algorithm would consider

the corresponding state feasible and continue.) Finally, if curr state’s code location is any

statement other than a conditional, the algorithm suitably updates the symbolic state and

the current location of states set (lines 50–51).
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Input : icfg : ICFG for program P
states set: set of symbolic states
curr goal: the current goal

Output: ret state: candidate state for exploration

1 begin
2 mindis← +∞
3 ret state← null
4 foreach Statei ∈ states set do
5 if Statei.goal == curr goal then
6 if Statei.loc can reach curr goal in ICFG then
7 nd← shortest distance from Statei.loc to curr goal in ICFG
8 if nd < mindis then
9 mindis← nd

10 ret state← Statei
11 end

12 end

13 end

14 end
15 return ret state

16 end

Algorithm 2: SelNextState

The algorithm terminates when either there are no more states to explore (i.e., it tries

to backtrace from G0 (line 14)) or a candidate input is successfully generated (line 22). In

the former case, the algorithm fails to find an input that can mimic the observed execution.

In the latter case, conversely, the algorithm successfully produces such input.

In summary, my guided symbolic execution technique has two key aspects. First, it

uses the execution data from the field to identify a set of intermediate goals that can guide

the exploration of the solution space. Second, it uses a heuristic based on distance to

select which states to consider first when trying to reach an intermediate goal during the

exploration. In theory, the more data (i.e., number of intermediate goals) available, the

more directed the search, and the higher the likelihood of synthesizing a suitable execution.

On the other hand, collecting too much data can have negative consequences in terms of

overhead and introduce privacy issues. To study this tradeoff, I define several variants of my

field failure reproduction approach that differ on the kind of execution data they consider.

The next section describes these variants.
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4.1.3 Execution Data

In selecting the execution data to consider, I aimed to cover a broad spectrum of possibilities.

To this end, I selected four kinds of data characterizing a failure: point of failure (POF), call

stack, call sequence, and complete program trace. These types of data are representatives of

scenarios that go from knowing as little as possible about the failing execution to knowing

almost everything about it. In addition, POFs and call stacks are types of data that are

very commonly available for crashes, as they are normally included in crash reports. Call

sequences, and program traces, on the other hand, are not normally available and represent

data that, if they were shown to be useful, would require changes in the way programs are

monitored and crash reports are generated.

For each of these four types of execution data, I instantiated a variation of BugRedux

that collected and used that type of data. As far as data collection is concerned, the

first two types of execution data do not require any modification of the program being

monitored, as they can be extracted them from existing reports. The other two types

of data can be collected using well-understood program instrumentation techniques. To

collect call sequences, BugRedux instruments all call sites and entry points (these latter

to account for the possible presence of function pointers), whereas to collect program traces

it instrument all branches.

Customizing BugRedux so that it uses the different data is also relatively straightfor-

ward, as it amounts to suitably generating the goals list set to be passed to BugRedux’s

input generator. For POF, goals list would contain a single entry—the POF itself. For

a failure’s call stack, there would be an entry in the set for each function on the stack,

corresponding to the first statement of the function, plus an additional entry for the POF.

Call sequences would result in a goals list that contains an entry for each call, correspond-

ing to the call statement. Also in this case, there would be an additional, final entry for

the POF. Finally, the goals list for a program trace would consist of an entry per branch,

corresponding to the statements that is the destination of the branch, and the usual entry

for the POF.

In the next section, I will discuss how I used these four variants of BugRedux to study
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the tradeoffs involved with the use of different kinds of information and assess the general

usefulness of BugRedux.

4.2 Empirical Investigation

I investigated the following two research questions for BugRedux:

• RQ1: Can BugRedux synthesize executions that are able to reproduce field failures?

• RQ2: If so, which types of execution data provide the best tradeoffs in terms of cost

benefit?

To address these questions, I implemented the four variants of BugRedux discussed in

the previous section and applied them to a set of real-world programs.

4.2.1 BugRedux Implementation

My implementation of BugRedux works on C programs and consists of three modules

that correspond to the three components shown in my high-level view of BugRedux (see

Figures 3 and 4): instrumenter, input generator, and oracle. BugRedux’s instrumenter

performs static instrumentation (i.e., probes are added to the code at compile time) by

leveraging the LLVM compiler infrastructure (http://llvm.org/). The input generator in

BugRedux is built on top of KLEE [21], a symbolic execution engine for C programs. I

implemented Algorithms 1 and 2 as a custom search strategy for KLEE and also made a

few modifications to KLEE’s code. Finally, BugRedux’s oracle module is implemented as

a Perl script that operates as follows: (1) it takes as input program P , an input I for P ,

and a crash report C corresponding to failure F ; (2) it runs P against I and collects any

crash report generated as a result of the execution; and (3) if either no report is generated

or the call stack at the moment of the crash and POF in the generated report do not match

those in C, it reports that the approach failed, whereas it reports a success otherwise.

4.2.2 Programs and Faults Considered

To investigate my research questions in a realistic setting, I used a set of real, non-trivial

programs that contained one or more faults and had test cases that could reveal such faults.
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Table 1: Benchmark programs used in my study

Name Repository Description Size (kLOC) # Faults

sed SIR stream editor 14 2
grep SIR pattern-matching utility 10 1
gzip SIR compression utility 5 2
ncompress BugBench (de)compression utility 2 1
polymorph BugBench file system “unixier” 1 1
aeon exploit-db mail relay agent 3 1
glftpd exploit-db FTP server 6 1
htget exploit-db file grabber 3 1
socat exploit-db multipurpose relay 35 1
tipxd exploit-db IPX tunneling daemon 7 1
aspell exploit-db spell checker 0.5 1
exim exploit-db message transfer agent 241 1
rsync exploit-db file synchronizer 67 1
xmail exploit-db email server 1 1

I considered programs from three public repositories that have been used extensively in

previous research: SIR [2], BugBench [61], and exploit-db [18]. Specifically, I selected three

programs from SIR, two from BugBench, and nine from exploit-db. Table 1 shows the

relevant information about each program: name, repository from which it was downloaded,

size, and number of faults it contains. As the table shows, the program sizes range from

0.5 kLOC to 241 kLOC, and each program contains one or two faults. The faults in the

BugBench and exploit-db programs are real field , whereas the ones in the programs from

SIR are seeded.

I selected these programs because they have been used in previous research [18,30] and

because of the representativeness of their faults. The faults in exploit-db and BugBench

are real field failures mostly discovered by users in the field, whereas the faults in SIR are

seeded by researchers but are carefully designed to simulate real faults.

I excluded from my study three programs from SIR and four from BugBench because

the version of KLEE I used could not handle some of the constructs in these programs

(e.g., complex interactions with the environment and network inputs). As far as faults are

concerned, I selected faults that caused a program crash, rather than just generating an
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incorrect result. This choice was made for convenience and to minimize experimental bias—

with crashes, failures can be objectively identified and do not require the manual encoding

of the failure condition as an assertion.

I also performed a preliminary check on the programs and faults that I selected by

feeding them to an unmodified version of KLEE and letting it run for 72 hours. The goal

of this check was to assess whether these faults could have been discovered by a technique

that blindly tries to explore as much of the programs as possible. If so, this would be an

indication that the faults are too easy to reveal to be good candidates for my study. The

unmodified KLEE was unable to reveal the faults in the programs except for one case:

iwconfig. I therefore removed iwconfig from my set of benchmark. It is worth noting that I

decided not to use the benchmarks used in Reference [82] for the same reason—all of those

failures could be recreated through plain, unguided symbolic execution, as also shown in

Reference [21]. (Moreover, the benchmarks I selected are more representative, as programs

are larger and 9 out of 16 faults are real faults reported by users, rather than faults found

in-house by KLEE.)

4.2.3 Experimental Setup

In order to collect the data needed for my investigation, I proceeded as follows. To simu-

late the occurrence of field failures, I used the test cases distributed with my benchmark

programs as proxies for real users. For each fault f considered, I ran the test cases until a

test case tf failed and generated a program crash; I associated tf to f as its failing input.

I then reran all the failing inputs on all the corresponding faulty programs three times.

The first time, I ran them on the unmodified programs, the second time on the programs

instrumented by BugRedux to collect call sequences, and the third time on the programs

instrumented by BugRedux to collect complete program traces. For each such execution,

I measured the duration of the execution and the size of the execution data generated.

With this information available, I used the four variants of BugRedux to synthesize a

failing execution starting from a suitable set of goals (i.e., POF, call stack at the time of

failure, call sequence, and complete program trace). For each run of BugRedux, I recorded
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whether the generation was successful (i.e., whether a candidate input was generated at all)

and how long it took. I set a timeout of 72 hours for the generation, after which I marked

the run as unsuccessful. I also recorded whether the candidate input, if one was generated,

could reproduce the original failure according to BugRedux’s oracle.

4.2.4 Results

This section presents the results of my empirical study and discusses the implication of the

results in terms of my two research questions. I present the results using two tables, where

the first table contains the data related to the cost of the approach (i.e., the time and

space overhead imposed by BugRedux), and the second table shows the data about the

effectiveness of the approach (i.e., whether BugRedux was able to synthesize an execution

and whether such execution could be used to reproduce an observed failure). These two

tables present the results for each of the 16 failing executions considered, identified by the

name of the failing program possibly followed by a fault ID, and for each of the variants of

BugRedux, identified by the kind of execution data on which it operates.

Table 2 shows the time and space overhead imposed by BugRedux on the benchmark

programs for each of the four types of execution data collected. Time overhead is measured

as the percentage increase of the running time due to instrumentation, whereas space over-

head is measured as the size of the different kinds of execution data collected by BugRedux.

I discuss the two types of overheads separately.

Time overhead. Because POFs and call stacks are collected by the runtime system at the

moment of the failure, and do not require any additional instrumentation, collecting them

incurs no overhead. The situation is different for call sequences and complete traces, which

both require BugRedux to instrument the programs (see Section 4.1.3). As expected,

the overhead imposed by complete-trace collection is almost an order of magnitude higher

than that for call sequences. I also observe that the overhead for collecting call sequences

depends on program size and execution length. To correctly interpret these results, it is

important to consider that this data was collected with a naive instrumentation that writes

events to the log as soon as they occur; the use of caching techniques could decrease the
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Table 2: Time (%) and space (KB) overhead imposed by BugRedux

Name POF Call stack Call sequence Complete trace

time space time space time space time space

sed.fault1 0% 0.8 0% 0.8 4.5% 5.8 27.2% 54.4
sed.fault2 0% 0.9 0% 0.9 12.5% 10.2 87.5% 261.9
grep 0% 0.7 0% 0.7 47% 3.4 182% 716.1
gzip.fault1 0% 0.8 0% 0.8 10.3% 2 72% 176
gzip.fault2 0% 0.8 0% 0.8 12% 2.5 308% 1784.6
ncompress 0% 0.7 0% 0.7 2% 0.9 16% 33.1
polymorph 0% 0.5 0% 0.5 1% 0.7 8% 1.5
aeon 0% 1 0% 1 50% 1.1 1066% 3
glftpd 0% 1.5 0% 1.5 9% 3.2 45% 130
htget 0% 0.7 0% 0.7 9% 2.7 287% 2814
socat 0% 0.8 0% 0.8 21% 9.6 110% 451
tipxd 0% 0.6 0% 0.6 2% 0.7 36% 19
aspell 0% 0.6 0% 0.6 18.8% 30.5 143% 566
rsync 0% 1 0% 1 3% 11.4 66% 521
xmail 0% 0.8 0% 0.8 22.6% 84.8 290% 2361
exim 0% 0.9 0% 0.9 17.4% 100.7 389% 14897

overhead dramatically. Because the goal of this initial investigation was more exploratory,

and the numbers are acceptable, I left optimizations for future work. Moreover, record-

replay techniques (e.g., [4, 28]) could be used to (1) efficiently record field executions and

(2) collect execution data while replaying offline and when free cycles are available on the

user machines.

Space overhead. The data size for POFs and call stacks is the same because my current

implementation of BugRedux extracts both of them from the crash reports generated by

the runtime system. I therefore decide to report the size of the crash reports for these two

types of data. Also in this case, the size of the complete-trace data is at least an order of

magnitude larger than that of the call-sequence data, and in some cases the difference is

even more extreme. For instance, in the case of gzip.fault2, the reason for the large gap is

that the number of function calls is low but there is a large number of loop iterations within

functions. Overall, however, for the executions in this study, the size of the execution data

is fairly contained, and it would be practical to collect them.

Table 3 addresses the core question of the effectiveness of my approach. The table shows,
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Table 3: Effectiveness and efficiency of BugRedux in synthesizing executions starting
from collected execution data

Name POF Call stack Call sequence Complete trace

sed.fault1 N/A N/A 98s Y N/A
sed.fault2 N/A N/A 17349s Y N/A
grep N/A 16s N 48s Y N/A
gzip.fault1 3s Y 18s Y 11s Y N/A
gzip.fault2 20s N 28s N 25s Y N/A
ncompress 155s Y 158s Y 158s Y N/A
polymorph 65s Y 66s Y 66s Y N/A
aeon 1s Y 1s Y 1s Y 1s Y
rysnc N/A N/A 88s Y N/A
glftpd 5s Y 5s Y 4s Y N/A
htget 53s N 53s N 9s Y N/A
socat N/A N/A 876s Y N/A
tipxd 27s Y 27s Y 5s Y N/A
aspell 5s N 5s N 12s Y N/A
xmail N/A N/A 154s Y N/A
exim N/A N/A 269s Y 5624s Y

for each failing execution fe considered and each type of execution data ed, the time it took

BugRedux to generate inputs that mimicked fe using ed (or “N/A” if BugRedux was

unable to generate such inputs in the allotted time) and whether the mimicked execution

reproduced the observed failure (“Y” or “N”).

As expected, symbolic execution guided only by the POF was unsuccessful for most

programs. A manual examination of the programs for which POFs are enough to reproduce

failures showed that all such failures have two common characteristics: (1) the POFs are

close to the entry of the programs and are easy to reach; (2) the failures can be triggered

by simply reaching the POFs. For these failures, developers could easily identify the cor-

responding faults if provided with traditional crash reports. As also expected, the larger

the amount of data available (in the form of intermediate goals) to guide the exploration,

the better the performance of the approach. Using call stacks, BugRedux could mimic 10

out of the 16 failing executions, and using call sequences, it was able to mimic all failing

executions.

I observe that, in some cases (e.g., htget, tipxd), the time needed to synthesize an

execution using call stacks was larger than the time needed when using call sequences (when
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they are both successful). The reason for this behavior is that the additional information

provided by call sequences can better guide symbolic execution and avoid the exploration of

many irrelevant paths. One surprising finding, however, is that this trend is not confirmed

when complete traces are used. I further analyzed this result and found that this happened

for two reasons. One reason is that, intuitively, following complete traces can result in

conditions that the SMT solver is unable to handle. The second reason is a mostly practical

one: KLEE uses a simplified implementation of the system libraries when symbolically

executing a program, which makes it impossible in some cases to follow exactly the same

path that was followed in the original execution. Conversely, a looser, yet informative

guidance, such as a call sequence, leaves more degrees of freedom to the input generator

and increases its chances of success. For example, paths that result in constraints that are

beyond the capabilities of the SMT solver could be dropped in favor of simpler paths that

may still reach the targeted goals. In a sense, among the execution data considered, call

sequences represent a sweet spot between providing too little and too much information to

the search.

It is important to stress that the executions synthesized by BugRedux are executions

that reach all of the intermediate goals extracted from the execution data and provided to

the input generator, but they are not guaranteed to reproduce the observed failure. This

is especially true when considering more limited types of execution data, such as POFs

and call stacks, which provide little guidance to the search. The results in Table 3 clearly

illustrate this issue. As shown in the table, for three of the failures in my set, reaching the

POF is not enough to trigger the original failure. Similarly, for the four failures in grep,

gzip, htget, and aspell, BugRedux was able to synthesize executions that generated the

same call stacks as the failing executions, but such synthetic executions did not reproduce

the considered failures. Conversely, all of the 16 synthetic executions successfully generated

from call sequences were able to reproduce the original failures.
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4.2.5 Discussion

The results of my investigation, albeit preliminary, let me address the two research questions

and make some observations. For RQ1, my results show that, for the programs and failures

considered, BugRedux can reproduce observed failures starting from a set of execution

data. For RQ2, the results provide initial but clear evidence that call sequences represent

the best choice, among the ones considered, in terms of cost-benefit tradeoffs: using call

sequences, BugRedux was able to reproduce all of the observed failures; even using an

unoptimized instrumentation, BugRedux was able to collect call sequences with an ac-

ceptable time and space overhead; and I believe that call sequences are unlikely to reveal

sensitive or confidential information about an execution. (Although this is just anecdotical

evidence, I observed that none of the inputs generated when synthesizing executions from

call sequences corresponded to the original input that caused the failure.) Unlike complete

traces, which may provide enough information to reverse engineer the execution and iden-

tify the inputs that caused such execution, call sequences are a much more abstract model

of executions.

An additional observation that can be made on the results is that POFs and call stacks

do not seem to be particularly helpful for reproducing failures. Manual examination of the

faults considered showed that the points where the failure is observed tend to be distant

from the fault. Therefore, most such failures are triggered only when the program executes

the faulty code and the incorrect program state propagates to the POF. In these cases,

POFs and call stacks are unlikely to help because the faulty code may be nowhere near the

POF or the functions on the stack at the moment of the crash. If confirmed, this would be

an interesting finding, as these are two types of execution data normally collected in crash

reports. Extending crash reports with additional information may make them considerably

more useful to developers.

As a further step towards understanding the usefulness of different execution data, I

performed an additional exploratory study in which I removed entries in the collected call

sequences and checked whether the partial sequences still contained enough information to

recreate observed failures. More precisely, I selected from my original list the ten failures
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Table 4: Minimal number of entries in call sequences that are needed to reproduce observed
failures

Name Original Length Minimal Length

sed.fault1 73 12
sed.fault2 146 7
grep 31 2
xmail 1142 363
gzip.fault2 27 2
rysnc 23 2
aspell 516 256
socat 62 3
htget 25 2
exim 1029 326

that could only be reproduced using call sequences. For each failure and corresponding call

sequence, I then used a straw-man greedy algorithm that considers one entry in the call

sequence at a time, starting from the beginning. If BugRedux can reproduce the failure

without that entry in the sequence, the entry is removed. Table 4 shows the result of this

study in terms of number of entries in the call sequences before and after reduction. For

example, only 2 of the 31 entries in the original call sequence are needed to reproduce the

observed failure in grep. The results show that, in most cases, only a small subset of calls in

the sequences is actually necessary to suitably guide the exploration. I can further observe

that the number of entries needed seems to increase with the complexity of the input needed

to trigger the fault, which makes sense intuitively. For instance, xmail’s fault can only be

triggered by an input file that includes a valid email address, and aspell’s fault can only

be triggered by an input of a given length. For these two faults, the reduction in the call

sequence is less substantial than for the other faults considered. These additional results

motivate my fault localization technique for field failures, as discussed in Chapter 5.
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4.2.6 Limitations and Threats to Validity

The main limitation of BugRedux is that it relies on symbolic execution, an inherently

complex and expensive approach. However, recent results have shown that, if suitably de-

fined, tuned, and engineered, symbolic execution can scale even to large systems [43]. More-

over, as discussed in future work, BugRedux can leverage different input generation tech-

niques. Another limitation is the potential overhead involved in collecting field-execution

data. For this reason, as also discussed in future work, I am currently investigating the use

of alternative execution data. One final limitation is that BugRedux currently does not

explicitly handle concurrency and non-determinism. In this initial phase of the research, I

chose to focus on a smaller domain, and get a better understanding of that domain, before

considering additional issues.

Like for all studies, there are threats to the validity of the results. To mitigate threats

of internal validity related to errors in my implementation, I tested BugRedux on small

examples and spot checked most of the results presented in this chapter. In terms of external

validity, the results may not generalize to other programs and failures. However, I studied

16 failures and 14 programs from three different software repositories. The benchmark

programs I used are real-world programs, several of which are widely used both by real

users in the field and by researchers as experimental programs. Another issue with the

empirical results is that the ultimate evidence of the usefulness of the technique would

require its use in a real setting and with real users. Although such an evaluation would be

extremely useful, and I plan to do it in the future as other researchers did for their work [68],

I believe that it would be premature at this point. Moreover, when successful, BugRedux

would generate an actual execution that reproduces the observed field failure. I expect such

an execution to be usable, like any other failing execution, to debug the problem causing

the failure.

Overall, I believe that my initial results show that the approach is promising and iden-

tify several research directions that it would be worth pursuing; directions that could be

investigated by building on the failure failure reproduction work.
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4.3 Conclusion

The ability to reproduce an observed failure has been reported as one of the key elements

of debugging. Whereas recreating failures that occur during in-house testing is usually

easy, doing so for failures that occur in the field, on user machines, is unfortunately an

arduous task. To address this problem, I have presented BugRedux, a general technique

for supporting in-house debugging of field failures. BugRedux works by (1) collecting

execution data about failing program executions in the field as a sequence of intermediate

goals (i.e., locations in the program) and (2) using input generation techniques to synthesize,

in house, executions that reach such goals and mimic the observed failures.

To better understand the tradeoffs between amount of information collected and ef-

fectiveness of the approach, I have performed an empirical investigation and studied the

performance of four instances of BugRedux that leverage different kinds of execution data.

I have applied these four instances to a set of 16 failures for 14 real-world programs and

compared their cost and effectiveness. The results of empirical studies are encouraging and

provide evidence that BugRedux can reproduce observed failures starting from a suitable

set of execution data. In addition, the analysis of the results led to several findings, some of

which unexpected (e.g., more information is not always better). Finally, my results provide

insight that can guide future work in this area. In fact, I observed that the synthesized

executions by BugRedux would be an ideal input for fault localization techniques, which

leads to my work for fault localization for field failures in Chapter 5.
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CHAPTER V

AUTOMATED FAULT LOCALIZATION FOR FIELD FAILURES

5.1 F3 Technique

As discussed in Chapter 1, one of my overarching goals is to help developers locate the likely

cause of observed field failures by applying fault localization techniques. Since BugRedux

can only reproduce observed field failures and it does not provide any explicit debugging

support, I need to extend it to debug such field failures. In this chapter, I present F3 (Fault

localization for Field Failures) to achieve this goal and accomplish the third step of my

overall vision presented in Chapter 3. I devised F3 by extending BugRedux such that it

generates more than one failing executions and a set of passing executions that are “similar”

to these failing executions. In addition to extending BugRedux, I also apply customized

fault localization with three optimizations on these generated executions. Figure 5 provides

a high-level overview of F3.

As the figure shows, given (1) a set of minimized crash data produced by BugRedux for

a field failure f (i.e., a list of intermediate goals leading to f ) and (2) the failing application,

F3 produces a report of likely faults: a list of program entities ordered in terms of likelihood

of being faulty and being responsible for f. The report can then help developers investigate

and understand the causes of field failure f.

Fault localizer
(Ochiai)

Application

Software
developers

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults
Crash data
for failure f

Execution
generator

(Guided symbolic
execution)

Synthesized
executions

Pass (f)

Fail (f)

F3(Fault localization for Field Failures)

BugRedux

Minimized crash 
data for failure f

Figure 5: This is the high-level intuitive overview of F3.
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F3 consists of two main parts: the Execution generator and the Fault localizer. The

execution generator component extends BugRedux so that, given a set of crash data

for an execution e that fails with failure f, it synthesizes two sets of executions: FAIL,

a set of failing executions that “mimic” e and generate a failure analogous to f (i.e.,

the failing executions that are generated by BugRedux as discussed in Chapter 4), and

PASS, a set of passing executions that are “as similar as possible” to e but do not fail (see

Section 5.1.1 for more details on this concept of similarity among executions). The fault

localizer component performs my optimized statistical fault localization techniques on these

two sets of executions to identify a set of program entities that are likely to be responsible

for failure f. In the rest of this section, I will discuss in detail these two components.

5.1.1 Execution Generator

One major issue with traditional statistical fault localization is that the ranking results

highly depend on the quality of the test cases (or, more generally, executions) available

for the statistical analysis. In general, statistical fault-localization approaches require a

large number of passing and failing executions to be effective. Moreover, the quality of the

executions is also important. If, for instance, the passing executions exercise completely

different parts of the code than the failing executions, they are of limited usefulness for the

analysis. Unfortunately, as mentioned in Chapter 1, it is rarely the case that such a high-

quality set of executions is available in practice, and identifying inputs that can generate

suitable executions is a non-trivial task [70]. In the case of field failures, in particular, the

state-of-the-art failure reproduction techniques (e.g., [51, 82]) generate at most one failing

execution, preventing any kind of statistical analysis.

My intuition is that this problem can actually be seen as a missed opportunity. Existing

execution synthesis approaches can be extended to generate a suitable set of both passing

and failing executions to be used in fault localization. Furthermore, because of the way they

are generated, these executions may be even more amenable to statistical fault localization

than existing test suites.

As explained above, the execution generator takes as input an ordered list of program

39



locations l. In this context, l is a minimized list of goals that contains enough entries to

guide the generator and to allow it to synthesize an execution that mimics the observed field

execution e and reproduces the observed field failure f [51]. In the original BugRedux

approach, l was used to generate a single failing execution. In F3, I extend BugRedux so

that it continues to synthesize executions that mimic the one observed in the field until it

reaches a given time limit.

By construction, each execution that is successfully synthesized in this way is guaranteed

to reach all program locations in l and reach them in the same order of the original field

execution. Therefore, all these executions reach the point of failure, share with e a set of

intermediate execution points, but are likely to follow different paths than e. It is worth

noting that reaching the point of failure does not guarantee that the program would fail

at that point, as that also depends on the state of the execution. Therefore, some of the

synthesized executions may not result in failure f. Although this is true in general, in

practice it is often the case that l provides enough constraints to the execution synthesis

algorithm that all generated executions would indeed trigger the failure, and no passing

execution would be generated.

In this case, my technique increasingly eliminates entries from l and tries to synthesize

executions using this reduced list l’ as a guide instead of l. (In my current instance of the

approach, I use a straw-man approach that simply eliminates one entry at a time starting

from the beginning of the list until the execution generator can generate passing executions.)

The rationale for this approach is that eliminating entries in the list augments the degree of

freedom of the synthesis algorithm, which in turn increases the chances of generating passing

executions. Generating executions using a smaller list, however, is bound to reduce the

degree of similarity between the synthesized passing executions and the original execution

e. Therefore, the generated passing executions will be increasingly dissimilar from e, and

thus less likely to be useful for fault localization, as more entries are eliminated from the list.

In extreme cases, in order to generate passing executions, I have to remove all entries from

l. Fortunately, as the results of my empirical evaluation in Section 6.3 show, this approach

seems to work well in practice: (1) the execution synthesizer did not have to eliminate many
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entries to generate passing executions in many cases, and the degree of similarity between

the synthesized executions and the original execution was not considerably affected; (2)

cases that I had to remove all entries to generate passing executions did happen but only in

a minority of cases, and even in these cases, the results of fault localization were still good

enough.

This process terminates when a time limit is reached, one or more passing executions

have been successfully synthesized for a given sublist, or no more entries can be eliminated

from l’ (i.e., the list is empty). When successful, the execution generator would there-

fore produce the two sets of executions FAIL and PASS mentioned above, which contain

failing and passing executions. These executions would be similar, in that they share a

set of intermediate execution points, because all of them are derived from l or a subset

thereof. Intuitively, using such similar passing and failing runs can help fault localization.

In fact, recent research has shown that generating passing executions that are close to failing

executions can considerably improve the results of fault localization techniques [70,75].

5.1.2 Fault Localizer

In this section, I discuss how F3 uses the sets FAIL and PASS, synthesized by the execution

generator and discussed in the previous section, to perform fault localization and identify

the code that may be responsible for the field failure f.

There are many ways to perform fault localization given two sets of failing and passing

executions, as a variety of statistical fault localization techniques, and variations thereof,

can be used to this end. As discussed in Chapter 2, I decided to choose Ochiai, OBM,

Naish1, and Naish2 as representative techniques and suitably optimized them. Specifically,

based on previous experience and initial results, I customized these techniques along three

directions: use of profiling information, aggressive filtering, and grouping of related entities.

In the next sections, I describe my optimizations and discuss how my fault localizer uses

the customized fault-localization techniques.
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5.1.2.1 Traditional Fault Localization

One straw-man way to use sets FAIL and PASS for debugging is to simply apply traditional

statistical fault localization techniques to these sets. Both fault-localization techniques I

am considering only need two such sets to operate and can be used without any additional

modification. However, I defined F3 based on the intuition, later confirmed by the em-

pirical results presented in Section 6.3, that I can improve the effectiveness of traditional

fault localization by suitably tailoring these techniques. To do so, I defined the two main

optimizations and one engineering improvement of these techniques discussed in the rest of

this section.

5.1.2.2 Fault Localization with Filtering

One problem with traditional fault-localization approaches is that most of them rely on

a potentially misleading metric for defining and evaluating the approach: they measure

effectiveness based not on the number of program entities developers must inspect before

identifying the fault, but rather on the percentage of the program they must inspect. Al-

though having to inspect only 5% of the program may appear as a fairly positive result

at first glance, considering that this may correspond to hundreds or thousands of program

entities gives a quite different, and more practical, perspective. In fact, a human study per-

formed in previous work provides clear evidence that fault localization techniques should

focus on improving absolute rank rather than percentage rank [68], as developers are likely

to stop inspecting the list of suspicious program entities if they could not identify relevant

entities among the first few entries. (Some researchers have proposed to address this issue

by cutting the ranked list at a given size or at a given suspiciousness threshold, but that

introduces the issue of finding the right size or threshold [38,70].)

This issue is made even worse by the fact that most approaches tend to assume perfect

bug understanding, that is, they assume that simply examining a faulty statement in isola-

tion without any additional context is always enough for a developer to detect, understand,

and correct the corresponding bug. The aforementioned human study [68] also shows that
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this is not a realistic assumption, which means that the number of entities developers ac-

tually examine is normally larger than the number of entities they have to examine in the

ranked list.

Because F3 can generate many passing and failing executions that are similar and tend

to focus on a relatively small part of the program, I believe that I can aggressively filter

the information computed using these executions in a way that would not be as effective if

used on passing and failing executions that are not specifically created to be similar.

Such an aggressive filtering of the list of suspicious program entities has multiple advan-

tages. First and foremost, it can improve the absolute rank of the faulty program entities,

which can greatly benefit fault localization. Second, it can also reduce the total length of

the ranked list of program entities to examine in a principled way, that is, not based on

the choice of an arbitrary size or suspiciousness threshold [38, 70]. Finally, filtering can

reduce the number of entities to be considered in the statistical analysis, which can make

the analysis more efficient. (This latter advantage would be generally marginal, however,

unless a particularly expensive statistical analysis is used.)

F3 performs filtering using dynamic information about the program entities (branches,

in my case) executed in both passing and failing runs, with the goal of discarding beforehand

parts of the program that are likely to be irrelevant for the failure. Specifically, I defined

three different types of filters, that I use to exclude from the statistical analysis some of the

branches in the program. That is, if I define the set of branches exercised by an execution

ei as

BR(ei) = {bri1, bri2, ..., brim},

using filter FILx corresponds to considering only the following branches for the statistical

analysis:

BranchesToAnalyze = FILx ∩
⋂

ei∈FAIL∪PASS
BR(ei)

The first type of filter I defined considers only branches that are exercised in all failing
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executions and exclude all other branches from the statistical analysis:

FILf =
⋂

ei∈FAIL
BR(ei)

Clearly, FILf may contain branches that are executed by passing executions too, and

in some cases by all passing executions, such as initialization code. Therefore, to further

filter the fault localization results, F3 considers a second type of filter, FILfp, which is more

aggressive because it further excludes from the analysis those branches that are exercised

in all passing executions:

FILfp = FILf −
⋂

ei∈PASS
BR(ei)

The rationale for FILfp is that by removing common branches in both passing and

failing executions, I remove the branches that may be visited by all executions of the program

and are thus likely (but obviously not guaranteed) to be irrelevant.

The third type of filtering in F3 further reduces the amount of entities considered in the

statistical analysis by also ignoring branches on which other branches in FILfp are control

dependent:

FILdep = FILfp − {brk | brk ∈ FILfp ∧ ∃brj ∈ FILfp, j 6= k, brj is c.d. on brk}

The rationale, in this case, is that branches that control other branches are often (but

clearly not always) responsible for reaching those branches and not directly responsible for

the failure.

The three filters I defined are obviously increasingly restrictive (i.e., FILdep ⊆ FILfp ⊆

FILf ) and can thus be used to perform an increasingly aggressive filtering. Note that,

although there is overlapping between the information used to filter and the information

computed by statistical fault localization, filtering still provides an independent way of

improving the results of fault localization because it can reduce the overall number of

suspicious program entities considered, as showed in my empirical study of F3. Moreover,

I expect these filters to be particularly effective when operating on similar passing and
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...

1. int a[10];

2. int i=0;

3. do {

4. a[i] = getchar();

5. i++;

6. } while (a[i-1]!=’\n’);

...

Figure 6: A code snippet containing a buffer-overflow bug

failing executions, such as the ones generated by F3. First, F3 can generate several failing

executions for a given fault, rather than just one, which I found to be typically the case

in existing test suites. This can help narrowing down the possible location of the fault.

Second, F3 can also generate several passing executions that share commonalities with the

failing ones, unlike in typical test suites, where passing and failing executions tend to be

quite different from one another. This can help filtering out irrelevant entities.

5.1.2.3 Fault Localization with Profiling

Most fault-localization approaches are based on the concept of coverage of a given program

entity, where the entity is typically a statement, a branch, or a more generic predicate.

If considering the formula used to compute the suspiciousness of an entity en in Ochiai,

for instance, which showed in Section 2.2.1, the value a11 would be increased by one for

each failing execution that exercises en. In my initial experience with F3, however, I have

observed that coverage is not necessarily always the best kind of dynamic information for

fault localization, especially for common faults (e.g., memory related bugs) in field failures.

Consider, for instance, the code snippet in Figure 6, which is a simplified version of a real

bug I encountered in one of the programs I studied.

In this example, the program reads characters from the input stream until a newline

character is encountered. The code contains a buffer-overflow bug, which is triggered when

the size of the input stream is greater than 10. Both passing and failing executions could

cover line 4, with the difference that failing executions would execute that line more than

10 times. From the standpoint of a technique based on coverage, however, statement 4

appears in every passing and failing run and is therefore not more suspicious than any
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other statement executed in all runs.

In general, I observed that many failures, especially those common field failures that

are related to memory errors, depend on the number of times one or more program entities

are executed. Therefore, in my approach, I also consider an extension of Ochiai that uses

profiling, rather than coverage information. (I do not apply this extension to the other three

techniques because it is not possible to consider profiling information in these techniques

without redefining them extensively. To embed profiling information in OBM, for instance,

we would have to modify the way in which OBM computes conditional probabilities for

each diagnosis.)

To extend Ochiai with profiling information, I replace the original suspiciousness formula

for an entity en with the following one:

suspiciousness(en) =
p11√

(p11 + p01)× (p11 + p10)

In this new formula, p11 indicates the number of times all failing executions exercised

en, instead of the number of failing executions that exercised en, as in the original formula.

Similarly, p10 indicates the number of times all passing executions exercised en, and p01

indicates the number of failing executions that did not exercise en. Using this new formula,

a program entity en with higher p11 and lower p10 would be consider more likely to be

faulty.

Besides modifying the formula for computing suspiciousness values, in my definition of

Ochiai I also introduce an additional optimization that aims at breaking ties for entities

with the same suspiciousness value: when two entities have the same suspiciousness value,

I order these entities based on the value of p11. This optimization, which could be used also

with the original Ochiai approach, accounts for situations in which the effect of p11 is masked

(e.g., when both p01 and p10 are zero), which occurred several times in my experiments.

Let us consider again the buggy code snippet in the example of Figure 6. If I apply

my customized version of Ochiai to that code, the branch that leads to statements 4 and

5 would be (correctly) ranked higher than other entities, unlike what happens when using

coverage information.
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5.1.2.4 Fault Localization with Grouping

In addition to the two main optimizations discussed above, I also implemented an engi-

neering optimization to improve the results of fault localization. Similar to many other

techniques, my current instantiations of statistical fault-localization techniques instrument

low-level code to collect the runtime information used for the statistical analyses. As a

result, statements that appear in a single source code location (i.e., a single line in the

source code) are commonly split into multiple low-level instructions (and even multiple

basic blocks). Because developers would inspect a program at the source code level, and

thus consider statements from the same source code location together during debugging,

low-level entities should be suitably grouped when reporting the fault localization results

to developers. To do so, I leverage the source code information in the low-level program

entities and use a simple heuristic: if program entities that have the same suspiciousness

value correspond either to the same line of source code or to consecutive lines, my approach

groups them together and reports them to developer as a single entry.

This optimization is different from the previous two optimizations, as grouping mainly

helps developer understand and consume the ranked list produced through statistical fault

localization. In other words, this optimization addresses an issue that is mainly related to

the engineering, rather than the definition, of the approach. I discuss it here nevertheless

because I have observed that it can make a considerable difference in practice and believe

it may apply to other related fault-localization techniques. Without grouping, (low-level)

related program entities may be spread among other entities with the same suspiciousness

value, and the developers would likely waste time going back and forth in the list before

they understand the relationships among these entities.

5.2 Empirical Evaluation

To assess the practical usefulness of F3, I implemented it in a prototype tool and applied

the tool to a set of 11 real-world programs and corresponding failures. More precisely, I

investigated the following research questions:

• RQ1: Can F3 synthesize multiple passing and failing executions for a given set of crash
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data?

• RQ2: What is the degree of similarity of these synthesized passing and failing executions?

• RQ3: Can F3 use these synthesized executions to perform fault localization effectively,

and how does the degree of similarity affect the effectiveness of fault localization?

• RQ4: Do my optimizations actually improve the effectiveness of fault localization and,

if so, to what extent?

In the rest of this section I discuss the implementation of F3, my experimental protocol,

and the results of my evaluation. For ease of presentation, hereafter, I use the name F3 to

refer to the implementation of my approach.

5.2.1 Implementation

F3 works on C programs and is built on top of the BugRedux tool that I presented

in Chapter 4, whose functionality it leverages and extends. The first component of F3,

the execution generator, leverages the symbolic execution engine KLEE [21], customized

to (1) use crash data as a guide for its search and (2) generate both passing and failing

runs. The fault localizer leverages the LLVM compiler infrastructure (http://llvm.org/)

to add to the code probes that record various coverage and profiling information. LLVM is

also used to compute the static control dependence information necessary to calculate set

FILdep, which I discussed in Section 5.1.2.2. Finally, I implemented the fault localization

approaches considered and their optimizations as Perl scripts that analyze the collected

execution traces. F3 performs fault localization at the basic-block (rather than statement)

level and identifies a basic block by means of the branch leading to it. I accordingly report

fault-localization results in terms of branches, and thus basic-blocks identified by those

branches. I use branches for simplicity, as I also use them for filtering. Note that branch

information subsumes block—and thus statement—information, and in fact branches are

actually directly used in some fault-localization techniques (e.g., [57, 58]).
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5.2.2 Benchmark of Study

For this study, I selected programs from the benchmark programs I used in the empirical

evaluation of BugRedux (see Section 4.2) and added a bug from GNU’s findutils [41].

These are real-world, non-trivial programs that contain known faults and are available,

together with a test suite, from three public repositories: SIR [2], exploit-db [18], and

findutils [41]. The three faults in the programs from SIR were seeded by researchers and

were designed to be representative of different types of real faults. The seven faults from

exploit-db and the fault in findutils, conversely, are real faults reported by users in the field

(i.e., exactly the kinds of real field failures that my technique targets).

Note that, for convenience, to avoid bias, and similar to what I did in BugRedux, I only

selected programs with crashing bugs. Although there are ways to identify non-crashing

failures, such as anomaly-detection techniques or assertions, crashes are commonly targeted

failures because they can be effectively treated as built-in, completely objective oracles. In

order to focus on interesting faults, I also excluded all programs whose faults could either

be easily revealed through exhaustive exploration of the program space (i.e., without any

guidance) or easily found because in close proximity to the point of the crash (i.e., a simple

analysis of the crash stack would allow for localizing these faults). In summary, I believe

that all of the faults, and corresponding failures, that I selected are sophisticated enough

that (1) state-of-the-art in-house testing techniques would miss them, and (2) developers

would have a difficult time investigating them with only limited information from the field.

Table 5 shows the relevant information about the programs and faults I considered. For

each program, the table shows its name, repository of provenance, size, number of faults,

and the average number of source code lines in a basic block. (We report the average size of

basic blocks to help readers better understand and interpret our results, as we use branches

as the suspicious entities for fault localization.) For the faults in the exploit-db programs,

I identified the location of the faulty entities using documentation and bug fixes available

for these programs. For the seeded faults in the SIR programs, I used the positions of the

seeded faults as fault locations.
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Table 5: Programs from SIR and exploit-db used in my study

Name Repository Description Size (kLOC) # Faults Average BB Size (LOC)

gzip SIR compression utility 5 1 1.5
grep SIR pattern-matching utility 10 1 1.3
sed SIR stream editor 14 2 1.5
aspell exploit-db spell checker 0.5 1 1.4
xmail exploit-db email server 1 1 1.5
htget exploit-db file grabber 3 1 1.6
socat exploit-db multipurpose relay 35 1 1.7
rsync exploit-db file synchronizer 67 1 1.5
exim exploit-db message transfer agent 241 1 1.4
find findutils file system search utility 8 1 1.9

5.2.3 Experiment Protocol

To collect my experiment data, for each fault considered I proceeded as follows. First,

to simulate the field failure for a program from SIR, I executed the test cases distributed

with the program until I found a test case t able to cause a program crash. For each of

the programs from exploit-db and findutils’ bug tracker, conversely, I directly executed the

failing test case t provided for each failure (uploaded to the repository by the real users

who reported the failure). I used t as a proxy for the field failure to be investigated, and

executed an instrumented version of the program against t to collect the crash data CSorig.

I then provided CSorig to BugRedux, which generated the corresponding minimized crash

data CSmin. (Note that this was done for convenience, as an optimized implementation of

my approach would integrate the minimization and execution-generation phases.)

Next, I used F3’s execution generator to try to generate the sets of failing and passing

executions FAIL and PASS, using a time threshold of five hours. This step could terminate

with one of two possible outcomes: the execution generator was either (1) able to create

two non-empty sets FAIL and PASS or (2) unable to synthesize any passing execution

using CSmin. In this latter case it would try again after eliminating entries from CSmin,

as discussed in Section 5.1.1 (in the worst case, the execution generator would synthesize

passing executions using an empty set of crash data, that is, with no guidance that could

make the execution similar to those generated using CSmin).

I then collected complete program traces for each execution in the FAIL and PASS sets

50



Table 6: Number of failing and passing executions generated by F3. For the programs
without a star, passing executions are generated by CSmin; for the programs with a single
star, passing executions are generated using a subset of CSmin; and for programs with two
stars, passing executions are generated using an empty list, that is, without guidance.

Fault CSmin Number of failing executions Number of passing executions

exim 326 598 4
xmail 363 303 1001
sed.fault2 7 54 30
find 49 2 66
sed.fault1* 12 1017 296
grep* 2 567 137
aspell* 256 134 10
htget* 2 44 210
gzip.fault2** 2 5 27
socat** 3 46 5
rsync** 2 156 2576

to measure the degree of similarity between these executions and to compute the ranked list

of suspicious entities using both the unmodified fault-localization techniques considered and

my optimized versions in F3. As discussed in Section 5.2.1, my implementation operates at

the branch level, so when a branch is filtered out, all statements control dependent on that

branch are also eliminated.

Finally, to be able to assess the effectiveness of each individual optimization, I computed

my results first with one optimization enabled at a time, and then with all optimizations

enabled.

5.2.4 Results and Discussion

This section presents the results of my empirical study and discusses their implications in

terms of the four research questions.

5.2.4.1 RQ1: Execution Generation

Table 6 shows the execution generation results. For each fault considered, identified by a

unique fault ID, the table reports the number of entries in the minimized crash data (i.e.,

the number of goals in the list fed to the execution generator) and the number of failing

and passing executions synthesized by F3 using this data.
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As the table shows, the execution generator was able to synthesize both passing and

failing executions for all faults considered. However, I can divide the faults in three groups,

based on how these executions were synthesized. For three of the faults, the ones not

marked, the generator was able to generate passing and failing executions using CSmin.

For four other faults, those marked with a single star, the generator had to use a reduced

list of goals to generate passing executions because all of the executions synthesized using

the original CSmin were failing ones. For the remaining three faults, marked with two stars,

the generator had to use an empty list of goals to generate passing executions. According

to my intuition, and as discussed in Section 5.1.1, I expect the degree of similarity between

the synthesized passing executions and the originally observed one to decrease as I go from

the first group to the third. I discuss how this degree of similarity affects the effectiveness

of the fault localizer when I present the fault-localization results.

Overall, F3’s execution generator was able to generate passing and failing executions for

all programs, and corresponding failures, considered using CSmin or a subset thereof. I can

therefore answer the first research question in a positive manner.

Answer to RQ1: For the programs and failures considered, F3 was able to synthesize

multiple passing and failing executions.

Before moving to RQ2, and discussing whether the generated executions can be useful

for debugging, it is worth clarifying an important point. Because in several cases the number

of entries in CSmin is extremely low, it is legitimate to wonder whether the program points

in such CSmin can be used directly for fault localization. Intuitively, if program entities in

CSmin were to provide enough guidance to the execution generator to allow it to reproduce

the failure at hand, they could provide enough information to locate the fault(s) causing

the failure. I investigated whether this was the case by manually checking the entries in

all CSmin sets with size 20 or less. I found that, although such entries are useful to guide

the execution towards program regions that contain the faulty code, they have a subtle and

indirect connection with the exact location of the faults. In one case, for instance, the entry

was in the same basic block of an assignment whose effect allowed the execution to reach
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the faulty code in a completely different part of the program.

5.2.4.2 RQ2: Path Similarity of Generated Executions

Before I apply my customized fault localization techniques to the executions generated by

my approach, I want to first answer RQ2 by evaluating the degree of similarity among the

generated passing and failing executions. I will also leverage these results later on in the

paper to find correlations between execution similarity and effectiveness of fault localization.

To measure similarity, I leverage the metrics proposed by Sumner, Bao, and Zhang [75]

and, in particular, their formula for measuring path similarity of two executions e1 and e2:

execution similarity(e1, e2) =
2Iboth
Ie1 + Ie2

where Iboth is the number of dynamic instructions executed in both e1 and e2, Ie1 is the num-

ber of dynamic instructions executed in e1, and Ie2 is the number of dynamic instructions

executed in e2.

The first measure I computed is the degree of similarity within the set of generated failing

executions. The first three columns in Table 71 show these similarity results. For each fault

considered, identified by a unique fault ID, I report the average path similarity and the

minimum path similarity between any two executions in the generated failing execution set,

FAIL. As the table shows, the failing executions generated by my approach have a high

degree of similarity: over 95% in 9 over 11 cases. The table also shows that the degree of

similarity does not vary considerably across faults.

The second measure I computed is the degree of similarity between the sets of generated

failing and passing executions, FAIL and PASS. Because my approach generates multiple

different passing and failing executions for a given fault, I considered two sets of instructions:

IFAIL, the set of instructions that are executed by at least one of the generated failing

executions, and IPASS , the set of instructions that are executed by at least one of the

generated passing executions. I then used the following formula to measure the similarity

1In this and in the following tables, the annotations no star, one star, and two stars have the same
meaning they have in Table 6 and are repeated for the reader’s convenience.
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Table 7: The degree of path similarity among failing executions and the degree of path
similarity between failing and passing sets.

Fault
Among Failing Executions Between Failing and Passing Sets

Average similarity Minimum similarity Set Similarity

exim 99.9% 99.8% 99.3%

xmail 97.8% 93.1% 78.4%

sed.fault2 93.3% 86.6% 90.1%

find 95.1% 95.1% 76.0%

sed.fault1* 98.0% 93.0% 49.2%

grep* 99.9% 99.6% 65.9%

aspell* 88.4% 85.7% 30.4%

htget* 98.7% 98.5% 82.9%

gzip.fault2** 98.5% 97.8% 33.0%

socat** 97.5% 96.0% 34.7%

rsync** 97.7% 95.7% 48.8%

of the two sets of executions FAIL and PASS:

set similarity(FAIL, PASS) =
2|IFAIL ∩ IPASS |
|IFAIL|+ |IPASS |

The fourth column in Table 7 shows this second set of similarity results. As the results

show, the similarity between the sets of failing and passing executions follows a general

(expected) trend: the more entries our approach removed from the original execution data

CSmin (indicated by the number of stars next to a fault ID), the more dissimilar were

the generated passing executions to the generated failing executions. For the faults for

which F3 was able to generate passing executions using the original execution data (i.e.,

exim, xmail, sed.fault2, and find), for instance, the generated passing executions are

considerably more similar to the generated failing executions than for the other faults.

It is interesting to compare my similarity data with the similarity data presented in

Sumner and colleagues’ work, which uses pure symbolic execution to generate test inputs

for a similar set of subjects and computed the similarity of the generated passing and

failing executions [75]. Their similarity results were always below 1%, whereas my results
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are always above 30%, which indicates that my guided generation does result in passing and

failing executions that are more similar with one another and are likely to result in better

statistical fault localization. I discuss how this degree of similarity affects the effectiveness

of fault localization when I present my investigation of RQ3, in the next section.

In summary, and based on the similarity results, I can answer RQ2 as follows.

Answer to RQ2: For the programs and failures considered, there is high similarity

among failing executions. The degree of similarity between passing and failing executions,

conversely, is more variable; as expected, it decreases when the amount of execution data

that F3 must drop to generate passing executions increases.

5.2.4.3 RQ3: Fault Localization

To answer RQ3, I applied F3’s fault localizer to the sets of passing and failing executions

synthesized by

bugredux and summarized in Table 6. Table 8 presents the results of this study. The

columns in the table show the fault ID, the similarity of the generated passing and failing

executions (i.e., the fourth column from Table 7), and the results of applying my customized

versions of Ochiai, OBM, Naish1, and Naish2 with all three optimizations enabled, indicated

as Ochiai+, OBM+, Naish1+, and Naish2+, to the corresponding failure. The results are

presented as the absolute position of the actual fault in the ranked list of suspicious entities

produced by the fault localizer over the size of that list. The last row of the table shows

the Pearson product-moment correlation coefficients [71] between the similarity of passing

and failing executions and the ranks of the actual faults.

The position in the table represents the number of program entities that developers

would have to examine before finding the fault. For exim, for instance, my approach

generates a ranked list of three suspicious entities, and developers would have to examine

only the first one, which corresponds to the basic block that contains the actual fault. Note

that, for cases in which the faulty entity had the same suspiciousness value as other entities,

I reported in the table the worst-case result, that is, the case in which the actual fault was

placed last in the list among the entities with the same suspiciousness. For example, if the
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Table 8: Ranks of the faulty entity (over the total number of entities reported) using F3’s
fully optimized fault-localization techniques.

Faults Similarity Ochiai+ OBM+ Naish1+ Naish2+

exim 99.3% 1/3 1/3 1/3 1/3
xmail 78.4% 1/3 1/3 1/3 1/3
sed.fault2 90.1% 1/11 8/11 8/11 8/11
find 76.0% 2/32 2/32 2/32 2/32
sed.fault1* 49.2% 13/19 13/19 13/19 13/19
grep* 65.9% 12/72 12/72 12/72 12/72
aspell* 30.4% -/0 (1/45) -/0 (6/45) -/0 (6/45) -/0 (6/45)
htget* 82.9% -/0 (1/93) -/0 (67/93) -/0 (67/93) -/0 (67/93)
gzip.fault2** 33.0% 3/80 49/80 49/80 49/80
socat** 34.7% 11/14 11/14 11/14 11/14
rsync** 48.8% 6/28 6/28 6/28 6/28

Rank-Similarity Correlation -0.58 -0.64 -0.64 -0.64

real fault shared a same top suspiciousness value with 3 other program entities, the number

of program entities we would report as those a developer has to inspect would be 4.

In two cases, aspell and htget, the filtering was too aggressive and eliminated all

suspicious entities from the list. For these cases, I also report, in parentheses, the position

of the fault in the list (over the total size of the list), before filtering was performed. I

believe this is justified because, in cases in which the list of entities after filtering is empty,

the sensible course of action would be to report the ranking computed without filtering.

Looking at the results in the table, I can make several observations. One first observation

is that F3’s fault localizer, when operating on the synthesized passing and failing executions

produced by the execution generator, is in most cases quite effective: for 2 out of 10 cases

(3 in the case of Ochiai+), the real faulty entity is the first entry in the ranked list; and

for another 4 cases (5 in the case of Ochiai+), it is within the first 15 entities in the list.

Moreover, even for aspell and htget, the faulty entity is in position 1 when using Ochiai+

without filtering. Overall, the only negative results are for htget and gzip.fault2 when using

OBM+, for which the faulty entities are ranked in position 67 and 49. In all other cases,

F3’s fault localizer produces quite encouraging results.

Another observation I can make looking at the table is that the Pearson correlation

coefficients support that the degree of similarity between the synthesized passing executions
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and failing executions is negatively correlated to the rank of actual fault. In other words,

the degree of similarity is positively correlated to the effectiveness of fault localization

performed using that set. (i.e., The more similar between the synthesized passing and

failing executions, the higher positions the actual faults are ranked.) For the four faults

for which my approach was able to generate passing executions that are more than 70%

similar to the failing executions, the faulty entities were ranked first by Ochiai+. For

other faults, for which my approach generated passing executions that are not as similar

to the failing executions, fault localization is generally less effective. (One counterexample

is aspell, for which Ochiai+ was able to rank the real fault first using sets of less similar

executions. I found that, in this case, the passing executions executed instructions that were

not executed by failing executions, which lowered the degree of similarity without affecting

the effectiveness of fault localization.)

To get more insight on this aspect of the technique, I manually checked the ranked lists

generated by F3. Interestingly, I found that, in most cases, the fault localizer did assign the

faulty entity the highest suspiciousness value. However, other program entities related to

this faulty code were also assigned the same value. (Because I report the worst-case result,

as described above, this lowered the rank of the faulty entity that I report.)

One final observation I can make about the results is that, although these techniques

have slightly different metrics, they produce very similar fault localization results. In par-

ticular, Ochiai+ produces consistently better results mostly because of the profiling opti-

mization. This result indicates that the effectiveness of my fault localization techniques

mainly depends on the executions generated by my approach as well as the optimizations

in F3 and is independent from the four baseline statistical fault localization techniques, as

they all leverages a similar set of dynamic information and similar heuristics. However, I

would need further experimentation to confirm this result.

Overall, F3’s fault localizer was in most cases effective when applied to the passing and

failing executions synthesized by the execution generator, which lets us answer also the

third research question in a positive manner.
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Answer to RQ3: For the programs and failures considered, F3 can leverage the passing

and failing executions it synthesizes to perform fault localization effectively in most cases.

In addition, there is initial evidence that the degree of similarity between the synthesized

passing and failing executions positively affects the effectiveness of fault localization per-

formed on these executions.

5.2.4.4 RQ4: Effectiveness of My Fault Localization Optimizations

To answer RQ4, in this section I study the results of applying my two main fault-localization

optimizations and one engineering optimization separately, so as to assess the improvement

made by each individual optimization.

Filtering Before discussing the extent to which filtering can improve fault localization for

field failures, in Table 9 I show the size of the filtering sets (see Section 5.1.2.2) computed by

F3 for the programs and faults considered in my study. For each fault considered, the table

shows the total number of branches exercised by all failing and passing executions (Total)

and the size of the FILf , FILfp, and FILdep sets. Because these sets are increasingly

restrictive, their sizes decrease when going from FILf to FILdep. Intuitively, the numbers

in the table show how aggressive are the different filters in reducing the amount of code

to be considered by statistical fault localization. For xmail, for instance, all failing and

passing executions exercise 141 branches, whereas filtering based on FILf , FILfp, and

FILdep results in only 74, 6, and 3 branches to consider.

Interestingly, sets FILfp and FILdep are considerably smaller than sets FILf , whose

size is close to the total number of exercised branches. Moreover, the difference in the sizes

tend to decrease as we go down the table, which provides further evidence of the difference

in the similarity of passing and failing executions for the different programs. Intuitively,

higher similarity would result in a higher number of common branches between passing and

failing executions, and thus in smaller FILfp (and FILdep) sets.

As I explained in Section 5.1.2.2, when using filtering, F3 selects a subset of branches and

applies fault localization only to the code corresponding to these branches, thus eliminating
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Table 9: Total number of branches exercised by the synthesized passing and failing execu-
tions and size of the corresponding filtering sets (see Section 5.1.2.2).

Faults Total # FILf # FILfp # FILdep

exim 1379 1359 3 3
xmail 141 74 6 3
sed.fault2 715 456 29 11
find 195 177 69 32
sed.fault1* 158 130 44 19
grep* 278 276 96 72
aspell* 45 6 0 0
htget* 93 67 0 0
gzip.fault2** 213 202 153 80
socat** 53 36 28 14
rsync** 106 91 57 28

from consideration a large percentage of program entities. Because of the way the filtering

sets are computed, they are not guaranteed to be non-empty for a given program, fault, and

set of executions. As Table 9 shows, for the programs considered, set FILdep is non-empty

in 8 out of 10 cases.

Table 10 shows the results of fault localization enhanced with filtering. Similar to

Table 8, the results are presented in terms of position of the actual fault in the ranked list

produced by the fault localizer. The columns in the table are divided into two groups, one

for each type of fault-localization technique considered, that is, Ochiai and OBM. The table

presents four results for each of these two techniques: results computed without filtering

(Orig) and results computed with FILf , FILfp, and FILdep filtering.

The results in the table show that the first two filters, FILf and FILfp, do not improve

the fault-localization results (with the only exception of OBM, when run on grep with the

FILfp filter). This result is somehow expected, as entities that are executed by all failing

(resp., passing) executions should be assigned high (resp., low) suspiciousness values when

using traditional fault localization techniques. Even in these cases, however, filtering based

on the FILf and FILfp sets can still be useful because it can considerably reduce the overall

size of the ranked list of suspicious entities, as discussed in Section 5.1.2.2 and shown in

Table 9.

The results are different in the case of the third filter, FILdep, which can considerably
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Table 10: Positions of the actual faults in the ranked list produced by the fault localizer
when using traditional Ochiai, Ochiai with three customized types of filtering, traditional
OBM, and OBM with three customized types of filtering

Faults
Ochiai OBM Naish1 Naish2

Orig FILf FILfp FILdep Orig FILf FILfp FILdep Orig FILf FILfp FILdep Orig FILf FILfp FILdep

exim 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xmail 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
sed.fault2 24 24 24 8 24 24 24 8 24 24 24 8 24 24 24 8
find 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2
sed.fault1* 38 38 38 15 38 38 38 15 38 38 38 15 38 38 38 15
grep* 40 40 40 23 48 48 40 23 40 40 40 23 40 40 40 23
aspell* 6 6 - - 6 6 - - 6 6 - - 6 6 - -
htget* 67 67 - - 67 67 - - 67 67 - - 67 67 - -
gzip.fault2** 84 84 84 49 84 84 84 49 84 84 84 49 84 84 84 49
socat** 26 26 26 13 26 26 26 13 26 26 26 13 26 26 26 13
rsync** 11 11 11 6 11 11 11 6 11 11 11 6 11 11 11 6

improve the effectiveness of fault localization. For the faults in my study, in fact, FILdep

filtering was able to improve the ranking of the faulty entities by 50% on average. Ideally,

with these improvements, developers would have to inspect only half of the entities that

they would have to inspect using a set of unfiltered results.

In general, the results show that filtering can improve traditional fault-localization tech-

niques in two ways: (1) filtering based on the FILf and FILfp sets can almost never

improve the ranking of the faulty entity, but it can dramatically reduce the size of the list

of suspicious entities; (2) filtering based on the FILdep set can also improve the ranking of

the faulty entities.

Profiling I now discuss the results of using profiling instead of coverage information for

calculating suspiciousness values in Ochiai. As I explained in Section 5.1.2.3, I considered

only Ochiai because OBM cannot be easily extended to use this additional information.

Table 11 shows the results of fault localization enhanced with profiling information.

Similar to Table 10, the results in the Orig column are those for Ochiai without any mod-

ification, whereas the results in column Profiling are based on the modified Ochiai. As

the results in the table shows, using profiling information improves the effectiveness of

the Ochiai technique dramatically in 4 out of 10 cases, for sed.fault2, aspell, htget and
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Table 11: Positions of the actual faults in the ranked list produced by Ochiai with and
without profiling information

Faults
Ochiai

Orig Profiling

exim 1 1
xmail 1 1
sed.fault2 24 1
find 3 3
sed.fault1* 15 15
grep* 40 38
aspell* 6 1
htget* 67 1
gzip.fault2** 84 3
socat** 26 26
rsync** 11 11

gzip.fault2, and marginally in one additional case, for grep. (For these cases, using F3

instead of the traditional Ochiai technique would likely allow developers to locate the fault

at once.) In 2 of the other cases, exim and xmail, there is no room for improvement, and

for the remaining three cases profiling does not affect the results at all. After manually

checking the types of the four faults where profiling information improves effectiveness of

fault-localization techniques significantly, I observed that they were mostly buffer overflows,

which were caused by bugs inside loops. This finding supports my intuition that profiling

is the ideal type of runtime information for localization of some types of faults, as discussed

in Section 5.1.2.3.

Overall, the results provide evidence that the use of profiling information can dramati-

cally improve the effectiveness of fault localization for at least some types of faults.

Grouping I now examine the usefulness of my engineering optimization, grouping, when

applied to both Ochiai and OBM. To this end, Table 12 shows the comparison between the

effectiveness of fault localization with and without grouping.

The results in the table show that also grouping can considerably improve the effective-

ness of fault localization. Out of the 10 cases considered, and excluding the 2 cases that

cannot be improved because the faulty entity is already ranked first, applying grouping
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Table 12: Positions of the actual faults in the ranked list produced by the fault localizer
when using the original Ochiai and OBM techniques with and without grouping

Faults
Ochiai OBM Naish1 Naish2

Orig Grouping Orig Grouping Orig Grouping Orig Grouping

exim 1 1 1 1 1 1 1 1
xmail 1 1 1 1 1 1 1 1
sed.fault2 24 17 24 17 24 17 24 17
find 3 2 3 2 3 2 3 2
sed.fault1* 38 23 38 23 38 23 38 23
grep* 40 22 48 26 40 22 40 22
aspell* 6 4 6 4 6 4 6 4
htget* 67 21 67 21 67 21 67 21
gzip.fault2** 84 35 84 35 84 35 84 35
socat** 26 14 26 14 26 14 26 14
rsync** 11 9 11 9 11 9 11 9

always increases the ranking of the faulty entities. In some cases, such as for aspell and

rsync, the improvement is marginal. In most other cases, however, the improvement is

considerable.

Answer to RQ4: For the programs and failures considered, most of my optimizations can

actually improve the effectiveness of fault localization, albeit to different extents. Aggres-

sive filtering and grouping can often increase the ranking of faulty entities, and profiling

information can dramatically improve the effectiveness of fault localization for at least

some types of faults.

5.2.4.5 Limitations and Threats to Validity

One of the main limitations of my approach is that it reuses part of the implementation of

BugRedux, which in turn relies on symbolic execution—a complex and expensive approach.

Despite the inherent technical limitations of symbolic execution, however, recent advances

in this area have considerably improved the practical applicability of these approaches.

Like for every empirical evaluation, there are threats to the internal and external validity

of my results. First, there may be faults in my implementation that might have affected

my results. To address this threat I manually checked many of my results (and did not
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encounter any error). Another threat is that I used my own implementation of the fault-

localization techniques for my studies. Because the techniques considered consist of fairly

simple formulas, I feel confident that I implemented the techniques correctly and in an

unbiased way. Finally, in my studies I considered only ten programs, so my findings may

not generalize to other programs or faults. However, the programs I considered are from

different repositories, were used also in previous research [18,29,51], and seven of the faults

in these programs are real bugs found by real users in the field, that is, real field failures.

I nevertheless plan to perform an additional extensive empirical evaluation, including user

studies, to confirm my results.

5.3 Conclusion

Understanding and debugging field failures is a notoriously difficult task because of the

increasing complexity of modern software systems and the limited availability of informa-

tion from the field (typically limited to crash stacks). To mitigate this problem, and better

help developers identify the likely causes of field failures, I have proposed F3, a technique

that extends my field-failure reproduction technique with automated fault-localization ca-

pabilities. Given a field failure, F3 (1) synthesizes passing and failing executions that are

similar to the original failure and (2) leverages the generated executions to perform fault

localization using a set of suitably optimized fault-localization techniques.

To assess the effectiveness of my approach, I implemented it in a prototype tool and

performed an empirical evaluation on a set of real-world programs and real field failures.

My results, albeit still preliminary, are promising. First, they showed that F3 was able

to synthesize multiple passing and failing executions and successfully use the synthesized

executions for fault localization. Second, the results also showed that the optimizations

that I propose are effective; in many cases, my optimizations were able to (1) reduce the

length of the lists of suspicious program entities reported to developers and (2) improve

the ranks of the faulty program entities in such lists. Although user studies are required to

confirm my findings, both of these improvements have the potential to considerably reduce

the developers’ effort needed to identify the causes of field failures.
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CHAPTER VI

FURTHER IMPROVEMENT ON FAULT LOCALIZATION

In this chapter, I propose two techniques to improve a principle fault localization technique,

formula-based debugging. Formula-based debugging, different from traditional debugging

techniques, can generate as effective, more accurate, and actionable suggestions than tradi-

tional debugging techniques and address some existing problems of such techniques. In the

rest part of this chapter, I will first describe the motivation, introduce the two approaches,

and finally present some preliminary investigations on different aspects of my proposed

approaches.

6.1 Motivation

As discussed in previous chapters, debugging is a notoriously difficult, expensive, and time

consuming development activity. For this reason, there has been a great deal of research

on automated techniques for supporting various debugging tasks. For example, in F3, I

have leveraged statistical debugging (e.g., [12, 15, 19, 53, 57, 58, 60, 73, 87]), which performs

statistical inference on a set of passing and failing test cases and uses the results of such

inference to rank program entities in decreasing order of “suspiciousness” (i.e., likelihood of

being related to the failure). Another type of debugging techniques, various flavors of delta

debugging (e.g., [83–85]), which aims to identify failure causes through differencing, can be

also used for debugging purposes. Unfortunately, these techniques mostly rely on heuristics

and intuitions, which would introduce some noises and make the final result difficult to

consume by developers as shown in several previous studies [52,68].

To mitigate this problem, more recently, there has been a considerable interest in tech-

niques that can perform fault localization in a more principled way (e.g., [26, 39, 54, 76]).

These techniques, collectively called formula-based debugging, model faulty programs and

failing executions as formulas and perform fault localization by manipulating and solving

these formulas. As a result, they can provide developers with the possible location of the
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fault, together with a mathematical explanation of the failure (e.g., the fact that an ex-

pression should have produced a different value or that a different branch should have been

taken at a conditional statement).

One technique of particular interest, in this arena, is Jose and Majumdar’s BugAs-

sist [54]. Given a faulty program, a failing input, and a corresponding (violated) assertion,

BugAssist performs fault localization by constructing an unsatisfiable Boolean formula that

encodes (1) the input values, (2) the semantics of (a bounded version of) the faulty pro-

gram, and (3) the assertion. It then uses a pMAX-SAT solver to find maximal sets of clauses

in this formula that can be satisfied together and outputs the complement sets of clauses

(CoMSS) as potential causes of the error. Intuitively, each set of clauses in CoMSS indicates

a corresponding set of statements that, if suitably modified (e.g., replacing the statements

with angelic values [24]), would make the program behave correctly for the considered input.

Although effective, BugAssist is extremely computationally expensive, as it builds a for-

mula for (a bounded unrolling of) all possible paths in a program. This can lead to formulas

with millions of terms [54] and high computational cost even for small programs. More-

over, BugAssist, like most formula-based debugging approaches, does not take into account

passing test cases, thus missing two important opportunities. First, passing executions can

help identify statements, and thus parts of the formulas, that are less likely to be related

to the fault, which can help optimizing the search for a solution to such formulas. Second,

passing executions can help filter out locations that may be potential fixes for the failing

executions considered but could break previously passing test cases if modified [24].

In this chapter, I propose two possible ways of addressing these issues and improving

formula-based debugging approaches: on-demand formula computation (OFC) and clause

weighting (CW). OFC is a novel on-demand algorithm that can dramatically reduce the

number of paths encoded in a formula, and thus the overall complexity of such formula and

the cost of computing a pMAX-SAT solution for it. Intuitively, my algorithm (1) builds

a formula for the path in the original failing trace, (2) analyzes the formula to identify

additional relevant paths to consider, (3) expands the formula by encoding these additional

paths, (4) repeats (2) and (3) until no more relevant paths can be identified, at which
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point it (5) reports the computed solution. CW accounts for the information provided by

passing test cases by assigning weights to the different clauses in an encoded formula based

on the suspiciousness values computed by a statistical fault localization technique. Doing

so has the potential to improve the accuracy of the results by helping the solver compute

CoMSSs that are more likely to correspond to faulty statements. (The guidance provided

to the solver can also unintentionally improve the efficiency of the approach, as we show in

Section 6.3.2.1.)

To assess the effectiveness of OFC and CW, I selected BugAssist as a baseline and con-

sidered four different formula-based debugging techniques: the original BugAssist, BugAs-

sist+CW, OFC, and OFC+CW. I implemented all four techniques in a tool that works on

C programs and used the tool to perform an empirical study. In the study, I first applied

the four techniques to 52 versions of two small programs to assess several tradeoffs involved

in the use of CW and OFC and compare with related work. My results are encouraging, as

they show that CW and OFC can improve the performance of BugAssist in several respects.

First, the use of CW resulted in more accurate results—in terms of position of the actual

fault in the ranked list of statements reported to developers—in the majority of the cases

considered. Second, CW and OFC were able to reduce the computational cost of BugAssist

by 27% and 75% on average, respectively, with maximum speedups of over 70X for OFC.

To further demonstrate the practicality of CW and OFC, I also performed a case study

on a real-world bug in Redis, a popular open source project. Overall, the results show

that CW and OFC are promising, albeit initial, steps towards more practically applicable

formula-based debugging techniques and motivate further research in this direction.

6.2 Improving Formula-based Debugging

In this section, I present two approaches for improving formula-based debugging: clause

weighting and on-demand formula computation. We discuss them in detail using BugAs-

sist [54] as a representative of state-of-the-art formula-based debugging techniques and our

baseline.
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6.2.1 Clause Weighting (CW)

CW consists of using the information from passing executions to inform a wpMAX-SAT

solver. More precisely, CW leverages the suspiciousness values computed by a statistical

fault localization technique and assigns to each program entity en, and thus to the corre-

sponding clause in the program formula, a weight inversely proportional to its suspiciousness

susp(en): weight(en) = 1/susp(en). If the suspiciousness value of an entity is zero, which means

that the entity is only executed by passing tests, CW assigns to it the largest possible weight.

By assigning different weights to different clauses, CW transforms the original pMAX-SAT

problem in BugAssit into a wpMAX-SAT problem. The rationale for CW is that, by the

definition of wpMAX-SAT, clauses with higher weights are more likely to be included in an

MSS (i.e., less likely to be identified as causes of the faulty behavior), while clauses with

lower weights are less likely to be included in an MSS (i.e., more likely to be included in a

CoMSS and thus be identified as causes of the faulty behavior).

Formula-based debugging techniques such as BugAssist consider all possible pMAX-

SAT solutions equally and simply report them. Conversely, by leveraging the heuristics in

statistical fault localization, CW is more likely to rank the set of clauses corresponding to

the fault at the top of the list of solutions, thus reducing developers’ debugging effort. This

potential advantage, however, comes at a cost. Solving wpMAX-SAT problems can be com-

putationally more expensive than solving a pMAX-SAT problem, which can outweigh CW’s

benefits. To understand this tradeoff, in the empirical evaluation in this chapter, I assess

how CW affects the accuracy and efficiency of formula-based debugging (see Section 6.3.2.1).

6.2.2 On-demand Formula Computation (OFC)

OFC is my second, and more substantial, improvement over traditional formula-based de-

bugging techniques. Figure 7 shows an overall view of OFC and its workflow. The inputs to

the algorithm are a faulty program, represented as an Inter-procedural Control Flow Graph

(ICFG), and a test suite that contains a set of passing tests and one failing test. As it is

common practice for debugging techniques, we assume that a failure can be expressed as

the violation of an assertion in the program. Given these inputs, OFC produces as output
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Figure 7: Overview of on-demand formula computation

a set of clauses and their corresponding program entities (i.e., branches and statements).

These are entities that, if suitably modified, would make the failing execution pass. The

expressions in the reported clauses provide developers with additional information on the

failure, and can be considered a “mathematical explanation” of the failure.

As Figure 7 shows, OFC consists of three main steps. The key idea behind OFC is

to reason about the failure (and the program) incrementally, by starting with the entities

traversed in a single failing trace, computing CoMSS solutions for the partial program

exercised by the trace, and then expanding the portion of the program considered in the

analysis when such solutions indicate that additional control-flow paths should be taken into

consideration to “explain” the failure. Specifically, in its first step (Section 6.2.2.1), OFC

generates a new trace (the original failing trace, in the first iteration) and suitably updates

the trace formula, a formula that encodes the semantics of the traces generated so far.

OFC’s second step (Section 6.2.2.2) computes the CoMSSs of the (unsatisfiable) formula

built in the previous step. Finally, in OFC’s third step, the algorithm checks whether there

is any additional relevant branch to consider in the program (Section 6.2.2.3). If so, OFC

returns to Step 1. Otherwise, it computes all possible CoMSSs of the final formula to report

to developers the set of relevant clauses and their corresponding program entities.

Algorithm 3 shows the main algorithm, which takes as inputs the ICFG of the faulty

program and the program’s test suite and performs the three steps we just described. I
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Input : ICFG: ICFG of the faulty program
TestSuite: test suite for the program

Output: faulty statements and their corresponding clauses
1 begin
2 FIN ← GetFailingInput(TestSuite)
3 ASSERT ← GetFailingAssertion(TestSuite)
4 TF ← {}
5 SP ← {}
6 clause origin ← {}
7 visited branches ← {}
8 flip br ← null

// Step 1

9 new trace ← TraceGenerator(FIN, visited branches, flip br)
10 flip br ← null
11 TF ← FormulaGenerator(new trace, TF, ICFG, SP, clause origin)

// Step 2

12 CoMSSs ← Solver(FIN, ASSERT, TF )
// Step 3

13 foreach CoMSS in CoMSSs do
14 foreach clause in CoMSS do
15 st ← clause origin(clause)
16 if st is a conditional statement then
17 ¡true br, false br¿ ← getBranches(st)
18 if visited branches(true br)==null then
19 flip br ← false br
20 go back to Step 1

21 end
22 if visited branches(false br)==null then
23 flip br ← true br
24 go back to Step 1

25 end

26 end

27 end

28 end
29 foreach CoMSS in CoMSSs do
30 foreach clause in CoMSS do
31 report clause and clause origin(clause)
32 end

33 end

34 end

Algorithm 3: OFC

discuss each step in detail in the rest of this section.

6.2.2.1 Trace Generator and Formula Generator

After an initialization phase, OFC iterates Steps 1, 2, and 3. Step 1 performs two tasks:

trace generation and formula generation.

Trace Generator In its first part, Step 1 invokes the Trace Generator (Algorithm 4). In

the first iteration of the algorithm, Trace Generator generates the trace corresponding to

the failing input. In subsequent iterations, it generates a trace that covers the new program

entities identified as relevant by Step 3 (see Section 6.2.2.3), so as to augment the scope of

the analysis. The inputs to TraceGenerator are the failing input, the map that associates
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Input : FIN : failing input
visited branches: map from branches to traces that covered them
flip br : branch for which a new trace must be generated

Output: new trace: newly generated trace
1 begin
2 if flip br==null then
3 new trace ← Execute(Input, null, null)
4 else
5 old trace ← visited branches(flip br)
6 new trace ← Execute(Input, old trace, flip br)

7 end
8 foreach br in new trace do
9 if visited branches(br)==null then

10 visited branches(br) ← new trace
11 end

12 end
13 return new trace

14 end

Algorithm 4: TraceGenerator

each branch covered so far with the trace in which it was first covered, and the new relevant

branch for which a trace must be generated (by flipping it).

If flip br is null, which only happens in the first iteration of the algorithm, TraceGener-

ator generates a trace by simply providing the failing input to the program and collecting

its execution trace (line 3). Otherwise, for subsequent iterations, TraceGenerator retrieves

old trace (line 5), the trace that first reached branch flip br and generates a new trace,

new trace (line 5). To generate the trace, the algorithm provides the failing input to the

program, forces the program to follow old trace up to flip br, and flips flip br so that the

program follows its alternative branch (using execution hijacking [77]). The algorithm also

updates map visited branches by adding to it an entry for every branch newly covered by

new trace, including flip br ’s alternative branch (lines 8–12).

Formula Generator After generating a trace, OFC invokes FormulaGenerator (Algo-

rithm 5), which constructs a new formula TF, either from scratch (in the first iteration) or

by expanding the current formula based on the program entities in new trace (in subsequent

iterations).

The inputs to FormulaGenerator are the ICFG of the faulty program, the current trace

formula, the portion of the program currently considered (and encoded in the current trace

formula), the trace newly generated by TraceGenerator, and a map from clauses to state-

ments that originated them.
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Input : ICFG: ICFG of the faulty program
TF : current trace formula
SP : portion of the program currently considered
new trace: newly generated trace

Output: TF : updated trace formula
SP : updated portion of the program currently considered

1 clause origin: map from clauses to statements that originated them
2 begin
3 foreach st ∈ new trace do
4 if st /∈ SP then
5 SP ← SP + st
6 if st is a conditional statement then
7 predicatest ← GetPredicate(st)
8 clausest ← (guardst = predicatest)

9 else
10 if st is a φ function then
11 phi ← φ function in st
12 cs ← φ’s conditional statement
13 guardcs ← cs’s condition
14 clausest ← ((guardcs ∧ (stLHS = stRHS,t)) ∨ (¬guardcs ∧ (stLHS = stRHS,f )))

15 else
16 clausest ← (stLHS = stRHS)
17 end

18 end
19 clause origin(clausest) = st
20 TF ← TF ∧clausest
21 end

22 end
23 return TF

24 end

Algorithm 5: FormulaGenerator

In its main loop, FormulaGenerator processes each statement st in the new trace,

new trace, one at a time. If st is not yet part of SP, the portion of the program cur-

rently considered, the algorithm (1) adds st to SP, (2) encodes its semantics in a new

Boolean clause clausest, (3) conjoins clausest and TF, and (4) updates map clause origin

by mapping clausest to st.

Similar to other symbolic analyses (e.g., [27, 54, 76]), OFC operates on an SSA form

of the faulty program (see Section 2.4). The formula generator models three types of

statements in the program (and its trace): conditional statements (e.g., line 1 in Figure 8),

definitions that involve a φ function (e.g., line phi1 in Figure 8 (right)) and definitions

that do not involve a φ function. Intuitively, whereas the last type of statements represent

traditional data-flow information about uses and definitions, the other two types encode

control-flow information about branch conditions and φ function selection conditions. To

perform a correct semantic encoding, when deriving clausest from st, FormulaGenerator

must treat these three types of statements differently.
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If st is a conditional statement with predicate predicatest, the algorithm retrieves such

predicate from st (line 7) and encodes st as (guardst=predicatest), where guardst is a Boolean

variable that represents st ’s condition (line 8).

If st involves a φ function phi, the algorithm generates a clause (guardcs ∧ (stLHS =

stRHS,t)) ∨ (¬guardcs ∧ (stLHS = stRHS,f )), where (1) cs is phi ’s conditional and, similar

to above, guardcs represents cs’s condition, (2) stLHS is the variable being defined at st,

and (3) stRHS,t and stRHS,f are the definitions selected by phi along cs’s true and false

branches. Basically, this clause explicitly represents the semantics of phi and encodes both

the data- and the control-flow aspects of the execution, which allows OFC to handle faults

in both. Algorithm 5 performs this encoding at lines 10–14.

Finally, if st is a traditional assignment statement, the algorithm encodes st as stLHS =

stRHS , the equivalence relation between the variable on st ’s lefthand side and the expression

on its righthand side (line 16). Because each assignment in SSA form defines a new variable,

clausest can be simply conjoined with the current formula TF (line 20).

After processing a statement st and generating the corresponding clause clausest, the al-

gorithm records that clausest was generated from st and suitably updates the trace formula

TF (lines 19 and 20). Finally, after processing all statements in new trace, FormulaGener-

ator returns TF.

6.2.2.2 Solver

In its second step, OFC leverages a pMAX-SAT solver to find all possible causes of the failure

being considered. To do so, it invokes function Solver and passes to it the failing input,

the failing assertion, and the trace formula constructed in Step 1 (line 12 of Algorithm 3).

Function Solver will first generate a formula by conjoining the input clauses (i.e., clauses

that assert that the input is the failing input FIN ), the current trace formula TF, and

the failing assertion ASSERT. Because FIN causes the program to fail, that is, to violate

ASSERT, the resulting formula is unsatisfiable.

To suitably define the pMAX-SAT problem, Solver encodes (1) the input clauses and

the failing assertion as hard clauses, (2) the clauses in TF generated from φ functions as
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hard clauses, and (3) the other clauses in TF as soft clauses. The input clauses and the

assertion are encoded as hard clauses because the failure could be trivially eliminated by

changing the input or the assertion, which would not provide any information on where

the problem is in the program. Encoding clauses generated by φ functions as hard clauses,

conversely, ensures that control-flow related information is kept in the results, which is

necessary to handle control-flow related faults. At this point, function Solver passes the so

defined pMAX-SAT problem to an external solver and retrieves from it all possible CoMSSs

for the problem (see Section 2.3).

If CW were also used, OFC would generate a wpMAX-SAT problem instead by assigning

a weight to each soft clause based on the suspiciousness of the corresponding program entity

(i.e., clause origin(clause)), as described in Section 6.2.1.

6.2.2.3 Result Analyzer

OFC’s third step takes the set of CoMSSs for the failure being investigated, produced by

Step 2, and generates a report with a set of program entities (or an ordered list of entities, if I

use CW and a wpMAX-SAT solver) and corresponding clauses. The entities are statements

that, if suitably modified, would make the failing execution pass (i.e., the potential causes of

the failure being investigated). The expressions in the clauses associated with the statements

provide developers with additional information on how the statements contribute to the

failure, and as stated above, can thus be seen as a mathematical explanation of the failure.

This part of OFC, corresponding to lines 13–27 of Algorithm 3, iterates through each

clause of each CoMSS computed in Step 2. For each clause, it first retrieves the correspond-

ing statement st. If st is a conditional statement, the predicate in the conditional statement

is potentially faulty, and taking a different branch may fix the program. To account for this

possibility, the algorithm checks whether the conditional has one branch that has not been

executed in any previously computed trace and, if so, expands the scope of the analysis by

selecting that branch as a new branch to analyze and going back to Step 1 (lines 16–24).

Step 1 would then add such branch to the list of relevant branches, generate a new trace,

constructs a new formula, and perform an additional iteration of the analysis. Conversely, if
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int P(int x, int y) {
1. if (x>=0)

2. a = x;

3. else

4. a = -x;

5. if (y<5)

6. b = a+1;

7. else

8. b = a+2;

9. assert(b<=a);

}

int P(int x1, int y1) {
1. if (x1>=0)

2. a1 = x1;

3. else

4. a2 = -x1;

phi1. a3 = φ1(a1,a2);

5. if (y1<5)

6. b1=a3+1;

7. else

8. b2=a3+2;

phi2. b3 = φ2(b1,b2);

9. assert(b3<=a3);

}

Figure 8: Example code in normal (left) and SSA (right) form
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Figure 9: Control flow graph of P (a) and partial P considered during the first (b) and
second (c) iteration of OFC

both branches have already been covered, or st is not a conditional statement, the algorithm

continues and processes the next clause.

If no clause in any CoMSS contains a conditional statement for which one of the branches

has not been covered, it means that the analysis already considered the portion of the pro-

gram relevant to the failure, so the algorithm can terminate and produce a report (lines 29–

32). To do so, OFC iterates once more through the set of CoMSSs computed during its last

iteration. For each clause in each CoMSS, OFC reports it to developers, together with its

corresponding statement, as a possible cause (and partial explanation) of the failure.
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6.2.2.4 Illustrative Example

I now recap how the different parts of OFC work together using a simple program P as an

illustrative example. Figure 8 shows P (left) and its SSA form (right), whereas Figure 9(a)

shows the P ’s Control Flow Graph (CFG). P takes two integer inputs and contains an

assertion at line 9. If we provide P with input {x = 0, y = 0}, the assertion is violated, as the

execution results in b = 1 and a = 0 at line 9.

This is the starting point of OFC: A faulty program in SSA form (P), a failing test case

({x1 = 0, y1 = 0}), and an assertion violated by the failing test case (b3 ≤ a3). Given these

inputs, OFC operates in three iterative steps.

In Step 1 of the first iteration, the Trace Generator feeds the failing input to P, which

results in the failing trace {1, 2, phi1, 5, 6, phi2, 9}. This trace identifies the partial program

shown in Figure 9(b), where the entities drawn in boldface are in the partial program, and

those drawn with dashed lines are ignored. (For simplicity, in the CFG I do not show nodes

corresponding to φ functions.) Given the generated trace, the Formula Generator computes

a trace formula that encodes the semantics of the partial program with respect to the trace:

TF1 =(guard1 = (x1 ≥ 0)) ∧ (a1 = x1)∧

((guard1 ∧ (a3 = a1)) ∨ (¬guard1 ∧ (a3 = a2)))∧

(guard2 = (y1 < 5)) ∧ (b1 = a3 + 1)∧

((guard2 ∧ (b3 = b1)) ∨ (¬guard2 ∧ (b3 = b2)))

In the trace, the second and fifth clauses correspond to statements that do not involve

φ functions. The first and fourth clauses correspond to the predicates at lines 1 and 5 and

contain two extra variables, guard1 and guard2, that represent such predicates. The third

and sixth clauses represent the two statements at lines phi1 and phi2, in which φ1 and

φ2 define a3 and b3. These clauses encode the information on which variable a φ function

may select and under which condition (i.e., the outcome of the guard), as described in

Section 6.2.2.1.
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Step 2 of the algorithm then conjoins input conditions and failing assertion with TF1

to obtain the following complete, unsatisfiable formula: CF1 = (x1 = 0)∧ (y1 = 0)∧ TF1 ∧ (b3 ≤ a3)

The algorithm now marks input clauses, failing assertion, and the two clauses generated

from φ functions as hard clauses, marks all other clauses in TF1 as soft clauses, and feeds the

result to a pMAX-SAT solver. In this case, the solver would return two CoMSSs: {b1 = a3+1}

and {guard2 = (y1 < 5)}.

When analyzing the set of clauses in all the CoMSSs, the third step of the algorithm

finds that there is one clause associated with a conditional statement c (the one at line 5,

in this case). It thus identifies the branches corresponding to c (i.e., branches (5, 6) and

(5, 8) in the CFG), and checks whether one of the branches was not visited before. This is

the case for branch (5, 8), so the algorithm selects the unvisited branch as the branch to be

expanded and returns to Step 1.

In the second iteration of the algorithm, the Trace Generator re-executes P with the

same failing input, but forces the execution to follow branch (5, 8) at conditional statement

5 [77], which results in a new trace: {1, 2, phi1, 5, 8, phi2, 9}. Given this trace, the algorithm

first adds the newly covered program entities to the partial program (see Figure 9(c)) and

then computes a new trace formula based on the expanded partial program. Since the

execution of statement 8 instead of statement 6 is the only difference between this trace

and the one generated in the previous iteration, the new trace formula is identical to TF1,

except for clause (b1 = a3 + 1) (corresponding to statement 6), which is replaced by clause

(b2 = a3 + 2) (corresponding to statement 8). This trace formula, when conjoined with TF1,

would thus result in the trace shown below. (In practice, OFC simply conjoins the previous

formula and the clause(s) corresponding to the new statement(s), which produces the same

result, as explained in Section 6.2.2.1.)
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TF2 =(guard1 = (x1 ≥ 0)) ∧ (a1 = x1)∧

((guard1 ∧ (a3 = a1)) ∨ (¬guard1 ∧ (a3 = a2)))∧

(guard2 = (y1 < 5)) ∧ (b1 = a3 + 1)∧

((guard2 ∧ (b3 = b1)) ∨ (¬guard2 ∧ (b3 = b2))) ∧ (b2 = a3 + 2)

Similar to the first iteration, the algorithm then conjoins input conditions (TF2) and

failing assertion to obtain a new unsatisfiable formula, marks hard and soft clauses, and

feeds the formula to the pMAX-SAT solver, which would return two CoMSSs: {b1 = a3 + 1}

and {guard2 = (y1 < 5), b2 = a3 + 2}.

Step 3 of the algorithm then checks whether any of these clauses is associated with a

conditional statement cs and, if so, whether cs has any outgoing branches not yet visited

by a trace. In this case, both of the branches corresponding to the first clause in the

second CoMSS have been covered in our analysis. Therefore, the algorithm stops iterating

and reports to developers these two CoMSSs, together with their corresponding program

entities: {line 6} and {line 5, line 8}.

This would inform developers that suitably changing either (1) the statement at line 6

or (2) both the conditional statement at line 5 and the statement at line 8 could fix the

program, so that input (x1 = 0, y1 = 0) would not violate the assertion at line 9. The

clauses associated with the statements would provide additional information that could

help understand the fault and find a fix—a (partial) mathematical explanation of how the

statements contribute to the failure.

6.2.2.5 Further Considerations

Compared to BugAssist, OFC tends to generate a simpler formula that is as effective as

one that encodes the whole program but less expensive to solve. Considering the example,

for instance, OFC explored only 2 of the 4 paths in the program. Compared to an all-paths

analysis, OFC included only relevant program entities in the trace formula: the assertion

violation in the example is independent from the outcome of the predicate at statement 1,
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and my algorithm successfully identifies the statement as irrelevant and avoids exploring

both of its branches. However, although I expect the cost of finding solutions for a formula

constructed by OFC to be lower than that of solving the formula generated by an all-paths

analysis, OFC can perform a number of iterations when constructing the formula, and thus

make multiple calls to the solver. Therefore, whether OFC is more efficient than an all-paths

analysis depends on the number and cost of iterations it performs. I study this tradeoff in

the empirical evaluation of OFC (see Section 6.3.2.2).

Compared to approaches that consider only the failing trace (e.g., [26, 39]), OFC can

conservatively identify all parts of the program that are relevant to the failure. In the

example, if the algorithm had stopped after the first iteration, it would have missed the

second CoMSS: {guard2 = (y1 < 5), b2 = a3 + 2}. That is, by reasoning about the original failing

trace alone, developers could only infer that the fault may be related to the conditional

statement at line 5. Conversely, by considering also the additional trace, OFC can discover

that a fix involving that conditional statement should also consider possible changes to

statement 8. OFC can thus make formula-based debugging more efficient without losing

accuracy and effectiveness.

Compared to more traditional debugging techniques, OFC is likely to produce more

accurate results. If I applied dynamic slicing to the example, for instance. A dynamic slice

computed for the failing assertion at line 9 would include not only statements 5 and 6,

which is correct, but also statements 1 and 2, which are irrelevant for the failure.

6.2.2.6 Additional Details and Optimizations

Handling Multiple Failing Inputs Although it is defined for a single failing input, OFC

can take advantage of the presence of multiple failing tests for the same fault. Because, by

definition, the faulty statement(s) should be executed by all failing tests and be responsible

for all observed failures, OFC can handle multiple failing inputs as follows: (1) generate

a report for each individual failing input, (2) identify the potential faulty entities (and

corresponding clauses) that appear in all individual reports, and (3) report to developers

only these entities, ranked based on the average of their original ranks in the individual

78



reports.

Loop Unrolling In the presence of loops, the size of a formula is in general unbounded.

As it typical for symbolic analysis approaches (e.g., [27,54,62]), in OFC I address this issue

by performing loop unrolling [13]. One advantage of OFC over other all-paths analyses is

that it can decide how many times to unroll a given loop based on concrete executions,

rather than on some arbitrary threshold. Nevertheless, for practicality reason, OFC still

needs to define an upper bound for loop unrolling, to limit the overall size of trace formulas.

Dynamic Symbolic Execution OFC, like dynamic symbolic execution [42, 74], may

replace symbolic variables in the trace formula with their corresponding concrete values,

so as to allow the solver to handle formulas that go beyond its theories (e.g., non-linear

expressions, dynamic memory accesses). Doing so makes the approach more practical, but

can introduce unsoundness (in the form of discrepancies between the actual semantics of

the program and the semantics encoded in the formula) and reduce the number of possible

solutions the solver can compute. This can result in both false positives—program entities

that, even if suitably changed, could not eliminate the failure at hand—and false negatives—

solutions that do not include the faulty statement(s).

Solution Space Pruning Because the number of CoMSSs for a given MAX-SAT problem

may be too large and affect the ability of OFC to enumerate and analyze all solutions in

a reasonable amount of time, OFC allows developers to specify an upper bound for the

number of clauses in a CoMSS (i.e., the number of statements reported together as a single

fault) and terminates the search for new solutions when the solver starts reporting CoMSSs

that exceed this bound. The rationale is that a potential bug generally involves a limited

number of statements, whereas a CoMSS that contains a large number of clauses suggests

a large semantic change in the program (which may be able to eliminate a failure but is

usually not an ideal fix).
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6.3 Preliminary Evaluation

To evaluate CW and OFC, I have developed a prototype tool for C programs that imple-

ments four different formula-based debugging techniques: BugAssist (BA), BugAssist with

clause weighting (BA+CW), on-demand formula computation (OFC), and on-demand for-

mula computation with clause weighting (OFC+CW). I have then empirically investigated

the following research questions:

• RQ1: Does BA+CW produce more accurate results than BA? If so, what is CW’s effect

on efficiency?

• RQ2: Does OFC improve the efficiency of an all-paths formula-based debugging tech-

nique?

• RQ3: Does OFC+CW combine the benefits of OFC and CW? If so, can it handle

programs that an all-paths technique could not handle?

• RQ4: Can OFC+CW scale to larger programs than an all-paths technique? If not, what

are the major limitations?

I now discuss my evaluation setup and the results of the study.

6.3.1 Evaluation Setup

6.3.1.1 Implementation

I implemented OFC, as presented in Section 6.2.2, in Java and C. My tool leverages the

LLVM compiler infrastructure (http://llvm.org/) to transform programs into SSA form

and add instrumentation that (1) dumps dynamic traces and concrete program states and

(2) performs execution hijacking [77] to force the program along specific branches in the

Trace Generator. I implemented BA as a version of OFC that builds a formula for all

(bounded) paths in the program instead of operating on demand. I implemented Ochiai [11],

the statistical fault localization technique that I use for CW, as a Java program that operates

directly on the dumped dynamic traces. Finally, to handle wpMAX-SAT and pMAX-SAT
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problems, I implemented interfaces to invoke the Yices SMT solver [36] and the Z3 theorem

prover [7].

Implementing the OFC algorithm, and in particular the Trace Generator and the For-

mula Generator components, is extremely challenging both from the conceptual and the

engineering standpoint [27]. To avoid spending too much development effort, I decided to

build a prototype that implements OFC completely, but has some limitations when handling

some constructs of the C language related to heap memory management.

6.3.1.2 Benchmarks

For the evaluation, I selected two programs and faults from the SIR repository [2] and a real

fault from the Redis open-source project [8]. The first two benchmarks, from SIR, consist

of multiple (faulty) versions of two programs: tcas (41 versions, ˜200 LOC) and tot info (11

versions, ˜500 LOC). These programs also come with test cases and a golden (supposedly

fault-free) version that can be used as an oracle. I selected these programs for two main

reasons. First, tcas is an ideal subject for my evaluation because it allows me to find

all possible solutions of the program formulas considered and thus precisely compute the

savings that OFC achieves in terms of complexity reduction. (This is in general impossible

for larger, more complex programs.) Second, these two programs were also used to evaluate

BugAssist [54], which lets me directly compare my results with those of a state-of-the-art

all-paths formula-based technique in terms of accuracy and efficiency. The third benchmark

I considered is a faulty module of Redis, a widely used in-memory key-value database, which

also comes with a set of test cases. To address the last research question, RQ4, I also ran

my tool on larger benchmarks in the SIR repository.

6.3.1.3 Study Protocol

For each faulty program version considered, I proceeded as follows. First, I identified

passing and failing test cases for that version. For tcas and tot info, I did so by defining

the assertion for a test using the output generated by the same test when run against

the golden implementation. For the bug in Redis, I used the bug description [8] and the

corresponding test [9]. I then ran all programs instrumented to collect coverage information
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for all passing and failing tests at the same time. I used this coverage information to compute

the suspiciousness values for the branches and statements in each program version using

the Ochiai metric [11]. These are the values that BA+CW and OFC+CW use to assign

weights to the clauses in the program formula. Second, for each failing input, I ran all four

techniques on the faulty version. Because the all-paths techniques timed out or could not

build a formula for the bugs in tot info and Redis (see Section 6.3.2.3 for details), I could

only investigate RQ1 and RQ2 on tcas, whereas I used tcas, tot info, and Redis for RQ3.

(For fairness, I note that Reference [54] reports results for 2 versions of tot info. However,

the authors mention that those results were obtained working on a program slice, and there

are no details on how the slice was computed and on which version, so I could not replicate

them using either our or their implementation of BA.) For each faulty version and for each

technique that successfully ran on it, the technique generated a report for the developers.

To do a complete assessment of the performance of the techniques, I also recorded the

average CPU time of each technique for each failing input, the number of iterations of the

OFC algorithm, whether the generated report contained the fault, and, if so, the rank of

the fault in the report.

6.3.2 Results and Discussion

6.3.2.1 RQ1—BA+CW Versus BA

To answer this research question, I compared the accuracy and the computational cost of

BA+CW and BA to evaluate the impact of leveraging information from statistical fault

localization. To do so, I ran both techniques on the 41 faulty versions of tcas and computed

the results as described in Section 6.3.1. Table 13 presents these results. The columns in the

table show the version ID, the number of lines of code a developer would have to examine

before getting to the fault, and the average CPU time consumed by BA and BA+CW to

compute their results. For comparison purposes, in the last column I also report the results

of a traditional fault-localization technique (Ochiai). For tcas.v3, for instance, it took 292

seconds (BA) and 183 seconds (BA+CW) to generate the results, and developers would have

to examine 8.5 lines of code (BA), 1 line of code (BA+CW), or 3 lines of code (Ochiai).
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Table 13: Results for BA and BA+CW when run on tcas.

Version BA BA+CW Ochiai Version BA BA+CW Ochiai

rank time rank time rank rank time rank time rank

v1 7.5 26s 2 27s 4 v22 4 7s 5 7s 22
v2 4 15s 4 16s 3 v23 5.5 15s 10 12s 23
v3 8.5 292s 1 183s 3 v24 7.5 30s 8 23s 23
v4 8 11s 3 11s 1 v25 5.5 297s 4 216s 2
v5 7.5 352s 3 323s 18 v26 8 160s 5 123s 21
v6 7.5 569s 5 316s 4 v27 9.5 443s 4 393s 21
v7 8 484s 8 238s 8 v28 5 41s 3 40s 2
v8 7.5 21s 13 18s 48 v29 5 25s 1 27s 20
v9 4.5 18s 10 15s 23 v30 5 11s 6 14s 20
v10 8 125s 3 96s 4 v31 8.5 958s 2 909s 4
v11 5.5 130s 1 91s 21 v32 8.5 171s 1 145s 3
v12 8 22s 11 20s 49 v33 6 79s 1 70s 3
v13 8 24s 7 21s 1 v34 7.5 164s 5 144s 23
v14 7 28s 1 28s 1 v35 5 38s 3 40s 2
v15 6.5 14s 5 14s 21 v36 2.5 19s 1 17s 1
v16 8 331s 12 228s 49 v37 7.5 127s 1 136s 3
v17 8 626s 8 285s 49 v38 6.5 8s 1 8s 2
v18 6 378s 6 245s 49 v39 6 244s 4 272s 2
v19 8 399s 5 167s 49 v40 5.5 219s 3 219s 4
v20 8 504s 8 247s 21 v41 7.5 6s 2 5s 6
v21 7.5 252s 8 194s 21 Average 6.5 187s 4.7 137s 17

Note that, for BA+CW, the number of lines of code to examine corresponds to the actual

rank of the faulty line of code in the report produced by the technique. BA, however, does

not rank the potentially faulty lines of code, but simply reports them as an unordered set

to developers. Therefore, the number in the table corresponds to the number of lines of

code developers would have to investigate if I assume they examine the entities in the set

in a random order (i.e., half of the size of the set).

As the results in Table 13 show, both techniques were able to identify the faulty state-

ments for all versions considered. I can also observe that both BA and BA+CW pro-

duced overall more accurate results than Ochiai (significance level of 0.05 for both BA and

BA+CW for a paired t-test). Although this was not a goal of the study, it provides evi-

dence that formula-based techniques, by reasoning on the semantics of a failing execution,

can provide more accurate results than a purely statistical approach. As for the comparison

of BA and BA+CW, BA+CW produced better results than BA, with a significance level

of 0.05 for a paired t-test. On average, a developer would have to examine 4.7 statements
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per fault for BA+CW versus 6.5 for BA. By leveraging the suspiciousness values computed

by statistical fault localization, BA+CW can thus outperform BA in most cases (33 out

of 41). For the 8 cases in which BA+CW did not outperform BA, manual analysis of the

results identified one main reason. In some cases, the weights computed by fault localization

were too inaccurate and caused the solver to first produce CoMSSs that did not include the

actual faulty statements. Despite these negative cases, the overall performance of BA+CW

is remarkable and justifies the use of statistical fault-localization information. BA+CW

ranked the faulty statement first for 9 out of 41 versions, among the top 3 statements in

another 8 cases, and at a position greater than 10 in only 3 cases.

The data in Table 13 also allow me to investigate the second part of RQ1, that is, the

effect of CW on efficiency. As I discussed in Section 6.2.1, solving wpMAX-SAT problems

may be computationally more expensive than solving a pMAX-SAT problem, so the use of

CW may negatively affect the efficiency of formula-based debugging. As the table shows,

on average BA+CW performs significantly better than BA (137s versus 187s, significance

level of 0.05). Although these results may seem counterintuitive, I discovered that the extra

information provided by the weights can in many cases unintentionally help the solver find

CoMSSs more efficiently.

Answer to RQ1: In summary, my results provide initial evidence that CW can improve

formula-based debugging, both in terms of accuracy and in terms of efficiency.

6.3.2.2 RQ2—OFC Versus BA

To investigate RQ2, I compared OFC and BA in terms of efficiency. As I did for RQ1, I

ran the two techniques on the 41 faulty versions of tcas and measured their performance.

The results are shown in Table 14. The table shows the version ID, the average CPU time

spent by BA and OFC, respectively, on each failing input, the average number of iterations

(i.e., path expansions) of the OFC algorithm, and the average CPU time spent by OFC in

each iteration. For example, for a failing input in tcas.v1, it took, on average, 26 seconds

(BA) and 7 seconds (OFC) to generate the results, OFC iterated 9 times, and, for each

expansion, it took OFC 0.8 seconds to find all CoMSS solutions.
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Table 14: Performance results for BA and OFC on tcas
Version BA OFC #Iteration Time per iteration Version BA OFC #Iteration Time per iteration

v1 26s 7s 9 0.8s v22 7s 6s 13.2 0.4s
v2 15s 38s 12 3.2s v23 15s 24s 11 2.1s
v3 292s 19s 14 1.4s v24 30s 7s 10 0.7s
v4 11s 6s 9.2 0.6s v25 297s 244s 12 20.3s
v5 352s 15s 13.4 1.1s v26 160s 17s 13 1.3s
v6 569s 17s 13 1.3s v27 443s 15s 13.4 1.1s
v7 484s 104s 14.8 7.1s v28 41s 24s 11.2 2.2s
v8 21s 5s 10 0.5s v29 25s 6s 9.8 0.6s
v9 18s 28s 12 2.4s v30 11s 24s 11 2.2s
v10 125s 22s 14 1.6s v31 958s 33s 10.8 3s
v11 130s 11s 8.4 1.3s v32 171s 14s 13 1.1s
v12 22s 17s 14.2 1.2s v33 79s 178s 13 13.7s
v13 24s 15s 13.3 1.2s v34 164s 21s 13 1.6s
v14 28s 20s 13.8 1.4s v35 38s 22s 14 1.5s
v15 14s 20s 13.2 1.5s v36 19s 11s 11.2 1s
v16 331s 16s 13 1.2s v37 127s 251s 14 18s
v17 626s 73s 14.2 5.1s v38 8s 95s 16 5.9s
v18 378s 96s 13.4 7.2s v39 244s 213s 12 17.8s
v19 399s 17s 13.2 1.3s v40 219s 180s 10.4 17.3s
v20 504s 7s 9.4 0.8s v41 6s 5s 8.2 0.6s
v21 252s 6s 8.8 0.7s Average 187s 48s 12 4s

Overall, OFC was more efficient than BA in 33 out of 41 cases by looking at the second

and third columns and could achieve almost 4X speed-ups on average (48 versus 187 seconds,

significance level of 0.05) and over 70X speed-ups in the best case (504 versus 7 seconds).

To understand the reason of OFC outperforming BA in terms of efficiency, I also present

the average number of iterations and time spent in each iteration in OFC. The second and

fifth columns in the table clearly show that it took considerably less time for the pMAX-

SAT solver to find solutions for formulas generated in one iteration of OFC (4 seconds) than

for formulas generated by BA (187 seconds). The statistically significant gain of efficiency

(significance level of 0.05) is caused, as expected, by the difference in the complexity of the

encoded formulas—OFC only encodes the subset of the program relevant to the failure into

the formulas passed to the solver, while BA generates a much more complex formula that

encodes the semantics of the entire program.

The results in the fourth column of Table 14 indicate that OFC performed 12 iterations

per fault, on average. Therefore, as I discussed in Section 6.2.2.5, the benefits of generating a

simpler formula were in some cases (e.g., tcas.v2) outweighed by the cost of solving multiple
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Table 15: Average time for processing tcas faults

BA BA+CW OFC OFC+CW

187s 137s 48s 36s

pMAX-SAT problems during on-demand expansion, thus making OFC less efficient than

BA. In fact, comparing the results in the second and third columns of the table, I can

observe that there were 8 cases in which OFC performed worse than BA.

It is also worth noting that my results on the number of iterations performed by OFC

provide some evidence that techniques that operate on a single-trace formula (e.g., [26,

39]) may compute inaccurate results, even when they encode both data- and control-flow

information. Because each expansion adds new constraints that must be taken into account

in the analysis, limiting the analysis to a single trace is likely to negatively affect the quality

of the results.

Finally, as a sanity check, I examined the sets of suspicious entities reported by the two

techniques. This examination confirmed that OFC reports the same sets as BA (i.e., the

fault-ranking results for OFC were the same as those for BA, shown in Table 13). That

is, it confirmed that OFC is able to build smaller yet conservative formulas and can thus

produce the same result as an approach that encodes the whole program.

Answer to RQ2: In summary, my results for RQ2 provide initial, but clear evidence that

OFC can considerably improve the efficiency of formula-based debugging without losing

effectiveness with respect to an all-paths technique such as BugAssist.

6.3.2.3 RQ3—OFC+CW Versus BA, BA+CW, and OFC

To answer the first part of RQ3, I compared the performance of OFC+CW with that of

the other three techniques considered, in terms of both accuracy and efficiency, when run

on the 41 tcas versions. For accuracy, I found that the results for OFC+CW, not reported

here for brevity, were the same as those listed in the “BA+CW” column of Table 13. This

is not surprising, as OFC reports the same sets as BA, as I just discussed, and I expect CW

to benefit both techniques in the same way. Therefore, the results show that OFC+CW is

as accurate as BA+CW and more accurate than BA and OFC.
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To compare the efficiency of the four techniques considered, I measured the average CPU

time required by the techniques to process one fault in tcas, shown in Table 15. As the

table shows, for the cases considered, combining OFC and CW can further reduce the cost

of formula-based debugging by 25% with respect to OFC and by over 80% with respect to

my baseline, BA. (Note that, to assess whether my results depended on the use of a specific

solver, I replaced Yices with Z3 [7] and recomputed the results in Table 15. I obtained

comparable results also with this alternative solver.) Although these are considerable im-

provements, it is unclear whether they can actually result in more practically applicable

debugging techniques. This is the focus of the second part of RQ3, which aims to assess the

potential increase in applicability that my two improvements can provide. To answer this

part of RQ3, I ran the techniques considered on my two additional benchmarks: tot info

and Redis.

tot info results for RQ3 Unlike tcas, tot info contains loops, calls to external libraries,

and complex floating point computations. (I considered all faults except those directly

related to calls to external system libraries, which my current implementation does not

handle.) Because of the presence of loops, I set an upper bound of 5 to the size of clauses in

a CoMSS. (I believe 5 is a reasonable value, as it means that the technique would be able

to handle all faults that involve up to 5 statements.) As I discussed in Section 6.3.1, for BA

and BA+CW the program formula generated was too large, and the solver was not able to

compute the set of CoMSSs within two hours (the time limit I used for the study) for the

faults considered. Conversely, OFC and OFC+CW were able to compute a result within the

time limit for all faults, which provides initial evidence that my improvements can indeed

result in more scalable formula-based techniques. By focusing only on the relevant parts

of a failing program and leveraging statistical fault localization, OFC+CW can reduce the

complexity of the analysis and successfully diagnose faults that an all-paths technique may

not be able to handle. To also assess the accuracy of the produced results, in Table 16

I show the results computed by OFC+CW. The columns in the table show the program

version and the number of lines of code a developer would have to examine before getting
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Table 16: Ranking results of OFC+CW on tot info

Version OFC+CW

tot info.v1 2
tot info.v3 1
tot info.v4 1
tot info.v11 3
tot info.v14 1
tot info.v15 1
tot info.v16 2
tot info.v18 3
tot info.v20 3
tot info.v22 6
tot info.v23 8

Table 17: Results for OFC+CW when run on Redis’s bug

Rank Source Location Statement

1 scripting.c:237 if (obj s == NULL) break;
2 scripting.c:236 obj s = (char*)lua tolstring(lua,j+1,&obj len);
3 scripting.c:232 j++
4 scripting.c:206 int j, argc = lua gettop(lua);
5 scripting.c:218 if (argc == 0)

to the fault in that version. As the table shows, OFC+CW was able to rank all 11 faults

within the top 10 statements in the list reported to the developer, and 4 of them at the top

of the list.

Redis results for RQ3 To further assess the practical applicability of OFC+CW, I run

the techniques considered on my third benchmark, a real-world bug [8] in Redis, which is

considerably larger and more complex than tcas and tot info. The bug is a potential buffer

overflow in a module of Redis that processes Lua scripts (www.lua.org/) and consists of

1 KLOC). Figure 10 shows an excerpt of the bug. The original version of the code fails

to check whether the size of the script from the command line is greater than the size

of the memory in which it is stored. If the script is too large, the program generates an

out-of-boundary memory access and fails.

I inserted assertions that are triggered when a buffer overflow occurs, and applied

OFC+CW to the faulty code. My tool generated the report shown in Table 17, which
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203 #define LUA_CMD_OBJCACHE_SIZE 32

...

206 int j, argc = lua_gettop(lua);

...

214 static robj *cached_objects[LUA_CMD_OBJCACHE_SIZE];

...

218 if (argc == 0)

...

221 return 1;

222

...

232 for (j = 0; j < argc; j++) {
233 char *obj_s;

234 size_t obj_len;

236 obj_s = (char*)lua_tolstring(lua,j+1,&obj_len);

237 if (obj_s == NULL) break; /* Not a string. */

/* Try to use a cached object. */

/* bug fixes */

240- if (cached_objects[j] && cached_objects_len[j] >= obj_len) {
240+ if (j < LUA_CMD_OBJCACHE_SIZE && cached_objects[j] &&

241+ cached_objects_len[j] >= obj_len) {
...

Figure 10: Excerpt code of the bug in Redis

contains five suspicious statements and program locations. The first entry in my report

suggests that a control statement should be changed after line 237 of scripting.c to avoid

the out-of-boundary access in the next statement. This is also the location where the devel-

opers of Redis fixed the bug [8]. Also in this case, I tried to run the all-paths techniques on

the module, but they were not successful. Because BA relies on a static model checker that

unrolls loops based on a predetermined (low) bound, whereas the loop in the code needs

to be executed a large number of times for the bug to be triggered, BA is unable to build

a formula for the failure at hand. Unfortunately, increasing the number of times loops are

unrolled is not a viable solution, as it causes the number of encoded paths to explode and

results in the solver timing out.

Although this is just one bug in one program, and I cannot claim generality of the

results, I find the results very encouraging. They provide evidence that my approach could

make formula-based debugging applicable to real-world programs and faults.

Answer to RQ3: In summary, the results for RQ3 provide initial evidence that the

combination of OFC and CW can make formula-based debugging more applicable.
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6.3.2.4 RQ4—Scalability

The previous three research questions show that my optimizations, OFC and CW, can

produce more accurate results than BA, and more efficiently. The benchmark programs I

used in my study, however, all consist of less than 1000 LOC—including Redis’s module. In

RQ4, I therefore investigate whether my optimizations can enable formula-based debugging

to scale to larger programs.

To answer this research question, I applied OFC and CW to a set of larger programs

and faults in the SIR repository [2], namely, grep (10K LOC), sed (14K LOC), and gzip

(5K LOC). Unfortunately, OFC+CW timed out after at most a few iterations when Yices

was used as the MAX-SAT solver, and I obtained similar results when replacing Yices with

Z3. In these cases, the technique produced either no results, when the solver timed out at

the first iteration, or extremely inaccurate results when the solver timed out after a few

iterations. These results indicate that, even if OFC and CW can considerably improve the

efficiency of formula-based debugging, these approaches are still too expensive to scale to

larger programs.

To better understand the reasons for this limited scalability, I performed an additional

study, in which I investigated my intuition that solving MAX-SAT (or wpMAX-SAT) prob-

lems accounts for the majority of the cost of formula-based debugging. To do so, I measured

the percentage of time spent on solving MAX-SAT problems when I applied OFC to tcas.

In the study, I used both Yices and Z3 as MAX-SAT solvers to assess whether my re-

sults depended on the use of a specific solver. (Because Z3 currently does not support

wpMAX-SAT, I did not consider CW in this study.)

Table 18 shows the results of the study. In the table I provide, for each version of tcas

and for each of the two solvers considered, the total CPU time used by OFC (“Total Yices”

and “Total Z3”) and the percentage of CPU time spent in the solver (“Yices %” and “Z3

%”). The results in the table confirm my hypothesis: the percentage of CPU time spent in

the solver is over 70% in a majority of cases and is 75% and 72% on average when using

Yices and Z3, respectively. Although these numbers confirm my intuition, there is a far

more important finding that emerges from the data: the existence of a clear correlation
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Table 18: Percentage of CPU time spent in the solvers when running OFC on tcas

Version Total Yices Yices % Total Z3 Z3 % Version Total Yices Yices % Total Z3 Z3 %

v1 7s 58% 8s 59% v22 6s 49% 6s 55%
v2 38s 93% 20s 87% v23 24s 75% 19s 68%
v3 19s 81% 16s 78% v24 7s 52% 8s 58%
v4 6s 54% 6s 59% v25 244s 85% 98s 61%
v5 15s 75% 13s 71% v26 17s 68% 16s 66%
v6 17s 79% 17s 78% v27 15s 73% 14s 70%
v7 104s 100% 31s 99% v28 24s 79% 19s 72%
v8 5s 54% 6s 60% v29 6s 48% 7s 52%
v9 28s 87% 20s 83% v30 24s 76% 21s 72%
v10 22s 80% 19s 77% v31 33s 78% 22s 68%
v11 11s 70% 11s 70% v32 14s 61% 14s 61%
v12 17s 78% 14s 72% v33 178s 87% 73s 69%
v13 15s 73% 15s 72% v34 21s 76% 19s 75%
v14 20s 78% 17s 74% v35 22s 83% 16s 76%
v15 20s 80% 17s 77% v36 11s 74% 11s 73%
v16 16s 78% 14s 75% v37 251s 97% 90s 92%
v17 73s 99% 24s 98% v38 95s 93% 104s 94%
v18 96s 80% 44s 57% v39 213s 94% 78s 84%
v19 17s 64% 16s 63% v40 180s 94% 68s 84%
v20 7s 52% 8s 58% v41 5s 54% 6s 65%
v21 6s 49% 7s 54% Average 75% 72%

between the total CPU time and the percentage of CPU time spent in the solvers.

To better illustrate this point, Figure 11 shows such correlation between total CPU time

(x-axes) and percentage of CPU time spent in the solvers (y-axes). Looking at the figure, I

can observe that, modulo some outliers, the longer the execution, the higher the percentage

of CPU time used by the solvers. (This is confirmed by the Spearman’s rank correlation

coefficient, which is 0.91 (very strong correlation) for OFC with Yices and 0.62 (moderate-

to-strong correlation) for OFC with Z3.) This correlation suggests that the cost of constraint

solving becomes increasingly relevant as the complexity of the debugging problem increases

(as indicated by the longest overall time needed to solve it). The cost of MAX-SAT solving

is thus a bottleneck that limits the scalability of the approach. My optimizations are a first

step towards reducing that cost, as they tend to build much smaller formulas than an all-

paths approach (which compensates for the fact that the solvers are called multiple times, as

the results in Section 6.3.2 show). Nevertheless, further and more aggressive reductions of

the size of the MAX-SAT problems generated by the approach (and possibly optimizations

of the solvers themselves) could be a future step to make formula-based debugging really

91



0.4

0.6

0.8

1

1 10 100 1000

P
er
ce
n
ta
g
e
of

C
P
U

ti
m
e
in

Y
ic
es

Total CPU time (s)

1 10 100 1000
0.5

0.6

0.7

0.8

0.9

1

Total CPU time (s)

P
er
ce
n
ta
ge

of
C
P
U

ti
m
e
in

Z
3

Figure 11: Correlation between the percentage of CPU time spent in the solvers and the
total CPU time for our OFC technique when applied to each failing input in tcas

scalable and applicable in practice.

Answer to RQ4: Unfortunately, OFC+CW failed to scale to larger programs and bugs,

and the main bottleneck lies in the MAX-SAT solver as indicated in the additional study.

6.3.3 Threats to Validity

In addition to the usual internal and external validity threats, a specific one is that I re-

implemented BugAssist, one of the techniques against which I compare. Unfortunately,

I were not able to use the command-line implementation of BugAssist from its authors,

and the Eclipse plugin was problematic to use in a programmatic way. Moreover, the

tool’s source code was not available, which I needed to integrate CW and BugAssist for my

evaluation.
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Another threat to validity is that I performed the evaluation only on a few simple

programs and a module of a real open-source project. Therefore, my results may not

generalize. However, my main goal was to investigate whether CW and OFC could improve

the state of the art in formula-based debugging, so using the same programs used in related

work allowed us to directly compare my techniques with such work.

6.4 Conclusion

In this chapter, I presented clause weighting (CW) and on-demand formula computation

(OFC), two ways to improve existing formula-based debugging techniques and mitigate

some of their limitations. CW incorporates the (previously ignored) information provided

by passing test cases into formula-based debugging techniques to improve their accuracy.

OFC is a novel formula-based debugging algorithm that, by operating on demand, can

analyze a small fraction of a faulty program and yet compute the same results that would

be computed analyzing all paths of the program, at a much higher cost.

To evaluate CW and OFC, I performed an empirical study. In the study, I assessed

the improvements that CW and OFC can achieve over a state-of-the-art formula-based de-

bugging approach. My results show that formula-based debugging remains an expensive

approach with limited scalability (mostly because of the cost of solving MAX-SAT prob-

lems). Nevertheless, CW and OFC can considerably improve the accuracy and efficiency of

this approach and therefore represent a first step towards making formula-based debugging

more practically applicable and motivate further research in this area.
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CHAPTER VII

RELATED WORK

Debugging is an extremely prolific area of research, and the related work is consequently

vast. In this section, I will focus on the work that is most closely related to approaches in

my thesis proposal.

7.1 Techniques for Reproducing Field Failures

BugRedux is related to automated test-input generation techniques, such as those based

on symbolic execution (e.g., [21, 42, 74, 78]) and random generation (e.g., [65, 66]). Gener-

ally, these techniques aim to generate inputs to discover faults, and they are not directly

applicable to the problem I am targeting, as I have discussed in Section 4.2.2.

Techniques that capture program behaviors by monitoring or sampling field executions

are also related to BugRedux (e.g., [4, 28, 44, 58]). These techniques usually record exe-

cution events and possibly interactions between programs and the running environment to

later replay or analyze them in house. These approaches tend to either capture too much

information, and thus raise practicality and privacy issues, or too little information, and

thus be ineffective in my context.

More recently, researchers started investigating approaches to reproduce field failures

using more limited information. For example, some researchers used weakest preconditions

to find inputs that can trigger certain types of exceptions in Java programs [23,40,64]. These

approaches, however, target only certain types of exceptions and tend to operate locally at

the module level. Another approach, SherLog [80], makes use of run-time logs to reconstruct

paths near logging statements to help developers to identify bugs. LogEnhancer [81], a

followup work, improves the diagnose ability of SherLog by adding more information to log

messages. These approaches differ from BugRedux because they do not aim to generate

program inputs, but rather to highlight code areas potentially related to a failure. Artzi and

colleagues present ReCrash [16], a technique that records partial object states at method
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levels dynamically to recreate an observed crash at different levels of stack depth. Although

this approach can help recreate a crash, the recreated crash can be very different from the

original one: if the stack depth is low, the information is in most cases too local to help (e.g.,

a null value passed as a parameter); conversely, if the stack depth is high, the technique

may have to collect considerable amounts of program state, which can make it impractical

and raise privacy issues. Similar to ReCrash in terms of using crash call stacks as the

starting point, RECORE [72] is an approach that applies genetic algorithms to synthesize

executions from crash call stacks. However, the current empirical evaluation of RECORE

shows that it mainly focuses on partial or shallow executions (i.e., executions of standalone

library classes), so it is unclear whether the approach would be able to reproduce complete

executions systematically. Failures in library classes usually result in shallow crash stacks,

and in my experience BugRedux should work quite well in these cases.

The two approaches most related to BugRedux are ESD, by Zamfir and Candea [82]

and the technique by Crameri, Bianchini, and Zwaenepoel [32]. ESD is a technique for

automated debugging based on input generation. Given a POF, ESD uses symbolic ex-

ecution to try to generate inputs that would reach the POF. As I showed in Chapter 4,

without additional guidance, symbolic execution techniques are unlikely to be successful in

this context. In fact, as I stated in Section 4.2.2, the programs and failures used in Refer-

ence [82] can also be recreated through unguided symbolic execution. Unlike BugRedux,

however, one of the strengths of ESD is that it can recreate concurrency-related failures.

With this respect, BugRedux and ESD are complementary, and it would be interesting to

investigate a combination of the two techniques. (Another approach that aim to reproduce

concurrency bugs, and is thus also complementary to BugRedux, is PRES, by Park and

colleagues [67].) The approach by Crameri and colleagues improves ESD by using partial

branch traces—where the relevant branches are identified through a combination of static

and dynamic analysis—to guide symbolic execution for field failures reproduction. Although

their approach can reduce dramatically the number of branches considered, I found in my

experience that the use of branch-level traces can be problematic. Their empirical eval-

uation is also performed on programs whose failures can be reproduced using unguided
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symbolic execution. It is therefore unclear whether their approach would work on larger

programs and harder-to-reproduce failures.

It is nowadays common practice to use software (e.g., Breakpad [1]) or OS capabilities

(e.g., Windows Error Reporting [6] and Mac OS Crash Reporter [3]) to automatically collect

crash reports from the field. As I discussed in Introduction, these reports can be used to

correlate different failures reported from the field. DebugAdvisor [17], for instance, is a tool

that analyzes crash reports to help find a solution to the reported problem by identifying

developers, code, and other known bugs that may be correlated to the report. Although

these techniques have been shown to be useful, they target a different problem, and the

information they collect is too limited to allow for recreating field failures.

7.2 Fault Localization Techniques

Statistical fault-localization techniques are a set of techniques that identify suspicious state-

ments by leveraging a large number of passing and failing executions. F3 and CW leverage

this type of techniques. These techniques share a similar intuition—entities that executed

mostly in failing executions are more likely the potential causes of failures. Tarantula [53],

uses statement coverage as criteria to compute suspiciousness values and rank them. CBI

and followup work from Liblit and colleagues [57, 58] use predicate outcomes, instead of

statements, as criteria. Moreover, they operate on data collected from the field, rather

than in-house. In recent years, many different statistical fault-localization approaches were

proposed that operate on different entities and/or use different statistical analyses to com-

pute suspiciousness values [11, 12, 15, 60, 73, 87]. Among these techniques, Ochiai [11] has

shown to have a good performance compared to other similar techniques in several empirical

studies, and recent research has shown, both empirically and analytically, that even better

techniques can be defined [63]. Therefore, I decided to choose them as baseline techniques

in the empirical evaluation. Also recently, Baah and colleagues defined a technique [19]

that accounts for the confounding bias due to program dependences when computing suspi-

ciousness values and can improve the effectiveness of fault localization. Usually, statistical

fault-localization techniques are limited by the fact of requiring a high quality test suite
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containing a large number of passing and failing inputs. F3 leverages and extends these

techniques (Ochiai and OBM, specifically) and addresses their limitations by generating the

needed inputs.

Other researchers defined approaches that extend traditional fault localization tech-

niques and/or try to address their limitations. To enable fault localization in the absence

of multiple failing test cases, BugEx [70] uses an evolutionary approach that (1) aims to

generate executions almost identical to a single failing test and (2) uses these executions to

identify program facts that are relevant for the failure. Although the technique is poten-

tially effective, generating executions that have minimal differences with one another (e.g.,

only one branch) is extremely challenging, which limits the practical applicability of the

approach. Artzi and colleagues use a specialized dynamic symbolic execution approach to

(1) discover faults in web applications, (2) generate passing and failing executions similar

to the executions that revealed the faults, and (3) use these executions to try to localize the

faults [14]. Their technique is not meant to help the debugging of field failures and is spe-

cialized for web applications and the faults in such applications (e.g., malformed HTML).

Groce [45] propose an idea similar to filtering optimization in F3. Similar to the filtering

optimization, the effectiveness of their filters highly depends on the quality of the available

test suite.

Another family of approaches to fault localization is experimental debugging. Among

these techniques, one of the most popular technique is delta debugging [31], which can

simplify and isolate failure causes through a differential analysis of inputs [85], code [83], or

program states [84]. More recently, researchers have defined related techniques that perform

fault localization by modifying the state of a program in several points during a failing

execution and assessing whether the state change prevented the failure from occurring; if

so, the corresponding point in the code is reported as potentially faulty (e.g., [49, 86]).

The main limitation of these approaches is that they are unsound, as the manipulation of

program states (and executions in general) can result in infeasible behavior and can thus

produce false positives.
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7.3 Formula-based Fault Localization Techniques

My techniques in Chapter 6 are most closely related to formula-based debugging techniques,

an increasingly popular research area. In particular, OFC builds on BugAssist [54], which

encodes a faulty program as an unsatisfiable Boolean formula, uses a MAX-SAT solver to

find maximal sets of satisfiable clauses in this formula, and reports the complement sets

of clauses as potential causes of the error. The dual of MAX-SAT, that is the problem

of computing minimal unsatisfiable subsets (or unsatisfiable cores), can also be leveraged

in a similar way to identify potentially faulty statements, as done by Torlak, Vaziri, and

Dolby [76]. This kind of techniques have the advantage of performing debugging in a princi-

pled way, but tend to rely on exhaustive exploration of (a bounded version of) the program

state, which can dramatically limit their scalability. OFC, by operating on demand, can

produce results that are at least as good as those produced by these techniques at a fraction

of the cost. Moreover, by working on a single path at a time, OFC can directly benefit from

various dynamic optimizations. Finally, CW leverages the additional information provided

by passing test cases, which are not considered by most existing techniques in this arena.

Another related approach, called Error Invariants, transforms program entities on a

single failing execution into a path formula [39]. This technique leverages Craig interpolants

to find the points in the failing trace where the state is modified in a way that affects

the final outcome of the execution. The statements in these points are then reported as

potential causes of the failure. This technique cannot handle control-flow related faults

because, as also recognized by the authors, it does not encode control-flow information in

its formula. To address this limitation, in followup work the authors developed a version of

their approach that encodes partial control-flow information into the path formula [26]; with

this extension, their approach can identify conditional statements that may be the cause of

a failure. However, compared to OFC’s approach of suitably encoding SSA’s φ functions,

their approach generates much more complex preconditions, that is, conjunctions of all

predicates that a statement is control dependent on. Conversely, my algorithm only needs

to encode the predicate that the φ function is directly dependent on. In addition, the two

approaches handle potentially faulty conditional statements very differently. OFC considers
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additional paths induced by a possible modification of the faulty conditionals, and can

therefore identify additional faulty statements along these paths. Their technique simply

reports the identified conditionals to developers, who may miss important information and

produce a partial, if not incorrect, fix (see Section 6.2.2.5).

Finally, automated repair techniques (e.g., [34,48,56]) are related to my work. However,

these techniques are mostly orthogonal to fault-localization approaches, as they require

some form of fault localization as a starting point. (One exception is Angelic Debugging,

by Chandra and colleagues [24], which combines fault localization and a limited form of

repair.) In this sense, I believe that the information produced by my approach could be

used to guide the automated repair generation performed by these techniques, which is

something that I plan to investigate in future work.
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CHAPTER VIII

CONCLUSION AND OPEN PROBLEMS

Reproducing and debugging field failures are notoriously difficult tasks because of the in-

creasing complexity of modern software systems and the limited availability of information

from crash reports generated on users’ machines. To address and mitigate these problems,

and better provide support for developers to debug field failures, I introduced an over-

all vision that contains several techniques: BugRedux, F3, clause weighting (CW) and

on-demand formula computation (OFC), in this dissertation.

BugRedux is a general technique that can reproduce actual failing executions that

mimic the original field failures in a faithful way. BugRedux works by (1) collecting

dynamic field execution data that contain a sequence of program entries, which will be

used as intermediate goals during the search, and (2) using a guided symbolic execution

technique to synthesize executions that reach goals in this sequence and POF in the given

order and result in the same observed failure. F3 extends BugRedux with automated fault

localization capabilities. F3 starts with the relevant entries in the collected execution data

found by BugRedux and works by (1) synthesizing both passing and failing executions that

are similar to the original failing execution using symbolic execution and (2) leveraging the

generated executions and customized statistical fault localization techniques to identify and

report ranked lists of suspicious program entries that are likely to be the direct causes of

field failures. In addition to these two techniques, I also presented two approaches, CW and

OFC, to improve an existing formula-based debugging technique, BugAssist, by considering

information provided by passing test cases and by constructing formulas used for debugging

in an on-demand manner.

To assess BugRedux and F3, I implemented both techniques in prototype tools , made

them freely available, and performed several different empirical evaluation on a large set of

real-world programs and real field failures. The results of the studies are promising. The
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results of studies of BugRedux provided evidence that it can reproduce observed field

failures from a suitable set of execution data. I found that, among all options I investigated

in the cost-benefit study of BugRedux, partial call sequence provide the best tradeoffs

between amount of information collected and effectiveness of reproducing field failures,

which also provided additional evidence that typical information in traditional bug reports

(e.g., call stack at the moment of crash) is usually not enough for reproducing field failures.

The results of studies of F3 showed that F3 could synthesize multiple similar passing and

failing executions from a given set of field execution data, and leverage these generated

executions to successfully perform effective fault localization. The results also provided

evidence that the optimizations I considered in F3 indeed could improve the results of fault

localization by reducing the length of final reported lists of suspicious program entities and

improving the ranks of the real faulty entities in the lists.

To assess the effectiveness and efficiency of CW and OFC, I implemented it in an early

prototype tool and performed an empirical evaluation, in which I applied the prototype

tool on three small C programs and compared the performance of these two optimizations

with that of both a statistical fault localization technique and an existing formula-based

approach. My findings of CW and OFC are also promising. These two optimizations

were able to report the potentially fault statements with some mathematical explanation as

effective, more accurate, and considerably more efficient compared to alternative approaches

that would model the semantics of the whole program.

Several open problems could be potentially addressed in my overall vision to improve

the practical usefulness of my approaches.

Besides performing a thorough user study to confirm the initial results I obtained and

further assess the practical usefulness of my approaches, one potential direction involves

investigating the use of fault-localization and debugging techniques, such as experimental

debugging [31], other than statistical fault localization and formula-based debugging in my

approaches.

Call sequences are only one possible type of execution data that can be collected from

the field, and symbolic execution is just one possible input-generation technique for field
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failure reproduction. Therefore, a possible extension of my dissertation is to investigate

whether other types of field data and (possibly less expensive) input-generation techniques

can be successfully used in the context of my approach.

One potential extension of techniques discussed in Chapter 6 is to investigate approaches

that can further address the inherently limited scalability of formula-based debugging. In

particular, two future research directions can be considered: (1) further simplifying the

constructed MAX-SAT problems to decrease the cost of solving these problems and (2)

trying to decompose the debugging problem into several subproblems (e.g., at the procedure

level) that can be solved efficiently and in a modular fashion.

Finally, my dissertation is also related to automated program repair. A future work

can also investigate whether my debugging techniques can help automated program repair.

Intuitively, the clauses in the CoMSSs produced by the improved formula-based debugging

technique should be able to inform and guide automated program repair techniques in

finding or synthesizing suitable repairs.
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