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SUMMARY

Closed form solutions are pféé;nted for the elastic analysis of
deflections and initiai buékling of rectaﬁgular ribbed plates. The plates
are subjected to uniform compressive stress along the two simpiy supported
.ends and are stiffened by-uniform agd equidistant ribs. The techniq;es
used permit the realistic treatment of plates having_simple side supports

and of those having boundary beams with flexural and torsional rigidity.

The solutions employed are double Fourier series which are infinite with

- respect to the continuous variable along the rib line and finite with

respect to the discrete variable denoting the ribs. Simple algebraic
corrective termé are added where required by the boundary conditions.

The reéults are based on two rationally formulated discrete--
continuous models of the fourth order. The only assumptions made are
those associated with flexural and membrane plate theory and classical
beam theory.  In the Non-Composite Flexural Model, the structure is pro-
portioned éo that the effects of the in-plane deformations and the T-beam
action can be neglected in determining the stiffness matrices of the
elements. In the Composite Membrane Model, the effects of the out-of-
plane deformations are‘negleéted.

The formulas developed ére improvements over those based on ortho-
tropic plate theory in that the assumptions of an equivalent continuum are
avoided. Another major improvement is the independence of the form of the
éolution with respect to the stability criteria of the number of fibs. A

few results are numerically illustrated and compared with existing theories.




CHAPTER 1
INTRODUCTION

Structural ribbed plates have been used for many years in the
construction of orthotropic bridge decks, floor systems, airplanes and
ship hulls; They are structurally efficient and functional in that the
increase in plate stability by adding longitudinal ribs-is much more
economical than by increasing the plate thickness. The purpose of this
thesis is to present efficiéﬁt methods of investigating the stability of
ribbed plates subjected to axial loads. There are various ways in which
an axially loaded ribbed plate is utilized, one of which is shown in
Figure 1. At points of concentrated compressive loads in a cable stayed
bridge, ribs can sustain these loads which are then distribuﬁéd over the
whole cross section of the rib-plate system. The typical ribbed plate
is an all steel orthotropic bridge deck with angleé, IL-beams or narrow
plates welded to the deck panels (Figures 2 and 3). However, a ribbed
plate may also be of composite design, consisting of steel beams and

a concrete slab.

fo) paY S !

Figure 1. Cable Stayed Bridge.
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Figure 2. Plate with I-Beam Stiffeners
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Figure 3. Plate with:.Flat-Strip Stiffeners




1. FBﬁcklng Modes .

In the course of an invéstigation of ribbed plates in compression,
two major modes of Buckling have to be considered. The first is local
buckling of the plate. In this case, certain longitudinal and transverse

5% elements of the structure, the no@al lines, remain straight and undeflec~
ted. All ribs coincide with the longitudiﬁal nodal lines. ' They remain

i : unbuckled and are subjected to torsion in addition to axial compressibn

(Figure 4).

Figure 4. -Local'Buckling Mode of a Ribbed Plate.

For zero torsional rigidity of the ribs, the nodal lines coincide with
the lines of inflexion of the buckled surface. Each panel then is sﬁb-
jected to zero boundary moments and can, Fherefdre,‘be considered as-
being simply supported. In the longitudinal direction, the buckling also
occurs in sinusoidal_waﬁes. Thé_number.qflﬁalf waves, however, is one of

the unknowns of the problem.

The second buckling mode. is called system'buckling. It can occur

P —— |




in any number of half waves in the lateral direction,'except that which is

equal to the number of panels which, here, has‘beén called local Buckling.

For an odd number of half waves, the buckling occurs in the symmetric

mode and in an anti-symmetric mode for an even number. Both the plate and

the stiffeners undergo lateral deflections as shown in Figure 5.

Figure 5. Symmetric and Anti-Symmetric Buckling Modes

In their respective vertical planes, the ribs are subjecfed to
bending of varying degree, depending on their location in the system,
They are also subjected to torsion about their longitudinal axié. For
deep beam type ribs; ordinary beam theory becomes inadequate and membrane
analysis is necessary. The plate itself is subjected to bending moments
and shear fbrces if a Non-Composite Flexural Model (Chapter I} is used
in the analysis.. For the Comﬁosite Membrane Model  (Chapter III), the
plateris subjected to direct tensile or compressige forces.

Numbers of half waves gréater than the numbef of panels are not

investigated in this thesis. Since the main interest here is in the




initial buckling of bridge type structures with length to width ratios
equal to or larger than one, that latter case would not lead to the

lowest buckling stresses,

2. Review of‘Literature

2.1. Buckling of Flat Plates

Many classic reference texts, such as Timoshenko [1] and Girk-
mann [2], treat the buckling of unstiffened, simply supported plates

compressed in one direction (Figure 6).

X
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Figure 6. Flat Plate in Compression.

The first successful investigatioﬁ'in this field waé published-by

Bryan [3]. The approach used by Timoshenko was to assume a sine varia-
tion of the deflection surface in both directions. Using the potential
energy theorem, a minimum was found for one half-wave sine variation in
the transverse direction. The one term‘solution of the minimum potential
energy theorem is exact for the case of simple supports on all four sides.

The final results for the buckling loads was found to be




(. a Y . |
_ __2(2 a_) . TD
Ncr - Gﬁrt = 2 a t ib = kcr 2 (1)
. a . : a .
or
2
Oﬁr = kcr ﬂZEtZ l2
. 12(1-Vv)a
Eto '
where D = ——————  is the plate stiffness and i is the number of half-
12(1-v9) '

waves in the longitudinal direction into which the plate buckles. This
number of half-waves depends only.on the ratio % and not on.fhe plate
properties. Tﬁe only unknown in Eq. (1) is i. For sufficiently short
plates and small values of %, buckling occurs in one half-wave. Above

a certain ratio of %, two half-waves are formed. For the limiting ratio,
both cases are equally possible, having the same buckling load

N t*0 . Eq. (1) must yield the same Ncr whether 1 = 1 or i a 2 is

cr cr

introduced. In the same way, it is possible to determine the limiting
ratio for buckling into i1 or i + 1 half-waves. The limiting ratio can

be found from the equation

ib __a (i + 1)b a
a ib ~ a (L + )b
which yields
LVETERNS

For i =1, 2, 3, ... the ratios are E =2 s VFE s & 12, ...

or b = 1.414a, 2.44%a, 3.464a, ... .




Solving the governing differential equéﬁion of the plafe in com-
pression, Bleich [8] obtained the same solution as did Timoshenko with
the potential energy approach. The solutiﬁn to the differential equation
" also provides results for plates with arbitrary side boundary canditions.
The general solution used for inhomogeneous boundary conditions is the
Levy assumption of a sine variation only in the longitudinal direction
and a particular solution in the transverse direction that'has to satisfy
the boundary conditions. Each boﬁndary condition provideé one equation
for a system of simultaneous homogeneous equations in terms of the coeffi-
cients of the Levy solution. Non-trivial solutions exist only fof the
determinant of coefficients being équal.to zero. Therefore, det = 0 is
the buckling criterion which leads to the stability condition. All con-
ceivable modes of buckling are contained within this criterion. The
various possibilities are represented by the successive réots of the
determinant. The elements of this stability determinant are transcendental
functions of the longitudinal compressive stress and the longitudinal half
wave length, %. For assumed values of i there are, in general, an infinite
number of roots to det =z 0, of which, however, only the first and smallest
is relevant. The correct value of i is the one which minimizes the criti-
cal stress, and can belfound by invesfigating the range of 1 =1 to i
equal to the first integer 1arger than thé‘ratio‘g .

2.2. Buckling of Ribbed Plates

The discussion on this topie was opened by Timoshenko [1]. Arti-
cles published by Rendulic [4], Chwalla [5] and Miles [6] considered single
panels stiffened along the two sides. All three authors used a closed

form solution. They had, however, the analysis of webs of steel girders in




mind and not plates stiffened by interior ribs. This is also obvious in

the article by Stiffel [17], where the plate is subjected to in-plane

. bending and the stresses were assumed to wvary linearly across the plate

width. Therefore, the distributiqn of the stiffeners was adjusted to
the stress distribution.

Timoshenko [1] derived an open form solution to the problem of
side simply supported plates stiffened by interior ribs, using again the
minimum potential energy theorem. Because the assumed deflection surface
must satisfy the boundary conditions, a double Fourier series was used

to describe the buckled plate surface. Accdrding_to their location in the

)

system, the ribs are subjected ﬁo varying amounts of bending. Equating

to zero the strain energy of the bent plate and ribs aﬁd the work done
during buckling by the compressive forces acting on the plate and the

ribs along the ends, an equation for the criticical stress is found. It
consists of a quotient with several infinite series of sine functions,
involving the unknown number of half-waves iin the lengitudinal direction,
and the equally unknown number k of half waves in the transverse direction.
Equating to zero the partial derivatives of this expression with respect

to Fhe unknown coefficients, an infinite system of homogenecus simul tanecus
equations was obtained. By equating to zero the determinant of this system
of equations, an equation to determine the critical stress resulted. How-
ever, only buckling modes that are symmetrical with respect to the middle
axis can be obtained by this method, if there is an even number of ribs.
Three more important assumptions had to be made before any practical

calculations could be considered:




1. The system buckles into one longitudinal half-wave;
that is, 1 = 1.
2. A very small number of equations; and thus cbefficients,
is sufficiently accurate to determine the critical stress.

3. There are only very few ribs (one or two).
In this open form solution approach, the numerical problems for systems
with several ribs and for the inclusion of a large number of equations
(or coefficients) increased at such a rate as to render this method
impractical. ‘Even for the case of one rib only, assumptions 1 and 2 were
very restrictive. Another disadvantage is the limitation to the side
simply supported ﬁlate. A bridge type system with.flexible side supports
could not be handled; since the basic deflection surface could no longer
be described by a double Fourier series alone,

Lokshin [14] developed a closed form solution for the buckling of
a rectangular, longitudinally stiffened plate that was simply supported
on éll four sides. The ribs were assumed to be uniform and equidistant
and subject only to bendihg about their transverse axis in addition to
axial compression. Recurrence equations for the rib-line deflections
and moments in the transverse direétion made the form of the buckling
determinant independent of the number of ribs. With‘thg assumption of a
single half wave'siné variafion of‘tﬂése rib-line defofma£ions and
moments, a simple buckling criterion evolved.
Barbre [7] in his dissertation also uged a closed form solution

approach to the problem. The governing differential equation and the
corresponding Levy solution for the single panel with arbitrary side

boundary conditions was found, plus four conditions of continuity at the
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trib lines between each two panels. .Theée conditions were equal deflec-
tions, equal transverse slope, moment equilibrium and shear force equi-
librium. Thus the ribs Were‘assumed ‘to be-subjected to transverse loads
and to torsion. With a total of four béundary conditions for the plate
and the four conditions oftcontindify'for each rihb, eighﬁ simul taneous
equations were obtained for a platé with one interior rib, twelve equa-
tions for two interior ribs, etc.

Equating to zero the detérminaqphqf coefficients, sﬁlutions were
found for plétes with one-rib“ét anfarﬁitrary intérior location and‘with
simply supported or fixed sides. Both symmetric aﬁd anti-symmetric
modes of buckling were investigatéd. For the case of two ribs, the system
of equations became unbearably large and complicated for arbitrary boun-
dary conditions and rib locations. Only a side simply supported plate
with two equal and symmetrically arranged ribs was investigated, sinée
with these simplifying assumptions the terms in the determinant of coef-
ficients reduced considerably,

One of the goals of Barbré's paper was to find that critical rétio
of the flexural rigidities of the ribs to the bending stiffness of the
pléte that causes local buckling. For any ratio larger than the critical
one, only loecal buckling will occur and only sysfem buékling‘for smallef
ratios.

Based partially on the fiqdings of Barbré, Bleich [8] presented
side simply supported plates with one arbiltrarily located rib or withrtwo
equal and equidistant ribs. The torsional'rigidity of these ribs was
ﬁeglected. Diagrams were fresented that show Ehe limiting value of the

ratio of rib-to-plate stiffness as a function of the plate dimensions,
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the‘cross sectional area of one rib and the numbér of half-waves in the
longitudinal direction. Whereas in all the above mentioned references,
completely elastic behaviér of ‘the mhteriallwas assumed, Bleich included
inelastic behavior in the derivation of the governing differéntial equa-
tion and in its solutions. _ |

Another approach was taken by Wittrick [9]. There the system of

panels and ribs was treated separately for each element. Since it can

‘be assumed that the buckled surface of each element always has a gine

variation in the longitudinal direction, so do also the rib lines. There-

fore, the lateral deflections, rotatioms, forces and moments along a rib

line will also vary sinusoidally aﬁd:ﬁith_the same wave length as the

_element deflections. Based on this distribution of the panel edge dis-

placéments and stresses, for each'elemeht an in-plané (or membrane) and
an out-of-plane (or flexural) stiffness matrix was formulated. These
matrices rela;ed the amplitudes of the edge forces and moments to the
corresponding edge deflectioné and rotations. With the known stiffness
matrices, equations of equilibrium at the line junctions of the elements
were formulated. This led to a series of homogeneous simultaneous equa-
tions relating the dispiacements and rotations of all the line junctions
to each other. At instability the determinant of coefficients of these
equations is equal to zero and this constitutes the buckling criterion.
The solution to this stability determinant is carried out exactiy in the
séme manner as for the plate without stiffeners described on page 7.

As Wittrick pointed out, there will be, in general, four equations of
equilibrium at each rib line. This leads to a very large number of

simueltaneous equations and to very large stability determinants., The
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computational problem becomes immense for an increasing number of panels
and ribs.

In the field of civil engineering, the development of the ortho-

tropic bridge deck made it necessary to find workable solutions for plates

reinforced by longitudinal and transverse stiffenefs. Orthotropic plate
analysis [10,15,16] is based on the replacement of the ribbed plate by
an equivalent continuum obtained by smearing out the rib properties. The
result is a continuum model whose element stiffness is non-isotropic.
Continuous field solutions are found, but the step of replacing the
discrete coﬁtinuous system by a continuum lacks a rational basis.

The finite element analysis [11] is another open form apprbach.
The amount of work involved depends directly on the number of ribs and
the size of the plate. There is, of course, great freedom with respect
to the arbitrary spacing of the ribs or their dimensions and properties
as well as in satisfying different béundary conditions; However, for
every single problem the element properties, dimensions, etc. have to be
restated. This method lends itself to the solution of special cases
which are not tractable By other methods.

2.3. Closed Form Field or Functional Approach to Ribbed Plates

It has been shown that an important step in the buckling aﬁalysis
of ribbed plates 1ies.iﬁ the derivation of a closed form solution that

will give a stabiiity cfiterion, or a stability determinant, which is

independent of the number of ribs, A closed form solution for the defor-

mations and forces of a ribbed plate under lateral loads, which is inde-

pendent of the number of ribs, has been found by Dean [12]. His functional

solution yields deflections and forces at any desired point throughout
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the plate simply by substituting the coordinates into the solution
formula, which is wvalid ét all points. As in [8], the first important
step is to find.the membrane and flexural stiffness matrices for the
individual elements, that‘is,for the panels and the ribs. Since Dean was
concerned with defermations and forces, the stiffness matriceé do not
include the effects of compressive stresses applied atlthe ends .

Of the two independent wvariables of the plate thét describe the
overall system, one is discrete and the other éontinuous. Tﬁe continuous
variaBle designates distance along a rib line and the discrete variable
designates the rib under conmsideration. For simply supported plates, the
gsolution is written as a double Fourier series containing an infinite
number of terms with respect to the continuous varidble and a finite

number of terms with respect to the discrete variable. For flexible side

supports, corrective terms are added to the double series. By the assump-

tion of an infinite Fourier series representation with respect to the

continuous variable, the continuous and the discrete variable are uncoupled.

The attention is then turned to the determination of functions represent-
ing the variation with respect to the discrete variable.

2.4. Summary of Literature

In the buckling analysis of ribbed plates in compression, there

are available exact, closed form sclutions for plates having simple or

fixed side supports and one interior rib with arbitrary location and

torsional rigidity. For plates with two ribs exact closed form solutions
exist only for simple support conditions and for equal and symmetrically
arranged ribs. For each separate case, the number of ribs and the

boundary conditions lead to separate systems of equations and to separate
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buckling determinants.

Wittrick [9] also provides an exact solution. Again, for each
number of ribs a different determinant of coefficients is set up.
Theoretically,‘both.Wittrick and Barbre [7] allow for arbitrary side
boundary conditions and set no limits on the number of ribs, on the
properties of the individual fibs and on their 16cations and spacing.
Wittrick's solution also is the énly-one that allows for stiffemers that
behave as deep beams (flat strips) and.not only as one-dimenéional beams
as assumed in engineering theory. The above mentioned approaches all
lead to large systems of complicated simultaneous equations that always
depend on the number of ribs. For praétical reasons, however, all these
solutions are limited to very few ribs.

The approach taken by Timoshenko necessitates the additional and
rather limiting assumptions of simple side supports, symmetrical buckling
modes- in the transverse direction and only one half-wave for the buckling
in the longitudinal direction. The purely numerical approach of the
finite element analysis is rather free with respectto the number of ribs,
their locations and dimensions. However, each individuél problem has to
be set up completely from the beginning. There is also the question of
accuracy and convergence of the solution, which may make necessary a
variation of the kind or number of elements used. Approximations of a
different kind are obtained by the orthotropic plate analysis where the
rib properties are smearéd out, The results show gross behavior at best

and fail to have a rational basis,
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3. Purpose of Investigation

None of the existing solutidns to the ribbed plate in compression
allows for a simple and exact approaﬁh, which is independent of the num-
ber of ribs and which incorporates arbitrary boundary conditions, deep
beam type stiffeners and symmetric and anti-symmetric buckling modes.

In this paper, therefore, a cleosed form approach is taken in which a
functional solution is found tﬁat_yields the buckling load for any number
of panels and stiffeners. At the séﬁe fime.a éolution is prbvided for
the deflections and rotations of thg.fib”liﬁes under a combination of
in-plane compréssive and out-of—plane:franéver;e'loéds as long as the
compressive stresses remain well below the buckiipg level. The sclution
for the deformations of the rib lines can easily be extended to any point
in the plate and will refléct local béﬁavior.

The main geoal of this thesis is the determination of the initial
buckling of a ribbed plate using the adjacent equilibrium (or bifurca-
tion) criterion. Postbuckling behavior is not investigated. The general
approach is divided into two major parts, a Non-Composite Flexural
Analysis for systems having negligible in-plane deformations and a
Composite Membrane Analysiﬁ for systems having negligible flexural
resistance. In each part, a distinction is made between plates having
simple end and simple side supperts and plates having simple end and
flexible side supports. The torsional rigiaity of interior and boundary
ribs always is taken into account and the distinction is made between
local and system buckling.

From the buckling criteria, it is possible to determine the

boundary case between system and local buckling and thus to determine the
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éritical ratio oflrib-to-pIate stiffnes§ thch helps in the design of
the stiffeners. For the simpié buckling cfiteriom all the parameters can
be inserted directly. Thesg pafémeterSvareZthe-panel and rib properties;
‘the dimensions, and the number of ribs. The number of half-waves in the
longitudinal and transverse di;ection has to be assumed. For each com-
bination of half-wave values there will be one smallest eigenvalue that
satisfies the buckling criterion. The correct buckling mode_is the one
that yields the absolute smallest eigenvglue. Because of the iteration
procedure, this solution, as well as all the other solutions méntioned

in the literature, makes necessary the use of high speed digital compu-
ter and renders impractical (or impossible) any solution by hand.

Since this investigation is primarily concerned with a field
approach for a bridge type system and a solution that is independent of
Vthe number of ribs, the assumption of uniform and equidistant interior
ribs has been made. However, the two boundary ribs can be chosen arbi-
trarily to reflect any kind of boundary condition from free sides to
simple side supports and from zero torsional rigidity to fixed supports.
Ribs and plate may be constructed of different materials, As in the
literature, other assumptions are a cénstant modulus of elasticity,
constant Poisson's ratio, linear stress strain relations, purely elastic
behavior, perfectly flat plate, isotropic material, no residual stresses
and uniformly applied compressive stresses along the two simply supported

ends of the plate.
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CHAPTER I1
NON-COMPOSITE FLEXURAL ANALYSIS

In-this section, the'flexural analysis of ‘a ribbed plate structure
under uniformly applied stress at the ends is presented. The structure
is proportioned so that the effects of the in-plane plate deformations
and fhe T-beam action"éan be'igﬁoréa in‘detérmining the stiffness matrices
of the elements that comprise the stfucture. This results in a simpler
and lower order model than would qtherwi&e.be the case. It is assumed
that the system acts as a flexural plate supported by rib-beams that are
not longitudinally constrained at the ribrﬁlafe.junction. The junction
is detailed such that the torsional stiffness of the rib is takem into
account.,

1, Derivation of Boundary Force-Deformation Relations

A typical panel between two ribs is shown in Fig. 7.

J/

M'(y)
o' (v

- <

s'(y)
W' (y)

Figure 7. Panel with Boundary Forces and Deformations for the
Non~Composite Flexural Analysis.
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1.1, Governing Differential Equation

The first step of this analysis is to determine the set of
coefficients relating the out-of-plane edge forces M and § and the in-
plane compressive force Ny to the edge deformations B and W for the

elements that comprise the system, The fourth order partial differential

. equation for the thin flat plate subject to a uniform longitudinal stress

resultant Ny is given by

D4w+2D2D2w+(D 24 Ly )D2w=0 (1)
~X ~K Y ~y D vy .
where D_ and D _dencte fhe differential operators L2 and 5. .
~X ~y Ox bY

The plate is simply supported out-of-plane at the extremities of

the y-coordinate, that is, the fellowing boundary equations apply:
w(x,@) = M (x,§) = 0

These boundary conditions are natural to a Fourier series analysis and
the Levy solution for general boundary conditions along the sides, or at

a
x =t > can be written as follows:

[oa)
wix,y) = E;Xi(x)-sin aiy ai = %E (2)
i= :

Substitution of Eq. 2 into the governing differential Eq. 1 yields

4 2.2 2,2 1 } _
I S T A R L RO
an ordinary differential equation of fourth order, having the general

solution,

m4x
X.(x) = A2 + B¢ + C.e + D, 2 : (3
1 1 1 1L




19

and the following four roots

My N i o @)

H+
R
-

1
=

-+ 1
ml,2 T aiN/l + ~

2 Ny
where N = Bz .

From Eq. 4, it is seen that there are only real roots for T < %

.2 2 :
or Ny‘< z nzD » which yields, after rewriting Eq., 3,
b .
Xi(x) = Ai sinh my X + Bi cosh m,X + Ci sinh m,X + Di cosh m, X
: 122D
For M = oy, Or Ny = né , there are two pairs of real double roots,
b
= + . = .
M T ENZ Yy My 4 =0 (6)

and-Eq. 3 becomes
Xi(x) = Ai sinh ./2 oy + Bi cosh ./ 2 oy + Ci + Dix

The most important case for this investigation is given by T > o

.2 2
or Ny > 3—%—2 , from which a pair of real and a pair of imaginary roots
b
is obtained:
my = to 41 m =i[—1 u.Jﬂ—-l Q)
1,2 W oo, ‘ - 3,4 oo

and the following expression for Xi(x),

X.(x) = A, sinhmx + B, coshm
i i 1 i

x+ C, sin m,x + D, cos m,x
1 i 3 i

3

For zero-in-plane ioads, that is, for Ny =0 or TN =10, Eq. 4 yields two

identical pairs of real roots,
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m2,3,6 - T (8)

and

X,(x) = A, sinh o.x + B, cosh o.x + €, @.x sinh . x + D.@.x cosh a.x
i i i i i i~i i i~i i

which is the same result as in Reference 1217,

The interest here is in obtaining.relations between boundary
forces and displacements, which are related to the displacement function
w(x,y). These forces and moments aiong the panel edgeé and the panel
edge deformations aléo vary sinusoidally and with the same half-wave
length b/i. They can be expressed as infinite series with respect to

the y-coordinate as follows:

D (- %ﬂ o) 2
Zw(- 2,y W) o | W
= = E; sin @y (9)
Ry Q) o | e
_iw %,y) ) f'(y>_ L,W'_i
_ . - - A
m (= 3,¥) M(y) M
Q-5 +Dom 59 |sm| _ |8
= = Z sin ay 0)
- m &) T I E |
Q Gy) + Rymxy(%,y) | 3 5"

where, according to Reference'[lj,
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mxy = D(1 - v>21x21yw
m = -D(D % + D )w
X ~X ~y
. 2 . 2
Q =-0p.@7+D

S + -D Rx[erz + (2 - \J)’Ryzjw

1,2, Flexural Stiffness Matrix

Depending on the parameter T, four cases must be considered in
order to obtain the solution for-the.plate wi;h general boundary condi-
tions on the two sides. 1In each case, thé.resulting force-deformation

relations can be expressed in the following form,

[ u i 4 d3 T -97
2 2 22
aS o -d12 -a o d22 --d14 a o d24 W
] a - ) [] .
M dig 4y 411 d1g 0
2 2 2 2
asg! -d -a"o d -d a o d W'
i P e 7 24 12 221 "1

The value of these coefficients will now be determined for each case,
,2 2

imgD

b2

Case 1: N <«
y

The general solution is given by Eqs. 2, 4, and 5. Eq. 9 -
furnishes the four boundary conditions from which the four constants of
integration can be determined., This leads to the following four equations,

presented in matrix notation:




:Where £ = m;a and C = m,a

3
and my and m, are defined by Eq. 4.

Solving these equations for Ai, Bi’ C.,

g cosh % - E sinh % g cosh.g | - gléin; gi

- sinh)% cosh 5'. - sinh % coéh_%

g cosh % g sinh % % cosh % 15 sinh %
sinh % cosh %I sinh % | cqéhJ§

22

A 9
B W
ﬁ ?=< >
C %
D W'
1 L
i i

and Di'yields

i
N VAR SR« I
A sinh 2 -3 cosh 2 B" + 8
= 1.
ct., * |-sinh £ 14 cosh 14 W' - W
Lo 11 L 2 a 21, .
-4 i
o] B 5 _g- g '
s : cosh > 2 Sinh 5 g' - 8
=1,
i
D ~cosh & Esinn &| W +w
S I L 2 a 2, .
i , i i
- E 4 & g_L . & g
where 1/Ii = 2( - sinh 2 cosh > " a sinh 2 cosh 2)
Ve o( B sqon & £t .. ¢ £
and 1/Ii 2( > sinh > cosh 7 "% sinh > cosh 2)

This solution will now be used to express the Euler coefficients

of the plate edge forees from Eq. 10 in terms of the coefficients of the

edge deformations, Eq. 9. This results in the previously stated Eq. 11

and the individual terms of that equation in this case are as follows;




1 }_ - gz) (€ sinh L cosh.-€ .- § sinh € cosh ()
. .

[a ¥
I

- (£

1 -
12~ 7, {g (& +¢®) (@ - v)(cosh € cosh - 1) -
l .

- |22 ¢ - Y+ gz)z}sinh £ sinh g}

4y =57 6% - CH(Cston € - € stoh O
4 =37 G - CI8 Cloosh € - cosh O)
azafizd22 = %— (§2 -VCZ)E L( sinh € cosh { - £ sinh T cosh E)
i - :
azaisz = }—1 (§2 - Cz)g C(€ sinh £ - £ sinh § )
a2 2 2
Ji =77 °" (€ + ") sinh € sinh { + 28 (1 - cosh £ cosh ()
i1 . '
2 2
Case 2: N = = g D
b

Proceeding as in case 1, the four equations froem which the constants

of integration can be determined are found to be the following:

. — — — r;-]

5 cosh % - 5 sinh % 0 11 | A 8
- einh & £ a
sinh 5 cosh ) 1 5 < B W
| » = )
5 cosh % 5 sinh % 0 1 C a'
sinh 2 cosh & 1 & D W
B 2 2 2_ ‘ L J |
i i i

‘ where £ = m,¢a and my is defined by Eq. 6.

Solving for Ai through Di yields




- — -
a
A 2 -1
)1
i . 7 .
5 et B E L E
L2, - sinh 2 a cosh 3]
. -]
B 1 0_
= LI
y =1, o _
C -cosh % E sinh $
Lo — -2_i
where 1/Ii = 2(§ cosh % ~ sinh g)
and-l/Iii = %5 * sinh %

wf

The individual terms of Eq. 11 in this

dy; = %; e%(Z cosh £ - sinh E)

d

1 R

4y = 3 f(stnh £ - §)
1

d, = 5 £ (cosh £ - 1)

2 2 2 2 1 4

a oy d22 = a o d24 = 3; €7 sinh E
J = a = 2 1 ~
i ST €” sinh € + 2E(1 ~ cosh £)
iti
2 2
Case 3: N > inD
y b2

24

+ 0

case are given below:

2= F LA Weosh 5D +1/2 yEsinn g]
- |

It is seen later that this is the most important case. All

buckling loads found for simple side supports for flexible side supports

are obtained using the formulas belonging to case 3. The equations to

determine the constants of integration are the following:




cosh

R

-sinh

= cosh
a

sinh

Ny Nlem

~lew Nlyw

sinh
cosh
E sinh
a

cosh

where § = mla € -

e Nlym

Nlewm N|uwm

m

Ny Ny

sin

0
Q
w

ey pofry
1

m, and m3'are defined by Eq. 7

o by
wm
P

(o]
o
/]

Wy
1]
I

[e]
=]
w

=]

a8

£
> A 0
% B W

{ } - < )
g
2 ¢ o
% D '
~i =-<i L ~i

and the constants of integration are found to be

-i

where

and

The individual terms of Eq. 11

4

12

13

/1, =

P ¢
sin 5 o
inh 2 5
:51nh 7 2
Ceos = £
cos 3 3
g g
:cosh 5 2
E .
2( 5 sin s cosh
l/Ii': 2( E ginh é cos

1

]
LqH

cos % o'.- 8
)
cosh % W' - W
r SR ]
sin % — o . g
\
sinh ; W' - W
i i
; - % sinh ; cos % )
£ g
5 + Py sin 3 cosh § )

for case 3 are listed below:

(52,- QZ)(grcosh € sin C- € sinh € cos £ )

‘{(1 S 9EL(E - %) (cosh € cos € - 1)

+ [252 Q2.+:% (52 - QZ)ZJ . sinﬁ € sin Q}

(82 + 25 (C sinh § - € sin £)

25
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d;, = %I (§2 +.Cz)§,C(cosh § - cos )

aza'izdz2 = %; (§2 + C2)§§ (€ sinh € cos £ + Ccosh § sin §)
o’ %ay, - 3— (8, + CHE (§ sinh §+ € sin 0
a2 2 2 :
Ji =TT T = (8" - C% sinh Esin € + 28 C (1 - cosh § cos D)
i7i

This plate corresponds to the plate under transverse loads only.
The out-of-plane stiffness that will be found can only be used to deter-
mine the displacements of such a plate. The individual terms of Eq. 11

for this case are the following:

1 . :
dll,dzz' = 3: E(sinh 2§ 2 25)
diq4dy, = %1-: 25(€ cosh § % sinh §)

dyy = %-—l- 52{(1 - WE (1-V) sinh2§} |

1 3,
d14 = j; 2€° sinh §
J; = sinhzgl- §2

€ = ma, where m; is defined by Eq. 8.

This completes the derivation of the boundary force-deformation
equations, or the stiffness matrices, for the Non-Composite Flexural
Analysis,

The stiffeners can be conéideréd as plates having one free edge.‘

Corresponding simplified stiffness matrices can easily be derived by
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setting Mi' = Si' = 0 in Eq.‘li. In that case, ei' and W;' also can be
eliminated from the same equation. An alternate procedure is to treat
the ribs using elementary beam theory. The governing differential
equations for beams under out-of-piane and in-plang‘forces in addition

to axial compression are derived in the Appendix.

2. Derivatidn of the Buckling Criteria

2.1. Equilibrium Eqﬁatioﬁs

The two equations of equilibrium‘for a rib line element (Fig. 8)

for the Non-Composite Flexural Analysis are
M(r:Y) + M'(I‘ = 1$Y) + ﬁ(r:Y) = Me(r1Y)

(12)
S(r:Y) = S'(r - 1,)7) = ﬁ(r,}i) ='Pe(1’,Y)

P (r,y)

/r‘me (r,y)
S!(r-1,y) S (r,y)

< A= na
M'(r—l,y)( : ).M(r,y)

‘ b
ﬁ(r,y):)(_jﬂ(rm
fo—-a
(a) Rib Line Forces M/ M/ M M M y -7
’ Z r-1 r r+l : Z
’ o . n

y
(b) Rib and Plate System

Figure 8. Non-Composite Flexural Model
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Here M{x,y), M'(r,y), S(r,v), S'(r,y) are the plate boundary
moments and shear resultants on the typical panel r between the rib
lines r and r + 1. They are defined below in a manner analogous to

Eq. 10, where they were shown without the discrete variable r, designating

the appropriate rib and panel. : N

M(r,v) | M(r)
S(r,y) o | s(n .
= Z; * sin @,y @, = E%L (13)
M'(r,y)| 1T M'(v) t .
s ,' g
i (r y)J i (r)_] .

M(r,y) and N(r,y) are the distributed twistiné moments and direct forces
transmitted to the rib. Details and physical properties freQuentlﬁ
encountered are such that ﬂ(r,y) can be considered negligible. On the
other hand, retention of this term does not greatly complicate the
mathematical model. It will be retained for a more general solution and
can be dropped in those cases in which it is not applicable.

Me(r,y) and Pe(r,y) are the‘equivalent.applied line momenfs and
loads which are comprised of the actual rib line quantities M? and Pa,

£ £

if any, and the fixed edge panel quantities Mf, M'™, 87, and S'f due

to mid panel loads q(x,y) (Figure 9), that is:

M(r,y) = M(x,y) - Mf(r,y) - M'f(r - 1L,y

Pe(r,y) = Pa(r,y) - sf(r,y) - s i - 1,y)




Figure 9. Applied Rib Line and Fixed Edge Panel Forces and Moments

6¢
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The distributed twisting moments and direct forces transmitted
to the ribs and the equivalent line loads can also be expréessed in series

form, that is,

3

H(r,y) M, (1)
< NG, $ = i ﬁi(r) } sin‘ Q. y (14)
Po(r,y) [ 1% P, (r) ’ ,
¥°(r,) MiE(r)J

Replacement of all quantities in Egs. 12 by their equivalent series and
matching like coefficients results in the following relations between

the series coefficients:

M, () + M, '(r - 1) + W (r) Mie(r) (15)

Si(r) - Si'(r -1 + ﬁi(r) - Pi(r)

2.2, Displacements

The panel force coefficients Mi’ Mi', Si, and Si' in these
equations can be expressed in terms of the coefficients of the rib line
deflections and retations, Eqs. 9, by use of the plate stiffness coeffi-
cients shown in Eq. 11. The stiffness coefficients used for the ribs,
ﬁi and ﬁi,are those derived by beam theory in the:Appendix, Eqs. 76 and
87.

Note that Ui fér the beam in Eq.'87 must be'reﬁlaced by Wi for use
in Eq. 15 for the rib liﬁe, or panel edge, deflection. The nécessary

relationships are thus:
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_D
M (r) =2 [d);8,(0) + dH (r) + d)48,°(r) - 4w, () ]
_D
Mi'(r-l) =3 [d13ei(r -1 + d14wi(r -1+ dllei'(r - 1) -
. . - dlzwi'(r - 1)]
_Dra 2
By () =5 Lg o e8]
_ 1, ¢ 2 1 , (16)
5300y =5 [- 34,80 - aw%a, W () - £ 4,87 *
2
yoa d24Wi'(r)]
7 L !
s;'-1) =2 [-la 6o -defa w1 -L2a,8 -1
' 2 !
+ ao& d22Wi (r - 1)]
2 2
a“a
. _D i 2
N(r) =2 [ @ - o Bwm]
Note also the following expressions of continuity at the rib lines:
B'(r - 1) = B(r)
Wi(r - 1) = W(r)
0'(r) = r + 1) an
W) = W(r + 1)

2.3. Governing Difference Equations for the Rib Line Deformations

Introducing Debla,&, the second central difference operator,

and Multa,g, the mean difference operator, that is

‘&rl“(r)
ErF(r)

F{(r + 1) - 2F(r) + F(r - 1)

"

1/2[F(r + 1) - F(r - 1) ]

(18)
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and substituting the force deformation relations, Eqs. 24, into the

equilibrium relations, Eqs. 22 and 23, yields

) ”_ : e
d13(Nr + 2vi ) 2d145r ei(r) M, (r)
_ : % (19)
: 2.2 =
i -2d14/_?/ a“o; dm(&; - 2V, ") W, (x) -aP, (r)
é in which
: dip a 2 -
; v.' =1+ + o, “ kB'
: i d13 2Dd13 i
d.. .
Cm 22 a - 2
Y.'=-14 + . (o.°B - P)
i - 'd24 : ?.Dd24 i

where kB' is the torsional stiffness of the rib beams, and
B is the flexural rigidity of the rib beams about the axis parallel
to the plate, |
Eq. 19 cons;itutes’the'uncoﬁpled difference equations for the plate
that is simply supported at the ends and stiffened longitudinally with
equal and equally spaced ribs. This equation can be used to obtain rib
line displacements for low axial léads or to derive the buckling

criterion for initial buckling for the Non-Composite Flexural Model.

3. Simple Side Supports

The physical boundary conditions for the case of simple side

supports are zero deflections and zero external moments at r = 0 and n or

n
o

W (0) = W (n)

Mi(O) + ﬁi(n) (20)

]
=
iy
[+
—
o
tor
n
o
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M'(n - 1) + W (n) - Mie(n) =0

Selecting a boundary beam torsional stiffness equal to one half of the
: ' . - b -
stiffness of the interior beams, that is, (kB') = 1/2kB', Eq. 76 from

the Appendix becomes, at r = 0,

- .1 2.
Mi(O) R A kB Bi(O?
Substitution of this equation and Eq. 11 into the second Eq. 20 and

recalling Eqs. 17 yields the boundary conditions on the left and right

hand sides of the plate

n
o

| a
- 12
dala ¢ Yiljei(O) ~a,la +1 - —dla}li(m (21)

d
12
a0y - v 8 v a, It - a, v, W, ()

1]
o

where Yi' is defined by Eq. 19 and

AiF(r) F(r + 1) - F(x) is the first forward,

er(r) F(r) - F(r - 1) is the first backward difference

operator.

The most convenient form of solution for thé case of simple
side supports is that of a double series, that is,.the Euler coefficients

in Eq. 19 are expressed as finite series as follows:

e e

B
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B P e |
; (1) > Ok
_ }; . cos k1mr
k= : n
1 e : ¥
e (r) My i
. T i L. J
_ _ _ : ' (22)
LGN P o
- z: ‘ . . kTtr
- . s1n . n
d P (1) i k=l | Pyy |
where
P

r

- 1 forr =1, (1), n -1
1/2 for r =0, n

Not that the complete expression, for example for 9(r,y) is a

finite-infinite double series as follows:

O(r,y) = z; 2; eik cos k:T sin oy
izl k=

Attention is called to the device of expanding a weighted moment

coefficient function instead of the function itself. This allows one

to satisfy the inhomogeneous moment boundary conditions. Egqs. 20,
without adding corrective boundary functions, which are needed for func-
tions expressed as finite sine series. The weighted moment function

coefficient is found from the following equation

n
k1r

n

. 29
M, = X
ik T

Mie(r)cos
r=0

When substituting Eqs. 22 into Eq. 19, the operators Debla,[SJ,

1 and Multa,Z::7, will operate onto the trigonometric terms and this yields
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n
- kTTE
&rei(r) = -2 z l_eik o, cos =
k=0
n-1. - SR
_ . kTr
Erwi(r) = -2 Z Wik 6 sin —
k=1
. (23)
= 8 () = - Z B, sin kT sin ETE
r i ik n n
kéD :
: a3 ‘ kn kTr
[:7rWi(r) CH Wiy sin T—.cos =
k=1
where Gk =1 - cos E%L

With these terms, Eq. 19 becomes, after matching like coefficients,

' _ . kT 0]
dp5 (v - 9 dig sin 3 O | Mix
da
2 * D . (24)
. kT 2.2 -y ‘
dyg sin = mandyndy (g + q) | [ Wy “aPiy

Solving this equation for eik and W, yields

T2 2. o, o okm ] ©

e_lk | a~a, d%(Yi * crk) dmsm = Mik

a

S DT . | - (23
ik kT .
Wik I dy,sin =7 d3(v " 9] | P
v = - 2,72 LI Vo0 . 2 -
2 kn |

Note that sin o Gk(Z - Ok)

This completes the solution for the deformations of the rib lines

under axial compressive and lateral loads applied to the whole structure.
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4. Buckling with Simple Side Supports

Eq. 25 has non-trivial solutions for zero external loads and

moments, that is for Mi = Pik = 0, only when Ci 1, the determinant of

k

coefficients, vanishes. Cik' is a function of i and k and the compressive

k

loads P and Ny' For each set of i and k there exists an infinite number
of load combinations for‘which Cik' = 0., These leoad combinations in
general can be found only by uSing a trial and error method. The smallest
of all the possible load combinations for all possible sets of i and k |
constitutes the initial buckling load,

In the course of this procedure, it was found that buckling loads
N_,, plus a corresponding P, are alﬁays defined by "case 3" of the
solution§ to the partial differential equation for the panel element, that

2

is, for N > @D,
y i

The expression for Cik' = 0 can be solved explicitly for P which

yields
2
_i’ms . | Y4 % 209
P _=-—23 =21ld,-4d,0-09) -
cr b2 a 22 24 k a2a 2d v.' - )
‘ i "13Y 4 k

The second term of this expression approaches zero as t, and therefore,
D approaches zeroj that is, for the extreme case of a structure that
consists only of fibs. The first term is the Buler buckling load of a
column which is simply supported at both ends. Thefefore, it is seen
that the solution to the problem of the stiffened plate is limited on
one side by the simple column buckling case.

On the other hand, Cik' cannot be solved egplicitly for Ny' How-

ever, setting A and P equal to zero and then solving Cik' : 0 by a trial

and error method yields a smallest value for Ny equal to the buckling
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load of a flat, unstiffened plate which is simply supported on all four
sides, that is
2 . \2
- YOS
where ,£= n-a is the total width of the pléte and k = 1,
This is the other extreme of the stiffened plate problem. The
same result can be obtained directly‘from Eqs. 11 and Case 3 by setting

a =,£, Wi = Wi' = 0, and Gi = —Gi'. “This Fesults in

which increases above all bounds for d11 = d13 or

€ sinl(cosh § + 1) - £ sinh E(cos £ + 1) = 0

This equation is satisfied for n = T which yields

. g im [T
m= K b o, "L
i
or

. 2
et ZB(E )

Up to this point the compressive force per uﬁit length, Ny, acting
on the panels between the ribs, and the axial load, P, acting on the ribs
have been kept distinet. This allowed for an additional degfee of freedom
in the buckling analysis, However, for most practical cases, thé plate
will be'consﬁructed in sqch a way that Ny and P cause uniform strains in

panels and ribs. When panels and ribs have the same modulus of elasticity,
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this corresponds to a uniform stress, o. Therefore, Ny and P can be
expressed as follows
N =ot = Pz &
v ,
where t is the panel thickness and A is the cross sectional area of

one rib,

In the case of a concrete plate étiffened‘by steel ribs, the

ol =a]]

stress O in the plate Would be replaced by £ = @ where E 1s the
modulus of elasticity of.the concrete,

A group of special eigenvélués-of‘dik"is obtained by setting k
equal to n, that is by prescribing as many half-waves in the transverse
direction of the buckled surface as there are panels. Then the rib lines
correspond to the node lines of the buckling surface. By assumption,
the rib lines remain straight, that is they do not buckle. This is
called local buckling. From this mode, buckling stresses equal to those
of flat plates of width "a" must be expected. The trial and error method
does indeed furnish this expected result, In other words, for k equal
to n the stress at buckling of the plate of wi&th,ﬂ, length b, thickness t

and flexural rigidity D, with n panels of equal width a between n + 1

stiffeners of equal flexural properties is found to be

-1 IEQ ( b ia)2

Gér Tt 2 ia ' b
a .
or, since a = Z/n
1™
Oér Tt /22 kcr (26)
where k = nz( b + i-51)2
ere cr b
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. The maximum values of k for values of n.= 1,2,3,... are
k = 4,16,36,... .
In general the initial buckling may occur in any number of half-

waves 1 £k % n in the transverse direction. The two most important

parameters, besides,fﬁ b and n, are the two ratios

. B e A
Y*: o ﬁﬂt

where B and A are the flexural rigidity and cross sectional area of
one rib,

There are now possible two major appfoaches to make use of the
buckling criteria Ci£ = 0. One is to fiﬁd that value of Y for given
values of /f, b, n and 0 which causes local buckling to occur at smaller
stresses than system buckling. This approach is important in the
design of structures when system buckling, at least initially, is to
be avoided. The sought value of Y correspohds to a minimum rib stiff-
ness B, in comparison to the plate rigidity D, that guarantees local
buckling to occur first.

It should be noted that the ratio &, is multiplied through with g,
represents the ratio P/Ny for a plate made from materials having the same

'

modulus of elasticity for panels and stiffeners.

The other approach is to find the critical stress Oér for a fully

chosen set of parameters, This corresponds to finding kcr in Eq. 26.
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In the process of obtaining'huﬁerical:results, it is seen that
k = 1, that is the first symmetric mode,.yields the lowest kcr,'except
for the case of local buckling. With k = 1 and introducing the defini-

tions of Oﬁr’ Yi', and ;&' into the eXpressioh for C.i ' from Eq. (25)

k

yields the feollowing simplified buékling criterion

2,2
4B

nz(n_z_lj

' . 2
d11£d22 foa V2 Y- kéré)] -dy, =0

where B = bﬁf is the plate aspect ratio and the torsional figidity of
the ribs has been ﬁeglected.

The buckling criterion in this latest férm‘reveals that kcr depends
only on n, v, 6 and the ratio i/B since the stiffness coefficients d
also are functions of kcr’ n, and i/B. Larger values for kcr can be
expected for high ratios of Y/6 rather than low ones. Prescribing a set
of values for i, B, n, Y, and &, the corresponding value for kcr can be
found by iteration. Only the curve for i = 1 needs to be determined,
however, since the curves for i = 2,3,ete. can be obtained by doubling,
tripling, etc. of the abscissas of the points on the.curve for i = 1.

4.1, Numerical Examples for Simple Side Supports

In Figure 10 some curves are shown for_'kcr as a function of B, n,
and Y. Comparison to the curve for an unstiffened plate shows the simi-
larity of the basic form of these relations. In both, stiffened and
unstiffened plates, a lowest value of kcr is approached asymptotically with
increasing B. The transition point-from buckling into one, two, three,
etc. longitudinal half-waves shifts to larger aspect ratios with an

increase in the number of ribs and in their stiffnesses. The relative
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gain in the buckling strength is grestest for the first rib and decreases
for édditional ribs. For B > 1, substantial increases in the rib stiff-
nesses are necessary to bring the buckling strength of the ribbed plate
anywhere near the strength in.the.logal bucklingimode.

The curve for n = i checks well with data given by Timoshenko
in [l]. All values: are élightly lower;;however, and Ehus represent an
improved and decreased upper bound for the initial buckling. The curve
for n = 4 in turn checks_with dgia"given in the USS Steel Design Manual
[18] as far as the graphs presented there permit accurate numerical inter-

pretation. The curves for m = 10, or for any number of n greater than 4,

represent new data unavailable in this form up to now.

5. Boundary Deflections

The second solution of the Non-Composite Flexural Analysis of a
ribbed plate is for the unloaded system, that is for Mie(r) z Pi(r) =0,
with imposed boundary deflections which can be represented by a symmetric

and anti-symmetric component, that is, by

wis = % [wi(O) « W (n) ]
als 1
W, =5 [Wi(O) - Wi(n)]

A technique to include the imposed boundary deflections in the
Fourier series assumptions is to add corrective terms to the classic
/s .

. . a .
series. For the symmetric component, or Wi = (0, the solution can be

written in the following form:

i
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[4» ]
2]

~~

H

e’

I

=
[14]

T b

Dt

g

Q

3]
~
pi |
L

(27)

=
[}
=t

s( - . ke )
wi Y wksmn + 1

W ()

[

-
(%]

-

Substitution of Eq. 27 into the governing differential equation (Eq. 19)
and into the boundary conditions (Eq. 21) and matching like coefficients
shows that only odd terms of k are used, which justifies the assumptions

of Eq._27. Solving for eik and ﬁik yields

- Zaza.zd

P - _
:__._..._1—24l(. BV | - h - o,
Ok c ' | do %' (2 - 90+ (4, - 40T+ 9
n vy
W =-2(2-Uk) d(d-d)oa,azazdd?'(v'- )
ik 1489127 947 % 1<%913%4 "1 VY %

. kT T
n-51in T |Cik I

. . 5 _ .
For the anti-symmetric component, or Wi = 0, the solution can be

written in the following form

n-1
_ als a/s
- z kTr
ei (r) = W, k=2,4,..?ik cos — (28)
als als n-l
W (r) = W Ej W., sin — + (1 - 2r )
i i _ k
k=2, 4,

where B,. and ﬁi

ik are identical to the ones for the symmetric case. Note

k

the term (1 - 2r/n) which increases from zero at r = n/2 to *1 at the

boundaries and which reflects anti-symmetry.
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6. Rib Boundaries
The total solution for a Non-Comp051te Flexural Analysis of a
ribbed plate is that for a plate with- flex1b1e ribs for side supports

(Fig. 10).

Figure 11, Plate with Rib Boundaries

It can be obtained by superposition of Eqs. 22, 27, and 28 and is

written as follows:

e,"(x) = (0 + 8°(0) + §*/°(0) 1

als

R C NP € N A O W Tl €5

That combination of the solutions for simple side supports and boundary
deflection cases has to be found which satisfies the rib boundary condi-
tions at r = o, n. The coefficients of the boundary deflectioens, Wis and
Wia/s’ must be determined through study of the conditions at the boundary
beams. The two boundary ribs are assumed to be identical so that the

structure is symmetrie about r = nf2. The interior ribs may or may not

be identical to the boundary ribs. One can determine Wis and Wials b
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working with the symmetric and anti-symmetric components separately, that
is for k odd and for k even, respectively. The coefficients of the symmetric
and the anti-symmetric components of the boundary loadings are written in

a gsimilar way as the boundary deflections, that is

p.f = 1/2[p,(0) + 2 (] p /% . 12l (@ -2 ] (@29

For the symmetric component of the solution, consider the equilibrium along

the rib line r = 0, that is the second of Eqs. 15 becomes:
= s
si(o) + Ni(O) + P, (0) =0 (30)

where Si(r) and ﬁi(r) are defined by Eqs. 16.
Substitution of these terms into Eq. 30 yields the boundary con-

dition in terms of the boundary rib displacements

b t 2 2 - .b t a2 s
] o - ! W — -
B d14(Ar * E:i )ei (0 + a i d24(Ar Yi ) i (0 +_D Pi =0

d +d
where E.'b = —lﬁz———lg
t 14
-.b - ,b a 2_b
Y.' = €' + —=—— (&,."B - P)
i i Dd24 i
=.b_d22 " Dy
i dog,

B is the boundary beam flexural rigidity and

Ar is defined as in Eq., 21.
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Substitution of Bit(r) and Wit(r) into the boundary condition and

solving for Wis vields

2
. a"_ s ]
5 D P1 + s; (0)
Wi = - -
. -
' - 8,0
where
4 2 2_b 4 2 2_b
; b a’a; (di B - P) . b _ a‘a, (ai B~ - P)
i aD i aD
n-1
5 - . b 2 2 Ez . km
sy (0) = dl&i (ei Gk)eik+a oy d24' Wiksz.n -
k=l,3,"o-- - ) k?l,a,vnu
ntl
5 - b = 2 2 E: = km - ,b)
5. (0) dla S: (e1 ck)e1k + a o d24< Wlk sin e,
k=1,3,... k=1,3,...

The last two terms are the coefficients of the panel boundary shears of
the two parts of the total solution.
The anti-symmetric ompomnent of the boundary deflection is obtained

in a similar way as the symmetric component and is found to be

w,2/e o > ila/i :/Sia/.s ©
: ' - 5T 0)
where ﬂi'b is defined as in the symmetnic_case :
and 0 , : 3'1
5,20 = - dléz (e;"" - 68y + a%af 4, { ), Wy sintD )

k=0,2... k=2,4.l|
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n n-1
- afs T b - 2 2 = ., km - b
5, {0) = -4d (e.' - 05,)8,, +a"w@,“d ( El W,  sin — - e.'_)
i 14Eéb,2.,% k }k i 724 S5 4.%? n i
This completes the solution of the defiections of a ribbed plate with beam

boundaries subject to lateral and in-plane compressive loads and using a

Non-Composite Flexural Analysis,

7. Buckling with Rib Boundaries

For the plate with beam boundaries, the buckling criteria have
taken a new form. Now, the buckling stresses can be found from the con-
ditions that Qit(r) or Wit(r) increase above all bounds. This occurs,
on the one hand, for Cik! = 0, the same criterion as for the previous

case of simple side supports. The term Ci ' appears as the denominator

k
and W,
i

S

of the expressions for Bi On the other hand, eit(r)

K O Wipe ke
and Wit(r) also increase above 2ll bounds for vanishing denominators of

/s

the expressions for Wis and Wia , that is, for one of the two following

conditions:

2

b -8, a 8
1 - = =
si (0) 0 and D Pi

M,

. +38,5(0) 40 (31)

1.1 2 a/s

X '(0) = 0 and

P,

b _ ;a/s
1 1

Ulm'

+ sia/S(O) Lo

The new buckling criterion no longer depends on k. However, since
local buckling still is determined by Cik' = (0, it could be expected that
Eq. 31 govern in cases of system buckling when its eigenvalues are lower
than those found from Cik' = 0, Both criteria have to be checked iﬁ order

to determine which one of the two gives the lowest critical stress,
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7.1. Numerical Examples for Rib Boundaries

For the symmetric case, Figure 12 shows some curves for kcr as a
function of B, n, ¥, and the ratio Bb/B, that is the ratio of boundary rib
bending stiffness to interior rib stiffnmess. Again, the torsional rigidity

of the ribs has been neglected.

Comparison of the curves for simple side éupports and rib boundaries
shows great similarity, up to the point of the first minimum for simple
side supports. As could be expected, this is especially trué for very
rigid boundary ribs. For aspect ratios near 1, local buckling contrels.
For ribbed plates with Bb = B, kcr can ﬁell be approximated by Euler |

hyperbolas, that is these piétes Behéve éimilarly to simple columns.

Except for local buckling, i = 1 vyields the lowest kcr'
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CHAPTER III
COMPOSITE MEMBRANE ANALYSIS

In close analogy to the Non-Composite Flexural Analysis, the
Composite Membrane Analysis of a ribbed plate structure under uniformly
applied sfresses at the ends is presented in this section. The structure
is proportioned sc that the effects of the out-of-plane deformations can
be ignored in determining the stiffness matrices of the elements that
comprise the structure. This again results in a simpler and lower order
model as was the case in .the previous chapter. One consequence of such
an approximation is that the locads can theoretically be applied only
along tﬁe rib lines. Thus, distributed loads must be replaced by their
line load equivalents. Composite action--the T-beam effect--is taken
into account by matching the longitudinal displacement at the top of the

ribs to the y-component of the membrane disPIacements along the rib lines.

1. Derivation of Boundary Force-Deformation Relations

A typical panel between two ribs is shown in Figure 11.

gt

S S LS

N'(y), U'(y)
T'(y), V'(y)

Figure 13. " Panel with Boundary Forces and Deformations for
the Composite Membrane Analysis
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rd

The first step of this analysis is the determination of the set
of coefficients that relates the in-plane edge forces N, T, and ¢ to the
edge deformations U and V for the elements of the structure. In antici-
pation of a similar result as in the Non-Composite Flexural Analysis, the
general stiffness matrix eduation for the Composite Membrane Analysis is

written as follows:

(5] [b B, by by| [ V]
T Pra Py Py By JV

K P13 P P Ppo of ¢
T P Pan Pz Paa) |V

. J1 L JilL Jd1i

The elements of the stiffness matrix normally could be found by carrying
out a routine plane stress analysis of the panel with zero body forces.
This classical linear theory of elasticity is inadequate, however, to
show the destabilizing effect éf the longitudinal compressive stress, O
and a non-linear theory must be used instead. The derivations given here
are based on those presented by Wittrick‘[g].

1.1 Governing Differential Equation

A non-linear theory wﬁich is suitable for this problem has been
developed by Novozhilov [13]. The non-linearity, with which we are con-
cerned, is that arising from the use of the deformed geometry of an
element in formuiating the equations of equilibrium. For the case of

plane stress these may be written as follows (Eq. ITI, 48, Novozhilov):
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.
~~
=
e
(v’
o
S’
=]
+
=
[

s B - - - - -—‘_ - - - _'-l
% D {] + D El + qu)nyx + nygyu_ =0

(33)

v ety

py (1 + va)ny + nyxprl + D, (1 + Q’y.v)nx + nD v; =;p

where n_, ny, n_, and nyx are the stresses, and u and v are the displace-

ments in the x and y directions from the unstrained state. In the basic
state, the following relations correspond to the applied compressive

stress:

={Q

ua = v

=1Q

l'l:—c,'n :I’-'l :0,%\;:_

» D
X Xy ~

Eq. 33 is identically satisfied by Egqs. 34.
The additional stresses and displacements, after infinitesimally
small in-plane edge forces have been applied, are n ny, nxy’ u, and v,

In the final state, the relations in Eq. 34 are replaced by those shown

below.

o= - g

n_=z -oc+n Dv=-T 4+D v

n = D v =

nx - nx Axv Exv

ITI = n DI-J.:DLI

Xy Xy ~Y ~¥
Du - vl spu
~x E ~X

Substitution of these expressions into Eq. 33 yields

2 . ' - R -
-op,v + (1 - 9) (gny +Dyn ) + [Ry(nxyng + n.Dv) (35)

+.Rx(nxy2yv + anxvﬂ =0
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2 VT
- O 4 4 XD :
D."u+ (1 z Y (D n, + D nxy) + 'Q*(nxyD u +-nxD u)

+ Do D ou+ nygyu):] =0

Since the additional stresses n ny, and n, . are infinitesimal, and
therefore thé displacements u and v resulting from them also, the terms
in square brackets in Egs. 35 are small of second otrder with respect to
the remaining terms and thus may be-neglected. The terms Of/E and YO/E
also are small compared to unityand will be neglected. .Eq. 35 then

simplifies to the following expressions:

Dn +Dn =D 2v = 0
¥y ~{ XYy 4

(36)

1]
o

2
anx + Qynxy- qu u

The stress strain relations for the additional stresses and displace-

ments are identical with those of the linear elastic theory and are as

follows:

E . .
- —_— + Vv D .u) 37
nyr T B A VR e
n_ = E D u+ vDv)
X-l_uz ~¥% ~
E

n_=n__ =
Xy X

Substitution of Eqs. 37 into Egqs. 36 results in the following two

simul taneous partial differential equations in u and v:
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-

2 2 ' i
%gx + (1 - v)é’gy (1 + uhgxgy u(x,vy) 0
) = (38)
(1 + WD {1 - vwD 2 + 2¢2D z vix,y) I* 0
x.Duy ~Y ) ~y ?
where ¢2 =1 - (1l - Uz)-e
2 .
3 21 - 2(1 + v)-*¢
and € = OfE is the uniform longitudinal compressive strain in the

undeformed state. Note that neglecting € with respect to unity in

Eq. 38 would reduce it to the classic linear one and would mean the

entire loss of the destabilizing effect of the compressive stress, g,
Here the concern is with panels that are simply supported in the

plane at the extremities of the y coordinate; that is, a partial state-

ment of the boundary conditions is
ny(x,O) = ny(x,b) = u(x,0) z u(x,b) = 0 (39)

Thus the solution, which is general with respect to the boundary con-

ditions at x - fa/2, can be written as follows:

o o (40)
"ﬂ
u(x,y) = i; Ui(x) sin Qiy s vix,y) = z: Vi(x) cos Q&y

i=1 i=1

Substitution of Eq. 40 into Eq. 38 yields two ordinary simul-

taneous differential equations in Ui(x) and Vi(x)

2 2 2
Q']._(1 + \))Dx : (1 - v)Dx - 2P @ . Ui(x) 0

2 L2002
2D 7 - (L - Wy

S L+ V) °’li v, (%) 0
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which are transformed in the standard manner to a scalar stress function

as follows:

LG - L - 9o 2 - 25fa? | F, (x) (41)

v, ()

- Ql(l + V)DxFi(X)

These equations identically satisfy the first differential equation,

and the second equation becomes

{2(1" ")Dxa - [‘“Pz + 1 -9 - a +v52:| p o’

+2(1 - V) ‘ﬁchzd;i‘*} F.(x) = 0 ,

an ordinary differential equation of the fourth order with the general
solution
m X my X m

F.(x) - A.e + B.e +C.e +D,e
i i i i

Substitution into Eq. 41 yields
(42)

| U, (x) = (- 9A;sinh 9% x + B sinh @ozix) + (- 9C;cosh 9. x + D, cosh éaix)

Vi(x) = (Aicosh Qaix_— @Bicosh @aix) +—(Cisinh P X - @Disinh Qaix)

Substitution of Eq. 42 into Eq. 40 and then into Eq. 37 yields:

nx - -E'IEW Z{- [1 -1+ v 6] (AiCOSh iPO’ix + CiSinh “-PO’ly) (43)

izl

+ @(Bicosh Qﬂkx + Disinh @dix)} a; sin a;y
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o«

- iy L (oasinh e [ ]
nXy =T+ v - @(Ai51nh @ui§ +_Cicosh ¢ﬂix) -1 - (1 + \J)G‘-_'|

(Bisinh Qﬂix + D, cosh Qaix)} o cos oy

At this point, again, it is convenient to represent the forces
and displacements of the panel edges by their symmetric and anti-symmetric

components; that is,

s ' N afs _ -
Ni = 1/2(Ni + Ni) Ni = 1/2(Ni Ni)
s ' afs. -
T,° = 1/2(T," + T)) T, = 1/2(r;' — T,)
) ' , als . (44)
Ui = 1/2(U1 + Ui) Ui = 1/2(01 - Ui)
s . a/ls .
Vi = 1/2(Vi + Vi) Vi =-1/2(Vi Vi)

The panel edge forces can be found from Eqs. 43 and are defined as

follows:

N, = nx(- af2) T, = nxy(- a/2)

(45)

Ni': nx( a/2) Ti': nxy( a/2)

The panel edge displacéﬁents are found in a similar way by use of
Eqs. 42, |

The following expressions for the 3ymmetric and anéi-symmetric
components of the panel edge forces in terms oflthé symmetric and anti-

symmetric panel edge diSplacements can be derived from Eq. 32:
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8 S S
Ni = (b11 + b13)Ui + (b12 + bM)Vi
é S S (46)
R PR P LA CN S WL
afs als ' a/s
N, = (byy = By QU T 4 by, = By IV
47)
afs a/s afs ‘
Ty = (byp = DV 7+ (byy - BV,

1.2 Solution for Symmetric Case

The solution of Ui(x),;(Eq{'42);=for this type of loads must be
an even function of X and an odd fﬁnctiQn for Vi(x). The constants of
integration Ci and Di are 1@enticaily;ze:d and only..Ai and Bi have to
be determined from the'boundary conditions, Eq. 39. The general stresses

are found from Eq. 43 which, together with Eqs. 44 and 45, yield expres-

sions for NiS and Tis. Comparison with Eq. 46 then results in

| ¢do a P a éaia
(a/Et)(b11 +‘b13) = : cosh > cosh >

) Pt a P a % a

‘ (a/Et)(b22 + b24) = = sinh 3 sinh 7 (48)

i

| e a P, a dv.a w.a

3 /EE) (b, +by,) = —— cosh —— sinh —— - —
(a 12 ¥ P =T 2 2 "1+
s ma&a @aia @0&a @aia

- i - Pbgi
where I = cosh > sinh 5 Pe%inh 2 cosh )
Expanding Eq. 48 in powers of € and then investigating the

eigenvalues of Eq. 46, that is, for

2

(b + bygdlbyy + byp) - (byy +by,)7 =0
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Wittrick found that eigenvalues of € always are of unit order, which
implies that in practiqe tﬁe deétabiliiing.effeét 6f the stress O in the
symmetric mode of deformation is aiﬁéyS'insignificant. Therefore, only
the leading terms.of the'expansion'ﬁf Eq; 48 will be retained, which are

as follows:

20 a

s 1
(a/EL)J (b11 + b13) I st (cosh aa + 1)

s 2&&& ’
{(a/Et)J (b22 f b24) 2 T v (cosh ¥a - 1) (49)
(a/Et)Js(b +b,,) = -« a(1 - sinh ¢.,a - @ a)

12 147 -~ i1 + v i i
where J° = (3 - V)sinh @a - (1 +Voa

Eqs., 49 do not include the effect of the compressive stress J anymore.
They can be used to determine the stiffness matrix for a membrane without
compressive stresses acting. Such a stiffness matrix haé been found by

. Dean [12], and it can serve as one way to check the more complicated
stiffness matrix obtained by Wittrick for the lower bound.of a.

1.3 Sclution for Anti-Symmetric Case

The solution of Ui(x), Eq. 42, for this type of loads must be an
odd function of x and an even function for Vi(x); The constants of
integration Ai and B.1 are idéntically zero and only.Ci and Di have to be
determined from the boundary conditions, Eq. 39. Comparison of the

/s /s

resulting expressions for Nia and Tia with those of Eq, 47 yields
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e@aia maia %o a
(a/Et)(b11 - b13) - Ia/S' sinh—— sinh—;
ePr, a cpozi'a éozla
(a/Et)(b22 - b24) = Ia/ cosh 3 cosh > (50)
6. a ¢Qia @aia @ a
(a/Et)(b12 - blh) - ;;7; sinkh > cash — " T v
o, a b a . Ppa.a do a
where Ia/S = sinh ; cosh'——%—--‘¢@cosh ; sinh-—%%—

Expansion of Eqs. 50 in powers of € and omitting the terms
involving the compressive stress provides the second group of equations
needed to determine the stiffness matrix for the membrane that is not

in compression:

a/s 2¢.a

i
(a/Et)J (b11 - b13) =1+ v {cosh Oia -1
a/s Zaia (51)
(afEt)J (b22 - b24) =T+ v (cosh aa + 1)
1 - v,
(a/Et).Ia/S(b12 - b14) = -O'ia(l.+ »ﬁlnh aia + Oaa)
where Ja/S = (3 - V)sinh @a + (1 + v)aia

1.4 Stiffness Matrix

The total solution for the elements of the in-plane stiffmness
matrix can be assembled from Eqs. 48 and 50 which include the effects

of the compressive stress O:

1 +
Gtai( Scosh @Gia'cosh Qaia x

1 . '
- .gi P
byisbyy = : I&/S sinh ¢ a-sinh \Qia) (52)

Uta.(—lsinh P, a-sinh %a.a I -
i‘_ s i

1. ) ) Ty
N : Ia/S cosh qnia cosh ia)

Dy9abyy =




1 1
Cf— e & - : .
Utai( S cosh qn&a sinh Qia a/s sinh quia cosh Qaia)

14 I 1

blZ

1 : 1 . '
Utai(ls cosh ¢Gia-51nh Qﬂia + Ia/S sinh ¢Qia-cosh Qaia) -

/s

where I° and 12 are defined in Egqs. 48 and 50.

Eqs. 49 and 51, which do not include the effects of the compres-
sive stress O, can be used to find the following elements of the stiff-

ness matrix of the classic plane stress analysis

Etco,

1 _1 +
bll’b13 T T 5 [(Js(cosh o a +1) £

1

Ja/s

(cosh @.a - 1)]

(53)
Eto,
1
1+ v

[(——(cosh.a.a -1 ¢
35 S 1 Ja/s

b

222224 (cosh @.a +1)]

b

Eta, - ‘
e i1 - v ., 1 1 1 - 1 :!
- - e o — T . - —

12’b14 - 2 Ll + Vv sinh ia(Js J-a/s)' oﬁa(Js * Ja/s)

/s are defined in Egs. 49 and 51.

where 3% and 3%
It can be shown that Eqs. 53 are identical to the corresponding
equations derived by Dean.

This completes the derivation of the houndary force-deformation

relations for the Composite Membrane Analysis.
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For convenience in the derivation of the buckling criteria for the

ribbed membrane, the orientation of the positive direction of T'(y) and

V'(y) will be reversed. This results in the change of zign of the
expressions for b12 and b24 in Eqs, 52 and 53 and in the following

modification of Eq. 32:
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x| = b b b | (v
11 12 13 14
T biy - Py Py Do v
¢ b - | IR (54)
1 - R e t
N T VAL T P u
1 - : 1
LT | L VALY ba9 v
i L B L i

The stiffeners can be considergdras'beams using the assumptions of
engineering Fhsory. The.goverhiné'aifferential equation for.a beam
under in-plane loads is derived in the appendix,

An alternate solution is obtained by considering the ribs as flat
strips with one free edge, that is by setting-Ni' z Ti' = 0 in Eq. 54
and solving for Ni and Ti in terms of Ui and Vi alone. The modified
Eq. 54 is found by subdividing the coefficient matrix and has the

following form:

N, 1 2] | Y5
. (55)
Ty €19 coo | | V4
where
-1
€11 12 “by; Pyo P13 bia (| P11 Pi2| |P13 Pyg
c12 S| | P12 Pa2 bis Pas|| P12 P22 b1y Py

To distinguish between membrane and rib quantities, the terms involving

rib quantities will be barred whenever they are used hereafter,
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2, Derivation of the Buckling Criteria

2.1 Equilibrium Equations

‘This derivation for the MembranejAnalysis follows the very same
steps as did the derivation.for the Flexural Analysis. A less detailed
presentation is thereforé dutlined‘in'thiS“cha?ter.

The three equations of eqﬁilibrium-for a rib line element

(Fig. 12) for the Composite Méﬁbrane'Amélysis are:

N(r,y) - N'(r - 1,y) =0
.T(r,};) - T'tr - l,y)‘ + T(r,y) = 0 (56)

R(r,y) + B%(r,y) 2 0O

Here N(r,y), N'{r,v), T(r,y), and T'(r,y) are the membrane boundary
forces on the typical panel r, between the rib lines r and r + 1. They

are defined below in a manner analogous to Eq. 10:

[2+]

N(r,y) XNM (57)

sin O&y
N'(r)

"t

N'(r,y)

T(r,y) < | T(x)
Z; cos U,y
T'(r,y)| i=21|T*(x) *

N(r,y) and T(r,y) are the direct and shear forces acting along the top
of the.rib r. For simple suppdrt conditions at the ends (see Eq. 39),
these line or membrane forces also can be expanded into infinite series
of the same form as Eq. 57. The equivalent line loads Pe(r,y) are |
expressed in series forﬁ in Eq. 14, Replacement of all quantities.in

Eqs. 56 by their equivalent series and matching like coefficients results




Pe(x,y)
. 7
. / /
Tl(r = 1,)7) 7 // /T I N(rSY)
-— // Loy
T - Ve 7/ / d
N (1' 1,}} / .// , ) T(r,y)
s ;o ,
/ axd /
a4 i
/7 -
7 (r,yv)
V4
o7
’ -
i N(r,y)

(a) Rib Line Element

(b) Rib and Membrane System

Figure 14, Composite Membrane Model
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in the following relations between the series coefficients;

: Ni(r) - Ni'(r 1) =0 (58)

T, (r) - T,'(r - 1) + Ti(r) =0

0

ﬁi(r) + Pi(r)

2.2 Displacements

The membrane force coefficients in these equétions can be
expressed in terms of the coefficients of the in-plane panel boundary
displaéements by use of the membrane stiffness coefficients shown in
Eq. 54. Similarly, the coefficients of the line forces on the ribs can
be expressed in terms of the coefficients of the y and z components of
the rib line displacements. VSince the ribs are considered as flat
strips, Eq, 55 gives .the desired relationships. The in-plane panel

boundary displacements are as follows:

1 u('élzar:Y) = U(r,lY) =  Z Ul(r) sin oy
a |xCaf2,ey | | Uy | iU () ’

1 Jv(-af2,r,y) | _JV(r,y) . Vi) | s ay
2 |v(a/a,ny | |ViEy) | V) o

Consideration of displacement compatibility and continuity at the

rib lines yields the following expressions:

v (v) U "(x - 1)

aVi(r) i

Ui(r)_

aW, (r) Eﬁi(r) SV e - D)
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2.3 Governing Difference Equations for the Rib Line Displacements

Substitution of the compatibility, continuity, and force-
deformation relations into Eqs. 58 results in three difference equations
for the coefficients of the rib line displacements. After eliminating
Wi(r), the following two uncoupléd difference equations for the simply

supported stiffened membrane result:

1313(5']r - 2Y)) -3, O 1 U, (r) 0 ©(59)

2, 57 by (& = 2¥)| | V(D) P (x)
where Sr and Er are defined in Eq. 18.

Y, = by, /b,, -1

i 11/ °13
... ¢
?i = by,/by, -1 - (a/2a) 1% — 1122
24€11
and P.(r) = (c12/c11)Pi(r)

This equation can be used to find the rib line displacements for low
loads. Here it will be used to find the buckling criteria for initial
buckling for the Composite Membrane Model.

Note that the signs of b12 and b,, have been changed from their

24

original definition in Eq. 52 and that the barred quantities c,, to ¢

11 22 .

are derived from Eq. 55 with the flat strip properties and, if applicable,

the rib stress 0 replacing the membrane properties and the stress O.
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3. Siﬁﬁle'Sidé Supports

The series coefficients of Eq. 59 can be expanded into finite
series in r for this case just as in:Chapter II. 1In analogy to Eq. 22,

these coefficients will be expressed as follows,

Vi(r) n-1 { Vik
W (o - W sin KL (60)

k=1 -
Pl(r) Plk

I, .
ktir

Ul(r) = E Ulk cos ——

k=0

Substitution of Eq. 60 into Eq. 59 and solving for the in-plane

displacement coefficients in terms of the loading coefficients yields:

_ —
b13(Yi + Ok) b14 sin " Uik _ 0
= (61)
. kT -
b14 sin —— b24(Yi + ﬂg Vi -lP.
i 271k
in which Ok is defined in Eq. 23,
Solving this equation for Uik and vik yields
1 . kT =
S 2 Pasin Ty By
U., = (62) .
ik l c ‘ _
ik
1 b,.(Y, + @)
2 713 i k! =
V,, = P.
ik C ik
ik
in which
o, | = byaby, (v + 0)(Y, + 0) - b, %q (2 - 6)
ikt T 13724 i k i k 14 "k k
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The coefficients of the out-of-plane displacements can be found
from the third of Egqs. 58, Sibstitution 6f the compatibility and force-

deformation relations into this equation yields

oW

Elzvi(r) + Ellwi(r) = Pi(r)

- from which Wik is obtained as follows

We, = — V., - —¢ (63)

Eqs. 62 and 63 comprise the solution for the coefficients of the rib
line displacements of a ribbed membrane that is simply suppotrted on all
four edges of the boundary with specified rib line loading coefficients,

P r P

ik °f Yik-
4, Buckling with Simple Side Supports
Eq. 61 has non-trivial solutions for zero external loads, Pik = 0,
only for a vanishing determinant of coefficients, that is for C]._k = 0.

The buckling criterion, therefore, is Cik =z 0 dand it is utilized in exactly

t
the same way for the ribbed membrane as was the criterion Ci = 0 for

k
the flexural ribbed plate. Setting the rib dimensions and properties equal
to zero yields one limiting case of an unétiffened membrane. On the other
hand, the limit would be a system of flat strips in compression, not con-
nected by a membrane. This would yield the analogy to the simple column
case, the buckling of flat strips having two free sides.

For the first limiting case, the unstiffened membrane, Egqs. 50 can

be used to find the lowest eigenvalue that satisfies the buckling criterion..

It has been noted that in the symmetric mode for the loads and displacements,
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C has no destabilizing effect. Therefore, it is sufficient only to
investigate the results of the anti-symmetric mode, that is Eqs. 50.

The eigenvalues must satisfy the condition (see Eq. 47),

,
(byy = By (byy = byp) = (byy - b)) =0

Substituting the expanded Eqs. 50 without omitting the terms involving
the compressive stress (see Page ) inte this equation and retaining
only the lowest powers of € and Qi, Wittrick found that

a%a 2 ' 2202
cr l; or oﬁr = - 2
: : 12b

which is the stress given by the Euler formula for buckling in the plane
of the membrane with a half-wave length §f b/i.

In order to get an idea of the range of applicability of the
in—plane buckling criteria for a single panel, the above formula will.
now be compared to the formula given for the out-of-plane buckling
stress. The critical in-plane stress attains its highest values for

i 1; that is, for buckling in one longitudinal half-wave., Setting the

]

aspect ratio bfa equal to A, the above formula becomes, for i = 1,

in - ﬂzE

o - —_
cr 12R2

The critical out-of-plane stresses for the single panel, as stated in

the Introduction, were found to be

out X TTzEt2
G r - kcr 2
c 12¢1-Va
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where kcr is known to have a smallest value of 4 for buckling into
squares. Setting the slenderness ratio a/t equal to B, this equation

becomes, for k = 4,
cr

O_out 4 NZE

T AR

Comparison of Oi: and Ozzt shows tﬁat these two critical stresses
are approximately equal for B = 2A, that is, for very narrow and thick
plates. For all practical cases, however, the plate will buckle out-of-
plane long before the criticél stress for in-plane buckling is reacﬁed.
The boundary conditions encouﬁtered in most cases are such as to favor
out-of-plane buckling over in-plane buckling. Additional constraints
against the previous would be necessary if the latter should govern. For
a numerical comparison set » = 10, B = 50, E = 29000 ksi, v = 0.3, i =1,

k . = 4, then

o
o = 238 ksi
cr
OQUt: 42 ksi
cr

5. Boundary Deflections

The second solution of the Composite Membrane Analysis for a
ribbed membréné is for the ﬁﬁloaded system, Pik = 0, with inhomogeneous
conditions along two sides of the boundary, that is, with imposed boundary
deflections Vi gt-r 20and r = n.,: Vi is represented by its symmetric

and anti-symmetric components, that is by

Vis = 1/2[Vi(0) + Vi(n)] V'als : 1/2[Yi(0) B Vi(n)]

1
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Including corrective terms, the Fourier series expansions for the
symmetric components of the displacement coefficients in Eq. 59 can be

written in the following form

.
Py
~
p -
n

- S . kTr ' o
\i’.1 {1+ . 23 Vik sin = ) (64)

ﬁis(r) ViS z; ﬁik cos k:I-
k=1,3,...

Substitution of Eqs. 64 into the governing diffe:ential'equation 59 and

into the boundary éonditibns‘yields

2b,, @ .
= - 24"k - -
n|C. |
ik
2(2 - o) .
- - k . . -
Vi kT By (byy = B0 = bigby, ¥ (Y + ) ]

n sin — |C
n

| | -

1 for k =1,(1), n -1

ik

where qi is defined in-analogy to Eq. 22 as qk =
‘ 1/2 for k =0, n

For the anti-symmetric components, the solution can be written

in the following férm

S n-1 :
gals zyals [q .2, Z §., sin 2EE] (65)
i i n _ ik n
k=2,4,
n
ﬁ.a/s = V-a/s ﬁik cos kTTTr
1 1 k=0,2,...

where vik and ﬁi are identical to the ones for the symmetric case.

k
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6. Rib Boundary

The total solution for the Composite Membrane Analysis of a ribbed
plate is that for a composite boundary rib or beam. It can be obtained

by superposition of the results given in Eqs. 60, 64, and 65 and is shown

in Eq. 66:
vim o vm o+ TSm \'rials(r) (66)
Uit(r) = Ui(r) + ﬁis(r) T4 ﬁials(r)

; Again, as in the Flexural Analysis, the interlor ribs may or may not be

equal to the boundary ribs and the two boundary ribs are chosen to be

identical, so that the structure is symmetric about r = n/2. The
/s

coefficients Vis and Via are obtained by satisfying the last two of

Eqs. 58.
They can be obtained separately by working with the symmetric

and anti-symmetric loading components, corresponding to k odd and k even

i respectively. These loading components are the same as in Eq. 29.
The last two of Eqs. 58 in terms of the boundary rib displacements

result in the following condition:

1
gy

b t - b t
by, (B + €00U,7(0) + by, (8, - ¥V, () (67)
in which

BVt

14
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-2 - .
-b_ =-b €12 7 1122
Yi - i * -b c

b24a 11
- b _ Pa2 " Py
1 b
Tc. b ,
By° - {?lg} -
11

Ar is defined in Eq. 21

Substitution of Eq. 66 intd_gq; 67 and solving for ViS yields

) ; ) ‘f S _ S
s - By o100 S A
b

\' = -8 0 b | P - )b - S.O) ﬂ
b (0 + by, (e - t; 0 - Ty

- 2 - - Tb
b €12 " ©11%02
LI a . S—

in which

clla

and tis(O) is the coefficient of the membrane boundary shear for the
symmetrically loaded system with simple side supports and EiS(O) is the
coefficient of the membrane boundary shear for the symmetrical unit

boundary deflection coefficient V.°, that is

n n-1
s ' b = = , kT
£, (0) = b E; (e, - g)U., + b V, sin—
i 14 k31,3, i k’ ik 24k= ’3"..1k n
. n n-1
£,50) = b ayd Y G, stn KT P
ti (0) = b14 z: (ei - 0'k)Uik + b24( vik sin - ei )

k=1,3,... | k=1,3, ...
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The anti-symmetric component of the boundary deflection is obtained

in a similar way as the symmetric component and is found to be

as . B 5O
b

E,a/S(D) ;-n

i i

b
where ﬂi is defined as in the symmetric case and

n n-1 _
RO P14, k; 2 ”feib - 9Ty + Py k;,h,“‘?ik sin 7

n n-1
By, k;),z,.f?ib "W ¢ bz“(kézz,a,.‘?%k o -ei_b P

This completes the solution of the deflections of a ribbed plate
with beam boundaries subject to transverse and in-plane compressive

loads and using a Composite Flexural Analysis.

7. Buckling with Rib Boundaries

The criteria for the initial buckling of the ribbed membrane with
beam boundaries follow in an exactly similar way to those for the ribbed
plate. They take the following form:

- - s b _ - afs b _
Cik =0 ti » - T i C 0 ti - T i o .
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IV, CONCLUSIONS

Closed form solutions were obtained for the elastic analysis of
deflections and the initial buckling for rectangular ribbed plates and
membranes, The results are based on two rationally formulated discrete-
continuous models of the fourthlordgri The only assumptions made were
those associated with membrane or fiexural plate theory and ordinary beam
theory. In the Non-Composite Flexural Model, the structure is proportioned
so that the effects of the in-plane plate deformations and T-beam action
can be ignored in determining the stiffness matrix that relates the out-
of-plane edge forces and the in-plane compressive stresses to the edée
deformations. In the Composite Flexural Model, the effects of the out-of-
plane deformations can be ignored, The techniques used permit the realis-
tic treatment of simply supported plates as well as af platgs having sidg
boundary conditions other than simple supports. The results show the way
for improved analysis of composite members, orthotropic panels, and multi-
web beams,

A major advantage of the discrete-continuous approach is that simple
equations for determining of the buckling criteria are obtained which are
independent of the number of ribs, This number, as well as all the other
pertinent data, is inserted directly into these equations that contain all
possible buckling modes., The eigenvalues have to be found for one or two
independent equations only and not for a system of equations, the size of
which depends directly on the number of ribs, as in earlier solutions of

the problem, This facilitates the use and application of these results
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and makes them economic and attractively simple, Numerical examples show
the usefulness of the techniques. They were obtained by using a high
speed digital computer,

The stability equations_can.easily be used to generate curves or
tables that show limiting values for rib-to-plate stiffness ratios that
cause 1oca1 buckling to govern as against system buckling. For given
stiffnesses the limiting values for the rib spacing can be found.

The two fourth order models could be combined into an eighth order
model, which is recommended as one extension of this ﬁhesis. The eighth
order model could then be used to find the applicable range of validity
for the.501utioné to the lower order models by comparison of the results.
Another extension of this thesis would be the analysis of other ribbed
structures such as ribbed cylindrical and other shells. The basic toél,

the discrete-continuous approach, can be used for many types of structures,
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APPENDIX
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APPENDIX

1. Governing Differential Equation

For A Beam Under OQut-of-Plane Loads

The governing differential equation is derived for a beam under
eccentric lateral loads, S(y), and distributed lateral moments, M(y), in

addition to a constant compressive load P (Fig. 15).

Vot
M s < 8(y)

P_;.@'.l_,_l.__._. /-—-—P——@-y

M .a. - . [~
t . __/'f_“_ M+ dM
- t

W (Yf/ u(y)

T
&
X

_P. ¥ _/iw
e
I w(y)

Figure 15, Beam Element with Applied Lateral Loads
and Moments and Axial Force,
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The three equations of equilibirum are

F =0 or 'p s =8y (68)

v : ~y B
M =0 Qr ‘>ly¥ =S ﬁPlywn | | _ {69)
ZMt =0 or .D‘“yM,t= M(y) + .S(y)e (70)

Differentiating Eq. 69 and combination of the result with Eq. 68

yields
| l;LyZM = 5(y) + Plg,yzw : ; (71)

Elementary beam bending theory provides QJYZM = - EIWQYZW which, after

combination with Eq. 71 yields

- 4 2 ' 2 2
] = -B'D w-PQL w= - (B + P W 72
167 Ry Ry (B'R, R, (72)
where B' = EI is the flexural rigidity of the beam about the x axis.
Elementary beam torsion theory provides M(y) + §(y) = -GJ-Q%rze,
where GJ is the torsional stiffness of the beam. Combination of this

equation with {72) and introducing kB' = GJ yields
- - 2 2 P 2 ’
M = B'|- kD "9 + e(D -=D “w : 73
(v) = B'[- kD78 + e(R +EDR W] (73)

Transformation of the w axis (see Fig. 16), and using W as for

the panel deflections, that is

1t

W) = S w(Zy) = ey - e8]

or

w(y) = aWw(y) + e8(y)
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yields, after introducing into Eqs, 72 and 73, and arranging in matrix

notation

B(y)
W(y) - '
w(y) —tk 1 a
|
/ |
u(y)

Figure 16. Transformation of the W-Axis of the Beam.

2. 4 P 2 - 2 4 P 2 ¥
| D " +gT D" -kD ea( "+ D) |04 M(y) o
B = 74
& P 2 4 P 2 5
e@®, +tprRy) | 2@, + T D) | Wy ¢p)

which is the'sought governing differential equation for the beam., Sub-

stitution of the series in Eqs. 9 and 10, repeated here for convenience

(6(r,y)] rei (r)]
W(r,y) S .
1. = i; _1 sin o,y o, = %ﬂ (9,10)
M(r,y) i=1| M, (r)
L§ ¥ 5, ()
into Eq. 74 and matching like coefficients, yields
2 2 P - 2 P, .
e (ai - ET) + k e(ozi - ET) Gi(r) Mi(r)
2
o, B' : , = (75)
i 2 P 2 P | =
e (" - 3T = (g -3 | W (D) 5, (x) A

which is the governing differential equation for the beam expressed in

-terms of the Euler coefficients,
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For §i(r) = 0, Eq. 75 can be solved for ﬁi(r) in terms of ei(r)

and one obtains

i, (r) = afiZIT:B'Bi(f) (76)

2. Governiﬁg‘Differential Equation

For A Beam Under In-Plane Loads

The governing differential equation is derived for a beam under
eccentric longitudinal loads, i(y); and. transverse loads, ﬁ(y), in

addition to a constant compressive axial load P (Fig. 17).

Vv + dV

H + dHd

u(y)

Figure 17, Beam Element with Applied Loads and Axial Force,

The three equilibrium equations are

V=0 or gyv = N(y) , (77)

H=0 DH=T 78
X .or 2 (y) (78)
TM = 0 or RyM = V(y) + ngu - T(y)e (79)

Differentiating Eq. 79 and combining the result with Eq, 77 yields

2

- - 2 - .
D2 =DV +PD % -ed_T(y) = N(y) + PD %u - ep T 80
Dy Dy Dy R,TG) () +PD D I(y) (80)
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Differentiating Eq. 78 and combination with Eq. 80 yields

= 2 2
D 2M =N + PD "u - eD "H 81
~y @) ~y ~y (81)
From elementary beam bending theory, ome obtains R;%ﬁ = - BR@fu where B

is the flexural rigidity of the beam about the w axis. Combination of

this equation with Eq, 81 yields

4 - 2 2 :
- BD 'u = N(y) + PD “u - eD “H . (82
Ryu (¥) Ryu - eR H . (82)

The longitudinal stress at the top of the beam can be expressed

as

where A is the cross sectional area of the beam and E is the modulus of

elasticity. Solving for H and setting M = - ng?u yields
H = AED v + P - eAED u
~y ~y
2 3
DH=AED "v - eAED ~u (83)
p %u=amp *u (84)
~y ~y

Combining Eqs. 82 and 84 and noting that I = Ar2, where ri is the radius
of gyration of the cross section of the beam with respect to the bending

about the w axis, yields _

' 2, 24 P 2 . 3
- EA r  +e)D u-=-D "u+ed v
( Ry ™" A Ry ~y

H

N(y)
Combining Eqs. 78 and 83 yields
3 L2

T = -‘EA eD "'u~D v
& ey YT Ry
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In matrix notation, setting Uy} = (1/a)u(-af2,y) and V(y) =
(1/a)v(-a/2,y) as for the panel deflections, these equations can be

expressed as follows:

2 24 e 2 sl [-. ]
={r + e )D = ==D " s e - U N
( )Ny FA Ny .._.eNy U(y) )
aFA < > =< > (85)
3 : : 21 ‘ -
eD oL =D Vv -T
| Ry L (y)_ ) (y)_

which is the sought governing differential equation of the beam,
Substitution of the series in Eqs:f57, repeated here for

convenience,

@ ’ -
U(I‘,Y) Ui (r) :
< z; < sin oy
i= '

N{(r,y) Ni(r)
_ _ (57)
V(r,y) S| U
= 2; 5 - cos o,y
T(r,y) | 1% | T ()
into Eq. 85 and matching like coefficients yields
2 2 2 P =
-(r” + e )ai .+ A oy Ui(r) Ni(r)
aiz aFA E > =< > (86)
i ea, -lﬂ hVi(r{‘ -_Iﬁr)_

which is the governing differential equation of the beam expressed in
terms of the Euler coefficients.
For fi(r) = 0, Eq. 86 can be solved for ﬁi(r) in terms of Ui(r)

and one obtains

ﬁi(r) = aaiz(P - ozizB)Ui(r) . (87)
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