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SUMMARY

In systems engineering, design and operation ofesys are two main problems
which always attract researcher’s attentions. Téemplishment of activities in these
problems often requires proper decisions to be nsdé¢hat the desired goal can be
achieved, thus, decision making needs to be cdydtufilled in the design and operation
of systems.

Design is a decision making process which permeahtesigh out the design process,
and is at the core of all design activities. In mwdaircraft design, more and more
attention is paid to the conceptual and prelimindegign phases so as to increase the
odds of choosing a design that will ultimately hecessful at the completion of the
design process, therefore, decisions made durieggetkbarly design stages play a critical
role in determining the success of a design. Siierespace systems are complex systems
with interacting disciplines and technologies, thecision Makers (DMs) dealing with
such design problems are involved in balancing rthdtiple, potentially conflicting
attributes/criteria, transforming a large amountcastomer supplied guidelines into a
solidly defined set of requirement definitions. Shone could state with confidence that
modern aerospace system design is a Multiple @GritBecision Making (MCDM)
process.

A variety of existing decision making methods avaikable to deal with this type of
decision problems. The selection of the most appatgp decision making method is of
particular importance since inappropriate decisimethods are likely causes of
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misleading engineering design decisions. With rfécsent knowledge about each of the
methods, it is usually difficult for the DMs to finan appropriate analytical model
capable of solving their problems. In addition, hwihe complexity of the decision

problem and the demand for more capable methodgasing, new decision making

methods are emerging with time. These various nustlexacerbate the difficulty of the

selection of an appropriate decision making mettfadgthermore, some DMs may be
exclusively using one or two specific methods whileey are familiar with or trust and

not realizing that they may be inappropriate todbarcertain classes of the problems,
thus yielding erroneous results. These issues rebad in order to ensure a good
decision a suitable decision method should be e¢hbeéore the decision making process
proceeds.

The first part of this dissertation proposes an MLCI[Process supported by an
intelligent, knowledge-based advisor system retente as Multi-Criteria Interactive
Decision-Making Advisor and Synthesis process (M&)Awhich is able to facilitate the
selection of the most appropriate decision makimghod and which provides insight to
the user for fulfilling different preferences. Thaslvisor consists of an MCDM library
storing the typical decision making methods wideged in dealing with the decision
making problems and a knowledge base providingnfeemation required in the method
selection process.

The most suitable method is selected through aelliggnt reasoning process
utilizing the information in the knowledge base.isSTmethod selection is based on the
concept that the characteristics of the method IdhObest” satisfy the applicable

problem related criteria. Once the most appropriatthod is selected for the given
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problem, the advisor is also able to aid the DMeach the final decision by following
the rigorous problem solving procedure of the delbenethod. The advisor is also able
to provide guidance as to the requirements neealde tfulfilled by a potentially new
method for cases where no suitable method is dlaila the library. In addition, the
advisor is capable of validating the decision masieg one specific method and aid the
DM to arrive at a better decision if the decisioada is not appropriate.

In many other domains, such as complex system bpey@roper decision making is
required to keep the system working functionallyl &ffectively. This type of decision
making often occurs in a dynamic environment wapidly changing situations, and is
completed based on the assessment of uncertaimcomplete information due to the
data availability and variation of the operatioealvironment. Therefore, an advanced
decision making strategy is needed not only to waptthe system’s dynamic
characteristics and environmental uncertainty Isd &0 meet the operational objectives.
Particularly, in naval ship operation, more empbdss been placed on increasing the
mission effectiveness and ship survivability, arducing cost and manning workload.
To satisfy these requirements right decisions shdad made to determine the most
suitable actions taken in different system staéssa result, the best course of action
needs to be identified.

The second part of this dissertation presents &anamous decision making advisor
which is capable of dealing with ever-evolving reéahe information and making
autonomous decisions under uncertain conditiong ddivisor encompasses a Markov
Decision Process (MDP) formulation which takes utaety into account when

determines the best action for each system stae.eXecution of the actions consumes
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resources, which results in a resource allocatimblpm. Thus, the resource allocation
problem can be achieved by finding the optimal @oivhich specifies the best action to
take for each of the states. As a result, the éichitesources are reallocated to different
agents under various scenarios to maximize thér@tards obtained from executing the
actions. The successful resource allocation leadsréconfiguration of the system which

is the most suitable to handle the situation atthan
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CHAPTER |

INTRODUCTION

Engineering provides a variety of tools and appneacto develop solutions to diverse
problems such as design, production and operatigoramiucts or processes. Systems
Engineering (SE) is an interdisciplinary enginegrimanagement process which
integrates multiple engineering tools, approaches disciplines to realize and deploy
successful systems satisfying customer requirem@eagense Acquisition University
Press, 2001]. This indicates SE forms a structapmoach which is able to facilitate the
activities in design, production and operation ygtems. To accomplish these activities,
proper decisions require to be made to determireg attions need to be performed and
how they are carried out so that the desired gaalbe achieved. As a result, decision
making becomes an essential part of the problewngpprocedure.

Design is about using available information to makelligent decisions leading to
optimal solutions which satisfy the customer’s liegments. During the design phases,
decision making permeates through the entire dgsigness, and is at the core of all
design activities. Problem definition, for exampleyolves deciding what the customer
requirements are, and how to define the constraintstargets. Other design activities
such as alternative concepts generation, technolofyysion, and concept selection
heavily rely on or are pure decision-making proesss$n addition, the selection of the
design parameter, the basic element of the designegs, represents the decision.

Therefore, one can state with confidence that dasig decision making process.



In modern aircraft design, progressively more armtaremphasis has been given to
the conceptual and preliminary design phases $o iasrease the capability of choosing
an optimal or a robust design. Decisions made duhese stages play a central role in
determining the success of the design. This newdigm in aerospace system design
must deal with the increased desire for reducingts;oincreasing profit, increased
performance, environmental friendliness and qualitye DMs are involved in balancing
the multiple, potentially conflicting attributesiteria, and transforming a large number of
customer supplied guidelines into a solidly defirsed of requirement definitions. As a
result, many criteria have to be all simultaneouaken into account, and a compromise
becomes an essential part of the decision makiogegs. Therefore, decision making in
the conceptual and preliminary system design stagearently has multi-level, multi-
criteria with uncertain and sometimes incompletermation in nature.

To handle this type of Multiple Criteria Decisionaking (MCDM) problem in the
early design stage, various methods have been ajmakl Currently, over 70 decision
making methods have been proposed with the intentib facilitating the decision
making process, and have already been appliedaiowdth different decision problems.
With the complexity of the decision problem and ¢timmand for more capable methods
increasing, new methods keep emerging. Paradoyxidakkse numerous methods don’t
ease the decision problem as they are expecteal toutl complicate the problem because
one has to determine which method is appropridieé&de/she can proceed, considering
the fact that the use of inappropriate method m@ate misleading solutions to the
decision making problem. However, figuring out gpgropriate decision making method

may be viewed as a difficult problem for the DM#icg this selection itself is a



complicated MCDM problem. One part of this diss@ota attempts to formulate a
process which explores the appropriateness of ¢eesion making methods and selects
the one that is the most appropriate to solve thblem under consideration.

In the case of complex systems operation, propeisidas need to be made to keep
the system functioning properly and effectivelyn& systems operation often occurs in
an environment with rapidly changing situations amttertain conditions, the data
gathering, processing and evaluation must be famigh to support the decision making
which is able to capture the dynamic charactesséiad uncertainty existing in the
problem. During the period of operation, the rigltion should be determined at each
decision epoch based on the state of mission, bpeahenvironment and system status.
Thus, the primary goal of the systems operatido islentify and perform the best action
in each system state to maximize the system effutiss and minimize cost. After the
action is executed, the system randomly transiteetd state. However, choosing the best
action requires thinking about more than just thenediate effects of the actions because
the action results in maximum immediate reward roayse side-effect in the future.
Therefore, tradeoff should be done between the idnete rewards and the future gains
to yield the best possible solution. This fact gades that in complex systems operation,
sequential decisions should be made in a dynamviccgmment to identify the best course
of action for a stochastic process. This type @igien making is hard to be successfully
accomplished by an individual DM or even a groupsisting of wise DMs since it is
always a source of difficulty for DMs to make dynandecisions and take the future

effect of the decisions into account. The othet phthis dissertation proposes a dynamic



decision making formulation which is able to firtetbest course of action for systems

operation problem under uncertain conditions.

1.1 Motivation

Decision making ubiquitously occurs in many areas;luding systems design,
manufacturing and systems operation. Traditionalgecision is made by an individual
or a group of DMs based on their intuition, valaesl preferences. Decisions made using
this approach often highly depend on the DMs’ eigmere and preference, therefore the
quality of the decision made varies a lot with eliéint DMs. In addition, for a specific
DM, decisions made for the same problem at diffetenes may be different because
his/her preference is not always consistent.

In systems design, decision making permeate themedeps, such as defining
requirements and targets, creating the optimaltisols, and making the final decision.
The decisions in those steps should be carefullgema order to obtain an optimum
and/or robust design, however, the traditional apph is known to be incompetent to
make such wise decision. Thus, advanced decisickingnanethod should be used.
Design process often starts from a set of custaeguirements expressed in term of
objectives, goes through several steps iteratiaglg then creates desired alternatives
which meet the specified objectives. In this desaffernative generation step, Multi-
Objective Decision Making (MODM) methods are ofigtilized to facilitate this design
process. Typically, MDO methods handles the problevhich “involve the design of
alternatives which optimize or ‘best satisfy’ théjextives of the decision maker”
[Hwang and Masud, 1979]. Once the optimal altemestiare generated, the final
selection will be made to determine the one thastbmeets the customer requirements
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and DM preference. This leads to an alternativecsi®in problem which is often solved
using Multi-Attribute Decision Making (MADM) methad It can be seen that MODM
problems are optimization problems while MADM prei are alternative selection
problems, and the methods for solving both problesnglassified as Multi-Criteria

Decision Making methods [Bandte, 2000]. To obtdwe best solution to the design
problem, an appropriate MCDM method needs to be ss&e the use of inappropriate
method may lead to misleading solution. Thus, drigcal to select the most appropriate
decision making method for the problem under carsiion, which is illustrated in

Figure 1(a) and will be detailed described in Qerfi.1.1.

Systems Systems
Operation

Alternative
Selection

; Multi-Attribute [
@Decision Makin Decision Making
i (MODM) (MADM) B

Dynamic Decision Making
Under Uncertainty
(DDMUU)

Best Design Best Course of
Solution Action

(a) Selection of the most appropriate decision (b) Dynamic Decision making under
making method in systems design uncertainty in systems operation

Figure 1: Decision Making in Systems Design and Operation
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In the case of complex systems operation, decisi@king is required to be fast
enough to handle a large amount of information Wwiscchanging over time. In addition,
the operation of the system usually occurs in anrenment where uncertain conditions
are always involved, thus uncertainty needs to dkert into account. Furthermore,
decision made at a certain decision epoch hasteffetuture system state, which further
complicates the decision making process. Appargetitgse complexities make it difficult
for DM to make decisions by employing the tradiabapproach. In order to improve the
quality of decision making and identify the bestise of action for the system, a more
advanced decision making approach requires to belajged to be able to capture the
essence of the systems operation problem. Thisisesdtbwn in Figure 1 (b) and will be

explained in Section 1.1.2.

1.1.1 Selection of the Most Appropriate Decision Making Method

More and more emphasis has been given to concegdapreliminary design stages in
modern aerospace system design in order to incries@robability of success of a
design at the completion of the design processadfoeve the success in these phases
one is expected to bring as much knowledge as ldes&irward and maintain efficient
freedom in these early stages to avoid lockingnedost [Mavris et al., 1998; Mavris and
DeLaurentis, 2000a].

The essence of this new design paradigm is toaseréhe knowledge in early design
stages so that wise decisions can be made. ltear that decisions made during the
conceptual and preliminary design phases have sidenable impact on the final design
solution. Thus, decision making, which is at theecof the design process, needs to be

carefully formulated and carried out. To reach adyalesign decision, the problem
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identification, including the investigation of thhequirements, may be one of the two
most important parts of the whole process. If ttlentification does not capture the
essence of the problem, it is most likely that fimal solution is misleading since the
design decision is based on the wrong structurthefroblem. This issue has attracted
significant attention and been handled in severaysMNeufville, 1990; Kirby, 2001;

Garcia, 2002; Hollingsworth, 2004]. The other mealuable part of the decision making
process is to determine the most appropriate decisiaking method for the problem

under consideration before the decision makinge®ds. The importance of the selection
of the most appropriate method results from thé that the use of an inappropriate
method could lead to an unjustified decision thoaghell defined problem is achieved.
It has been recognized that the systematic analysidel can highly improve the

effectiveness of the decision making, thus thig fstanulates many research works
concentrating on developing MCDM methods. As a lteswmerous methods were
proposed and available to handle different decisi@king problems. These available
methods certainly ease the decision making probgsgiving DMs various options in

solving their problems, however, on the other hahdy complicate the decision making
process from the beginning since DMs have to séhectost appropriate method among
the existing methods for their specific decisionlpems. It is obvious that the selection
of the most appropriate method has critical immarcthe decision making process since
the use of an inappropriate method may result inradesired solution, however, it is an

area that has not been given adequate consideration



1.1.1.1 Existence of Various Decision Making Methods

Many efforts have been made to facilitate the MCpMcess so that various methods
and techniques have been developed, such as SiAgddive Weighting (SAW),
Technique for Ordered Preference by Similarityhe kdeal Solution (TOPSIS) [Hwang
and Yoon, 1981] and Analytical Hierarchy ProcesBlPA [Saaty, 1980]. Up to now, over
70 MCDM methods [Roman et al., 2004] have been ggeg, and each method has a
different analysis model intending to solve somasslof problem. Furthermore, new
methods are continuously emerging aiming at hagdhmore complicated decision
making problems.

The existence of the various decision making methogblies that different methods
have their own advantages and disadvantages aradisheot a general, universal method
capable of handling all types of problems. Thist fadicates that in order to obtain a
desired solution for the problem under considenaticuitable method should be utilized
since the existing methods have different degréegppropriateness in handling a given
problem. This statement can be further supportedhbyfact that for a given problem
significantly different conclusions may be obtairfeoin the application of the various
methods.

For example, as shown in Table 1, when the DMsnoéidine consider purchasing
one aircraft among three competing aircraft desigmsed on the attributes of interest,
they will make their decision based on the solutibtained by using a specified decision
making method of choice. Study shows that, with same preference information (i.e.
all attributes have same weight), aircraft C ioremended as the “best” design by AHP

method [Hazelrigg, 2003] while aircraft A is sugtgesas the one to buy by TOPSIS.



However, SAW will select either aircraft A or aiafr C dependent on the attribute values

of the baseline.

Table 1: An Example of MCDM Problem

Attribute Airplane A Airplane B Airplane C
Range 1500 2000 3000
Speed 550 450 600
Payload 30000 25000 50000
Cost 15M 20 M 10M
Reliability 0.97 0.98 0.999
Safet) 0.9999¢ 0.9999¢ 0

One can easily see that aircraft C has no safe#yl and obviously nobody is going
to take it, hence, it is not a design that anyirariwill spend money on. This fact
indicates that AHP and SAW, which recommend theesitdd solution, are not the
appropriate methods for the problem under condlideraOn the other hand, TOPSIS is a
better choice for this problem. However, it is paident to conclude that TOPSIS excels
the other two methods in solving decision makingobgm because TOPSIS’
appropriateness over AHP and SAW is only valid urstene conditions. That is, it is
justified to state that TOPSIS is a more suitab&hwod than the other two methods when
handing the decision problem described in Tableutlthis statement does not hold for
any other decision problem.

From this example, two observations can be forredtat

Observation 1: Various decision making methods have been proptseial with the

decision problem. The methods have their own adwpest and disadvantages.



Observation 2: Different decision making methods may finally puod diverse
solutions to the same problem, and undesirabletisnbi can be obtained by the

utilization of some inappropriate methods.

Therefore, an appropriate method is necessary teelseted ahead of the decision
making process in order to get the desired solutorthe problem under consideration.
Unfortunately, it is not always an easy task fag tDMs to select the most appropriate
decision making method among a large number ofla@vai ones without knowing their
characteristics, that is, basically, their advaesagnd disadvantages. This issue is always

a source of frustration for the DMSs.

1.1.1.2 Method Preference and Knowledge Limitation

When it is required to perform analysis and sebecif alternatives, some DMs may
always use the methods or techniques which thefaardiar or feel comfortable with for
any problem under consideration. Typically, theystrthese methods because they
believe these methods can generate the “best” armmldast solutions for almost all types
of problems. This method preference indicates sbate DMs do not recognize or even
often ignore the importance of selecting the maghable method for a specific problem.
This usually stops them exploring other more appabe method and techniques to solve
the given problem. However, as discussed beforeqnnersal method can solve all types
of problems and the use of an inappropriate methitidesult in a misleading solution,
thus, the method preference often misdirects thesDiMdgment. This fact leads the
observation below:

For instance, some DMs think TOPSIS is a greatrigcie to deal with most of the

decision problems, so they tend to use it to s@wg problems involving decision
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making. Consider the example presented in 81.2tH tio changes: 1) the airline has a
requirement for safety, which is the safety musghesater than 0.8; 2) instead of totally
unsafe, aircraft C has a safety of 0.2. Study shthat with these two modifications
TOPSIS selects aircraft C as the “best” designuatal by the six criteria listed in Table
1. However, obviously aircraft C is not a feasidiesign because it violates the safety
requirement and no airline will buy it to risk thdiusiness. The reason that TOPSIS
selected aircraft C is that this aircraft dominatesvery attribute except safety, and has
the highest average goodness. TOPSIS’ decisiondetermines the alternative with the
highest average goodness will be selected as thiesdution, therefore aircraft C is
chosen as the one. This inconsistency indicatesTtO®SIS may suggest a design as the
“best” solution even it is an infeasible design,iebhmakes TOPSIS alone not an
appropriate method to solve this specific problem.

The other reason why people tend to use the mettiadshey are familiar with is
that they have limited knowledge on the other m@shoSince there are numerous
decision making methods available and new methadsemerging with time, the
difficulty of finding the “best” method for the gan problem is increasing. Each of the
methods has its own characteristics, so to undetsil these methods is time consuming
and tedious. In addition, it is not appropriateréquire a DM to know all the decision
methods because it is not practical and not negessa

Based on the discussion in this section, an obg8ervaan be formulated:

Observation 3: Due to method preference and knowledge limitattmme DMs employ
one or two methods to solve any given problem wiécbften not appropriate for the

problem under consideration.



Obviously, a approach is needed to help the DMscse¢he most suitable method
before decision making is performed, and then pl®@guidance to aid the DMs reach the

final decision by following the decision making pealure of the selected method.

1.1.1.3 New Method Generation

With the evolution of the requirements and techg@s, the complexity of the decision
problem is increasing, so existing methods maynbapable of dealing with these types

of problems. This phenomena leads to the follovabgervation:

Observation 4: In some cases, it is not able to find an apprégnmethod among the

existing ones to handle the new decision problem.

This stimulates the demand for developing advanoethods. To develop a new
method, some disciplined approach may need to h@oged, such as morphological
matrix [Dieter, 2000] and Theory of Inventive Preil Solving (TRIZ) [Braham, 1995].
These techniques are widely accepted to generateideas by revealing all possible
solution concepts and developing the superior omeng them.

The development of a new decision making methodatsm emerge in the process of
selecting the most appropriate method for the gigmblem. In the method selection
process, the characteristics of the candidate rdethend the given problem are
thoroughly inspected, which often produces a nevggeetive on what capabilities are
required for a method to be fulfilled to deal witie problem. However, a new decision

making method may be generated in the procedurselgicting the most appropriate

! TRIZ is Russian acronym for Theory of Inventiv@Blem Solving.



method for a given problem. These requirementélyi service as a baseline for new
method development. For example, in the aircrdécten example described in §1.2.2,
TOPSIS was considered as an inappropriate methosbfeing the given problem. The
reason is that TOPSIS is a method which ranks lteenatives based on the concept that
the “best” alternative has the closest distancenfpmsitive ideal solution and furthest
distance from negative solution. The distance fitbmn ideal solution is in the form of
Euclidean distance, which is an equivalent to therage goodness. Therefore, TOPSIS
may select an alternative with the highest avegg®iness as the “best” solution which
is dominative at other attributes but violates onenore constraints, that is, an infeasible
solution. This paradox inspires a motivation oheit finding another existing method
that can overcome the drawbacks of TOPSIS or dpweloa new method with the
improved capability over the current TOPSIS. Asiceut before, aircraft C is an
infeasible design, thus, performing a feasibiliyaleation before employing TOPSIS
may smoothly solve this problem and result in airddssolution. This leads to an
advanced method adapted from TOPSIS which has higaeability to handle the
decision problem. This shows that the selectiothef‘best” appropriate decision method

is able to provide useful hints for the new methgelseration.

1.1.1.4 Previous Research Work on Method Selection

Over the past decades, many efforts have been taddeilitate the selection of the most
appropriate decision making method for a given f@ob MacCrimmon [MacCrimmon,

1973] is probably the first researcher who recoeghithe importance of MCDM method
selection. He proposed a taxonomy of MCDM methaedsated a method specification

chart in the form of a tree diagram and providedilmstrative application example.



These works provided a methodological basis fordéeelopment of a comprehensive
MCDM knowledge base. A taxonomy similar to the dvlacCrimmon proposed was
developed by Hwang and Yoon[Hwang and Yoon, 1981jis taxonomy is also
represented by a tree diagram which consists oésadd branches connected by choice
rules. Sen and Yang [Sen and Yang, 1998] develbpedsimilar tree diagrams to help
select the appropriate Multi-Attribute Decision Nak (MADM) and Multi-Objective
Decision Making (MODM) method among a few typicaliged methods. The tree
diagram for selecting the suitable MADM method llsstrated in Figure 2. The tree
diagram approach provides reasonable classificadiremes and is easy to utilize.
However, this approach has its own disadvantagesutlly gives two or more MCDM
methods rather than the most appropriate methodtHer decision problem under
consideration, and only considers limited types dafcision problems, preference
information and the available methods. These liaites stop the tree diagram approach
from being an effective solution to the method @& problem.

Possible criteria for evaluating MCDM methods w@mposed as an alternative
solution to this method selection problem [Evar384t Gershon and Duckstein, 1984;
Hobbs, 1986; Ozernoy, 1987; Tecle and Ducksteir§2l9Gershon and Duckstein
suggested selecting the “best” MCDM method by eatithg the methods with respect to
a set of criteria which fall into one of four cateigs: mandatory, non-mandatory,
technique-dependent and application-dependent f@erand Duckstein, 1984]. The
methods are evaluated by the criteria until the tnsastable method for the given
problem is found. Hobbs suggested performing thpesments in multiobjective

analysis to evaluating the methods based on faterier. appropriateness, ease of use,

10



T

What decision rules are appreciated

[ Select a MADM Method ]

2.1 non dominance 2.2 maximin 2.3 maximax

] ]
1. Dominance 2. Maximin 3. Maxmax
Method Method Method

I | |
4.1 overall utility 4.2 local utility 4.3 implicit utility
function function function

4. UTA 5. ILUTA
Method Method

6. EDMCM What type of input
Method : ;
data is available?

What types of utility functionsb,\);\

Yes

are appreciated?

Is weight given beforehand
or will it be generated?
©
]
c

7.1 attributewise
ranking of alternatives

9. Linear assignment
Method

7.2 pairwise comparisons
of all alternatives

10. Relative position
Method

7.3 decision table

3.3 relative weight

Is preference information required?

Q3 ) How is preference information represented?

%
What cut-off values
are favorable?

|
5.1 minima, attri. value acceptablé.2 greater value of an
for each of current attributes attribute for an alternative

I I
7. Conjunctive 8. Disjunctive
Method Method

sagven
: o)
N
© _— . | .
What type of inpu8.1 pairwise comparisons of 8.2 pairwise comparisons
data is available?All alternatives and attributes of all alternative

11. AHP 12. LIMAP
Method Method
Which decision rule is appreciated?

|
9.1 ordinal ranking of all attri.

13. Lexicographic
Method

9.2 Preferentially fndependent attribute
setand linear utility function

[ 14. Simple additive weightingﬂ

Method

9.3 Relative closeness to ideal 9.4 concordance and discordance
and negative ideal points dominance indices
15. TOPSIS 16. ELECTRE
Method Method

Figure 2: Decision Tree for MADM Technique Selection [Sen 3ahg, 1998]



validity and sensitivity of results to choice of thed [Hobbs, 1986]. Ozernoy utilized a
hierarchical model which employed screening citeand evaluation criteria for
selectingthe most appropriate MCDM method [Ozernt§87]. Tecle and Duckstein
developed an approach based on a composite progngnaiigorithm in order to handle
the selection of the most suitable MCDM method. yTheoposed four categories of the
criteria: DM related, technique related, problerated and solution related [Tecle and
Duckstein, 1992], and these categories were addptetie sequent researchers such as
Poh and Lu et al [Poh, 1998; Lu et al., 1999]. Heevea major difficulty which prevents
wildly using these approaches is “the lack of urse#ly accepted data on discrete
alternative MCDM methods that would allow the qufecdgtion of the methods in terms
of these criteria” [Ozernoy, 1992]. And by usings$k approaches different users may get
totally different results because the user’s knogk about the MCDM methods has a
strong impact on the final results.

In the early 1990s, researchers began to employ téacbniques of artificial
intelligence to improve the quality of the decisioraking method selection. Ozernoy
developed an expert system for choosing the beddbM@ethod, and presented a small
example as a proof of implementation. He identifiadd used three types of
characteristics associated with MCDM problem, DMl &CDM method, respectively.
And the selection of the “best” MCDM method is ciolesed as “a search for the best
arguments supporting the match among those chasict®’ [Ozernoy, 1992]. The
expert system works by asking the user a serigsi@$tions and then eliminating options
to the most appropriate method based on the uses\wers. Poh also employed an expert

system to facilitate the selection of the most ahlé MADM method, and the
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architecture of this system is shown in Figure 8mPared to Ozernoy’s approach, Poh’s
system explicitly consists of a knowledge base Wiscutilized by the system to provide
the guidance in selecting the most suitable mefRath, 1998]. Similar to Poh, Lu et al

proposed an intelligent multiple objective decissupport system that can aid DMs in
the method selection [Lu et al., 1999]. These experd intelligent system approaches
simplify the method selection procedure with simgleestions and allow direct selection
or automated selection based on the inputs provioledhe user. However, these
approaches have their own limitations: they dordvéh a comprehensive sample of
MCDM methods in their system, and they don't clgastate the limitations or failure

modes of the systems. And some of them are notsitie.

User

.

Interfacing Subsystem

KBS (Guidance Subsystem)

I I
| |
I
Results ! Inference |
: Engine I
Y |
I I
v v : :
I
Input Method : :
Subsystem N\ Subsystem I l
: Working :
| Memory !
I I
I
Problem : :
Data : :
I

Figure 3: General Architecture of the Poh’s Expert Systenh|[R®98]
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The following observation concludes the previousrkwthat has been done on

decision making method selection:

Observation 5: Various approaches have been proposed to faeilitet selection of the
most appropriate decision making method, but thmitations stop them from being an

effective approach to handle this type of problems.

1.1.1.5 New MCDM Method Selection Approach |'s Needed

The decision making problems are becoming morenaoice complicated for the system
design with the evolution of the requirements aedhhology. Therefore, it is more
important to select the most appropriate MCDM médthor the problem under
consideration since the use of an inappropriatehatketoften leads to misleading
decisions and eventually produces undesired desigich will result in high cost to the
manufacture and consumer. Although the approackssided in Section 1.1.1.4 present
some capabilities to find the suitable decision imgknethod for a given problem among
candidates, they have their own disadvantagesndlimg this type of problems. Some of
them require that the user has certain knowledgeitatiifferent methods (e.g. criteria
approach), and some of them are too simplistiaigmest the most suitable method (e.g.
tree diagram). In addition, all of the approacheslhave a comprehensive sample of
the existing MCDM methods. This lack of methodstlie selection pool means the
selected method using these approaches may nbehbedst appropriate method for the
problem under consideration since the most appmtgprnethod may be existing but is
excluded from being selected. Furthermore, thetiegisapproaches are not able to
produce the final solution to the given decisiorking problem. They either cannot find

the most appropriate method for the given problerust find and display the name of
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the selected method, but not to provide guidanagsey how to get the final solution in
these cases, as shown in Figure 4. Therefore, aapproach with more capabilities

needs to be developed to facilitate the MCDM metbeldction.

Tree Diagram/

Specified o
Problem Criteria Approach/

Expert/Intelligent Systen

Existing Approaches Y l s
’ Selected Metho@ _—

Solution to
/ / Given Proble

Figure 4: Limitations of Existing Method Selection Approaches

he most appropriate
method is found?

>

1.1.2 Dynamic Decision Making Under Uncertainty

In many circumstances, multiple decisions needetonlade over time to reach a desired
goal. Uncertainty is usually involved in this typ&decision making process since it is
hardly to deterministicly or perfectly predict tlhensequence of a decision after it is
executed. In addition, decision made in a certateshas effect on the future state of the
system and thus affects the overall goal. This eetal decision making process is
illustrated in Figure 5.

As mentioned before, complex systems operationiégh & decision making process.
The goal of complex systems operation is to idgnhe best action in each state to deal
with the situation at hand, as a result, the systglimact on the best course of action so
the objective of the operation can be maximizegudlly, the decision is made based on
the assessment of a large amount of informatiorchvithanges over time, thus the

decision making should capture the dynamic chamatits of the system. In addition,
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due to incomplete knowledge and uncertain inforomatiabout the operational

environment, uncertainty should be consideredragjar factor when making decisions.

Time t

Decision at # Decision at t Decision at t®

State/Environme
at t+

{ Objective measure at&-} [ Objective measure at'g { Objective measure at&B+]

Figure 5: Dynamic Decision Making Under Uncertainty [Leon§93B]

1.1.2.1 Integrated Reconfigurable I ntelligent Systems (IRIS)

In modern ship design, more and more emphasis &éas biven to reducing cost and
manning workload, and increasing survivability anigsion effectiveness. The Office of
Naval Research (ONR) Integrated Engineering PI#8P)( concept has potential of
meeting such future Navy requirements. IEP is afiathi system that combines
engineering and damage control services under anocontontrol architecture. The IEP
system will allow the next generation Navy shipsofgerate under major disruptions
involving cascading failures and provide continuousobility, power, thermal

management and fluid transfer for vital shipboaydtems, thus reducing manpower
requirements and increasing overall ship survivigbiland effectiveness. This

revolutionary change in naval architecture and gmpgineering requires a total ship
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systems engineering design approach which is ableormulate and implement the
design methods and tools to the ship systems apdbta of extensive, autonomous
decision making.

The Integrated Reconfigurable Intelligent SystetR4]) framework is proposed as a
possible solution to formulate the IEP problem. Tesign of the IRIS is shaped by the
integration of intelligent and reconfigurable sys$e incorporating interactions and
interdependencies. With the reconfigurable systeims,ship, based on the incoming
information, will assess and then configure itsetb the mode most adequate to deal
with the situation at hand. Moreover, the ship lideao be aware of its surroundings
through the gathering of data from sensors onbthedehicle and provide guidance to a
human operator as to the best course of actiosuimmary, an IRIS-designed ship is
envisioned to be self-monitoring, self-assessinjsaif-reacting.

In the process of obtaining the best course obactiecision making often occurs in
a dynamic environment with rapidly changing sitaas under which the ship is operated.
In addition, the overflow of information makes iffdtult to perform analysis and make
proper decisions. Furthermore, in order to incrabheesurvivability and effectiveness of
the ship, the reactions are required to be takea olynamic manner, thus the data
gathering, processing and evaluation must be fasugh to support the real-time
decision making process. In general, the reactiares determined by the overall
assessment which is a combination of the diffeesisessments produced by the various
systems for the same event in terms of urgencypaodty. And this assessment is based
on the states of mission being performed, shipustand operational environment. For

example, in the case that damage occurs durindpdltée, the power is required to be
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redistributed to the different systems, such aspewea system, damage control systems,
and radar systems in order to reconfigure the isitgpthe state most suitable to deal with
the current situation. Under such a scenario, tifermation from various sensors
indicating the states of the systems and the emwviemtal situation varies over time. In
order to ensure the ship system operates with marinsurvivability and mission
effectiveness, real-time decisions need to be nhaded on the assessments produced by
using the collected information and accounting fisiure events by forecasting their
effects to relocate the electrical power.

Traditionally, the decision making in complex systeperation is completed by
human DMs based on the assessment obtained byzamplyne incoming information.
However, the IEP problem requires real-time deasito meet the system’s requirements,
which is often very hard to be accomplished by en&w operator. Thus, an advanced
decision making approach is needed. This decisiakimg approach should be capable
of making dynamic decisions and capturing the uagdy that exists in the system
operation process. An autonomous decision makimgadwith the abilities to handle
the potentially conflicting multiple criteria andake real time dynamic decisions is
capable of fulfilling these tasks. This advisosteyn is envisioned to assess the time-
dependent information and provides the best confrsgetion most suitable to the current

state of the system with respect to the ship effecess, cost and survivability.
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1.2 Research Statement

1.2.1 Research Goal

The focus of this research consists of two partse @art of the research focus on
developing an intelligent, knowledge-based, higiitgldecision making advisor system
to select the most appropriate MCDM method amomgagonably large selection pool,
and then guide the DM to reach the final decisitihzing the selected method. The
advisor should be able to select the most suitalgtthod from the candidate methods for
the problem under consideration, validate the dmtss made by using a specified
decision making technique, and provide plausibleicas$ that can act as the hints for
developing new decision making methods if no metindtie selection pool is suggested.
In addition, the advisor should be capable of penfog the feasibility evaluation on the
decision alternatives before the decision makirgg@ss proceeds. The other part of this
research is to develop an autonomous decision madrisor to deal with the decision
making under uncertain conditions. The advisomplemented to a resource allocation
problem for a ship system. This advisor should b& d@o handle the information
changing over time and provide a best course adrachost suitable to handle the current

situation in order to increase the effectivenessanvivability of the ship.

1.2.2 Research Questions and Hypotheses

The research described and proposed in this dasigertis motivated by several key
factors, which are best introduced through a serfeguestions. The research questions
for the first part of this research are listed bebnd new questions will be come up with

as the research proceeds.
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Question 1: How to represent different methods in order totaag their essence for

method selection? (Observation 1)

Question 2: How to evaluate the appropriateness of the metfardghe problem under

consideration? (Observation 2)

Question 3:In the case that DMs have limited knowledge alobler methods

(a) how does one to determine the validity of tleeision made by the DMs using the
method they are familiar with

(b) is there a decision making formulation thabat DMs to select and utilize the most

appropriate method to solve their decision probfz(@bservation 3)

Question 4: Can advice be given if no method in the method psuggested for the

given problem? (Observation 4)

Question 5:Can the method selection be handled in an efficreanner? (Observation 5)

To answer the questions above, the hypotheses lz@bmade:

Hypothesis 1: A decision making method can be fully represertgdits associated

characteristics which are able to be identifiechgshe developed approach. (Question 1)

Hypothesis 2:1t is able to develop an algorithm to rank theisiea making methods
based on the problem under consideration. The tselemethod has the highest

appropriateness to solve the given problem. (Qoie&)

Hypothesis 3:A decision making formulation is required to allte DMs to select the

most suitable method among the candidate methodldheam guide them to obtain the
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final decision even if they have limited knowledgdout the selected method.

(Question3)

Hypothesis 4:If no method is suggested for the given probledvjaes should be given,
such as finding an existing method with the cajghbib solve the problem at hand or

combining the methods in the method pool to produtadvanced method. (Question 4)

Hypothesis 5: The proper design of a decision making advisotesyscan efficiently
facilitate the decision making process, from sabgcthe appropriate method to making

the final decision. (Question 5)
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CHAPTER Il

DESIGN AND DECISION MAKING

Design, in general, and engineering design, inqaair, is a process that starts from a set
of requirements, and then utilizes scientific amdhhical knowledge to produce a
solution to a human problem. The requirements oft@@rge from a customer’s needs
which may be brought about by scarcity, technologg change in life style. According
to Asimow [1962], design is “a purposeful activiirected toward the goal of fulfilling
human needs, particularly those which can be methbytechnological factors of our
culture.” In a design process, the available imfation and techniques are utilized to
establish and define “solutions to and pertinentcstires for problems not solved before,
or new solutions to problems which have previousten solved in a different way”
[Blumrich, 1970]. In order to increase the probigpilof success of a design, both
mathematical analysis and practical experience eanployed in the design process,
which often support the designer or engineer to anaise decisions leading to the
optimal design. Modern system design usually udes is pretty vague rigorous

techniques which follow some systematic processesdch the final design solution.

2.1 Design Process

There are a number of models that describe thestaigthe engineering design process,
each with associated design methods and data eegemts. Among these models, the
one proposed by Dieter [2000] is a good represiestat the engineering design process.

As illustrated in Figure 6, the design process igiddd into conceptual design,
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Modeling/sizing of DFM
parts
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Figure 6: The Engineering Design Process [Dieter, 2000]

embodiment design and detail design, each of whigé one or more steps. In the
conceptual phase, the first step is defining theblem, where the Customer
Requirements (CRs) are translated into Engineed@ingracteristics (EC’s). The Quality
Function Deployment (QFD) technique is applied Imiststep. Then the necessary
information needs to be gathered to generate fieasdmncepts which have the potential
to meet the customer requirements. In this stemyesbrainstorming tools, such as a
morphological matrix, are usually used. Since tk@egated concepts have different
degree of viability, the one which can best satify customer requirements will be
selected for embodiment design. Embodiment desgyrcancerned with arranging

physical elements of the product to carry out wsction, selecting materials and
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manufacturing process, and conducting a parameésign study where robust design
and tolerance design are completed. In the de¢siigd stage, details, such as drawings
and past specifications, are brought together soirenthe manufacturability of the design.
Aircraft design is the application of the enginagridesign process, with multiple
disciplines involved. A three-tiered design procéssgenerally accepted for aircraft
design, which consists of conceptual design, piehny design, and detail design.
Before the conceptual design proceeds, design nexgaints need to be well defined,
which is critical since a poorly defined problenteof results in a misleading design
solution. As an aircraft is a complex system, npldti disciplines analysis and
optimization inevitably occur in the design proceBglding proposed a design spiral

adapted from Haberland’s work, as shown in Figyre/fTich is helpful to illustrate the
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Figure 7: Aircraft Design Spiral [Fielding, 1999]
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design activities in the aircraft design proceshese design activities are iterative
through the design process, converging to the ldé¢sign stage, and ultimately ending
in the manufacture and operation of the aircratft.

Systems design is defined as “the application @ngific and engineering knowledge
to produce a functional prototype model (which)iges the basic product/process design
characteristics and their initial settings” [Nobded Tanchoco, 1993]. The goal of
systems design is to produce design concepts #wtt datisfy customer requirements
which are often referred to as design objectivesyktems design, particularly in modern
aircraft systems design, more and more attentiorpagl to the conceptual and
preliminary design stages to increase the proligholi choosing a design that will be
successful that is, both technologically feasilbild aconomically viable. The decisions
made during these early stages have a critical ¢t the final design solution since
poor conceptual design will lead to more changggpéaing in late design stages, which
will result in dramatic increase in cost. To prelveostly re-designs as much knowledge
as possible should be made available at the etdes of design. Probabilistic design is
a suitable approach that can bring knowledge toetidy design stages, capture the
uncertainty effects, and provide suitable configemcthe results obtained. Probabilistic
aircraft system design process for conceptual aetinpinary design is illustrated in
Figure 8 [Li et al.,, 2004]. This design process vemmpted from a generic design
methodology referred to as the Technology Idemtifan, Evaluation and Selection
(TIES) method [Kirby and Mauvris, 2000; Mavris andelwrentis, 2000a] which
encompasses a feasibility and viability examinatgocess, explained in numerous

technical publications. An approach called the lddifTradeoff Environment (UTE),
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which uses combined sets of Response Surface Bgeat(RSEs) to visualize
sensitivities of key design parameters to misseuirements, concept design variables,

and technology k-factors was also explored inteshod.
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Figure 8: Modern Aircraft Systems Design Process [Li et2004]

In the process presented in Figure 8 for the detertion of system feasibility and
concept viability, the Joint Probability Decision aking (JPDM) [Mavris and
DeLaurentis, 2000b], a probabilistic MCDM technigweas employed. The first step in
this method is problem definition, where a set efjuirements is well defined in
responsible to a customer’'s needs. Then a basebineept needs to be identified as a
starting point based on which the further desigeaisied out. In the conceptual stages of
aircraft design, a rapid assessment is desiredetfonn the tradeoffs. To effectively
facilitate the rapid assessment, a modeling andilation environment is necessary in

which some sizing and performance programs are tsdtklp the analysis process.

Further, with the introduction of uncertainty, a EJTs generated to explore the design
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space using statistical methods including DesigrExjperiments (DoE) and Response
Surface Equations. Subsequently, technical feagibg investigated based upon the
customer requirements and environment or operdtimoastraints. In this key step, the
JPDM technique is used to determine whether an resxcpe investigation of new

technologies is necessary. If the design concempbti$easible, three options are available
to improve the feasibility without technology infas: relax the active constrains, open
the design space or change the concept. Usually,new design for advanced concept
development, the options above are not allowed d¢ochosen because of design
limitations, and therefore technologies need toidentified and infused to improve

system feasibility. Finally, the most viable contcseelected from the feasible solutions is

obtained using the JPDM technique, and then istsethe next design step.

2.2 Uncertainty in Systems Design

In the previous discussion, the concept of unaetgds identified as a key factor which
has to be captured to deal with decision makinghodern systems design. In general,
uncertainty means two or more outcomes are possibline context of systems design,
this implies that “multiple system responses argsfide when variability associated with
design information (i.e. requirements, conceptsl sthnologies) is propagated to the
system level” [Baker, 2002]. The existence of utaiaty in systems design results from
the facts that most assumptions made about thetgeal environment of the system are
uncertain, and new technologies used often hawiness/availability issues. In addition,
computer model is usually not accurate enoughfteatethe reality so introduces further

uncertainty to the design solutions. This lack eftainty about the system responses
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makes decision making in systems design one ofrtbst challenging tasks faced by
decision makers.

It is apparently that uncertainty is the greatasthe early design stages as shown in
Figure 9. In this figure, “knows” means certaintgnow-unknowns” indicates risk and
“unknown-unknowns” signifies uncertainty. Thus, grdecision making models are
classified with respect to these states of knowdedihey are decision making under
certainty, decision making under risk and decisiegking under uncertainty. Decision
making under certainty implies that the system oo is known and occurs with a
probability of 1 (knows). Decision making undetkrimplies that the system has multiple
possible outcomes and the probabilities for theuoenice of the outcomes are known
(known-unknowns). Decision making under uncertaimtyplies that the system has
multiple possible outcomes but the probabilitiestfee occurrence of the outcomes are
unknown (unknown-unknowns). Garvey summarizes th&indtion saying, “In a
situation that includes favorable and unfavorabkenés, risk is the probability an
unfavorable event occurs. Uncertainty is the imdefhess about the outcome of a

situation. We analyze uncertainty for the purpdseeasuring risk.” [Garvey, 2000]

KNOWS

" KNOW-UNKNOWNS

7

-
UNKNOW-UNKNOWNS ” ﬁ

o

CONCEPT VALIDATION FULL PRODUCTION DEVELOPMENT
SCALE
DEVELOPMENT

Figure 9: Risk and Uncertainty Greatest at Front End [U.Sn¥r1990]
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In order to handle the risk and uncertainty which the greatest during concept
development and validation, a probabilistic desagproach needs to be employed to
produce robust and/or optimal design solutionsaAssult, design decisions need to be
made using probabilistic decision making technigaesl some of them will be described

in Section 2.6.

2.3 Design isa Decision Making Process

In general, the performance attributes of the desiglution are needed to meet some
functional requirements and constraints. For examfd design a large commercial
aircraft, multiple requirements, such as requiretsieon aerodynamics, propulsion,
structure and noise, need to be satisfied. Usu#illg, design that best satisfies one
individual requirement does not have the best perdmce on other requirements (Figure
10) [Kroo, 2004]. That is, typically there is nalasign that has the best performance on
all the requirements. As a result, tradeoffs neetdd done when the requirements are
simultaneously taken into account. This usuallyolmgs decision making activities, such
as determining the preference information of thet@mer, establishing the decision rules
of evaluating the alternatives, and selecting thest” solution among the alternatives.
Sen and Yang [1998] point out that decision makimgengineering design “can be
helpfully visualized as a collection of activiti¢isat relate to choice in the context of
competing technical or functional requirements’eter also argued that “Thus, decision
making is essentially part of the design procesd #re fundamental structure in

engineering design.”
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Figure 10: One can only make one thing best at a time [Kr0042

2.3.1 Decision Making in Systems Design

Decision making is “the act of making up one’s mipaiging, or reaching a conclusion
about something” [Webster's New World Dictionary Aimerican English, 1996]. This
definition from Webster’'s dictionary does not clgamdicate the relation between
decision making and design. However, more and rapmghasis is given to the decision
making in engineering design and there is an emgrgnderstanding that design is a
decision making process.

Hazelrigg [1996] argued that “To be sure problaviag capabilities are important
in engineering. Yet, ... problem solving is not grencipal activity of engineering; rather
it is decision making”. This emphasis on decisioaking is supported by the statement

of other researchers. Tate [1999] asserted thatddsign, decision making is most
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important. This is because designers must make rygeg of decisions: for example the
choice among various alternatives in order to ereatselect the best design, (or) the
development of a set of suitable requirements” Baker [2002] noticed, Howe [2000]
clearly stated the role of decision making in eegiing design:
Engineering design is a non-unique iterative pracéise aim of which

is to reach the best compromise of a number oflicng requirements.

Whether the need is for a totally new item or fodevelopment of an

existing one, the design procedure commences witmtarpretation of

the requirements into a first concept. This is e8ally a synthesis

process which involves decision making. Once tisé doncept has been

derived it can be analyzed in the context of tlipmements. The concept

is refined by an iterative synthesis/analysis/deaisnaking sequence

until an acceptable solution is achieved.

This argument recognized strong connections betvdesign and decision making
and implied an unexaggerated conclusion: desigrdiscision making process [Hazelrigg,
1996]. This statement is championed by the fadtdeaision making permeates through
the design process and is at the core of all deadivities. Problem definition, for
example, involves deciding what the customer respénts are and how to define
constraints and targets. Other design phasesasualiernative generation, design space
exploration, and concept selection, rely heavilyoomre pure decision-making processes
[Li et al., 2004]. Furthermore, the selection ofid@ parameters, which is a basic design

fulfillment, represents the decision.
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2.3.2 Decision Making in Early Design Stages

It has been recognized that, in an engineeringgdesnost of the changes occurring in
early design stages will lead to high quality dasigth significantly reduced cycle time
[Sullivan, 1986]. On the contrary, if most of theanges happen in late design stages, e.g.
re-design, the cost of making change will dramédtidacrease since design freedom is
highly limited in these stages. Figure 11 showscthraparison of traditional serial design
approach and concurrent engineering design appndhhrespect to a design time line
[DoD, 1996]. From this figure, one can see thatdbst increases exponentially when the
changes happen at the late design stage. There®many changes as possible should
be completed early in the design time line. To prévthe costly re-designs, as much
knowledge as possible should be made availablaeataérly stage of a design and the
requisite changes should be accomplished beforedbeis locked in. This paradigm
shift of bringing knowledge to the early designgst® to increase design freedom and
reduce cost is illustrated in Figure 12, which merpreted in numerous technical
publications while Refs [Mavris et al., 1998], [Dalrentis, 1998], and [Mavris and
DelLaurentis, 2000a] provide the best overall pectpe.

Therefore, as briefly stated before, more and nattention is paid to the conceptual
and preliminary design stages to increase the pibityaof choosing a design that will be
successful. The decisions made during these desigges, including identifying
customer’s requirements, determining the attribudksnterest, and selecting analysis
tools, play a critical role in the design proceshey are the guidance and basis that
subsequent design decisions rely upon, and haw@@ortant impact on the final design

solution. Therefore, these decisions in the eagbigh stage need to be made wisely.
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With knowledge brought forward in the design tirme2| designers are able to make
more educated decisions. Integrated Product anteBsdevelopment (IPPD), illustrated
in Figure 13, encourages moving information forwardthe design process. IPPD is
concerned with upfront activities in the early desphases and allows the designers to
decompose the product and process design tradgioterthrough a system’s life cycle
[Marx et al., 1994]. The implementation of IPPD drders decision making, brings
downstream and global issues to bear earlier adncern with conceptual and detailed
planning” [DoD, 1996], so it can allow the desigt@make a better decision in the early

design stages.
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Figure 13: Hierarchical Process Flow for Large Scale Systetagiration [Marx et al.,
1994]
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2.4 Decision Making Process

In early engineering design, the decisions madénduhe design process are mainly
based on the designer’s intuition, that is, hiseeigmce, values, and preferences. With the
complexity of design problems increasing, decisiweking is almost an impossible task
for the individual DM to manage. For example, itusually hard for a DM to make a
selection among three alternatives with respesixattributes of interest by himself. To
facilitate DMs to make proper decision for compf@wblems, various decision making
methods and techniques have been developed inastedecades, and this led to the
emergence and flourishing of a new scientific fieltbwn as Decision Science in the
beginning of 1970’s [Matsatsinis and Y., 2003].

It is widely accepted that a good problem formwalatplays an important role in
determining the success of the final solution. Meesearchers have made great efforts to
formulate the decision problem, and tried to compemvith a model to correctly represent
the decision making process. Among them, the oopgsed by Simon is particularly
famous model, in which decision making is divideatoi three distinct phases:
intelligence phase, design phase, and choice prapee 14 shows the decision making
process proposed by Simon.

In the intelligence phase, the goal is to define phoblem and collect the necessary
information. The DMs need to explicitly identifyetcustomer’s requirements, problem
constraints, and decision criteria. The charadiesisof the problem also need to be
defined so that an appropriate decision makingriecie can be selected to solve the

problem.
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Intelligence Phase
Organizational objectives
Search and scanning procedures
Data collection
Problem identification
Problem classification
Problem statement

A

4

Design Phase
Formulate a model
Set criteria for choice
Set criteria for alternative
Predict and measure outcome

A

Choice Phase
Solution to the model
Sensitivity analysis
Selection of the best (good) alternative
Plan for implementation (action)
Design of a control system

4

Implementation Phase

A

A

Implementation
successful?

Application and
solution
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Figure 14: Generic Decision Making Process [Simon, 1960; Speaand Carlson, 1982]

The design phase is mainly focused on molding tleblpm to efficiently represent
the status of the problem. An investigation ne@dbe done to figure out which design
alternatives are available for further selectidrihére are no existing alternatives, design

and analysis will be performed to generate the derapset of alternatives. The




generation of design alternative involves desigivdies such as design space definition,
design space exploration, and feasibility evalumatio

The choice phase is the most significant in thestlmt making process. In this step,
the best alternative will be selected based orptiwities of the criteria defined in the
intelligence phase. An appropriate decision makimgthod or technique needs to be
selected first, because different methods haverdifit representations of the designer’s
preference information, various analytical alganthand decision rules, and will suggest
different “best” solutions. After the decision magii method is selected, searches,
evaluations and choices may need to be carriedopubllowing the problem-solving
procedure of the selected method, and the “bedtitisn can be obtained based on the
evaluation of the given criteria.

Usually, it is accepted that the implementatiorihaf decision is also included in the
choice phase. Because of its importance and relatdependence, it is considered as a
separate phase in the decision making processidnphase, the proposed solution is
implemented and the result is evaluated. If theltesneet the requirements, the solution
will be directly applied. Otherwise, one needs tagdose the problems that may have
happened in the preceding phases, and revisiomrendification should be performed

until a satisfactory result is obtained.

2.5 Multi-Criteria Decision Making

Each decision making activity falls into one of twategories. The first is decision
making based on DM’s brainstorming, experienceintuition. In this category, DMs

come up with a final decision in an empirical waighout utilizing sophisticated decision
making techniques or methods. In th& 2ategory, for more complex problems,
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decisions are made with the aid of some structuledsion making techniques or
methods which have an analysis model and stepdpymsbblem solving procedure to be
followed. These structured decision making methadten employ analytical or

numerical technique to form a model which is aldefdcilitate the decision making
process. In such a scenario, DMs reach the finalsaas by firstly formulating a

decision problem using the analysis model of théhookand then applying the problem
solving procedure to the formulated problem. Thedgtpresented in this document is

concerned with decision making problems in the séaategory.

2.5.1 What is Multi-Criteria Decision Making?

Almost every design problem in modern engineerirgigh inherently has multiple
criteria which need to be satisfied. It is oftee ttase that good values of some criteria
inevitably go with poor values of others, so tha best design is always a compromise
in some sense. In order to find the best compromdssign solution, designers are
required to take all the metrics of interest intoca@unt concurrently when making
decisions. For example, when designing a large cential aircraft, designers will have
to consider reducing cost, increasing performamcenainimizing emissions. As a result,
a tradeoff has to be done, and compromise becomesssential part of the MCDM
process.

Typically, in order to solve an MCDM problem, somecessary factors need to be
known beforehand: 1) the well defined, measurabter@, 2) the preference information
on the criteria, 3) the alternatives and 4) a gigoed, repeatable, transparent decision
making method. The criteria can be thought of &srtteasure of performance for an

alternative, such as speed and payload of an Himwacept, and can be identified by
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analyzing the customer’s requirements. The critegad to be well defined so that the
customer’s requirements can be fully representdrt dlternatives are the candidates
among which the “best” solution is selected. Thegyrbe the concepts that are already
existing, or need to be generated in the desigegs Since the criteria do not have
same priority to the customer, the preference méiion on the criteria should be
defined. Relative weights, which are assigned ledfand or calculated, are a popular
way to represent the preference information. Theme other ways to represent the
customer’s preference, which will be explainedhe hext section. A set of appropriate
alternatives has critical impact on the final swintbecause the final solution is one of
the elements of this set. Usually, the alternatiges non-dominated solutions to the
decision making problem. The decision making metisodsually a systematic process
which employs some decision rules and algorithnfetmulate the decision problem and
provide guidance to the DEM to reach the final siecis. Different decision making
methods have their own advantages and disadvani@ggsre suitable to solve one type
of decision problem, so the selection of an appat@method should be carefully carried
out before the decision making process proceeds.

In general, a MCDM problem can be mathematicallyresented by Equation (1),
whereX is the n-dimensional vector of design variablefnieg a designf.(X) (c = 1, 2,
..., K) is the value of the-th criterion atX. The problem is subject to the inequality
constraintsg,(X) ( = 1, 2, ...,my), equality constraints(X) (I = 1, 2, ...,np) and side
constraints which all together define the desigacsf2. The design alternatives in the
design space are feasible solutions. For each poimt the design space, there is a

corresponding-dimensional attribute vect®{X) in the criteria space. That is, the design
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space can be mapped into the criteria space delbn&i= {f (X)|X 0 Q}. The objective

of the MCDM problem is to find a desighk JQ that can minimize the aggregate
function F(X) which is a function of criteri&(X) (c = 1, 2, ... k). X* is called an optimal

solution iff X*[JQ and f (X*) < f(X) for anyX OQ. If X* exists, it will be the design
solution for the MCDM problem. In reality, the atutes of a product are usually
conflicting so a design solution intending to impgoan attribute may impact another
attribute in the opposite direction. For example, niinimize the gross weight of a
commercial aircraft, the use of composite matesi@bonsidered as the solution. However,
the cost, which is expected to be minimized todl, vé increased by taking this solution.
Therefore, in MCDM tradeoff has to be done among thiteria, and finding the
compromise solution is the aim of the MCDM.

Minimize:  F(X) = f[f,(X), f,(X)...., f,(X)]
Subjectto: X[OQ

_ _ 1)
g;(X)<0 j=1...,m
0=l x h(x)=01=1...,m,
x <x <x',i=1..,n
X=X

The MCDM techniques are broadly classified into twges: Multi-Attribute
Decision Making (MADM) and Multi-Objective DecisioMaking (MODM) techniques.
MADM includes the methods that select the “bestthpoomised solution from a small
number of alternatives based on prioritized attebuof those alternatives. MODM
relates to techniques that synthesize a set ofjuleshat are required to meet a list of

requirements. Briefly, MADM deals with the conceggtlection problem while MODM
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handles the design or synthesis problem. The oglglip among MCDM, MADM and

MODM is presented in Figure 15 [Sen and Yang, 1998]

Criteria

Attributes——— .
(Selection: MADM,) direction

Goals

l

Constraints
Figure 15: Multiple Criteria Decision Making [Sen and Yang,98)

2.5.2 Why Multiple Criteria in Aerospace Decision Making?

Aerospace systems are very complex, having integatisciplines and technologies.
The requirements for designing a successful systame from various stakeholders such
as the passengers, pilot, maintenance crew, airhmenufacture, and so on. These
stakeholders have different requirements based heir bwn needs. For example,
passengers think safety is the first need to thmlois consider the handling quality is the
most importance issue that should be taken carevlafe airline is the most concerned
with the overall operating cost. Figure 16 shows design environment for aerospace
system design. This complicated design environnieaicates that aerospace system
design is multi criteria in nature. Therefore, mer to achieve the success of a design,
the stakeholders’ needs have to be all simultatgdaken into account. The needs
include reducing costs, increasing profit, perfonoceg environmental friendliness, and

quality. As a result, to produce the best designcept, the DMs are involved in
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balancing the multiple, potentially conflicting @butes/criteria, and transforming a large
amount of customer supplied guidelines into a $plidefined set of requirement

definitions. This implies that the aerospace systiesign is essentially a MCDM process.

Handling
Quiality

Figure 16: Multi-Criteria Decision Making in Aerospace SysteDessign

2.6 Multi-Criteria Decision Making Methods

MCDM addresses decision making with multiple, pblgsconflicting criteria that simply
indicates attributes or objectives. MCDM problemsvblve the selection of the ‘best’
alternative from a pool of preselected alternatiglescribed in terms of their attributes”
[Hwang and Masud, 1979]. These preselected aligasatire the solutions that can be

best described by the concept of a Pareto frontier.
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2.6.1 Pareto Frontiers

Since good values of some criteria inevitably gthwgoor values of others, the goal of
the MCDM is to find the “best” compromise solutiamich has best overall performance
of satisfying all the attributes. This “best” sotut can be obtained from a set of the
design alternatives referred to as the Pareto-@bpsmiution.

Pareto Optimality: The Pareto-optimal solution efided as the solutioX* iff no
X 0Q exists such thaf, (X) <f (X *jor alli0{12---,k}, and f; (X) <f ,(X*) for at
least one |,j 0{12,---,k }

The definition of the Pareto optimality indicatdsat there is no other feasible
solution in the design space has the same or h@#tésrmance than the Pareto optimal
solution considering all criteria, and the Parepdiroal solution does not have the best
performance in all criteria [Zeleny, 1982]. It iear that Pareto-optimal solution is a non-
dominated solution which is “achieved when no cdtecan be improved without
simultaneous detriment to at lease one other mitefBandte, 2000]. The locus of the
Pareto optimal solutions is known as Pareto fronAgwo-dimensional Pareto frontier is

illustrated in Figure 17 for “smaller is better’iteria.

Non-dominated Dominated
A Solution ° '/ Solution

S °
5 [ Design
E 4« Space

Pareto
Frontier

¥ Optimal (ideal) Solution
Criterion 1

Figure 17: Two-dimensional Pareto Frontier
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In general, the “best” compromise solution is seldcfrom the Pareto frontier.
Therefore, it will increase computation efficienf€yhe Pareto optimal solutions are first
selected as candidates and then the final soligi@mosen from them. However, it has
been recognized that the number of non-dominatédiso will increase dramatically
with the number of the criteria [Deb, 2001; Bored aavris, 2004]. As a result, for
problems with a large number of criteria, it is mairth the computational effort to find
the non-dominated solution first since it will bi#idult to resolve all the non-dominated
solutions. Though this problem exists for largeisiea making problems, it does not
stop Pareto frontier from being an desired conoefite realm of MCDM.

In order to deal with the more complex decisionbtems, researchers have focused
in the past decades on developing advanced metiofigilitate the decision making
process. Currently, there are over 70 MCDM methibd$ have been proposed. Some
widely used MADM and MODM methods will be brieflgained in the following

sections.

2.6.2 MADM Methods

MADM methods are developed to handle concept delegiroblems. In this class of
problems, the “best” solution is determined fronfimite and usually small set of
alternatives. The selection is performed basederevaluation of the attributes and their
preference information. In the decision making pss; many MADM techniques use
decision matrix (or goal achievement matrix) D, whdn Equation (2), to describe the

states of the attributes of each alternative. Is #yuation, elemeny; represents the

value of attributej with respect to design alternative
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Another important concept is the comparison matwkich represents the DM’s
preference information. Equation (3) showsmaby ncomparison matrixM , in which
the element mil represents the relative importafcaternativei over alternativd with

respect to attribut¢. Therefore, for a decision problem which hasalternativesk

attributes, there will b& n by ncomparison matries.

1 myp - my
m 1 - m

M = :21 - :2n wherej = 1,2, ..., k 3)
My My -1

Generally, MADM methods can be classified into cemgatory and non-
compensatory methods based on the treatment ofattrbute information. The
compensatory methods allow trade-offs between r@jt@assigning a number to each
multidimensional representation of an alternatiMee non-compensatory methods do not
permit the trade-off between criteria, i.e. oneawoairable criterion value cannot be offset
by reducing a favorable value of another criterion.

Several MADM methods are listed in Figure 18 [Sexl &ang, 1998], of which
some typically used methods are briefly explainedehand more detailed descriptions
about these methods can be found in Appendix B. &w&h Yang also proposed a
taxonomy in the form of a tree diagram to help sieci maker select suitable decision

method, as shown in Figure 2.
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Dominance

No Information

i\

Maximin

Maximax

Conjunctive Method

Standard Level |<

Disjunctive Method

Weight Assignment

Multiple
Attribute
Decision
Making

Direct Assignment

Least Square

Eigenvector

Entropy

MITA |

Lexicographic Method |

Simple Weighting |

TOPSIS

Weight Given Before Han

Linear Assignment

Weight to be Generated

Relative Position Estimatior]

ELECTRE

AHP

LIMAP

Local Utility Function

UTA |

Implicit Utility Function

ILUTA |

EDMCM |

Figure 18: Classification of MADM Methods [Sen and Yang, 1998]

2.6.2.1 Preference Representation

Preference is a concept that describes the DM'digpesition in favor of one attribute

over another when making choice between altermngtibased on the satisfaction or

utility they provide. For instance, when shopping & new car, one customer think the

reliability and fuel consumption are the most intpat things that a car should have,

while another buyer may consider the safety andfopeance are the desired

characteristics that he wants. The difference iefgpences will end up with diverse
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decisions: the first customer considers Toyota (aie the best choice while the latter
may think BMW 330i is his desired car. This implidsgat preference is one of the
important factors that have a critical impact om tinal decision and needs to be
carefully formulated.

There are several approaches to represent the pidference information, including

weight assignment techniques, loss function, ytilinction and class function.

Weight Assignment Technigues

Weight assignment techniques are the widely usetintgues for representing the
preference information since they are easy to wstaed and simple to use. Typically
each attribute is assigned a relative weight teptasents its importance comparing with
other attributes. The higher that attributes assigweight, the more important that
attribute is considered to be. Three typical weighsignment techniques are often
adopted in the decision making methods: directgassent, eigenvector method and
entropy method.

Direct assignment may be the simplest way to foateupreference information. In
this technique, one is allowed to “directly evatudhe relative importance of one
attribute over others using certain evaluation ddadi’ [Sen and Yang, 1998]. Usually
this can be accomplished by an experienced decmgker using a 10-point scale with
the definition that O is extremely unimportant ah@ is extremely important. This
technique is popular due to its simplicity, howeitas not accurate enough to represent
the DM’s preference therefore it is not an appratertechnique for the decision problem

whose solution is sensitive to the DM’s prefereimdermation.

47



The eigenvector method is an analytical way toitelielative importance. The
preference information can be obtained from sohamgeigenvalue function shown in
Equation (4).This method uses pairwise comparisiwéden attributes, represented by a
comparison matri defined by Equation (3). The weights of attributas be calculated
as the normalized eigenvectdf as shown in Equation (4), whekgax is the maximum

eigenvalue of the matribd.
MW =AW 4)

To use this method to calculate relative importantehe attribute, all pairwise
comparisons of M should be consistent. However, dbmparisons normally are not
consistent, especially for large comparison mat8aaty [Saaty, 1988] suggested an
algorithm that starts from an initial weight vectamd uses the concept of consistency
index to obtain the final weight vector iterativelyhis algorithm first produces a
comparison matrix with high degree of consistenog #hen uses it to calculate the
weight vector utilizing the eigenvalue function shoby Equation (4).

The entropy method provides another way of eligitand representing preference
information, especially for the case where the sleni matrix, defined in Equation (2), is
available. Assume a decision matrix of a MADM peahlis represented by Equation (2),
and then the best weights of the attributes arergby Equation (5).

It is worth noting that the value of; “reflects the degree to which th® attribute
contributes in discriminating over the set of altdives concerned” [Sen and Yang,
1998]. This can be verified by the fact that theight of an attribute is small when all

the alternatives have similar outcomes on thebaiiei.
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Taguchi's Loss Function (LF) concept originatedniréhe robust design method,

Larger the better: L(C)=k(/C)?

Smaller the better: L(C) =kC?

Nominal the best: L(C) = k(C - m)?

which is a systematic approach to improve the prbdjuality and reduce cost by
minimizing the sensitivity to uncontrollable, or ise, factors. The loss function
establishes a financial measure of the customesati$action with a product's
performance as it deviates from a target value.t Thathe LF measures the product
quality in terms of the deviation and variabilityhe further the product attribute is from
the target value or the higher the variabilityashthe poorer its quality and the more loss
it creates to society. There are three types otLKErger the better, smaller the better,
and nominal the best. The mathematical modelsedeh.F are shown in Equations (6),

(7) and (8), respectively, and visualized in Figlige

(6)

(7)

C]
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L > L

Criterion Criterion Criterion

Larger is Better Smaller is Better Nominal is Best

Figure 19: Classification of the Loss Function

Not only does the LF play a crucial role in robdssign, but also it provides a good
metric for multi-criteria decision making. The LRijth a physical meaning, directly
represents the decision maker’'s preference. If aiterion is more important than the
others, the loss due to the derivation from thgeabwralue with respect to this criterion
will be higher than the loss contributed by anyeotbriterion. Similarly, two criteria will
result in the same loss if their importance is équalike the conventional weighting
method that involves trial-and-error, the LF is isect way to indicate the decision

maker’s preference and is simple to apply.

Utility Function

Utility, which originated in economics, is an alastr variable, indicating goal-attainment
or want-satisfaction. It is also can be consideasdh “measure of satisfaction or value
which the decision maker associates with each ow€dDieter, 2000]. Utility is a
concept that was introduced by Daniel Bernoulli,Datch mathematician in the
eighteenth century. His diminishing marginal wili{for the usual person, utility

increased with wealth but at a decreasing rateghwisi represented as an utility function
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shown in Figure 20) stems from his solution to themous St. Petersburg Paradox
[Martin, 2004]. The diminishing marginal utility diicates that a person's valuation of a
risky venture is not the expected return of thattwee, but rather the expected utility
from that venture. Bernoulli’s idea profoundly idéinced his and subsequent generations.
In Theory of Political Economy by Jevons in 187%k toncept of utility is first explicitly
explained and systematically used [Barbera etl898]. Since then, utility theory has
been enriched and improved by scientists from waritelds and is now a mature theory

applied in many areas.

Utility

[
-

Wealth

Figure 20: Utility Function

Utility function has the capability of representirgg decision maker’'s preference
information by measuring the “goodness” of the sieci making criteria. The numerical
value of goodness measured by utility is obtaingd Bunction which expresses utility as
a mathematical function of the decision makingeciiin. The utility function may be
visualized as moving weights so that the relatiemtebutions made by different
attributes to the ranking of alternatives changthwhe attribute values themselves. A

utility function used to describe decision maketsference is clearly not unique. If the
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value of the utility function were to be doubleduared, or subjected to any other strictly

monotonically increasing function, it would stikkscribe the same preference.

Class Function

Physical programming (PP) is a multi-criteria opaation method which captures
designer’s preference information [Messac, 1996 physical meaning. In this method,
the designer’s preference with respect to eackrmit is represented as a set of ranges
with different degree of desirability by using dainction. An example of soft class
functions for physical programming is shown in Fg21. The horizontal axis represents

the value of the criteriow;, and the class function, which will be minimizear the
criteria, ﬁi is on the vertical axis.

There are four types of class function: smalldyvatier, larger is better, value is better
and range is better, as depicted in Figure 21,emsely. The class function has the
degree of desirability of six ranges for each generiterion for classes 1S and 2S, ten
ranges for classes 3S and eleven for class 4S, tahly desirable to highly
unacceptable in order of decreasing preference.pin@meters); throughgis defining
the limits of each desirability range are physicatleaningful values that are provided by
the designer to quantify the preference. The diasstion has been proved to be able to
remove the weight-tweaking process that usuallystexin the weighed sum method
[Chen et al., 1999] and is considered a promisingthod to represent designer’s

preference information.
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Figure 21: Soft Class Functions for Physical Programming [Céteal., 1999]

2.6.2.2 Overall Evaluation Criterion (OEC)

The Overall Evaluation Criterion (OEC) method iscalknown as Simple Additive

Weighting (SAW) or Weighted Sum (WS) method. TheGE an elementary MADM
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method that aggregates multiple attributes into @ungction in which the multiple
attributes are translated into a single evaluatioatric. The function is a linear
combination of the weighted normalized attribu&gyeneric OEC function is shown in

Equation 9.

OEC= 0 C.rlte.rlon 1 ‘p Crlt.en(.)n _24 ) C.rlte.rlon 3 " C.rltelrlon _n 9)
Criterion _1, Criterion_ 2 Criterion _3,, Criterion_n,,

To calculate the value of OEC, the attributes amamalized by their corresponding
baseline values first. By doing this one can av@dding apples and oranges”. If a
criterion is a “benefit” criterion, its normalizelue is obtained by being divided by its
baseline value, on the other hand, if a criterea f‘cost” criterion, its normalized value
can be obtained by dividing the baseline valuetssifi a, 3 andy are relative weights of
the criteria and their summation is unity. Theseghts provide the ability to tailor the
OEC to specific needs, preferences, or points efnvvof a customer [Mavris and
DelLaurentis, 1995]. OEC is expected to be maximizbédt is, the “best” solution
suggested by this method has the highest valu&eaf.O

OEC is one of the MADM techniques that is widelyedis The advantage of this
technique is its simplicity: it is easy to undenstaand use. On the other hand, OEC does
not consider the correlation between the attribatesis sensitive to the relative weights.
These situations will become worse when the nurobeattribute increases. In addition,
the values of the baseline attributes have stramgacts on the calculation of the OEC

and have a critical impact on the final decision.
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2.6.2.3 Technique for Ordered Preference by Similarity to the ldeal Solution

(TOPSIS)

TOPSIS is one of the widely used compensatory aecisiaking techniques. It starts
with the construction of a decision matrix, whehe tqualitative evaluation of each
attribute of the alternatives is provided. Then thetrix is normalized so that each
attribute has the same unit length of vector. Wargous attributes can be compared with
each other based on the normalized value. The ni@edadecision matrix then is
weighted by the relative weights of the attribut@hich represent the designer’'s
preference information. And the attributes are sifal into “benefit” and “cost”
attributes. A “benefit” attribute is defined as tbme whose value varies in the same
direction with the product’'s performance, while @$t” attribute affects the product’s
performance in the opposite direction. Sequentialhe positive and negative ideal
solutions are identified, where the positive idsalution is composed of the maximum
values of the benefit attributes and the minimurtues of the cost attributes of all the
alternatives, while the negative ideal solutiothis opposite of the positive ideal solution.
The separations of an alternative to the positileali solution§™ and the negative ideal
solutionS§™ are measured by the n-dimensional Euclidean distanthe attribute space,
given by Equations (10) and (11) respectively. lynahe closeness of each design

alternative to the ideal points is given by Equat(b?).

S*=1/_Z_)(yij—y})2 i=1-,n (10)
S.’a/i‘,(yu—y;)z i=1---,n (11)
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C = ! - i:l...’n (12)

The “best” solution suggested by TOPSIS is thegieaiternative that is the furthest

from the negative ideal solution and closest to ftbsitive ideal solution, that is, the
solution which maximizes the value@f. This selection concept is clearly illustrated in

Figure 22.

Attribute, (increasing preferenc

Attribute; (increasing preference)

Figure 22: TOPSIS Technique

Because of its simplicity, TOPSIS has become alywideed MCDM technique. The
other advantages of this technique include the dtilization of information and the
systematic computational procedure, which providdisputable ranking order for the
alternatives. However, the separation of the adtiva from the ideal solutions is
sensitive to the weights of the attributes, thoaccurate weights may result in incorrect
final solution and the inaccuracy will increase twithe number of attributes and
alternatives. Hence, typically several weightingrerios are required to be investigated

to determine the final decision. Another drawbatKROPSIS is that it does not consider
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the feasibility of design alternatives and has &élssumption that each alternative has
some probability to be selected. These disadvastdescribed above lead to the fact that
an alternative with better average goodness witharce to all attributes may still
dominate the others while it violates one or maitega. This inconsistency induces a
paradox that an infeasible alternative with bettegrage goodness may even be selected
as the best solution. In addition, TOPSIS assunmas éach attribute’s utility is
monotonic, which is not true for problems whereagtipular attribute value is desired to

be achieved, such as in the “nominal is the bestédepicted in Figure 19.

2.6.2.4 Analytical Hierarchy Process (AHP)

The AHP technique is proposed by Saaty in the X97%Bhich intended to facilitate the
MCDM problems that have a hierarchical structureatfibutes [Saaty, 1980]. This
method deals with the complex problem based ordheept of translating the hierarchy
problem to a series of pairwise comparison matriaed obtaining the preference
information for the attributes. In this method, fireference information is elicited as the
pairwise comparisons between attributes or alterestand treated using the eigenvector
method. The attributes are divided into differeaetels, and the overall goal of the
hierarchical problem is on the top level, as showirigure 23. The attributes at the
lower level are the sub-attributes of the ones Wwrdce at the immediate upper level.
Each element (attribute or sub-attribute) at amilewel is associated with some or all of
the elements at the immediate upper level. To parfehis method, a pairwise
comparison matrix, as shown by Equation (3), isnidated for each element at the
single level with respect to the element immedjatbove. To accomplish this task,

elements at the single level are compared withother elements at the same level in
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terms of attractiveness or goodness with respetttee@lement at the immediately higher
level. And then the pairwise comparison is treateing the eigenvector method
(described in section 2.6.2.1), and the relativagias of the attributes at this level can be
obtained. This process is repeated from top toobotdvf the hierarchy until the final
result is reached.

Level |
(Overall goal)

Level II ---¢
(Top layer attributes)

e s—"
e loer () () (3) ~ (o)
(Higher layer attributes)
/

P -
e e
—_——

== —d
(Attributes)
__________ S ST\ S A=

\ S NS T =X
Q}/",»‘- N 4&‘

Level 111
(Alternatives)

Figure 23: Structure of Analytical Hierarchy Process (AHP)

AHP is one of the powerful and flexible MCDM techues to handle the complex
decision making problem, especially with the hiené&ral attributes. It reduces the
complex problem to a series of one-to-one compasismd can provide a clear rationale
why the suggested design is the best. Howeveg, dther methods, it has its own
limitations. It assumes that elements at any lemetept for the bottom level are
preferentially independent. This assumption does really hold for most decision

making problems since the attributes at the save tEten have correlated preference.
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Also AHP requires each alternative to be comparét all others, however, many of
such comparisons are redundant. This often causé@gansistency problem, and “such
inconsistency may become worse as the dimensidheo€omparison matrix increases.
AHP also suffers from the rank reversal of altexest depending on the number of the
alternatives being assessed and this can be adigjufactor in a normative decision

making tool” [Sen and Yang, 1998].

2.6.2.5 Joint Probability Decision Making Technique (JPDM)

Joint Probabilistic Decision Making (JPDM) techrequvhich was developed by Oliver
Brandte, incorporates a multi-criteria and a pralsilr approach to system design and
can accurately estimate the probability of satigfythe criteria concurrently [Bandte,
2000].

The JPDM technique is based on multivariate prditgltheory, and can handle
multi-criteria optimization and product selectiomplems. The heart of this technique is
the construction of a joint probability distributiothat combines the univariate
distributions of each criterion (Figure 24). Theolpability distributions reflect the
uncertainty associated with the design that is uecomplete knowledge about the
system. In the JPDM technique, the joint probapdiistribution is generated and serves
in conjunction with a criterion value range of irst as a universally applicable
objective function. The objective function, calldérobability of Success (PoS),
constitutes a meaningful metric that allows theigtess or customer to make a decision
based on the chance of satisfying the customegigirements.

There are two models in the JPDM technique: thet J&iobability Model (JPM) and

the Empirical Distribution Function model (EDF). 8dPM is a parametric model that
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requires the user to provide relevant statisticgHe univariate criterion distributions and
uses these statistics to construct a joint protlgiensity function. The bivariate normal
distribution is the typical joint probability dighution in which each of the two random
variables (X, y) has a normal distribution. Thenjgrobability density function (JPDF) of
the bivariate normal distribution is shown in Eqoat(13). The empirical distribution
function, on the other hand, relies on empiricaladeollected by using a sampling
technique such as Monte Carlo Simulation (MCS). $aepling data for each criterion
are then used to build the JPDF. If the amounhefdampling data is large enough, the
joint EDF yields the most accurate joint distrilmmtiprediction, since it does not rely on
any approximation to generate criterion statistiEqjuation (14) gives the joint
probability mass function for the EDF model. TheSPased as the objective function in

JPDM, is given by Equation (15) and (16) for JPM &DF model, respectively.

fx(x)

£,(y) .

fx(u)=Areq

Surface = fx. Y()<, y)
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Figure 24: Joint Probability Distribution
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PR =4 ZI(X, =A) (14)

i=1

1if X; =Aistrue

where | (X, = A) = X =X, %, % 1", A=[a,,a,,--a.]" .
(X =R {0 if X, =Aisfalse (X0 %00, [a,,8,,+2,]

PoS=| f(X)dX (JPM Model) (15)
Q
N
PoS=-=+ ZI(X, <X; <X,) (EDF Model) (16)
i=1
where @ is solution spaceX, =[x, X, =, X,]7 and X, =[X, Xy, ==, %,,]" are lower
and upper limits of the criteriX .
The advantages and disadvantages of the JPDM tpehrare listed in Table 2

[Bandte, 2000]. The JPDM technique is explaineddtailed in Appendix B.

Table 2: Comparison of EDF and JPM Models [Bandte, 2000]

EDF JPM
* No approximation with ¢ Only limited information
standard distribution needed needed
« Estimates joint probability «Can employ expert guesses in

Advantages|from data directly case of lack of simulation

* Most exact method » Easy used in conceptual design
* Very fast estimation of joint
probability
» Large amount of data neede®@Requires approximation with
in order to be accurate standard distribution

Disadvantage éll?equir'es modeling and *Requires correlation function
Simulation

*Estimation of joint probabilit
is time consuming
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2.6.2.6 Expected Utility Theory (EUT)

Utility is a numerical measure of “goodness” of a product or psoddse expected utility
hypothesis was formulated in Cramer’s (1728) suggestion for ragdive St. Petersburg
Paradox, and, ten years later, stemmed from Daniel Bernadligion to the paradox
[Fielding, 1999] The Paradox posed the following situation: tossinfgiracoin
repeatedly until the first time the first “head” appearghié happens on the k-th toss,
then the prize is*2ducats. How much is it worth paying to be allowed to play timee§a

Clearly, the expected winning is:
E(W):Z[EJ ¢ =1+1+---+1+--- =00 (17)
k=1

However, the paradox is that “no reasonable manldvbe willing to pay 20 ducats
as equivalent” [Bernoulli, 1954] though the expécateturn is infinite. Daniel Bernoulli’'s
solution to this paradox includes two ideas: oniét people’s utility of wealthy(w ,)is
not increasing linearly, but increasing at a desirgarate; the other is that a person
prefers a lottery only if its expected utility ofealth is greater than what it costs, not
based on the expected return of that venture. &igarshows how the value and cost of
the wealth change with the wealth in the parad®eca

For the St. Petersburg game, if the potential pldyes a utility of wealth level u

given byu(w)and starts with initial wealtlv, > ,Othen the amount that the player is

willing to pay for playing the game must satisfe thquation (18)

u(w, ) = Z(%) W(w, +2 - a) (18)
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Figure 25: Expected Utility Theory

Therefore, by Bernoulli's logic, the expected tyilof any risky venture takes the

form below [Fonseca and L, 2006]:
E(ulp,X) =3 ., p()u(¥) (19)

whereX is the set of possible outcomegx) is the probability of a particular outcorme
0 X andu: X - R is a utility function over outcomes. Equation (I#gscribes the
essence of the EUT technique.

EUT is often used for decision making under unaéetyaand risk through comparing
the expected utility which is obtained by adding #xpected utility values of outcomes
multiplied by their probabilities. This method mt@ims that, facing uncertainty, people
behave or should behave as if they are maximiziegeixpectation of utility of possible
outcomes.

EUT is known as a rational model that can well descthe DM’s behavior. Several
types of tests have been performed and discovdredcapabilities of this theory.

However, this technique has its own weakness,nfstance obtaining an accurate utility
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function for each attribute is not a easy task #nd difficult to keep the consistency

between utility values of the attributes.

2.6.3 MODM Method

Multi-Objective Decision Making (MODM) methods adesigned to handle the MCDM
problems where the “best” design is selected frdarge set of alternatives which satisfy
the given requirements and objectives. That isjmapation will be performed to
maximize or minimize the associated objectives, #ml final selected solution is a
design with the best values of the objectives.drogpace system design, these objectives
are typically the attributes of the system, evahgathe system’s performance, cost or
operational environment. In general, these objestare often conflicting so the optimal
solution is usually a compromise concept that cast ksimultaneously satisfy the
different objectives. Figure 26 lists some MODM huats that are capable of dealing
with this class of problems. These MODM methods dassified into different groups
“mainly based on the types of preference infornraiad timing for eliciting preference
information” [Sen and Yang, 1998].

A decision tree for MODM technique selection wasoadleveloped by Sen and Yang
[Sen and Yang, 1998], as illustrated in FigureRy using this figure, user can construct
a choice rule to select a method by examining thesibn rule or the computational

procedure of the methods.
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Figure 26: Classification of MODM Methods [Sen and Yang, 1998]
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Figure 27: Decision Tree for MODM Technique Selection [Sen dathg, 1998]



2.6.3.1 Additive Weighting Method

The additive weighting method, also known as pateémenethod, is one of the most
elementary and commonly used techniques. This rdetghtploys a weighted sum of the
objectives as the objective function and minimizles function to obtain the Pareto
optimal solutions. The objective function for a Iplem with N objectives is given by

Equation (20).

Min  F(X) =Z_:Wi f; (X) (20)

st. XuQ W:[wl,wz,m,WN]
where the W is the weight vector representing tative importance of the objectives.
The Pareto optimal solutions can be generated Iwngothe Equation (20). Since there
is infinite number of Pareto optimal solutions,iraf solution can be obtained when the
weight vector is given. Therefore, the weights ased as parameters to identify the
“best” solutions. Figure 28 and Figure 29 depia #theme of the method of a two

objectives with a convex and nonconvex feasiblespeespectively. This figure shows

that the optimal solutions are the points wherehyygerpland. = {f (X)

ivvifi(X)=c},

Cc is a constant, is tangential to feasible spac&he slope of the is —w, /w,, and the
thick lines indicate the Pareto optimal solutioimsEigure 28 the feasible space is convex,
so the preferred solution can be directly foundthy method. However, in Figure 29,
since the feasible space is nonconvex, the Papimal solutions between A and B are

not able to be identified by the method no matteatweight vector is used.
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Figure 28: Additive Weighting Method with a Convex Set [Hwaaigd Masud, 1979]

A f2

Figure 29: Additive Weighting Method with a Nonconvex Set [Hvggand Masud,
1979]

2.6.3.2 Goal Programming (GP)
The Goal Programming (GP) is a MODM technique tegires the decision maker to
determine goals for all the objectives that areeekgd to be achieved. This method
utilizes the concept that the best compromise deskpuld be the one which has the
minimum weighted sum of deviations from the setlgjoa

In most cases, the goals of the objectives aréhaytd” or restricted and have some

ambiguity. This often happens in reality, such &&mvdesigning a commercial aircraft, a
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goal can be “the payload should be approximateQOI8. Goal programming method
allows treating these kinds of goals as “soft” ¢oaiats, which is not too restrictive and
can be violated. Hence, the “best” solution is dlesign which has minimum weighted
deviation from the ideal solution where all the Igoare exactly met. This method also
allows setting the preemptive weights to the olbyestand the preemptive weights may
have different achievement levels.

This method can be formulated in the Equation 21

k P
Min {Z (wid +wid)) p}
=1

st. X, 0Q, (21)
f(X)-df+d” = f, =1,k

Q,={d" @ =0 X, =[X" d; d; - d; df]
dr, d >0 X0Q

where d-

i dj+ are deviation variables representing under-achieve and over-

achievement of the goalv; , w; are the relative weights for the correspondingateon

variables. fj is the goal of the j-th objective.

To solve Equation 21, an ordinal ranking of theegbyes is required, which leads to

a sequence of problem below:

min & = p,h(D*,D")
st. X, 0Q,,1=12-,L

(22)

whereD* =[d,’,d,,---,d;]", D™ =[d,,d,,---,d,]", and p, is the preemptive weight.

L is the number of the priority levels.
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Firstly, a, is minimized to obtaim, . Then a, is minimized, but subject to an
additional conditiona, <a, . This process is repeated uatilis minimized so that the

compromise design of the MODM proble” can be obtained. In this process, the
Simplex algorithm can be used to solve the probldrase objectives are linear functions
of design variables<, while any single objective nonlinear optimizatitathnique can
be utilized iteratively to solve the problem witbrminear objectives.

GP is considered one of the best methods to fiacb#st compromise solution for a
MODM problem. However, it is often a difficulty fdhe decision maker to set the goals
for all the objectives, and this method is not abldiscover all the efficient designs for a
non-convex problem [Sen and Yang, 1998]. In addjtibie ordinal ranking means the
higher ranking objective may not be detrimentedlsvhinimizing lower ranking ones,

which limits the possible solutions[Charnes and [6&wp1977].

2.6.3.3 Physical Programming (PP)

Physical Programming (PP) is a technique closdted to goal programming that uses
a set of soft class functions, as shown in Figuret@ represent the decision maker’'s
physical preferences. The objectives are classifiedn intuitive manner from highly
desired to unacceptable and then is used to camsiru aggregate objective function
which is weighted sum of the class functions. Thethad is formulated by the Equation
(23)

Min : |Oglo|:i§g_i[gi (X)]} (23)

nsc i=1

st. Q

where Q is the design space ang is the number of soft classes.
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Physical programming offers a problem formulatiamd asolution framework that
conforms to real-life design. It allows the decrsimaker to define their preference in
physically meaningful terms which capture the DMikysical understanding of the
desired design outcome. This removes the frusgatincess of weight tweaking entirely,
which often happens to the traditional methods.

PP also has its own drawbacks. Firstly, PP requirgsriori selection of range
parameters for each of the objective functions.ptoblem formulation phase, the
decision maker’s time is mostly consumed in explgrthe implication of the various
physical meaningful preference choices. SeconddypRly provides information for one
design scenario at a time. To capture a varietgesign scenarios, a set of preference
structures should be built and tested. Thirdly,i®R deterministic design method and
does not capture the uncertainties due to incommhdbrmation existing in design space

and operational environment.

2.6.4 Intelligent Decision Support System

Decision Support Systems (DSS), originally devetbpe aid managers in the decision
making processes at the beginning of 1970’s [Litll®670], are considered a set of
procedures for data and reasoning managementvétrsa wide variety of systems, tools
and technologies, and integrates them into a coenmyistem to facilitate the decision
making process. Various definitions have been gteehis term by the researchers in the
early days after this term just emerged. Keen acokt$/1orton [1978] proposed the
following classic definition: “DSSs combine theehéctual abilities of humans with the

abilities of computer systems in order to imprawve tjuality of the decisions made. DSSs
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are computer-based systems that are used in asdsupgport decision makers in ill
structured problems”.

Sprague and Carlson considered DSS a set of presdwhich focuses on
expanding the DM’s cognitive space regarding thefromted problem with the aid of a
computer [Sprague and Carlson, 1982]. The defimitias extended by Andriole [1989],
Sage [1991] and Adelman [1992], to the final foratidn below:

Decision Support Systems are interactive compuisetdh systems
(software), which use analytical methods such asisd® analysis,
optimization algorithms, etc, in order to develgppeopriate models that
will support decision makers in the formulation alfernative solutions,
the resolution of the reactions amongst them, thepresentation, and
finally in the choice of the most appropriate smntto be implemented.

Therefore, DSS is computer-based information systeat uses data and multi-
criteria decision making (MADM and MODM) models twrganize information for
decision situations and interact with decision nnake expand their horizons. It highly
alleviates the DMs’ burden in dealing with the dewbs which are semi structured or ill-
structured, and supports all the phases in a decisiaking process. In addition, the
systems are able to store and process a large ambkimowledge at much higher speed
than the human mind, and therefore can considerabprove the decision making
guality. Various DSSs were proposed in the pasadies, and the systems mainly aimed

at easing the DM'’s tasks in decision making process
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2.6.4.1 Distributed Decision Support Systems

It is clear to see that in today’s engineering gieddDMs seldom make decision alone,
since the decision making problems are becomingenamd more complicated. This
complexity inspires the idea that decomposing tiraglex decision making problem into
partial problems and handling each by differenugof experts. This motivation results
in the emergence of the Distributed Decision Suppgstem (DDSS), a specific DSS to
handle the Distributed Decision Making (DDM) sitioat DDM is defined as a “decision
making process in which the participating peoplenalifferent specialized knowledge,
execute different specialized tasks, and commumiwéh each other through a computer
environment, which aims at the support of the erinocess” [Chi and Turban, 1995].
With the development of Information System (IS)ge thtilization of DDM is
dramatically expanded. The ISs have the on-line raadl time information capabilities
through which the DDM can be fulfilled easily anffi@ently because the ISs offer
immediate response and easy information exchangest Mf the current information
systems provide such capabilities that can be cteraed as distributed on-line systems.
More recently, the web-based DSSs are viewed astsliinked to a server hosting the
DSS application, and have great potentials to respew distributed, cooperative or

collaborative decision support strategies impactiregvery core structures of the DSSs.

2.6.4.2 Artificial Intelligence

After the first calculating machine, the abacusswavented by the Chinese in the
twenty-sixth century BC, the ability to mechanihe tlgebraic process intrigued humans,
and eventually great progress was made as thaldogimputer was invented by Charles

Babbage in 1856. The digital computer was rapidiypleyed in many areas and
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alleviates some of the onerous and tedious workpgbeaple engage. At almost the same
time, researchers make efforts to create machiitbssame sort of intelligence. In 1950,

Alan Turin, the “father of Artificial IntelligencéAl)” presented the famous Turing test to
show that it is possible for a machine to thinkadsuman being [Rich, 1983 ]. Eventually,
artificial intelligence become an area of compuserence that focuses on making
intelligent machines, especially intelligent comgufprograms, that can engage on
behaviors that humans consider intelligent. Todath whe rapid upgrading of the

computer and 50 years of research, Al has beanadiln various fields, such as decision

making, game playing, computer vision, speech neitiog, expert systems and so on.

2.6.4.3 Expert System

Expert system (ES) is viewed as the most well-knapplication field of artificial
intelligence. ESs are problem-solving programs ttwahbine the knowledge of human
experts and mimic the way human experts reason.gblaé of the expert system is to
emulate the problem-solving process of an experbsehknowledge was used in
developing the system.

MYCIN, developed at Stanford in 1974, was one effilst programs to address the
problems of reasoning with uncertain or incompiefermation. “MYCIN provided clear
and logical explanations of its reasoning, usedoatrol structure appropriate to the
specific problem domain, and identified criteria rediably evaluate its performance”
[Luger and Stubblefield, 1998]. Nowadays, manyls ES development techniques in
use were originated from the MYCIN project

Figure 30 presents the typical structure of an gxggestem, which consists of three

modules: user interface, inference engine, and ledye base. The operation procedure

74



starts from the user’s task querying through ther usterface. After receiving the query
from the user, the inference engine manipulatesused information in the knowledge
base to form a line of reasoning. And then thearse is provided by the ES via the user
interface. Further input information may be regdifi@m users until the system reaches a

desired solution.

Inference Engine

Domain-Specific

A 4

Knowledge Bas Reasoning Control

A

y

A 4

User User Interface

Figure 30: Typical Structure of an Expert system

The user interface system allows the user to iotewéth the system to accomplish a
certain task. It manages the interaction, which lsamrmenus, natural language or any
other type of data, between the system and userssek can be 1) an expert, who
maintains and develop the system, 2) an engindey,employs the system to solve their
specific problem or 3) a student, who is trainedtfi@ problem solving procedure.

The inference engine is the control mechanismdbpgties information present in the
knowledge base to task-specific data to arrive ebreclusion. It organizes and controls
the steps taken to solve the problem. The mostlwigsed problem-solving method at
this point is IF-THEN rules, and the ESs that userules for reasoning are called rule-
based systems. In rule-based systems, inferencmesngitilize the idea that if the
condition holds then the conclusion holds to forrine of reasoning. There are a few
techniques for drawing inferences from a knowlettgse such as forward chaining,
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backward chaining and tree search. Forward chaistiags from a set of conditions and
moves to a conclusion while backward chaining hascbnclusion first and tries to find a
path to get the conclusion. Tree search is apmiteeh the knowledge base is represented
by a tree, and the reasoning process is performethdcking the nodes around the initial
node until a terminal node is found.

The knowledge base is the core of the advisor sydts main purpose is to “provide
the guts of this system --- the connections betwigeas, concepts, and statistical
probabilities that allow the inference engine taf@en an accurate evaluation of a
problem” [Boss, 1991]. The knowledge base storessfand rules, which include both
factual and heuristic knowledge and support thgnuent and reasoning of the inference
engine. “Factual knowledge is that knowledge @f tilssk domain that is widely shared,
typically found in textbooks or journals, and comiyo agreed upon by those
knowledgeable in the particular field while Heuadsknowledge is the less rigorous,
more experiential, more judgmental knowledge offqgremance. In contrast to factual
knowledge, heuristic knowledge is rarely discussed, is largely individualistic. It is the
knowledge of good practice, good judgment, andkde reasoning in the field. It is the

knowledge that underlies the ‘art of good guessifgngelmore and Feigenbaum, 1993].

2.6.4.4 Neural Network

Neural Networks are an information processing tepanthat is inspired by the way that
biological nervous systems, such as the brain,gs®0dformation. The structure of the
neural networks consists of a large number of Kighterconnected processing elements
or neurons to simulate the human reasoning proéesgural network system can learn

by example, like a human, to resolve problems, eaud be configured for a specific
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application, such as pattern recognition or dagdagification, through a learning process.
Just as in biological systems, learning involvegistchents to the synaptic connections
that exist between the neurons [Neural Network 2200

Neural networks appear to be a recent developnteawever, they were created
before the advent of the digital computer. Thet fimigigest step towards neural network
came in 1943 when the neurophysiologist Warren MloCln and the logician Walter
Pits published a paper on how neurons might wotkrandeled a simple neural network
with electrical circuits [Anderson and McNeill, 189 Since then, various research
activities on neural networks have emerged. InNate 1950’s Frank Rosenblatt, a neuro-
biologist of Cornell, intrigued by the operation thie eye of a fly, began work on the
Perceptron. The result from this research is tdestineural network which is still in use
today. In 1959, Bernard Widrow and Marcian HoffSiinford developed a model called
MADALINE that is an adaptive filter to eliminate lemes on phone lines. MADALINE is
considered the first neural network to be appl®é treal world problem. In 1982, John
Hopfield of Caltech developed an approach to creatful devices instead of simply
modeling brains. [Anderson and McNeill, 1992] Todaeural networks become an
interesting area that attracts various researchers.

A neural network, inspired by the structure of theain, consists of highly
interconnected entities, called nodes or units.hEaait is designed to mimic its
biological counterpart, the neuron, and each atlaecepts a weighted set of inputs and
responds with an output. Figure 31 (a) illustratdsuman neuron unit, and (b) shows a

simplified model of a real neuron [Stergiou and&igs, 2005].
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Figure 31: (a)Human Neuron Unit(b) Artificial Neuron Model

An artificial neural network typically consists btindreds of such processing units
shown in Figure 31. These units are wired togetharcomplex communication network
as shown in Figure 31 [Stergiou and Siganos, 200%ypical neural network consists of
three groups: input layer, hidden layer and oulpyér. The input layer is the unit where
raw information is fed into the network. The inpayer is connected to the hidden layer
whose activities are determined by the activitieshe input layer and weights on the
connection between input and hidden units. The wugyer is connected to the hidden
layer and its activities are determined by thesumtthe hidden layer and weights on the
connections between the hidden layer and the oldpeit.

In a neural network, a node or unit fires (sendsaohew signal) if it receives a
sufficiently strong input signal from the other msdto which it is connected. The
strength of these inputs may be varied in ordetHernetwork to perform different tasks.
Unlike traditional computers which use a CPU toceme a rigid set of rules (the program
or software) sequentially, neural networks are cosep of many rather feeble processing
units which are interconnected into a network. Th@mputational power depends on
working together on any task, therefore there isceatral CPU following a logical

sequence of rules [Intelegen Inc., 2005]. This typeomputation is related to a dynamic
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process of node firings and the structure of theradenetwork is much closer to the

physical workings of the brain.

Input Hidden Clutput
Neurons Neurons Neurons

Figure 32: An Example of Complicated Neural Network

Today neural networks are being applied to an asirey number of real-world
problems of considerable complexity such as meddiagnosis, process modeling,
financial forecasting and so on. It has been shtwhe particularly useful in solving
problems where traditional artificial intelligent&chniques involving symbolic methods
have failed or been proven inefficient. Neural natsg are also applied in the decision

making field to help the DMs get the desired decidor a complex problem.

2.6.45 DataMining

Nowadays, more and more attention is paid to amadydata as the world is becoming

data-driven. Data mining, also known as Knowledgecbvery in Databases (KDD), is
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one of the solutions for data exploration. It idimked as "the nontrivial extraction of
implicit, previously unknown, and potentially usefmformation from data" [Frawley et
al., 1991]. Data mining has been coined to desaihariety of techniques to identify
rules/patterns of information, or decision-makingowledge in a large amount of
structured or unstructured data, and extract theesech a way that they can be put to use
in the areas such as decision support, predicfamecasting and estimation[Chapple,
2006]. Hence, the use of data mining can uncoverptiterns or rules inherent among
the set of data, which helps organizations makiband timelier decisions.

Analogously, data mining is finding the proverbmedle in the haystack, where the
needle is the desired piece of intelligence andhidngstack is the large data warehouse
which is built up over a long period of time. Thatal warehouse is a database where the
data are organized and presented as informatidhet®M in order to aid the decision
making. Figure 33 illustrates the relationshipnestn a data warehouse and data mining.
Typically, the data to be mined are extracted flmmiata warehouse into a data mining
database or data mart. However, a data warehouss & requirement for data mining.
In many cases, building up a data warehouse inammus task and time-consuming.
An alternative way to mine data is to directly extrdata from the source databases into

a read-only database which functions as a data mart

Data Sources _Data
| Warehouse

Geographic Analysis Data Mining
Data Mart Data Mart Data Mart

Figure 33: Data Mining and Data Warehouse
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CHAPTER Il

SOLUTION APPROACH TO METHOD SELECTION

As stated in section 2.3.1, modern engineeringgtel essentially a decision making
process. From problem definition to final conceglestion, decision making permeates
through all the design phases. Especially, in thecept selection stage, the concept that
best satisfies the conflicting criteria will be rd#ied by the decision maker with the
support of a multi-criteria decision making techreq Therefore, the method used to
make decisions on concept selection appears veppriant to reducing the desired
solution to the design problem and thus needs wabsefully selected.

Various methods with the intentions of facilitatitige decision making process have
been developed. However, instead of easing thesidecmaking process these numerous
methods complicate the decision problem becausdatige number of methods offers
difficulties in selecting an appropriate methodhd#ts been proved that an inappropriate
method is not able to capture the essence of thielggn under consideration and may
result in an undesired solution inconsistent witle DM’s preference. Hence, it is
necessary to find an approach which is able totifyethe most appropriate decision
making method for the problem and then provide ghedance to decision maker to
obtain the final solution using the selected method

The study presented in this section introducestgiligent, knowledge-based Multi-
Criteria Decision Making Advisor (MIDAS) system wehi supports the DMs to fulfill the
above tasks. The system is capable of aiding thes DVselecting the most appropriate

method for the problem under consideration, vaiidpthe correctness of a decision
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made using a specific method, and providing advicesgenerating a new decision
making method if there are not suitable methodk@MCDM library in which candidate
methods are stored. This high ability system canamby help the DM find the most
suitable method but can also guide him or her achighe final decision by following the

rigorous procedure of the selected method.

3.1 Adapted Decision Making Process

The decision making process illustrated in Figudedbes not consider the selection of
the most appropriate method for the design probienthe choice phase. It has an
assumption that the desired solution can alwaysbit@&ned which does not hold in many
cases. In addition, the process does not takeaicrtount the scenario that there is not an
appropriate decision making method available fa& t¢fiven problem. However, these
issues often happen in the real decision problendsreed to be resolved before the
decision making proceeds. Figure 34 presents gotedi@ecision making process which
employs the MIDAS to support the decision phasee Gan see that the advisor plays a
central role in evaluating the alternatives devetbp the design phase and selecting the
“best” solution which is going to be carried outle implementation phase.

The adapted decision making process consists of phases: intelligence phase,
design phase, decision making phase and implen@mgalhase. It begins with defining
the design problem in the intelligence phase, whieeecustomer requirements, design
constraints and targets are identified and the ddost Requirements (CRs) are translated
into Engineering Characteristics (ECs) by usingGhmlity Function Deployment (QFD)
[2000] technigue. The works done in this phase adisc the essence of the design

problem based on which the further design actwitigill be carried out. If the
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Figure 34: Adapted Decision Making Process

alternatives exist, the feasibility evaluation vk performed to determine whether the
requirements and constraints defined in the igelice phase are satisfied. This will be a
pure concept selection problem. If the alternatd@sot exist and there are only a set of
requirements need to be satisfied, the alternaigexl to be generated, which results in a
design problem. In this case, a generic design adelbgy referred to as the Technology
Identification, Evaluation and Selection (TIES) fBy and Mavris, 2000; Mavris and

DelLaurentis, 2000a] is employed for the design lemols. This method encompasses a
feasibility and viability examination process, expkd in numerous technical
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publications. An approach called Unified TradeofiviEonment (UTE) [Baker, 2002]

which uses combined sets of Response Surface Bgsat{(RSEs) to visualize

sensitivities of the key responses to the missemuirements, concept design variables,
and technologies was also explored in this metlAdter the feasible alternatives are
available for selection, the MCDM advisor takesroathe tasks in the decision making
phase. An appropriate method will be selected @&hth@ DMs to make wise decision on
selecting the “best” alternative. Finally, the stbel alternative is obtained as the final

solution for further implementation.

3.1.1 Feasibility Evaluation

By definition, a feasible solution is any solutionthe feasible region of an optimization
problem [Atallah, 1999; Feasible Solution, 2005]en the feasible region is the set of
all possible solutions which satisfy all the coasits. For a concept selection problem, a
feasible solution refers to the alternative thatetaeall the customer’'s requirements,
constraints and targets. That is, a feasible ater® has to simultaneously satisfy all the
criteria defined in the problem definition stepdaamy violation of a criterion will keep
the alternative from being a feasible solution.

In the decision making process depicted in FigutgiBis worth emphasizing the
importance of the feasibility evaluation, becausmynexisting decision making methods
do not take feasibility into account, as a resulay suggest an infeasible alternative as
the “best” solution. If this solution is implemedt&vithout recognizing its infeasibility,
considerable cost or loss may be caused. This wassful implementation often
frustrates the DMs and leads to a fault conclugimet the method is incapable of

handling the problem under consideration.
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For instance, in the case described in sectiol 21TOPSIS suggests aircraft C as
the “best” solution, but one can clearly see tlmd toncept only has a safety of 0.2
which seriously violates the safety requirementmiaimum of 0.8. Hence, in reality no
airline will buy this aircraft and risk their bugiss. The paradox in this example may
result in an assertion that TOPSIS is not a capalgihod to solve this problem since it
selected an infeasible concept as the best soluliba assertion may not be prudent
enough because the conclusion was drawn withowidenng the underlying reasons
causing the undesired result. In fact, TOPSIStechnique that does not take feasibility
evaluation into account, so it attempted to selbet “best” concept from all the
alternatives no matter if they are feasible or asfble. This observation discovers that
TOPSIS considers that every alternative has sorgeedeof probability to be selected as
the final solution. Therefore, in the case thatliarnative with better average goodness
with regard to all criteria may still dominate tbéhers while it violates one or more
criteria, TOPSIS will select this alternative, anfeasible solution, as the best solution.
This issue not only occurs to the TOPSIS technidug, may also happen to other
decision making methods, such as AHP and OEC. Tdrexan order to obtain a desired
solution for the concept selection problem, a talisi evaluation of the alternatives is
necessary to be performed before the decision rggkincess proceeds.

In the adapted decision making process, one cathsedefore the MCDM advisor
takes over all the decision making tasks, the bélggi evaluation is performed to screen
the alternatives that will be sent to the decismaking phase for the final selection.
There are three scenarios that need to be condigdnen the feasibility is evaluated.

One is that all the alternatives exist and no unaa#y needs to be concerned. In this
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scenario, each of the alternatives is examined, aafehsible alternative is required to
satisfy all the constraints simultaneously. Theosélcscenario is that all the alternatives
are available and uncertainty exists in the problemthis case, the control and noise
variables are identified first, and then the dmitions of the criteria for each alternative
are obtained by using a modeling and simulationirenmnent which represents a
probabilistic analysis approach. The Cumulativetiiation Functions (CDF) of the
criteria can be used to determine the feasibilityan alternative. To evaluate the
feasibility of the alternatives, the PoSs of areralative for the criteria need to be
calculated based on the CDFs and specified taajeés of the criteria. If the PoSs of the
criteria are greater than the given confidencelégeube alternative can be considered as
feasible solution. The PoS of concurrently satigfyall the criteria can be obtained by
using the JPDM technique. By utilizing this techragthe joint PoS for each alternative
is calculated and the alternatives whose joint Pafs greater than the prefefined
threshold values are considered feasible. The CDFR ®ingle criterion and joint
probability density function of two criteria ardustrated in Figure 35. In the third
scenario, there is no alternative available foec@n, and the alternatives need to be
developed using some design methods. The studgmiessin this document employs the
TIES method to generate the alternative designsnBuhe alternative generation, one of
the key steps is to use the JPDM technique to mi@ter whether an expensive
investigation of new technologies is necessarysTimplies if an alternative is found
infeasible, technologies need to be identified anflised to improve the system

feasibility. Hence, the TIES method essentially sists of a feasibility examination
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process, the alternatives generated using thisadedle certainly feasible and no further

evaluation of their feasibility is required.
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Figure 35: Feasibility Evaluation Techniques

After the system feasibility evaluations are accbshed, the infeasible alternatives
are removed from the alternative list and onlyfeéesible alternatives are sent to the next
decision making step. This operation ensures thathe decision making phase the
methods selected by the advisor will suggest alfkaalternative as the best solution for

the given problem since the infeasible alternativege no probability to be selected.

3.2 Multi-criteria Interactive Decision-making Advisor and Synthesis

process (MIDAS)

The goal of the multi-criteria decision making pees is to select the “best” compromise
solution from the feasible alternatives based andtaluation of the given criteria. To
obtain a desired solution, an appropriate decisiaking method has to be chosen first

and then aid the DMs to solve the decision prolbgmproviding the necessary guidance.
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Since there are various decision making methoddaél@, an effective approach should
be developed to accomplish the method selectioblgm An intelligent, knowledge-
based advisor system referred to as Multi-Critémtaractive Decision-Making Advisor
and Synthesis process (MIDAS) is proposed in thidysto fulfill the above tasks. For a
given problem, the MIDAS process starts by idemidy the characteristics of the
problem and defining the decision maker’s prefeeeméormation. Then the advisor can
use the knowledge and information present in kndgdebase and rank the methods
stored in method base in term of appropriatenessestf no method has a score greater
than the threshold score, the advisor needs todimgy to suggest new method for the
given problem. If more than one methods have aesgogater than the threshold value,
more information will be needed to narrow down #atection, otherwise the method
with the highest score will be chosen as the mpgtapriate method and used to produce

the final solution to the problem under considerati
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Figure 36: MIDAS Process
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The MIDAS is designed to alleviate the DMs’ burdgnidentifying the appropriate
decision making method and support them in obtgitive high quality decision through
the decision making process. It is capable of figdhe most appropriate method for the
decision making problem and then using the selegtethod to produce final result. In
addition, it can provide guidance to generate nesthid if there is no method in method
base is appropriate enough for the given probleppagently, MIDAS fills in the gaps

existing in the current method selection approaeseshown in Figure 4.

3.2.1 Architectural Framework of MIDAS

As illustrated in Figure 36, the operation of MIDAS supported by two data bases —
knowledge base and method base, and a reasoningertbdt utilizes the information in
the data bases to accomplish the method seleasin Thus, the MIDAS process is
realized by a knowledge-based advisor system wdocisists of a user interface allowing
the interaction between users and the system,fareirce engine managing the execution
of the system, an MCDM library storing the widelsed decision making methods and a
knowledge base providing the information requiredhe method selection process, as
shown in Figure 37. To complete certain task, teerwsends a query to the system
through the user interface, and, based on the fsgbtask, the system will request the
necessary information from the user. After the ysewrides the information (inputs) to
the system, the inference engine will analyze tipiis and utilize the information and
knowledge stored in the knowledge and method bmsésm a line of reasoning. Thus
certain conclusion will be drawn for the originalsk query and the outputs will be

presented to the user through the user interfac&in® the process, additional
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information may be required from the user so thatations may occur in order to

produce an explicit and convergent conclusion.
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Figure 37: Architectural Framework of MIDAS

3.2.1.1 User Interface

The user interface system of the MIDAS allows tlseruto interact with the system to
accomplish a certain task. First, the user infothes system through the user interface
that there are certain tasks to be completed, susclselecting the most appropriate
method, validating the decision made using anothethod and solving the current
decision problem utilizing the selected method eAthe system receives the task query,

it will present the user a questionnaire with tleeigion options to the individual question.
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To complete the process, the user is requiredue tie corresponding answers, select
the desired options, and provide the supplementaimation to the system as the inputs.
Based on these inputs provided by the user, thés@adwill perform the necessary
analysis and inference, and finally the resultd @ displayed to the user through the
interface. These activities can all be completeth whe user-advisor interaction through
the user interface system. Figures3®ws the user interface of the MIDAS.

The advisor system is designed to interact withr types of users: 1) experts, who
use the system in order to get a second opinica decision making problem, obtain aids
in handling some tedious or difficult tasks tha tomputer is more efficient to deal with,
or wish to find the reasons to reach a decisionfdipwing the system’s reasoning
process, 2) engineers, who need the advice supplethe system to improve their
decision quality and employ them to solve theirc#jpee decision problem, 3) students,
who use the system to learn the knowledge aboutptisdlem solving procedure,
reasoning process or some other subjects, wheithgor plays the role of a tutor, or 4)
developers, who maintain and develop the systeah as adding new advanced decision
making methods to the system when they emerge.

The user interface system provides a convenienthaamcation between users and
the advisor system through various graphic screBms.user is able to easily manipulate
the system by inputting the required informatiol @ommands using the user interface.
The advisor responds to the user by outputting soie@ and graphs through the

interface to complete the interaction.
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3.2.1.2 Inference Engine

The inference engine of the MIDAS system is thetmdmmechanism that applies the
information present in the knowledge base and nietiase to the task-specific data to
arrive at a conclusion through reasoning. In ttesoeing process, the inference engine
organizes and controls the steps taken to solveithiglem, manipulates the knowledge
contained in the knowledge and method bases andldsathe execution of the system. It
first interprets the inputs that the user entetewugh the user interface in order to
determine which rules or facts will be applied tee tcurrent problem. This is often
accomplished by the application of statistical md#hor pattern matching methods. After
receiving the query from the user, it manipulated ases information in the knowledge
base to form a line of reasoning, and then suppertsystem to produce the conclusion
for the original task query.

The inference engine is responsible for managiegettecution order of the various
tasks, deciding when and in which order the dath®knowledge base will be used. It is
capable of evaluating the alternative search patksproviding insights derived from the
knowledge base. Also, the inference engine is @bigaintain a consistent representation
of the emerging solution.

There are two typical inference techniques thatitiierence engine uses: forward
chaining or data driven inference and backwardrehgior goal driven inference. In the
method of forward chaining, one proceeds from amisituation toward a desired goal,
adding new assertions along the way, while in thektvard chaining, one starts with the
desired goal and attempts to find evidences thap@t the goal. The two methods have

their own advantages and disadvantages. Table Semie an example of a typical
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situation that the two inference methods are usechaintaining the temperature of an
enclosure between two limits. Although both methads valid, the forward chaining
inference engine is more direct, especially whensituation becomes more complex and
involves several variables. When the temperatuangés new data is received - this
event may be used to trigger the rule. With a backwchaining inference engine, one
would have to constantly check if it is too hottoo cold [Inference Engine, 2005]. This
will increase the computational cost and highlyrdase the control efficiency.

In the study presented in this document, both érfee techniques are utilized. When
selecting the most appropriate decision making otkthhe forward chaining is used
because the selection start from the fragmentgytgwhich reflect the characteristics of
the given problem. Then, based on the situatioh t{ed inputs), the desired goal
(selecting the most appropriate method) will becheal by employing the forward
chaining reasoning process. On the other handhaencase of providing the advice for
generating new methods, the backward chaininglized since the advice is obtained by
examining the properties of the problem and thediclte methods. That is, the desired
goal (finding the capable method that can solve gheblem at hand) needs to be

supported by some evidences (capabilities requoécndle the problem).

Table 3: Comparison of Two Inference Engines

Step Backward Chaining Forwarding Chaining
1 It is too hot. The temperature has changed.
2 Why? Check if the heater should be changed
3 Is the heater on?
4 Yes.
5 Turn it off (Repeat for "It is too cold")
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3.2.1.3 Knowledge Base

The knowledge base is the core of the advisor sysits main purpose is to provide the
basis of the system - the connections between ,ideasepts, and information that allow
the inference engine to perform an accurate evialuatf a problem [Boss, 1991]. In the
knowledge base the facts and rules are storednie $ormat, which include both factual
and heuristic knowledge and support the judgmedtraasoning of the inference engine.
Factual knowledge is the knowledge that is “widgtyared, typically found in textbooks
or journals, and commonly agreed upon by those kedyeable in the particular field”

[Feigenbaum et al., 1993]. For example, “AHP isdjab handling the decision making
problem with hierarchical attributes” is a piecefattual knowledge. On the contrary,
heuristic knowledge contains special knowledge thaéss rigorous, more experiential
and more judgmental. This type of knowledge is lyardiscussed and is largely
individualistic. For instance, a heuristic knowledgan be “if uncertainty needs to be
captured, try to use the JPDM technique”. Thesesrgbn be in the form of complex
structure or an interconnected group of rules [and Moutinho, 1991].

In the advisor system, the knowledge acquisitiopegformed carefully in order to
obtain an accumulation of high-quality knowledganodledge is acquired from expert
and other documented sources. The knowledge atiquigirocess is expected to get as
much knowledge as possible for the problem sineentibre knowledge existing in the
knowledge base the more competent the advisor myste Once the knowledge is
endowed to the system, necessary operations aem @k ensure the quality of the
knowledge. These operations include the evaluatrahigation and verification of the

acquired knowledge [Parsaye, 1988].
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After the knowledge is obtained through the knowkedacquisition process or is
elicited by the expert, it needs to be organizedi r@presented in an appropriate manner.
There are several ways to represent knowledge, asiehrepresentation method, product
rules, formal logic, object-attribute-value, and@a Among these methods, production
rules may be the most popular way of knowledgeeasgmtation because almost every
piece of knowledge can be written as a rule. Intad they are simple and efficient in
solving some problems, for example, diagnosing lerab. The rules have the following
form:

IF

Conditions (assumptions)

THEN

Action (conclusion)

The above form implies that when the conditions satsfied then a conclusion is
arrived at or an action is triggered. Figure 3@sitates a simple example to show how a
rule in the knowledge base works. For this exantplkere are three rules which represent
the knowledge associated with the user’s preferarfoemation:

* Rule 1: If user's preference information is representedréative weight, the

candidate methods are TOPSIS, AHP and JPDM

* Rule 2: If a utility function is employed to show the usepreference, the

methods that may be appropriate to solve the pnolle EUT and MAUT

* Rule3: If the user utilizes the relative weight to expréiseir preference over the

criteria and assign preemptive weight to certaiteca, then goal programming is

likely a suitable method to handle the problem urnd@sideration.
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When the user has a problem at hand and wantsdoafn appropriate method to
produce a desired solution, he or she may senqueeseto the MIDAS to fulfill this task.
The advisor system will present a list of questibmghe user in order to capture the
essence of the problem. One of the questions maldwe is the preference information
over the criteria represented? Based on user’'s eanswthe question, the advisor will
find the right rule from the knowledge base to drawconclusion, thus one or more
decision making techniques will be selected as idantel for further examination. For
instance, if a user’'s answer to the question iktiree weight”, the condition of rule 1 is
satisfied. Sequentially, the advisor will fire tliide and draw a conclusion that TOPSIS,
AHP and JPDM are the candidate methods for thengpreblem. Similarly, if a user’'s
answer is “utility function”, then the advisor wilhd rule 2 is satisfied and then consider

EUT and MAUT as the suitable techniques to dedh wie problem by obeying this rule.

How is the preference information represented?
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Figure 39: Example of Decision Rules

The rules that compose the knowledge base shouldobeise and have clear

meaning, and be tangible to every stage of operatitach rule describes a certain
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knowledge case and thus the represented knowlexdgbaracterized by independence
and a high level of transparency. The necessarwletige associated with selecting the
most appropriate MCDM method, validating the derismade and generating a new

decision making method is formulated in the knogktase and stored as a set of rules.

3.2.1.4 Method Base (Method Library)

The method base, also referred to as a MCDM libiiarthe other important component
of the MIDAS system which can provide knowledgestipport the reasoning process of
the system. The library stores the information eiséed with a number of widely used
MCDM methods. The method which is the most suitabléandle the problem under
consideration is selected from the library and thesvides the guidance to the DMs to
facilitate the problem solving procedure. In thisdy, each method is represented by two
sets of data: one indicates the characteristicthef method; the other provides the
problem solving steps of the method. The charatiesi of the MCDM methods are
divided into four classes: DM related, method edatproblem related and solution

related characteristics, and each category of ctarstics is independent of the others.

Decision Maker Related Characteristics

DM related characteristics are those which refibet DM’s level of knowledge,
ability and preference on selecting a MCDM methodsolve the given problem. The
choice of these characteristics depends on the [Pké'¢ious experience or intuition with
the method, or depends on the judgment or opinipdaimed from the previous work with
the method [Roman et al., 2004]. Some of the charatics are related to the DM’s

knowledge about a specific method, and some of #wenassociated with the DM’s time
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availability, that is, how much time the DM woulpend to arrive at the final decision. In
addition, these characteristics indicate the DMiBlingness to accept the assumptions
and limitations of the method. And these charasties also include the ones that reflect
the DM’'s preference form. For example, some DMs ldoexpress their preference
information in a ranking or scale form, but somdlem desire it would be quantitative
data. This difference in preference form is depandpon the individual DM’s desire or

how far along in the design process the decisidreisg made.

Method Related Characteristics

Method related characteristics play a central nolethe selection of the most
appropriate MCDM method. The reason is that theratdharistics of the method
determine what information the method needs to tcocisthe decision model, what
aspects of the given problem can be taken intoustcand how the decision is made,
therefore, eventually it determines the decisiorkinga quality of the problem. These
characteristics are those relating to the solupitess of the MCDM method. Some of
them are listed below:

e MADM, MODM or MCDM: Is the method able to handlestMADM problem or

MODM problem, or both (MCDM)?

* Feasibility evaluation: Does the method evaluate teasibility of the

alternatives?

* Preference representation: How is preference irddon over the criteria

represented? Is it represented by relative weigtility function or another

preference function (e.g. class function and lasstion)?
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* Input requirements: What input data are requirethisymethod (decision matrix,
comparison matrix or response surface equation)?

* Uncertainty: Is the method able to capture the tas#ies existing in the
problem?

» Dynamic behavior: Can the method handle a problath dynamic behavior,
such as changing in attributes or requirements?

* Objective or subjective criteria: Can the methoddta the objective and/or
subjective criteria?

» Decision rule: What metric does the method useii the alternatives, relative
importance, utility, POS or other metrics?

» Discrete or continuous data: Can the method de#th whe discrete and/or
continuous parameters?

» Hierarchical architecture: Can the method handé groblem with multi-level
criteria?

* Implementation: What hardware and software are irequto implement the

method? How easy and how long is the implementation

Problem Related Characteristics

Problem related characteristics are those depengog the real decision making
problem, such as the number of alternatives, at&giobjectives, and constraints, the
amount of information available, and whether itlieear or nonlinear. That is, the
problem related characteristics address the featafeproblems associated with the
alternatives, attributes, design space and feaspkre. Below are some example

problem related characterizes:
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» Alternative: Do the alternatives exist for the desh?
» Attribute: Do the attributes or objectives usedet@luate the alternatives have
multiple levels? Can they be quantified?
» Design Space: Are the design variables discreteontinuous? Is there any soft
constraint in the problem?
» Feasible Space: Dose any alternative have certalapility of being selected as
the “best” solution?
In order to obtain a desired solution for the peoblunder consideration, an MCDM
method must be able to address the key charaateridtthe problem. This implies that
the method selection is based on the concepthkatharacteristics of the method should
“best” satisfy the applicable problem related créeotherwise, the application may yield
a misleading result. Figure 40 presents an exatoptiemonstrate this concept, where a
total of 19 characteristics are identified and 1ZDM are in the method base for
selection. As an example, the method of Electicgh&zacterized by the characteristics of
the “subset” AND “normalized scale”. The “NOT” nalmdicate the exclusion of one of

the characteristics from another in any MCDM method

101



Linear
Assignment

D g ni

SAW Maximin Maxmax

Common Scale [ Pessimistic ’ ‘ Optimistic ’
Pairwise | —
Preference @
@f \/ Single Interactive
' — SAW
Scoring
AHP

Concordance
-‘ — Permutation
@ Cardinal

Gl
Ordinal T

Min. Standard _’ EBA

Non-Dominated
Subset
All Rounder
(of, ———
Sole Sill

Normalized /v
Scale —> TOPSIS

Compromising

»AND A —> MDS
Pairwise -

Proximity \ Hierarchical
J— A —>
Marginal Rate @ Tradeoff

Of Substitution]

Lexicographig

—» Dominance

—» Conjunctive

‘A — Disjunctive

—» ELECTRE

Pairwise JAND/—>] LinMAP

Preferences

Figure 40: Example of Relationships between Method and thear&cteristics [Poh,

1998]

102



Solution Related Characteristics

The choice of one MCDM method over another is eslab the appropriateness of
the results obtained from the use of that methodhi® problem. These characteristics are
captured in the solution related characteristiceclviare related to the types of solution
produced by the methods. For example, the solutniriained from different methods
have different sensitivity (how sensitive are tlesults to the changes in weighting, or
selection of a datum point?) and robustness (hdwgstoare the results to the changes in

preference information?).

Problem Solving Procedure

Once the most appropriate method is found, thetisolwf the decision problem
needs to be obtained using the method. In some oasemay not know to utilize the
selected method to formulate the given problem eedte the corresponding solution.
Since all methods have a systematic model, they laastep by step problem solving
procedure. Therefore, if the problem solving pracedof the selected method can be
provided to the users, they can follow it to rettod final solution. The method base also
contains the problem solving procedure of each ateth the library which can be used
by the MIDAS to provide guidance to the users toiltate the decision making
procedure. For example, below is the problem sglpimcedure of TOPSIS technique.

Step 1: Construct the decision matrix for the problemeTdlement of the decision

matrix y; represents the value of attribufewith respect to design alternative

Step 2: Normalize the decision matrix whose elementsggaren by:

103



Z. = yij

i = i e T J =,
]/Zyijz
i=1

Step 3: Formulate the weighted normalized decision matirose elements are given

K (24)

by

X =w.z. i=1---,n; j=---,k (25)

Step 4: Define the set of “benefit” attributed” and the set of “cost” attributed”

Step 5: Define the positive ideal solution and the negative ideal soluti@ as:

a ={(m{°‘“”“ 997} min x| 103° ”‘”"”} (26)
={x. %%}
a_ :{(mﬁ” 511997 (maxx (1097 :l""”} (27)

:{X;’XZ_""’XIZ}
Step 6: Calculate the separation of a design to the pesitieal solutionS and to

the negative ideal solutiof™ measured by the n-dimensional Euclidean distamce i

the attribute space

s = él(xij _X;)Z i=1---,n (28)

J

R 29)

Step 7: Calculate the relative closeness of each desidinetideal point

C = — i=1---.n (30)
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Step 8: Rank the alternatives based on the magnitudelasenes€g; . If C/>C;,
then a, is preferred toa,

This problem solving procedure can be invoked &y MiDAS when the method is
selected for the given problem. In order to be dbléandle the most of the decision
making problems, the methods in the MCDM librarg #ne typical method which is
widely used in the current multi-criteria decisioraking realm. As the complexities of
the decision making problems increases, new addanthods with improved ability
are intrigued to continuously emerge with time. rEfi@re, it is not possible to include
these advanced decision making methods in the MdibMry at the time when the
advisor system is developed. To keep the system freing obsolete, the new methods
are allowed to be added into the MCDM library forther use, eventually increasing the

capability of the advisor.

3.2.2 Capabilities of MIDAS

Engineering decision making is a process thatzeslithe available information and
certain techniques to arrive at a desired solufiyically, the available information is

problem related and is used to derive the requintésnand define the constraints of the
decision problem, which is one of the critical stép the decision making process. With
the problem well defined, the other important tesko formulate the problem by using
an MCDM analysis model which can capture the essendhe problem. Since various
decision making techniques are available and e&tem employs a different model to

represent the problem, the method most suitabtolee the given problem needs to be

identified in order to obtain a desired solution fiee problem. The MIDAS presented in
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this study can select the most appropriate decisiaking technique for the problem
under consideration, guide the users to solve #paEcific problems, validate the decision
made, and help in generating a new method thatiialde to handle the problem under

consideration if no existing method is recommended.

3.2.2.1 Decision Making Method Selection

Typically, there is not a universal method that bandle all types of the decision making
problem since different problems have various isstiet need to be addressed. One
specific decision making method is usually suitablesolve one class of problems with
certain characteristics. This leads to the fact different methods often create different
solutions for the same problem. Therefore, selgdtie most appropriate method is a key
step in the decision making process to make suitdekcision.

Basically, a decision making problem has a few ati@ristics, such as characteristics
associated with uncertainty, feasibility and hiehgr A decision making technique may
not handle the problem because it does not havebddjes to deal with some aspects of
the problem. For example, TOPSIS does not take iactount uncertainty that often
exists in some problems, AHP is not able to dedhwle dynamic behavior of the
problems, and JPDM can not accurately represeriDiis preference information [Li et
al., 2004]. If a user has no knowledge about tldestsion making methods, it is difficult
for him/her to pick the method suitable for thereut problem. On the other hand, if a
user has a decision making method in mind buttétnique is not suitable to deal with
the problem at hand, he may end up with a mislgasotution by utilizing that method.
Therefore, it is necessary to find a way to setbet most suitable decision making

technique for the problem under consideration.
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On the other hand, different decision making teghes have their own requirements,
assumptions and limitations. For examples, diffetechniques require different input
data, preference information and decision rulesndde if a problem with certain
properties is solved using a decision making tepiwhich is designed for this type of
problem or whose characteristics best meet theactaistics of this type of problem, a
more appropriate solution can be obtained. Thihésconcept that the MIDAS uses to
select the most suitable decision making technigodind the best appropriate decision
making technique for the given problem is one & #bilities that the MIDAS can
accomplish.

Table 4 shows six techniques that are decomposeermms of their characteristics
and requirements. In this table, it can be seen T@PSIS does not perform the
feasibility evaluation, it can only be used to de#&h the product selection problem, and
it needs a decision matrix to help it organizeitipait data. The relative weight represents

its preference information and is given in advaid@@PSIS is able to handle the discrete

Table 4: Characteristics of Decision Making Techniques

TOPSIS  AHP EUT JPDM MAUT Goal Programming
Feasibility Check? No No No Yes No Yes
Optimization/
Selection? Selection | Selection Selection Both Selection Optimizatio
Deterministic/P [ Deterministic | Deterministic D/P Probabilistic Deternstic Deterministic
Input Data
Available Decision Matrix Comparison Matrix N/A N/A N/A N/A
Complexity Single Level | hierarchical Single Level Single Level|Single/Hierarchi|Single Level
Utility Function |preemptive weight
Preference Relative Weight Relative Weight [ Utility Functign Relat Weigh{+ Relative +Relative Weight
Weight Given Calculated N/A Assigned Assigned Assigned
Probabilities +
Info. Req. N/A N/A Utility Function|Interest of Aregq Utility Function| Goals
Minimize the
Closeness to Maximize viration to the set g
Decision Rules Ideal Solution| Ordinal Ranking |Utility Maximize POS| Maximize Utilitygoals
Visulization Yes Yes No Yes No No
Dynamic/Static Static Static Static Static Static Static
Discrete/Cont. D/C D/C C D/C D/C C
Complete/Incomg Complete Complete Incompete Incompletp Completg Complete
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attributes, but can not be used to solve the problgh dynamic behavior. It also can be
seen from this table that the TOPSIS evaluatesltkenatives based on the decision rule
of maximizing the closeness to the ideal solutiditerefore, it implies that TOPSIS is a
good method for a decision making problem with kngttribute level, weighting
preference and discrete attributes. It is not gir@piate method for the problems that
need uncertainty analysis and dynamic consideration

To select the most appropriate decision makingriecte, the advisor starts from
asking the DM some questions, which are relatedlitierent aspects of a decision
making problem. For each question, the advisorides/two or more options for the DM
to choose as the answers to the correspondingigungstable 5 lists the options of the
answer to some of the questions. After the questiame answered, the advisor will
analyze this information and rank the methods deoof appropriateness index which is
given by Equation (31). Finally the methods witlpagpriateness index greater than the
threshold will be recommended as appropriate methtodsolve the problem under

consideration.

AL =2 3w, (31)
ni=1

wherenis the number of criteria used to examine the dtaritics of decision making
methods or the given problem. Each such charastenis corresponding to one
examination criterion which has two or more values shown in Table 5.

W={w,w,,---,w,} is the weighting vector on the examination criteria

I, ={b,,b, ---,bb,}, andb; is defined as:
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b= ST o0 =12
i Olf CJI ¢a1 1= ’ 1'”1nlj_ ’ 1'”1m (32)

where g, is the value of the i-th characteristic of theidien problem, andt; is the

value of i-th characteristic of the j-th method tire method library which stores

methods for selection.

Table 5: Options of the Answers to the Questions

1 2 3 4 5 6
Feasibility Check? |Yes No

Optimization/ Optimization +

Selection Only Optimization Onl

Selection Selection

Uncertainty

Analysis? ves No

Risk Analysis? Yes No

Input Matrix . . Comparison

Available Decision Matrix Matrix None

. . . . Hierarchical +

Complexity Hierarchical Single Single
Relafive Weigh

Preference Relative Weight Utility Function |+ Utility Class Function| None
Functior

Weight Given Assigned Calculated None

T
Info. Required Interested of Area | Utility Function| Goals Prp_babllltles_, None
Utility Function

Maximize Maximize the Minimize the |Minimize the

Decision Rules Clossness to Idealf, ... . Maximize POS | Ordinal Rankinjyariation to the|Aggregate
. Utility Function :

Solution Set of Goals  |Function
Visulization Yes No
Dynamic/Static Danamic Static
Subijective/Obj. _ L Subjective +
\Varable Subjective Only Objective Only Objective
Complete/Incomp. |Complete Incomplete

3.2.2.2 Decision Validation

A DM is usually familiar with one or more decisiomaking methods, and thus he or she
tends to use these method to deal with any decmianlems under consideration. As one
can see, a decision method good at handling ore dygroblem usually incapable of

handling other types of problems. Therefore, theeafghe decision making methods that
the decision maker is familiar with often produeesppropriate decisions, as a result,
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results in misleading solutions. This intriguesttthe decision validation should be
performed before the decisions are implemented. NMIH2AS is able to validate the
decisions made by using a specific method.

The validation process is similar to the metho@a@n process except the decision
solution is known in advance. In order to valid#te decisions, one must verify the
decision making method used is appropriate. At gomt, the selection of the most
appropriate method becomes one part of the decigadidation problem. First, the
advisor asks the DM to answer some questions cel@tehe problem he/she solved.
Based on the DM'’s inputs, the advisor will utiliee information and data in the
knowledge base to determine the most appropriateadeexisting in the MCDM library.

If the method suggested by the advisor is the sasrtbe one the DM ever used to solve
the problem, it implies that the decisions made mayalid. Otherwise, if the advisor
recommends a different method from the one the B¥ddu it indicates the decisions
made are not appropriate and need to be refined) tise selected method. The MIDAS
can also provide guidance to the DM in the probseiving procedure when the selected
method is utilized. This capability allows the DM make decision using the specific

method without know how this method works.

3.2.2.3 Decision Making Using a Specific Method

After a decision making method is selected as thstrappropriate method to deal with
the problem under consideration, the DM will emplibys method to formulate the

problem and produce the desired decision solutitmwever, there are various methods
out there and it is impossible for DM to know eatlthem, therefore, the decision maker

may not know the selected method well enough amibtisable use it to get the problem
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solved. This situation requires that the DM is akad to use the method to obtain the
final solution without knowing the method. This veégment results from the fact that it
is not possible for the decision maker to undedstevery method and it is not worth
learning the method and programming only for s@vime specific problem. Otherwise,
it will be time-consuming, inefficient and may caumore errors due to the limited
knowledge and experience about the method.

The MIDAS is capable of providing guidance for &1 when a specific method in
the MCDM library is selected. For each method & BhCDM library, the advisor has an
explicit step by step problem solving proceduretfer DM to follow. This procedure can
be completed through the corresponding user irderfio go through the procedure, the
DM is only required to input some basic informatassociated with the problem, such as
the number of the alternatives, the number of theibates, and the preference
information. Then the decision maker can follow thlicit guidance provided by the
advisor to reach the final solution. For exampleguFe 41 depicts the step by step
decision making process using the TOPSIS technifue.only information needs to be
inputted by the DM is the data highlighted in ble@or. Once the necessary data are
obtained in step 1, the following steps are accshpd by simply clicking the
corresponding command button. By executing thesers; the steps of the TOPSIS
technique described in section 3.2.1.4 will be matcally achieved. And the final
results of the problem will be presented to ther wseugh the friendly user interface.
This simple operation allows the DM makes decisiossg the TOPSIS technique

without knowing how the method. This type of usgeiface exists for each method, and
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the new interfaces can be developed for the newadstwhich are added to the library

to increase the MIDAS’s decision making capability.
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3.2.2.4 New Method Generation

In some cases, the decision advisor may not betalfied an appropriate method for the
given problem from the MCDM library. This may occwhen the problem is more
complicated than the types of the problems typycatinsidered by the advisor, or just
because of the limited number of the methods irM@¥®M library. This issue inevitably
happens when the advisor deals with some typeaifl@ms because the MIDAS is not
able to include all the existing methods in thedry.

Fortunately, the MIDAS is capable of handling tlisue. When the advisor can not
find an appropriate method for the problem undemsateration, it will analyze the
answers and information that the DM provided fag groblem. Based on the analysis,
the advisor will find out what capabilities are uvegd for a method to be fulfilled to deal
with the problem through the morphological matrirown in Table 6. Then it will give
the DM some advice for solving the current probléine advices can be to suggest the
DM to find an existing decision making method wisome certain capabilities or
characteristics, which is not in the MCDM libraftiythere is not such existing technique
or the expected technique can not be found by e the advisor will suggest the DM
to create a new technique capable of handling tireent problem and the advice
provided by the advisor will act as the hints faveloping the new technique. These
hints include the suggestion of combining two orenexisting techniques in the library

to generate an advanced new technique with hidhikties.
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Table 6: New Method Generation

1 2 3 4 5 6

Feasibility Check? | Yes > No
OptImI.ZatIOI’\/ Selection On Optimization OrIyOptmuzaFIon *
Selection Selection
Uncertainty
Analysis? Yes @
Risk Analysis? Yes ( No )
Input Matrix Q Comparison
Available Decision Matr Matrix None

. . . Hierarchical +
Complexity Hierarchical Single

Relative Weigh
Preference Relative Weight [  Utility Function + Utility Class Functior] None
Functior
Weight @iveﬁ Assigned Calculated None
. ) . . Probabilities +j ——
Info. Required Interested of Areg  Utility Functio Goals Utility Function ¥N@
aximiz Maximize the Minimize the Minimize the
Decision Rules Clossness to ldegl .. . Maximize POS| Ordinal Ranking/ariation to the Aggregate
- Utility Function -
Solutio Set of Goals Function

Visulization CYes ) No
Dynamic/Static Danamic  [¢ Static >
Subjective/Obj. - ® Subjective +
Varable Subjective Only | (_Objective On Obijective

Complete/Incomp.

_Complete>

Incomplete
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CHAPTER IV

IMPLEMENTATION OF THE MIDAS

The focus of this chapter is to apply the Multit€na Interactive Decision-Making
Advisor and Synthesis process developed in Chalptier a Personal Air Vehicle (PAV)
concept selection problem as a proof of implemenatn this problem, the advanced
PAV concepts need to be derived from three basett@craft configurations, and the
advanced concept with the highest viability waeateld as the best concept measured by
the given criteria under a defined uncertainty nho@lee PAV concept selection can be
accomplished in the decision phase as shown in&ig4 and is a well-suited application
for the MIDAS since the system can fulfill all tdecision activities in this phase.

In order to better understand the problem, the ek PAV concept development is
briefly explained. Then, the application begins hwielecting the most appropriate
decision making method for the concept selectimblem, the selected method is then
used to identify the most viable PAV concept. Fenthore, the method is improved as an
illustration of a new method generation applicatibhese outlined implementations help

to demonstrate the practicality of the advisor exyst

4.1 Proof of Concept

4.1.1 Personal Air Vehicle Concept Development

Great innovations in transportation systems haweimed dating back to the exploration
of from exploring the first paths for commerce be tcurrent air and interstate highway

system. Electronic commerce, increasing populatiand the information revolution
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brought about by the internet are placing new demaon today’s transportation

resources. The current transportation systemsesepted by the centralized hub-and-
spoke air transportation system and the groundwaghsystems, are challenged in this
era in which time has become a scarce commodity.decoming increasingly important

to find innovative concepts that can alleviate tosldransportation problem. A Personal
Air Vehicle concept, with door-to-destination, airbe, personal transportation

capabilities, is part of a possible solution to ¢hallenge.

It is a fact that since the first flight many etfohave been made to develop personal
air vehicles, and most of the proposed conceptflyang cars which has the capability to
complete both ground and air transportation loggufé 43 and Figure 81 list some
tested PAVs developed by individuals from 1910gtesent. In order to enhance the
transportation system capability, NASA also maderef to explore the concepts of
Personal Air Vehicles to meet the future civil goolssible military missions [NASA
LaRC, 2002]. These revolutionary PAV concepts asidally developed from the state-

of-art baselines with the infusion of the advantdhnologies.
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id} Stout/Spratt Skycar IV

(e} Fulton Airphibian

iz} ConVairCar (h} Bryan Roadable

Figure 42: Roadable Personal Air Vehicles (1910s — 1970s) H,e2005]
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{a) Moller Sky car M400 (b} MACROD Skyrider X2R

i¢) See-through of Cirvhawk (d) Sky Technologies Aircar

(g) Groen’s Hawk 4 b} CarterCoprer

Figure 43: Recent PAV Concepts [Lewe, 2005]

118



4.1.1.1 Problem Definition

The Personal Air Vehicle was envisioned as a ptenéplacement for automobile
transportation which could provide a solution fbe tincreasingly congested highways.
For this personal transportation purpose, a PAVihisnded to provide a significant
improvement in mobility in as compared to the catiteansportation system and meet all
regulatory requirements. As a personal vehiclmust be easy to operate, safe as well as
reliable. Also, travelers are always interestede@ching the destination in shorter time,
so shortening the travel time is important. In &ddi PAVs should be affordable to the
consumer such that the vehicles can penetrate #rketnand achieve wide utilization.
With increasing utilization, environment requirerteesuch as noise and emission should
be considered as well. Take-off and landing fidhgths will be important
considerations if air vehicle operations are toobee more widely distributed within
communities. Quantitative targets for all theseumsgnents and criteria are currently
emerging from ongoing system studies. These tagetespond to various segments of
interest for the PAV market. Some selected requarésand criteria are shown in Table

7.
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Table 7: PAV Criteria

REQUIREMENT CRITERION COTI\'?SRTGREATI/NT
Performance

Speed Cruise Speed (kts) Ref. to Mission Profile
Noise Flyover Noise (dB) <79

Travel Time Total Travel Time (hr) <35

Takeoff Length Total Distance to clear 50’ obstacle (ﬁ)Ref. to Mission Profile

Accident Rate : Number of fatal acciden<t§
per 1,000,000 FH

Reliability MTBF : Mean Time Between Failure (hQgg
Maintainability MTTR : Mean Time To Repair (hr) >50
Easy to Operation TTR : Training Time Requirements (hgpq

Safety

Mobility TTBT : Total Time Before Takeoff (hr) <q 3
Economics

Price Acquisition Price ($) Minimize
Cost Direct Operating Cost ($) Minimize

As mentioned previously, PAVs provide a routine tep-to-destination personal
travel, which is a system solution involving airdaground transportation, generically
depicted in the mission profile shown in Figure 4%his indicates that a PAV must
complete the main mission from access portal Adcess portal B, that is, from one
airport location to another. PAV options have beategorized into 4 groups based on
their takeoff and landing distance: Vertical Take-and landing (VTOL), Extremely
Short Take-Off and Landing (ESTOL), Short Take-@ifid Landing (STOL), and
Conventional Take-Off and Landing (CTOL) [DeLautsrdt al., 2002]. The constraints

for cruise speed and takeoff length were defined/émious options in the mission profile.
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Travel Time CTOL ~ 3000ft Travel Time

Figure 44: PAV Mission Profile

4.1.1.2 Basdline Concept Analysis

Baseline Concept ldentification

For a personal use vehicle, mobility and safety thee most important requirements.
Generally speaking, rotorcraft vehicles have acdged in these important areas.
Currently, a VTOL vehicle, such as a rotorcraft ickd) is the only concept that can
provide doorstep-to-destination transportation sirgle mode. It is the only air vehicle
concept that can directly contribute to reducingugd transportation congestion.
Furthermore, the ability to autorotate and lancelyaivhen engines fail provides more
safety to the passengers compared with conventiGA&L aircraft. Thus, rotorcraft

have the potential to be among the safest andstdsi@perate vehicle concepts of all
PAVs. Finally, by incorporating a foldable rotorssgm design, rotorcraft may have the
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potential to serve as a roadable, or “dual modéiicle. With the advantages mentioned
above, the rotorcraft sector appears to be a wantdg for detailed study.

All design studies require a baseline, both to mle\a departure point for design
space investigation and to serve as a constanidayuwhich generated alternatives can
be compared. In this study, focusing on V/STOL raiftc one helicopter configuration,
(Robinson R44), one gyroplane configuration, (Grodawk4), and one tiltrotor
configuration, (Bell 609) were selected as bassli(fagure 45) [Robinson Helicopter
Company, 2003; Bell Helicopter Textron, 2004; Gr@others Aviation, 2004]. Each of
the three configurations has its own advantagepdadorm the PAV mission and

represents the tried and tested technologies afytod

Figure 45: PAV Baseline Concepts
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Modeling and Simulation

Two sizing and performance programs were appliedamalyze the performance
characteristics of the baseline for the three gumétions. The Georgia Tech Preliminary
Design Program (GTPDP), with the capability of pdivg a rapid assessment of the
performance of a single main rotor (with or with@utving) with a single tail rotor or a
coaxial configuration with conventional turbine eres [Schrage et al., 1986], was used
for the R44 helicopter and Hawk4 gyroplane confaguan. VASCOMP, the V/STOL
Aircraft Sizing and Performance Computer Programettiped by Boeing for NASA
Ames where it was subsequently enhanced througpeidues, was applied to size the Bell
609 tiltrotor configuration [Schoen et al.]. Aftdre baseline concepts were selected, the
effort was concentrated on calibrating GTPDP by etiod the baseline aircraft. This
calibration exercise emphasized not so much theadvéidelity of the tool, but
concentrated on the sizing algorithms within th&@ to match the given class of vehicles

to be examined to actual data.

Design Space Exploration and Feasibility Evaluation

After the sizing environment was created, the desjgace was explored using Response
Surface Methodology (RSM). The goal of the RSMagyenerate the response surface
equations, which capture the relationship betwberahalysis input variables and metrics
of interest (objectives), and determine the systeasibility. The RSEs are constructed
by executing the design of experiments, which bheecombination of different values of
the input variables. The parametric environmentaiidd by these equations is termed a

United Tradeoff Environment (UTE).

123



The variables of interest were first identifiedtlas input variables and listed in Table
8. The minimum and maximum values of each varidelee the design space of interest
and directly affect the metric values. The metaos necessarily associated with outputs
of the specific analysis codes, GTPDP or VASCOMResSE outputs are referred to as
responses in the RSM terminology and related to RAYsion requirements, vehicle
attributes, and are used individually or in comborato evaluate system feasibility and

viability. The list of responses throughout thigdst is presented in Table 9.

Table 8: Input Variables for Construction of UTE

R44 HAWK4 Bell 609
min max min max min max

Variable  Description Unit

ALT Altitude ft 1300 1500 1300 1500 8000 12000
ROC Rate of Climb  fps 15 18.4 225 275 30 36
LR Labor Rate $/hr 40 50 35 45 40 50
PL Payload Ib 200 1600 200 1600 200 1600
RANGE Missionrange Nm 100 500 100 500 100 500
VC Cruise speed  kts 90 140 100 150 250 350
VT Rotor Tip Speed fps 493 603 428 524 630 750
ARHT  Hori. tail AR % 222 2.87 294 38 367 475
DL Disk loading psf 26 29 245 265 13.59 16.61
CFUEL Cost of Fuel $b 18 22 18 22 18 22
IRPY Interest Rate/Year %/yr 7.2 88 7.2 8.8 7.2 8.8
UTIL  Utilization hrsfyr 260 1300 260 1300 260 1300
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Table 9: Responses to Be Tracked in UTE

Variable Unit Description
GW Ib Gross Weight
WEMPTY Ib Empty Weight
WFUEL Ib Fuel Weight
IP shp Installed Power
MTIME hr Total Mission Time
AC $ Acquisition Cost
DOC $/hr Direct Operating Costs
NOISE db Noise

According to the Pareto principle, roughly 80% aé thariability of a response is due
to 20% of the variables. Hence, a screening testpgeisrmed to identify the variables
which have main effect on the objectives. After parfing the screening test, the main
variables were found to be payload, range, cruisedpdisk loading and utilization. An
automated design environment built around the §ipesizing and performance codes
(GTPDP and VASCOMP) was used to create a metam(@&&s) of the design space
based on the range of input variables. By using Dio& technique, a number of
experiments were generated, resulting in differemtlmnations of values for the 5 input
variables. After all the required runs of GTPDP/VAI@P have been completed, the
resulting data was used to regress relationshigheofesponses to the 5 inputs. These
relationships take the form of 2nd order polynomggjuations, (Response Surface
Equations).

Once the RSE metamodel was created, the design spaltkbe better visualized in
the 2-D "design contour plot", which plots contowfsthe responses versus any two
design variables, in the form of a dynamic trademivironment. Constraints can be set

on these contours, to show the feasible design sfeeause the design space is
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represented as a metamodel, contours can be quipkisted to reflect the effects of
changing requirements. The feasible design spadhdoR44 is shown in Figure 46. As
can be seen in Figure 46, there is no feasible desgce, so new technologies need to

be infused to meet the PAV requirements.
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Figure 46: Feasible Design Space Exploration for R44

4.1.1.3 Advanced Technology Concepts

For the technology studies, the potential techne®gihat may improve technical
feasibility and economic viability of the vehiclase identified first. For this study, the
main technology areas examined for improvemenaar®llows: engine characteristics,
component weight, direct operating cost, aerodynasharacteristics, power available

and required, and noise characteristics.
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The impact of a technology can be quantitativelseased with technology metric
“k” factors, which modify disciplinary technical rrges. A “k” factor is a multiplier on a
given disciplinary metric that is used to simulageneric application of advanced
technologies. Sets of “k” factors, representing tlmresponding technologies, are
applied to the state-of-the-art baselines, genegydtie advanced technology version of
the PAV concepts. These factors can later on be emhpp actual technologies being
applied. The simulation of advanced technologiethean form of “k” factors enables a
dynamic mapping and visualization of the Technolémgpact Forecasting (TIF) space.
The variables of interest for the advanced techgytmncepts were identified and listed

in Table 10.
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Table 10: UTE Variable Definitions and Design Space

Var. Description Notation  Unit : R4 : Hawid : Bell 609
min max min max min max
varl Fuel Flow Ratio K_FFR ~ 0.8 1 0.8 1 0.8 1
var2  Weight Factors K_WR ~ 0.8 1 08 1 0.8 1
K_WE ~ 0.8 1 08 1 0.8 1
K_WD ~ 0.8 1 038 1 0.8 1
K_WA ~ 0.8 1 0.8 1 0.8 1
var3 DOC Factors K_DOCE ~ 0.8 1 038 1 1 1.2
K_DOCD ~ 0.8 1 0.8 1 1 1.2
vard  Airframe Drag Area K_DRAG ~ 0.8 1 08 1 0.8 1
var5 Noise Factor K_NOISE ~ 0.8 1 0.8 1 0.8 1
var6  Disk Loading DL psf 2.6 2.9 2.45 2.65 13.59 16.61
var7  Payload PL Ib 200 1600 200 1600 200 1600
var8 Mission Range RANGE nm 100 500 100 500 100 500
var9 Cruise Speed VC kt 90 140 100 140 180 300
varl0 Utilization UTIL hrs/yr 260 1300 260 1300 260 1300




The design space, with the effect of full benefittbé technology infusion, is
illustrated in Figure 47 through use of the predictprofiler. From this point, these
advanced technology versions of the R44, Hawk 4, Bell 609 are called as the
advanced helicopter, advanced gyroplane, advandeokdil concepts respectively. As
can be seen, a feasible design space emerges witimgract of adding technologies
when the same constraints are applied. Compared Figflve 46, with the impact of
technologies infusion, Figure 47 clearly presents #dvanced technology concepts

make a big improvement in performing the PAV mission.
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Figure 47: Feasible Space Emerges with Technologies Applied

4.1.2 PAV Concept Selection

The study in Section 4.1.1.3 has shown that all thearmzkd technology concepts
developed from the baselines are feasible conceggabte of performing the PAV

mission as shown in Figure 44. Determine the conaeqing the advanced helicopter,
advanced gyroplane and advanced tiltrotor which bast satisfy the customer’s
requirement can be accomplished through the corsmdpttion process. This is a pure
decision making problem and is always a challeginé¢ engineer. In order to obtain a
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desired solution, an appropriate decision makinghotetshould be identified and then
help the DM to reach the final solution. The mutiteria decision making advisor has

the capabilities to fulfill these tasks.

4.1.2.1 Decision Making Method Selection and Decision Validation

The MIDAS is an advisory system that can help tiMsDo identify the most suitable
decision technique to solve their problem. For theisor to function properly and
effectively, the necessary information associatetth Wie problem must be provided so
that the essence of the problem can be capturdidebgdvisor. Misleading or incomplete
information may result in the selection of an ineggpiate method. This requires that the
DMs should understand the problem under consiaeratncluding what criteria were
used to evaluate the alternatives are, what the rprefe information is and how it is
represented. This information needs to be colleatetlorganized so that a firm basis can
be formed to essentially represent the problem. @giedlly, this resembles the problem
definition step in the engineering design proceskjchiv plays a critical role in
determining a successful design. The study predentéhis implementation is based on
the assumption that the decision maker is able to fullyrsteted the problem.

Since the development of the PAV advanced concapirs in the early design stage,
each concept carries a family of alternatives abtef a point design to avoid a rapid
design freedom drop off and cost lock-in. The desilgjernatives of each concept are in
the design space, with the infusion of advancelnelogy, defined by the combination
of Table 8 and Table 10. The relationship betweentivariables and metrics of interest
is captured by a metamodel referred to as response sadaatons. Thus, the metrics of

interest listed in Table 9 will be derived by wifig the RSEs and distribute over the
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design space. That is, the quantification of eaclrimis represented by a distribution
rather than a single value which exhibits the ulacety nature of the problem. Figure 48
illustrates the noise distribution of advanced dwgter in the form of Probability
Distribution Function (PDF) as an example of mediigtribution. The nominal metrics of
interest will act as the criteria used to evalud#e/ advanced technology concept, thus
in order to solve this concept selection problemsetected method must have the
capability to manipulate the uncertain metrics. Thiscertainty feature is a key
characteristic that needs to be taken into accainain one selects the decision making

methods for the PAV advanced technology concept seleatidrhem.
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Figure 48: Noise Distribution of Advanced Helicopter Concept

As demonstrated in Section 0 and 4.1.1.3, the advamoiuhdlogy concepts were
developed by employing the TIES method, which encasgma feasibility examination
process. Therefore, all the three PAV advanced tdohpa@oncepts are feasible and no

feasibility evaluation is required to fulfill the conceptexction problem.
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The concepts are compared based on the evaludtibe given criteria, and the one
that best satisfies the criteria is suggested asP#V concept. This decision making
scheme indicates that the final solution depend$lyion what criteria are used for
concept selection. In addition, the preferences efctiteria also have strong impact on
the final solution since one design concept ofebeatter at some aspects but worse at
others than another concept. The preference infawmat this problem is represented by
the relative weight, thus each criterion is givameaght showing its importance when the
concepts are evaluated. The weighting factor cadireetly assigned by the DM or can
be obtained by performing the QFD analysis [Dieter, 2000].

The PAV concepts are envisioned to perform a ddep-to-destination mission
depicted in Figure 44. In order to be a successfotept, the customers’ requirements
should be met, as shown in Table 7. The requiremeatsfeen in the form of constraint
and serve as the criteria base on which the consegglected. For example, the total
travel time should be less than 3.5 hours and §wvér noise should less than 79 dB.
One design solution will be infeasible if it violate any o triterion constraint.

The available information for this concept selectoblem is a set of RSEs used to
facilitate the parametric assessment while progde simple, easily manipulated
approximation of complex model [Kleijnen, 1987]. Teesecond order polynomial
equations enable the quick tradeoff studies attergpid maximize the probability of
success of the design solution.

Since the value of the evaluation criterion is esged as a probability distribution,
the decision rule used to determine the best carstequld be a function of the PDF of

the criterion to capture the uncertainty effectd &m provide suitable confidence on the
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results obtained. Probability of Success (POS) iglaasible objective that can be
employed as a criterion to evaluate the concept,tlansi the decision rule will become
the maximization of the POS of the concept.

The characteristics of the PAV concept selectioobl@m outlined above are
summarized in Table 11. The complete understanditigeodecision making problem is
the foundation that supports the sequent desigrsidas. From this point, the multi-

criteria decision making advisor will be employeal facilitate the decision making

process.

Table 11: Characteristics of the PAV Concept Selection Problem

Problem Characteristics PAV Concept Selection Problem
Problem Type Concept Selection
Alternative Characteristics Existing, and Feasible
Attribute Characteristics Constrained
Preference Representation Relative Weight
Preference Information Given/Assigned
Key Characteristics Uncertainty
Available Information Response Surface Equations
Decision Rule Maximize the Probability of Success

The most appropriate method for selecting the PAvicept selection problem is
needed first. The user sends the query to the adsisiem to request the method
selection task. Based on the task, the advisor wibkgnt the user a set of questions
which are related to the characteristics of thélemm. The user is allowed to choose the

answer to each question from the options providedhe advisor (Figure 49). For the
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PAV concept selection problem, the answers weretsglalepending upon the problem

characteristics listed in Table 11.
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Figure 49: Questions Provided by MIDAS Used for Selecting Decisiothide

The advisor then analyzes the answers using tleenmaftion in the knowledge base
and sequentially calculates the appropriatenesg $osoeach method in the method base.

In this example, the questions are assigned the sagight except that the question 5 is
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assigned a higher importance because the uncgriaiatkey characteristic of the PAV
concept selection problem. The final result of trethod selection is illustrated in Figure
50. It can be seen that the Joint Probability Degiditaking Technique (JPDM) is
evaluated as the best method to handle the problem undede@tion.

The obtained result can be explained by compariey methods with the given
problem. As described in Section 2.6.2.5, JPDM is a tqukenwhich is capable of
dealing with the product selection and optimizagowablems this indicate that JPDM can
handle both MADM and MODM problem. This techniquearporates a multi-criteria
and a probabilistic approach to system design, itheen capture the uncertainty existing
in the problem. In addition, JPDM uses joint prokabibf success, which assesses the
probability of satisfying the criteria concurrentlgs the objective function to make
design decision. The joint probability of successakulated over the area of interest
which is defined by the constrained criteria. Thiatjprobability of success can also be
used to evaluate the feasibility of the alternasiree if an alternative is not feasible, its
joint POS will be zero. The preference informatidrire JPDM technique is represented
by a weighting factor and each criterion is asgigaalefault weight ot/ N which can
be adjusted if the criteria have unequal importanteere N is the number of the criteria.
Furthermore, JPDM has five implementation schemeshawn in Figure 51, and each
of them employs different techniques to generageitiput data, such as metamodel or
Fast Probability Integration (FPI). In summary, tharacteristics of JPDM technique are

summarized in Table 12.
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Figure 50: Method Selection Results for PAV Concept Selection Problem
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Table 12: Characteristics of JPDM Technique

Method-Related Characteristics JPDM Technique
Problems Handled MADM
MODM
Can perform feasibility evaluation?  Yes
Attribute Characteristics Constrained attributesraethe area of interest
Preference Representation Weighting Vector
How is preference obtained? Assigned
Key Capabilities Capture Uncertainty
Handle Multiple Criteria
Inputs Accepted PDF of criteria (JPF model)
Empirical Distribution Function of criteria (EDF rdel)
Objective Function Probability of Success
Decision Rule Maximize the Probability of Success
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Comparing Table 11 and Table 12, one can see thathdm@ateristics of JPDM
technique match well with the characteristics @& BAV concept selection problem. This
indicates that the JPDM technique possesses thabitiips required to solve the PAV
concept selection problem. This result is consistetit the selection the MIDAS made
for the problem.

The method with the second highest appropriatesesee is the Expected Utility
Theory (EUT) technique. This is due to the fact that EUT technique is able to utilize
the probability distribution function to capture tlhwcertainty of the problem. This
capability helps it to obtain a higher score thhe test of the methods. However, the
EUT technique requires a utility function of théemna to complete the assessment while
the PAV concept selection problem does not protiike input information. In addition,
EUT does not consider the condition that the aatbave constraints, which will lead to
an infeasible alternative being selected as thé smation. These observations explain
why EUT got a score less than the threshold andyirtiat it is not an appropriate
method to be capable of handling the current problem.

The low scores obtained by the rest of the methodicate that they are far from
being an appropriate method to solve the PAV conselgiction problem since they are
not able to manipulate the uncertainty existingha problem and most of them don’t
perform feasibility evaluation. Moreover, none of timethod can utilize the available
information, RSEs, to evaluate their own objective function.

Therefore, the JPDM technique appears to be the apgsbpriate method to handle
the PAV concept selection problem, and the utilaratof this method is expected to

produce a desired solution for the given problem.
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The decision validation process is similar to thehoé selection process, except that
the decision was already made using another meffwgalidate the decision made, the
method selection process should be worked throdighe Iselected method is the same as
the method used, the decision should be valid, otkerthhe decision need to be remade

using the selected method suggested by the MIDAS.

4.1.2.2 PAV Concept Selection Using JPDM

The JPDM technique is a powerful method that ise abl assess the probability of
satisfying the multiple criteria concurrently whikeeping the infeasible alternatives from
being selected. As described in Section 2.6.2.5, tHmigae can uses an EDF for a joint
probabilistic formulation to calculate the joint andarginal probability of success. The
EDF model for calculating the joint probability of succissgiven in Algorithm 1.

Though the JPDM is a good method for making degisionder uncertainty, the
decision makers may not know to use this method to solvertiidem under uncertainty.
It is a way that the DMs can learn the method gntbelves and then apply it to the
problem to get the problem solved. However, thignie consuming especially when the
learning curve is steep.

The MIDAS can help the DMs to use the method thay tare not familiar with to
facilitate the decision making process. When a teglen is selected as the most
appropriate method to solve the current problem,atheisor can invoke the method
which has a rigorous step by step problem solvioggdure. This procedure is presented
to the DMs through a user interface by providingeaplicit guidance. By following the
guidance, the DMs are allowed to use the methodowitknow how it works. The only

actions expected from the DMs are inputting somessary data such as the number of
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the alternatives, the number of criteria. The reghefassessments can be completed by

clicking the corresponding buttons under the guidance.

Algorithm 1: EDF Model of JPDM Technique
Inputs: Number of alternativesr ; number of criteriam ; data sample of each
alternative; number of data sample of each alterabt , i =12,---,n; area of interest

(constraints of each criterion;', X, i=12---,n, j=12,--,m.
Outputs: Joint probability of success for each alternativeint POS; univariate

(marginal) probability of success of each criterimn each alternativBPOS , joint
probability distributions (plots)

Calculate univariate POS of each criterion for eadternative
for i=1ton do
for j=1tom do

for| =1to N, do
if X <X, <X;' then

Iy =1
elsel i =0
end if
POS :izN_i I
f Ni 1=1 1 ijl
end for
end for
end for

Calculate joint POS for each alternative
for i=1ton do

. _ 1 N 4m
Joint POS_EZI L4 j:1| i

end for

In this example, the JPDM technique was selecteithe@snost appropriate method.
To use the JPDM technique, one can simply click theati JPDM” button shown in
Figure 50, and thus the JPDM technique will be loaéegure 52 illustrates the problem
solving procedure of JPDM technique provided by MI®AS. It can be seen that the

advisor supplies an explicit instruction that cam followed by the DMs. The only
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information needs to be inputted by the DMs isdh& highlighted in blue. The data in
the data sample table can be obtained by some s@ntpchnique such as the Monte
Carlo Simulation using the available response sarf&quations. Uncertainty is
propagated to the system level by defining appréprigrobability distributions to
uncertain mission requirements, vehicle attributes iafused technologies. The area of
interest, defined by the upper limits and lower tgvof the criteria need to be determined
by the DMs. This area is the region that the dess@dtions should be located in and
outside of which any solution is excluded from gsg. In this study, three criteria were
determined as the selection criteria: Door to Desion (D-D) time, Direct Operating
Cost (DOC) and noise. One can clearly see thahalttiteria are desired to be as small
as possible, therefore zero as a lower bound wagnasisto all the criteria. On the other
hand, the maximum acceptable values are 4 hrs fortilre, and 130 $/hr and 79dB for
DOC and noise respectively.

Based on the data input, the advisor can autonigtiseoduce the joint probability
distribution of the criteria. Figure 53 and Figure Show the joint probability
distributions of D-D time vs. noise and DOC vs. noise addition the advisor can
calculate the joint probability of success for eaomcept and univariate probability of
success for each criterion. The respective proligsilof success are listed in Table 13.
The steps to produce the joint probability disttibo and calculate the probabilities of
success can be simply completed by following th&lapce provided by the advisor
through a friendly user inter face. This simple apen allows the DMs to make their
through a friendly user inter face. This simple apen allows the DMs to make their

decisions using JPDM without knowing how the technique sork
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Table 13: Probability of Success

Alternatives  Joint POS P(D-D<4 hr) P(DOC<130 $/hr) P(Noise< 79 db)

Adv_Helicopter 0.2708 0.5572 0.4736 0.9759
Adv_Gyroplane 0.2004 0.481 0.2855 0.955
Adv_Tiltrotor 0 1 0 1

From Table 13, it can be seen that the highest w&Sobtained with the advanced
helicopter concept, indicating that this conceps hmore viability than the other
alternatives as measured by the criteria of DO®ystep-to-destination time and noise.
The advanced gyroplane has relatively high prolighdf meeting the requirements,
while the advanced tiltrotor has zero probabilityatisfying the criteria.

The same rank can also be obtained from the pHysiqaanation. With similar
cruise speed as the gyroplane, the advanced hidicbps VTOL capability, providing
more access time savings compared to the advangeglgne concept with its ESTOL
capability. This makes the advanced helicopter ewar the advanced gyroplane when
they are evaluated by the D-D time. In additiormpared with the advanced gyroplane
concept, the advanced helicopter concept has aantatye for the DOC requirement.
This is driven by the fact that the helicopter liegg maintenance only on a rotor system
while a rotor and wing system must be supportedhengyroplane. The noise levels of
these two concepts are very similar. However, itv@th noting that the gyroplane
concept is the safest concept among the three ptsbecause it is in autorotation at all
times. The advanced tiltrotor predominated in th® @ime and noise because of its
combination of the vertical take-off and landinglwihe speed and range of a turboprop
However, this concept have no probability of sgirgj the given criteria. The high DOC,
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due to its complexity, violates the constraint aadses it to have no chance to be a PAV
concept. This can be clearly seen from Table 18hicth the PoS for satisfying DOC is
zero.

The result of the PAV concept selection problem destrated that the MIDAS is
able to facilitate the decision making process byiging an explicit problem solving
procedure of the selected method. This procedloevslthe DMs to utilize the selected
method through a friendly user interface withoubwing the mathematical model of the

method.

4.1.2.3 New Method Generation

The JPDM technique appears to be an effective rortéria decision making method
which can measure the goodness of the alternativerdducing the probability of the
alternative satisfying the given requirements whscim the form of probability of sucess.
The POS is a single metric that enables a compaon$all alternative solutions on an
equal basis. Hence, POS allows for the use of tamdard single-objective optimization
technique available and simplifies a complex meiieria selection problem into a
simple ordering problem, where the solution witl tighest PoS is the best.

The advantages of the JPDM due to the use of P@Smimt cover its own underlying
limitations. In the JPDM, the POS is obtained hggnating the joint probability density
function over the area of criterion values that @frénterest to the customer for the JPM
model, or by counting the number of the occurrerafethe alternative solutions within
the area of interest for the EDF model. Obvioustg calculation of PoS does not take
the absolute location of the Joint Probability Bigition Function (JPDF) into account,

which leads the JPDM to become awkward for consepection when the calculated
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POS’ of the alternatives are very similar but thHdDF locations are very different, as
illustrated in Figure 55. In Figure 55 (a), assuynime criteria @ and G will be
minimized and maximized respectively, the POS aiséhthree alternatives are totally
equal (0.5), but one cannot say that the threenali#es have the same goodness.
Alternative 1 is apparently better than the otley because it has less deviation from the
target values (O for criterion 1 and infinity faiiterion 2).In the case shown in Figure 55
b), the POS of alternative 2 is greater than adiera 1, however, it is not prudent to say
that alternative 2 is more advanced than the ofdarthe other hand, alternative 1 is
much better than alternative 2 with respect togiven criteria due to the same reason
given in the previous case. The weakness illustrh&ge indicates that the ‘best’ solution
selected based on the value of the PoS by JPDRtisatessarily the actual best solution,
which makes the JPDM become awkward for handlirgehkinds of concept selection
problems. Furthermore, one can clearly see thatfogeneral case the value of the POS
cannot accurately represent the concept performsince it does not take the deviation

into account.
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Figure 55: Limitations of the JPDM Technique
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The probability of success is calculated usingiat jorobability function or empirical
distribute function over a weighted area of inter@is discovers the fact that JPDM
employs the relative weight to represent the decisnaker’s preference information. It
is well known that the most serious drawback ofweghting method is that it cannot
generate proper members of the Pareto-optimal fsbwn this front is not convex. That
is, there may not exist a weight vector that widllg a given Pareto point. The weighting
method also suffers from the high computationatas the number of optimization runs
increases exponentially with the number of objexgiv

In addition to the drawbacks described above, Ri2M utilizes the weight adjusted
target valueso adjust the weight. This technique narrows tmgetarange of interest for
the criteria with high preference weights and weléa range of interest for the ones with
low weights [Bandte, 2000]. This concept is mathiécaly expressed as Equation (33)
and (34) However, this treatment may upgrade agasible design to a feasible design
when widening the area of interest and, similadgywngrade a feasible design to an

infeasible one when narrowing the area.

tmin = (W [N) &min (33)
— Zmax
tmax - (WEN) (34)

where N is the number of criteria, .. andtmgyare the new lower and upper limits of
the criteria defining the adjusted area of intere&]ﬁnand Zmay are the constraints on

the criteria andw is the weighting vector representing the custosngréference.
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The outlined observations indicate that the JPDdhnejue only considers where the
weighted boundaries of the area of interest aretagads all the solutions in the area of
interest the same. It is clear that the POS calonlacan not fully capture the
performance of the alternatives, thus, producesebligstimation of goodness. Therefore,
the JPDM technigue needs to be improved in ordbetable to make high quality design
decisions.

The improvement can be completed by revising astiexj method or developing a
brand new method, as a result, producing a hybethad or a new method capable of
fulfilling the capabilities which are required tcake better decisions. The MIDAS is able
to help the DM to generate the methods with impdoperformance in the process of
selecting the most appropriate method for the gmblnder consideration. In other
words, the MIDAS can provide hints to generate & meethod to handle the given
problem.

Assume that a decision maker wants to find a dasirmethod to solve the PAV
advanced concept selection problem. The DM concapasit his or her preference and
wishes that the preference information can be sgmted by a more sophisticated model
rather than the relative weight. It is also assurtted the DM understands the other
characteristics of the problem as listed in Taldle 1

After the characteristics of the PAV concept sébectproblem are entered to the
advisor system, the advisor will analyze the inpansl present the result to the DM
through the user interface. Figure 56 depicts ththod selection results. As one can see,
there is no appropriate method which is capabhtieafing with this problem. In this case,

the advisor is able to provide hints that may bedu® create a hybrid or new method.

148



Three hints are provided by the advisor, and tlrey @mbining the JPDM with EUT,

physical programming, and loss function. The JP@bhhique still gets the highest score
though it does not exceed the threshold. The JP®kdliowed by EUT because EUT
represents the DM’s preference information usingtiaty function which is a good

model for preference representation. In additidve physical programming utilizes a
class function to physically define the customgnsference, which is proven to be a
successful model. Furthermore, loss function alsoviges a mathematical way to
calculate the DM’'s preference. Therefore, the hiptevided by the advisor are

appropriate and can be used to develop the newotheth

Table 14: PAV Problem Characteristics with revised Preferdnf@mation

Problem Characteristics PAV Concept Selection Probla
Problem Type Concept Selection
Alternative Characteristics Existing, and Feasible
Attribute Characteristics Constrained
Preference Representation Sophisticated Model
Preference Information Calculated
Key Characteristics Uncertainty
Available Information Response Surface Equations
Decision Rule Maximize the Probability of Success
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Since utility has the capability of representingdacision maker’'s preference
information by measuring the “goodness” of the gieci making criteria, the first hint
provided by the advisor is selected for the newhwoetgeneration. As the JPDM
technique still has highest appropriateness sdbee,new method will be developed
based on this technique. The utility function u®sdEUT technique can improve the
calculation of the POS of JPDM technique, thus iused in the JPDM to represent the

preference information.
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Three types of utility functions are constructedl assigned to the corresponding
attributes depending on their characteristics -lemia better, larger is better or nominal
is best. The utility of an attribute depends onvasiation from target value which is the
desired value that the attribute is expected toThet is, utility is decreasing with the
variation from target value. The attribute with ‘&lier is better” properties is an attribute
that decision makers want to minimize, such as di@perating Cost (DOC). On the
contrary, the “larger is better” attribute, such st Present Value (NPV), is to be
maximized by decision makers. Attribute with “nomins best” characteristics is an
attribute that has highest utility at one specifadue. These three utility functions are
assumed in quadratic forms, given by Equation (8%9) and (37) and visualized in
Figure 57.

Larger is better:

0 (X<x)
u(x) ={ax’ +bx+c (X £xX<X,) (35)
k (%, =X

wherea = k/(x, = x)?,b=2kx, /[(x, =% )?, ¢ = —kx (2%, = %) /(x, =% ¥ 0s k<1
Smaller is better:

_|—aX+k (0sx<Xx,)
He) = {O (else) (30)

where a=k/x’ 0<k< 1

Nominal is best:

(37)

{ax2+bx+c (X £X<X)
u(x) =

(else
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wherea = -4k /(x, = %)%, b =4k(x, + %) /(x, = X)*, ¢ =-4kxx /(X,— %)’ 0<k<1

g U

(a) Larger is Better (b) SmalleBestter (c) Nominal is the Best

Figure 57: Three Types of Utility Functions in Quadratic Form

This representation of preference information eginand improves the JPDM
technique. In this study, Joint Utility (JU), witbhysical meaning, is assigned as the
objective function. The joint utility is defined amn addition of marginal utilities
contributed by all the attributes, given in Equati{®8). This calculation is based on an
assumption that the attributes are independenttlagid utilities are additive, and the

design alternative is feasible.
U (X) :Ziui (%) (38)

whereu, (x; )s marginal utility function

In a multiple decision making problem, the JU candomputed by integrating the
Joint Utility Function (JUF) over the design spdoe JPM model, or dividing the total

utility by the number of the solution in the contepmple for EDF model.

JUF = JJ-.-[U(X) f (X)dX (39)
1 n
JUF =N§lU(xi) (40)
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It is worth noting that there are two underlying@®ptions here. One assumption is
that the utility contributed by the other objec8vin which the decision maker is not
interested are not taken into account when calagjdhe JU, that is, the calculated JU is
only valid under the given criteria. The otherwasption is that the individual utilities
can be added linearly when the joint utility isccdéted. In other words, no correlation
exists among the marginal utilities in the jointityt function.

The appropriate type of marginal utility functioor feach single criterion needs to be
constructed using Equation (35 — 37) before thentJbitility of an object can be

computed. One can clearly see that given the gtiadoam and interest of the area; (
andx, ), the marginal utility function can be determingten the parametéris known.

The constank, which defines the maximum utility of an attributdnen it reaches the
target value, may be the most difficult and impottaart of construction of the marginal
utility function. In a single criterion decision &iag problem, most applications of the
utility function can use a value of 1 flarsince an objective is considered the best when
its criterion has the target value. However, itaidifferent story for a multi-criteria
decision problem. A realistic constaktshould be defined prudently by the decision
makers to represent their actual preference. Teaterk is, the more important the
corresponding criterion is. The joint utility car balculated using Equation (39) or (40),
and the concept with the maximum joint utility wik selected as the best solution.

The JUF given in Equation (40) is a linear comhorabf a set of quadratic functions
So it is a smooth and continuous multivariate gagclfunction. Apparently, the time and
cost of computing the JUF will increase dramaticatl proportion to the number of

concepts, criteria or sample size. It is appareat the customer desirability is based on
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some specific range, not a specific value, so withass in accuracy, the use of a discrete
UF can significantly simplify the computation ofethoint utility. Figure 58 shows a

utility function for smaller is better case, whdtree decision maker characterizes the
degree of desirability of 6 ranges for each citefMessac, 1996]. A discrete UF can be
established based on the desirability, with thestamt value within each of the ranges.
The constant value of each range is the valueeotitifity function at the middle point of

this range. In range 6 (the infeasible range) viilae of the loss function is assigned to

be 0. The discrete UF for the smaller is bettee gashown in Equation (41).
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Figure 58: Utility Function for Smaller is Better

Ui a(x11/2) +k If 0<x; <X

U, = a((le+x12)/2) +k If x;; <%, <x,
U (x)= Ujs=-a,((X, +X3) /27 +k If X, <X <X, (41)
Ui, a((xj3+xj4)/2) +kIf X3 <X,<x,
Ujs ==a,((X;4 + Xy, Y122 +k If X4 SX; <X,
Ue=0 If x,, <X;

Thus, the joint utility can be reduced to,
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U=, | fx)dx]+ I f,(x,)dx} (42)

j=1 t=1 Xj(t-1)

1 5
WJ {El[u Jtl (X j(t-1) <X < th)] + I (CJ5 < X < X] max)} (43)

where W is the utility of ™ criterion int™ range,xo= X;, Xs= Xju, fj(x) is the marginal
PDF of j'™ criterion. Figure 59 illustrates a joint utilityriction of two criteria with

“smaller is better” utility.
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Figure 59: Joint Utility Function for Smaller is Better

To show the improvements that the proposed metlubdewes, the same PAV
advanced concept selection problem stated in Sedtin2.2 is performed as an example
of implementation. First of all, the utility funom of each criterion requires to be
constructed. To construct the discrete utility fime, the parameters in Equation (41) are
determined by the decision maker or designer basdtieir preference as listed in Table
15. Herem is the target value of the criterion. For the ¢éhggven criteria, their target
values are all zero since they are “cost” critemal need to be minimized; (j=1, 2,
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...,0) are the limits of the 6 desirability rangegnfi highly desirable to infeasible. The
utility used within those ranges are calculatedHmuation (41). The values d&f is

assigned to be 1 for all the criteria which indésathe decision maker consider the
maximum utility of the criterion is one when it oees its target value. In addition, this

also means that the three criteria have the sampertance.

Table 15: Discrete Utility Function

D-D Time DOC Noise
k 1 1 1
Coefficient of UF m 0 0 0
a 0.0625 5.92E-05 0.00016
Highly Desirable m<x<x Utility 0.9844 0.9991 0.996
X1 1 8 10
Desirablex ; <x<x; Utility 0.8594 0.96 0.9359
X 2 50 30
Tolerable x , <x<x 5 Utility 0.6094 0.6672 0.7436
X3 3 100 50
Undesirablex 3 <x<x, Utility 0.3398 0.3162 0.4702
X4 35 115 65
Highly Undesirable x , <x<xs Utility 0.1211 0.1121 0.1694
X5 4 130 79
Infeasible X 5 <X<X ax Utility 0 0 0
X max max (D-D Time) max(DOC) max(Noise)

In this study, the joint probability distributios established using the EDF model, so
the joint utility for each concept is estimatedngsthe Equation (43). Since the tiltrotor
concept is infeasible, it is eliminated before @s8ing the selection problem. The results
are shown in Table 16.

Comparing the results shown in Table 13 and Tablecalculated using the original
JPDM technique and the proposed method respectigaly can get the same goodness

ranking for the PAV concept selection problem wiispect to the given criteria. The
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Table 16:Joint Utility and Univariate Utility of Each Conceand Criterion

Alternatives JU U(D-D) U(DOC) U(Noise)
Adv_Helicopter 0.5519 0.2095 0.2154 0.1270
Adv_Gyroplane 0.3653 0.1446 0.1170 0.1037

highest PoS and JU was obtained with the advanebcopter concept, indicating that
this concept has more viability than the otherralives as measured by the criteria of
DOC, doorstep-to-destination time and noise.

Though the results obtained from the original JPB#dhnique and the proposed
method are the same, the accuracy offered by thesemethods is different. The
proposed method considers the deviation from ttgetavalue, while the original JPDM
only looks at the probability distribution withihe area of interest and does not care how
it is distributed; in other words, no consideratisrmade on the variation and deviation
of the distribution. This can be observed from thet that there is a big difference in
goodness for noise between the results obtainem ftte JPDM technique and the
proposed method, shown in Table 13 and Table J®otisely. Clearly, this difference is
caused by the deviation issue. From the joint doditya distribution shown in Figure 53
and Figure 54, one can see that the noises dieblalutions are greater than 65dB for all
of the alternatives, which is far from target val@n the contrary, door-to-destination
time and DOC are much closer to their target valddss explains the significant
difference in utility values.

The relative goodness of the two competitive PAYicapts, the advanced helicopter
and advanced gyroplane, obtained from the two nasth® shown in Figure 60. For the

result obtained from the original JPDM techniques telative goodness of a concept is
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computed by normalizing its PoS by the summationthef PoS of these two concepts.
Similarly, for the results obtained from the propdsnethod, the relative goodness of a
concept is determined by normalizing its JU by skenmation of these two concepts.
The proposed method makes the two concepts maiaglishable: the 15% difference
in goodness increases to 20% after the proposetochetas applied. Figure 53 and
Figure 54 show that the advanced helicopter andathvnced gyroplane have similar
distributions, deviations from their respectivegits. Even in this case, the proposed
method still gives a more explicit result than JPDMndicating which alternative is the

best solution.
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Figure 60: Comparison of JPDM and Proposed Method

When dealing with the cases described by Figuretsbproposed approach will be
much more competent than the original JPDM teclmigum those scenarios, the

alternative with the highest PoS but a large dexmarom the target values will certainly
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be considered the “best” solution by the JPDM tepe This assertion is usually not
consistent with the customer’s preference, whichieggresented by a utility function.
Therefore, the use of JPDM alone is not sufficiemtmake a wise decision, and
improvement is necessary to overcome these liraitatiThe proposed approach not only
maintains the ability to capture the system ung@staand evaluate the multiple criteria
concurrently, which are the highlights of JPDM, lalso takes the deviation of the
alternative’s distribution into account. Thus, thiethod can provide more insight in a
decision making process, and makes it an advanagtioch over the original JPDM
technique. On the other hand, the proposed methiogs ron the accuracy of the utility
function, which is always a difficult task for tldecision maker and needs to be carefully
determined. In this study, in particular, the paggers listed in Table 15 need to be

determined prudently before the joint utility furoet is constructed.

4.2 Findings and Observations

The PAV advanced technology concept selection problwas fulfiled with the
utilization of the multi-criteria decision makinghasor. The most appropriate decision
making method was first selected among a set ohodst and then the problem was
solved using the selected method. With the intengib making better decision, the
decision maker requires the preference informationbe represented by a more
sophisticated model. However, there is no a swetatthod in the method base that can
handle this revised problem. The decision makingsad provided several hints that can
be used to develop a new method that has capesitdideal with the problem. A method
was proposed based on the JPDM technique usinty dhikory. The result shows that
the improvement was achieved with the use of tbpgsed method.
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In the method selection process, the most apptepneethod is selected from the
method library which store widely used decision mgkmethod. However, for a specific
problem, there may be a suitable method existingafuthe method library or just
emerging, thus it is not possible for the advisostiggest this method. Fortunately, the
advisor system allows the new method is added ¢o ntethod library, which will
eventually increase the capability of the system.

The JPDM technique was identified as the most gp@te method to handle the
concept selection problem. This method uses a nosteindefined by the response
surface equations which captures the relationslefwéen the design variables and
attributes. The equations are quadratic polynorfuattion, and are only valid in the
design space defined in Table 8 and Table 10. ®hign important assumption that
should be kept in mind. If the decision maker idlimg to accept this assumption, the
method can be used for solving the problem undesideration. Otherwise, another
method should be identified.

By using the JPDM technique, the advanced helicoptacept was selected as the
best solution to perform the PAV mission. This fesmas obtained based on the
measurement of three criteria, door to destindiioe, direct operating cost, and noise. It
is noteworthy that the result only holds true foe tase that the concepts are evaluated
by the three given criteria. If the criteria ardfetient, additional analysis requires to be
completed, and this often leads to a differentltesu

Several observations discover the limitations of tHPDM technique, and this
technique is found not to be capable of dealinghwitie revised concept selection

problem. A hybrid method was proposed based oratiwice provided by the advisor.
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The application of the proposed method yielded raproved decision for the revised
problem and provided more insights to the decismaking process.

The hybrid method essentially is a combinationratiitional JPDM technique and
utility function. It incorporates a probabilistiqgparoach and utility theory to aircraft
systems design and can accurately assess the PO&sigh concept. It eliminate the
limitations of the traditional JPDM and offers inoped performance so DMs can utilize
it to make better decision with confidence. Ther/ldPDM technique is fitted in the
decision tree for selecting MADM technique, as shaw Figure 61. A new question
(Q3) is added to this tree diagram, which deriveBNI technique. And the hybrid JPDM
technigue emerges by combining the capabilitieth@fJPDM and overall utility function.
Thus, using this adapted decision tree, a usercbaose and take advantage of this

advanced method to produce better result for hissodecision making problem.
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CHAPTER V

DYNAMIC DECISION MAKING UNDER UNCERTAINTY

The MIDAS process presented in Chapter Il and @rap/ provides an interactive
approach that can effectively facilitate the demismaking process in systems design.
The most appropriate method is selected for thbleno under consideration, and then is
utilized to derive the solution to the decision lgem by following its rigorous problem
solving procedure. In this process, decisions aaglenbased upon static information
which is fixed all the time. For example, in ordercapture the essence of the problem,
the characteristics of the problem are explored theth used to form the basis upon
which the method selection process is founded. chagacteristics are the properties of
the given problem and thus usually do not changbeWthe problem is given the
information associated with the problem, such as thquirements, constraints and
attribute values, will not change during the problsolving procedure. Therefore, the
decision making in the MIDAS process is primarilyder static conditions.

However, in many other domains, such as completesy®peration, decisions are
often made based on the assessment of the infamathich is changing over time.
Under this circumstance, decision making is notmeye a one-time action as it is under
static conditions, but needs to be accomplishemisequential manner. Obviously, this is
a dynamic decision making process which usuallyireg decision maker to make
multiple and interrelated decisions in a contindpuhanging environment [Gonzalez,
2005]. Due to the facts that uncertainties ofterstex the operational environment and

time pressure requires DM has real time decisiokimgacapability, these decisions are
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made mainly using the uncertain or incomplete imfation. As a result, the
consequences of the decisions are hard to perfactydeterministicly reason. This fact
further exacerbates the complexity of the dynaméciglon making process since
uncertainty becomes an important factor that néedse captured and analyzed in order
to make proper decision.

As discussed in Section 1.1.2, an advanced appmesths to be developed to handle
the problem of Dynamic Decision Making Under Unagrty (DDMUU). This motivates

the second part of this research.

5.1 DDMUU in Complex System Operation

The most difference between the dynamic and sti@ision making problems is the
explicit reference to time. As illustrated in Figus, with time series being one of the
properties of the decision problem, sequential slexi making becomes a fundamental
task faced by the decision maker. Complex systeenavion is one of such fields where
time-dependent decisions are required to be madedynamic environment. In order to
keep the system working functionally and effecyvéie decision maker, or operator,
needs to make proper decisions based on the ass#ssia large amount of information
representing the system state. Consequently, dacisakers must handle the real time
data and information under time pressure. It hasnbalready discussed on several
occasions that the data and information used toendkgcision are usually uncertain or
incomplete, thus, decision makers have to deal wittertainties existing in the decision
making process. The complexities of the decisiokingain complex system operation

are always a challenge to human decision makece sins usually difficult for human

164



being to manage and organize the time-dependemtniiation and make wise decisions
based on the probabilistic assessment of the aatjiformation.
These issues associated with decision making irptasystem operation lead to the

following observation:

Observation 6: In complex systems operation, uncertainty and ohyoaharacteristics
are two major factors that affect the decision mgkprocess, and it is usually

complicating the decision process for humans.

This observation implies that decision making irmpdéex system operation would
benefit by employing an advanced approach to hatietime-dependent information
and uncertain conditions.

As particularly stated in Section 1.1.2.1, in maedship operation, more and more
emphasis has been given to reducing cost and nmwonkload, and increasing ship
survivability and mission effectiveness. This résuh a requirement that the large
amount of changing information needs to be rapidipcessed and the decisions
associated with ship operation should be made auotonsly. The Integrated
Reconfigurable Intelligent Systems framework isgmsed as a possible solution to fulfill
this requirement. With the reconfigurable systeths,IRIS designed ship will assess the
incoming information and then configure itself intee mode most adequate to deal with
the situation at hand. Moreover, the ship is abled aware of its surroundings through
the gathering of data from sensors onboard thecleeand provide guidance to a human
operator as to the best course of action. In géntia reactions are determined by the

overall assessment which is a combination of tliergint assessments produced by the

165



various systems for the same event in terms ofnangend priority. Figure 62 depicts

that the IRIS designed ship is capable of self-nooimg, self-assessing and self-reacting.

Reconfigurability

Integrated Reconfigurable Cruiser .

Self-Awareness

Figure 62: IRIS Concept

It has been stated in Observation 6 that a humaisida maker has difficulties in
manipulating the time-dependent and uncertain métion. In order to increase the
mission effectiveness and ship survivability anduee operating cost, the selection of
the best course of action should be automatedaddhkt reactions can be accomplished
to deal with the situation at hand. This requites $ystem to possess the capability to
make autonomous decisions based on the analysiee ahcoming information which is
uncertain and changing over time. Therefore, araggh is needed to handle the real
time information and make autonomous decisions uadeertain conditions. This can be

state as the research question below:
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Question 6:Is there a decision making formulation that careaffely make real time
decisions reacting to the current ship situatiorseda on uncertain information?

(Observation 6)

In order to develop a decision making formulati@pable of making autonomous
decisions for the ship operation problem, existaggproaches to dynamic decision
making under uncertainty will be investigated ahnelirt potentials for decision making in

complex system operation will be examined in nextisn.

5.2 Existing Approachesto DDMUU

Dynamic decision making under uncertainty is am avbere tradeoffs need to be done in
an uncertain and real time domain. The complexftyhes problem has attracted the
attention of the researchers in both decision seieand operations research. Many
efforts have been made to facilitate the probletaisg procedure of dynamic decision
making under uncertainty. As a result, various epphes were proposed, and among
these approaches three ones are widely used [L&88§]. They are Dynamic Decision
Analysis (DDA), Atrtificial Intelligence planning (W) and Markov Decision Process

(MDP).

5.2.1 Dynamic Decision Analysis

Decision analysis, originating from the game theand operations research [Raiffa,
1968; Keeney and Raiffa, 1976], allows the decismaker to make effective decision
under risk and uncertainty. The decision analyfisnoemploys a model which utilizes
the probability theory and utility theory to obtaan expected return or cost, then decide

the best course of action to be taken. The decisam and influence diagrams are two
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typical analytical formalisms in decision analysi. decision tree, also known as
Classification and Regression Tree (CART) [Breinearal., 1984], provides a graphical
decision model that allows the DM to lay out opsoand investigate the possible
consequences. Influence diagrams, also known asamte diagrams, offer a graphical
structure within which the influences among eadepsal element, including decisions,
uncertainties and objectives are presented.

As noticed by Leong [1998], some decision anal{sthniques, such as the Markov
cycle tree [Beck and Pauker, 1983; Hollenberg, 1884 stochastic trees [Hazen, 1992],
were developed to deal with the dynamic decisiabl@m. These techniques are based
on the traditional decision analysis models suctiezssion trees and influence diagrams,
and are capable of representing the stochasti@psoaf the dynamic decision problem.

Dynamic decision analysis can provide insights ithi® complex decision situation
and thus support the DM to select the best solutdhe decision problem. The graphical
model helps understand the rationale of the selectbn the other hand, however, the
graphical structure does not allow the use of tthissible solution methods [Leong,
1993]. In addition, the dynamic decision analysegjuires the DM to have enough
knowledge to set up the model. For example, therigkds to know the decisions and the
corresponding consequences with probabilities. Thisses the difficulties in applying

the dynamic decision analysis methodology.

5.2.2 Artificial Intelligence Planning

Emerging in the 1960s from the works associated whie general problem solver
[Newell and Simon, 1963], artificial intelligencdapning is a key area in artificial

intelligence. The Al planning is used to providplan that is a fixed sequence of actions
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to achieve the goals in a dynamic environment.yEa$earch in Al planning was based
on complete and deterministic information. Moderh pfanning takes incomplete and
uncertain information into account and is able smeayate planning for a stochastic
process. Al planning involves the representatibaations, reasoning about the effects
of actions, and techniques for efficiently searghithe space of possible plans.
Significant changes have occurred in recent rebeagpplication of the methodology has
become more empirical and heuristic or constraimesked search approaches become
common [Blum and Furst, 1997; McDermott, 2000; Bars; 2001; Geffner, 2002].

Al planning is a plausible approach to the problehere dynamic decision requires
to be made under uncertain conditions. It provitese flexible and expressive problem
description when formulating the complex problenoweéver, this expressiveness may
“significantly complicate search control for the tiopal solutions” [Leong, 1998].
Moreover, the fixed planning is usually not suiab handle the domain-dependent
planning problems because the domain-specific in&ion and knowledge varies with
domains and the planning processes are significatifferent. These facts stop Al

planning from being applied smoothly in practice.

5.2.3 Markov Decision Processes

Markov Decision Processes (MDPs), also known adroled Markov chains, were
invented by Howard in 1960 [Howard, 1960]. This my@eh provides a mathematical
framework characterized by a set of states thasyiséem could be, a set of actions that
the decision maker has to choose in each stata a@rashsition matrix that represents the
probabilities of one state transiting to otherestaif a certain action is executed in the

original state. A reward is earned after a ceré&ition is executed in a specific state. The
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solution to a MDP is an optimal policy defining whiaction should be taken for a given
state, regardless of prior history. MDP is foundo® surprisingly rich in capturing the

essence of sequential decision making under umegsrtand it was successfully applied

in many areas, including operations research, obatrgineering, decision sciences, and
SO on.

The comparison of the three approaches shows Hioaigh the dynamic decision
analysis and Al planning have their own advantageisandling the dynamic decision
making problem with uncertainty, these two appreachave difficulties in practical
application. On the other hand, the Markov decispncess has been successfully
implemented in many areas and appears to be a girgmapproach. This leads to

another hypothesis:

Hypothesis 6: A well formulated Markov decision process is capabl automatically
finding the best course of action to reconfigure #hip into the state adequate to deal

with the situation at hand. (Question 6)

The Markov decision process is a powerful approtcithe problem of dynamic
decision making under uncertainty and it has theemg@al to facilitate the decision
making analysis for the ship operation problem. theoretical foundation will be

described in the next section.

5.3 Markov Decision Process Model

The Markov decision process is an extension of arghain, which is a discrete time
stochastic process describing the states of amyatesuccessive times. At these times,

the system changes from one state to another y8 stadhe same state. The changes of
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state are called transitions. Markov chain mugsfsathe Markov property which states
that the transition of the system depends onlyhencurrent state, but not on the states in
the past. Figure 63 illustrates an example of Margloain with four states and possible

transitions.

Figure 63: Example of a Markov Chain

A Markov decision process is a Markov chain withi@ts and rewards [Wiki, 2005].
The actions are the alternatives that have to bseshin each state, and the execution of
an action will cause the system transits to the sgte. After an action is performed in a
state, a reward will be earned for this state agbair. The reward of the action state pair
plays a critical role in determining which actiomoslld be chosen in each state. Notice
that in a MDP the best action taken in a stateotsnecessary the action resulting in the
maximum reward in the state. This is because th®raevith maximum immediate

reward may cause the system to transit to an umdestate in the future. Therefore, to
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choose the best action right tradeoffs should baéenbetween the immediate rewards and

the future gains to yield the best possible sotutio

5.3.1 Definition

In a MDP, a decision maker makes decisions at afsiine points, known as decision
epochs. The decision epoch can be continuous aretis In this dissertation, the discrete
decision epochs are considered and denoted byahatumbers [0 N . Mathematically, a

classical unconstrained, single-agent Markov degigbrocess can be defined as a
quadruple (4-tuple}S, A, P, R)consisting of

« astate spac&={i};

e a action space!\:{a}, where the set of possible actions in staie denoted by

A,andA=UA;

i0s

 a transition probability distribution functiégh=[p, :5x AxS P(S), where
P(S) defines the space of probability distribution oviee state spac&, and
P, is the probability of transiting to staiel] S by executing actiomJ A, [ A
in statei JS; and

« a reward functio®R=[r, ] SxA R, wherer, defines the immediate reward
earned for executing actical A [ A in statei O S.

The MDPs are classified into finite and infinite B in term of the numbers of the
states and actions. The study presented in thsedaion focuses on finite MDP in
which the numbers of the states and actions aite fifihis assumption implies that the

state and action space is countable. The trangtioipability distribution functiorP is a
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function defined for all stated 1S and the actional A U A, and}’; p,; =1 for every

statei . The reward functiorR is defined for the transitions whose probabilite®
positive, and such a transaction is referred @ aalid transition.

The Markov decision processes are typically dividetb two categories, finite-
horizon and infinite-horizon MDPs, based on the hanof decision epochs. In the finite
horizon MDPs problem, the total number of steps tha system goes through is finite
and the last step is referred BT =1) and no decision is made at or after this epath. |
the infinite case, the agent stays in the systeevér unless the desired goal is obtained.

A Markov decision process starts from an initigtsts, S, O S and, as an action
alJ A is taken, transits to the next statewith a probability of Poaj defined in the

transition probability functiorP. Then a new action is chosen and executed inmurre
state, resulting in a new transition. In the preced decision epoch the state of the

system is in, depending on the system’s trajectory.

A MDP problem consists of a MDP model representedatset of states, a set of
actions, transition probability and reward funcBorrigure 64 depicts an example of
MDP problem. In this example, a startup company f@yn four possible states: poor
and unknown, poor and famous, rich and unknown,raaidand famous, which defines
the state space of the MDP problem. In each dtateecision maker of the company has
to decide between saving money (S) or advertisi)gwhich constructs the action space
of the MDP problem. The transition probabilitiesoofe state changing to the other with a
chosen action are listed in Figure 64. The rewésdgach state are also listed in Figure
64. As can be seen, the rewards are specifie@ &st poor and unknown, 0 for poor and
famous, 10 for rich and unknown, and 10 for rickl &amous.y 0 (0,1]is the discount
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factor used to convert the future reward to presaitie, and in this example it is

assigned as 0.9.
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Figure 64: An Example of Markov Decision Process Problem [Mp@005]

For this MDP problem, it is assumed that in eacétesy state one action must be
taken. This assumption leads to several questimaisrieed to be answered: 1) how to
determine the action to be taken in a specifiete®ta) is the action that maximizes the
immediate reward the best choice? In order to anslhese questions a decision rule

should be adopted to specify which action shoulthken in each state.

5.3.2 Policy

The solution to the Markov decision processes fméeé as policy. A policy, denoted as

71, is a mapping from states to actions, which spesthe action to take for a given state,
regardless of prior history. A stationary policydisfined as a policy that does not depend
on time but only on the current state. It shoulchbted that almost all the work related to

the Markov decision process is to find an optintatisnary policy. The stationary policy
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can be further classified into two categories: aeigistic policy and randomized policy.
A deterministic policy always takes the same actfon a specific state while a
randomized policy chooses an actianfor a statei based on some probability
distribution over a set of actiorsslJ A U A. A pure policy is referred to as a stationary
deterministic policy, i.e., the action taken in leatate is fixed. It is clear that a Markov
decision process combined with a pure policy waattlice to a Markov chain.

A randomized policy, denoted as=[7z, , IS a mapping of state-action pair to
probability distribution, wherez, defines the probability of choosing actianwhen the
system is in state. The randomized policy has such a propexym, = , intlicating

that an action has to be chosen in each state (Wagd Durfee, 2004]. Obviously, a

STATE — ACTION o PU\ (PF) B
PU s (e N
PF A J;;ﬁ' A
RU s 1.-2':/ }x I‘H\. /1 ’-é@
\._._: RU : IL R |
— A \ 10/ \a10/
(a) Policy 1
STATE — ACTION fphx D PR
PU A (PUYE)— (PF Y=
— St P
F A o S —
. o N -
RU A ;‘RU}A) _— :' RF}A}_;
RF A N/ e
(b) Policy 2

Figure 65: Example Policies [Moore, 2005]
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pure policy can be considered as a randomizedypthi&t has only one action for each
state and the probability of being chosen is 1.

Two different policies for the startup company exdenare illustrated in Figure 65.
The table on the left describes a policy and tgarés on the right depict, starting from
states RU and RF, respectively, how the stateiteafiem one to another by following
the corresponding policies. It is apparent thatpbkcies shown in Figure 65 are pure

policies.

5.3.3 Techniques to Solve MDP Problem

Given a state in a Markov decision process, a aetisaker often confronts the situation
of which action to choose. Since the process isesipl, an action performed in a state
not only has effect on immediate next state but aigs effect on the following states.
Figure 66 presents an example showing how an aaffents the future states. Therefore,
choosing the best action in each state should $edoban the assessment of more than the
immediate effects of the action and a tradeoff &hde done between the immediate
rewards and future gains [Cassandra, 2003].

A policy is preferred over the other if it obtaiasbetter value of the evaluation
criterion which often is some cumulative functiohtlee rewards, such as the expected
total rewards, the expected discounted rewardsther average expected rewards.
Assuming the expected discount rewards is empl@agedhe criterion to evaluate the
policy, if a Markov decision process starts froratst, the expected discounted sum of

future rewards/ i( )is given by Equation (44)
- N -
V(i) = +y2 PV (1) (44)
J:
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wherer,, is the immediate reward earned by executing aaion starting state, y is
the discount factor which has property jofl (0,The goal of the Markov decision

processes is to find an optimal policy that maxesizhe value function, as shown by

Equation (45).
Vi) =mar, + 5 pV ()| (45)

Equation (45) is also known as Bellman optimaligya&tions [Bellman, 1957]. From
Equation (45) one can see that the value of aydépends upon the initial state of the
process. It has been proved that for an unconsttaitDP there exists an optimal policy

such that for any initial state there is no bettption than to follow the policy, i.el]

policy 7 and initial stateé 0S, Coptimal policy 77 thatV (77 ,i) =V () ).

......................................................................................
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Figure 66: Effects of Actions on the Future States
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There are three widely used algorithms for detemmgirthe optimal policy to a
Markov decision process. They are value iteratipolicy iteration and linear

programming.

5.3.3.1 Valuelteration

The value iteration algorithm, based on the Bellnogtimality equations, is a well-
known algorithm for producing an optimal policy # discounted Markov decision
process. This algorithm calculates the value famgtgiven by Equation (45), by finding
a sequence of value functions, each one derived fhe previous one.

The first step of the value iteration algorithmtas find the value function for a
horizon length of 1 for each state. This is quitepde. Since the horizon length is 1 the
immediate reward will be the value function for leatate. The value function needs to
be maximized therefore the action which incurshighest immediate reward is selected
as the decision.

The second step is to compute the value functiora foorizon length of 2, which is
the summation of the immediate rewards and theevafithe action that will be chosen.
Since the values of each state has been calcdtatelde horizon length 1, the value for
horizon length 2 can be obtained by adding the ithate effects of each of the possible
actions to the already computed value functionirtd the action with the best value. It is
worth emphasizing that after the action is madeanzon length 1 the states out from the
initial state is determined by the transition prhobgy function which shows the
probabilistic effects of the actions.

The algorithm then iterates again to compute tHaevlunction for horizon 3 using

the horizon 2 value function. This iteration congs until we have found the value
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function for the desired horizon, or until the valtunction is converged. Finally, the
optimal policy is derived from the maximum valuadtion, given by Equation (46). The

algorithm of value iteration is described below.

T = argma{ria +yy, pia,»V(j)} (46)
a j=1

Algorithm 2: Value lteration
Inputs: Immediate rewards for each state, transaction probability distribution

function P =[p,, ], initial statei , a small positive number

Outputs: Value functionV " () optimal policy 77

Calculate the immediate rewards for all statestorizon length of 1
V(i) =max(r, ) for all i

Calculate the value function for all states for izon length of 2
V(i) = ma{ria1 + y% piajvl(j)} for all i
a j=1

n=2
while ma>4V”(i) —V”‘l(i)‘ > ¢ do

n=n+1

V"(i)= ma{ria + y% piajvl(j)} for all i

a j=1

end while
V(i) =V" (i)

*

= argma{ria rys PV (j)}
a j=1

5.3.3.2 Policy Iteration

Policy iteration, proposed by Howard (Howard, 1968)another effective algorithm to

find the optimal policy for a Markov decision prase This algorithm manipulates the

policy directly, rather than finding it indirectijia the optimal value functiol” i (. )The
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first step in policy iteration algorithm is to rasmdly choose a policyr’as the starting
point. Then the expected rewards i fO) all states along the Markov process are
calculated using7®. After the value of each state” i (nder current policy is known, it

may possible improve the value by changing the &cdion taken. If this is the case, a
new policy will be produced based on the valuehaf state calculated using previous
policy. This step is given by Equation (47) andgisaranteed to strictly improve the

performance of the policy. The above steps areategeuntil the iteration is converged,
and at this point the optimal policy is reached. Figure 67 shows the process of the
policy iteration algorithm [Sutton and Barto, 1998yhere [If — denotes a policy

evaluation andT] -~ denotes a policy improvement.

) =argme , + 1%, pV ()| @7)

ﬂOI:IIlEF—»V”OEIjalTlljllEF—»V”lDIj—»HZDI__EF—»Dj —»7; IZII'_EF—>V*

Figure 67: Policy Iteration Algorithm

The policy iteration algorithm is described in Afgbm 3. Notice that in each policy
evaluation, the value function needs to be compiiggdtively until it converges. Each
policy improvement is evaluated once and the algariis complete when the policy

obtained is equal to the previous one.
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Algorithm 3: Policy Iteration
Inputs: Immediate rewards for each state, transaction probability distribution

function P =[ p,; ], initial policy 7°

Outputs: Value functionV”™ () optimal policy 77’

Initialization
m,Vv°i)=0
1 for m=1do

Policy Evaluation
for n=1do

V(i) = ma{ & i +yZ Pz 7\ (j)} for all i

until mfﬂv (|)—V”1(|)‘<£
end for
V(i)=V"()

Policy Improvement

"= argma{ n +y2 Y (J)}

If 7" ="
stop
else
goto1l
end if
end for

5.3.3.3 Maodified Policy Iteration

In practice, both value iteration and policy itevat have their advantages and
disadvantages: value iteration is much faster peation but takes more iteration to
complete, while policy iteration takes fewer itéwas, but is relatively slower in the
policy evaluation step. Puterman proposed an dlguarireferred to as modified policy

iteration, which is a combination of the two alglbnms and can speedup the calculation

[Puterman, 1994]. This algorithm, instead of firglian exact value fov™ i (,)finds an
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approximation tov™ i( )in policy evaluation step by performing a few stegf value

iteration where the policy is held fixed over swsgiee iterations. This has been shown to

produce an optimal policy within shorter iteratitme [Kaelbling et al., 1996].

5.3.3.4 Linear Programming

Dynamic programming, including the value iteratiand policy iteration algorithms,
offers effective approaches to solving the openaliqoroblems in a Markov decision
process. The goal of these algorithms is to caleullae expected rewards that can be
obtained by solving the Bellman equation, as showaquation (45). These algorithms
have a rigorous process in which the value functieeds to be calculated for all the
states in each iteration. However, as the numbetaté variables increases, the size of
the state space will typically grows exponentialyhich is known as the curse of
dimensionality. This causes the dynamic programnfongulation to become intractable
for solving this type of problems.

Linear programming, with the pioneering work ofEpenoux [1963], was proposed
as one of the approaches to deal with this diffjculinear programming is an area of

linear algebra in which the goal is to maximize @ninimize a linear
function f(?() of n variables;:(xl,x2,~-~,xn) on a region whose boundary is
defined by linear inequalities and equations. Arcamstrained single-agent Markov

decision process can be formulated as a lineargnoming, given by Equation (48):

maxZZ Xalia
St. 2 Xja =22 P Xa =0 (48)
Xa 20
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or the first constraint can be written as

1ifi=]

;%(5” - piaj)xia =a, ’Wherea—ij :{O ifiz J

The optimization variables ={x,} corresponding to a policy are referred as the

occupation measure which can be interpreted asctegdrequency that actioa is
chosen in state. Therefore the occupation measure is essentigtiobability measure
over the set of state-action paflisa and it has the property that the expected total
reward to that policy can be expressed as the &qmat of the immediate reward with
respect to this measure [Altman, 1999], as showkdpyation (48). The policy: can be

obtained from th& as:

X
e 49
Za Xia ( )

ia

a ={a;} is a measure of initial probability distributioney the states. And thus the

first constraint in Equation (48) can be consideasdhe conservation of probability and
is not an external constraints imposed on the probiThis constraint can be interpreted

as the expected frequency that states visited less the expected frequency thas

transmitted from all state-action pairs should logiad to the expected frequency of

starting in statej [Dolgov and Durfee, 2004]. The second constraleaty indicates

that the probability of taking actioa in statei is nonnegative.

183



CHAPTER VI

SOLUTION METHOD TO MULTI-AGENT MARKOV
DECISION PROCESS AND ITS IMPLEMENTATION

In Chapter V, the approaches to deal with singlenaginconstrained Markov decision
process are discussed. They provide various dhgositfor efficiently achieving the goal
of the standard MDP: finding an optimal policy whicaximizes the expected total
rewards. In complex system operation, the systaenafonsists of multiple subsystems
which provide necessary functionalities to the eyst Either these subsystems work
independently so that there are no correlationsvdet their actions, or they work
dependently, in which case the actions of one ®ibsycan influence the actions of the
other ones. However, the subsystems will be corstdeoupled together regardless their

dependencies when the resource allocation proldegaken into account

6.1 Multi-agent Resource Allocation Problem

6.1.1 Problem Description

A complex system, such as an aerospace vehicle maval ship, relies on various
subsystems to provide the necessary functions deroto successfully perform the
desired mission. To maintain their functionalitiedl, the subsystems need necessary
resources, such as electrical power, chilled waterfuel, to work properly. These
resources are often limited and shared by all thsystems. This can be summarized as

an observation below:
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Observation 7: In complex system operation, limited resources @ten shared by

various subsystems.

It has been stated in Section 5.1 that in ordeintoease mission effectiveness, a
modern ship should be able to reconfigure itset the state that is most suitable for the
situation under consideration. The reconfigurati®raccomplished by taking the best
action in the current state based on the assessshéhé incoming information. Thus,
during the ship operation a best course of acteeds to be identified and taken in order
to increase the mission effectiveness.

The execution of the actions often consumes ressuisince different subsystems
need to work together to realize various functioequired to complete the desired
actions, they require different amounts of resasitoefunction properly. Therefore, there
is a clear need for resource allocation among thesystems in order to ensure their
performance and satisfy the ultimate goal of tretesy operation. The completion of the
resource allocation will reconfigure the ship taeav state most suitable to deal with the
situation at hand. Hence, the realization of thet lm®urse of action and the resource
allocation problem are closely coupled, that idjrid the best course of action a resource
allocation problem needs to be solved.

Apparently, in the resource allocation problem,ghbsystems are coupled regardless
their work dependencies because their resourcaiogutgons are constrained by the total
available resources. In addition, the resources bealymited so that not all subsystems
can obtain required resource. This implies thatrdination must be done among the

subsystems when the resources are allocated. ©heredn approach is needed to
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facilitate the effective resource allocation analyJhis leads to the following research

guestion:

Question 7:Is there a mathematical formulation for the reseuatlocation that can

effectively distribute the shared resource to eadisystem? (Observation 7)

6.1.2 Problem Assumption

As discussed before, in the ship operation, varsulisystems require different resources
to perform the necessary actions. The resourcesfaae limited and shared by all the
subsystems. Thus, one of the primary tasks in gpgyation is to allocate the resources
to the subsystems so that they can provide funetieguired to fulfill the desired action.

In this document, subsystems are assumed to opedaeendently. This assumption
implies that the action of one subsystem does apend on or result in an action of the
other subsystem. However, this assumption doesneain the subsystems can take any
action without constraint. Since they require reses to execute the actions and the total
resources are limited, the subsystems are coupletthéb resources that they share. In
other words, the subsystems are independent wheyn dperate but coupled via the
shared resources when the resource allocatiokes tato account. Once the subsystems
obtain the required resources, they operate coslpletdependently. In this case, we say
the subsystems are loosely coupled.

A subsystem is often considered as an agent irsyeEem operation. In the actual
operation, if one event occurs, the ship will seasd assess the situation and make
decisions based on the mission, environment amqpsthtus. The decisions will indicate

what actions should be taken by each agent witrcdimsideration of not overusing the
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available resources. To perform the desired actitms shared resources need to be
distributed to the corresponding agents. The exatwif the action will lead the ship to a
new state, and consequently further decisions teebd made in the new state in order to
achieve the ultimate goal of the system operafidns state-action step will repeat at
each decision epoch until the completion of therafen. Notice that whenever a
decision needs to be made on what actions shoulthksn in a state, the resource
allocation problem will be executed. As a resutie resource allocation problem will
affect the selection of the action taken in eaelesby imposing the available resource
constraint on the decision making process.

The goal of the system operation is to identify talck on the best course of action to
maximize the objective of the operation. The bestrge of action can be obtained by
solving a resource allocation problem. The accoshptient of resource allocation needs
sequential decisions to be made in a stochastimepso Clearly, this problem is suitable
to be formulated as a Markov decision process. differences between this resource
allocation problem and a classic Markov decisioacpss are that multiple agents are
involved and constraints are imposed on the problienorder to solve the resource

allocation problem, a hypothesis is made:

Hypothesis 7: The resource allocation problem can be formulatedaamulti-agent

Markov decision process subject to the resourcéadla constraint. (Question 7)

6.2 Solution Method

A multi-agent Markov decision process is used tomidate the sequential decision

making for multiple agents in a stochastic processhis process, each agent has its own
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state space, action space and transition probahilitction. In addition, the immediate
reward for each state action pair may vary withagent. In this document, we assume
there existM agents and, without loss of generality, each abjastthe same state space

S ={i} and action spacé& ={a .}To handle the resource allocation problem, th&imu

agent MDP needs to be capable of dealing with caimss.

6.2.1 Related Work

The resource allocation problem discussed above dtacted some researchers’
attentions and as a result several methods have Oeeeloped. A straightforward

approach is to formulate this multi-agent MDP darge MDP over the joint state space
and action space of all agents [Boutilier, 199%w#éver, this approach suffers from the

“curse of dimensionality” since the number of jogtate will beN" and the number of

joint action will increase t¢NK)", whereN =|§ andK =|A. The size of the joint

state and action spaces will increase exponenwailly the increase of the number of
agents, states or actions, thus making it intrdetab use the traditional techniques
described in Section 5.3.3 for solving the multeagMDP problem.

Another approach for solving the multi-agent MDRaslecompose the global MDP
into several independent or loosely coupled loc&PVproblems, and then local MDP

problems are solved independently and their pdaigg 7z,, ..., 77 are combined to
produce a joint policyr=(m,7,,---,75 Yo the global MDP problem. This problem

decomposition approach has been adopted studieal fey researchers in their study

[Boutilier et al., 1997; Meuleau et al., 1998; Sirand D., 1998; Xuan et al., 2000].
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6.2.2 Loosely Coupled Markov Decision Process

Dolgov and Durfee noticed that the existing methdesher do not allow one to
completely avoid the explicit enumeration of thenjcstates and actions or provide only
approximate solutions to the global policy optiniza problem” [Dolgov and Durfee,
2004]. They presented a new method that allowstoffielly explore the structure of the
global MDP problem and does not sacrifice the oalityh This method formulates a
resource allocation problem as a loosely coupled®MiDd utilizes linear programming to
handle the external constraints representing thauree limitations.

The linear programming formulation for an unconsed multi-agent MDP with
total expected reward as the optimization criter®mgiven by Equation (50). Clearly,
Equation (50) with the capability to deal with nidgent MDP is an extension of
Equation (48). It can be seen that the expected teward of the global MDP is a linear
combination of the ones of the local MDPs. Thisrfalation is base upon the assumption

that the agents operate independently, as discus$sttion 6.1.2.

max. > > Xalia
m i a

St. ZZ(a_u - pinaqj)xia = ajm (50)
I a
x>0

la —

When the resource allocation is taken into accoexternal constraints are added to
the equation to prevent the resource from beingusesl. Dolgov and Durfee formulated
a multi-agent MDP with operationalization consttaifDolgov and Durfee, 2004] based
on Equation (50). An agent is said to exhibit operalization constraints if a particular

policy is not operational due to the resource btniin. Equation (51) [Dolgov and Durfee,
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2004] presents the constrained linear programmiggrighm for solving a constrained

multi-agent MDP problem.

maxy, > > Xl

m i a

st ZZ(O_” - pir:j)xir: :ajm
S O(Yen Y XD <6, (51)
%qklﬁ(ZC?kZ Xia) < q"

m
Xp 20

=0 Di=i
—1’ 5”- is Kronecker delta, defined ag ={ =]

1i# ]

where§(z)= {2 z and
z

pi’;“j represents the probability that agenttransits to state if action a is
executed in state.
« 1. defines the reward agent earns for executing actiom in statei .

« ¢, defines the action resource requirements, thiftagientm requires resource

k in order to execute actianthen c, =1, otherwisecy, =0.
* C, defines the total amount of resoufcavailable to be shared by all the agents

in the group

* () defines the amount of cost in typeresulting from consuming a unit of

resourcek.

g™ defines the upper bounds on how much tts¢ agentn can incur.

a™ is the initial probability distribution of the $&d for agentm.
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Equation (51) is not a linear programming probleimce the step functiod is
nonlinear. In order to solve this problem, Dolgavd @&urfee reduced the above problem
to a Mixed Integer Linear Program (MILP) by rewmdi the step functiord and
normalizing the occupation measwréDolgov and Durfee, 2004]. The MILP is given by

Equation (52).

maxy > % Yialia
m | a
a™
st XX - pig]j)yir: =L
i a X
Al <C
28 = G (52)
%% K san

> Cak 2 Yia <Y
a |

y" >0, AT0{01}
, X zsupy e Xa AY =8 e X ).
a i a |

6.2.3 Recyclable Resource

The mixed integer linear program described in $ad8.2.2 formulates a loosely coupled
multi-agent MDP process to solve a resource aliocgtroblem with operationalization
resources. The operationalization resources indiodks, equipments and personnel, and
are often represented as discrete variables. ¥pesdf resource is reusable. This implies
that once an agent obtains such a resource thé¢ egrehkeep it all the time and use it to
perform multiple actions. The step function in setaonstraint of the Equation (51)

indicates that if an agent expects to perform ttimas which need an operationalization
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resourcek, then the agent will get one unit of this resouregardless how often the
agent use the resource.

The execution resources like time, fuel and moreycansumable. If an agent uses
one unit of this type of resource, it will be redddrom the total available resource. Thus,
when the agent needs to perform another action rdwatires this resource, it has to
request one more unit from the rest of the avalaiglsource. Hence, the execution
resource depends on the frequency of its usags.type of resources is modeled using

the following linear constraint.

ZZZ hig]u Xira? s F]u (53)
m I a
where hl, defines if agentm performs actiora in statei, it will consumeh},, units of

resourceu, and ﬁu represents the upper bound of the expected rescorsumption.

However, the constrained multi-agent MDP approaqgtiagned in Section 6.2.2 did
not model the recyclable resource, which is a comtype of resource often needed in
complex system operation. The recyclable resounch fs chilled water of a chilled
water system is neither reusable nor consumabteebyclable. Typically, chilled water
is produced by the chiller and distributed to thbsystems as a coolant fluid. The agents
producing heat load transfer their heat througlea kexchanger to the chilled water and
get cooled. Once a unit of chilled water compldtes heat exchange with the agent, it
absorbs the heat and its temperature increaseseHere water, which has become “hot”
water, can not be reused to cool the system baforeturns to the chiller and is
reproduced as chilled water. Since the capacitthefchiller is determined, the chilled

water produced by the chiller is limited per cycléis resource limitation imposes a
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constraint on to the resource allocation problemt ae@eds to be modeled in the global

MDP.
g,, is defined as upper bound of a recyclable resowcand g, represents the

amount of this recyclable resource consumed bytageifi action a is executed in state
i . Therefore, the expected resoumgethat an agentncan consume at one decision

epoch is given by

> pi’“{Z ﬂi’a“gi’;‘w}

m
where 77 = Xia is a policy defining the probability that agemt takes actiora in
ia m
ia
a

> Xig

a

2 X

- 1a
1 a

statei, and p" = defines the probability that agemt can be in state.

To avoid overusing the limited recyclable resoutbe, total resource required by the
agents should not greater than the available respwhich is modeled by a constraint

given by Equation (54)

inr: Xim
%; m Za: S T Oiaw | < Gw (54)

Equation (54) can be reduced to

sziggir:w
z i a

W <0y (55)
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It is clear that the termy’ > x2 can be interpreted as the total expected numiagr th

i a
the agentm is visited (i.e. total expected decision epochnc& all the agents work
together and at any decision epoch each agenthlas visited once, the total decision

epoch for each agent should be equal. Thus, Equéil) can be reduced as:

ZZZXQQQW = szitagw (56)

m I a

wheret 0{1,2,---,M}. Equation (56) can be further rewritten as:

zzzxig](girgw _Amgw) < O (57)
m | a
1ifm= d{12,....M
where A, = - m = rand{l J
0 else

With the recyclable resource effectively modeldte MILP problem described in
Section 6.2.2 can be capable of dealing with thyges of the resources: reusable,
consumable and recyclable resources. Mathematj¢hkyimproved method is given by

Equation (58).

max). "> Xalia

st ;%(5” ~ Pigj ) Xia = Q7"
%H(EZC;T(;XQ) < Gy
Zk:CIkle(Za: CQ"kZiX{a") <q" (58)
Y XY hixa <h,

m i a

222 Xz (Yiaw = Am0Gw) <O

m i a

m
Xig 20
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Notice that if there is operationalization resousbared by the agents, Equation (58)
can be transformed into the form similar with Egquai(52). In this case, it can be solved
by using the MILP technigue. On the other handihére is no operationalization
resources, the second and third constraints witllken out. It is clear that the problem

will become to a linear program and can be soh&dgilinear programming technique.

6.2.4 Dependency

Equation (58) can be utilized to solve the resoat@cation problem for a constrained
multi-agent Markov decision process. The equatian either be reduced to a mixed
integer linear program or linear program problenpatgling on the existence of
operationalization resource. In this formulatiohe tobjective function, total expected
reward, is a linear combination of individual agenéxpected total reward, which is
based on the assumption that the agents operagpandently. This formulation is well
suited for the system whose agents operate indepdgdin the case that dependencies
exist among some agents, the linear program caoohstructed by abstracting these
dependent agents as one independent agent. Tles sfathe abstracted agent can be
derived from the dependent agents, and the actdlh$e the joint actions over these
states. With the utilization of abstraction, thesteyn with dependent agents can also be
modeled using Equation (58) and the linear programgrtechnique can be employed to

obtain the optimal policy for the abstracted maljient Markov decision process.

6.2.5 Resource Allocation Formulation

The resource allocation problem is formulated asoastrained multi-agent Markov

decision process which can be solved using Equé&si8h The solution to Equation (58)
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is an optimal policy that specifies the action &thken by each agent in a specific state.
Thus the resources consumed by the agent to exd#oait@ction are essentially the
solution to the resource allocation problem. Thanefthe resource allocation problem
and the policy optimization problem are closelyged.

The resource allocation process is depicted inrEBigi8. The process starts from
recognizing the system state at tirhdy assessing the information of the mission,
operational environment and ship status colleatewh fthe console and sensors. Based on
the ship state, the resources required by each,agerh as propulsion system, weapon

system and radar system, and their priorities calained. The elemef;., in the

resource required matrix represents the amouneswurcg required by agentfor the

current state. Similarly, the elementin priority matrix defines the priority of agent

requiring resourcg. Then the information is utilized as inputs by altmagent MDP

Resource Required Matrix

- Resources Required -
Agent 1 (Propulsmr > Rllreq R].Zreq Tt R].jreqY T I3nreq
Resources Required
Agent 2 (Weapon) > Rereq R22req Tty R2jreqY Tty I%nreq
: Optimal Policy
Resources Required
Agent m (Radar) > L lereq Rereq ey anjrem ey Rnnre_c Multi-Agent MDP
Maximize: Expected Total
T > Reward
oI ' Constraint: Resource Available
i i Priority Matrix
: State at ; y (Ria R -+ R - R
R R~ R - R Resource
i | Console —» Mission G| fe o My o My Distribution
5 : Cz ly Ty oo rZJ A P
; . O R L [Re Re o Ry R,
i | sensors| | Environment | Co|m rp -~ 6 o, Ri Re = Ry - Ry
| ; Co [t T = Ty o Tan R. R, - R -~ R,
' Sensors [—» Ship Status : : : :
! 5 Ru Re = Ry - Ry

Resource Allocation Matrix

Figure 68: Resource Allocation Process
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formulation to produce the optimal policy. The dahle resources impose the constraints
on the MDP process when the optimal policy is daked. Finally the resources will be
distributed by supplying the required resourcentvdgents which perform corresponding
actions determined by the optimal policy.

The resource allocation process can be detailedrided as the step by step
procedure below:
Step 1:ldentify state and action spaces for each agent

Assume the system consists Mf agents which operate independently. The state
spaceS™ (m={12,---,M}) and action spaceA™(m={12,--,M}) of the agents need
to be identified. A state of an agent is defingdobe or more state variables. In each
state of agentn, there is a set of actioA™ can be taken, and al™ compose the
action spaceA™.

Step 2:Estimate transition probability function and defimmediate rewards

For each agenitn, the transition probability matri®™ =[pir§j (In={12,---,M})

needs to be estimated. The transition probabiléresoften estimated using the historical

data or calculated based on the simulation resTiis.immediate rewardy' of the agent

for each state-action pair needs to be defineddnystbn maker based on the expected
effect of the action.

Step 3:Identify the resource type, upper bound of easbugce and resource required by
each agent for each state-action pair

The resources required to carry out the actionsildhioe identified and their types

(reusable, consumable or recyclable) need to begrezed. The upper bounds of the
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resources are required to be known. In additioa,résources required by each agent for
each state-action pair need to be identified.
Step 4:Find optimal policy

With the inputs well defined in step 1 to step Jomstrained multi-agent Markov
decision process can be formulated utilizing Eque(58). The optimal policy will be
obtained by solving the equation employing the dmprogramming or mixed integer
linear program technique.
Step 5:Resource allocation

After the optimal policy is produced, the resouadlecation problem can be fulfilled
in the system operation process. At a decision lepithe optimal policy specifies which
action should be taken in the current state, thenrésources required to carry out the

actions will be distributed to the agent to complite resource allocation task.

Resource Allocation Advisor
» State Space
: Available
» Action Space | Resources
Agent 1 —
Transition
Matix
Required
Rewards «—— Resources
Matrix
Agent m
Optimal Resource
Policy Distribution

Figure 69: Resource Allocation Advisor
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In the ship operation, in order to increase missaffiectiveness and reduce cost,
autonomous decisions need to be made. Thus, theiateanaking associated with
resource allocation requires automation. A decisi@king advisor, shown in Figure 69,
is proposed to realize the autonomous resourceaditm. This advisor encompasses a
constrained multi-agent MDP formulation which cangrate the optimal policy used to
allocate the resource.

It can be seen from Figure 69 that with all theutspavailable, the advisor automates
the step 4 and step 5 of the resource allocationgss. In the system operation, some
event may happen, such as damage occurrence oilomisisange. In this case, the
associated inputs of the resource allocation adwbould be updated, and then the new

optimal policy is calculated to direct the resouatlecation process. This is illustrated in

Figure 70.
Resource Allocation Update Inf | Resource Allocation
Advisor P © Advisor
Optimal Resource Optimal Resource
Policy Distribution Policy Distribution
A A A
1 1 1 1 1
S Mg R Sua ] I:%1+1
m m m m m m
S 8 R S+ M & * R
Decision Epoch i Decision Epoch i+/

Figure 70: Resource Allocation When Event Occurs

6.3 Implementation of Resource Allocation Formulation

The IRIS framework provides a concept that integgatifferent ship systems to monitor
and assess the ship state and then reacts tortieatcstate by reconfiguring the ship to a
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new state which can best handle the situation radl.n@bviously, the ultimate objective

of IRIS concept is to enable the ship to make autoyus decisions for determining the
best action in each state to effectively perform desired mission. To accomplish this
objective, the problem can be modeled as a muéntiylarkov decision process and an
optimal policy can be obtained to identify the bestirse of action. A resource allocation
advisor is proposed to make autonomous decisianthiéoresource allocation process. To
demonstrate the autonomous decision making andnfigooation capabilities of the

advisor, a resource allocation problem for the lédiWater Reduced Scale Advanced

Demonstrator (CW-RSAD) is chosen as a proof of ephc

6.3.1 CW-RSAD Model

In order to maximize the ship’s performance, resesirare required to be rapidly and
effectively allocated to the subsystems. In addijtisince an IRIS designed ship is
envisioned to be able to reconfigure itself intaeav state most suitable for the current
situation, resources must be redistributed to supih@ reconfiguration. Therefore, a
resource allocation problem needs to be solvedrieroto achieve the capability of
reconfiguration.

The CW-RSAD is a reduced-scale model of two zorighe Arleigh Burke chilled
water system (Figure 71) and is located at the N&waface Warfare Center in
Philadelphia. The RSAD was originally constructedirivestigate the component level
intelligent distribution control system which is ployed to achieve reliable unmanned
control of shipboard auxiliary systems. It con®§t4 pumps, 2 chiller plants, and 16
service loads which are the units of equipment emdby the chilled water system

[Scheidt, 2002]. It also contains 2 expansion tamitk the capacity to deliver 40 gpm of
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chiller water. The RSAD utilize a vertically offsetain loop to distribute chilled water to

the 16 service loads [Fairmount Automation, 2006].

Figure 71: Chilled Water Reduced Scale Advanced Demonstr&chngidt, 2002]

In order to maintain their functions, the 16 seevicads require cooling by the chilled
water system to prevent them from being damagedtawserheated. Since the RSAD
has limited capacity to provide the chilled watgsually not all of the service loads can
obtain the required cooling resource. Therefore,dhilled water needs to be effectively
distributed to the system and the distribution $thauaximize the performance of the
RSAD, that is, the limited chilled water should best used so that the utility of the
system is maximized.

The service load can be in several states sucbhwasteated” or “working properly”,
and actions associated with chilled water distrdutwill be taken in each state
depending on the expected value of executing thigora This resource allocation
problem is explored using the multi-agent Markoxisi®en process resource allocation

formulation described in Section 6.2.5.
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6.3.2 Resource Allocation for CWLFRSAD Model

To formulate the resource allocation problem udimg multi-agent Markov decision
process, a set of state, a set of action, transpi@bability function and immediate
rewards of state-action pairs should be defineceémh agent. And with this information

optimal policy will be calculated and used to cohthe resource allocation.

6.3.2.1 Step 1: Identify state and action space for each agent

Agents

Obtained from Naval Surface Warfare Center, a Flastdr model of RSAD is
illustrated in Figure 72. The electrical architeetwas developed to match the 16 service
loads present in the RSAD. Each service load isidened as an agent and assumed to

operate independently.
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Figure 72: FlowMaster RSAD Model
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Each service load represents a physical systemthe&nchapping between the service

load and the physical systems are identified astddiin Table 17.

Table 17:Physical System of RSAD Model

Agent Notation Service Load Modeled System
1 SvCO01 AN/SLQ 32 Heat Exchanger AN/SPY-1 Radar antbE8ystem
2 SVCO02 Aft Sthd Array Rm Aft Starboard Array Room
3 SVCO03 Director Eqpt Rm 1 Director System 1
4 SVCO05 Aft Port Array Rm Aft Port Array Room
5 SVCO06 Fwd IC/Gyro Forward IC/Gyro System
6 SvCO08 Director Eqpt Rm 2 Director System 2
7 SVC10 Fwd Stbd Array Rm Forward Starboard ArrayfRoo
8 SVC11 5"54 Gun Elex Gun Weapon System
9 SVC12 HVAC CIC No.1 Combat Information Center 1
10 SVC13 HVAC CIC No.2 Combat Information Center 2
11 SsvCi4 HVAC CIWS wrkshp No. 1 Close-In Weapon Sysfem
12 SVCi15 Fwd Port Array Rm Forward Port Array Room
13 SVvCi6 HVAC Crew Living Space No. 2 Crew Living Sp&
14  SVC22S C&D Heat Exchanger C&D WTR CLR
15 SVvC22P C&D Heat Exchanger C&D WTR CLR
16 SvC23 HVAC Crew/CPO Galley Crew/CPO Galley Space

For simplicity and without loss of generality, thiate space, action space, transition

probability matrix and immediate rewards of all aigeare assumed to be equal.

State Space

The states of each agent are described by the ocatidn of two state variables, one
representing the status of the agent and the o#ipeesenting the priority assessment of
the agent. The possible states of the agent aeel lis Table 18.

The first state variable is used to describe tla¢esof the agent itself. This state
variable has three values: overheated, working grtppand off. When the agent’s

temperature is higher than the threshold, it issm®red “overheated”. An agent is
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defined as “working properly” if it is working ants temperature is below the threshold.
“Off” is a state that transits from a previous stdor example, if an agent is overheated,
it may be turned off to prevent from being damagedf an agent is working properly
but has low priority, it may be turned off to sahe resources. In these cases, the agent

state becomes “off”.

Table 18: State Space of Agent

Statei Description
1 Overheated & High Priority
2 Overheated & Mid Priority
3 Overheated & Low Priority
4 Working Properly & High Priority
5 Working Properly & Mid Priority
6 Working Properly & Low Priority
7 Off & High Priority
8 Off & Mid Priority
9 Off & Low Priority

The other state variable is defined as priorityclhis a measure of emergency of an
agent. The priority is assessed based on the stétesission being performed, the
operational environment and agent status.

The mission being performed has a main contributibotine priority since the agents’
priorities vary significantly with the mission. Aifttrent mission requires different
emphasis on certain functions, therefore, the agehich provide the required functions
will have high priorities. For example, in a batti@ssion, in order to successfully
accomplish the mission, weapon and radar systemddimaintain proper functionalities

and thus they have high priorities.
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The operational environment, representing the sadimgs of ship system, also
affects the priorities of the agents. Since theesamssion may be performed in different
environments, the priorities of the agents may gkawith the environment. Under a
cruise mission, for example, the propulsion systétan has the highest priority if there
is no enemy around. However, when the ship is hostile environment, the weapons
system may have a higher priority than the propualsiystem.

It is clear that the priority of an agent dependsite own status. For example, if an
agent is turned off, its priority is certainly lofke. it is not going to be used and no
resource will be provided to it). Or if an agenbigerheating, it mostly has high priority
to get the required resources.

Therefore, the overall priorities of the agents determined by the combination of

mission, environment and status, given by Equa&@n).

3
pr=2 W * pr (59)
i=1
where pr, = (pr; 4, Pr 5.+, Pl 16),1 = 1,2,3is the priority vector contributed by mission,
environment and status respectivelw;, i = 128 the corresponding relative

importance of the three contributors.

As mentioned before, state variables can be olutairen the console, sensors or
other agents which are able to directly provide thaables or supply the information
that can be used to derive the values of the Vi@sabA model was constructed to
simulate the resource allocation process. This inisdeart of the integrated simulation
environment developed by the IRIS team in Aerosp@gstems Design Laboratory

(ASDL) at Georgia Institute of Technology. The eonment provides designers with an
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integrated modeling and simulation environment val@ate design information using
Model Center, as shown in Figure 73. It integrabkesmodels of a simplified electrical
power distribution network with a chilled water 83 and a hierarchical control system.
The integrated design environment enables the eastution of each model and can
track the interface variables of the models. Thele® developed for this environment
are based on the RSAD FlowMaster model as showigure 72.

The model labeled as HLCtrl is a top level consgstem that assesses the events
from a system point of view and makes autonomouwssmsms on what plans/actions
should be performed to reallocate the availablewees to the agents in order to
reconfigure the system into the state which is ade® suitable for the mission,
operational environment and agent status. Thus, rdsource allocation task is
accomplished by this model, as shown in FigureFrdm this figure, it can be seen that
the state variables can be obtained from the ottuetels: the first state variable can be
obtained from the FlowMaster model and electricadsi (labeled as ChilledWater and
PowerModel in Figure 73, respectively) where thagerature of the service load can be
calculated. The priority of each service load carcbmputed using the information from
agent based control system, Human Machine Inteffd®#) model and external inputs.
The agent based control system, labeled as ABCEigure 73, can indicate the status of
the service load and send the information to tpddwel control system. The HMI model
labeled as HMI serves as an interface that allowsdan operator to supervise the
performance of the system and send the missionirezgents to high level control
system. There is no model that simulates the dpeadtenvironment, thus the priority

contributed by environment is modeled using thelgfieed data that are directly input to
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the resource allocation model. Therefore, with th#ormation about the mission,
environment and status, the overall priority carcdéleulated using Equation (59).

After the state variables are obtained, the resoatocation model will formulate a
multi-agent Markov decision process and then findoptimal policy to allocate the

resources to the service loads.

Figure 73: IRIS Integrated Environment
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Figure 74: Resource Allocation Model for RSAD

Action Space

Three actions can be taken for each agent depeodimg state. The actions are: supply
agent the required cooling fluid, turn the agerft afrn the agent on and supply the

required cooling fluid, as listed in Table 19.

Table 19: Action space

Action a; Description

a, Supply agent the required cooling fluid

a, Turn the agent off
as Turn the agent on and supply the required cooling f

As stated in Table 18, each agent may be in orfe sthtes at a given time. Notice

that not all actions can be performed in each sisge some actions are not appropriate
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to be taken in certain states. Actiapindicates that the required cooling fluid (chilled
water) will be supplied to an agent, thus, thisaactan be performed in all states. Action

a, can be taken in all the states except for thestdat the agent’s state is already “off”
(i.e states 7, 8, 9) whila; can only be performed in such states. Table 19 e action

spacesA for each state.

Table 20: Action Space for Each State

Statel Action SpaceA;
{ai, a>}
{ai, a>}
{ai, ax}
{ai, ax}
{ai, ax}
{ai, ax}
{ai, as}
{ai, as}
{ai, as}

O© 0 N O O A W DN

6.3.2.2 Step 2: Estimate transition matrix and define immediate rewards

The transition probability matri® =[p;,; represents the probabilities of changing to
state j if action a is executed in state It is clear thatP is a|§ x|A x| matrix. The

immediate returrR =[r;, Pefines the expected immediate reward by execantign a

in statei . The transition matrix and expected immediate rdwaf the three actions for
RSAD model are given by Table 21, Table 22 and &3, respectively. In this study,
without loss of generality, it is assumed that ttasition probability matrixes and the
corresponding rewards of the 16 service loadshersame.
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Since the goal of the system operation is to warkh@ best course of action to gain
the maximum desirability of its potential effechetbest course of action needs to be
identified first. The optimal policy defines whatt@n is the best to be taken in a system
state, thus by following the optimal policy one aabtain the best course of action. The
action taken in a state is considered as the “basibn because its potential effect is
expected to best achieve the objective of the diperahat is, effectiveness. Therefore,
the total rewards obtained by executing the bestseoof action represent the system’s
effectiveness. In other words, it can be statet ridaaard earned by the execution of an

action for a state-action pair represents its pkeffectiveness.

Table 21: Transition Probability Matrix and Rewards for Action a;

Statéi  py, Pi12 Pi3 Piia Pis Pie Piz Pis Pig Mg

1 01 007 003 055 0.15 0.1 0 0 0 20
2 0.08 0.1 0.02 0.1 0.5 0.2 0 0 0 10
3 001 0.01 0.08 0.05 0.1 0.75 0 0 0 -5
4 0.05 0.03 0.02 0.6 0.2 0.1 0 0 0 15
5 002 005 0.03 0.03 0.7 0.17 0 0 0 10
6 001 0.04 0.05 0.1 015 0.65 0 0 0 5
7 0 0 0 0 0 0 1 0 0 -5
8 0 0 0 0 0 0 0 1 0 -2
9 0 0 0 0 0 0 0 0 1 3

Table 22: Transition Probability Matrix and Rewards for Action a,

Statei  p;y Pi22 Pi23 Pi2a Pizs Pize Pi27 Pizs Pi2g Mo

1 0 0 0 0 0 0 0.7 0.2 0.1 -10
2 0 0 0 0 0 0 0.2 0.7 0.1 -5
3 0 0 0 0 0 0 0.1 0.2 0.7 5
4 0 0 0 0 0 0 08 015 0.05 -20
5 0 0 0 0 0 0 0.6 0.3 0.1 -10
6 0 0 0 0 0 0 0.4 0.4 0.2 -5
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0
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Table 23: Transition Probability Matrix and Rewards for Action ag

Statei  p;y Pis2 Piss Pisa Piss Pise Pis7 Piss Pisg lis

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0.7 0.2 0.1 0 0 0 15
8 0 0 0 0.1 0.6 0.3 0 0 0 10
9 0 0 0 005 0.15 0.8 0 0 0 -5

6.3.2.3 Step 3: Available Resource and Required Resource

In this example, the resource that needs to beca#d is chilled water which is a
recyclable resource. As mentioned in Section 6 R3IAD has the capacity to deliver 40
gpm chilled water, therefore, this is the cooliegaurce available for all the 16 service
loads.

The resource required by each agent depends on d¢haent state and action
executed in this state. If actian is performed in a state, the resource requirethhy
state will be supplied to the agent. Typically, tesource required by the agent in the
overheated state is greater than in the state dimgpproperly, and the required resource
is zero if an agent is in off state. If actiag is performed in any state, the resource
required is zero since the agent is turned offitidnot consume any resource. Action
a; can only be taken in state 7, 8, and 9, andisféxecuted the resource required by the
agents in these states should equal the requisedinee that ensures they work properly.
Table 24 lists the resource required to execufereifit actions in each state. The element

0., (I=123--- 9 a=123) in the table defines the resource consumed bygdakction

a in statei . Without loss of generality, the 16 agents areum&sl to have the same
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resource consumption for each state-action pamnFRhis table, one can see that when
all agents work properly and are supplied the megucooling resources (i.e. the agents
are in state 4, 5 or 6, and actianis taken), the total required resource equalddtsd

available resource.

Table 24: Resource Required by Each State-Action a

Statei gi1 Ji2 Ois

3 0 0
2 3 0 0
3 3 0 0
4 2.5 0 0
5 2.5 0 0
6 2.5 0 0
7 0 0 2.5
8 0 0 2.5
9 0 0 2.5

6.3.2.4 Step 4: Find optimal policy

In RSAD model, the only resource needs to be akaté cooling fluid — chilled water
which is a recyclable resource that can be reugdaking chilled by the chiller of chilled
water system. Therefore Equation (58) can be retlt@eEquation (60) which can be

solved by utilizing the linear programming techrequ

maxy. > > Xiafia

m i a

st ZZ(JU - pir:j)xi?; :ajm
1 a

222 X (Jiaw = Am0Gw) <O

m i a

m
Xig 20

(60)
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The initial conditiona}“ (j=22,---9; m=12--- 16) is given as 1 indicating that

the number of the times that the agemtstarts in each stage At this point, all the
necessary information required to compute the agtipolicy is obtained. By using the
linear programming technique, the optimal policytlod agent is calculated and shown in
Table 25. Notice that since the transition probgbimatrix, immediate reward and
resource required by all agents are assumed the, shenoptimal policies for the agents

are also the same.

Table 25: Optimal Policy

Statei T, 1T, T3

0.96 0.04 0
2 0.69 0.31 0
3 0.58 0.42 0
4 0.80 0.20 0
5 0.96 0.04 0
6 0.94 0.06 0
7 0.31 0 0.69
8 0.44 0 0.56
9 0.56 0 0.44

The optimal policy shown in Table 25 is a randodigmlicy. The elementz, in

this table represents the probability of takingiacia in statei. When the policy is
executed, an action will be chosen based on thkapility distribution over the state
space which is defined by the optimal policy. Thirnal policy presented in Table 25
provides some insights about the best action ttaken in each state. It can be seen that
if an agent is in any state of 1 to 6 the probgbdif being supplied the required cooling

resource is much higher than the probability ohitug the agent off. In addition, if an
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agent is in off state (i.e. state 7, 8 or 9) thecexion of the optimal policy will tend to
turn the agent on and supplying it the requireduese except it is in state 9. It can be
explained as state 9 has low priority so keepirgffican save some resource that could

be used by the high priority states.

Step 5: Resource allocation Process

In the system operation, at tinhealso considered as a decision epoch, an aganthe
statei . An actiona is chosen from a set of allowable actions and thertuted with the
objective of maximizing the expected total rewafthe proper action to take can be
identified by following the optimal policy as shownTable 25. That is, in a certain state
which action is selected to be executed is detaxthby its probability over this state. For
example, if an agent is in state 1, actmnhas a probability of 96% to be executed while
actiona, has a probability of 4% to be taken. After thaacis performed in the state,
the agent will change to a state with a probabdi§ined by Table 21, Table 22 or Table
23 based on the selected state-action pair, antdeasame time the agent receives a
reward. In this example, if actioa, is selected, the agent will transit to state or ®
with probability of 70%, 20%, 10% respectively, andanwhile receive a reward of -10.
In addition, the execution of actiam, in state 1 consumes 0 unit of resource, which can
be found from Table 24. At next decision epoch, digent will go through the same
process and then move to another new state. Tochattic process is illustrated in
Figure 75. Notice that at each decision epochthall16 agents need to take one action

based on the optimal policy, and the executionallahe actions should not overuse the

total available resource.
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Figure 75: Action Selection and Resource Allocation Process

6.3.3 Simulation Studies

The objective of the simulation study is to invgate the effects of the course of action
defined by the optimal policy and gain insightsoinis performance. Since the optimal
policy is the solution to the constrained multi-ageMDP problem, eventually, the
constrained multi-agent MDP formulation will be exaed. This formulation is
encompassed in the resource allocation model,ddlzd HLCtrl in Figure 73. Therefore,
the resource allocation model will be tested in gheulation study process. To test the
resource allocation model, instead of using thesgrdgted simulation environment
presented in Figure 73, a stand-alone MATLAB progrés used to perform the
simulation. In a simulation, at each decision eptith optimal policy calculated in
Section 6.3.2.4 determines an action to take baped the probabilities of the actions
over the state. After an action is taken in theenirstate, the system earns a reward and
then transits to a new state depending on theiti@mrobabilities defined in Table 21,
Table 22 and Table 23. This process is repeatedddt decision epoch until it reaches the

maximum number of the decision epoch. Thus, th@r@btpolicy can be investigated
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using this simulation program without needing tooke any other model of the
integrated simulation environment.

To explore the performance of the optimal poliayurf other policies, as given by
Table 26, are constructed to compare with thehe policy given by Table 26 (a) is a
deterministic policy which always chooses the activat will maximize the immediate

reward in each state. The other three randomizkdigmare arbitrary, valid policy.

Table 26: Four Policies

(a) Maximum Immediate Reward Policy (b) Arbitrary Policy 1

Statei My T, s Statei My T, s
1 1 0 0 1 0.8 0.2 0
2 1 0 0 2 0.7 0.3 0
3 0 1 0 3 0.4 0.6 0
4 1 0 0 4 0.9 0.1 0
5 1 0 0 5 0.6 0.4 0
6 1 0 0 6 0.4 0.6 0
7 0 0 1 7 0.4 0 0.6
8 0 0 1 8 0.5 0 0.5
9 1 0 0 9 0.8 0 0.2

(c) Arbitrary Policy 2 (d) Arbitrary Poli&y
Statei T, T, Ty Statei T 1Ty g

1 0.4 0.6 0 1 0.9 0.1 0

2 0.1 0.9 0 2 0.8 0.2 0

3 0.7 0.3 0 3 0.6 0.4 0

4 0.5 0.5 0 4 0.2 0.8 0

5 0.3 0.7 0 5 0.3 0.7 0

6 0.8 0.2 0 6 0.4 0.6 0

7 0.5 0 0.5 7 0.7 0 0.3

8 0.1 0 0.9 8 0.9 0 0.1

9 0.4 0 0.6 9 0.2 0 0.8

6.3.3.1 Policy Comparison

Average Reward for One Simulation
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The comparison starts by running a simulation swheof the policies. In the simulation,

the 16 agents begin with an initial state and gough 10000 decision epochs by
following the policies. Since the 16 agents areuass] to operate independently, their
initial states are also independent. The initiatest of the 16 agents compose the initial

state of the simulation which is shown in Table 27.

Table 27: Starting States for Policy Simulation

Agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
State 3 8 7 8 3 6 3 3 4 7 9 3 4 7 8 4

In the simulation, a policy is utilized to make ttlecision and select the action in

each state. The operation of the system starts frame initial state
S, ={S5.S5,---, S5} (wheres)' = {1,2,---9}, m=12,--- 16) at decision epoch,. At this
epoch, decisions need to be made upon choosingaciien ag' (whereag' ={1,2,3},
m=12,--- 16) for each agent in its initial state based on thebability ﬂigo (where
i=12---9a=123 m=12--- 16) defined by the policy. The effect of the actioil w
result in a transition to a new stag (wherem=12,--- 16 and a reward;;, (where
i=12---9 a=123 m=12---16) is earned by the agent. The transition is
manipulated by the transition probability matriosm by Table 21, Table 22, or Table

23 depending on what the state action pair is. €qumsntly, the system enters to the next

decision epoch, and the same process at decision eggahill be repeated. The system

then moves to the next decision epoch until theimarn number of the decision epoch

(i.e. 10000) is reached. This process can be glgaWed in Figure 75.
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The rewards gained by the agents at each decigiooheare calculated for each
policy. Figure 76 shows the reward trajectoriestha five policies in a 10000 decision
epoch simulation. The statistic results of avenayeard for the five policies are listed in

Table 28.

Table 28: Statistic Results of Average Reward for Five Pebci

Policy 7 o
Optimal 98.0275 30.6818
Max Immediate Reward 48.0439 2.8519
Arbitrary 1 60.5912 36.6398
Arbitrary 2 17.5475 45.3764
Arbitrary 3 -27.8321  34.6259

From Table 28 and Figure 76, one can see that mamieffectiveness (maximum
average reward) is obtained when the system opebgtéollowing the optimal policy.
This indicates that the best course of action isceted during the system operation
process, and the optimal policy does have bettdopeance than any other policy. The
maximum immediate reward does not perform well sTihiplies that the decisions must
not be made myopically, but must anticipate theoojynities and rewards associated
with future system states. Different policies haiféerent performance, and poor policy
may lead to cost (negative reward) to the systewh &m turn, makes the resource
allocation ineffective. Notice that after aroundIdecision epochs, the reward keeps as a
constant for maximum immediate policy. This is doehe fact that once a state transits

to state 9 it will stay in this state forever besmauactiona,, which generates the

maximum immediate reward for state 9, will be takethis state and the probability of

changing back to state 9 is 1.
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Total Rewards for 50 Simulations

To further investigate the performance of the pedic50 simulations are performed for
each policy. In each simulation, the 16 agentd $tam an initial state and go through
10000 decision epochs by following one of the pefic The initial state of each
simulation for all the policies are the same sa tha policies can be compared based on
the same basis. The total reward in one simulat@m be obtained by summing the
reward at each decision epoch. The simulation 8@nsmes for each policy and the total
rewards of each run is computed. (a) to (e) of legi¥r show the total rewards for the
five policies in 50 simulations. Figu