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Abstract

This paper describes research investigating behavioral
specialization in learning robot teams. Each agent is
provided a common set of skills (motor schema-based
behavioral assemblages) from which it builds a task-
achieving strategy using reinforcement learning. The
agents learn individually to activate particular behav-
ioral assemblages given their current situation and a
reward signal. The experiments, conducted in robot
soccer simulations, evaluate the agents in terms of per-
formance, policy convergence, and behavioral diversity.
The results show that in many cases, robots will auto-
matically diversify by choosing heterogeneous behav-
iors. The degree of diversification and the performance
of the team depend on the reward structure. When
the entire team is jointly rewarded or penalized (global
reinforcement), teams tend towards heterogeneous be-
havior. When agents are provided feedback individu-
ally (local reinforcement), they converge to identical
policies.

Introduction

Individuals in nearly all multiagent societies specialize:
ant colonies have workers, soldiers and a queen; cor-
porations have secretaries, managers and presidents.
Why does specialization occur? Are individuals born
with skills and physical attributes that suit them for
a job or do they learn to fill a niche? It may not be
possible to answer this question for natural systems,
especially human groups, but we can investigate the
issue in an artificial society: the robot team.

This research investigates the relationships between
reward structure, performance, and behavioral diver-
sity in robot soccer. Soccer is becoming a popular new
focus of robotics research (Kitano et al. 1997). Soccer
is an interesting task for multiagent research because
it is simple and familiar to most people, yet it provides
opportunities for diversity in the individual team mem-
bers.

No matter the domain, multi-robot team design
is challenging because performance depends signifi-
cantly on issues that arise solely from interaction be-
tween agents. Cooperation, robot-robot interference
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and communication are not considerations for a single
robot, but are crucial in multi-robot systems. Fortu-
nately, the additional effort involved in deploying sev-
eral robots is rewarded by a more robust and efficient
solution (Balch & Arkin 1995).

When feedback regarding success in a task is avail-
able, reinforcement learning can shift the burden of
behavior refinement from the designer to the robots
operating autonomously in their environment. For
some simple tasks, given a sufficiently long trial, agents
are even able to develop optimal policies (Kaelbling,
Littman, & Moore 1996). Rather than attempting
to design an optimal system from the start, the de-
signer imbues his robots with adaptability. The robots
strive continuously to improve their performance; find-
ing suitable behaviors automatically as they interact
with the environment. For these reasons reinforce-
ment learning is becoming pervasive in mobile robot
research. This work focuses on behavior that arises
from learning in multi-robot societies.

Most research in multi-robot groups has centered on
homogeneous systems, with work in heterogeneous sys-
tems focused primarily on mechanical and sensor dif-
ferences e.g. (Parker 1994). But teams of mechan-
ically identical robots are especially interesting since
they may be homogeneous or heterogeneous depend-
ing solely on their behavior. Investigators are just be-
ginning research in this area, but recent work indicates
behavioral heterogeneity is advantageous in some tasks
(Goldberg & Mataric 1996). Behavior is an extremely
flexible dimension of diversity in learning teams since
the individuals determine the extent of heterogeneity
through their own learned policies. The idea that in-
dividuals on a learning team might converge to dif-
ferent behaviors raises important questions like: How
and when do robot behavioral castes arise? Does the
best policy for a robot depend on how many are on the
team? When is a heterogeneous team better?

Background and Related Work

This research draws from several fields, including
behavior-based robot control, reinforcement learning
and multiagent research. A brief review of the rele-



vant work follows.

Motor schemas are an important example of
behavior-based robot control. The motor schema
paradigm is the central method in use at the Geor-
gia Tech Mobile Robot Laboratory, and is the plat-
form for this research. Motor schemas are the reac-
tive component of Arkin’s Autonomous Robot Archi-
tecture (AuRA)(Arkin & Balch 1997). AuRA’s de-
sign integrates deliberative planning at a top level
with behavior-based motor control at the bottom. The
lower levels, concerned with executing the reactive be-
haviors are incorporated in this research.

Individual motor schemas, or primitive behaviors,
express separate goals or constraints for a task. As an
example, important schemas for a navigational task
would include avoid_obstacles and move_to_goal.
Since schemas are independent, they can run concur-
rently, providing parallelism and speed. Sensor input is
processed by perceptual schemas embedded in the mo-
tor behaviors. Perceptual processing is minimal and
provides just the information pertinent to the motor
schema. For instance, a find_obstacles perceptual
schema which provides a list of sensed obstacles is em-
bedded in the avoid_obstacles motor schema. Mo-
tor schemas may be grouped to form more complex,
emergent behaviors. Groups of behaviors are referred
to as behavioral assemblages. One way behavioral as-
semblages may be used in solving complex tasks is to
develop an assemblage for each sub-task and to exe-
cute the assemblages in an appropriate sequence. The
resulting task-solving strategy can be represented as
a Finite State Automaton (FSA). The technique is re-
ferred to as temporal sequencing (Arkin & Balch 1997).

Even though behavior-based approaches are robust
for many tasks and environments, they are not nec-
essarily adaptive. We now consider some of the ways
learning can be integrated into a behavior-based sys-
tem.

Q-learning is a type of reinforcement-learning in
which the value of taking each possible action in each
situation is represented as a utility function, Q(s, a).
Where s is the state or situation and a is a possi-
ble action. If the function is properly computed, an
agent can act optimally simply by looking up the best-
valued action for any situation. The problem is to find
the Q(s, a) that provides an optimal policy. Watkins
(Watkins & Dayan 1992) has developed an algorithm
for determining Q(s, a) that converges to optimal. He
prefers to represent Q(s,a) as a table, Q[s, a], and as-
serts in (Watkins & Dayan 1992) that the algorithm is
not guaranteed to converge otherwise.

Mahadevan and Connell (Mahadevan & Connell
1992) have applied Q-learning to learn the component
behaviors within a pre-defined sequence. The partic-
ular task they investigate is for a robot to find, then
push a box across a room. Using this approach, their
robot, OBELIX was able to learn to perform better
than hand-coded behaviors for box-pushing.

In research at Carnegie Mellon University (Lin
1993), Lin developed a method for Q-learning to be ap-
plied hierarchically, so that complex tasks are learned
at several levels. The approach is to decompose the
task into sub-tasks. The robot learns at the sub-
task level first, then at the task level. The over-
all rate of learning is increased compared to mono-
lithic learners. Similarities between Lin’s decomposi-
tion and temporal-sequencing for assemblages of motor
schemas are readily apparent. Lin’s sub-tasks or ele-
mentary skills correspond to behavioral assemblages,
while a high-level skill is a sequence of assemblages.
Learning at the high-level is equivalent to learning the
state-transitions of an FSA and learning the elemen-
tary skills corresponds to tuning individual states or
behavioral assemblages. This demonstrably successful
approach to learning is the testbed for the research re-
ported here. But the focus is not on individual learning
agents but rather a learning society.

Mataric has investigated learning for multi-robot
behavior-based teams in foraging tasks. Her work has
focused on developing specialized reinforcement func-
tions for social learning (Mataric 1994). The overall
reinforcement, R(t), for each robot is composed of sep-
arate components, D, O and V. D indicates progress
towards the agent’s present goal. O provides a rein-
forcement if the present action is a repetition of an-
other agent’s behavior. V is a measure of vicarious
reinforcement; it follows the reinforcement provided to
other agents. She tested her approach in a foraging
task with a group of three robots. Results indicate
that performance is best when the reinforcement func-
tion includes all three components. In fact the robots’
behavior did not converge otherwise.

Goldberg and Mataric have proposed a framework
for investigating the relative merits of heterogeneous
and homogeneous behavior in foraging tasks (Goldberg
& Mataric 1996). Like the research reported in this
paper, their work focuses on mechanically identical,
but behaviorally different agents. Time, interference
and robustness are proposed as metrics for evaluating
a foraging robot team, while pack, caste and territorial
arbitration are offered as mechanisms for generating
efficient behavior. They will investigate the utility of
the various arbitration mechanisms by implementing
them in teams and evaluating the teams comparatively.

The research reported here differs from other work in
several important respects. First, here we are primar-
ily concerned with the origins of heterogeneous and ho-
mogeneous behavior. The work is further distinguished
by the fact that learning agents are the central inves-
tigative tool. No commitment is made in advance to
any particular societal structure or arbitration mecha-
nism. Instead, the robots develop their own societal so-
lutions. This opens up the possibility that new forms of
arbitration and cooperation may be discovered by the
robots themselves. Finally, we are interested in mea-
suring the diversity of the resulting society, and uti-



lize a metric of social entropy for that purpose (Balch

1997b).

Robot Soccer

Robot soccer is an increasingly popular focus of
robotics research (Kitano et al. 1997). It it is an at-
tractive domain for multiagent investigations because
a robot team’s success against a strong opponent often
requires some form of cooperation. For this research,
the game is simplified in a few respects:

e Teams are composed of four players.

o The sidelines are walls: the ball bounces back in-
stead of going out-of-bounds.

e The goal spans the width of the field’s boundary.
This helps prevent situations where the ball might
get stuck in a corner.

e Play is continuous: After a scoring event, the ball is
immediately replaced to the center of the field.

How can we objectively evaluate a robot soccer
team? In a human game the object is to have scored
the most points when time runs out. It is only nec-
essary to score one more point than the other team.
Here, we take the stance that greater score differentials
indicate better performance (it is best to humiliate the
opponent!). Hence, the performance metric for robot
teams is

P = Sus - Sthem (1)

where Sus and Sihem are the scores of each team at the
end of the game.

The Java-based soccer simulation for this research
(Figure 1) is modularized so that a robot’s control sys-
tem interacts with a well-defined sensor-actuator inter-
face. The simulation proceeds in discrete steps. In each
step the robots process their sensor data, then issue ap-
propriate actuator commands. The simulation models
physical interactions (robot, ball and wall collisions),
sensors and motor-driven actuators. When the ball is
bumped by a robot it immediately accelerates and rolls
away. Rolling friction is modeled with constant decel-
eration after the bump. FEach agent is provided the
following synthetic sensors:

e Velocity sensor: provides present heading and speed
of the robot.

¢ Bump sensor: returns a force vector in the direction
of any bump.

e Ball position sensor: provides an egocentric vector to
the soccer ball.

o Defended goal sensor: provides an egocentric vector
back to the robot’s own goal.

e Team sensor: returns an array of egocentric vectors
pointing to the robot’s team members.

¢ Enemy sensor: an array of egocentric vectors pointing
to the robot’s opponents.

e Score sensor: indicates whether the team has just
scored or was scored against.

perceptual assemblage
feature | mtb gbb mitb f
not behind_ball 0 1 0

behind_ball 1 0 0
Control Team Forward

perceptual assemblage
feature | mtb gbb mitb f
not behind_ball 0 1 0

behind_ball 0 0 1
Control Team Goalie

Figure 2: The control team’s strategy viewed as look-
up tables. The 1 in each row indicates the behavioral
assemblage selected by the robot for the perceived sit-
uation indicated on the left. The abbreviations for the
assemblages are introduced in the text.

e Robot ID: a unique integer from 1 to the size of the
team.

The ball position, robot ID and defended goal sen-
sors are used in the experimental robots examined
here. At present, the sensors are perfect. Future revi-
sions of the simulator may address real-world issues like
noise, sensor occlusion and field-of-view constraints.
The following actuator interface is provided to the con-
trol system:

o Set drive speed: a real value from -1 to 1 is sent to
the robot’s drive motor, indicating how fast the robot
should go.

e Set heading: a real value from 0 to 27 is sent to the

robot’s steering actuator indicating the desired heading
for the robot.

The sensor and actuator interface closely parallels
those available on commercial robots. An eventual goal
is to verify this work by porting the system to four
Nomadic Technologies Nomad 150 robots in Georgia
Tech’s Mobile Robot Laboratory.

Behaviors for Soccer

Behavior-based approaches are well suited for robot
soccer since they excel in dynamic and uncertain envi-
ronments. The robot behaviors described here are im-
plemented in Clay, an object-oriented recursive system
for configuring robot behavior. Clay integrates primi-
tive behaviors (motor schemas) using cooperative and
competitive coordination operators. Both static and
learning operators are available. The system is out-
lined at a high level here. For more detail the reader
is referred to (Balch 1997a).

Experiments are conducted by engaging an ezperi-
mental team against a fixed opponent control team in
soccer contests. We begin by describing the control
team’s behavioral configuration. Since the experimen-
tal team’s performance will be significantly impacted
by the skill of its opponent, it is important to avoid
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Figure 1: Examples of homo- and heterogeneous learning soccer teams. In both cases the learning team (dark)
defends the goal on the right. The agents try to propel the ball across the opponent’s goal by bumping it. A
homogeneous team (left image) has converged to four identical behaviors which in this case cause them to group
together as they move towards the ball. A heterogeneous team (right) has settled on diverse policies which spread

them apart into the forward middle and back of the field.

variability in the control team’s strategy to ensure con-
sistent results. The control team will always follow a
fixed policy against the teams under evaluation.

The control team’s design is based on two observa-
tions. First, points are scored by bumping the ball
across the opponent’s goal. Second, robots must avoid
bumping the ball in the wrong direction, lest they score
against their own team. A reasonable approach then,
is for the robot to first ensure it is behind the ball,
then move towards it to bump it towards the oppo-
nent’s goal. Alternately, a defensive robot may opt to
remain in the backfield to block an opponent’s scoring
attempt.

To implement this design, each robot is provided a
set of behavioral assemblages for soccer. Each assem-
blage can be viewed as a distinct “skill” which, when
sequenced with other assemblages forms a complete
strategy. This style of behavior-based robot design,
referred to as temporal sequencing, views an agent’s
strategy as a Finite State Automaton. The strategies
may be equivalently viewed as lookup tables (Figure
2). This paper will focus on the lookup table represen-
tation since it is also useful for discussing learned poli-
cies. The behavioral assemblages developed for these
experiments are:

o move_to_ball (mtb): The robot moves directly to the ball.
A collision with the ball will propel it away from the
robot.

o get_behind_ball (gbb): The robot moves to a position be-
tween the ball and the defended goal while dodging the
ball.

o move_to_back_field (mtbf): The robot moves to the back

third of the field while being simultaneously attracted to
the ball.

The overall system is completed by sequencing the
assemblages with a selector which activates an appro-
priate skill depending on the robot’s situation. This is

accomplished by combining a boolean perceptual fea-
ture, behind_ball (bb) with a selection operator. The
selector picks one of the three assemblages for activa-
tion, depending on the current value of bb.

The team includes three “forwards” and one
“goalie.” The forwards and goalie are distinguished
by the assemblage they activate when they find them-
selves behind the ball: the forwards move to the ball
(mtb) while the goalie remains in the backfield (mtbf).
Both types of player will try to get behind the ball
(gbb) when they find themselves in front of it.

Learning Soccer

To isolate the impact of learning on performance, the
learning teams were developed using the same behav-
ioral assemblages and perceptual features as the con-
trol team, thus: the relative performance of a
learning team versus the control team is due
only to learning.

Recall that Clay (the system used for configuring the
robots) includes both fixed (non-learning) and learning
coordination operators. The control team’s configura-
tion uses a fixed selector for coordination. Learning
is introduced by replacing the fixed mechanism with
a learning selector. A Q-learning (Watkins & Dayan
1992) module is embedded in the learning selector. It is
acknowledged that other types of reinforcement learn-
ing approaches are also appropriate for this system. Q-
learning was selected arbitrarily for this initial study.
Future investigations may be undertaken to evaluate
the impact of learning type on robotic systems.

At each step, the learning module is provided the
current reward and perceptual state, it returns an in-
teger indicating which assemblage the selector should
activate. The Q-learner automatically tracks previous
perceptions and rewards to refine its policy.

The policy an agent learns depends directly on the



reward function used to train it. One objective of this
research is to discover how local versus global reinforce-
ment impacts the diversity and performance of learning
teams. Global reinforcement refers to the case where a
single reinforcement signal is simultaneously delivered
to all agents, while with local reinforcement each agent
is rewarded individually. To that end, we consider two
reinforcement functions for learning soccer robots. As-
suming the game proceeds in discrete steps, the global
reinforcement function at timestep # is:

1 if the team scores,
Rgiobal(t) =< —1 if the opponent scores,
0 otherwise.

This function will reward all team members when any
one of them scores. Thus a goalie will be rewarded
when a forward scores, and the forward will be pun-
ished when the goalie misses a block. Observe that
the global reinforcement function and the performance
metric (Equation 1) are related by:

t=N
P = E Rglobal(t)
t=0

where N is the number of steps in the game. A close
correlation between reward function and performance
metric is helpful, since reinforcement learning mecha-
nisms seek to maximize their reward. If the reward and
the performance measure are similar, the agent stands
a better chance of maximizing its performance. Now,
consider a local function where each agent is rewarded
individually:
1 if the agent was closest to the ball
when its team scores,
Rigeal(t) = —1 if the agent was closest to the ball
when the opposing team scores,
0 otherwise.

This function will reward the agent that scores and
punish an agent that allows an opponent to score.
There may not be much benefit, in terms of reward,
for a robot to serve a defensive role in this model since
it would receive frequent negative but no positive re-
wards.

Results

Experimental data were gathered by simulating thou-
sands of soccer games and monitoring robot perfor-
mance. The learning robots are evaluated on three
criteria: objective performance (score), policy conver-
gence, and diversity of behavior.

For each trial, the learning robots are initialized with
a default policy (all Q-values set to zero). A series
of 100 10-point games are played with information on
policy convergence and score recorded after each game.
The robots retain their learning set between games.
An experiment is composed of 10 trials, or a total of
1000 10-point games. Each trial uses the same initial
parameters but different random number seeds (the
simulations are not stochastic, but Q-learning is).

mtb  gbb  mtbf | mtb gbb mtbf | mtb gbb  mtbf
not bb 0 0 1 0 0 1 0 0 1
bb 0 0 1 0 1 0 1 0 0
not bb 0 1 0 0 1 0 0 1 0
bb 0 0 1 0 1 0 1 0 0
not bb 1 0 0 1 0 0 1 0 0
bb 0 0 1 0 1 0 1 0 0

Figure 3: The nine soccer robot policies possible for
the learning agents discussed in the text. Each policy
is composed of one row for each of the two possible
perceptual states (not behind ball or behind ball - bb).
The position of the 1 in a row indicates which assem-
blage is activated for that policy in that situation. The
policies of the goalie and forward robots introduced
earlier (Figure 2) are in bold.

Objective Performance

When rewarded using the global reinforcement signal
Rgiobal, the learning teams out-score the control team
by an average of 6 points to 4. The average is for all
games, even during the initial phase of training. The
winning margin is notable since the losing control team
was hand-coded. When trained using the local reward
Riocal, the learning teams lose by an average of 4 points
to 6.

Policy Convergence

Convergence is tracked by monitoring how frequently
an agent’s policy changes. Consider a robot that may
have been following a policy of moving to the ball
when behind it, but due to a recent reinforcement
it switches to the get_behind_ball assemblage instead.
These switches are tracked as policy changes.

The data for robots rewarded using the local sig-
nal shows good convergence. The average number of
changes per game drops to 0.05 after 100 games. An
individual simulation to 1000 games resulted in conver-
gence to zero. The number of policy changes for robots
using Rglobal initially decreases, but does not converge
in the first 100 games. The average number of policy
changes is 0.25 per game after 100 games. Future sim-
ulation studies will include longer simulation runs to
investigate whether convergence occurs eventually.

Behavioral Diversity

After the training phase, robots are evaluated for be-
havioral diversity by examining their policies. The
teams are classified as hetero- or homogeneous depend-
ing on whether the robot’s policies are the same. Al-
together there are 9 possible policies for the learning
agents since for each of the two perceptual states, they
may select one of three assemblages. Figure 3 summa-
rizes the possible policies. Based on these nine policies
there are a total of 6561 possible 4 robot teams.

Two example teams, one homogeneous, the other
heterogeneous are illustrated in Figure 1. The team




on the left has converged to identical policies. In fact,
all robots on the 10 locally-reinforced teams converged
to the same “forward” policy used by the control team
(Figure 2). All 10 teams converged to fully homoge-
neous behavior.

In contrast, all of the 10 globally-reinforced teams
diversify to heterogeneous behavior. In all cases, the
agents settle on one of three particular policies. All
the teams include one robot that converges to the same
“forward” policy used by the control team; they also
include at least one agent that follows the same policy
as the control team’s “goalie.” The other robots settle
on a policy of always selecting the get_behind_ball as-
semblage, no matter the situation (for convenience this
policy is referred to as a “mid-back”). In cases where
the team had not fully converged (zero policy changes
per game), investigation reveals that the changes are
due to one agent alternating between the “goalie”
and “mid-back” policies. In summary the globally-
reinforced teams always converged to one “forward,”
one or two “mid-backs” and one or two “goalies.”

To help quantify the varying degree of diversity in
these teams, Social Entropy (Balch 1997b) is used as
a measure of behavioral heterogeneity. Social Entropy,
inspired by Shannon’s Information Entropy (Shannon
1949), evaluates the diversity of a robot society based
on the number of behavioral castes it includes and the
relative size of each. Het(R), the Social Entropy of the
robot society R, ranges from a minimum of zero, when
all agents are identical, to a maximum when each robot
forms a different caste. The maximum entropy for a
team of four soccer robots is 2.0. Het(R) = 0 for the
homogeneous teams trained using local reinforcement
and Het(R) = 1.5 for the heterogeneous teams. For
more detail on Social Entropy, the reader is referred to
(Balch 1997b).

Discussion and Conclusion

The results reported above show that in this task
local reinforcement provides quicker learning, while
global reinforcement leads to better performance and
greater diversity. The globally-reinforced teams per-
form significantly better than the human-designed con-
trol team.

The locally-reinforced teams converge to “greedy”
behaviors that maximize their individual reward, but
lead to poor team performance. This is probably be-
cause defensive play is important in soccer but there is
no incentive for a robot to fill a defensive role. With
the local reward strategy a goalie would be “punished”
every time the opponent scores and never receive a pos-
itive reinforcement. Quick convergence in the locally-
reinforced teams is due to the close relationship be-
tween an individual agent’s actions and the rewards it
receives with local reinforcement strategies.

The globally-reinforced teams perform better but do
not converge to stable policies. It may be that longer
experimental runs will show convergence with Rgiobal

reinforcement. It may also be that for complex multi-
robot domains, convergence does not always occur. Ei-
ther way, convergence is not a requirement for good
performance: the globally rewarded teams perform sig-
nificantly better than the locally reinforced teams in
spite of a lack of convergence.

To conclude, the relative benefits of local versus
global reinforcement in learning robot soccer teams has
been evaluated in terms of team performance, learning
rate, and social entropy in the resulting team. The
teams were evaluated as they engaged a fixed oppo-
nent team over thousands of trials. In summary, the
primary results are:

e Individual learning robots will, in many cases, automat-
ically diversify to fill different roles on a team.

e Teams of learning robots can better the performance of
human-designed teams.

e Global reinforcement leads to better performance and
greater diversity, but slow policy convergence for robot
teams.

e Local reinforcement leads to poorer performance and
fully homogeneous behavior, but fast policy convergence.

The author thanks Ron Arkin, Chris Atkeson, Gary
Boone, John Pani and Juan Carlos Santamaria for
their comments on this work.
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