
Interdomain Ingress Traffic Engineering through
Optimized AS-Path Prepending

Ruomei Gao, Constantinos Dovrolis, Ellen W. Zegura
gaorm, dovrolis, ewz@cc.gatech.edu

Networking and Telecommunications Group, Georgia Tech, Atlanta 30332

Abstract— In Interdomain Ingress Traffic Engineering
(INITE), a “target” Autonomous System (AS) aims to con-
trol the ingress link through which the traffic of one or more
upstream source networks flows to the target network or to
its customers. Currently, there are few methodologies for
systematic INITE. In practice, ISPs often attempt to ma-
nipulate, mostly in a trial-and-error manner, the AS-Path
length attribute of upstream routes through a simple tech-
nique known as prepending (or padding). In this paper,
we focus on prepending and propose a polynomial-time al-
gorithm (referred to as OPV) that determines the optimal
padding for an upstream route at each ingress link of the
target network. Specifically, given a set of “elephant” source
networks for a particular customer of the target network,
and a set of maximum load constraints on the ingress links
of the latter, OPV determines the minimum padding at each
ingress link so that the load constraints are met, when it is
feasible to do so. OPV requires as input an AS-Path length
estimate from each source to each ingress link. We describe
how to estimate this matrix, leveraging the BGP Looking
Glass Servers that are abundant today for monitoring in-
terdomain routing. To deal with unavoidable inaccuracies
in the AS-Path length estimates, and also to compensate
for the generally unknown BGP tie-breaking process in up-
stream networks, we develop a robust variation (RPV) of
the OPV algorithm. We show that RPV manages to identify
a padding vector that meets the given maximum load con-
straints, when it is feasible to do so, even in the presence of
inaccurate AS-Path lengths and unknown BGP tie-breaking
behavior.

I. INTRODUCTION

Traffic Engineering (TE) refers to the design and imple-
mentation of controls that affect the flow of traffic in a net-
work, or internetwork, to meet a performance objective.
Typical objectives include load balancing across different
links/paths, low delays, or meeting given capacity con-
straints. As opposed to packet scheduling and buffer man-
agement schemes, which operate in short time scales (less
than a second), and infrastructure provisioning, which
takes place in large time scales (days or longer), TE is a
medium time scale operation (minutes to hours) and it of-

ten requires supervision from a human operator [1]. In rel-
atively stable conditions, in terms of both routing changes
and load variations, TE can be instrumental in improving
network efficiency and robustness.

TE is broadly divided into two types: intradomain and
interdomain. In intradomain TE, the operator of an Au-
tonomous System (AS) controls the flow of traffic within
that network by optimizing the link costs of the corre-
sponding routing protocol (mostly OSPF or IS-IS), or
through dynamic provisioning of virtual circuits (e.g.,
MPLS). For previous work in intradomain TE we refer the
reader to [2], [3], [4], [5], [6] and to references therein. In-
tradomain TE assumes that the ingress and egress links of
interdomain traffic flows are given as inputs, in the form
of a traffic matrix, and they cannot be manipulated.

Interdomain TE, on the other hand, aims to control ex-
actly those ingress and egress flows. Let us consider a
“target” AS, referred to as

�
.
�

has a number of ingress
links, receiving traffic from upstream ASes. If

�
is not

a stub network, traffic that is destined to one of that net-
work’s customers eventually leaves

�
through an egress

link. Controlling the egress link that the traffic will flow
through is referred to as Interdomain Egress TE. On the
other hand, controlling the ingress link through which the
traffic of a source network will enter

�
is referred to as

Interdomain Ingress TE (INITE).
Comparing the maturity, in terms of both operations

and research, between INITE and the other types of TE,
the former is much less deployed, understood, and trusted
[7], [8]. The high-level reason is that INITE requires that
the target network

�
has a way to affect BGP routing de-

cisions in upstream ASes, without necessarily the active
cooperation of those networks. In more detail, to perform
INITE the operator of

�
would face the following major

unknowns about the upstream cloud, i.e., the part of the
Internet between a source network and the ingress links
of
�

:� the BGP policies, especially those expressed
through the Local Preference BGP attribute and the

2

ingress/egress routing filters deployed in the up-
stream cloud (note that the Local Preference attribute
has the highest priority in the BGP route selection
process),� the actual AS-level topology of the upstream cloud,
and in particular the AS-Path lengths from any up-
stream network to the ingress links,� the BGP tie-breaking behavior of the upstream
cloud, referring to the way a BGP speaker selects
the best route among a set of candidate routes that
have the same Local Preference and AS-Path length
attributes in particular [9], [10], [11].

To the previous unknowns, one has to include the more
common challenges of any TE problem, including varia-
tions in the traffic loads, unexpected infrastructure events
(e.g., router crashes), etc.

Given the previous difficulties, it is not surprising that
some ISPs avoid INITE. One form of INITE that is, how-
ever, used by some ISPs is that of AS-Path prepending, or
simply “prepending” (also known as AS-Path padding).
The idea is very simple: the target network

�
can make a

route less attractive to its upstream ASes if it increases the
AS-Path length of that route by adding several instances
of its own AS-Number to that attribute. For instance, the
AS-Path attribute � 10 � , where 10 is the AS-Number of

�
,

can be modified to � 10,10,10 � before the corresponding
route is advertised upstream. Effectively, this increases
the route length from 1 to 3 hops, and so it becomes less
likely that the route will be selected from an upstream net-
work [9]. A recent measurement study showed that 32%
of the routes in the AT&T network have some form of
prepending, with about 90% of the corresponding paths
extended by 1-5 hops [8]. Prepending is often performed
in an ad-hoc manner, especially when an ISP simply wants
to make a route unusable unless if there is a failure in
other routes. In some cases, operators increase the degree
of padding by a trial-and-error basis, until the AS-Path is
long enough to reduce the load of that ingress link by a
certain amount.

Our objective is to investigate the prepending technique
more thoroughly, and understand both its potential and
limitations. As a first step, in this paper, we show how
to perform INITE in a systematic and algorithmic way us-
ing AS-Path prepending. We consider upstream clouds
in which the route selection is not affected by the Local
Preference attribute, meaning that the BGP routes are de-
termined by the AS-Path length. The problem that we
consider, in its basic form, is the following. Suppose that
a target network

�
has � ingress links. A major customer

network � of
�

receives most of its traffic from a set of �
“elephant” sources, and an estimate of each source load

�	� is given (
 = ��������).
�

aims to impose a maximum
load (maxload) constraint ��� at each ingress link � for the
traffic that flows from the � sources to � . To do so,

�
increases the AS-Path length of the route to � at ingress
link � by “padding” its own AS-Number � ��� 0 times.
The main questions then are: what is the value of � � for
each link � that will meet the given maxload constraints,
and when is it infeasible to meet these constraints through
prepending? In particular, we are interested in the optimal
prepending, i.e., the padding vector � that minimizes the
sum ��� � . We refer to the previous as the Constrained
Optimal Prepending (COP) problem. COP, despite its
simple statement, captures an important objective of ISPs,
that of balancing the ingress load to a customer across a
set of ingress links, and it attempts to leverage a currently
used ad-hoc technique (prepending) in a more systematic
methodology. Note that a trivial variation of COP is to
consider all ingress traffic to

�
, instead of the traffic to a

customer � ; this would be the case, for instance, if
�

is a
stub network.

The first contribution of this paper is to develop a
polynomial-time algorithm, referred to as OPV (for Op-
timal Padding Vector), which solves the COP problem.
The algorithm is very simple: at each iteration, an over-
loaded ingress link is chosen and its padding is incre-
mented. Then, given the new padding vector algorithm,
the mapping from sources to links is recomputed, and the
algorithm moves to the next iteration.

A key input to the OPV algorithm is the AS-Path length
matrix � . Each element � ��� � of this matrix is an estimate
of the shortest AS-Path length from a certain source net-
work � � to each ingress link ��� . The second contribution
of the paper is to describe four estimation techniques for� , leveraging the abundant routing Looking Glass Servers
that are present in the Internet today, and to evaluate their
accuracy. Overall, we show empirically that in 60-65% of
the cases the estimation error is zero, in 85-90% it is less
than 1 hop, and in about 95% it is less than 2 hops.
Also, larger errors tend to happen mostly in longer paths.

The previous AS-Path length estimation errors are not
insignificant, given that most AS-Paths that we estimate
are 3-6 hops. To deal with errors in � , our third contri-
bution is to develop a Robust Padding Vector (RPV) algo-
rithm. RPV is a heuristic built on top of OPV. The ob-
jective in RPV is to determine a padding vector that will
probably satisfy the given maxload constraints, even if the
input matrix � has inaccurate elements and even if we do
not know the BGP tie-breaking behavior in the upstream
cloud. Simulation results show that, with the empirical
error distribution in � that we observe, and with com-
pletely unknown tie-breaking behavior, RPV can still find

3

a padding vector that satisfies the maxload constraints in
more than 90% of the cases, as long as such a padding
vector exists.

The paper is structured as follows. In ! II, we describe
COP more formally, and state the key underlying assump-
tions. In ! III, we propose and study the OPV algorithm,
proving that it finds the optimal padding vector in polyno-
mial time. In ! IV, we describe how to estimate the AS-
Path length matrix and evaluate the accuracy of the pro-
posed techniques. In ! V, we present the RPV algorithm
and evaluate its robustness through simulations. The re-
lated work in the context of interdomain TE is discussed
in ! VI. We conclude in ! VII.

II. PROBLEM STATEMENT AND FORMULATION

In this section, we first describe the COP problem more
formally, state the formulation’s key assumptions, and
make some remarks regarding related operational issues.

A. COP Problem Statement

Consider a target network
�

that aims to do INITE
through prepending (see Figure 1). INITE is performed
separately for each major customer � of

�
, (but � and�

can be the same if the latter is a stub network, or if
�

performs INITE to all ingress traffic). In the following,� is an implied destination network, so it is not included
in the notation. Suppose that

�
has � ingress links that

can receive traffic for � . Each ingress link ��� originates a
route for � , and advertises that route to its upstream BGP
peer.

The traffic that is destined to � may be produced by
a potentially large number of upstream source networks.
Instead of considering individual source networks, which
may be impractical, we focus on super-source ASes. A
super-source AS � receives traffic destined to � from po-
tentially several source networks. In the following, we
refer to super-source ASes simply as “source networks”,
with the understanding that they may not be where the
traffic actually originates from. Suppose that � is the
number of source networks for the traffic to � , and let�"� be the average traffic load forwarded by source � � .#

= � �"�%$
&'������(�)� is the source load vector. The identi-
fication of source networks and the estimation of the load
vector

#
are discussed in ! IV.

The effectiveness of any AS-Path prepending tech-
nique, including ours, is limited by the use of local rout-
ing policies expressed through the Local Preference at-
tribute. The reason is that the Local Preference attribute
has a higher priority in the BGP path selection process
than the AS-Path length (see Table II). Consider a source

...

...

T

L L LL N2 N−1
1

S2
S1

D

SM

Fig. 1. High-level architecture of ingress interdomain traffic engi-
neering.

network
 , and suppose that
 maintains a distinct route
to each ingress link � � of

�
. This can be achieved if

�
advertises a unique wayfinding prefix at each link �*� (we
return to this point in ! IV). The selected routes from
source
 to the � ingress links of

�
form an AS path tree

denoted by + � , as illustrated in Figure 2. In the following,
we assume that the branching nodes of this tree do not se-
lect their best routes to the N ingress links based on Local
Preference. In other words, the candidate routes for

�
at

each branching node of + � are assigned the same Local
Preference value. The design of automated ways for ex-
amining the previous assumption is an important task for
future work.

iS

B
B

B

T

Fig. 2. Branching networks, labeled B in the diagram, in the upstream
cloud ,-

One of the key parameter is the BGP tie-breaking be-
havior in the upstream cloud. As shown in Table II, when
two routes have the same Local Preference and AS-Path
length, an ordered-list of five other criteria is used to
choose the best route. We do not attempt to estimate or
infer all the parameters that affect those tie-breaking cri-

4�
target network � destination network� source network � number of sources� ingress link � number of ingress links.
instance of COP problem + upstream cloud#
source load vector � link maxload vector� AS-Path length matrix / tie-breaking matrix� padding vector �102�43 padded length matrix5 02�43 link assignment vector 6702�43 link load vector

TABLE I
MAIN NOTATIONS.

teria; such a task would be extremely difficult and error-
prone. We assume however that the tie-breaking behav-
ior is determined by a matrix / . Specifically, suppose
that the two routes to � that originated from links � � and�98 are received with the same AS-Path length by an AS:

in the upstream cloud + � . Then,
:

will choose � � if/ �;� �7< / ��� 8 , and �98 otherwise. Different columns of the
same row of / must be different, while their absolute val-
ues do not matter. Notice that / is just a model of the
BGP tie-breaking behavior; it is not related to a real BGP
attribute. Furthermore, / represents a globally consistent
tie-breaking behavior, i.e., we assume that a tie between
two routes to � with the same AS-Path length is broken in
the same way in any AS in + � . In the next section, when
we study the OPV algorithm, we assume that / is known.
Then, in ! V, we relax that assumption and attempt to find
a robust padding vector even when / is completely un-
known.

1. Higher local preference
2. Shorter AS path
3. Lower origin type
4. Lower MED value
5. E-BGP routes preferred over I-BGP routes
6. Lower IGP metric to next-hop
7. Lower BGP router ID

TABLE II
CRITERIA FOR BGP BEST ROUTE SELECTION.

Another key parameter is the AS-Path length matrix� . The element � ��� � is the length of the shortest AS-
Path from the source network � � to the ingress link � � ,
where � �;� � is a positive integer. Any ties in the length of
the shortest AS-Path are broken based on the / matrix.
Note that � ��� � is the “unpadded” AS-Path length, i.e., it
should be measured before the target network applies any
prepending. Estimation techniques for the matrix � are
given in ! IV. For now we assume that � is completely
and accurately known.

The ingress link � � can increase the length of the AS-
Path attribute by � � , where � � is a non-negative integer,
through prepending. The vector � = �"� � $ �=& ������>�?�
is the padding vector. Given a padding vector � , the
“padded” AS-Path length of the route to link ��� is� ��� � 02�43@&A� ��� �*B � � .

Based on the previous model, we can now prove the
following fact.

Lemma II.1: Given a padded AS-Path length matrix�102�C3 and a tie-breaking matrix / , the traffic of a source
network � � will enter the target network

�
through the

ingress link � � , where

�D&FEHGJILK7MONPRQTSOQVU � ��� S 02�C3 (1)

If there is a tie in (1) between links � � and �98 , then / ��� �4</ ��� 8 .
Proof: In the simplest case, � � receives directly

from
�

the route to link �@� . Since that route has the min-
imum AS-Path length (or, in case of a tie, it is preferred),� � will select that route for reaching

�
and the Lemma is

proven.
Suppose now that � � does not directly receive the route

to � � . Let
:

be an AS in + � , residing in the shortest path
from � � to � � . Then, � ��� � 02�43 = W ��� X B W XY� � 02�C3 , where W ��� X
is the length of the shortest AS-Path from � � to

:
, andW XY� � 02�C3 is the length of the shortest AS-Path from
:

to� � . � � can only receive the � � route if
:

selects that route
to reach

�
. To prove the Lemma, we need to show that

:
cannot select another route to reach

�
.

Suppose that
:

also receives a route to
�

through link�*8 , and selects that route. This means that W XY� 8Z02�43 <W XY� �[02�C3 , where W XY� 8Z02�43 is the length of the shortest AS-
Path from

:
to �\8 . Thus, W �;� X B W XY� 8]02�C3 < W �;� X BW XY� �[02�C3�&A� ��� �Z02�C3 .

Case-1: � � receives the route to �^8 also through
:

. Then� ��� 8Z02�431&_W ��� X B W XY� 8]02�C3 , and so � ��� 8`02�C3 < � �;� � 02�C3 .
This contradicts the definition of � � in (1).
Case-2: � � receives the route to �\8 through another path.

5

Then � �;� 8`02�43\abW ��� X B W XY� 8Z02�43 , where the equality is bro-
ken in favor of that other path. Then, � ��� 8]02�43caA� ��� �d02�43 ,
which again contradicts (1).

Based on the previous Lemma, we can now define
the link assignment vector

5 02�C3 = �"e � 02�43 $
f&g��������h� ,
where e � 02�43 is the link � � that source � � selects based on
(1). From the link assignment vector

5 02�C3 , the expected
load at an ingress link � isi � 02�43�& j8(k PRlmlml npo Srq	sutwv k � � 8 (2)

The vector 6702�43 = � i � 02�C3 $ �b&x������y�?� is the link load
vector.

The type of INITE that we consider is based on a set
of maximum load constraints for each ingress link and
each customer � . Specifically, let z � be the maximum
traffic load (maxload) allowed at link � , with � = �"z � $ �p&��������{� being the corresponding link maxload vector. A
link � is overloaded if i �|02�434}~zR� . When none of the �
ingress links is overloaded, we say that � is acceptable.

The COP problem can be now stated as follows. Given
an instance

.
= 0 # $ � $ � $ /�3 , determined by the source

load vector
#

, the link maxload vector � , the AS-Path
length matrix � , and the tie-breaking matrix / , is there
an acceptable padding vector � ? When this is the case,
determine the optimal padding vector ��� , such thatUj� k P � �� a

Uj� k P �H� (3)

across all acceptable padding vectors � . When there is an
acceptable padding vector for a given instance

.
, we say

that
.

is feasible; otherwise
.

is infeasible. The reasoning
behind the previous optimality objective is to avoid unnec-
essary padding, given that excessive padding in practice
sometimes triggers upstream route filtering.

Example 1 illustrates the COP problem.

Instance � :� k��� P�� �� , � k�� � � �Y� , � k��� P�������� �� , � kA�� Px���PPx� ��
Without prepending: � = � �|���	�� sutwv kA�� P� P �� , � sutwv k�� � � � � .
Link ��� is overloaded.

After prepending: � = � �d���	�� s t¡v k �� ������� � �� ,
� sutwv k �� �� P �� � kp� � � � � .

Acceptable padding vector.
Example 1

B. Remarks

Together with the previously mentioned assumptions,
we also make the following assumptions regarding opera-
tional issues that may be relevant in practice:� The destination network � is a customer of

�
only,

so there is no way that prepending in
�

can shift the
traffic away from

�
to a different provider. For mul-

tihomed destinations, our techniques would still ap-
ply as long as

�
is the primary provider, and any

secondary providers of � are used only as a backup.
Moreover, with a small modification, our algorithm
can also solve the case that � is multihomed, which
will be explained later in this paper.� The time scales in which

�
adjusts its padding vec-

tors are relatively short compared to the time scales
in which the routes from the source networks to �
change. Previous work has shown that BGP routes
of major traffic sources tend to be stable for days or
weeks [12].� Some ISPs have an agreement with their peers that
they will announce the same AS-Path to a certain
destination through all their peering links. If that is
the case,

�
can group together all ingress links to

each peer, and then apply the proposed algorithms at
the level of link groups.

III. OPTIMAL PADDING VECTOR ALGORITHM

In this section, we first present the OPV algorithm, and
then prove that it can determine the optimal padding vec-
tor � � , when the given instance

.
is feasible, in polyno-

mial time.

A. Optimal Padding Vector (OPV) algorithm

Algorithm 1 OPV (
.
= 0 # $ � $ � $ /�3)

1: Compute ¢ from (4) and (5)
2: �^£r¤Y¥§¦b� �d�y¨>¨>¨>����� ;
3: for ©ª¦«� to ¢ -1 do
4: Compute ¬�;� £¯®¥±° from (1)
5: Compute ²C³�´£¯®¥ ° from (2)
6: if �^£¯®¥ : acceptable (i.e., µd¶"��·J¸¹;�^£¯®¥ °º¼» ¸) then
7: return �´£¯®¥
8: end if
9: �´£¯®½ � ¥w¦?�^£¯®¥

10: Identify an overloaded link ¶ , i.e., · ¸ ³��® °¿¾À» ¸
11: Á £¯®½ � ¥¸ ¦«Á £¯®¥¸ Â«Ã
12: end for
13: return � : Infeasible

The OPV algorithm takes as input an instance.
= 0 # $ � $ � $ /�3 of the COP problem. OPV examines the

6

feasibility of a single padding vector � s¯Ä\v in every it-
eration Å , starting from the zero padding vector. With
each padding vector that is not acceptable, the algorithm
identifies an overloaded link, and then increments the cor-
responding padding element. The exact selection of the
overloaded link does not matter. The algorithm exits ei-
ther when it has found an acceptable padding vector, or
when it has completed Æ iterations.

The bound Æ is computed as follows:Ç � & K7EÉÈPRQVÊRQVn K7EÉÈPRQ � QVU 02� Ê � �wË � Ê � � 3 (4)

and Æb&A� B jPRQ � QVU Ç � Ë K7MONPRQ � QVU Ç � (5)

Note that Æ can be computed in polynomial time, as
shown in Lemma III.3.

As mentioned earlier in the paper, a minor change can
make the algorithm applicable on multihomed network �
of
�

. When � is multihomed to other ISPs with the short-
est path ÌÍV� to source

� , we change the bound
Ç

to be the
minimum of Equation 4 and ÌÍ¡� . Thus,

�
will not “over-

prepend” the path so that it pushes the traffic to other
providers of � .

We prove later in this section two important properties
of OPV. First, when

.
is feasible, OPV reports the opti-

mal padding vector � � , defined in (3). Second, when
.

is infeasible, OPV exits after Æ iterations reporting that
indeed, there is no acceptable padding vector. Example
2 shows the iterations of OPV in the case of a feasible
instance.

B. Properties of the OPV algorithm

The following lemma proves that, with a feasible in-
stance, the optimal padding vector ��� has at least one zero
element.

Lemma III.1: Suppose that the instance
.

is feasible,
with optimal padding vector �Î� . There exists a link � with�`�� &AÏ .

Proof: Suppose � �� }ÐÏ for all links
 . Let � �8 &K7M³N PRQ � QVU 02�]�� 3 . Construct a padding vector �CÑ such that� Ñ� &Ò� �� Ë � �8 . From (2), 6702� Ñ 3Ó&�6702� � 3 . Since � �
is acceptable, � Ñ is also acceptable. But � � Ñ� < � � �� ,
which contradicts that � � is the optimal padding vector.
So, there must exist a link with � �� &AÏ .

A key property of OPV, proven next, is that, in a feasi-
ble instance, if an element Ô of the padding vector reaches
in some iteration Å the value that the corresponding op-
timal padding vector element has, i.e., if � s¯Ä\v8 &~� �8 , then
the link Ô will not be overloaded in any subsequent itera-
tion, and so its padding element will remain at � �8 .

Instance � :� kÖÕ ��7× , � kp� � ��Ø�� � � , � kÙÕ P����P����Ú× , � kÙÕ ���ÛPP��Ü�7×
Bound ¢ :
N+ ÝhÞ ¸�ßpàCáuâ Þ ¸ ¦?ã Â ÃäÂ � Â � ° ß �å¦«æ
Iteration 0:tèçêé±ë k1� ì � ì � ì � , then � sutíçêé±ë2v k Õ PP × , � sutíçmé±ëîv kp� ï � ì � ì � .
Link 1 is overloaded; increment Á|� .
Iteration 1:tèç ð;ë k1� P � ì � ì � , then � sutíç ð;ë2v k Õ � P × , � sutíçuð;ëîv kp� � � ì � �Y� .
Link 1 is overloaded; increment Á � .
Iteration 2:tèçrñîë k1� � � ì � ì � , then � sutíçrñîë2v k Õ �� × , � sutíçêñîëîv kp� ì � ì � ï � .
Link 3 is overloaded; increment Á[ò .
Iteration 3:tèçêó±ë k1� � � ì � P � , then � sutíçêó±ë2v k Õ �� × , � sutíçmó±ëîv kp� ì � ï � ì � .
No overloaded links.
Reported vector: �?¦b� �[�%�d� Ã � .

Example 2

Lemma III.2: Suppose that the instance
.

is feasible,
with optimal padding vector �Î� . If the OPV padding vec-
tor in iteration Å is such that � s¯Ä\v� ô �`�� for all links �
and there exists a link Ô such that � suÄ9v8 &=� �8 , then in all
subsequent iterations õ (õ{}bÅ), � suöHv8 &A� s¯Ä\v8 &A� �8 .

Proof: We prove the lemma by contradiction. Sup-
pose that the padding of link Ô is the first to exceed the cor-
responding value � �8 of � � after the õ -th iteration. In other
words, in iteration õ we have that � suöHv8 &A�`�8 and � s¯ö[v� ô �`��
for all � , while in the next iteration � suöH÷äP�v8 }b� �8 .

According to OPV, the padding of link Ô can only be
increased if that link is overloaded. So, in iteration õ
there was at least one source � such that e Ê 02� s¯ö[v 3�&øÔ ,
but e Ê 02� � 3*&úùÙû&úÔ . The fact that source � preferred linkÔ over link ù in iteration õ means that� Ê � 8]02� suöHv 3�&A� Ê � 8 B � s¯ö[v8 ab� Ê � ü B � s¯ö[vü
where the case of equality is broken in favor of link Ô
through the / matrix, and so

� Ê � 8 Ë � Ê � ü ab� suöHvü Ë � s¯ö[v8 (6)

In the optimal vector � � ,� Ê � 8]02� � 3�&A� Ê � 8 B � �8 }b� Ê � ü B � �ü
and so � Ê � 8 Ë � Ê � ü }b� �ü Ë � �8 (7)

7

From (6) and (7) we get that � �ü Ë � �8 < � s¯ö[vü Ë � s¯ö[v8 . But� �8 &F� suöHv8 , and so � �ü < � suöHvü , which contradicts our earlier
assumption.

The following lemma shows that, for a feasible in-
stance, each optimal padding element is upper bounded
by a certain function of the AS-Path length matrix that
can be computed in polynomial time.

Lemma III.3: Suppose that the instance
.

is feasible,
with optimal padding vector � � . Then, for any link � the
corresponding optimal padding is bounded by

� �� ô Ç �9B � (8)

where
Ç � is given by (4).

Proof: We prove the lemma by contradiction. Sup-
pose that there exists a link
 with � �� } Ç � B � . Let us
construct a new padding vector �CÑ such that �ZÑ� &=�]�� for
all links �¼û&F
 , and � Ñ� & Ç � B � . We prove next that � Ñ is
also acceptable.

First, suppose that i¹� 02�cÑ³3p} i"� 02�C�	3 . This means that
there exists a source � with e Ê 02� Ñ 3ý&Ð
 and e Ê 02� � 3þû&ÿ
 .
So, for all links �þû&�

� Ê � � B � Ñ� &F� Ê � � B Ç � B � ô � Ê � ��B � ��
where all ties (equalities) are broken in favor of link
 , and
so Ç � B � Ë � �� ô � Ê � � Ë � Ê � � ô Ç �
which means that � �� � � for all links �)û&
 . We also
assumed that � �� } Ç � B �Î} � , and so � �� � � for all links� (including
). This contradicts Lemma III.1.

From the previous contradiction, we have that iH� 02�cÑO3�&i	� 02� � 3 < z � , i.e., link
 is not overloaded with � Ñ . Any
other link �Öû&'
 cannot be overloaded with � Ñ either, be-
cause those links are not overloaded with ��� , �ZÑ� &Ò�`��
for all � û&=
 , and � Ñ� < � �� . So, the padding vector � Ñ is
acceptable, which contradicts (3) because � �|Ñ� <ú� �]�� .
Consequently, � �� ô Ç �*B � for all links � .

The following theorem gives the main result for the
OPV algorithm, for the case of feasible instances.

Theorem III.4: Suppose that the instance
.

is feasible,
with optimal padding vector �Î� . The OPV algorithm re-
turns the vector � � as its final outcome in polynomial
time.

Proof: Note that the OPV algorithm starts from the
zero vector and it increments only one padding element
in every iteration. Furthermore, Lemma III.2 shows that
if an element of the OPV padding vector has reached its
corresponding value in � � , then it will not increase any
further in subsequent iterations. Consequently, it is cer-
tain that after � B ��� �� iterations the OPV algorithm will

terminate, reporting the optimal padding vector � � as its
final outcome.

From Lemma III.3, we get that the number of required
iterations is � B � U� k P � �� aú02� B �"3 B � U� k P Ç � . We also
know from Lemma III.1, however, that at least one ele-
ment of � � is zero. In the worst-case (maximum number
of iterations), that element can be the link with the min-
imum

Ç � term. Thus, the required number of iterations
becomes

� B Uj� k P � �� aú02� B �"3 B
Uj� k P Ç � Ë 0 K1MONPRQ � QVU Ç �]B �"3@&úÆ (9)

The following theorem gives the main result for the
OPV algorithm in the case of infeasible instances.

Theorem III.5: If instance
.

is infeasible, then the OPV
algorithm detects that there is no acceptable padding vec-
tor in polynomial time.

Proof: Note that the OPV algorithm fails to find
an acceptable padding vector after Æ iterations, it exits
reporting that the instance is infeasible.

If
.

was feasible, then, from Theorem III.4, OPV would
have reported �4� in at most Æ iterations. Since an accept-
able padding vector has not been found after Æ iterations,
then it does not exist.

Example 2 demonstrates that the bound Æ of (9) is actually
tight. The value of Æ in that example is 4.

IV. ESTIMATION OF INPUT PARAMETERS

In this section, we discuss the two key unknown inputs
of the OPV algorithm, namely the set of super-source net-
works and the corresponding source load vector

#
, and

the length estimation matrix � . As mentioned in ! II,
we do not attempt to estimate the tie-breaking matrix / ;
the algorithm of the following section determines a robust
padding vector independent of / . Also, the maxload vec-
tor � is supposed to be known given that it is chosen by
the target network operator.

A. Selection of super-sources

We assume that the ingress routers of
�

collect statis-
tics (with Cisco’s NetFlow for instance) of the arriving
traffic, aggregated by source network; this is a common
requirement for any type of traffic engineering. Because
there may be too many source networks for a given cus-
tomer � , or because those networks may not be in up-
stream clouds,

�
can map one or more large sources of

traffic to a single super-source � . The requirement is that

8

� has to be in the AS-Path from the actual source net-
works to any ingress link of

�
.

To examine the former requirement,
�

can use AS-level
topology maps, constructed with multiple vantage points
as described in [13]. For example, the NetFlow data may
show that several major sources of traffic for � belong to
three stub ASes that are all customers of a regional or tier-
2 provider AS-X, and that those three stub networks are
not multi-homed (i.e., they can only reach

�
through AS-

X). In that case, AS-X can be considered as a super-source� � . The corresponding source load element �[� would be
estimated as the sum of the load estimates of the actual
sources, measured with NetFlow. The previous proce-
dure can be applied to detect � super-sources, capturing
a large fraction of the traffic to � .

B. Estimation of AS-Path length matrix

Recall that � ��� � is the AS-Path length from source � �
to the ingress link � � . To estimate � ��� � , � has to orig-
inate a route for a wayfinding prefix at each ingress link� � . A wayfinding prefix can be just the IP address of � � ;
if that is an unacceptably long prefix, the wayfinding pre-
fix can cover instead a small part of the target network’s
address space that includes � � but no other ingress links.
The same set of wayfinding prefixes can be used for esti-
mating the matrix � for all customers of

�
.

To estimate � ��� � , the operator of
�

can use one of the
four following techniques, in the given order. The first
three techniques rely on Looking Glass Servers. LGS’s
are abundant in the Internet today, providing a “peek” in-
side a network’s BGP routing tables. They are mostly
used by ISPs for problem diagnosis and monitoring of in-
terdomain routing. The publicly available LGS’s that are
listed in www.traceroute.org include 273 servers that in
some cases provide access to multiple routers within an
AS [14]. It is likely however that major ISPs have private
access to even more LGS’s in remote networks, to accom-
modate synergistic problem diagnosis.

Source network

Autonomous System (AS)

Measured AS path

AS path to be estimated

AS with looking glass servers

AS11

AS13

AS12

Target Network

AS6
AS10

AS9
AS2

AS8

AS7

AS3

AS5

AS4

AS1

Fig. 3. Four estimation techniques for the AS-Path length.

1) LGS in � : The source network � may include an
LGS. This is the ideal case, and it leads to the most ac-
curate estimation. In the example of Figure 3, AS1 is a
source network that deploys an LGS.

�
can just query

that LGS for the AS-Path to each wayfinding prefix.
2) LGS in a customer of � : Here, a customer of � de-

ploys an LGS. In that case,
�

can query that LGS for each
wayfinding prefix, and then remove from the returned AS-
Paths the part that includes that customer AS. In Figure 3,
AS4 is a customer of the source network AS5. AS4 de-
ploys an LGS.

3) LGS in the path from
�

to � : Another possibility is
that

�
can locate an LGS in a network in the reverse path,

from
�

to � . In Figure 3, AS7 is a source network and
AS8 is a network deploying an LGS in the reverse path.
In that case,

�
can estimate the AS-Path length � ��� � as the

sum of the AS-Path lengths from the LGS to � � and from
the LGS to � . This technique assumes that the AS-Paths
from the LGS to � and from � to the LGS have the same
length.

4) Reverse path estimation: When none of the pre-
vious techniques is applicable,

�
can just estimate the

length of the AS-Path from � to � � based on the length
of the reverse path from �@� to � . That reverse path is of
course directly available from the border router at � � . The
problem with this technique is that it relies on the symme-
try of the forward and reverse AS-Paths, which is often not
the case in the Internet. On the positive side, the technique
still produces a correct estimate if the two paths have the
same length, even if those paths are different. This case is
represented in the path between

�
and AS11 in Figure 3.

AS-Path length distribution and estimation er-
rors: The first two of the four previous techniques would
give no estimation errors, because the corresponding
LGS’s report directly the AS-Path from the source to the
ingress links of the target network.

The third and fourth techniques, on the other hand, de-
pend on the symmetry assumption, and they will probably
suffer from estimation errors. To quantify these errors,
we used 79 of the publicly available LGS’s listed at [14].
We estimated the AS-Path length from every LGS to each
of the 78 other LGS’s using the previous two techniques:
“LGS in the reverse path” (when applicable), and “reverse
path estimation” (always applicable). Then, we compared
each AS-Path length estimate with the length of the actual
AS-Path, as that was reported in the remote LGS.

Figure 4 shows the empirical probability density func-
tion for the estimated AS-Path lengths. Note that about
90-95% of the paths are up to 6 AS hops, including any
prepending, while 60% of the paths are either 4 or 5 hops.

The unconditional estimation error for the previous two
estimation techniques is as follows: 60-65% of the esti-

9

� =-6 � =-5 � =-4 � =-3 � =-2 � =-1 � =0 � =1 � =2 � =3 � =4 � =5 � =6�� =3 0.2 0.8 2.5 2.3 4.4 10.6 78.0 1.3 0.0 0.0 0.0 0.0 0.0�� =4 0.0 1.0 3.8 2.0 3.2 12.4 70.0 7.4 0.3 0.0 0.0 0.0 0.0�� =5 0.0 1.0 3.1 0.4 3.0 12.4 64.1 11.8 3.8 0.1 0.3 0.0 0.0�� =6 0.0 0.2 1.9 3.1 2.7 9.0 57.8 19.1 5.5 0.6 0.0 0.0 0.0�� =7 0.0 0.0 0.5 1.0 2.0 12.1 45.5 21.2 11.1 6.6 0.0 0.0 0.0�� =8 0.0 0.0 0.0 0.0 1.5 1.5 4.5 34.8 22.7 13.6 16.7 4.5 0.0�� =9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 7.5 25.0 37.5 25.0 2.5�� =10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 6.7 40.0 40.0 0.0�� =11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 50.0 25.0�� =12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

TABLE III
PROBABILITY (%) OF AS-PATH LENGTH ESTIMATION ERROR � , CONDITIONED ON THE ESTIMATED AS-PATH LENGTH �� (BOTH � AND ��

MEASURED IN AS HOPS).

 0

 5

 10

 15

 20

 25

 30

 35

 3 4 5 6 7 8 9 10 11 12

P
D

F
(%

)

Estimated AS-Path Length (hops)

Fig. 4. Empirical probability distribution function of estimated AS-
Path length.

mates have zero error, 85-90% have an error of less than 1 hop, and 95% have an error of less than 2 hops.
More importantly, Table III shows the conditional prob-
ability of an estimation error � , given the estimated AS-
Path length 	Í . The estimation error � is measured as 	ÍcË4Í ,
where Í is the actual AS-Path length. The conditional
probability that an estimate is error-free if 	Í is 3 or 4 hops
is 78% and 70%, respectively, which is higher than the
corresponding unconditional accuracy. Similarly, the con-
ditional probability that an estimate has an error of less
than 1 hop if 	Í is 5 or 6 hops is 88% and 86%, respec-
tively. We use this empirical error distribution, as well as
the AS-Path length distribution of Figure 4, in the robust-
ness study of the next section.

V. ROBUST PADDING VECTOR ALGORITHM

The previous section showed that the estimate of the
AS-Path length matrix � may include errors, and it gave
us an empirical distribution for the estimation error prob-
ability. In this section, we first describe an algorithm that
aims to determine a robust padding vector in the presence

of these errors, and then evaluate the effectiveness of that
algorithm with simulations.

A. Robust Padding Vector Algorithm

Recall that an instance
.

of the COP problem is defined
by the set (

#
, � , � , /). The OPT algorithm of ! III was

developed to find an optimal padding vector � � for
.
. In

practice, we do not have a way to estimate / , and � may
include estimation errors. To deal with these two issues,
we develop the RPV (Robust Padding Vector) algorithm.

The basic idea in RPV is the following. Suppose that
our original estimate of � is � ì . � ì , together with an arbi-
trary tie-breaking matrix / and the given

#
and � vectors,

form the instance
. ì that we start from. Another important

instance is
.�

; this is the unknown actual instance that is
based on the correct AS-Path length matrix and the real
tie-breaking behavior1 . Even though

.�

is unknown, it be-

longs to the space � of all possible instances that can be
generated by applying a given error model to � ì , and by
considering an arbitrary tie-breaking behaviors.

First, RPV generates a subset �� of � that consists of�
feasible instances. For each instance

. � in �� , the cor-
responding optimal padding vector (computed with OPV)
is � � . The set of padding vectors � = �"� �Y$
*&=������ � � is
our candidates for the desired robust solution. To generate
padding vectors that differ significantly, we create the sub-
set � by applying the AS-Path length estimation error
model only to the largest sources of

. ì . Errors that corre-
spond to small sources (relative to the rest of the sources)
may not have an impact on the resulting padding vector.

Second, RPV generates a large subset ��� of � that in-
cludes � instances. The fraction of feasible instances in
��� is the feasibility index of ��� . If � is sufficiently large,
the feasibility index estimates the probability that the ac-
tual instance

.�

is feasible.ð

We still assume that the real tie-breaking behavior can be captured
by a matrix such as � .

10

Third, for each candidate padding vector � � in � ,
RPV measures the fraction of feasible instances in � � for
which � � is acceptable. That fraction is the robustness in-
dex of � � . If � is large, the robustness index estimates
the probability that the corresponding padding vector � �
is acceptable for the actual instance

.�

, conditioned on the

fact that the latter is feasible.
Eventually, RPV reports the padding vector Ì� with the

maximum robustness index. The reason is that that vector
maximizes the likelihood that it will be acceptable for

.�

.

The higher � is, the more samples we collect from the
space of possible instances, and so the more reliable our
robustness index will be. The robustness, on the other
hand, can be increased if we increase

�
.

B. Robustness evaluation

We evaluate the robustness of the padding vector that
RPV reports using simulations. In the following, we con-
sider a target network with � =5 ingress links that have the
same maxload constraint (i.e., � � = � for all �). The num-
ber of source networks is � =100. The source load dis-
tribution is the same for all sources, and it follows one of
the following models: Uniform, Exponential, and Pareto
(shape parameter: 1.7). The mean source load �� is the
same in all distributions. The AS-Path length matrix � ì
is generated based on the empirical distribution shown in
Figure 4. The error model that is applied to � ì is based on
the conditional estimation errors of Table III. The RPV
algorithm uses

�
=100 and � =10000 instances. �� is

formed by applying errors to the set of sources that gener-
ate, in total, at least 80% of the aggregate load.

The feasibility index depends on the relation between
the aggregate offered load ���� and the aggregate maxload
constraint �À� . Given the source load vector

#
, the fol-

lowing fraction � is our load metric,

�ý& � n� k P �"��À� (10)

� represents well the tightness of the given resource allo-
cation problem for the homogeneous maxload constraints
that we consider, and of course it should be less than 100%
for any instance to be feasible. To achieve a certain load �
given an instance with a source load vector

#
, we calcu-

late the required � from (10).
Figure 5 shows CDFs for the feasibility index and the

robustness index of Ì� for each of the previous three load
distribution models, and for three load conditions (� =0.5,
0.6, and 0.7). Each CDF resulted from 1000 executions
of the RPV algorithm with a different original instance. ì . The CDF curves that are not visible in the graphs are
equal to 100% for all instances.

Note that even with the Uniform distribution for
#

,
which is the most likely among the three to produce feasi-
ble instances, the feasibility index drops below 90% when
� is 0.7 (Fig 5(a)). For the heavy-tailed Pareto sources,
the feasibility is often below 90% even when � =0.6 (Fig
5(c)). The feasibility could be even lower if we had sim-
ulated non-homogeneous maxload constraints across dif-
ferent links.

Figure 5 shows that the robustness index of the padding
vector that RPV reports is larger than 90% for all three
load conditions, with both the Uniform and Exponential
distributions. With the Pareto distribution, on the other
hand, the robustness can be lower than 90% in 10-20% of
the cases, but rarely lower than 80% (Fig 5(f)). Note that
a higher load � does not necessarily mean a lower robust-
ness index. The reason is that the latter is conditioned on
feasible instances only. It can happen that even though the
feasibility index is low, a large number of padding vectors
are acceptable for the few feasible instances.

The overall conclusion from these results is that RPV
can produce a robust padding vector Ì� , in the sense that
that vector will be acceptable for the actual instance

.�

with a probability of more than 80-90%, if the latter is
feasible. For

.�

to be feasible with a high probability how-

ever, say more than 90%, the load metric � should be be-
low 50-70%, depending on the distribution of

#
, at least

for the homogeneous maxload constraints that we simu-
lated here.

VI. RELATED WORK

An excellent survey for interdomain TE appears in [7].
The authors explain why INITE is harder than other types
of TE. They also summarize the main methods to perform
INITE, namely selective/different advertisements (or ad-
vertisement of more specific prefixes) on different peer-
ing links, AS-Path prepending, use of the MED attribute
in ASes that have multiple peering links, and use of var-
ious BGP communities to signal TE decisions between
different ASes.

The feasibility of interdomain TE by a stub AS was ex-
amined in [15] (without considering a particular TE mech-
anism). That work concluded that, despite the important
variability of interdomain flows, it would be useful for a
stub AS to engineer its ingress traffic, aggregated at an
appropriate level. In a follow-up work, based on more
recent measurements, the authors made more pessimistic
conclusions regarding the feasibility of interdomain traffic
engineering [16]. At least for their UCL and PSC traces
(both stub networks), they showed that there was signifi-
cant temporal variability in the traffic carried by each ma-
jor AS path. Furthermore, due to limited aggregation at

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
D

F
(%

)

feasibility index

Feasibility CDF (Uniform)

ρ = 0.7
ρ = 0.6
ρ = 0.5

(a) Feasibility, Uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
D

F
(%

)

feasibility index

Feasibility CDF (Exponential)

ρ = 0.7
ρ = 0.6
ρ = 0.5

(b) Feasibility, Exponential

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
D

F
(%

)

feasibility index

Feasibility CDF (Pareto)

ρ = 0.7
ρ = 0.6
ρ = 0.5

(c) Feasibility, Pareto

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
D

F
(%

)

robustness index

Robustness CDF (Uniform)

ρ = 0.7
ρ = 0.6
ρ = 0.5

(d) Robustness, Uniform

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
D

F
(%

)

robustness index

Robustness CDF (Exponential)

ρ = 0.7
ρ = 0.6
ρ = 0.5

(e) Robustness, Exponential

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
D

F
(%

)

robustness index

Robustness CDF (Pareto)

ρ = 0.7
ρ = 0.6
ρ = 0.5

(f) Robustness, Pareto

Fig. 5. Feasibility and robustness for three source load distributions and load conditions. Note that the CDF curves that are not visible are equal
to 100% for all instances.

the AS level, they argued that to effectively control ingress
traffic one would need to affect the route selection in a
large number of ASes.

The use of the BGP community attribute for INITE has
been studied in depth in [17]. The authors presented var-
ious drawbacks of using that attribute: the requirement
for a manually encoded filter for each supported commu-
nity, the fact that each AS must advertise the semantics of
its own community values to peers, and the transitivity of
that attribute. They proposed the use of a new standard-
ized form of extended community, referred to as “redis-
tribution community”, which supports the following ac-
tions (among others): the attached route should not be an-
nounced, or it should be announced only to specific BGP
speakers, and that the attached route should be prepended
a number of times when announced to specific peers.

The Internet Draft [18] proposes a community, referred
to as BGP PCC, that carries another community to be at-
tached to a route, when the latter is sent to a distant AS.
The PCC value, viewed as a tuple (AS-X, AS-Y, c), repre-
sents a request directed from the originating AS to AS-X
to send community c to AS-Y when the associated route
is sent from AS-X to AS-Y. The PCC community can be
used for INITE, by allowing an originating AS to affect
the route selection process in a remote AS.

Instead of adding extensions to BGP, Agarwal et al.
proposed an Overlay Policy Control Architecture (OPCA)
[19]. A major motivation behind OPCA is to support
INITE. OPCA is basically an overlay network running on
top of BGP to facilitate policy exchanges between ASes.
It consists of a set of policy agents deployed in the partic-
ipating ASes that communicate through an overlay proto-
col to process external policy announcements and negoti-
ate with remote ASes the selection of interdomain paths
for ingress traffic.

Feamster et al. focused on egress interdomain TE [8].
They showed how to move traffic in a predictable fash-
ion by tuning certain BGP policies, and also how to limit
the influence of neighboring domains on the local path
selection process through BGP policies. That work in-
cludes measurements (from the AT&T network) for the
frequency and extent of AS-Path prepending: 32% of the
routes have some form or prepending, with about 90% of
the corresponding paths extended by 1-5 hops, while the
maximum prepending was 16 hops.

Uhlig et al. also focused on egress interdomain TE in
[20]. They modeled the egress TE problem as follows:
given Å destination networks, a cost function for each ofÍ downstream providers, and the constraint that only õ
BGP filters can be configured, the objective is to find the

12

best õ filters for the Å destinations and the Í providers,
starting from the default BGP configuration.

Bressoud and Rastogi examined the intradomain prob-
lem of choosing the optimal set of border routers for the
advertisement of a set of routes from a transit provider.
The objective is to minimize the cost of traffic across that
provider while meeting certain capacity constraints at the
border routers [21]. The mathematical formulation of that
work has some similarities with our formulation. Note
however that the problem considered in [21], which is a
variation of the Generalized Assignment Problem (GAP),
is NP-Hard, while COP can be solved in polynomial time.
The reason is that the mapping of sources to links is more
constrained in COP than in GAP.

VII. CONCLUSIONS

INITE is challenging mostly because it requires that an
AS is able to affect BGP routing decisions in remote ASes.
Previous research proposals in this area have focused on
the use of special BGP communities, which require active
cooperation from the upstream ASes. In practice, ISPs
have been using AS-Path prepending to control the flow of
ingress traffic. Prepending is widely viewed, however, as
an ad-hoc technique and it has not received much attention
in the related literature. In this work, we made a first step
to explore the use of prepending in a more algorithmic
framework, and to explore its potential and limitations.

The main contribution of this paper at the more theoret-
ical level is to present a polynomial-time algorithm (OPV)
that can determine the optimal padding vector given con-
straints on the maximum load of each ingress link. Even
though OPV relies on accurate information of several pa-
rameters that can only be roughly estimated in practice,
it is still important because it provides the best-case sce-
nario for the effectiveness of prepending if all the required
information was available. At the more practical level,
the contribution of the paper is to describe how to ap-
ply prepending in a robust manner, considering that the
AS-Path length information may be subject to estimation
errors and the tie-breaking behavior is unknown. Interest-
ingly, our simulations show that it is possible to determine
an acceptable padding vector in that case as well, as long
as the maximum load constraints are not too tight.

The greatest limitation of AS-Path prepending, and
consequently of our work, is that prepending can affect
the route selection process only if the upstream ASes do
not use the Local Preference attribute to enforce policy
decisions. It remains an open issue whether ISPs can
identify branching nodes with restrained usage of Local
Preference values in their upstream clouds in a simple and

accurate manner. When that is the case, however, we be-
lieve that the results in this paper can be used to guide
the prepending process in a systematic and more well-
understood manner.

REFERENCES

[1] D. Awduche, A. Chui, A. Elwalid, I. Wiljaja, and X. Xiao, “In-
ternet RFC 3272: Overview and principles of Internet traffic en-
gineering,” May 2002.

[2] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with
traditional IP routing protocols,” IEEE Communications Maga-
zine, October 2002.

[3] A. Feldmann and J. Rexford, “IP network configuration for in-
tradomain traffic engineering,” IEEE Communications Maga-
zine, October 2001.

[4] B. Fortz and M. Thorup, “Internet traffic engineering by opti-
mizing OSPF weight,” in IEEE INFOCOM, 2000.

[5] M. Kodialam and T. V. Lakshman, “Minimum interference rout-
ing with applications to MPLS traffic engineering,” in IEEE IN-
FOCOM, 2000.

[6] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adap-
tive traffic engineering,” in IEEE INFOCOM, 2001.

[7] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and O. Bonaven-
ture, “Interdomain traffic engineering with BGP,” IEEE Com-
munications Magazine, May 2003.

[8] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for
interdomain traffic engineering,” in ACM SIGCOMM Computer
Communications Review, 2003.

[9] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet, Ad-
dison Wesley Longman, Inc., 1999.

[10] Cisco, “BGP best path selection algorithm
http://www.cisco.com/warp/public/459/25.shtml,” .

[11] Juniper, “Route preferences
http://www.juniper.net/techpubs/software/junos/junos63/swconfig63-
routing/html/protocols-overview4.html,” .

[12] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stabil-
ity of popular destinations,” in ACM SIGCOMM Internet Mea-
surement Workshop, 2002.

[13] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Char-
acterizing the Internet hierarchy from multiple vantage points,”
in IEEE INFOCOM, 2002.

[14] T. Kernen, “www.traceroute.org,” .
[15] S. Uhlig and O. Bonaventure, “Implications of interdomain traf-

fic characteristics on traffic engineering,” Special issue on traffic
engineering of European Transactions on Telecommunications,
2002.

[16] S. Uhlig, V. Magnin, O. Bonaventure, C. Rapier, and L. Deri,
“Implications of the topological properties of Internet traffic on
traffic engineering,” in 19th ACM Symposium on Applied Com-
puting, Special Track on Computer Networks, 2004.

[17] B. Quoitin, S. Tandel, S. Uhlig, and O. Bonaventure, “Using
redistribution communities for interdomain traffic engineering,”
Computer Communications Journal, pp. 355–363, mar 2004.

[18] S. Agarwal and T. G. Griffin, “BGP proxy community com-
munity,” http://www.ietf.org/internet-drafts/draft-agarwal-bgp-
proxy-community-00.txt, Janurary 2004.

[19] S. Agarwal, C.-Nee Chuah, and R. H. Katz, “OPCA: Robust
interdomain policy routing and traffic control,” in The 6th IEEE
Conference on Open Architectures and Network Programming,
2003.

13

[20] S. Uhlig, O. Bonaventure, and B. Quoitin, “Interdomain traffic
engineering with minimal BGP configurations,” in 18th Interna-
tional Teletraffic Congress, 2003.

[21] T. Bressoud, R. Rastogi, and M. Smith, “Optimal configuration
for BGP route selection,” in IEEE INFOCOM, 2003.

