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SUMMARY 

Closed form solutions are presented for the elastic analysis of 

deflections and initial buckling of rectangular ribbed plates. The plates 

are subjected to uniform compressive stress along the two simply supported 

ends and are stiffened by uniform and equidistant ribs. The techniques 

used permit the realistic treatment of plates having simple side supports 

and of those having boundary beams with flexural and torsional rigidity. 

The solutions employed are double Fourier series which are infinite with 

respect to the continuous variable along the rib line and finite with 

respect to the discrete variable denoting the ribs. Simple algebraic 

corrective terms are added where required by the boundary conditions. 

The results are based on two rationally formulated discrete-

continuous models of the fourth order. The only assumptions made are 

those associated with flexural and membrane plate theory and classical 

beam theory. In the Non-Composite Flexural Model, the structure is pro

portioned so that the effects of the in-plane deformations and the T-beam 

action can be neglected in determining the stiffness matrices of the 

elements. In the Composite Membrane Model, the effects of the out-of-

plane deformations are neglected. 

The formulas developed are improvements over those based on ortho-

tropic plate theory in that the assumptions of an equivalent continuum are 

avoided. Another major improvement is the independence of the form of the 

solution with respect to the stability criteria of the number of ribs. A 

few results are numerically illustrated and compared with existing theories. 
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CHAPTER I 

INTRODUCTION 

Structural ribbed plates have been used for many years in the 

construction of orthotropic bridge decks, floor systems, airplanes and 

ship hulls. They are structurally efficient and functional in that the 

increase in plate stability by adding longitudinal ribs is much more 

economical than by increasing the plate thickness; The purpose of this 

thesis is to present efficient methods of investigating the stability of 

ribbed plates subjected to axial loads. There are various ways in which 

an axially loaded ribbed plate is utilized, one of which is shown in 

Figure 1. At points of concentrated compressive loads in a cable stayed 

bridge, ribs can sustain these loads which are then distributed over the 

whole cross section of the rib-plate system. The typical ribbed plate 

is an all steel orthotropic bridge deck with angles, I-beams or narrow 

plates welded to the deck panels (Figures 2 and 3). However, a ribbed 

plate may also be of composite design, consisting of steel beams and 

a concrete slab. 

Figure 1. Cable Stayed Bridge. 
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Figure 2. Plate with I-Beam Stiffeners 

Figure 3. Plate with Flat Strip Stiffeners 
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1. Buckling Modes 

In the course of an investigation of ribbed plates in compression, 

two major modes of buckling have to be considered. The first is local 

buckling of the plate. In this case, certain longitudinal and transverse 

elements of the structure, the nodal lines, remain straight and undetec

ted. All ribs coincide with the longitudinal nodal lines. They remain 

unbuckled and are subjected to torsion in addition to axial compression 

(Figure 4) . 

Figure 4. Local Buckling Mode of a Ribbed Plate. 

For zero torsional rigidity of the ribs, the nodal lines coincide with 

the lines of inflexion of the buckled surface. Each panel then is sub

jected to zero boundary moments and can, therefore, be considered as 

being simply supported. In the longitudinal direction, the buckling also 

occurs in sinusoidal waves. The number of half waves, however, is one of 

the unknowns of the problem. 

The second buckling mode is called system buckling. It can occur 
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in any number of half waves in the lateral direction, except that which is 

equal to the number of panels which, here, has been called local buckling. 

For an odd number of half waves, the buckling occurs in the symmetric 

mode and in an anti-symmetric mode for an even number. Both the plate and 

the stiffeners undergo lateral deflections as shown in Figure 5. 

Figure 5. Symmetric and Anti-Symmetric Buckling Modes 

In their respective vertical planes, the ribs are subjected to 

bending of varying degree, depending on their location in the system. 

They are also subjected to torsion about their longitudinal axis. For 

deep beam type ribs, ordinary beam theory becomes inadequate and membrane 

analysis is necessary. The plate itself is subjected to bending moments 

and shear forces if a Non-Composite Flexural Model (Chapter II) is used 

in the analysis. For the Composite Membrane Model (Chapter III), the 

plate is subjected to direct tensile or compressive forces. 

Numbers of half waves greater than the number of panels are not 

investigated in this thesis. Since the main interest here is in the 
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initial buckling of bridge type structures with length to width ratios 

equal to or larger than one, that latter case would not lead to the 

lowest buckling stresses. 

2 . Review of Literature 

2 . 1 . Buckling of Flat Plates 

Many classic reference texts,, such as Timoshenko [l ] and Girk-

mann [ 2 ] , treat the buckling of unstiffened, simply supported plates 

compressed in one direction (Figure 6 ) . 

[ 
a 

1 
Figure 6 . Flat Plate in Compression. 

The first successful investigation in this field was published by 

Bryan [ 3 ] . The approach used by Timoshenko was to assume a sine varia

tion of the deflection surface in both directions. Using the potential 

energy theorem, a minimum was found for one half-wave sine variation in 

the transverse direction. The one term solution of the minimum potential 

energy theorem is exact for the case of simple supports on all four sides 

The final results for the buckling loads was found to be 



N : a t = 4 (* + ± - f . k % (1) cr cr 2 \ a ib' cr 2 v ' a 

or 
TT^Et 2 

G c r = 12(l-v 2)a 2 

Et 3 

where D z — « — is the plate stiffness and i is the number of half-
12(l-vZ) 

waves in the longitudinal direction into which the plate buckles. This 

number of half-waves depends only on the ratio — and not on the plate 
cl 

properties. The only unknown in Eq. (1) is i. For sufficiently short 

plates and small values of ~, buckling occurs in one half-wave. Above 

a certain ratio of —, two half-waves are formed. For the limiting ratio, 

both cases are equally possible, having the same buckling load 
N = t*a . Eq. (1) must yield the same N whether i B 1 or i a 2 is cr cr y cr 
introduced. In the same way, it is possible to determine the limiting 

ratio for buckling into i or i + 1 half-waves. The limiting ratio can 

be found from the equation 

a ib _ _a _ (i i- l)b 
a " ib a " (i t l)b 

which yields 

7 = V i ( i + 1) 

For i = 1, 2, 3, ... the ratios are — = 

or b = 1.414a, 2.449a, 3.464a, ... . 



7 

Solving the governing differential equation of the plate in com

pression, Bleich [8] obtained the same solution as did Timoshenko with 

the potential energy approach. The solution to the differential equation 

also provides results for plates with arbitrary side boundary conditions. 

The general solution used for inhomogeneous boundary conditions is the 

LeVy assumption of a sine variation only in the longitudinal direction 

and a particular solution in the transverse direction that has to satisfy 

the boundary conditions. Each boundary condition provides one equation 

for a system of simultaneous homogeneous equations in terms of the coeffi

cients of the Levy solution. Non-trivial solutions exist only for the 

determinant of coefficients being equal to zero. Therefore, det = 0 is 

the buckling criterion which leads to the stability condition. All con

ceivable modes of buckling are contained within this criterion. The 

various possibilities are represented by the successive roots of the 

determinant. The elements of this stability determinant are transcendental 

functions of the longitudinal compressive stress and the longitudinal half 

wave length, —. For assumed values of i there are, in general, an infinite i 
number of roots to det = 0, of which, however, only the first and smallest 

is relevant. The correct value of i is the one which minimizes the criti

cal stress, and can be found by investigating the range of i = 1 to i 

equal to the first integer larger than the ratio — . 

2.2. Buckling of Ribbed Plates 

The discussion on this topic was opened by Timoshenko [l ]. Arti

cles published by Rendulic [ 4 ] , Ghwalla [ 5 ] and Miles [ 6 ] considered single 

panels stiffened along the two sides. All three authors used a closed 

form solution. They had, however, the analysis of webs of steel girders in 
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mind and not plates stiffened by interior ribs. This is also obvious in 

the article by Stiffel [l7], where the plate is subjected to in-plane 

bending and the stresses were assumed to vary linearly across the plate 

width. Therefore, the distribution of the stiffeners was adjusted to 

the stress distribution. 

Timoshenko [l ] derived an open form solution to the problem of 

side simply supported plates stiffened by interior ribs, using again the 

minimum potential energy theorem. Because the assumed deflection surface 

must satisfy the boundary conditions, a double Fourier series was used 

to describe the buckled plate surface. According to their location in the 

system, the ribs are subjected to varying amounts of bending. Equating 

to zero the strain energy of the bent plate and ribs and the work done 

during buckling by the compressive forces acting on the plate and the 

ribs along the ends, an equation for the criticical stress is found. It 

consists of a quotient with several infinite series of sine functions, 

involving the unknown number of half-waves i in the longitudinal direction, 

and the equally unknown number k of half waves in the transverse direction. 

Equating to zero the partial derivatives of this expression with respect 

to the unknown coefficients, an infinite system of homogeneous simultaneous 

equations was obtained. By equating to zero the determinant of this system 

of equations, an equation to determine the critical stress resulted. How

ever, only buckling modes that are symmetrical with respect to the middle 

axis can be obtained by this method, if there is an even number of ribs. 

Three more important assumptions had to be made before any practical 

calculations could be considered: 
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1. The system buckles into one longitudinal half-wave; 

that is, i a 1. 

2. A very small number of equations, and thus coefficients, 

is sufficiently accurate to determine the critical stress. 

3. There are only very few ribs (one or two). 

In this open form solution approach, the numerical problems for systems 

with several ribs and for the inclusion of a large number of equations 

(or coefficients) increased at such a rate as to render this, method 

impractical. Even for the case of one rib only, assumptions 1 and 2 were 

very restrictive. Another disadvantage is the limitation to the side 

simply supported plate. A bridge type system with flexible side supports 

could not be handled, since the basic deflection surface could no longer 

be described by a double Fourier series alone. 

Lokshin [l4] developed a closed form solution for the buckling of 

a rectangular, longitudinally stiffened plate that was simply supported 

on all four sides. The ribs were assumed to be uniform and equidistant 

and subject only to bending about their transverse axis in addition to 

axial compression. Recurrence equations for the rib-line deflections 

and moments in the transverse direction made the form of the buckling 

determinant independent of the number of ribs. With the assumption of a 

single half wave sine variation of these rib-line deformations and 

moments, a simple buckling criterion evolved. 

Barbre' [ 7 ] in his dissertation also used a closed form solution 

approach to the problem. The governing differential equation and the 

corresponding Levy solution for the single panel with arbitrary side 

boundary conditions was found, plus four conditions of continuity at the 
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rib lines between each two panels. These conditions were equal deflec

tions, equal transverse slope, moment equilibrium and shear force equi

librium. Thus the ribs were assumed to be subjected to transverse loads 

and to torsion. With a total of four boundary conditions for the plate 

and the four conditions of continuity for each rib, eight simultaneous 

equations were obtained for a plate with one interior rib, twelve equa

tions for two interior ribs, etc. 

Equating to zero the determinant of coefficients, solutions were 

found for plates with one rib at an arbitrary interior location and with 

simply supported or fixed sides. Both symmetric and anti-symmetric 

modes of buckling were investigated. For the case of two ribs, the system 

of equations became unbearably large and complicated for arbitrary boun

dary conditions and rib locations. Only a side simply supported plate 

with two equal and symmetrically arranged ribs was investigated, since 

with these simplifying assumptions the terms in the determinant of coef

ficients reduced considerably. 

One of the goals of Barbre's paper was to find that critical ratio 

of the flexural rigidities of the ribs to the bending stiffness of the 

plate that causes local buckling. For any ratio larger than the critical 

one, only local buckling will occur and only system buckling for smaller 

ratios. 

Based partially on the findings of Barbre', Bleich [ 8 ' ] presented 

side simply supported plates with one arbitrarily located rib or with two 

equal and equidistant ribs. The torsional rigidity of these ribs was 

neglected. Diagrams were presented that show the limiting value of the 

ratio of rib-to-plate stiffness as a function of the plate dimensions, 
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the cross sectional area of one rib and the number of half-waves in the 

longitudinal direction. Whereas in all the above mentioned references, 

completely elastic behavior of the material was assumed, Bleich included 

inelastic behavior in the derivation of the governing differential equa

tion and in its solutions. 

Another approach was taken by Wittrick [ 9 ] . ' There the system of 

panels and ribs was treated separately for each element. Since it can 

be assumed that the buckled surface of each element always has a sine 

variation in the longitudinal: dlrectidh, so do also the rib lines. There 

fore, the lateral deflections, rotations, forces and moments along a rib 

line will also vary sinusoidally and with, the same wave length as the 

element deflections. Based on this distribution of the panel edge dis

placements and stresses, for each element an in-plane (or membrane) and 

an out-of-plane (or flexural) stiffness matrix was formulated. These 

matrices related the amplitudes of the edge forces and moments to the 

corresponding edge deflections and rotations. With the known stiffness 

matrices, equations of equilibrium at the line junctions of the elements 

were formulated. This led to a series of homogeneous simultaneous equa

tions relating the displacements and rotations of all the line junctions 

to each other. At instability the determinant of coefficients of these 

equations is equal to zero and this constitutes the buckling criterion. 

The solution to this stability determinant is carried out exactly in the 

same manner as for the plate without stiffeners described on page 7 . 

As Wittrick pointed out, there will be, in general, four equations of 

equilibrium at each rib line. This leads to a very large number of 

simultaneous equations and to very large stability determinants. The 
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computational problem becomes immense for an increasing number of panels 

and ribs. 

In the field of civil engineering, the development of the ortho

tropic bridge deck made it necessary to find workable solutions for plates 

reinforced by longitudinal and transverse stiffeners. Orthotropic plate 

analysis [l0,15,16] is based on the replacement of the ribbed plate by 

an equivalent continuum obtained by smearing out the rib properties. The 

result is a continuum model whose element stiffness is non-isotropic. 

Continuous field solutions are found, but the step of replacing the 

discrete continuous system by a continuum lacks a rational basis. 

The finite element analysis [ll ] is another open form approach. 

The amount of work involved depends directly on the number of ribs and 

the size of the plate. There is, of course, great freedom with respect 

to the arbitrary spacing of the ribs or their dimensions and properties 

as well as in satisfying different boundary conditions. However, for 

every single problem the element properties, dimensions, etc. have to be 

restated. This method lends itself to the solution of special cases 

which are not tractable by other methods. 

2.3. Closed Form Field or Functional Approach to Ribbed Plates 

It has been shown that an important step in the buckling analysis 

of ribbed plates lies iii the derivation of a closed form solution that 

will give a stability criterion, or a stability determinant, which is 

independent of, the number of ribs. A closed form solution for the defor

mations and forces of a ribbed plate under lateral loads, which is inde

pendent of the number of ribs, has been found by Dean [l2]. His functional 

solution yields deflections and forces at any desired point throughout 
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the plate simply by substituting the coordinates into the solution 

formula, which is valid at all points. As in [8], the first important 

step is to find the membrane and flexural stiffness matrices for the 

individual elements, that is, for the panels and the ribs. Since Dean was 

concerned with deformations and forces, the stiffness matrices do not 

include the effects of compressive stresses applied at the ends. 

Of the two independent variables of the plate that describe the 

overall system, one is discrete and the other continuous. The continuous 

variable designates distance along a rib line and the discrete variable 

designates the rib under consideration. For simply supported plates, the 

solution is written as a double Fourier series containing an infinite 

number of terms with respect to the continuous variable and a finite 

number of terms with respect to the discrete variable. For flexible side 

supports, corrective terms are added to the double series. By the assump

tion of an infinite Fourier series representation with respect to the 

continuous variable, the continuous and the discrete variable are uncoupled. 

The attention is then turned to the determination of functions represent

ing the variation with respect to the discrete variable. 

2.4. Summary of Literature 

In the buckling analysis of ribbed plates in compression, there 

are available exact, closed form solutions for plates having simple or 

fixed side supports and one interior rib with arbitrary location and 

torsional rigidity. For plates with two ribs exact closed form solutions 

exist only for simple support conditions and for equal and symmetrically 

arranged ribs. For each separate case, the number of ribs and the 

boundary conditions lead to separate systems of equations and to separate 
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buckling determinants. 

Wittrick [ 9 ] also provides an exact solution. Again, for each 

number of ribs a different determinant of coefficients is set up. 

Theoretically, both Wittrick and Barbre' [ 7 ] allow for arbitrary side 

boundary conditions and set no limits on the number of ribs, on the 

properties of the individual ribs and on their locations and spacing. 

Wittrick's solution also is the only one that allows for stiffeners that 

behave as deep beams (flat strips) and not only as one-dimensional beams 

as assumed in engineering theory. The above mentioned approaches all 

lead to large systems of complicated simultaneous equations that always 

depend on the number of ribs. For practical reasons, however, all these 

solutions are limited to very few ribs. 

The approach taken by Timoshenko necessitates the additional and 

rather limiting assumptions of simple side supports, symmetrical buckling 

modes in the transverse direction and only one half-wave for the buckling 

in the longitudinal direction. The purely numerical approach of the 

finite element analysis is rather free with respect to the number of ribs, 

their locations and dimensions. However, each individual problem has to 

be set up completely from the beginning. There is also the question of 

accuracy and convergence of the solution, which may make necessary a 

variation of the kind or number of elements used. Approximations of a 

different kind are obtained by the orthotropic plate analysis where the 

rib properties are smeared out. The results show gross behavior at best 

and fail to have a rational basis. 
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3. Purpose of Investigation 

None of the existing solutions to the ribbed plate in compression 

allows for a simple and exact approach, which is independent of the num

ber of ribs and which incorporates arbitrary boundary conditions, deep 

beam type stiffeners and symmetric and anti-symmetric buckling modes. 

In this paper, therefore, a closed form approach is taken in which a 

functional solution is found that yields the buckling load for any number 

of panels and stiffeners. At the same time a solution is provided for 

the deflections and rotations of the rib lines under a combination of 

in-plane compressive and out-of-plane transverse loads as long as the 

compressive stresses remain well below the buckling level. The solution 

for the deformations of the rib lines can easily be extended to any point 

in the plate and will reflect local behavior. 

The main goal of this thesis is the determination of the initial 

buckling of a ribbed plate using the adjacent equilibrium (or bifurca

tion) criterion. Postbuckling behavior is not investigated. The general 

approach is divided into two major parts, a Non-Composite Flexural 

Analysis for systems having negligible in-plane deformations and a 

Composite Membrane Analysis for systems having negligible flexural 

resistance. In each part, a distinction is made between plates having 

simple end and simple side supports and plates having simple end and 

flexible side supports. The torsional rigidity of interior and boundary 

ribs always is taken into account and the distinction is made between 

local and system buckling. 

From the buckling criteria, it is possible to determine the 

boundary case between system and local buckling and thus to determine the 
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critical ratio of rib-to-plate stiffness which helps in the design of 

the stiffeners. For the simple buckling criterion, all the parameters can 

be inserted directly. These parameters are the panel and rib properties, 

the dimensions, and the number of ribs. The number of half-waves in the 

longitudinal and transverse direction has to be assumed. For each com

bination of half-wave values there will be one smallest eigenvalue that 

satisfies the buckling criterion. The correct buckling mode is the one 

that yields the absolute smallest eigenvalue. Because of the iteration 

procedure, this solution, as well as all the other solutions mentioned 

in the literature, makes necessary the use of high speed digital compu

ter and renders impractical (or impossible) any solution by hand. 

Since this investigation is primarily concerned with a field 

approach for a bridge type system and a solution that is independent of 

the number of ribs, the assumption of uniform and equidistant interior 

ribs has been made. However, the two boundary ribs can be chosen arbi

trarily to reflect any kind of boundary condition from free sides to 

simple side supports and from zero torsional rigidity to fixed supports. 

Ribs and plate may be constructed of different materials. As in the 

literature, other assumptions are a constant modulus of elasticity, 

constant Poisson's ratio, linear stress strain relations, purely elastic 

behavior, perfectly flat plate, isotropic material, no residual stresses 

and uniformly applied compressive stresses along the two simply supported 

ends of the plate. 
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CHAPTER II 

NON-COMPOSITE FLEXURAL ANALYSIS 

In this section, the flexural analysis of a ribbed plate structure 

under uniformly applied stress at the ends is presented. The structure 

is proportioned so that the effects of the in-plane plate deformations 

and the T-beam action can be ignored in determining the stiffness matrices 

of the elements that comprise the structure. This results in a simpler 

and lower order model than would otherwise be the case. It is assumed 

that the system acts as a flexural plate supported by rib-beams that are 

not longitudinally constrained at the rib plate junction. The junction 

is detailed such that the torsional stiffness of the rib is taken into 

account. 

1. Derivation of Boundary Force-Deformation Relations 

A typical panel between two ribs is shown in Fig. 7. 

at 

Figure 7. Panel with Boundary Forces and Deformations for the 
Non-Composite Flexural Analysis. 
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1.1, Governing Differential Equation 

The first step of this analysis is to determine the set of 

coefficients relating the out-of-plane edge forces M and S and the in-

plane compressive force to the edge deformations 9 and W for the 

elements that comprise the system. The fourth order partial differential 

equation for the thin flat plate subject to a uniform longitudinal stress 

resultant is given by 

4 2 2 2 1 2 D w + 2D D w + (D + ~N )D w = 0 (1) 

where D and D denote the differential operators and . 
~x ox oy 

The plate is simply supported out-of-plane at the extremities of 

the y-coordinate, that is, the following boundary equations apply: 
w(x,G) = M y ( x , G ) = 0 

These boundary conditions are natural to a Fourier series analysis and 

the Levy solution for general boundary conditions along the sides, or at 
cl 

x = ± ^ can be written as follows: 
oo 

w(x i y) = J \ . ( x ) . s i n c*.y c*. = ^ (2) 

Substitution of Eq. 2 into the governing differential Eq. 1 yields 

{ D 4 - 2Q/.2D 2 + a.2(a2 - )} X. (x) = 0 L^-x l ̂ x i i D y j i 

an ordinary differential equation of fourth order, having the general 

solution, 

m,x m«x nux m.x 
X. (x) = A.e + B.-e + C.-e + D.-e ^ (3) i i I I I 
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and the following four roots 

where T] = D 

- i . z - W 1 + 5 : -3 ,4 - ± 01 J1 - h <4) 

i i 

From Eq. 4, it is seen that there are only real roots for T] < o^ , 

i 2 2 D 
or N < — ^ r — , which yields, after rewriting Eq. 3, 

y b (5) 
X.(x) = A. sinh m-x + B. cosh m 0x + C. sinh m 0x + D. cosh m,x 

1 1 1 i 2 i 3 i 4 
i 2 2 D 

F.or T| = cv. , or N - - • — , there are two pairs of real double roots, 
1 y b 

m 1 ( 2 = I T T • m 3 > 4 = 0 (6) 

and Eq. 3 becomes 

X. (x) = A. sinh J L ~ a. + B. cosh J2~a. + C. + D.x i l
 v i i ^ i i i 

The most important case for this investigation is given by T| > o^ , 

1 2 2 D 
or N > — J — , from which a pair of real and a pair of imaginary roots 

y b 
is obtained: 

m- = ± OT.J^+l nL , = ± / - l aj^- - 1 (7) 1,2 iv 3,4 V iV a± 

and the following expression for X^(x), 

X.(x) = A. sinh m,x + B. cosh m,x + C. sin m 0x + D. cos nux i v / i 1 i 1 i 3 i 3 

For zero-in-plane loads, that is, for = 0 or T| = 0, Eq. 4 yields two 

identical pairs of real roots, 
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m- . = ± ot 1,2,3,4 l ( 8 ) 

and 

X. (x) = A. sinh cv.x + B. cosh a.x + C. cv.x sinh c*.x + D.a.x cosh a.x i i i i I i i i i i i 

which is the same result as in Reference [12], 

The interest here is in obtaining relations between boundary 

forces and displacements, which are related to the displacement function 

w(x,y). These forces and moments along the panel edges and the panel 

edge deformations also vary sinusoidally and with the same half-wave 

length b/i. They can be expressed as infinite series with respect to 

the y-coordinate as follows: 

D w(- f ,y) 
*~x 2 

6(y) 

CD 

1 , a N 

a w ( " 2 > y ) W(y) 00 
= y 

W 

Dw ( f,y) e-(y) CD
 

a w ( 2 > y ) W'(y) W 

sin ay (9) 

m x ( - 2>y> 

V - f > y > + V x y ( - ! ' y ) 

- m ^ y ) 
Q x ( f > y ) + £ y

m x y ( ! ' y ) 

M (y ) 

s ( y ) 

M»(y) 

s«(y) 

M 

S 

M' 
sin cv.y 

I 
(10) 

where, according to Reference [l], 
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m = D(l - v)D D w 

2 2 
m = -D(D + vD )w 

Q = -DD (D 2 + D 2 ) w x ~x ~x ~y 

S + -DD [D 2 + (2 - v)D 2lw 

1.2. Flexural Stiffness Matrix 

Depending on the parameter T]„ four cases must be considered in 

order to obtain the solution for the plate with general boundary condi

tions on the two sides. In each case, the resulting force-deformation 

relations can be expressed in the following form, 

M 

aS 

M' 

aS 

11 

l13 

l12 

2 2 
•d 1 2 -a a d 2 2 

l14 

2 2 
' d14 " a 0 1 d24 

l13 

11 

-d 14 

A 2 2A 
d14 a * d24 

-d 12 

2 2 
d12 a a d22 

- i 

W 
(11) 

The value of these coefficients will now be determined for each case. 
.2 2 n 

Case 1: N < 
y 1.2 

The general solution is given by Eqs. 2, 4, and 5. Eq. 9 

furnishes the four boundary conditions from which the four constants of 

integration can be determined. This leads to the following four equations, 

presented in matrix notation: 
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^ cosh a 2 

- sinh 

£ 5 cosh ~ a 2 

sinh 

- J s i n h | - cosh j 

cosh |- - sinh ~ 

sinh T* — cosh — a 2 a 2 

cosh sinh 

— sinh tt a Z 

cosh — 

- s i n h j 

cosh | 

A CD 

B W 

< > = < > 
C CD

 

D w 

where § = m^a and C - m^a 

and m^ and are defined by Eq c 4, 

Solving these equations for A^, B^, C^, and yields 

sinh -

C 
L J 1 

= I. 

1 

= I. 1 

-sinh „ 

cosh 

-cosh 

P C 5 C 5 c 
where 1/1. = 2( ̂  sinh — cosh ~ - — sinh ~ cosh —) 

X cl ^ ^ cl ^ 

F F C C C F and l/I.1 = 2 ( sinh * cosh -r- - — sinh — cosh -r) 1 a z z a z z 

This solution will now be used to express the Euler coefficients 

of the plate edge forces from Eq. 10 in terms of the coefficients of the 

edge deformations, Eq. 9. This results in the previously stated Eq. 11 

and the individual terms of that equation in this case are as follows; 



2 3 
d i ; L = J - ( 5 Z - C Z ) ( 5 s i n h £ c o s h § - £ s i n h ? c o s h £ ) i 
d i 2 = j 7 ( § C(§2 + c2)(1 " v > < c o s h § cosh C - i ) -

2 5 2 £ 2 " f ( 5 2 + C 2 ) 2 ] - s i n h | s i n h c } 
d 1 3 = J " ̂  ~ ̂ )( ̂  sinh ? ' ? sinh C) i d 4 = j - ( § 2 - C 2 ) § £ ( c o s h § - c o s h C ) i 

2 2 
a a 

2 1 2 2 i d 2 2 = J~ ^ sinh £ cosh £ - £ sinh £ cosh 5 ) 

2 < * . 2 d 2 4 = y - ( ? 2 - £ 2 ) ^ C ( 5 s i n h £ s i n h C ) 
J
± = = ( r + O s i n h | s i n h £ + 2 ? C ( 1 " c o s h | c o s h £ ) l l . 2 2 n 

Case 2 : N = 

y b 2 

Proceeding as in case 1, the four equations from which the constants 

of integration can be determined are found to be the following: ^ cosh f a 2 
F 

- sinh ~ 

7 cosh ^ a 2 

sinh •!• 

F F - s i n h - r a 2 0 

c o s h |- 1 " f 
sinh a 2 

cosh |- 1 f 

W 

• 

D 

where £ = m^»a and m^ is defined by Eq. 6 

Solving for A^ through yields 
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— 

A 

1 

a 
2 

D 
i 

- sinh • 

B 1 

-cosh f-2 C 
i 

-cosh f-2 

I 
2 

- 1 

cosh a 2 l *-
W - W 

a s i n h 2J W 1 + W 

where 1/1. = 2(f- cosh f-'-'sinh |-) i x2 2 2 

and 1/1. 1 = 1£ . s i n h 
l a 2 

The individual terms of Eq. 11 in this case are given below: 

1 2 
= — 5 (5 cosh § - sinh §) 

i 
d12 = J~ § 3 [ ( 1 " v)(cosh S - D + l / 2 v 5 sinh ? 

i 

d 1 3 = j - 52(sinh 5 - 5 ) 
i 

d14 = j " ?3(cosh § - 1). 
i 

2 2 2 2 1 .4 a Qf± d 2 2 = a ^ d 2 4 = — §• sinh § 
i 

J . = ^ y - r = ? 2 sinh § + 2§(1 - cosh §> 
i i 

.2 2 
Case 3: N > 1 , 

7 b 

It is seen later that this is the most important case. All 

buckling loads found for simple side supports for flexible side supports 

are obtained using the formulas belonging to case 3, The equations to 

determine the constants of integration are the following: 



a c o s h 2 

-sinh j 

— COSh 7T 
a 2 

sinh ^ 

- sinh TT a 2 

cosh TJ-

— sinh 7T a Z 

cosh 

-sin 

i cos f 

. c 
sin 2 

COS 

£ sin 4 
a Z 

cos j D 
I - - i 

e 

w 

e« 

w 

w h e r e § = m ^ a C - m ^ a , 

m ^ a n d a r e d e f i n e d b y Eq. 7 

a n d the c o n s t a n t s o f i n t e g r a t i o n a r e f o u n d to b e 

D 

I. 
l 

I. 
l 

-'i 

sin ^ 

-sinh 

cos j 
-cosh ^ 

I c o s 2 

— COSh TT 
a 2 

a S l n 2 

a S l n h 2 

w* - w 

e' . e 

w - w 

where = 2( — sin cosh - sinh cos ) 

and I/ 1! = 2( ~ sinh cos ̂  + — sin cosh ^ ) 

The individual terms of Eq. 11 for case 3 are listed below: 

a ,-2, 
xll 

1 2 2 
= c o s h § s i n C - C s i n h § cos C ) 

*12 = J- {(1 - v)§ C ( § 2 - C 2 ) (cosh § cos C - 1) 
i 

• [2§2 C 2 + | ( § 2 -. C 2 ) 2 ] ' s i n h § s i n c } 

l13 = y- ( S 2 + C 2 ) ( C sinh § - •§ sin C) 
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d14 = T~ ( ? 2 + ^ 2 ) § C(cosh § - cos C) 
i 

2 2 1 2 2 a a d 2 2 = -j- (S • C )5C (5 sinh 5 cos C + Ccosh 5 sin C) 
i 

a 2 a . 2 d 2 4 z y - ( 5 2 + C2)S£ (I sinh ..'I • C sin C) 
i 

a 2 2 2 
= Y~f—T = " ^ ) sinh 5 sin C'+ 2§ C (1 - cosh 5 cos C) 

i i 

Case 4: N = 0 
y 

This plate corresponds to the plate under transverse loads only. 

The out-of-plane stiffness that will be found can only be used to deter 

mine the displacements of such a plate. The individual terms of Eq. 11 

for this case are the following: 

dll , d22 = T7 ^ s i n h 2 ^*' 2 5) i 

d13 , d24 = T~ 2 ^ ^ cosh 5 ? sinh §) 
i 

d 1 2 -- §2{(1 - v)§ 2+ (1-v) sinh 2§} 
i 

d^^ z -y- 2§ 3 sinh § 
i 

= sinh 2§ - § 2 

5 = m^a, where m^ is defined by Eq. 8. 

This completes the derivation of the boundary force-deformation 

equations, or the stiffness matrices, for the Non-Composite Flexural 

Analysis. 

The stiffeners can be considered as plates having one free edge. 
Corresponding simplified stiffness matrices can easily be derived by 
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setting M i
l r S.̂ 1 = 0 in Eq. 11. In that case, & 1 and W i ' also can be 

eliminated from the same equation. An alternate procedure is to treat 

the ribs using elementary beam theory. The governing differential 

equations for beams under out-of-plane and in-plane forces in addition 

to axial compression are derived in the Appendix. 

2. Derivation of the Buckling Criteria 

2.1. Equilibrium Equations 

The two equations of equilibrium for a rib line element (Fig. 8) 

for the Non-Composite Flexural Analysis are 

M(r,y) + M»'(r - l,y) + M(r,y) = M (r,y) 

S(r,y) - S'(r - l,y) - N(r,y) =-Pe(r,y) 
(12) 

S'(r-l,y) 

M'(r-l,y)(^ 

N(r,y)^^-M(r,y) 

I / / ^ 
(a) Rib Line Forces ^ J W tLI MJ HI tU 

(b) Rib and Plate System 

Figure 8. Non-Composite Flexural Model 
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HereM(r,y), M'(r,y), S(r,y), S'(r,y) are the plate boundary 

moments and shear resultants on the typical panel r between the rib 

lines r and r + 1. They are defined below in a manner analogous to 

Eq. 10, where they were shown without the discrete variable r, designating 

the appropriate rib and panel. 

M(r,y) 

S(r,y) 

M'(r,y) 

S'(r,y) 

M(r,y) and N(r,y) are the distributed twisting moments and direct forces 

transmitted to the rib. Details and physical properties frequently 

encountered are such that M(r,y) can be considered negligible. On the 

other hand, retention of this term does not greatly complicate the 

mathematical model.' It will be retained for a more general solution and 

can be dropped in those cases in which it is not applicable. 
e e 

M (r,y) and P (r,y) are the equivalent applied line moments and 
Si Si 

loads which are comprised of the actual rib line quantities M and P , 
£ f f f 

if any, and the fixed edge panel quantities M , M 1 , S , and S 1 due 

to mid panel loads q(x,y) (Figure 9), that is: 

M e(r,y) = M a(r,y) - M f(r,y) - M' f(r - l,y) 

P e(r,y) = P a(r,y) - Sf(r,y) - S'f(r - l,y) 

M(r) 
00 

= J 
S(r) 

L 
i=l 

M'(r) 

S'(r) 

* sin tf.y 
I l b (13) 



Figure 9. Applied Rib Line and Fixed Edge Panel Forces and Moments 
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The distributed twisting moments and direct forces transmitted 

to the ribs and the equivalent line loads can also be expressed in series 

form, that is, 

M(r,y) 

N(r,y) 

P6(r,y) 

M 6(r,y) 

• z 
\ 

M.(r) 

i=l < 
N.(r) 

1 V 
> sin ff.y P t(r) 

M, e(r) 
V 1 

(14) 

Replacement of all quantities in Eqs. 12 by their equivalent series and 

matching like coefficients results in the following relations between 

the series coefficients: 

M.(r) +M.'(r - 1) + M.(r) = M.^r) (15) 

S.(r) - S.'(r - 1) + N.(r) = - P.(r) 

2.2. Displacements 

The panel force coefficients M., M.', S., and S.' in these r 1 1 1 1 
equations can be expressed in terms of the coefficients of the rib line 

deflections and rotations, Eqs. 9, by use of the plate stiffness coeffi

cients shown in Eq. 11. The stiffness coefficients used for the ribs, 

M\ and N^, are those derived by beam theory in the Appendix, Eqs. 76 and 

87. 

Note that u\ for the beam in Eq. 87 must be replaced by for use 

in Eq. 15 for the rib line, or panel edge, deflection. The necessary 

relationships are thus: 
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M i ( r ) = a t d l l 9 i ( r ) * d12 Wi ( r> + d 1 3 e i ' ( r ) " d 1 4 W i ' ( r ) ] 

M i
,(r-1) = & [d 1 3e.(r - 1) + d 1 4W.(r - 1) + d ^ ^ r - 1) -

d 1 2W.'(r - 1) ] 

M.(r) = - [ f- a. 2kB 'e.(r)] 
I a L D I I 7 J 

S,(r) = 7 [- ~ d 1 96.(r) - aa.V w.(r) - - d.,0. ' (r) + i a u a 12 i v i 22 i v 7 a 14 I V ' 

(16) 

S.'(r-l) = - [--d - .e.Cr - 1) - aa.zd,.W.(r - 1) -^-d 1 o e.'(r - 1) + i v ' a L a 14 I I 24 I a 12 I V 

+ a 0 f i 2 d 2 2 W i J ( r " 1 ) ] 

2 2 a a. 
N.(r) = - [ (P - a/ B)W.(r) ] l 7 a u D x x 

Note also the following expressions of continuity at the rib lines: 

9!(r - 1) = 9(r) 

W'(r - 1) = W(r) 

6'(r) = 6(r + 1) ( 1 7 ) 

W !(r) = W(r f 1) 

2.3. Governing Difference Equations for the Rib Line Deformations 

Introducing Debla. A X / , the second central difference operator, 

and Multa T/- / T the mean difference operator, that is 

Z 5 7 F(r) = F(r + 1) - 2F(r) + F(r - 1) 
r (18) 

13 F(r) = 1/2 [F(r <f 1) - F(r - 1 ) ] 
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and substituting the force deformation relations, Eqs. 24, into the 

equilibrium relations, Eqs. 22 and 23, yields 

d 1 3 ( ^ 7 r * 27.') -2d l 4 ZE7„ 

2 .. 2 
L 

in which 

-2du/E7 a^.'d 2 4 (7S7 r - 2Y±') 

\ ( r ) " M. 6(r) \ ( r ) " 
- £ 
" D 

M. 6(r) 

W.(r) -aP.(r) 
(19) 

Y. ' = 1 + + ĉ .2 kB» d ^ 2 D d u i 

Y.1 = - 1 + -p- + ^ r | — (a.2B - P) 
d24 2 D d 2 4 1 

where kB 1 is the torsional stiffness of the rib beams, and 

B is the flexural rigidity of the rib beams about the axis parallel 

to the plate. 

Eq. 19 constitutes the uncoupled difference equations for the plate 

that is simply supported at the ends and stiffened longitudinally with 

equal and equally spaced ribs. This equation can be used to obtain rib 

line displacements for low axial loads or to derive the buckling 

criterion for initial buckling for the Non-Composite Flexural Model. 

3. Simple Side Supports 

The physical boundary conditions for the case of simple side 

supports are zero deflections and zero external moments at r = 0 and n or 

W.(0) ~- W t(n) = 0 

M t(0) f M t(n) - M t
e(0) = 0 (20) 
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M. '(n - 1) + M.(n) - M. e(n) = 0 

Selecting a boundary beam torsional stiffness equal to one half of the 

stiffness of the interior beams, that is, (kB 1)^ = l/2kB', Eq. 76 from 

the Appendix becomes, at r = 0, 

M.(0) = + \ a. 2kB'e.(0) l ' 2 l i A ' 

Substitution of this equation and Eq. 11 into the second Eq. 20 and 

recalling Eqs. 17 yields the boundary conditions on the left and right 

hand sides of the plate 

d. 

d 1 3[A r•+ Y. • ]9.(0) - d u [ A r + 1 - = 0 (21) 

14 

where Y i' is defined by Eq. 19 and 

A^F(r) = F(r + 1) - F(r) is the first forward, 

V rF(r) = F(r) - F(r - 1) is the first backward difference 
operator. 

The most convenient form of solution for the case of simple 

side supports is that of a double series, that is, the Euler coefficients 

in Eq. 19 are expressed as finite series as follows: 
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\ M. 6(r) 
r 

W.(r) 

^(r) 

11 ik 

M 
L ik 

n-1 

- I 
k=l 

ik 

L P i k 

where 

Tr 

cos krrr 

(22) 

. k-nr sin 

1 for r = 1, (1), n - 1 
1/2 for r = 0, n 

Not that the complete expression, for example for 9(r,y) is a 

finite-infinite double series as follows: 

9(r,y) = Y 
i=l k=I 

a kTTr f cos • sin Qf.y ik n iJ 

Attention is called to the device of expanding a weighted moment 

coefficient function instead of the function itself. This allows one 

to satisfy the inhomogeneous moment boundary conditions. Eqs. 20, 

without adding corrective boundary functions, which are needed for func

tions expressed as finite sine series. The weighted moment function 

coefficient is found from the following equation 
n 

M 9 = 2jk V M
 e

( r ) cos k n r 

When substituting Eqs. 22 into Eq. 19, the operators Debla, f\J, 

and Multa, /- / , will operate onto the trigonometric terms and this yields 

I 
k=0 
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9.(r) r 1 

^ 7 W.(r) r 1 

1 3 G.(r). r i 

E 3 W.(r) r l 

- 2 
k=0 

n-i 

„ kTTr •.. o: cos lk k n 

- 2 Y w.. a s i n ^ ^ ik k n 
k=l 

n 
Z A . kn . kTTr o., s m — — s m 
k=0 ik 

V tt = • kTT kTTr + / W., s m cos ^ ik n n 
k=l 

(23) 

where a, - 1 - cos kTT °k n 
With these terms, Eq. 19 becomes, after matching like coefficients, 

' d 1 3 ( V - - V 

, . kTT cL . s m 14 n 

.kTT - cL . s m 14 n 

-a 2d 1
2d 2 4(Y 1' . % ) 

a 
D 

ik 

Solving this equation for 6 and W ^ yields 

(24) 

'V 
lk 

W 
2D |C...1 

ik 
ik 

a 2cv. 2d 9 /(Y. ' + cc) d-.sin — i 24 i k' 14 n 

, . kTT 
d, .sin 14""' n d 1 3 < V - V 

M ik 

(25) 
aP ik 

where C. k' = - ' W ^ i Y. ' - ^ ( Y . ' • c^) + d ^ 2
 % ( 2 - % ) 

2 kTT Note that sin = a. (2 - a. ) n k v k' 
This completes the solution for the deformations of the rib lines 

under axial compressive and lateral loads applied to the whole structure, 
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4. Buckling with Simple Side Supports 

Eq. 25 has non-trivial solutions for zero external loads and 

moments, that is for M., = P.. • 0, only when C , the determinant of 

i k i k J i k ' 
coefficients, vanishes. *"s a f u n c t ^ o n °f i a n d k and the compressive 

loads P and N^. For each set of i and k there exists an infinite number 

of load combinations for which C., ' a 0. These load combinations in 

i k 
general can be found only by using a trial and error method. The smallest 

of all the possible load combinations for all possible sets of i and k 

constitutes the initial buckling load. 

In the course of this procedure, it was found that buckling loads 

N c r > plus a corresponding P, are always defined by "case 3" of the 
solutions to the partial differential equation for the panel element, that 

2 
is, for N > oi. D. y l 

The expression for C ^ 1 ~ 0 can be solved explicitly for P which 
yields 

.„ _ i 2 * V 2D r. . 0 , d i 4 2 ' V <2 - CTk> I Pcr " T 2 ~ + T L d22 " d 2 4 ( 1 " V " 2 2, , T J b a a± - a k) 
The second term of this expression approaches zero as t, and therefore, 

D approaches zero; that is, for the extreme case of a structure that 

consists only of ribs. The first term is the Euler buckling load of a 

column which is simply supported at both ends. Therefore, it is seen 

that the solution to the problem of the stiffened plate is limited on 

one side by the simple column buckling case. 

On the other hand, C ^ 1 cannot be solved explicitly for N . How-

ever, setting A and P equal to zero and then solving C ^ ' = 0 by a trial 

and error method yields a smallest value for equal to the buckling 
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load of a flat, unstiffened plate which is simply supported on all four 

sides, that is 

N , & (JL + 1£)2. V J i \±A + b/ 

where JL- n«a is the total width of the plate and k = 1. 

This is the other extreme of the stiffened plate problem. The 

same result can be obtained directly from Eqs. 11 and Case 3 by setting 

a W. = W. * = 0, and 6. = -6.'. This results in ^ l l ' l l 

e. .JL.. —t . M 
1 ° dll " d13 1 

which increases above all bounds for d ^ = d ^ or 

§ sin£(cosh § + 1) - Q sinh §(cos Q + 1) = 0 

This equation is satisfied for n = TTwhich yields 

or 

w ^ 2 \i/ b / cr 

Up to this point the compressive force per unit length, N^, acting 

on the panels between the ribs, and the axial load, P , acting on the ribs 

have been kept distinct. This allowed for an additional degree of freedom 

in the buckling analysis. However, for most practical cases, the plate 

will be constructed in such a way that N and P cause uniform strains in 
y 

panels and ribs. When panels and ribs have the same modulus of elasticity, 
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this corresponds to a uniform stress, o\ Therefore, Ny and P can be 

expressed as follows 

N = at . P = O A 

where t is the panel thickness and A is the cross sectional area of 

one rib. 

In the case of a concrete plate stiffened by steel ribs, the 
E -

stress o" in the plate would be replaced by f : o"- where E is the 

modulus of elasticity of the concrete. 

A group of special eigenvalues of C ^ ' is obtained by setting k 

equal to n, that is by prescribing as many half-waves in the transverse 

direction of the buckled surface as there are panels. Then the rib lines 

correspond to the node lines of the buckling surface. By assumption, 

the rib lines remain straight, that is they do not buckle. This is 

called local buckling. From this mode, buckling stresses equal to those 

of flat plates of width "a" must be expected. The trial and error method 

does indeed furnish this expected result. In other words, for k equal 

to n the stress at buckling of the plate of widthJl^ length b, thickness t 

and flexural rigidity D , with n panels of equal width a between n + 1 

stiffeners of equal flexural properties is found to be 
T T ^ D ( h ia\ 2 

cr t 2 N I A 

or, since a = ̂ //n 

a •= i • k (26) cr t P 2 cr N ' 

where k - n (— + —r) cr L A b 
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( The maximum values of k for values of n = 1,2,3 are 

k = 4,16,36 

In general the initial buckling may occur in any number of half-

waves 1 ^ k ^ n in the transverse direction. The two most important 

where B and A are the flexural rigidity and cross sectional area of 

one rib. 

There are now possible two major approaches to make use of the 

buckling criteria C.,' = 0. One is to find that value of Y for given 

stresses than system buckling. This approach is important in the 

design of structures when system buckling, at least initially, is to 

be avoided. The sought value of Y corresponds to a minimum rib stiff

ness B, in comparison to the plate rigidity D, that guarantees local 

buckling to occur first. 

It should be noted that the ratio 6, is multiplied through with a, 

represents the ratio P/N y for a plate made from materials having the same 

modulus of elasticity for panels and stiffeners. 

The other approach is to find the critical stress cr for a fully 

chosen set of parameters. This corresponds to finding k in Eq. 26. 

parameters, besides^, b and n, are the two ratios 

values o f b, n and 6 which causes local buckling to occur at smaller 
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In the process of obtaining numerical results, it is seen that 

k s i , that is the first symmetric mode, yields the lowest k c r >, except 

for the case of local buckling. With k r 1 and introducing the defini

tions of a , Y^ 1, and y 1 into the expression for C ^ ' from Eq. (25) 

yields the following simplified buckling criterion 

TI 2 ! 2 , T, TI2 / n 2 i 2 . , U . 2 
4 P 2 ^ 

where P = b/^C is the plate aspect ratio and the torsional rigidity of 

the ribs has been neglected. 

The buckling criterion in this latest form reveals that k depends 

only on n, Y, 6 and the ratio i / P since the stiffness coefficients d 

also are functions of k , n, and i / P . Larger values for k can be 
cr' & cr 

expected for high ratios of Y / 6 rather than low ones. Prescribing a set 

of values for i, P , n, Y, and 6, the corresponding value for k ^ can be 

found by iteration. Only the curve for i = 1 needs to be determined, 

however, since the curves for i = 2,3,etc. can be obtained by doubling, 

tripling, etc. of the abscissas of the points on the curve for 1 = 1 . 

4.1. Numerical Examples for Simple Side Supports 

In Figure 10 some curves are shown for k ^ as a function of P , n, 

and Y. Comparison to the curve for an unstiffened plate shows the simi

larity of the basic form of these relations. In both, stiffened and 

unstiffened plates, a lowest value of is approached asymptotically with 

increasing P . The transition point from buckling into one, two, three, 

etc. longitudinal half-waves shifts to larger aspect ratios with an 

increase in the number of ribs and in their stiffnesses. The relative 



41 

cr 

Plate 10. Curves for k c r for Simple Side Supports 
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gain in the buckling strength is grestest for the first rib and decreases 

for additional ribs. For P > 1, substantial increases in the rib stiff

nesses are necessary to bring the buckling strength of the ribbed plate 

anywhere near the strength in the local buckling mode. 

The curve for n = 2 checks well with data given by Timoshenko 

in [l ]. All values are slightly lower, however, and thus represent an 

improved and decreased upper bound for the initial buckling. The curve 

for n = 4 in turn checks with data given In the USS Steel Design Manual 

[l8 ] as far as the graphs presented there permit accurate numerical inter 

pretation. The curves for n = 10, or for any number of n greater than 4, 

represent new data unavailable in this form up to now. 

5. Boundary Deflections 

The second solution of the Non-Composite Flexural Analysis of a 

ribbed plate is for the unloaded system, that is for M^ (r) = P^(r) = 0, 

with imposed boundary deflections which can be represented by a symmetric 

and anti-symmetric component, that is, by 

W. S = \ [W.(0) • W.(n) ] 

W . a / S = \ [W.(0) - W.(n) ] 

A technique to include the imposed boundary deflections in the 

Fourier series assumptions is to add corrective terms to the classic 
3. I s 

series. For the symmetric component, or W, = 0, the solution can be 

written in the following form: 
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e . S ( r ) = W . S T 0.. cos (27) i N
 I ^ - J l k n 

k ~ 1 j 3 j • • • 
n-l W . S ( r ) = W. S( £ w i k - 8 l n ^ L . + l ) 
k=l,3,... 

Substitution of Eq. 27 into the governing differential equation (Eq. 19) 

and into the boundary conditions (Eq. 21) and matching like coefficients 

shows that only odd terms of k are used, which justifies the assumptions 

of Eq. 27. Solving for 6 ^ and yields 

2 2 

" 9 i k = - I < d 1 4 " Y i ' ( 2 -V + < d 1 2 " d 1 4 > < V + V n | C i k 1 
2(2 " V I 2 

i k kTT n . s i n — C.; 
r i k 

d 1 4 < d 1 2 - d 1 4 ) CTk + a « i 2 d 1 3 d 2 4 Y i , ( Y i ' " V , 

g 
For the anti-symmetric component, or = 0, the solution can be 

written in the following form 
n-l 

- a/ s a/ s Y - k T T r 
9. (r) = W 4 , 941, cos ^ (28) 
i i k=2,4,...ik n 

kTTr 2r v W.. s m + (1 ) i k n N n 

where 9. , and W., are identical to the ones for the symmetric case. Note ik ik J 

the term (1 - 2r/n) which increases from zero at r = n/2 to ± 1 at the 

boundaries and which reflects anti-symmetry. 
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6. Rib Boundaries 

The total solution for a Non-Composite Flexural Analysis of a 

ribbed plate is that for a plate with flexible ribs for side supports 

(Fig. 10). 

Figure 11„ Plate with Rib Boundaries 

It can be obtained by superposition of Eqs. 22, 27, and 28 and is 

written as follows: 

e . V ) = e.(r) + e.s(r) + e. a / s(r) 

W i
t(r) = W.(r) + W. S(r) + W. a / s(r) 

That combination of the solutions for simple side supports and boundary 
deflection cases has to be found which satisfies the rib boundary condi-

s 
tions at r = o, n. The coefficients of the boundary deflections, and 

3. / S 

, must be determined through study of the conditions at the boundary 

beams. The two boundary ribs are assumed to be identical so that the 

structure is symmetric about r = n/2. The interior ribs may or may not 

be identical to the boundary ribs. One can determine W^ s and W. a^ s by 
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working with the symmetric and anti-symmetric components separately, that 

is for k odd and for k even, respectively. The coefficients of the symmetric 

and the anti-symmetric components of the boundary loadings are written in 

a similar way as the boundary deflections, that is 

P. S = 1/2[P.(0) • P.(n)] P . a / S = 1/2[P.(0) - P.(n)] (29) 

For the symmetric component of the solution, consider the equilibrium along 

the rib line r = 0, that is the second of Eqs. 15 becomes: 

S.(0) • N.(0) • P.S(0) = 0 (30) 

where S^(r) and N\(r) are defined by Eqs. 16. 

Substitution of these terms into Eq. 30 yields the boundary con

dition in terms of the boundary rib displacements 

2 - dU(AR * e.-V^O) . aVd24(AR - Y / ) W.^O) . §- = 0 

, ,b d14 '*.
 d12 where e. ' = 

d14 

Y.'b
 = e.'b

 + - 5 — (cv.2Bb - P) i i D d 2 4 i 

I ,b d22 " d24 
1 = d24 

B b is the boundary beam flexural rigidity and 

A is defined as in Eq. 21. r 
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t t 
Substitution of 9̂  (r) and (r) into the boundary condition and 

s 
solving for yields 

2 
" £ P.S + s.S(0) 

T T s D I l • 7 

W. = 

where 

1 11 . , b - s.(0) 

' l 1 
. a V 2 K 2 B b - P ) b a V 2 f e 2 B b - f ) j. i b _ i i . j. i b _ i i 

1 aD Mi aD 

Si S<°) = " d14 I <*i'b " CT
k>eik+aS2

 d 2 4 I W i k s i n ^ 
k 1 j 3 y »• • k— 1,3, • • • 

n+1 

1.^(0) = - d 1 4 I («1 - a k)S i k + a V 2 d 2 4 ( £ W. k .iJE . 
k~X}3 j••• k— X ̂  3 ̂ ••• 

The last two terms are the coefficients of the panel boundary shears of 

the two parts of the total solution. 

The anti-symmetric omponent of the boundary deflection is obtained 

in a similar way as the symmetric component and is found to be 

^ P . a / s + s. a / s(0) 
w a/s _ D I I V ' 

1 7).' b - I . a / S ( 0 ) 

1 1 
where ^\^° is defined as in the symmetric case 

and , 
n n-l 

s. a / s(0) - - d w I (c.'b - a k ) e . k + a 2. 2 d 2 4 ( J W. k s i n ^ ) 
k=0.2... k=2,4... 
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n n-1 

k«0,2. o. k=2,4... 

This completes the solution of the deflections of a ribbed plate with beam 

boundaries subject to lateral and in-plane compressive loads and using a 

Non-Composite Flexural Analysis. 

7. Buckling with Rib Boundaries 
For the plate with beam boundaries, the buckling criteria have 

taken a new form. Now, the buckling stresses can be found from the con
ditions that 6. f c(r) or W.fc(r) increase above all bounds. This occurs, 

I I 

on the one hand, for = ^» t b e s a m e criterion as for the previous 

case of simple side supports. The term appears as the denominator 

of the expressions for ' 6 ^ * ®ik» ^ik' a n d ^ik* ^ t b e o t b e r n a n <*> ©^ t( r) 

and W^fc(r) also increase above all bounds for vanishing denominators of 
S 3- / S 

the expressions for and , that is, for one of the two following 

conditions: 
, 2 

V ' i i S ( 0 ) = 0 a n d D~ P i S + S i S ( 0 ) + 0 ( 3 1 ) 

T1.«b - i. a / s(0) = 0 and ^ P. a / s + s. a / s(0) + 0 l l D i l 1 

The new buckling criterion no longer depends on k. However, since 

local buckling still is determined by C ^ 1 = 0 , it could be expected that 

Eq. 31 govern in cases of system buckling when its eigenvalues are lower 

than those found from C . 1 = 0 o Both criteria have to be checked in order 
ik 

to determine which one of the two gives the lowest critical stress. 
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7.1. Numerical Examples for Rib Boundaries 

For the symmetric case, Figure 12 shows some curves for k as a 

function of P , n, Y, and the ratio B^/B, that is the ratio of boundary rib 

bending stiffness to interior rib stiffness. Again, the torsional rigidity 

of the ribs has been neglected. 

Comparison of the curves for simple side supports and rib boundaries 

shows great similarity, up to the point of the first minimum for simple 

side supports. As could be expected, this is especially true for very 

rigid boundary ribs. For aspect ratios near 1, local buckling controls. 

For ribbed plates with = B, k r can well be approximated by Euler 

hyperbolas, that is these plates behave similarly to simple columns. 

Except for local buckling, i = 1 yields the lowest k 



Figure 12. Curves for k for Rib Boundaries, 
cr ' 

Symmetric Boundary Deflections 
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CHAPTER III 

COMPOSITE MEMBRANE ANALYSIS 

In close analogy to the Non-Composite Flexural Analysis, the 

Composite Membrane Analysis of a ribbed plate structure under uniformly 

applied stresses at the ends is presented in this section. The structure 

is proportioned so that the effects of the out-of-plane deformations can 

be ignored in determining the stiffness matrices of the elements that 

comprise the structure. This again results in a simpler and lower order 

model as was the case in.the previous chapter. One consequence of such 

an approximation is that the loads can theoretically be applied only 

along the rib lines. Thus, distributed loads must be replaced by their 

line load equivalents. Composite action--the T-beam effect--is taken 

into account by matching the longitudinal displacement at the top of the 

ribs to the y-component of the membrane displacements along the rib lines. 

1. Derivation of Boundary Force-Deformation Relations 

A typical panel between two ribs is shown in Figure 11. 

at 

Figure 13. Panel with Boundary Forces and Deformations for 
the Composite Membrane Analysis 
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The first step of this analysis is the determination of the set 

of coefficients that relates the in-plane edge forces N, T, and a to the 

edge deformations U and V for the elements of the structure. In antici

pation of a similar result as in the Non-Composite Flexural Analysis, the 

general stiffness matrix equation for the Composite Membrane Analysis is 

written as follows: 

N " b n b 1 2 b 1 3 b 1 4 _ U 

T 

> _ 

b 1 2 b 2 2 b 1 4 b 2 4 
< 

V 

N' b 1 3 b 1 4 b l l b 1 2 U' 

T 1 

i 
b 1 4 b 2 4 b 1 2 b 2 2 i 

V 

(32) 

The elements of the stiffness matrix normally could be found by carrying 

out a routine plane stress analysis of the panel with zero body forces. 

This classical linear theory of elasticity Is inadequate, however, to 

show the destabilizing effect of the longitudinal compressive stress, c 

and a non-linear theory must be used instead. The derivations given here 

are based on those presented by Wittrick [ 9 ] . 

1.1 Governing Differential Equation 

A non-linear theory which is suitable for this problem has been 

developed by Novozhilov [l3]. The non-linearity, with which we are con

cerned, is that arising from the use of the deformed geometry of an 

element in formulating the equations of equilibrium. For the case of 

plane stress these may be written as follows (Eq. II, 48, Novozhilov): 
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(1 + D u)n + n D u + D 1(1 + D u) ii + n D u = 0 
x |_ x xy^y J [_ ^ yx y^y J (33) 

D (1 + Dv)ri + ri D v *y ^ y yx*x + D (1 + D v)ri + ii D v v <~y ' xy x'-vx = 0 

where n , n , n , and n are the stresses, and u and v are the displace-x y xy yx r 

ments in the x and y directions from the unstrained state. In the basic 

state, the following relations correspond to the applied compressive 

stress: 
(34) 

- _ O" - o~ -n = - o n = n = 0 , T V v = - — , D u = v ^ r 3 D u = D v = 0 y x xy ' *=y E E ~y ~x 

Eq. 33 is identically satisfied by Eqs. 34. 

The additional stresses and displacements, after infinitesimally 

small in-plane edge forces have been applied, are n , n , n , u, and v. 
x y xy 

In the final state, the relations in Eq. 34 are replaced by those shown 

below. 

n = - a + n 
y y 

D v = ~— + D v 
~y E 

n = n x x D v = D v 

n z n 
xy xy 

D u = D u 
t-jy rjy 

D u - V- + D u 
r^X. E rJX. 

Substitution of these expressions into Eq. 33 yields 

- crD 2 v + (1 - J) (D n + D n ) + |~D (n D v + n D v) (35) 
*y E rjy y ~x xy 7 ~y xy~x y^y ' v 7 

+ D (n D v + n D v) = 0 
~x xyrjy x~x ll 
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-CTD u + (1 +' ~ ) (D n ' + D n ) + I V (n D u + n D u) 

+ D (n D u + n D u)| = 0 
xy-̂ c y ^ J 

Since the additional stresses n , n , and n are infinitesimal, and 
x' y xy ' 

therefore the displacements u and v resulting from them also, the terms 

in square brackets in Eqs. 35 are small of second order with respect to 

the remaining terms and thus may be neglected. The terms o/E and VCT/E 

also are small compared to unity and will be neglected. Eq. 35 then 

simplifies to the following expressions: 
2 D n ' + D n - CTD v = 0 ry y o« xy <-y 

2 D n + D n - oD u = 0 x xy ~y 

(36) 

The stress strain relations for the additional stresses and displace

ments are identical with those of the linear elastic theory and are as 

follows: 

n " — — o (D U +. V D v) 
x 1 _ V Z ~ * ^ 

n z n = o / i . i . (D u D v) xy yx 2(1 + V>) vrvy rsx 

Substitution of Eqs. 37 into Eqs. 36 results in the following two 

simultaneous partial differential equations in u and v: 

(37) 
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2 2 2 2D + (1 - v) $ D (1. + \))D D 

(1 - V)D +. 2cp D ' 
r^x ^y 

-1 — — 

r 
u(x,y) 0 

< > =< 

v(x,y) 9 0 
(38) 

2 2 where cp = 1 - (1 - \j ) • e 

$ = 1 - 2(1•+ v)-e 

and e - CT/E is the uniform longitudinal compressive strain in the 

undeformed state. Note that neglecting e with respect to unity in 

Eq. 38 would reduce it to the classic linear one and would mean the 

entire loss of the destabilizing effect of the compressive stress, a. 

Here the concern is with panels that are simply supported in the 

plane at the extremities of the y coordinate; that is, a partial state

ment of the boundary conditions is 

ny(x,0) = ny(x,b) = u(x,0) a u(x,b) = 0 (39) 

Thus the solution, which is general with respect to the boundary con

ditions at x - ±a/2, can be written as follows: 

(40) 
u(x,y) = ^ u\(x) sin a.y ; v(x,y) 

i=l i=l 
V\(x) cos or y 

Substitution of Eq. 40 into Eq. 38 yields two ordinary simul

taneous differential equations in U-(x) and V\(x) 

a.(l + V)D 1 ' x 

2 2 2 2D - (1 - v)$ <*. x 7 1 

2 2 2 (1 - v)D - 29 a. v • x 1 

- (1 + v)a.D v ' i x 

- — _ _ 

< 

U.(x) 0 
< > =< \ 

V.(x) 0 
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which are transformed in the standard manner to a scalar stress function 

as follows: 

(x) (41) U.(x) = [(1 - v)D X
2 - 2cp2a.2 ] F. 

V.(x) = - ^.(1 + v)DxF.(x) 

These equations identically satisfy the first differential equation, 

and the second equation becomes 

{ 2(1 - V)D 4 - [49 2 +' (1 - ^ ) 2 $ 2 - (1 + V ) 2 ] D 2 0 i 2 

X X I 

4-2(1 - v) $2cfJ2» 4 } F i(x) = 0 , 

an ordinary differential equation of the fourth order with the general 

solution 

m- x m«x m~x m.x 
F.(x) = A.e +B.e +C.e +D.e 1 ' ' 1 1 1 1 

Substitution into Eq. 41 yields 
(42) 

U.(x) = ( - cpA.sinh cpa.x -f-B.sinh $ a . x ) + (- cpC.cosh cpa.x +D.cosh §of.x) i v / V T i 1 1 1 ' x •• 1 T i 1 1 ' 

V.(x) = (A.cosh <Pa?.x - SB.cosh $<*.x) + (C.sinh cpa.x - $i).sinh §a. x) 

Substitution of Eq. 42 into Eq. 40 and then into Eq. 37 yields: 

CD 

Sc = (i E+ V) II" L1 - C1 + v > e ] (A^osh cpa.x + C.sinh cpa>.y) (43) 

+ $(B.cosh §ot.x + D.sinh $Qf.x) f or. sin ay 
v 1 1 1 1 7 J . 1 1 
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nxy = (i 4 V) £ { ^ s i n h cpa.x + C.cosh cpo/.x) - [i - (1 + v) e] 

(B^inh fr^x + D± cosh Sc^x)} c^cos a y 

At this point, again, it is convenient to represent the forces 

and displacements of the panel edges by their symmetric and anti-symmetric 

components; that is, 

N. S 

1 
= 1/2(N.' + N.) N . a / S 

. l 
= 1/2(N 1 

T > 
1 

= 1/2(T.' + T.) T a/s 
i = 1/2(T.' - T . ) 

U . S 

1 
= 1/2(U.' + U P 

U a/s 
l = 1/2(U.' - U . ) 

V . S 

1 
= 1/2(V.« + V . ) 

a/s 
V 
i 

= 1/2(V.1 

I " V l > 

(44) 

The panel edge forces can be found from Eqs. 43 and are defined as 

follows: 

N. z n (- a/2) T. = n (- a/2) i x 7 i xy 
(45) 

N.' = n x( a/2) T.'= n x y( a/2) 

The panel edge displacements are found in a similar way by use of 

Eqs. 42. 

The following expressions for the symmetric and anti-symmetric 

components of the panel edge forces in terms of the symmetric and anti

symmetric panel edge displacements can be derived from Eq. 32: 
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N. S = ( b u + b 1 3)U. S + ( b 1 2 + b 1 4)V. S 

T. S
 = ( b 1 2 + b 1 4 ) 0 . S + ( b 2 2 + b 2 4 ) V . S 

N i 3 / S = <bU - V i " " + <b12 " b 14> V i a / S 

T i 3 / S " <b12 " b 14) V i a / S + <b22 " b 24> V i a / S 

(46) 

(47) 

1.2 Solution for Symmetric Case 

The solution of IL (x) ,. (Eq. 42) , for this type of loads must be 

an even function of x and an odd function for V\ (x) . The constants of 

integration and EK are identically zero and only A^ and have to 

be determined from the boundary conditions, Eq. 39. The general stresses 

are found fromEq. 43 which, together with Eqs. 44 and 45, yield expres-
s s 

sions for and T^ . Comparison with Eq. 46 then results in 
eft*, a tpcv.a §oi.a. i i i (a/Et)(b 1 1 + b^^) s s cosh — j~ c o s n — 2 ~ 

ecpa.a cpcv. a ft*, a 
(a/Et)(b 2 2 + b 2 4 ) = g sinh — j - sinh — y - ( 4 g ^ 

QQi. a tpcv.a ft*, a a. a 
(a/Et)(b 1 2 + b 1 4 ) r - ~ - cosh —)r~ sinh — 1 ~ ~ F+~V 

9 a . a ft*, a 9o/. a ft*, a 
where I s - cosh — | — sinh — z ~ - 9$sinh — z - cosh — — 

Expanding Eq. 48 in powers of e and then investigating the 

eigenvalues of Eq. 46, that is, for 

( b n + b 1 3 ) ( b 2 2 + b 2 4 ) - ( b 1 2 + b 1 4 ) 2 = 0 
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Wittrick found that eigenvalues of e always are of unit order, which 

implies that in practice the destabilizing effect of the stress o* in the 

symmetric mode of deformation is always insignificant. Therefore, only 

the leading terms of the expansion of Eq. 48 will be retained, which are 

as follows: 

2c*.a 
(a/Et)J S(b n + b 1 3 ) = YT^> (cosh a.a + 1) 

2c*. a 

(a/Et)J S(b 2 2 + b 2 4 ) = ( c o s h V ~ !) (49) 

(a/Et)J S(b 1 2 + b 1 4 ) = - a±a(j-=r-% sinh c*.a - o^a) 

where J S r (3 - v)sinh c*.a - (1 + v)cv.a 
' I I 

Eqs. 49 do not include the effect of the compressive stress cr anymore. 

They can be used to determine the stiffness matrix for a membrane without 

compressive stresses acting. Such a stiffness matrix has been found by 

Dean [l2], and it can serve as one way to check the more complicated 

stiffness matrix obtained by Wittrick for the lower bound of o\ 

1.3 Solution for Anti-Symmetric Case 

The solution of u\(x) , Eq. 42, for this type of loads must be an 

odd function of x and an even function for V.(x). The constants of 
1 ' 

integration A^ and are identically zero and only C^ and D^ have to be 

determined from the boundary conditions, Eq. 3.9. Comparison of the 
cl / S cl /s 

resulting expressions for and T^ with those of Eq. 47 yields 
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(a/Et)(b u - b 1 3 ) = — ^ - sinh—±- sinh-^-

ecpa.a cpQ-<a $a.a 
(a/Et)(b 2 2 - b 2 4 ) = cosh-—- cosh—|- (50) 

ea.a cpo/.a $<*.a a 
(a/Et)(b 1 2 - b ^ ) = sinh—i- cosh—|- - 3 ^ 

. cpa.a $or."a cpo/. a ' $or. a 
cl / S 1 i 1 1 where I - sinh — — cosh — — - 9$cosh — — sinh — — 

Expansion of Eqs. 50 in powers of e and omitting the terms 

involving the compressive stress provides the second group of equations 

needed to determine the stiffness matrix for the membrane that is not 

in compression: 

I lot.a 

(a/Et)j a / S(b n - b 1 3 ) = YT~^ (cosh <*.a - 1) 

, 2c.a < 5 1> 
(a/Et)J a / S(b 2 2 - b 2 4 ) = 3 - ^ (cosh a.a + 1) 

(a/Et)j a / s(b 1 2 - b u ) = -a.a(^=-^sinh <*.a + <*.a) 

where j a ^ S = (3 - v)sinh ot a + (1 + v) o^a 

1.4 Stiffness Matrix 

The total solution for the elements of the in-plane stiffness 

matrix can be assembled from Eqs. 48 and 50 which include the effects 

of the compressive stress o-: 

b n , b 1 0 = ota. (—cosh cpa.a-cosh ± 1 , sinh cpa.a-sinh $<*.a) (52) 11' 13 1 I s 1 I a ' s 1 

b 0 0 , b 0 / - CTta. (—sinh cpor. a -sinh $cr.a ± 1 cosh cpa.a-cosh &*.a) 22 24 1 Ts 1 1 , a / s 1 1 
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b-, = atcv. (— cosh cpc*.a«sinh &*.a - 1 / sinh cpcv.a-cosh $o?.a) 14 I ^ S i I .j.a/s I I 

1 1 E t a ' 
b 1 0 = otcv.(— cosh cpcv.a-sinh &*.a + j- sinh cpcv.a-cosh $c*.a) - - — r ^ — 
12 I s 1 -j- a/ s 1 1 1 + V 

s a /s 
where I and I are defined in Eqs. 48 and 50. 

Eqs. 49 and 51, which do not include the effects of the compres

sive stress o } can be used to find the following elements of the stiff

ness matrix of the classic plane stress analysis 

r i i i 
b u > b i 3 = r r ^ L ( - j < c ° s h v + 1 > ±^cosh v - d J 

E t C V . r- . . - i 

b 0 9 , b 9 / = -i .1
N>' (—(cosh cr.a - 1) ± -^(cosh a?.a +1) 22 24 1 + V L x s v i 1

 Ta/s l 1 -J 
J 

E t'Qf 

b12' b14 = - 2 ^ L f i - v s m h V ( - i ± - 1 ^ ) , - . - ^ ) J 

a a /s 

where J and J are defined in Eqs. 49 and 51. 

It can be shown that Eqs. 53 are identical to the corresponding 

equations derived by Dean. 

This completes the derivation of the boundary force-deformation 

relations for the Composite Membrane Analysis. 

For convenience in the derivation of the buckling criteria for the 

ribbed membrane, the orientation of the positive direction of T'(y) and 

V'(y) will be reversed. This results in the change of sign of the 

expressions for b ^ a n d b^^ in Eqs. 52 and 53 and in the following 

modification of Eq. 32: 
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N 

T 

N' 

T 1 

L Ji 

•bll b12 

b12 _ b22 

•b13 - b14 

b14 " b24 

'13 

'14 

'It

'll 

-b 14 

'24 

'12 

'22 

U 

V 

U' 

V 

(54) 

Ji 

The stiffeners can be considered as beams using the assumptions of 

engineering theory. The governing differential equation for a beam 

under in-plane loads is derived in the appendix. 

An alternate solution is obtained by considering the ribs as flat 

strips with one free edge, that is by setting N^' = T^' = 0 in Eq. 54 

and solving for N. and T. in terms of U. and V. alone. The modified ° l i i i 
Eq. 54 is found by subdividing the coefficient matrix and has the 

following form: 

N, cll C12 U. 
l 

= < > 
c12 C22_ V. 

1 

(55) 

where 

Cll C12 " bll b12 

C12 C22 
= 
_ bl2 " b22_ 

b13 " b14 

b14 b24 

bll b12 

b12 b22 

_ b13 " b14 

b14 _ b 2 4 

To distinguish between membrane and rib quantities, the terms involving 

rib quantities will be barred whenever they are used hereafter. 
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2. Derivation of the Buckling Criteria 

2.1 Equilibrium Equations 

This derivation for the Membrane Analysis follows the very same 

steps as did the derivation for the Flexural Analysis. A less detailed 

presentation is therefore outlined in this chapter. 

The three equations of equilibrium for a rib line element 

(Fig. 12) for the Composite Membrane Analysis are: 

N(r,y) - N'(r ^I,y) = 0 

T(r,y) - T«(r - l,y) + f(r,y) = 0 

N(r,y) + E e(r,y) = 0 

(56) 

Here N(r,y), N'(r,y), T(r,y), and T'(r,y) are the membrane boundary 

forces on the typical panel r, between the rib lines r and r + 1. They 

are defined below in a manner analogous to Eq. 10: 

I " N(r,y)l y J~N(r ) l (57) 

N«(r,y) Is. N'(r) sin Oi.y 
l"7 

T'(r,y) T f(r) 
cos w.y 

N(r,y) and T(r,y) are the direct and shear forces acting along the top 

of the rib r. For simple support conditions at the ends (see Eq. 39), 

these line or membrane forces also can be expanded into infinite series 

of the same form as Eq. 57. The equivalent line loads P (r,y) are 

expressed in series form in Eq. 14. Replacement of all quantities in 

Eqs. 56 by their equivalent series and matching like coefficients results 



P e(r,y) 

(a) Rib Line Element 

r,u 

r-1 r r+l n 

(b) Rib and Membrane System 

Figure 14. Composite Membrane Model 
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in the following relations between the series coefficients: 

N.(r) - N. 1(r - 1) .= 0 (58) 

T.(r) - T.'(r - 1) + f.(r) - 0 

N.(r) + P.(r) = 0 

1 ' 1 ' 
2.2 Displacements 

The membrane force coefficients in these equations can be 

expressed in terms of the coefficients of the in-plane panel boundary 

displacements by use of the membrane stiffness coefficients shown in 

Eq. 54. Similarly, the coefficients of the line forces on the ribs can 

be expressed in terms of the coefficients of the y and z components of 

the rib line displacements. Since the ribs are considered as flat 

strips, Eq. 55 gives the desired relationships. The in-plane panel 

boundary displacements are as follows: 

1 ju(-a72,r,y)"^ =<f~U(r,y) | = ^ j u . 
r( a/2,r,y) 

v ' ^ sin Oi.y 
U'(r,y) | iTllU.^r) 1 1 

1 • fv ( - a / 2,r,y ) l J v ( r , y ) ~1 = ^ . ( r ) 1 ^ a y 

a [ y ( a/2,r,y)J [v'(r,y )J i z l j v . ' ^ J
 1 

Consideration of displacement compatibility and continuity at the 

rib lines yields the following expressions: 

aV.(r) = aV.(r) U.'(r - 1) = U.(r) 

2. 1 1 1 
aW.(r) = aU.(r) V. 1(r - 1) = V.(r) 



65 

2.3 Governing Difference Equations for the Rib Line Displacements 

Substitution of the compatibility, continuity, and force-

deformation relations into Eqs. 58 results in three difference equations 

for the coefficients of the rib line displacements. After eliminating 

W^(r), the following two uncoupled difference equations for the simply 

supported stiffened membrane result: 

b 1 3 (ZS7 r - 2Y.) -2b 14 

2b17ZE7 b 0 / o f 3 ? 
14 r 24 r 

where ISI and ZE7 are defined in Eq. 18. r r n 

0 
< > = < 

V.(r) P t(r) 

Y. -- b n / b 1 3 - 1 

(59) 

and 

Y. = b 2 2 / b 2 4 - 1 - (a/2a) 

P.(r) = Cc^c^V.M 

C12 " C11 C22 
,24 cll 

This equation can be used to find the rib line displacements for low 

loads. Here it will be used to find the buckling criteria for initial 

buckling for the Composite Membrane Model. 

Note that the signs of b^ 2 and b 2 4 have been changed from their 

original definition in Eq. 52 and that the barred quantities to c 2 2 

are derived from Eq. 55 with the flat strip properties and, if applicable 

the rib stress 5" replacing the membrane properties and the stress o. 
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3. Simple Side Supports 

The series coefficients of Eq. 59 can be expanded into finite 

series in r for this case just as in Chapter II. In analogy to Eq. 22, 

these coefficients will be expressed as follows, 

V t(r) 

W .(r)V 

P t(r) 

U^r) 

sin 
kTTr (60) 

kTTr 
., cos 
ik n k=0 

Substitution of Eq. 60 into Eq. 59 and solving for the in-plane 

displacement coefficients in terms of the loading coefficients yields: 

b 1 3 ( Y i + CTk> 

, .kTT b, , sin — 14 n 

. kTT b. . sin — 14 n 

b 2 4("Y i . a k) 

Uik 

Vik " 2*ik 

(61) 

in which a , is defined in Eq. 23. k 
Solving this equation for a n ^ yields 

in which 

U ik 

V ik " 

1 i kTT -- b. . sin P., 2 14 n ik 

'ik 

" 2 b 1 3 ( Y i + Qk> 

ik 
ik 

(62) 

lCikl = b13 b24 ( Yi + CTk)('Yi + Qk> " b14 Q k ( 2 ~ V 
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The coefficients of the out-of-plane displacements can be found 

from the third of Eqs. 58. Substitution of the compatibility and force-

deformation relations into this equation yields 

5 1 2 V i ( r > + S l l V r > = I V r > 
from which W., is obtained as follows ik 

c-9 aP 
wik •

 v i k " IF* ( 6 3 ) 

11 12 

Eqs. 62 and 63 comprise the solution for the coefficients of the rib 

line displacements of a ribbed membrane that is simply supported on all 

four edges of the boundary with specified rib line loading coefficients, 

P., or P.. . 
ik ik 

4. Buckling with Simple Side Supports 

Eq. 61 has non-trivial solutions for zero external loads, P ^ = 0, 

only for a vanishing determinant of coefficients, that is for = 0. 

The buckling criterion, therefore, is = 0 and it is utilized in exactly 
t 

the same way for the ribbed membrane as was the criterion = 0 for 

the flexural ribbed plate. Setting the rib dimensions and properties equal 

to zero yields one limiting case of an unstiffened membrane. On the other 

hand, the limit would be a system of flat strips in compression, not con

nected by a membrane. This would yield the analogy to the simple column 

case, the buckling of flat strips having two free sides. 

For the first limiting case, the unstiffened membrane, Eqs. 50 can 

be used to find the lowest eigenvalue that satisfies the buckling criterion. 

It has been noted that in the symmetric mode for the loads and displacements, 
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o~ has no destabilizing effect. Therefore, it is sufficient only to 

investigate the results of the anti-symmetric mode, that is Eqs. 50. 

The eigenvalues must satisfy the condition (see Eq. 47), 

< b U - b 1 3 ) ( b 2 2 " V " < b12 " V 2 " 0 

Substituting the expanded Eqs. 50 without omitting the terms involving 

the compressive stress (see Page ) into this equation and retaining 

only the lowest powers of e and a., Wittrick found that 

2 2 
a V .2 lv 2 

e l _ I TT Ea 

which is the stress given by the Euler formula for buckling in the plane 

of the membrane with a half-wave length of b/i. 

In order to get an idea of the range of applicability of the 

in-plane buckling criteria for a single panel, the above formula will 

now be compared to the formula given for the out-of-plane buckling 

stress. The critical in-plane stress attains its highest values for 

i = 1; that is, for buckling in one longitudinal half-wave. Setting the 

aspect ratio b/a equal to ,̂ the above formula becomes, for i = 1, 

" " 12 X 2 

The critical out-of-plane stresses for the single panel, as stated in 

the Introduction, were found to be 



69 

where k is known to have a smallest value of 4 for buckling into cr & 

squares. Setting the slenderness ratio a/t equal to P, this equation 
becomes, for k = 4 , cr ' 

0 ° U t 4 TT E 
c r " 12(1-v2)|32 

Comparison of cr 1 1 1 and o ° u t shows that these two critical stresses r cr cr 
are approximately equal for P = 2A, that is, for very narrow and thick 

plates. For all practical cases, however, the plate will buckle out-of-

plane long before the critical stress for in-plane buckling is reached. 

The boundary conditions encountered in most cases are such as to favor 

out-of-plane buckling over in-plane buckling. Additional constraints 

against the previous would be necessary if the latter should govern. For 

a numerical comparison set A. = 10, P = 50, E = 29000 ksi, v = 0.3, i = 1, 

k = 4 , then cr ' 
a l n = 238 ksi cr 

a o u t
: 42 ksi cr 

5. Boundary Deflections 

The second solution of the Composite Membrane Analysis for a 

ribbed membrane is for the unloaded system, P ^ = 0, with inhomogeneous 

conditions along two sides of the boundary, that is, with imposed boundary 

deflections V\ at r = 0 and r = n. V\ is represented by its symmetric 

and anti-symmetric components, that is by 

V/ 3 = 1/2[V.(0) + V.(n)] V . a / S ~- 1/2[V.(0) - V.(n) ] 
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Including corrective terms, the Fourier series expansions for the 

symmetric components of the displacement coefficients in Eq. 59 can be 

written in the following form 

n-l 

v . v > =
 viS(1+„Iv * * , l n 3 i r - ) ( 6 4 ) 

IC — JL j ̂  j o • • 
U. S(r) •.= V. S t 5.. cos ZZ± 

1 1 v i ^ xk n 

Substitution of Eqs. 64 into the governing differential equation 59 and 

into the boundary conditions yields 

° i k = ^ ( b 1 4 V 2 " V - ( b14 " b12><"Y i • \ ) n C i k 
2(2 - o k) 

n sin — C ., n ik 
*ik = . ku u , X b l 4 ( b 1 4 - b 1 2 ) a k - b ^ b ^ Y . C Y . + a k) ] 

1 for k = 1, (1), n - l 
where <fi is defined in analogy to Eq. 22 as cp. = < 

1 1/2 for k = 0, n 

For the anti-symmetric components, the solution can be written 

in the following form 

n-l 
V . a / S = V . a / S [(1 - % + T V . . sin ^ ] (65) 

I i L n v -V A X ^ N 

n 
0 a/s = a/s V - kTTr 

1 k % , 2 , . . . l k 

where V., and U., are identical to the ones for the symmetric case, ik ik 
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6. Rib Boundary 

The total solution for the Composite Membrane Analysis of a ribbed 

plate is that for a composite boundary rib or beam. It can be obtained 

by superposition of the results given in Eqs. 60, 64, and 65 and is shown 

in Eq. 66: 

V.^r) = V.(r) +• V. S(r) + V. a / s(r) (66) 

U 1
t(r) = U.(r) + -U^Cr) +. U. a / s(r) 

Again, as in the Flexural Analysis, the interior ribs may or may not be 

equal to the boundary ribs and the two boundary ribs are chosen to be 

identical, so that the structure is symmetric about r = n/2. The 
S cL j S 

coefficients V\ and V\ are obtained by satisfying the last two of 

Eqs. 58. 

They can be obtained separately by working with the symmetric 

and anti-symmetric loading components, corresponding to k odd and k even 

respectively. These loading components are the same as in Eq. 29. 

The last two of Eqs. 58 in terms of the boundary rib displacements 

result in the following condition: 

b-.(A .+ e . V - ^ O ) + b 0 /(A - Y.b)V.t(0) = P . S (67) 14 r I ' I X. 24 r I ' i l 

in which 

e b . bi4 bi2 
1 " b14 



b22 ' b24 
b24 

1 12 lb 

e 11 
A is defined in Eq. 21 r 

Substitution of Eq. 66 into Eq. 67 and solving for V\ yields 

V s _ 
P . S - t.S(0) l l 7 

t.S(0) + b 2 4 ( " e i - Y . ) b 

P . S - t.S(0) i I 

t.S(0) - 11 . b 1 7 1 
in which 

n-- a 

1 
C12 " cll c22 

5 1 1 5 

n b 

and t^ (0) is the coefficient of the membrane boundary shear for the 

symmetrically loaded system with simple side supports and t^ (0) is the 

coefficient of the membrane boundary shear for the symmetrical unit 
s 

boundary deflection coefficient V\ , that is 

n n-1 

14 ,4* Q V V " ~k 7 Uik +
 b24.Z _ ^ik n k-1,3, . ... k-1, 3, .. . . kTT 

sin— n n-1 
t.S(0) = b_. ) (e. b - o)U T u . _ 
I V 7 14 l k 7 ik 24 J=\ o ik n l 

, , V TT . kTT - K 
+ B 2 4 ( L V S l n ~ • ^ 7 
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The anti-symmetric component of the boundary deflection is obtained 

in a similar way as the symmetric component and is found to be 

- a / s _ t a / s 

v a/s _ . 1 i 
1 Ia/S(0) - TI . b 

i i 
where T ^ b is defined as in the symmetric case and 

n n-l 

. kTT 
., s m — 

k^0,2, ... - ~ k^2,4, ... n n n-l 
E. a / S(0) = b . . . V (e. b - «)U.. • b,.< 7 V. v s i n ^ . i. b . 1) i ' 14 , k « i k ik 24\ 4* , ik n 1 n' k-0,2, ... k-2,4,... 

This completes the solution of the deflections of a ribbed plate 

with beam boundaries subject to transverse and in-plane compressive 

loads and using a Composite Flexural Analysis. 

7. Buckling with Rib Boundaries 

The criteria for the initial buckling of the ribbed membrane with 

beam boundaries follow in an exactly similar way to those for the ribbed 

plate. They take the following form: 

C , = 0 t.S(0) - TI . b = 0 t . a / s - T| . b = 0 . ik i v ' l l l 
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IV. CONCLUSIONS 

Closed form solutions were obtained for the elastic analysis of 

deflections and the initial buckling for rectangular ribbed plates and 

membranes. The results are based on two rationally formulated discrete-

continuous models of the fourth order. The only assumptions made were 

those associated with membrane or flexural plate theory and ordinary beam 

theory. In the Non-Composite Flexural Model, the structure is proportioned 

so that the effects of the in-plane plate deformations and T-beam action 

can be ignored in determining the stiffness matrix that relates the out-

of-plane edge forces and the in-plane compressive stresses to the edge 

deformations. In the Composite Flexural Model, the effects of the out-of-

plane deformations can be ignored. The techniques used permit the realis

tic treatment of simply supported plates as well as of plates having side 

boundary conditions other than simple supports. The results show the way 

for improved analysis of composite members, orthotropic panels, and multi-

web beams. 

A major advantage of the discrete-continuous approach is that simple 

equations for determining of the buckling criteria are obtained which are 

independent of the number of ribs„ This number, as well as all the other 

pertinent data, is inserted directly into these equations that contain all 

possible buckling modes. The eigenvalues have to be found for one or two 

independent equations only and not for a system of equations, the size of 

which depends directly on the number of ribs, as in earlier solutions of 

the problem. This facilitates the use and application of these results 
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and makes them economic and attractively simple. Numerical examples show 

the usefulness of the techniques. They were obtained by using a high 

speed digital computer. 

The stability equations can easily be used to generate curves or 

tables that show limiting values for rib-to-plate stiffness ratios that 

cause local buckling to govern as against system buckling. For given 

stiffnesses the limiting values for the rib spacing can be found. 

The two fourth order models could be combined into an eighth order 

model, which is recommended as one extension of this thesis. The eighth 

order model could then be used to find the applicable range of validity 

for the solutions to the lower order models by comparison of the results. 

Another extension of this thesis would be the analysis of other ribbed 

structures such as ribbed cylindrical and other shells. The basic tool, 

the discrete-continuous approach, can be used for many types of structures 
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APPENDIX 

1. Governing Differential Equation 

For A Beam Under Out-of-Plane Loads 

The governing differential equation is derived for a beam under 

eccentric lateral loads, S(y), and distributed lateral moments, M(y), in 

addition to a constant compressive load P (Fig. 15). 

w(y) 

Figure 15. Beam Element with Applied Lateral Loads 
and Moments and Axial Force. 
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The three equations of equilibirum are 

2fcv = 0 or D^yS = S(y) (68) 

M = 0 or p^ yM = S + P D ^ Y W (69) 

XM t = 0 or M - . M ( Y ) + S(y)e (70) 

Differentiating Eq. 69 and combination of the result with Eq. 68 

yields 

R.y^ = S(y) + PD^ 2w (71) 

er Elementary beam bending theory provides D^y M = - EI^TJ^ w which, aft 

combination with Eq. 71 yields 

S(y) - - B'D^w - Pft,y
2w = - (B'D^2 + P)D^ 2w (72) 

where B 1 = EI is the flexural rigidity of the beam about the x axis. 

Elementary beam torsion theory provides M(y) + S(y) = -GJ'D̂ , 6, 

where GJ is the torsional stiffness of the beam. Combination of this 

equation with (72) and introducing kB 1 = GJ yields 

M(y) . B• [- kD^ 2 6 . e ^ 2 |r)D^w ] (73) 

Transformation of the w axis (see Fig, 16), and using W as for 

the panel deflections, that is 

W(y) = \ w(-|,y) = i ' [ W ( Y ) - e9(y) ] 

or 
w(y) = aW(y) t e©(y) 
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yields, after introducing into Eqs. 72 and 73, and arranging in matrix 

notation 

W(y) 

w(y) 

"(y) 
Figure 16. Transformation of the W-Axis of the Beam, 

2 4 P 2 - 2 e D + ~- D - kD 

4 P 2 •e(D + -̂p D ) 

0 > 4 + F R D 2 ' 

~y B ~y 
4 P 2 (D + D ~y B ~y 

) 6(y) M(y) 

) W(y) s(y) 
(74) 

which is the sought governing differential equation for the beam. Sub

stitution of the series in Eqs. 9 and 10, repeated here for convenience 

"E(r,y) 

W(r,y) 00 

= Y 
W.(r) 

M(r,y) M.(r) 

S(r,y) S.(r) 

S I N a.y 
ITT 

i b (9,10) 

into Eq. 74 and matching like coefficients, yields 

o/i
2B' 

2 2 P 
e (c*/ - §7) + k 

, 1 P N 

( 2 p ^ 

e ^ i " F } 

, 2 P 
" ((*i " B"' 

9.(r) M.(r) 

) W.(r) S.(r) 
(75) 

which is the governing differential equation for the beam expressed in 

terms of the Euler coefficients. 
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For S.(r) i 
and one obtains 

0, Eq. 75 can be solved for M^ (r) in terms of 9^(r) 

M. (r) = a. 2kB ' 6 .(r) l l I V ' 
(76) 

2. Governing Differential Equation 

For A Beam Under In-Plane Loads 

The governing differential equation is derived for a beam under 

eccentric longitudinal loads, T(y), and transverse loads, N(y), in 

addition to a constant compressive axial load P (Fig. 1 7 ) . 

f(y) N(y) ,V + dV 

H + dH 

u(y) 

Figure 17. Beam Element with Applied Loads and Axial Force. 

The three equilibrium equations are 

EV = 0 or D V = N(y) 

SH = 0 or D H = T(y) ~y 

(77) 

(78) 

EM = 0 or D yM = V(y) + PD yu - T(y)e (79) 

Differentiating Eq. 79 and combining the result with Eq. 77 yields 

D *M = D V + PD 2 u -
r-oy r-o y 

eD T ( y ) = N ( y ) + PD u - eD T ( y ) (80) 
roy r v y w / ~y roy > J ' v ' 



81 

Differentiating Eq. 78 and combination with Eq. 80 yields 

D 2 M = N(y) + PD 2 u - eD 2 H (81) 
roy w ' roy roy 

D ^ = - » 4 From elementary beam bending theory, one obtains D y^1 = - B D y u where B 

is the flexural rigidity of the beam about the w axis. Combination of 

this equation with Eq. 81 yields 

- BD 4 u = N(y) + PD 2 u - eD 2 H (82) 
roy J roy roy 

The longitudinal stress at the top of the beam can be expressed 

as 

cr = A - T e = e E = D v E y A I y ~y 

where A is the cross sectional area of the beam and E is the modulus of 
2 

elasticity. Solving for H and setting M = - B D y u yields 

H = AED v + P - eAED 2 u 
roy roy 

D H = AED 2 v - eAED 3 u (83) 
roy roy roy 
D 2 H = AED 4 u (84) 
roy roy 

2 

Combining Eqs. 82 and 84 and noting that I - Ar , where ri is the radius 

of gyration of the cross section of the beam with respect to the bending 

about the w axis, yields , 
- 2 9 4 P 2 3 N(y) = - EA (r + e^)D u - fr- D u + eD v 

w ' ' v * roy EA roy roy 

Combining Eqs. 78 and 83 yields 

f(y) = - EA eD 3 u - D 2 v 
^ J roy roy 
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In matrix notation, setting U(y) = (l/a)u (-a/2 ,y) and V(y) = 

(l/a)v(-a/2,y) as for the panel deflections, these equations can be 

expressed as follows: 

aEA 

, 2 , 2 V_ 4 P* _ 2 - (r + e )D - — D 
r^jy EA ̂ y 

eD ~ 
roy 

eD ' 
/ v>»y 

-D : rvjy 

— -
U(y) N(y) 

< > =< > 

V(y) -T(y) 

which is the sought governing differential equation of the beam. 

Substitution of the series in Eqs. 57, repeated here for 

(85) 

convenience 

U(r,y) 
< 
N(r,y) 

00 U.(r) 
> 

N.(r) 

V(r,y) 

T(r,y) 

CO 

> = ^ < 

U. (r) 

T.(r) 

(57) 

into Eq. 85 and matching like coefficients yields 

ot} aEA l 

, 2 ̂  2 N 2 P "(r +e.)a± + -

ea. 
I 

ecu. l 

-1 

U.(r) 

V ±(r) 

N.(r) 

T.(r) 

(86) 

which is the governing differential equation of the beam expressed in 

terms of the Euler coefficients. 

For T\(r) = 0, Eq. 86 can be solved for N^(r) in terms of u\(r) 

and one obtains 

N.(r) = aa.2(P - a.2B)U.(r) 
I l l I 

(87) 
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