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SUMMARY

Emerging trends in Cloud computing bring numerous benefits, such as higher

performance, fast and flexible provisioning of applications and capacities, lower infras-

tructure costs, and almost unlimited scalability. However, the increasing complexity

of automated performance and resource management for applications in Cloud com-

puting presents novel challenges that demand enhancement to classical control-based

approaches.

An important challenge that Cloud service providers often face is a resource shar-

ing dilemma under workload variation. Cloud service providers pursue higher resource

utilization, because the higher the utilization, the lower the hardware cost, operating

cost and maintenance cost. On the other hand, resource utilizations cannot be too

high or the service provider’s revenue could be jeopardized due to the inability to

meet application-level service-level objectives (SLOs).

A crucial research question is how to generate as much revenue as possible by

satisfying service-level agreements while reducing costs as much as possible in order

to maximize the profit for Cloud service providers. To this end, the classical control-

based approaches show great potential to address the resource sharing dilemma, which

could be classified into three major categories, i.e., admission control, queueing and

scheduling, and resource allocation. However, it is a challenging task to apply classical

control-based approaches directly to computer systems, where first-principle models

are generally not available. It becomes even more difficult due to the dynamics seen

in real computer systems including workload variations, multi-tier dependencies, and

resource bottleneck shifts.
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Fundamentally, the main contributions of this thesis are the efforts to enhance clas-

sical control-based approaches by leveraging other techniques to address the increasing

complexity of automated performance and resource management in the Cloud through

dynamic monitoring, modeling and management of performance and resources. More

specifically, (1) an admission control approach is enhanced by leveraging decision

theory to achieve the most profitable service-level compliance; (2) a critical resource

identification approach is enhanced by leveraging statistical machine learning to au-

tomatically and adaptively identify critical resources; and (3) a resource allocation

approach is enhanced by leveraging hierarchical resource management to achieve the

highest resource utilization.

Concretely, the enhanced control-based approaches are implemented in a collec-

tion of real control systems: ActiveSLA, vPerfGuard and ERController. The control

systems are applied to different real applications, such as OLTP and OLAP database

applications and distributed multi-tier web applications, with different workload in-

tensities, type and mix, in different Cloud environments. All the experimental results

show that the prototype control systems outperform existing classical control-based

approaches.

Finally, this thesis opens new avenues to address the increasing complexity of

automated performance and resource management through enhancement of classical

control-based approaches in Cloud environments. Future work will consistently follow

the direction of new avenues to address the new challenges that arise with the advent

of new hardware technology, new software frameworks and new computing paradigms.
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CHAPTER I

INTRODUCTION

1.1 Cloud computing

Cloud computing is the delivery of computing as a service whereby shared resources,

software and information are provided as a utility (like the electricity grid) over a

network (typically the Internet) [3, 93, 116].

Figure 1: Cloud computing

Most of Cloud providers offer their services according to three fundamental mod-

els [3, 93], i.e., infrastructure as a service (IaaS), platform as a service (PaaS), and

software as a service (SaaS) as shown in Figure 1. For example, a platform as a ser-

vice (PaaS) provider such as Windows Azure offers virtualized computing resources to

many small to medium businesses (SMBs). These business customers may run a mix

of web-based applications in that Cloud environment, e.g., online news forums similar

to Slashdot or Digg, auction and e-commerce sites similar to eBay and Target.com,
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social media sites similar to Facebook, and business intelligence applications backed

by Oracle or Microsoft SQL Server.

Cloud computing offers numerous benefits, such as higher performance, fast and

flexible provisioning of applications, lower infrastructure costs, and the ability to com-

bine above-average energy efficiency with the ability to scale-out future applications

to an almost unlimited extent. For example, Audi, a German automobile manufac-

turer, was facing challenges to scale its IT systems because of the increased use of

business-critical applications in areas such as production and logistics, supplier re-

lationship management and human resources that challenged their IT infrastructure

regarding reliability and flexibility [13]. Audi selected IBM to build a Cloud environ-

ment for Audi’s SAP infrastructure to rebuild their existing SAP infrastructure [13],

including consolidation and virtualization of the server hardware, process standard-

ization, opportunities for performance-related billing and a much higher operational

flexibility.

1.2 Research challenges

Although Cloud computing brings advantages over traditional computing paradigms,

Cloud service providers often face a resource sharing dilemma. Figure 2 uses economic

theory to depict the resource sharing dilemma.

The clients submit jobs to the service providers, e.g., a PaaS provider. The clients

express the value of their jobs in a utility function or a service-level agreement [82, 128]

that is a contract between the service providers and the clients. Such agreements

consist of one or more service-level objectives (SLOs) where the accomplishment of

objectives will bring gain (generate revenue inflows) and the breach of objectives

will result in penalties. Example objectives include targets concerned with service

latency, throughput, availability, security, etc. The service provider makes revenue

by accepting the jobs according to the utility function. The service provider may rent
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resources from other providers, such as an IaaS provider, and pays for those costs.

The gap between the revenue and the cost to run the job is simply the job’s profit

to the service provider. The ultimate goal of the service provider is to maximize its

profit (its net return) while maintaining adequate quality of service, user satisfaction,

and other intangibles. In the commercial world, it seems self-evident and undoubted

that profit is a valid metric. In academic and scientific circles, we also believe that it

is a useful metric because it offers a clear, numerical measure for the amount of net

value added by a service.

Maximize Profit = Revenue− Cost

The resource sharing dilemma appears under workload variation. Cloud service

providers pursue higher resource utilization [24], because the higher the utilization,

the lower the hardware cost, operating cost and maintenance cost. On the other

hand, resource utilizations cannot be too high or the service provider’s revenue could

be jeopardized due to the inability to meet application-level service-level objectives

(SLOs).

1.3 Classical control-based approaches and technical chal-
lenges

The classical control-based approaches to automated performance and resource man-

agement for applications in Cloud computing such as the resource sharing dilemma

could be classified into three major categories as shown in Figure 2. (1) Admission

control [46, 112]. When a job arrives, the service provider first executes an admission

control algorithm, which decides whether it should accept the job. If it decides to

reject the job, then no further action is taken. (2) Queueing and scheduling [52, 63].

If the admission control algorithm accepts the job, it is placed into a work queue,
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Figure 2: Resource sharing dilemma

from which it is selected at some future time by a job scheduler. The job scheduler

determines the order those jobs will be executed in. The job scheduler maintains a

preferred schedule, based on its estimates of resource availability, and attempts to

execute that. The scheduler is invoked whenever a job arrives, a job completes, or

the number of available resources changes; it may choose to run a job, or decide that

it cannot do so yet. (3) Resource allocation [66, 105, 114, 124]. In a Cloud environ-

ment, resources to run the jobs can be obtained from a separate resource provider

such as an IaaS provider, who offers different types of resources with different prices

at different times in the future.

The technical challenges of the classical control-based approaches can be summa-

rized into three aspects due to the increasing complexity of automated performance

and resource management for applications in Cloud computing.

1.3.1 Admission control

A classical admission control-based approach limits the total number of requests,

thereby avoids overload situations where requests violate service-level objectives.

Some classical admission control-based approaches make admission decisions merely
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based on the number of requests [46] while some other classical admission control-

based approaches make admission decisions merely based on the number of each type

of request [112]. However, classical admission control-based approaches do not con-

sider that incoming requests have different gains and penalties or put different loads

on resource pool, thus making it difficult for service providers to achieve the most

profitable service-level compliance. For example, service providers are more likely to

admit a request with higher gain than the one with lower gain if both of them have

the same probability of meeting the deadline. For another example, service providers

are more reluctant to admit a request when the resource pool is heavily-loaded.

The diverse gain and penalty values, uncertain resource pool load and other issues

relevant in an admission decision present novel technical challenges that demand

enhancement to a classical admission control-based approach in order to achieve the

most profitable service-level compliance.

1.3.2 Critical resource identification

A critical resource that affects an application’s performance needs to be identified be-

fore resource allocation. A classical critical resource identification approach depends

on a performance engineer’s experience and knowledge. However, the application’s

performance and resource utilization are stochastically related in a Cloud environ-

ment. For example, the critical resource that affects the application’s performance

can change from CPU to disk I/O from time to time. Although a performance engi-

neer with profound expert experience and deep domain knowledge could determine

that one or more critical resources are correlated to the application’s performance,

this human-based method essentially introduces a bottleneck due to poor scalability

and adaptability in a highly time-varying Cloud environment where resolutions are

required on the order of minutes rather than hours.

High scalability and adaptability requirements in critical resource identification
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in the Cloud present novel technical challenges that demand enhancement to a clas-

sical critical resource identification approach in order to effectively identify critical

resources for a complex distributed application.

1.3.3 Resource allocation

A classical resource allocation controller which requires/releases critical resources

when workload increases/decreases can be used to maintain service-level compliance

for a single-component application with the lowest cost. However, a classical resource

allocation controller which allocates the same resource amount or keeps the same

resource utilization for all the components within the application is not appropriate

to apply to a multi-component application where different components within an

application have heterogenous requirements for both resource types and amounts.

For example, in a typical multi-tier web application, the application tier usually has

much higher CPU demand than the other tiers, while the database tier can require

much more memory and disk I/O bandwidth. Thus, a classical resource allocation

controller will only increase the resource cost for the whole application by allocating

erroneous type or inappropriate amount of resource.

Heterogenous resource type and amount requirements for components in a multi-

component application in the Cloud present novel technical challenges that demand

enhancement to a classical resource allocation controller in order to achieve the highest

resource utilization.
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1.4 Thesis statement

The increasing complexity of automated performance and resource man-

agement for applications in the Cloud demands enhancement to classical

control-based approaches. Admission control, critical resource identifica-

tion and resource allocation can be enhanced by leveraging decision the-

ory, statistical machine learning and hierarchical resource management,

outperforming the classical control-based approaches.

The thesis statement is well-supported in this thesis. Concretely, a classical

control-based approach is enhanced by leveraging decision theory, statistical machine

learning and hierarchical resource management in three solid systems, namely, Ac-

tiveSLA, vPerfGuard and ERController. The experimental results show that all the

systems outperform existing classical methods.

ActiveSLA demonstrates that a classical admission control approach enhanced by

decision theory achieves the most profitable service-level compliance. Different from

a classical admission control approach, ActiveSLA also considers the diverse gain and

penalty values, uncertain resource pool load and other issues relevant in an admission

control.

Due to the enhancement, experimental results show that ActiveSLA is able to

make admission control decisions that can obtain at least 20% more profit than several

classical admission control approaches.

vPerfGuard demonstrates that a classical critical resource identification approach

enhanced by statistical machine learning automatically and adaptively determines the

critical system resource metrics that are most strongly correlated with application’s

performance. Different from a classical critical resource identification approach, vPer-

fGuard also considers the high scalability and adaptability requirements in critical re-

source identification for applications in Cloud computing. Due to the enhancement,
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experimental results show that vPerfGuard automatically and adaptively selects the

correct critical system resources that affect the application’s performance.

ERController demonstrates that a classical resource allocation controller enhanced

by hierarchical resource management ensures the highest resource utilization while

guaranteeing service-level compliance. Different from a classical resource allocation

controller, ERController makes high-level resource allocation for the application to

guarantee service-level compliance as well as low-level resource allocation partitions

for the components of the application to achieve the highest resource utilization. Due

to the enhancement, experimental results show that ERController is not only robust

to different dynamic workload types, but also can achieve 20% higher resource utiliza-

tion with the same service-level compliance compared to classical resource allocation

approaches.

1.5 Technical contributions

The technical contributions of this thesis are summarized following the development

and application of three concrete systems, namely, ActiveSLA, vPerfGuard and ER-

Controller. These contributions exhibit how decision theory, statistical machine learn-

ing and hierarchical resource management are leveraged into the current control-based

approaches to outperform existing classical methods.

ActiveSLA integrates decision theory into a classical admission control approach to

achieve the most profitable service-level compliance by two component modules. First,

a prediction module provides the probability of a new query finishing its execution

before its deadline. The prediction is made by a non-linear classification model using

query features, database management system features and operating system features.

Second, a decision module determines whether or not to admit the query into a

database system. The decision is made by considering (1) the probability risk of

the query to meet/miss service-level agreements and (2) the gain/penalty for the
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query to meet/miss service-level agreements between a service provider and its clients.

Extensive real system experiments are run with standard database benchmarks, under

different traffic patterns and service-level agreements. The results demonstrate that

ActiveSLA is able to make admission control decisions that are not only more accurate

but also more effective profit (at least 20% better) than several classical admission

control methods.

vPerfGuard integrates statistical machine learning into a classical control-based

approach to automatically and adaptively determine the critical system resource that

affects the application’s performance through three modules - a sensor module, a

model building module, and a model updating module. Once the application is run-

ning, vPerfGuard’s sensor module collects two categories of system metrics - VM

metrics from the operating systems within individual VMs and host metrics from the

physical hosts running the hypervisors and the virtual machines. The sensor mod-

ule also collects the application’s performance metrics. These metrics are processed

through the model building module, which will output a model with an appropriate

set of metrics. The model updating module will identify when the model’s predic-

tions have significantly diverged from the observed performance via hypothesis testing

over the residuals. If the model passes the hypothesis testing, this shows that it still

accurately captures the relationship between the system metrics and application’s

performance. However, if the model fails the hypothesis testing, it is considered un-

suitable for the current situation and a new model will be constructed. vPerfGuard

is evaluated through experiments using a set of common benchmarks in a number of

usage scenarios common in Cloud environments, including VM colocation and consol-

idation. vPerfGuard can (1) automatically identify the critical system resource that

affects the application’s performance, and (2) adaptively change the critical system

resource when the application workload or the execution environment changes.
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ERController integrates hierarchical resource management into a classical resource

allocation controller on both application and container levels to achieve the highest

resource utilization while guaranteeing service-level compliance. More concretely, the

application-level resource allocation is implemented by an adaptive feedback con-

troller, which dynamically decides the total resource allocation that is required for

the application to meet service-level agreements for the time-varying workload. The

container-level resource allocation is implemented by a globally-optimizing resource

partitioner, which partitions the total resource budget among the components of

the application so that the highest resource utilization is achieved. ERController

is evaluated with standard web application benchmarks, under different traffic pat-

terns, service-level agreements, and three different workload models—open, closed,

and semiopen. Our evaluation indicates two major advantages of ERController in

comparison to classical resource allocation controllers. First, fewer resources (20%

less) is provisioned to the applications to achieve the same service-level compliance

compared to the classical methods. This shows that ERController achieves higher re-

source utilization while guaranteeing service-level compliance. Second, our approach

is robust enough to address various types of workloads with time-varying resource

demands without reconfiguration.

Some of the technical contributions such as ActiveSLA and ERController have

already been published. The related systems and papers [125, 124, 126, 127, 121,

123, 122, 117, 65] are summarized as shown in Table 1.

1.6 Organization of this thesis

The remainder of this thesis is organized as follows. The building blocks and tools

are introduced in Chapter 2. Chapter 3 to Chapter 5 present ActiveSLA, vPerfGuard

and ERController, respectively. Chapter 6 compares our work with classical methods.

Finally, Chapter 7 gives conclusion.
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Table 1: Summary of ActiveSLA, vPerfGuard and ERController

ActiveSLA vPerfGuard ERController

Assumption Observable and controllable systems

Classical control admission control critical resource resource allocation
based approach identification

Enhancement
decision theory statistical machine hierachical

learning resource management

Monitoring Application’s performance, workload and system resources

Modeling
non-linear time-varying M/G/1/PS
classification model non-linear/linear models queueing model

Experiments
TPC-W RUBBoS, TPC-H RUBiS benchmark

Stationary/Non-stationary workload
with different types, different intensities and different SLAs

Improvements

obtain the best automatically and achieve the highest
service-level compliance, adaptively identify critical resource utilization,
20% more total profit resources, significantly 20% less resource cost

save manpower

Publications SOCC [125] SOCC(submitted) [127] NOMS [121],
SIGMOD-PhD-Symp. [122] ICDCS [126]
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CHAPTER II

PRELIMINARY BUILDING BLOCKS AND TOOLS

Experienced readers who are familiar with the preliminary building blocks and tools

in the thesis can skip this chapter. Interested readers will learn from this chapter

that, although the preliminary building blocks and tools are sophisticated and seem

rather difficult to apply to computer systems, they are quite useful for the fascinating

problems after careful application and enhancement. This is exactly one of the major

contributions of the thesis.

In this chapter, each building block or tool is introduced by references for more

detailed information. The potential and promising application scenarios of each build-

ing block or tool are shown. The limitation of each building block or tool when it is

directly applied to the scenario is illustrated. Finally, the efforts made to overcome

the limitation to solve the interesting problems through enhancement of the building

block or tool as well as integration with other building blocks or tools are presented.

This chapter is organized as follows. An overview of the relationship between

the individual building blocks and the entire systems is given in Section 2.1. The

control theory basis is discussed in Section 2.2. Then intelligent control, optimal

control, adaptive control and hierarchical control are discussed in more details from

Section 2.3 to Section 2.6. Section 2.7 presents the ELBA framework before Sec-

tion 2.8 summarizes the chapter.

2.1 Road map

In this thesis, three systems (i.e., ActiveSLA, vPerfGuard and ERController) are pre-

sented to address the increasing complexity of automated performance and resource

management for applications in Cloud computing. The building blocks and tools for
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the systems are primarily composed of control strategies [43, 33, 61] and the ELBA [11]

(Automated N-Tier Application Deployment) framework . Different control strate-

gies are combined and enhanced as shown in Table 2. All the systems leverage the

ELBA [11] framework for application deployment, evaluation, reconfiguration, and

redesign.

Table 2: Building blocks and tools used in ActiveSLA, vPerfGuard and ERController

ActiveSLA vPerfGuard ERController

Adaptive Yes! Accepted query with Yes! Online change Yes! RLS method
control execution time is point detection module is used to build

feedback into the model adapts to the changes adaptive models

Hierarchical No No Yes! The outer-level
control application controller

works closely with
the inner-level resource
partition controller

Intelligent Yes! Statistical methods Yes! Statistical method No
control Logitboost and Additive t-testing is used for online

Regression are used change-point detection

Optimal Yes! The objective No! The objective Yes/No. The objective
control is to maximize the is to track the is to track SLA or

total profit(revenue) application’s performance minimize resource cost

The ELBA Yes! Support to run Yes! Support to run Yes! Support to run
framework TPC-W application RUBBoS, TPC-H RUBiS application

applications

ActiveSLA, which will be illustrated in Chapter 3, is a combination of adaptive,

intelligent and optimal control-based on the ELBA framework. An accepted query

and its execution time are fed into the model which keeps the model adaptive. Sta-

tistical methods such as Logitboost and Additive Regression are used to enable the

intelligent control decisions. Finally, the control objective is to optimize the total

profit by achieving the best service-level compliance.

vPerfGuard, which will be illustrated in Chapter 4, is a combination of adaptive

and intelligent control-based on the ELBA framework. An online change-point de-

tection module triggers the update of the model when it detects the change-point,

which makes the model adaptive. Statistical method such as t-testing is used for
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online change-point detection. Finally, the control objective is to track the applica-

tion’s performance reference, which is similar to the tracking objective of a classic

controller.

ERController, which will be illustrated in Chapter 5, is a combination of adap-

tive, hierarchical and optimal control-based on the ELBA framework. A Recursive

least square(RLS) method is used to build adaptive models, which work at different

operating points. A hierarchical control approach where an outer-level application

controller works closely with an inner-level resource partition controller is adopted.

Finally, the control objective, to maintain the application’s performance within the

SLA bound, is achieved. At the same time, another control objective, to optimize

resource cost, is also achieved.

2.2 Control theory basis

Control theory [43, 33] is an interdisciplinary branch of engineering and mathematics

that deals with the behavior of dynamical systems [10, 129].

Control systems can be thought of as having three functions, measure, com-

pare/compute, and correct [43, 33] (i.e., corresponding to monitoring, modeling and

management functions in this thesis). Figure 3 illustrates a standard feedback control

loop. The system being controlled is referred to as the target system, which has a

set of metrics of interest (referred to as measured output) and a set of control knobs

(referred to as control input). The controller periodically adjusts the value of the con-

trol input such that the measured output can match(track) its desired value (referred

to as reference input) specified by the system designer. In other word, the controller

aims to maintain the difference between the two (referred to as control error) at zero,

in spite of any disturbances in the system. The disturbance is defined as interference,

which is not under control that affects the measured output of the target system.

Although control theory [43, 33] has been established for more than a century, it is
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Figure 3: Standard feedback control loop

still an evolving field to apply control theory to computer systems [61]. Although this

field is promising and receives more attention in recent work, a major problem still

remains, i.e., how to apply control theory or how to enhance a classical control-based

approach to solve important and interesting computer system problems.

2.2.1 Closed-loop

Introduction If we assume that the controller C, the plant P , and the sensor F

are linear and time-invariant (i.e., elements of their transfer function C(s), P (s), and

F (s) do not depend on time) as shown in Figure 4, the systems above can be analyzed

using the Laplace transform on the variables. This gives the following relations:

C P
YUER

-

F

Figure 4: Closed-loop transfer function

Y (s) = P (s)U(s)

U(s) = C(s)E(s)

E(s) = R(s)− F (s)Y (s)
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Solving for Y (s) in terms of R(s) gives:

Y (s) = (
P (s)C(s)

1 + F (s)P (s)C(s)
)R(s) = H(s)R(s)

The expression

H(s) =
P (s)C(s)

1 + F (s)P (s)C(s)

is referred to as the closed-loop transfer function of the system [43, 33]. The numerator

is the forward (open-loop) gain, and the denominator is one plus the gain in going

around the feedback loop, the so-called loop gain [43, 33]. If |P (s)C(s)| � 1, i.e., it

has a large norm with each value of s, and if |F (s)| ≈ 1, then Y (s) is approximately

equal to R(s) and the output closely tracks the reference input. Note that the Laplace

transform is often used in continuous time domain while the Z transform is often used

in discrete time domain [61], accordingly.

Application scenario and limitations The classical control theory with the con-

cepts of closed-loop could be applied to interesting problems in system management.

For example, a service-level agreement (or SLA) is a contract between a service

provider (e.g., a platform-as-a-service provider) and its clients. An agreement con-

sists of one or more service-level objectives (SLOs). An example of an SLO is: “Gold

customer response times should be less than 5 seconds.” [61]. An SLO is composed

of three parts: the metric (e.g., response time), the bound (e.g., 5 seconds), and a

relational operator (e.g., less than). Intuitively, service providers want to have suf-

ficient resources to meet their SLOs. But they do not want to have more resources

than required since doing so imposes unnecessary costs. As a result, SLO enforcement

often becomes a regulation problem in classical control theory, which ensures that the

measured output is equal to (or near) the reference input. In terms of the control

architecture in Figure 3, the SLO metric is the measured output, and the SLO bound

is the reference input. This problem is discussed further in Chapter 5.
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2.2.2 PID controller

Introduction The most-used feedback control design is probably the PID con-

troller [43, 33, 61]. PID is an acronym for Proportional-Integral-Derivative, referring

to the three terms operating on the error signal to produce a control signal. If u(t)

is the control signal sent to the system, y(t) is the measured output and r(t) is the

desired output, and tracking error e(t) = r(t)− y(t), a PID controller has the general

form

u(t) = KP e(t) +KI

∫
e(t)dt+KD

d

dt
e(t).

The desired closed-loop dynamics are obtained by adjusting the three parameters KP ,

KI and KD. The proportional term ensures stability. The integral term ensures that

there is no static error in the stable state. The derivative term is used to provide

damping or shaping of the response [43, 33, 61].

Applying Laplace transformation results in the transformed PID controller equa-

tion

u(s) = KP e(s) +KI
1

s
e(s) +KDse(s)u(s) = (KP +KI

1

s
+KDs)e(s)

with the PID controller transfer function

C(s) = (KP +KI
1

s
+KDs)

Note that while a PID controller could be specified using the Laplace transform in a

continuous time domain, a PID controller could also be designed using the Z transform

in a discrete time domain [61], accordingly.

Application scenario and limitations As PID controllers are the most well es-

tablished class of control systems, they show great potential for the SLO enforcement

problem. For example, a PID controller could be designed to maintain the applica-

tion’s performance metric within the SLO bound [42].
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The main obstacle is how to guarantee the controller’s performance, especially the

stability of the controlled system. The Root Locus [61] method is applied to design

the controller parameters so that the controller’s performance such as the setting

time and the overshoot are within an acceptable limit, which guarantees the stability

of the system. More details of deriving the controller parameters could be found in

Chapter 5.

2.3 Intelligent control and statistical methods

Intelligent control [22] uses various artificial intelligence computing approaches such as

statistical methods [60, 49], machine learning [90], decision theory [53, 92] to control

a dynamic system.

2.3.1 Statistical method

Introduction Statistics is the study of the collection, organization, analysis, and

interpretation of data [60, 49].

A common goal for a statistical method is to investigate causality, and in particular

to draw a conclusion on the effect of changes in the values of predictors or independent

variables on dependent variables or response as shown below.

predictors or independent variables⇒ dependent variables or response

There are two major types of causal statistical studies [60, 49]: experimental studies

and observational studies. These two types of studies are similar to each other because

the effect of differences of an independent variable (or variables) on the behavior of the

dependent variable are observed in both types of studies. These two types of studies

are different from each other in aspect of how the study is actually conducted. The

former one involves taking measurements of the system under study, manipulating

the system, and then taking additional measurements which use the same procedure

to determine if the manipulation has modified the values of the measurements. In
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contrast, the latter one does not involve experimental manipulation. Instead, data

are gathered and correlations between predictors and response are investigated.

Application scenario and limitations Both the experimental studies and the

observational studies are promising approaches to apply to computer system man-

agement.

For example, a common scenario for a platform-as-a-service provider who hosts a

distributed web application is to identify the critical resource that affects the appli-

cation’s performance. A statistical method with an observational study is promising

to solve this problem. The main motivation is two-fold, (1) the common goal for a

statistical method is to investigate causality, and in particular to draw a conclusion

on the effect of changes in the values of critical resource metrics on application’s per-

formance as shown below; and (2) the objective of the statistical method is to identify

the critical resource where no manipulation is involved.

which critical resource metric ?⇒ application’s performance metric

However, there is also an obstacle that we need to overcome before we apply the

statistical method. For a distributed web application in a Cloud environment, each

component of the application could be deployed in a different host while each host

could have thousands of metrics to observe, which makes the critical resource identifi-

cation using statistical methods difficult. Our solution is to employ a filtering method,

i.e., first select the metrics according to the correlation coefficients and then select the

metrics according to the prediction accuracy of a specific model. Finally, the model

will point out the critical resource. More details could be found in Chapter 4.

For another example, a common scenario for a Database-as-a-service(DaaS) provider

is to estimate query execution time and make an admission control decision based on

the estimation. A statistical method with experimental study is potentially helpful in

deriving the query execution time distribution. The main motivation is two-fold, (1)
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the common goal for a statistical method is to investigate causality, and in particular

to draw a conclusion on the effect of changes in the values of query features, database

system settings and parameters on query execution time as shown below; and (2) the

objective of a statistical method is to assist admission control decisions that involve

manipulating the workload to the system.

query features, settings and parameters⇒ query execution time

However, there is also an obstacle that we need to overcome before we apply statistical

methods. A major limitation is that, some of the query features, system settings and

parameters are not explicitly available. Our solution is to develop specific sensors to

collect those information. For example, we append a sensor into PostgreSQL database

engine, which reports the number of sequential I/O for a query. For another example,

we write a sensor program inside the Linux operating system kernel to report the

proportion of a database table file in system cache. More details could be found in

Chapter 3.

2.3.2 Machine learning

Introduction Machine learning [90], a branch of artificial intelligence [101], is a

scientific discipline concerned with the design and development of algorithms that

allow computers to evolve behaviors based on empirical data. Data is considered as

examples that illustrate relations between observed variables. The examples (data)

are utilized by a learner to capture characteristics of interest of their unknown un-

derlying probability distribution. One of the major objectives of machine learning

research is to automatically learn to recognize complex patterns and make intelligent

decisions based on data.

Application scenario and limitations There is a well-founded skepticism about

whether the simple models often used in the research literature can capture complex
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real-life workload/resource/performance relationships and keep up with changing con-

ditions that might invalidate the models [129]. Due to the data-driven characteristic

of machine learning, a model based on statistics and machine learning method is

promising to apply to the above scenario.

However, there are also obstacles that we need to overcome. The most critical

problem is how to find out the most appropriate machine learning model. Our solution

is to choose the most suitable model that fits our control objective. For example, we

use a non-linear regression machine learning model called “Additive Regression” when

we model the relationship between the SLA penalty cost and the system resources

such as CPU shares and memory size in [124]. The motivation to choose such a

non-linear regression model is because the memory size affects the SLA penalty cost

in a non-linear way. We compare different machine learning modeling approaches in

Chapter 3 and Chapter 4 and show that different machine learning models need to

be adopted according to different control objectives.

2.3.3 Decision theory and risk assessment

Introduction Decision theory [53] is concerned with identifying the values, uncer-

tainties and other issues relevant in a given decision, its rationality, and the resulting

optimal decision. It is widely applied in many domains, such as economics, psychol-

ogy, philosophy, mathematics, and statistics. It is closely related to the field of game

theory [92], which is defined as “the study of mathematical models of conflict and

cooperation between intelligent rational decision-makers”.

“Choice under uncertainty” represents the heart of decision theory. The procedure

now referred to as expected value was known from the 17th century [53]. The idea

of expected value is that, when faced with a number of actions, each of which could

give rise to more than one possible outcome with different probabilities, the rational

procedure is to identify all possible outcomes, determine their values (positive or
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negative) and the probabilities that will result from each course of action, and multiply

the two to give an expected value. The action to be chosen should be the one that

gives rise to the highest total expected value as shown below.

Action 1⇒
∑

outcome

value ∗ Poutcome ⇒ Expected value 1

Action 2⇒
∑

outcome

value ∗ Poutcome ⇒ Expected value 2

· · ·

Action n⇒
∑

outcome

value ∗ Poutcome ⇒ Expected value n


⇒ Action ?

Application scenario and limitations Consider a service-oriented, utility-computing

scenario where service providers will execute jobs on behalf of their clients on systems

rented from resource providers, e.g., a Database-as-a-service(DaaS) provider who ex-

ecutes queries on behalf of their clients. Each query is related with a utility function

or a service-level agreement where the satisfaction of SLAs within the agreement such

as meeting the deadline will bring gain and the violation of SLAs will result in penal-

ties. It is impossible for a DaaS provider to admit all the queries because that will

cause thrashing due to buffer pool over-utilization for the DBMS. The DaaS provider

needs to selectively admit queries that can produce the most revenue. To complicate

matters, the DaaS provider is uncertain about whether admitting query will bring in

revenue due to the indeterminacy of the query execution environment. This motivates

us to use decision theory, which is promising to identify the uncertain issues relevant

in a given decision and rationally assess the risk of admitting a query as shown below.

Admit query⇒
∑

outcome

value ∗ Poutcome ⇒ Expected value for admit

Reject query⇒
∑

outcome

value ∗ Poutcome ⇒ Expected value for reject

⇒ Action ?

Although it seems quite promising to apply decision theory for a DaaS provider,

there is also an obstacle that we need to overcome. The most critical problem is how
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to obtain the expected values under different actions such as admit or reject where

an expected value under an action is a multiplication of the possible outcome values

and the probabilities of the outcome that will result from an action. Although the

possible outcome values could be easily obtained from service-level agreements, it is

really difficult to acquire the probabilities of the outcome, such as meeting/missing

service-level agreements.

Our solution is to adopt a machine learning method called “LogitBoost” [48],

which is a type of regression analysis used for predicting the outcome of a categorical

(a variable that can take on a limited number of categories) criterion variable based

on one or more predictor variables. Following the “LogitBoost” machine learning

method, we could derive the probabilities of the outcome, such as meeting/missing

service-level agreements, based on query features, database system settings and pa-

rameters. More details of how to use decision theory and risk assessment for a DaaS

provider could be found in Chapter 3.

2.4 Optimal control

Introduction Compared with a classic control technique in which the control signal

enables the measured output to track the reference input, optimal control [107] is a

particular control technique in which the control signal optimizes a certain “cost

index”. For example, in the case of a satellite, optimal control is used to regulate the

jet thrust to bring the satellite to desired trajectory with the least amount of fuel

consumption. Here the “cost index” refers to the fuel consumption.

Application scenario and limitations Different from regulatory control, which

could be applied to help a service provider to ensure that the measured output (SLO)

is equal to (or near) the reference input (SLO), optimal control could be used to help

a service provider optimize a certain “cost index”. The most common “cost index”

is profit, e.g., a DaaS provider who executes queries on behalf of their clients needs
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to selectively admit queries that can optimize the profit.

However, there is also an obstacle that we need to overcome. The most critical

problem is how to build a model that connects the “cost index” with the control

actions. For example, in the scenario for a DaaS provider, how to relate the ad-

mission/rejection control action with the expected revenue. Our solution is to apply

decision theory and risk assessment to derive the expected value of revenue for the

admission/rejection control actions. During this process, statistical machine learning

techniques are also leveraged. More details of how to use optimal control method to

optimize the profit could be found in Chapter 3.

2.5 Adaptive control

According to Section 2.2, the following relation can be derived using Laplace trans-

form on the variables.

U(s) = C(s)E(s)

Here C(s) is the controller gain from error E(s) to the input of system U(s). If a

PID controller is applied,

C(s) = (KP +KI
1

s
+KDs)

As shown in Figure 5 with dotted lines, in adaptive control [25], the controller

gains [43, 33] are modified online by identification of the system parameters. Com-

pared with non-adaptive control where the controller gains are static, adaptive control

is designed to work assuming that the parameters of the system being controlled are

slowly time-varying or uncertain. The adaptive characteristic guarantees strong ro-

bustness properties for the controller. We mainly focus on two techniques, i.e., system

identification and online change-point detection.
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2.5.1 System identification

Introduction In control engineering, the field of system identification [83] uses sta-

tistical methods to build mathematical models of dynamical systems from measured

data. A dynamical mathematical model in this context is a mathematical descrip-

tion of the dynamic behavior of a system or process in either the time or frequency

domain.

Application scenario and limitations Due to the complexity of a computer

system, a system identification approach is promising to derive a mathematical model

of a computer system by varying the inputs in the operating region and observing

the corresponding outputs. For example, under different workload intensities, the

system models that describe the relationship between the system input (e.g., resource

allocation) and the system output (e.g., mean response time) could change. A system

identification approach shows the potential to derive a mathematical model for the

relationship. Moreover, due to the constantly varying workload intensities, a system

identification approach ought to be done in an online manner because the system

model is continuously evolving. After that, a new controller needs to be designed

based on the mathematical model.
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However, there is also an obstacle that we need to overcome. The most impor-

tant problem is what type of model should we adopt. Different type of models will

have different effects on the design of controllers. Our solution is to leverage an

Autoregressive-moving-average(ARMA) model [32]. The model consists of two parts,

an autoregressive (AR) part and a moving average (MA) part. This model not only

captures relationship between system inputs and outputs, but also captures the rela-

tionship among system inputs and outputs in time series. Moreover, this model could

be seamlessly integrated with standard controller design approach such as the Root

Locus [61] method. More details of how to construct online system identification

using ARMA model could be found in Chapter 5.

2.5.2 Online change-point detection

Introduction Online change-point detection is a model management technique

from statistical machine learning domain to adjust the models when changes are ob-

served in application’s performance [28]. A performance model should be discarded

or modified when it no longer accurately captures the relationship among workload,

resource and performance. In practice, this relationship could be altered by software

upgrades, transient hardware failures, or other changes in the environment.

The accuracy of a model is usually estimated from the residuals, i.e., the differ-

ence between the measured performance of the application and the prediction of the

model [28]. Under steady state, the residuals should follow a stationary distribution,

thus a shift of the mean or increase of variance of this distribution indicates that

the model is no longer accurate and should be updated. Online change-point de-

tection techniques use statistical hypothesis testing [60] to compare the distribution

of the residuals in two subsequent time intervals of constant or different lengths. If

the difference between the distributions is statistically significant, we start training

a new model. The magnitude of the change will influence the detection time; an

26



abrupt change should be detected within minutes, while it might take days to detect

a slow, gradual change. The result of the change-point test is a p-value; the lower

the p-value, the higher the probability of a significant change in the mean of the

normalized performance signal.

Application scenario and limitations In a consolidated Cloud environment,

a performance model of an application could be altered not only by the workload

characteristic change such as migration from CPU-intensive workload to IO-intensive

workload, but also by the resource contention from co-located neighbor virtual ma-

chines. Online change-point detection shows great potential to detect the changes in

the application’s execution environment. By comparing the distribution of the residu-

als of the model through hypothesis testing, i.e., the difference between the measured

performance of the application and the prediction of the model, online change-point

detection identifies the possible shift of the performance model of an application.

However, there is also an obstacle that we need to overcome. The most critical

problem is how to build a model using thousands of metrics. A performance model

that considers all combinations of the thousands of metrics can be computationally

expensive to construct and can easily lead to model over-fitting. Our solution is to

use a two-phase algorithm that reduces the modeling complexity by: first (in phase 1)

selecting a small number of candidate metrics that are most strongly correlated with

the application’s performance; and then (in phase 2) identifying even fewer predictor

metrics that can give the best prediction accuracy for a specific model from among

the candidate metrics. More details of the two-phase algorithm could be found in

Chapter 4.

2.6 Hierarchical control

Introduction Most of the human-built systems with complex behavior are often

organized as a hierarchy. A hierarchical control system [68, 22] is a type of control
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system in which a set of devices and governing software is arranged in a hierarchical

tree. The hierarchical control system is also a form of networked control system if

the links in the tree are implemented by a computer network.

Each element of the hierarchy is a linked node in the tree. Commands and goals to

be achieved flow down the tree from superior nodes to subordinate nodes, whereas sen-

sations and command results flow up the tree from subordinate to superior nodes [68].

If necessary, nodes may also exchange messages with their siblings. The two distin-

guishing features of a hierarchical control system are related to its layers. (1) Superior

nodes in a higher layer of the tree operate with a longer interval of planning and ex-

ecution time than subordinate nodes in its immediately lower layer. The superior

nodes, having relaxed time constraints, are capable of reasoning from an abstract

world model and performing planning in a global manner. (2) The subordinate nodes

in a lower layer have local tasks, goals, and sensations, and their activities are planned

and coordinated by superior nodes in higher layers. The subordinate nodes, having

time constraints, are capable of reasoning from a more concrete world model and

performing planning in a local manner.

Application scenario and limitations A hierarchical control system is promising

to apply to solve the multi-level resource allocation problem for a multi-tier web

application. The higher level of the control system operates with a longer interval

of planning and execution time to decide the global resource budget for the whole

application. The lower level of the control system partitions the total resource budget

to each tier and enforces the resource allocation for each tier in a shorter interval of

planning and execution time. The two levels of the control system collaborate closely

with each other in a hierarchical way.

However, there are also problems that we need to overcome in order to apply the

hierarchical control system. The first problem is how to decide the total resource
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budget while meeting service-level agreements. The second problem is how to par-

tition the total resource budget to each tier. Our solution to the first problem is to

leverage a proportional and integral controller. The difference between the real per-

formance and the reference performance in service-level agreements will be the input

of the controller. The controller will then output the total resource budget so that

the real performance will track the reference performance. Our solution to the second

problem is to leverage queueing theory and Lagrange multiplier. Then the optimal

partition could be achieved. More details about applying hierarchical control system

to solve the multi-level resource allocation problem for a multi-tier web application

could be found in Chapter 5.

2.7 The ELBA framework

Introduction One of the main research challenges in the adaptive enterprise vision

is the automation of large application system management [111]. The detailed stag-

ing process not only encompasses design, deployment, and production use but also

captures application monitoring, evaluation, and evolution.

An application system deployment plan needs to be verified and tested before

committed to a production environment. Manual verification of a deployment is

cumbersome, time consuming, and error prone. This problem will grow in impor-

tance in the deployment of increasingly larger and more sophisticated applications.

For example, a typical multi-tier distributed application such as RUBiS [14] or RUB-

BoS [7] is composed of tens of servers [87]. Manual deployment of such sophisticated

application is really burdensome. Therefore, it will be increasingly important to have

an automatic method for executing an application on the deployment plan to validate

the deployment during staging, instead of debugging a deployment during production

use.

However, current approaches to the staging process are mostly manual, complex
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and time-consuming. ELBA [11, 111, 99, 110, 70] is the proposed framework for

automated design, configuration, evaluation and tuning. The framework intends to

automate the staging process thus reducing the time and manual labor involved in

the process, increase confidence, and extract predictive performance data. Further,

the automation will support a more thorough application test and validation in a

larger state space.

The overall ELBA [11] framework is shown in Figure 6, where it achieves full au-

tomation in system deployment, evaluation, and evolution, by leveraging a code gener-

ation tool “Mulini” to link the different steps of deployment, evaluation, reconfigura-

tion, and redesign in the application lifecycle. Mulini [111] adopts XSLT/XPath tools

and aspect-oriented programming (AOP) techniques to manipulate XML-encoded

high-level specifications and weave non-functional specifications into staging imple-

mentation. Mulini transforms input specification files (XML-encoded) into an inter-

mediate XML-encoded specification with annotations at the first transformation step.

During the rest of transformation steps, modules (aspects) are woven into the inter-

mediate specification using the annotations. The important advantages of the Mulini

code generation process over compilation stem from its extensibility and flexibility

by utilizing XML and XML manipulation standard languages (i.e., XPath, XSLT,

XQuery, and XQueryUpdate).

Application scenario and limitations The ELBA framework (particularly, the

Mulini code generator) could be leveraged to generate and manage the experiments.

Then automated analysis techniques and tools could be used to digest the information

and create a performance model. Finally, the management actions are taken based

on the model.

For example, the code generation process for installing an Apache web server

which is used in RUBBoS [7] in Chapter 4 and RUBiS [14] in Chapter 5 is shown
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in Figure 7. The initial template for the installation of an Apache web server is

specified in the file “WEBinstall.xsl”. This file is then used by Mulini to translate

the experiment specification file into the executable shell script. For example, the

notation “OUTPUT HOME” is translated into a real file path “output”.

WEBinstall.xsl

HTTPD_install.sh

<param name="OUTPUT_HOME" value="output" />

Figure 7: Application deployment

However, there are also problems that we need to solve before the ELBA frame-

work is applied. The first problem is to write application and environment specific
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templates. As we run our experiments using different applications, such as RUB-

BoS [7] and RUBiS [14], and different environments, such as Xen enabled virtualized

environment [27] and ESX enabled virtualized environment [17], different templates

should be generated based on different applications and different environments. Our

solution is to study the characteristics of specific applications and environments and

then generate the templates by taking into consideration of the characteristics. The

second and the most important problem is to seamlessly connect the ELBA frame-

work with the control-based approaches. More specifically, the problem is how to

incorporate the control-based approaches with the analyzer in Figure 6. Our solu-

tion is to carefully study the input and the output of the staging environment, the

control-based approaches and the redesign/reconfiguration. Then the communication

parts from the staging environment to the control-based approaches and the commu-

nication parts from the control-based approaches to the redesign/reconfiguration are

appended into the new templates.

2.8 Summary

In this chapter, the preliminary building blocks and tools are summarized, which will

be used to build three systems, i.e., ActiveSLA, vPerfGuard and ERController in the

following chapters. This chapter not only provides references to the building blocks

and tools for craving readers looking for detailed information but also illustrates both

the promising side and the difficult side of applying the building blocks and tools to

solve the interesting computer system problems. The most important part is that, it

also shows how to overcome the limitations to solve the fascinating problems through

careful application and enhancement of the building blocks and tools. More detailed

application and enhancement could be found in the following chapters.
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CHAPTER III

ADMISSION CONTROL FEATURING RISK

ASSESSMENT

The classical control-based approaches addressing the resource sharing dilemma could

be classified into three major categories, i.e., admission control, queueing and schedul-

ing, and resource allocation as shown in Figure 2. In this chapter, a classical admission

control is enhanced by leveraging decision theory to address novel technical challenges

due to the diverse gain and penalty values, uncertain resource pool load and other

issues relevant in an admission decision in order to achieve the most profitable service-

level compliance for Database-as-a-service(DaaS) providers.

3.1 Background

Efficient data processing is always a fundamental issue for almost every scientific,

academic, or business organization. Advances in Cloud computing technologies have

triggered a Database-as-a-service(DaaS) model [39, 40, 41, 56] for data processing.

The model allows organizations to leverage hardware and software solutions provided

by DaaS providers, without having to develop them on their own, thereby freeing

them to concentrate on their core businesses.

In a Cloud computing environment, when many queries are submitted to the

database management system during a busy period, most of them will not finish

on time. This usually has direct economic impact on the service provider, who has

to pay penalties if the application’s performance does not meet clients’ service-level

agreements (SLAs). Classical admission control often limit the total number of active
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transactions at any point in time, requiring some transactions to wait to be admit-

ted in order to prevent thrashing and buffer-pool over-utilization [37, 34]. In this

chapter, we propose ActiveSLA, which enhances classical admission control by lever-

aging risk assessment to help DaaS providers achieve the most profitable service-level

compliance.

The rest of this chapter is organized as follows. Section 3.2 and Section 3.3 give

the problem definition and the solution overview, respectively. Sections 3.4 and 3.5

describe the prediction module of ActiveSLA and corresponding experimental studies,

respectively. Sections 3.6 and 3.7 describe the decision module of ActiveSLA and

corresponding experimental studies, respectively. Finally, Section 3.8 summarizes the

chapter.

3.2 Problem definition

Figure 8 shows the scenario where admission control is adopted as a control-based

approach to help a DaaS provider achieve more profit.

We assume that the satisfaction of SLAs will bring gain while the violation of

SLA will result in penalties. The satisfaction of SLA determines the revenue that a

DaaS provider can obtain. Following the previously defined equation where “Profit

= Revenue - Cost”, if we assume that the cost for a service provider is constant, we

need to maximize the revenue in order to maximize the profit. Under this assumption,

we use “profit” and “revenue” interchangeably in this chapter. The problem is how

to make admission control decisions (i.e., admit/reject the queries) to the database

management system so that a DaaS provider can achieve the most profitable service-

level compliance.

A classical admission control-based approach makes admission decisions based on

the number of requests [46] or based on the number of each type of request [112]. A

classical admission control-based approach offers limited help for a DaaS provider to
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Figure 8: Admission control problem definition

achieve the profitable service-level compliance because the diverse gain and penalty

values, uncertain resource pool load and other issues relevant in an admission decision

present novel technical challenges. The challenges demand enhancement to a classi-

cal admission control approach in order to achieve the most profitable service-level

compliance. There are two key technical challenges:

The first challenge is that merely estimating the query execution time is not

enough to make profit-oriented decisions in a Cloud environment. In Figure 9 we

show the probability density functions (PDFs) of the execution time for two queries,

where both queries have the same estimated execution time Est and the same deadline

τ (specified by the SLA). Although Est < τ , the chances that the two queries miss

their deadlines are dramatically different. Compared with q1, about which we are

more confident that it will meet the deadline, it is more difficult to tell whether q2

will meet or miss the deadline. If a classical admission control approach is adopted,

because Est is less than τ , both of the queries will be admitted. However, from the

PDF of q2, it is much riskier to admit q2 than to admit q1. Thus, the probabilities of
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Figure 9: Two queries with the same query time estimation but different query time
distributions.

a query meeting and missing its deadline are crucial in making SLA-based admission

control decisions.

The second challenge is that because of SLAs, we may have to make different

admission control decisions even when the queries have the same deadline and the

same probability of meeting the deadline, as illustrated in the example in Figure 10.

Assume that two queries q1 and q2 arrive simultaneously and according to certain

estimates, for both the queries, the probabilities of meeting and missing their deadline

are 60% and 40% respectively, as shown in Figure 10(a). In Figure 10(b) we show two

different SLAs that are carried by q1 and q2, as described in the two utility functions.

For q1, if the query is admitted and meets the deadline, the service provider earns $1;

else if the query is admitted but misses the deadline, the service provider loses $1;

otherwise, if the service provider decides to up-front reject the query, it pays a penalty

of $0.1. For q2, it is the same as q1 except that the penalty for missing the deadline is

$2. If a classical admission control approach is adopted, because they have the same

deadline and the same probability of meeting the deadline, we will make the same

decision for both of the queries. However, simple derivations show that the expected

revenue for admitting q1 is 0.6 × $1 + 0.4 × (−$1) = $0.2, which is better than the

penalty for rejecting the query (−$0.1). Thus, the service provider should admit q1.

However, the expected revenue for admitting q2 is 0.6 × $1 + 0.4 × (−$2) = −$0.2,
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Figure 10: SLA-based admission control decisions.

which is worse than the penalty for rejecting the query. Thus, the service provider

should reject q2.

3.3 Solution approach overview

In order to address the above two challenges, in this chapter, we propose a frame-

work, called ActiveSLA1. ActiveSLA demonstrates that a classical admission control

approach can be enhanced by leveraging decision theory, especially risk assessment

to achieve the most profitable service-level compliance.

ActiveSLA framework is an end-to-end solution that consists of two main modules:

a prediction module and a decision module, as shown in Figure 11 (from a DaaS

provider’s point of view at the database layer [41]). When a new query arrives, the

query first enters the prediction module. The prediction module uses machine learning

techniques and considers both the characteristics of the query and the current system

conditions. The prediction module outputs the probability that the query meets its

deadline. The calculated probability and the query’s SLA are sent to the decision

module. The decision module decides either to admit the query or to reject the query

up-front. Finally, the result of each admitted query is returned to the client and

the actual execution time is sent back to the prediction module in real time. This

feedback information can further help the prediction module to improve the accuracy

1ActiveSLA stands for: Admission Control for Profit Improving under Service Level Agreements.
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of its future predictions by introducing new training data.

The main contributions of this chapter are twofold:

1. We show, by using both theoretical reasoning and empirical validation, how ap-

propriate machine learning techniques can be successfully leveraged to answer

a key question of admission control in DaaS: “What is the probability that a

query meets or misses its deadline?” We implement the solution in the pre-

diction module of ActiveSLA. The machine learning techniques (1) take many

query related features as well as database system related features into consider-

ation, (2) recognize complex patterns from the data in an automatic way, and

(3) provide detailed probabilities for different outcomes.

2. We develop an SLA-based, profit optimization approach in the decision module

of ActiveSLA. Decisions are made in a holistic fashion by considering (1) the

probability that a new query meets its deadline under the current system con-

dition, (2) the expected consequences of alternative actions and outcomes, and

(3) the potential impact of admitting a newly arrived query on the currently

running queries as well as on the future queries.
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3.4 Prediction Module

In this subsection, we introduce the prediction module of ActiveSLA, which estimates

the probability that a query meets its deadline in a real-time fashion.

Our approach for making such a prediction is based on machine learning tech-

niques. Due to their data-driven characteristics, machine learning techniques can

automatically recognize complex patterns from the data and provide models with re-

markable performance, which is often comparable to that of from domain experts [50].

The algorithms used in this chapter are all from the off-the-shelf machine learning

package WEKA [57].

However, compared with the frameworks used in previous work (e.g., [46, 50, 112]),

our prediction module is addressing a new data management problem in DaaS, namely

predicting the probability that a query meets its deadline. With this new problem

in mind, in this subsection we discuss several design considerations, including (1)

the model selection between linear and nonlinear models, between regression and

classification models, and (2) the rich set of features used in our model. In the next

section, we will provide detailed empirical studies to validate our design choices.

3.4.1 The Machine Learning Techniques

It is impractical to construct an accurate model that can perfectly predict the execu-

tion time of a query because of the numerous factors and their complicated interac-

tions in modern database systems. Such a situation is captured by a well-known quote

in the machine learning community, “All models are wrong, but some are useful” [31].

In this subsection, we show how we take the specific domain, namely profit-oriented

admission control in DaaS, into consideration in order to select a “less wrong” model,

which will be fully justified later in the experimental studies.

We compare our models with those of two classical methods, namely, TYPE (a

version of Gatekeeper [46] implemented by Tozer et al. [112] with load shedding added)
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and Q-Cop [112].

3.4.1.1 TYPE and Q-Cop, using Linear Regression

Both TYPE and Q-Cop approaches start by predicting the execution time of a query

for each query type. Assuming that there are T query types (i.e., queries that share

the same query template), both TYPE and Q-Cop build a model for each query type.

In TYPE, the estimated execution time of a query qi of type i is Esti = ei ×

Num+Ei, where Ei is the query execution time of qi in a dedicated server, Num is

the total number of other queries currently running in the system, and ei is the extra

delay that each additional currently running query brings to qi. Note that TYPE

is a query-type-oblivious approaches that is based merely on multiprogramming level

(MPL) and on the mean response time of queries over all requests.

Compared with TYPE, Q-Cop uses more detailed information. Instead of counting

Num, Q-Cop considers {n1, . . . , nT}, i.e., the number of currently running queries of

each query type (with
∑T

j=1 nj = Num), which is referred to as the query mix. Based

on the query mix, Q-Cop uses a linear regression model to estimate the running time

of qi as Esti = (ei1 × n1) + (ei2 × n2) + · · · + (eiT × nT ) + Ei. Here eij is the extra

delay that each additional currently running query of type j brings to qi.

3.4.1.2 ActiveSLA, using Non-linear Classification

Compared with TYPE and Q-Cop, the prediction module of ActiveSLA uses a non-

linear classification model to directly predict the probability of a new query meeting

its deadline, as shown in Figure 12.

Linear vs. Nonlinear Both TYPE and Q-Cop use linear regression, which mod-

els the relationship between the input features and the output variables by using

linear functions. However, the execution time of a query depends on many factors

in a non-linear fashion. In addition, many database settings, e.g., isolation levels
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Figure 12: Comparison of machine learning models.

and available buffer size, also influence query execution time in a non-linear fashion.

Furthermore, it is well known in database and queueing theories that when a system

is at a borderline overload condition, a small amount of additional workload will dis-

proportionally degrade the system performance. Such reasoning motivates us to use

non-linear models.

Regression vs. Classification There are two reasons why we prefer a classifica-

tion model over a regression model.

First, for admission control decisions, we care about the probability that a query

meets its deadline or not rather than the exact execution time of the query. From the

machine learning point of view, a direct model of classification usually outperforms a

two-step approach (i.e., in step 1, regression is used to get an estimation on execution

time, with an objective of minimizing the mean square error; and in step 2, this

estimated value is compared with the deadline).

Second, regression models only give Esti, i.e., the estimated execution time of

qi. This single point estimation does not contain enough information for us to make

profit-aware decisions as illustrated in Section 3.2. In comparison, the classification

model used in ActiveSLA provides us with the probabilities of a query meeting and

missing its deadline. This information will be shown crucial for us to make SLA-based
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admission control decisions.

3.4.1.3 Non-linear Classification Models in ActiveSLA

The main machine learning technique that we use for non-linear classification is “Log-

itBoost” algorithm [48]. We also use another algorithm called “Additive Regression”

for non-linear regression for a comparison purpose. Both of them are boosting ap-

proaches where a set of weak learners (namely, models that may not have exceptionally

good performance by themselves but collectively contribute to the final performance)

are iteratively learned and combined in order to obtain a strong classifier with good

performance. For the weak learners, we use a standard tree model (REP [48]) which

partitions the parameter space in a top-down and non-linear fashion. Both of them

are implemented in the well-known off-the-shelf WEKA package [57].

3.4.2 ActiveSLA Features

A key to the accuracy of a machine learning model is the features used to learn

the model. In addition to the features used by TYPE and Q-Cop (Section 3.4.2.1),

ActiveSLA exploits a number of additional features from query characteristics (Sec-

tion 3.4.2.2) and system conditions (Section 3.4.2.3).

3.4.2.1 Query Type and Mix (TYPE, Q-Cop, ActiveSLA)

Both TYPE and Q-Cop use the number of currently running queries as the feature

in their model for each query type. For a query qi of query type i, TYPE uses Num,

the total number of currently running queries in the system, as the only feature to

predict query execution time of qi. Q-Cop improves over TYPE by splitting Num

into a set of features n1, . . . , nT , which are referred to as the query mix. That is,

Q-Cop takes into consideration that different query types (e.g., j) may impact the

execution time of qi in different ways (reflected by eij in the Q-Cop model).
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3.4.2.2 Query Features (ActiveSLA)

We believe that even for the queries of the same query type, the parameters of a

query may affect its execution time, especially when the query contains aggregations

or range selections. To extract features related to query execution time, we leverage

query optimization techniques, which have been studied for the past decades in both

research and practice, by looking into the details of the query plan and query cost

estimation from the database system. We take PostgreSQL and MySQL as examples,

although the same idea applies to other databases.

In PostgreSQL, the query cost estimation depends mainly on five features, i.e., the

number of sequential I/O (seq page), the number of non-sequential I/O(random page),

the number of CPU tuple operations (cpu tuple), the number of CPU index opera-

tions (cpu index), and the number of CPU operator operations (cpu operator). We

extract these features from PostgreSQL using the light-weighted “explain” command

before it executes the query, and we provide a more detailed explanation in the Ap-

pendix. Although these parameters are used mainly for PostgreSQL query optimizer

to compare the relative costs among different query plans, we show the estimations of

these features have strong correlation with the execution time of some query. Thus,

we take these five estimations from the query optimizer as a set of features for the Ac-

tiveSLA prediction module. MySQL uses a similar “explain” command to illustrate

how MySQL handles the queries and again, we provide the details in the Appendix.

3.4.2.3 Database and System Conditions (ActiveSLA)

In addition to studying queries themselves, ActiveSLA also considers the environ-

ment in which the queries will be running. More specifically, ActiveSLA monitors

the following features from the database server and operating system. We choose

these features as they are the most dynamic features that can affect the query execu-

tion time. Other more static features like “CPU frequency”, “Memory size”, “Disk

43



Table 3: Comparison of different models.

Learning model Learning method Features used
TYPE linear regression query type
Q-Cop linear regression query type/mix

ActiveSLA-R non-linear regression query type/mix
ActiveSLA-C non-linear classification query type/mix

query type/mix
ActiveSLA non-linear classification query features

database/system
conditions

capacity” are related to a DaaS provider’s assets and will be added in the future work.

Buffer cache: the fraction of pages of each table that is currently in the database

buffer pool and therefore are available without accessing the disk;

System cache: the fraction of pages of each table that are currently in the operating

system cache and therefore are available without accessing the disk;

Transaction isolation level: a boolean variable that indicates if the database is

currently supporting Read Committed(FALSE) or Serializable(TRUE).

CPU, memory, and disk status: the current status of CPU, memory, and disk in

the operating system.

A more detailed description of these features as well as the methods that we use to

collect these features are provided in the Appendix. We summarize various approaches

in Table 3, in terms of machine learning methods and features used.

3.4.3 The Summary of Models

As mentioned above, ActiveSLA has three unique characteristics: (1) it uses a non-

linear learning method, (2) it is based on a classification model, and (3) it includes

more comprehensive features. In order to distinguish the contribution of each of

these characteristics, we also include two intermediate versions of ActiveSLA, named
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ActiveSLA-R and ActiveSLA-C. For a fair comparison, both of these intermediate

versions use only the same feature as Q-Cop does. Compared to Q-Cop, ActiveSLA-

R uses a regression model that is non-linear, to estimate the query execution time and

then makes comparison with the deadline. Compared with ActiveSLA-R, ActiveSLA-

C uses a non-linear classification model to directly estimate whether a query will miss

the deadline. ActiveSLA-R shows the benefit of non-linear over linear models while

ActiveSLA-C shows the benefit of classification over regression. ActiveSLA shows the

gain of using more features in the model.

3.5 Prediction Module Evaluation

In this subsection, we conduct empirical studies to evaluate the design choices that

we make in the prediction module of ActiveSLA.

3.5.1 Experimental Settings

3.5.1.1 Query Sets

The experiments in this chapter are conducted by using the relations in the TPC-

W benchmark [113]. Based on the TPC-W schema, we use three query sets in our

experiments, i.e., TPC-W1, TPC-W2, and TPC-W3.

TPC-W1 (browsing queries) The TPC-W1 query set follows the same query

set that is used in a main baseline approach, i.e., Q-Cop [112]. We use exactly

the same query set in order to make a fair comparison. The set includes the query

types in the Browsing Mix distribution in the TPC-W. The query types are extracted

from the corresponding servlets, i.e., Q1(Author Search), Q2(Title Search), Q3(New

Products), Q4(Related Products), Q5(Best Sellers Setup) and Q6(Best Sellers Main).

This query set follows the Browsing Mix distribution specified by the benchmark. The

query mix is skewed in that all the queries other than Q6 can be executed in a very

short time (less than 10ms) whereas the execution time of Q6 is around 5 seconds.

TPC-W2 (mixture of browsing and administrative queries) For this query set, we
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replace the short queries in the TPC-W1 by three other queries, which are variations

of the administrative queries in the TPC-W benchmark, to evaluate the impact of

longer running queries in the system.

Q6: select i id, i title, a fname, a lname from item, author, order line where item.i id =

order line.ol i id and

item.i a id = author.a id and order line.ol o id > (select

max(o id)-3333 from orders) and item.i subject = ? group by

i id, i title, a fname, a lname order by sum(ol qty)

desc limit 50;

Q7: select c fname, c lname, c email, o sub total from customer, orders where c since >

? and c id = o c id and

o sub total > ? and o sub total < ?;

Q8: select i title, i cost, i desc, o id, o status, o total, ol id, ol qty, ol discount from item,

order line, orders where

i pub date > ? and i id = ol i id and ol o id = o id and

o total > ? and o total < ?;

Q9: select co id, cx type, ol discount, avg(ol qty),

avg(o sub total) from order line, orders, cc xacts, country

where ol o id = o id and o id = cx o id and cx co id = co id

and ol discount <= ? and o total > ? and cx type like ’%?%’ group by co id, cx type,

ol discount;

TPC-W3 (mixture of browsing, administrative, and updating queries) The TPC-

W1 and the TPC-W2 only have read-only queries. We add the following update query

Q10 to the TPC-W2 to get the TPC-W3. Q10 is extracted from servlet “Admin

Confirm” in the TPC-W benchmark.

Q10: update item set i cost = ?, i pub date = ? i image = ?

where i id = ?;
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For all the query sets, we generate individual queries in the following way. When

we want a query from a specific query type(template), we generate random data

according to the database size and use this random data to fill in the “?” part, in

order to get a real query.

3.5.1.2 Workload Generators and System Setting

We design workload generators to provide two sets of workloads. The first set of

workloads follow as faithfully as possible those used by Q-Cop [112], i.e., with Poisson

arrival and static arrival rates. The second set of workloads are derived from a real

trace – the Web trace from the 1998 World Cup site [23], with the dynamic arrival

rate scaled proportionally to fit into the experimental environment. Compared with

the first set of workloads which has a stationary arrival rate, the second one has

non-stationary arrival rates, and so is likely to be closer to the real DaaS scenario.

In terms of the ratio of queries of different types, for the TPC-W1 we follow that

used in [112] (i.e., the same ratio as specified by the benchmark); for the TPC-W2

and the TPC-W3, we use a uniform distribution to randomly assign the query type

to each query. We use PostgreSQL 9.0 as the database server. The total size of the

TPC-W database is 5.2GB.

We implement, deploy, and evaluate the system on real machines. The physical

machines to run the database server, the client, as well as ActiveSLA all have Intel

Xeon E5620 2.4GHz Quad-Core CPU, 16GB of RAM, 1TB 7200rpm disk running

Linux with kernel 2.6.18-164.15.1.el5. Machines are connected by Gigabit Ethernet

switches. Note that, to further analyze the robustness of our system, we also repeat

most of the experiments on lower-end machines with AMD244 1.8GHz Dual-Core,

2GB memory, and a 500GB 7200rpm disk. It turns out that the conclusions are very

similar, and therefore we omit them in the chapter.
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3.5.2 Result for the TPC-W1 Query Set

Since the TPC-W1 query set is the only query set used by Q-Cop, in order to make

a fair comparison, we set the database settings as close as possible to those described

in [112] (e.g., with the 5.2GB data fitting in 16GB memory). We also use the same

Latin Hyper-cube Sampling (LHS) protocol to sample the space of query mixes. As

a result, we collect around 12,000 data samples in total. To study the performance,

we use 10-fold cross validation, which is a standard approach in the machine learning

area.

Figure 13 shows the comparison of relative absolute error and root relative squared

error among TYPE, Q-Cop and ActiveSLA-R for queries of query type Q6 (Best

Sellers Main) in terms of query execution time estimation. From the figure we can

see that TYPE, which only considers the number of currently running queries, has

very large error; Q-Cop, which considers the query mix by using linear regression,

reduces the error rate by a half from that of TYPE; ActiveSLA-R, which is a non-

linear regression model, further reduces the error2.
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Figure 13: Regression errors for the TPC-W1 query set by different approaches.

2For short queries in Q1-Q5, since the execution time is usually less than 10ms, the prediction
module will predict with high probability that the queries will be finished on time before their long
deadlines, e.g., 30s. So in most cases ActiveSLA will admit these queries.
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3.5.3 Result for the TPC-W2 Query Set

In this experiment, we reduce the memory size to 3GB so that the data set cannot

fit in memory any more. We still use PostgreSQL and set the buffer pool size to 1GB

and the effective cache size to 2GB. The four queries in the TPC-W2 have comparable

execution times, with difference within a factor of 2. We collect around 12,000 data

samples in total. In the experiments, we study the cases where the query deadlines

are set to 30, 45, and 60 seconds. (As a justification, the default limit time for a PHP

script that connects to a database to run is 30 seconds. The Safari browser uses a

60-second timeout.)

Because in the previous query set TPC-W1, we have already shown ActiveSLA-R

can outperform Q-Cop in terms of regression error, in this experiment, we focus on

the error rate of different approaches on predicting whether a query can be finished

before its deadline. For this purpose, we use the following metrics.

False positive (Nfp): The number of queries that (1) were predicted to be meeting

deadline but (2) actually miss deadline.

False negative (Nfn): The number of queries that (1) were predicted to be missing

deadline but (2) actually meet deadline.

Finally, we assume an equal weight between over- and under-prediction and define

the prediction error as:

error =
Nfp +Nfn

NT

where NT is the total number of queries in the testing set. For the performance

study, we again use 10-fold cross validation.

Figure 14 shows the prediction errors of different approaches with deadlines of

30, 45, and 60 seconds, respectively. Note that in addition to the performance of

ActiveSLA, we also report the performance of two intermediate versions of ActiveSLA,

i.e., ActiveSLA-R and ActiveSLA-C. We can make the following observations. (1) The

49



0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

30s 45s 60s

Er
ro
r

TYPE Q-Cop ActiveSLA-R ActiveSLA-C ActiveSLA

Figure 14: Prediction errors for the
TPC-W2 query set by different ap-
proaches.
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Figure 15: Prediction errors for the
TPC-W3 query set by different ap-
proaches.

difference in prediction error between TYPE and Q-Cop for the TPC-W2 is not as

dramatic as that for the TPC-W1. The main reason is that the execution times of the

queries in the TPC-W2 are very similar among different query types, and therefore

counting the total number of queries will achieve almost the same effect as counting

the number of queries per type. (2) ActiveSLA-R, which uses a non-linear regression

model, improves over the linear regression model used by Q-Cop. The improvement

is more distinct when the deadline is longer (e.g., 60 seconds vs. 30 seconds). This

result suggests that when the query execution time is long (and when the system is

likely to be heavily loaded), the benefits of a non-linear model are more apparent. (3)

ActiveSLA-C, by using a classification model instead of the regression model used in

ActiveSLA-R, consistently outperforms ActiveSLA-R. Note that because both models

use the same sets of training and testing data, this performance improvement verifies

our claim that a classification model (i.e., the one-step approach) has advantages over

a regression model (i.e., the two-step approach) for admission control. (4) ActiveSLA,

which takes all the features into consideration and builds a non-linear classification

model, has the best performance in terms of minimizing the prediction error under

all the deadline settings.
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3.5.4 Result for the TPC-W3 Query Set

The database and system settings for the experiments on the TPC-W3 query set are

the same as those for the TPC-W2 query set. Because of the updating queries, we

set up different isolation levels in the following way. In PostgreSQL, Read Committed

is the default isolation level. We use strict two phase locking to implement the

Serializable Isolation. In particular, we use “LOCK TABLE tables IN SHARE MODE”

for queries with types Q6 through Q9, whereas we use “LOCK TABLE tables IN

EXCLUSIVE MODE” for queries of type Q10. The variable tables in the locking

commands represents the tables required by the corresponding queries. For example,

for queries of type Q6, tables = “item, author, order line, orders” and for queries of

type Q10, tables = “item”, as shown in Table 4.

Table 4: Query type and the locking types/tables

Locking(Tables)

Q6 slock(item, author, order line, orders)

Q7 slock(customer,orders)

Q8 slock(item, order line, orders)

Q9 slock(order line, orders, cc xacts, country)

Q10 xlock(item)

We collect around 6,000 data samples for Read Committed and another 6,000 data

samples for Serializable. In Figure 16 we show the average lock contention delay for

queries of each type, to illustrate the interference among queries of different types

under Serializable Isolation. Q7 and Q9 query types have very short contention delay

(less than 2ms) because they only require shared locks on the tables they need and

because for these tables, there are no other queries requiring an exclusive lock. In

comparison, the situation for Q6, Q8, and Q10 query types are very different. Because

Q6 and Q8 query types require shared locks on the “item” table whereas Q10 type

requires exclusive locks on the same table, lock contention happens very often among

these queries. Figure 15 shows the prediction errors of different approaches on the
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TPC-W3 query set. As can be seen, although different isolation levels are used, most

conclusions we obtain from the TPC-W2 query set are still valid for the TPC-W3

query set.
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Figure 16: Lock contention delay.

3.5.5 Further Investigation

In this subsection, we provide some additional details about the prediction module

of ActiveSLA, including some details on the classification model, an example feature

that demonstrates non-linearity, and feature sensitivity as well as overhead analysis.

3.5.5.1 Details on the Machine Learning Model

We zoom into a segment of the learned REP decision tree model for the TPC-W3,

as shown in Figure 17, to illustrate how ActiveSLA makes predictions. In the REP

tree, a leaf node represents the level to which the model believes that the query will

miss its deadline (therefore negative values indicate it is very likely the query can

be finished on time). The internal branches indicate the criteria used to make the

decision. As can be seen from the tree, ActiveSLA first looks at CPU wai, which is

the percentage of time that the CPU is idle because the system had an outstanding

disk I/O request. If CPU wai is lower than 7.5%, the prediction stops and returns

a value of -1. If CPU wai is greater than 7.5%, ActiveSLA next looks at the type

of the query. If the query is of type Q10, then based on the system isolation level

(serializable or not), the model returns a value of 0.33 (very likely to miss deadline)
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or -2 (very unlikely). This segment of REP decision tree captures the fact that a

query of type Q10 is an update query and so when the isolation level is read commit,

the query almost never misses its deadline. On the other hand, if the isolation level

is serializable, there will be a lock contention delay and so the query is very likely to

miss its deadline.
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0.33 -2

CPU_wai
<7.5%

CPU_wai
>7.5%

Type=Q10
Type=Q7

...Serializable
=TRUE

Serializable
=FALSE

Figure 17: Part of a REP tree learned by ActiveSLA.

3.5.5.2 A Feature That Demonstrates Non-linearity

We use one particular feature to demonstrate the effectiveness and non-linearity of

certain database features. The feature that we use is the estimated number of pages

of sequential scan according to the query plan, i.e., seq page. Figure 18 shows the

scatter-plots of the number of pages of sequential scan estimated by the query plan

(x-axis) vs. the query execution time (y-axis) for the queries of different types in the

TPC-W2 query set.

From the figure we can obtain several observations. First, this particular fea-

ture has predictive power for Q7 and Q9 query types, which can be seen from the

correlation between x-value and y-value in the corresponding sub-figures. The corre-

lation coefficients are 0.62 and 0.52, respectively. Second, for Q6 type, this feature

has almost no predictive power with a correlation coefficient as 0.20. Third, for Q8

type, when the number of pages of sequential scan is low (and therefore the query
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Figure 18: Influence of the number of seq page scan on query execution time for
different query types.
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execution time is short), the feature has obvious predictive power with correlation

coefficient as 0.78; however, when the number of pages of sequential scan grows larger

than 350K, its predictive power disappears with a correlation coefficient as 0.17. This

result illustrates the importance of the non-linear models used in ActiveSLA.

3.5.5.3 Sensitivity Analysis of Features

ActiveSLA uses three sets of features, namely, query type/mix, query features, and

database/system conditions. To study the effectiveness of each feature set, we conduct

the following experiment of sensitivity analysis.

For the query sets TPC-W2 and TPC-W3, we compare the performance of (1)

ActiveSLA with all three feature sets and (2) ActiveSLA with one feature set re-

moved. Basically, we want to see the performance of ActiveSLA when a particular

set of features is not available. The results for the TPC-W2 and the TPC-W3 are

similar and summarized as below. (1) Removing any set of features will increase the

prediction error, albeit to different degrees. (2) The importance of the feature sets,

from the most important to the least important is: query type/mix > query features

> database/system conditions, as shown in Figure 19.
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Figure 19: Sensitivity Analysis of Features when the deadline is 60s.
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3.5.5.4 Training and Evaluation Overhead

The classifier is first trained and then evaluated. In the training stage, it takes

approximately 72ms to build an initial model by using 12,000 samples. The model

is rebuilt every time when there are another 100 new samples, which are sent back

from the admitted queries. In the evaluation stage, it takes approximately 8ms to

predict the probability that a query meets the deadline when a single query arrives

at the prediction module. The prediction overhead is negligible compared with the

mean query execution time and the deadline (i.e., 30s, 45s, or 60s).

3.6 Decision Module

The decision module of ActiveSLA is responsible for making the final decision on

whether a new query should be admitted. In this subsection, we first describe the

SLAs that we assume. Next, we describe under a general SLA, how to make profit-

oriented admission control decisions by using the standard decision theory. Then we

show that under a commonly used SLA form, namely step-function SLA, the decisions

can be made in a more efficient way. Finally, we show how our decision module takes

into account the interference among clients (queries), who are competing with each

other for the shared system resources.

3.6.1 Service-level Agreement (SLA)

As discussed before, a service-level agreement (SLA) is a contract between a ser-

vice provider and a client that determines the promised service performance and the

corresponding gains (or penalties). While SLAs in general depend on certain cho-

sen criteria, we focus on query latency, i.e., query execution time in this chapter.

More specifically, we assume that there is an associated SLA for each query q, which

determines the gain and the penalty that will be obtained by the service provider

under different query execution times for q. An example of such an SLA is shown
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in Figure 20(a)(upper sub figure), where the revenue (gain or penalty) is a function

s(t) over the query execution time t assuming the query is admitted. In addition,

not explicitly shown in the figure is that if the query is rejected up-front, the service

provider has to pay a penalty of -r.

0
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0 t

PDF f(t)
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Figure 20: SLA-based admission control decisions for (a) general SLAs and (b) step-
function SLAs.

Note that a more commonly used SLA is based on the quantile of the response time

of queries from a single client. If this is preferred, there exist techniques (e.g., [52])

that directly map quantile-based SLAs to per-query SLAs. However, based on our

extensive interactions with numerous business organizations that provide services to

real clients, they desire to be able to manage SLAs at the finest granularity level (i.e.,

per query) with multiple levels of delivery defined in the SLAs (i.e., piecewise linear

functions [36]). The observation is that currently majority of the service providers

only give availability SLAs to their clients represented in the quantile form but not

other types of SLAs such as latency, throughput, etc. Also, lack of formal models

and tooling to enable finer granularity level SLA management is a major inhibitor

for businesses to adopt various types of SLAs and also varying levels. Our research

aims at advancing the state-of-the art in that area and helping service providers by
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working with them and this chapter is a part of that effort.

3.6.2 The Admission Decisions

The main goal of a DaaS provider is to maximize profit by satisfying its client service-

level agreements (SLAs). Therefore, we use profit as the final objective in our admis-

sion control strategies.

If we assume that the probability density function (PDF) f(t) for the execution

time of q is available to the service provider, as shown in Figure 20(a)(lower sub

figure), we can compute the expected revenue E [revenue(q)] for admitting query q

as

E [revenue(q)] =

∫ ∞
t=0

s(t) · f(t)dt.

Then by following the standard decision theory, the admission control decision that

maximizes the expected profit for query q should be

Decision =


Admit if E [revenue(q)] > −r

Reject otherwise.

The SLA function s(t) usually can be directly obtained from the service contract.

However, there are still several other challenges. (1) It is very difficult to obtain the

detailed query performance information for query q, i.e., the PDF in Figure 20(a),

before the incoming query q is even executed. (2) A different incoming query q

may have a different SLA as well as time-varying query performance information,

given that the status of database management system and the operating system are

constantly changing. (3) Because we assume that queries come in an online fashion

and there is no prior knowledge about the future, we also should reserve resources

for future “more profitable” queries. In the following, we address these challenges by

extending the standard decision theory.
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3.6.3 Single Query Decision

Although the SLA on query execution time may take different forms, a step function

is commonly used in real contracts because it is easy to describe in natural language.

We show such a step-function SLA in Figure 20(b) and Table 5. That is, for a given

query q, if the query is admitted and its query execution is finished before the deadline

τ , the service provider obtains a gain of g; else if the query misses the deadline τ , the

service provider pays a penalty of -p. Otherwise the service provider may reject the

query upfront and pay a penalty of -r.

Table 5: Step-function SLA: outcomes and revenues.

Meet Deadline Miss Deadline
Admit g −p
Reject −r −r

Under the step-function SLA, we can simplify the expected revenue for admitting

q as (also illustrated in Figure 20(b))

E [revenue(q)] =

∫ τ

t=0

g · f(t)dt+

∫ ∞
t=τ

(−p) · f(t)dt

= g ·
∫ τ

t=0

f(t)dt− p ·
∫ ∞
t=τ

f(t)dt

The above result reveals that to compute the expected revenue under the step-

function SLA, we only need the area under f(t) before τ and that after τ , which are

actually the probabilities of meeting and missing the deadline. Such probabilities, as

have been shown in the previous sections, are provided by the prediction module of

ActiveSLA in a real-time fashion. If the probability that the query meets its deadline

is c, we can easily see that
∫ τ
t=0

f(t)dt = c and
∫∞
t=τ

f(t)dt = 1 − c. As a result, we

have E [revenue(q)] = g · c−p · (1− c). Thus the exact PDF for the execution time of

q is not necessary for admission decisions anymore. The admission control decision
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is made as

Decision =


Admit if g · c− p · (1− c) > −r

Reject otherwise.

3.6.4 Multiple Query Decision

The admission decision made in Section 3.6.3 is based on the expected revenue for

admitting a single query q. If we want to make the most profit from multiple queries,

we have to take into consideration at least two additional hidden costs when we

decide whether or not to admit q. (1) Admitting q into the database server may

slow down the execution of other queries that are currently running in the server,

since query q will consume system resources. Therefore, admitting q will potentially

cause other running queries to miss their deadlines, which they were able to meet.

This will reduce the total revenue of a DaaS provider. (2) Admitting q will consume

system resources and change the system status. This may result in the rejection of

the next query, which may otherwise be admitted and bring in a higher revenue. The

two additional hidden costs are closely related to the concept of opportunity cost in

economics [63, 106]. We denote the opportunity cost as o, and we revise the decision

module in ActiveSLA according to Table 6, in order to take the opportunity cost into

account.

Table 6: Step-function SLA: outcomes and revenues, with opportunity cost.

Meet Deadline Miss Deadline
Admit g − o −p− o
Reject −r −r

According to this new table, when o > 0, the admission control is relatively more

aggressive in rejecting new queries, in order to protect the currently running queries

and to reserve system resources for later queries with potentially higher revenues.
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With such an extra cost term, the admission control decision becomes

Decision =


Admit if g · c− p · (1− c)− o > −r

Reject otherwise.

In practice, the value o for opportunity cost can be either determined by the service

provider (e.g., derived from certain business considerations) or learned through the

ActiveSLA feedback channel over time.

3.7 Decision Module Evaluation

We use the workload generators to generate different workload traces in an offline

fashion. Then we test the workload traces in the real-time system to present the

effectiveness of our system. We also compare ActiveSLA’s performance with the

previous work, Q-Cop. We report the results based on the TPC-W2 query set in

this subsection and skip those for other query sets because the results are similar.

For each test, unless stated otherwise, we repeat 5 times (with traces generated from

different random seeds) and report the average performance.

3.7.1 Result with Stationary Workload

In this experiment, we use a stationary workload with arrival rates ranging from 0.01

request/second to 0.1 request/second. Each test runs 1 hour. We use the numbers

for the utility function of q1 as shown in Figure 10 for the SLA. We can obtain the

following observations from the results as shown in Figure 21. (1) When the arrival

rate is less than 0.03 request/second, because the system is underloaded, both Q-Cop

and ActiveSLA admit most of the queries. (2) When the arrival rate goes beyond 0.03

request/second, load shedding starts to take place more frequently. However, under

all the arrival rates, ActiveSLA admits between 10% to 15% more queries than Q-

Cop, and among the admitted queries, the number of queries that miss their deadline

is comparable between ActiveSLA and Q-Cop. These results show that ActiveSLA
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Figure 21: Result with stationary workload: number of queries that (a) are admitted,
(b) meet deadline after admitted, (c) miss deadline after admitted, and (d) total profit.

makes more reasonable admission control decisions. (3) The advantage of ActiveSLA’s

better decisions is reflected in its higher SLA profits compared to Q-Cop.

3.7.2 Result with Non-stationary Workload

For the non-stationary workload, i.e., the World Cup trace from the 1998 World

Cup site [23] from 15:00pm to 22:21pm, we study two experiments. In the first

experiment, we assume all the queries have the same SLA. In the second experiment,

we use two different SLAs to show how ActiveSLA makes profit-oriented decisions.

More specifically, in the second experiment we assume half of the queries have one

SLA and the other half have another SLA, in order to demonstrate that ActiveSLA

is able to provide profit-oriented service differentiation.
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Figure 22: Dynamic workload: over time, (a) the rate of arrived queries, the cumu-
lative numbers of (b) admitted queries, (c) queries that are admitted and meet their
deadlines, and (d) queries that are admitted but miss their deadlines.
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3.7.2.1 Profit-oriented decisions

We start by again using the SLA described by the first utility function in Figure 10,

i.e., g = 1, p = 1, r = 0.1, and o = 0. Figure 22 shows the experimental results. From

these figures we can see that over time, ActiveSLA admits more queries and fewer

queries admitted by ActiveSLA miss their deadlines than those admitted by Q-Cop.

In addition, in Table 7, we report the aggregated results over the whole period of

the World Cup event. From the table we can see that during this event, ActiveSLA

admits 10% more queries than Q-Cop does and compared to Q-Cop, fewer queries

admitted by ActiveSLA miss their deadline. Overall, ActiveSLA achieves 20% more

profit than Q-Cop.

Table 7: Comparison of SLA profit (with the total number of queries being 963).

Admitted Meet Deadline Miss Deadline Profit

g = 1(gain),p = 1(penalty),r = 0.1(reject penalty)
Q-Cop 693 651 42 582

ActiveSLA 783 768 15 735

g = 1(gain),p = 2(penalty),r = 0.1(reject penalty)
Q-Cop 693 651 42 540

ActiveSLA 744 744 0 722.1

Next, we switch to the SLA described by the second utility function in Figure 10,

i.e., g = 1, p = 2, r = 0.1, and o = 0. The aggregated results are also shown in Table 7.

The fact that ActiveSLA outperforms Q-Cop remains valid. However, because of the

higher penalty of missing a deadline, ActiveSLA becomes more conservative in that

it admits fewer queries and makes less profit. In this case, the conservative admission

control by ActiveSLA is well justified—among the queries admitted into the system

by ActiveSLA, none of them misses their deadlines and so the high penalty of missing

deadlines is avoided.
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3.7.2.2 Profit-oriented service differentiation

In this experiment, we use the same world cup trace as used in the previous part.

However, this time we pick half of the queries and assign them SLAs with higher

gain. More specifically, we give each query a sequence number. For the queries with

odd sequence number (which we refer to as Gold queries) we increase their g values

in the SLA to 1.5 while for the queries with even sequence number (which we refer

to as Silver queries), we keep their original g values of 1.

Table 8: Comparison of SLA profit with the total number of queries being
963(Gold/Silver).

Admitted Meet Deadline Miss Deadline Profit
(Gold/Silver) (Gold/Silver) (Gold/Silver)

g = 1.5/1(gain),p = 1(penalty),r = 0.1(reject penalty)
Q-Cop (365/328) (341/310) (24/18) 752.5

ActiveSLA (420/384) (396/375) (24/9) 920.1
(o = 0)

ActiveSLA (438/348) (432/347) (6/1) 970.3
(o = 0.2)

In addition, we study two scenarios, one scenario where there is no opportunity

cost (i.e., o = 0) and the other with opportunity cost (with o = 0.2), in the deci-

sion module of ActiveSLA. Table 8 reports the results for these scenarios, where we

separate the performance of Gold queries(G) and that of Silver ones(S). From the

results we can make the following observations. (1) In both scenarios, ActiveSLA

admits more queries than Q-Cop and makes more profit. (2) Because the potential

revenue gain for Gold queries is higher, ActiveSLA is more aggressively in admitting

Gold queries than in admitting Silver ones (and results in more Gold queries missing

their deadlines). But such aggressive decisions are rewarded by the higher profit. (3)

When the opportunity cost is taken into consideration in the decision module, Ac-

tiveSLA admits fewer Silver queries and at the same time, admits more Gold queries

(compared to the scenario when there is no opportunity cost). In addition, because of
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the protection effect of the opportunity cost, fewer Gold queries miss their deadlines

once they are admitted into the system.

It is worth noting that we have only demonstrated that the opportunity cost o

impacts the profit the way we expect, and we have not provided a systematic way

to set the value of o. In real implementations, o can be either a tuning factor that

the service provider needs to set, or it can be automatically adjusted at the runtime

through a feedback loop. This is left for future work.

3.8 Summary

In this chapter, ActiveSLA is proposed to enhance a classical admission control ap-

proach by leveraging risk assessment based on decision theory to achieve the most

profitable service-level compliance for a DaaS provider. The strengths and weaknesses

of ActiveSLA compared with a classical admission control approach are summarized

as below:

3.8.1 Strengths

Under a step-wise SLA, ActiveSLA is able to derive not only the most probable cate-

gory(i.e., a step in a step-wise SLA) that the current predicted query execution time

belongs to but also the probability of each category that the current predicted query

execution time may belong to. However, since a classical admission control approach

builds a regression model and returns single point estimation of query execution time,

it can only derive the most probable category that the current predicted query ex-

ecution time belongs to. ActiveSLA also takes into consideration query features as

well as database-specific and system-level metrics, which further help to improve the

prediction accuracy.

Thus, ActiveSLA will show its strength by obtaining the probability for each

category that the current predicted query execution time may belong to under a

step-wise SLA because it adopts a classification model. It will also show its strength
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in prediction accuracy when query features as well as database-specific and system-

level metrics are available.

3.8.2 Weaknesses and future work

ActiveSLA will show its critical limitation under a non-step-wise SLA because a clas-

sification model will be very difficult to apply to a non-step-wise SLA. And, since

ActiveSLA relies on the query optimizer to obtain query features such as the number

of sequential I/O, ActiveSLA will show its serious limitation when the query opti-

mizer returns very inaccurate query features, e.g., due to the incorrect statistics and

cardinality estimates of a query execution plan. In the future, we plan to repair the

inaccuracy in real-time (e.g., similar to [109, 86]) to make better predictions.

Moreover, since ActiveSLA depends on the opportunity cost o to manage multiple

query decisions, an inappropriate value of o in system settings will impose restrictions

on its application. The determination of the value of o is an interesting problem by

itself as in our future plans.

Finally, the increasing complexity of an admission control-based approach for

database management systems in the Cloud presents novel technical challenges that

demand enhancement to ActiveSLA itself. For example, in more and more DaaS de-

ployments, different replication levels are provided to overcome the failures that may

occur to commodity hardware. In the future, we plan to extend the prediction mod-

ule of ActiveSLA by including the level of replication as one of the system variables

used in non-linear classification. We are also planning to extend our ActiveSLA to

deal with different types of database systems to manage data and serve queries, e.g.,

NoSQL databases.
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CHAPTER IV

STATISTICAL IDENTIFICATION OF CRITICAL

RESOURCES

In the previous chapter, a classical admission control approach is enhanced to help

DaaS providers achieve the most profitable service-level compliance. A job (a query

for a DaaS provider) is admitted into the system if accepting this job is expected to

make more profit than rejecting it according to decision theory. Besides admission

control, resource allocation is also popularly used to help a Cloud service provider

make the most profit as shown in Figure 2 in Chapter 1. However, the most important

prerequisite for resource allocation is to identify what kind of resource to allocate or

what is the critical resource that affects service-level compliance.

In this chapter, a critical resource identification framework called vPerfGuard

based on statistical machine learning is proposed to address novel technical challenges,

specifically high scalability and adaptability requirements, to effectively identify crit-

ical resources for a complex distributed application in the Cloud.

4.1 Background

When an increasing number of jobs are admitted into a system and the service-level

compliance becomes worse, more resources could be purchased from IaaS providers

to improve the situation. Although IaaS providers offer convenience for dynamic

resource allocation by offering different type of resources such as computing power

and elastic storage, they charge different amounts for the usage of different types

of resources. For example, the “Extra Large” Amazon EC2 High-CPU On-Demand

Instances, High-Memory On-Demand Instances and High-I/O On-Demand Instances
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cost $0.660, $0.450 and $3.100 per Hour, respectively, for Linux/UNIX Usage in

Amazon’s US East data center 1. Therefore, the critical resource that affects the

application’s performance needs to be carefully identified before resource allocation.

Otherwise, blindly adding resources will not only be useless to improve the applica-

tion’s performance but also incurs a large bill of costs.

However, identifying the critical resource that affects service-level compliance is

complicated due to high scalability and adaptability requirements for a complex dis-

tributed application in a Cloud environment. Although some researchers target their

efforts at identifying the critical resources, their approaches heavily rely on human

expert experience and domain knowledge, which are not sufficient to deal with the in-

creasing complexity. In this chapter, we propose vPerfGuard, which enhances a classi-

cal control-based approach by leveraging statistical machine learning to automatically

and adaptively identify critical resources for a complex distributed application in a

Cloud environment.

The rest of this chapter is organized as follows. Section 4.2 and Section 4.3 give the

problem definition and the solution overview, respectively. The design of vPerfGuard

is described in Section 4.4. Section 4.5 introduces testbed setup. The results of

experimental studies are presented in Sections 4.6 and 4.7. Section 4.8 describes the

visualization of the results before Section 4.9 summarizes the chapter.

4.2 Problem definition

Assume that we are a platform as a service (PaaS) provider. We purchase resources

from IaaS providers to service our customer’s applications. A customer deploys his

Slashdot-like news aggregation site onto our PaaS environment. We refer to this dis-

tributed web-based application as vSlashdot to distinguish it from the real Slashdot

1http://aws.amazon.com/ec2/pricing/
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service. For ease and flexibility of development and deployment, web-based applica-

tions are typically architected as a collection of cooperating components spread over

multiple logical tiers, with each tier having a single/specific purpose (n-tier/multi-tier

architecture design). An example multi-tier architecture of the vSlashdot application

is shown in Figure 23 – note that each tier may host one or more servers. Web

servers in the presentation tier interact with App servers in the application tier on

behalf of clients, which are sending requests to the application. The application tier

is where the business logic/rules live, and it in turn interacts with the DB servers

in the database tier to obtain/store persistent data. Clustering middleware is often

used in front of the database tier for better scalability, availability and reliability.

After the vSlashdot service goes online, our customer notices that the performance

of the website degrades over time – its throughput decreases and the response times

increase. Our customer immediately complains to us about the performance issue

and the onest is now on us to quickly identify the root cause of the performance

degradation by pinpointing the resource bottlenecks in the VMs/hosts and the key

components of the application affecting/limiting its performance. After that, we could

apply dynamic resource allocation based on the information of critical resource.

A classical critical resource identification approach either relies on human experts

with deep technical knowledge to identify performance bottlenecks [64], with the help

of performance monitoring tools and system logs, or follows standard procedures in
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performance troubleshooting “cookbooks” [77] for problem localization and root cause

analysis.

However, a classical critical resource identification approach can no longer meet

the high scalability and adaptability demand in a highly-dynamic, large-scale, com-

plex Cloud environment. There are several challenges: (1) a classical critical resource

identification approach has highly variable resolution times (from minutes to weeks);

(2) a classical critical resource identification approach is not easily scalable to ana-

lyzing the behavior of many hosts and VMs in consolidated environments and many

heterogeneous and distributed applications; (3) performance “cookbooks” are not

adaptive as they only provide guidelines for problems that were seen before, whereas

a dynamic Cloud environment is likely to see emergent behavior or new interactions.

For example, the performance of one application may suffer due to demand spikes in

other applications (i.e., noisy neighbors) sharing the same physical infrastructure.

4.3 Solution approach overview

In order to address the above challenges, we propose a framework, called vPerfGuard2.

vPerfGuard demonstrates that a classical control-based approach enhanced by statis-

tical machine learning identifies critical resources automatically and adaptively. More

specifically, vPerfGuard automatically builds a performance model for an application

using the system metrics that are most predictive of the application’s performance.

It then adaptively updates the model when it detects changes in the performance

and the potential shifts in the predictive metrics that may accompany such a change.

More concretely, the vPerfGuard architecture, as shown in Figure 24, consists of three

modules - a sensor module, a model building module, and a model updating module.

Whenever a performance degradation is observed and a critical resource identifi-

cation request is received, vPerfGuard presents the top predictive system metrics in

2vPerfGuard stands for: virtual Performance Guard.
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the current performance model to a Cloud service provider. These metrics can pro-

vide hints to a Cloud service provider regarding the potential causes for the observed

performance problem, including the critical component within a complex, distributed

application as well as the suspected critical resource in the associated host or VM.

A Cloud service provider can then use this information to determine the real root

cause and take remediation steps such as dynamic resource allocation. Moreover, the

ability of these models to predict application’s performance using system metrics can

enable the development of performance control systems that further automate the

process of remediation. The last goal is the focus of the next chapter and will not be

discussed further in this chapter.

Through both theoretical reasoning and experimental validation, vPerfGuard achieves

automated, scalable, and adaptive critical resource identification by enhancing a clas-

sical control-based approach with statistical machine learning in consolidated Cloud

environments.

1. We leverage appropriate statistical learning techniques to construct performance

models that capture the relationship between application’s performance and
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system resources. We implement the solution in the model building module of

vPerfGuard. The statistical learning techniques (1) filter thousands of system

metrics and select those that are most strongly correlated with observed ap-

plication’s performance, eliminating a large number of irrelevant metrics, and

(2) further reduce redundancy in the selected metrics and build a performance

model using a small set of metrics that give the best prediction accuracy. The

automatic model generation process successfully overcomes the scalability chal-

lenge.

2. We leverage appropriate statistical hypothesis tests to detect the need to update

the performance model when it no longer accurately captures the relationship

between performance and system resources. We implement the solution in the

model updating module of vPerfGuard. The statistical hypothesis tests (1)

detect the change-point due to variations in workloads (such as demand spikes)

or system conditions (such as resource contention), and (2) trigger the model

building module to update the set of predictive metrics and rebuild the model

at runtime. The automatic model updating process effectively overcomes the

adaptivity challenge.

4.4 System design

In this section, we introduce the design of the three modules - the sensor module, the

model building module, and the model updating module in vPerfGuard.

4.4.1 Sensor module

The objective of this module is to continuously collect system metrics and applica-

tion’s performance metrics. More specifically, it collects two categories of system

metrics - VM metrics from the operating systems within individual VMs and host
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metrics from the physical hosts running the hypervisors. In our experimental eval-

uations, the sensor can collect thousands of system metrics, which we refer to as

raw metrics. It also collects the application’s performance metrics of interest, e.g.,

throughput, response times, etc. Note that, although workload metrics such as of-

fered load and transaction mix may also be helpful [108], and our framework does

not preclude these metrics, we do not require their inclusion because: (1) we prefer

vPerfGuard to be application-agnostic to free Cloud service providers from needing

detailed knowledge about the inner operations of their customers’ applications, and

(2) results from our experimental studies show that they are filtered out and do not

appear in any of our final performance models.

4.4.2 Model building module

The objective of this module is to automatically utilize the thousands of raw metrics

from the sensor module to derive a performance model that captures the relationship

between application’s performance and system resources.

However, a performance model that is built using all the raw metrics can be

computationally expensive to construct and can lead to model over-fitting. First, since

the size of the search space with thousands of raw metrics is huge, machine learning

algorithms operate slowly. Second, many raw metrics are irrelevant or redundant,

e.g., a VM’s CPU utilization observed from its host is closely related to the CPU

utilization observed from within the VM itself. Such dependencies among metrics

increase the amount of redundant information in the model and can degrade model

quality.

This necessitates the selection of a small number of highly predictive metrics.

After removing as many of the irrelevant and redundant metrics as possible, the model

accuracy can be improved in some cases while the model can be more easily interpreted

in other cases. We leverage two categories of algorithms for feature selection [58] to
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our metric selection: filters [67] evaluate features according to heuristics based on

general characteristics of the data while wrappers [67] use the learning algorithm

itself to evaluate the usefulness of features.

We achieve the objectives of metric selection and model building using a two-

phase algorithm, which is a combination of filters and wrappers: first (in phase 1)

selecting a small number of candidate metrics that are most strongly correlated with

the application’s performance from among the raw system metrics, and then (in phase

2) identifying even fewer predictor metrics that can give the best prediction accuracy

for a specific model from among the candidate metrics.

4.4.2.1 Phase 1: Correlation-based selection

In phase 1 (see Algorithm 1), we aggressively reduce the number of raw metrics

considered by filtering out the raw metrics that are not highly correlated with the

observed application’s performance. We denote the application’s performance metric

(e.g., mean response time) as perf , and the time series of the perf metric ending at

time interval t as a vector
−−−−→
perf(t) = [perf(t), perf(t−1), ...]. We denote a raw system

metric (e.g., CPU consumption of a VM) as m, and the set of all the raw metrics

as M . We then denote the time series of each metric ending at time interval t as a

vector
−−→
m(t) = [m(t),m(t− 1), ...]. For each metric m ∈ M , we use rm to denote the

absolute value of the correlation coefficient between perf and m, and pm to denote

the associated p-value for testing the hypothesis of no correlation. Each p-value is

the probability of getting a correlation coefficient as large as the observed value by

random chance, when the true correlation is zero. If the p-value is small, say less

than 0.05, then the observed correlation is significant.

To limit the number of candidate metrics for our model, we select Ncan top metrics

as the candidate metrics for the phase 2 algorithm from all the Nraw raw metrics based

on the absolute correlation coefficient value and the p-value. We also sort Ncan metrics
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Algorithm 1: Phase 1

1 procedure Metrics selection by correlation coefficient
2 Input: performance metric perf and a set of raw metrics M ;
3 Output: a set of candidate metrics Mcan ⊂M ;
4 Tunable Parameter: number of candidate metrics Ncan;

5 ∀m ∈M , rm = |corrcoef(
−−→
perf,−→m)|, pm =p-value(

−−→
perf,−→m);

6 Select top Ncan metrics with best rm and pm;
7 Sort Ncan metrics in descending rm and ascending pm;
8 Return the set of Ncan metrics, denoted as Mcan.

for visualization purpose. The time complexity is O(Nraw) + O(Ncan logNcan) when

the BFPRT algorithm [8] is used for selection and the quicksort algorithm is used

for sorting, respectively. Ncan is a configurable parameter for managing the tradeoff

between better model accuracy and lower overhead in the second phase.

4.4.2.2 Phase 2: Model-based selection

In phase 2 (see Algorithm 2), we explore the combination of the candidate metrics

generated in phase 1, and choose a combination that gives the best prediction ac-

curacy measured by the average R2 (coefficient of determination) value [44] of the

performance model using a 10-fold cross validation [100]. We evaluate and compare

the predictive capability of the following four specific types of performance models —

linear regression model [45], k-nearest neighbor (k-NN) [45], regression tree [45], and

boosting approach [45].

Although the metric subset space has been reduced from 2Nraw to 2Ncan after phase

1, the exploration process is still clearly prohibitive for all but a small number of met-

rics. We use a heuristic, hill climbing [101] search strategy, i.e., given a set of selected

metrics, we choose the additional metric from the remaining set that can give the best

improvement in the R2 value. The algorithm ends when the improvement is smaller

than a given threshold. For Ncan candidate metrics, the computation complexity of

the phase 2 model-based selection is O(Npred ∗Ncan), where Npred is the total number

of metrics in Mpred.
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Algorithm 2: Phase 2

1 procedure Metrics selection by a specific model
2 Input: a performance metric perf and Mcan from phase 1;
3 Output: a set of predictor metrics Mpred ⊂Mcan and the associated model F (Mpred) with

learned parameter values;
4 Tunable Parameter: a type of model F , R2

inc for the minimum incremental R2 improvement;
5 selected = ∅, left = Mcan, R2

old = 0, R2
best = 0;

6 while true do
7 for m ∈ left do
8 metrics = selected ∪ {m};
9 Use

−−→
perf and all −→m in metrics, obtain R2

new following 10-fold cross validation;
10 if R2

new > R2
best then

11 R2
best = R2

new;
12 end

13 end
14 if R2

best −R2
old > R2

inc then
15 move m from left to selected;
16 R2

old = R2
best;

17 else
18 break;
19 end

20 end
21 Build the final model F (selected) using all the samples;
22 Return Mpred = selected and the model F (selected).

Note that Hall [58] proposes a method to select a subset of metrics based on a

heuristic “merit” of the subset. The motivation is that phase 1 (i.e., filters [67])

may pick many metrics, which individually have high correlation with the output

metric, but that when combined together in a model do not provide much additional

useful information. We implement his method and compare it with our two-phase

algorithm. We find that (1) his method has comparable overhead with ours; (2) our

phase 2 algorithm can also overcome the limitation of phase 1; (3) the final metrics

and models are very similar if the final number of predictor metrics (Npred) is a small

number.

4.4.3 Model updating module

The objective of this module is to automatically detect the change-point when the

performance model derived from the model building module no longer accurately

captures the relationship between application’s performance and system resources.
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In a highly-dynamic, consolidated Cloud environment, the relationship between

application’s performance and system resources could be altered due to time-varying

workload patterns, aggravated resource contention, different VM-to-host mappings,

or other changes. We define such a relationship change as a change-point. Note that

this is different from detecting changes in performance alone. For example, if a 20%

increase in the workload leads to degraded performance, our module should not flag

this as a change-point if the relationship between performance and system resources

still holds.

We assume that the distribution of the model’s prediction errors (residuals) is

stationary across adjacent time intervals when there is no change in the environment.

Motivated by this, we use an online change-point detection technique [28] to determine

whether a change occurs by performing hypothesis testing on the model’s prediction

errors across adjacent time intervals.

Time intervalst’ t

Model

t-Test

Fail. 

Rebuild 

the model

Pass. 

Move to the 

next interval

t+1

A sliding window W(t’) that contains 10 samples

Figure 25: Model updating module

More specifically, given an existing performance model constructed in time window

W (t′), its prediction errors in W (t′) and those in an adjacent time window W (t) as

shown in Fig. 25, we adopt an unpaired 2-sample t-test [44] to determine whether

the prediction errors observed in W (t′) and W (t) come from the same distribution,

(could have the same statistical mean), i.e., the null hypothesis is that “there is no

significant difference in the statistical mean between W (t′) and W (t).” If the result
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of the hypothesis test suggests that to be the case, then our performance model

is likely as (in)accurate as when we accepted it for use in production and, absent

other information, we have no reason to discontinue using the model. Note that, a

significant difference in the statistical mean is a sufficient but not necessary condition

for a significant difference in the distribution and our t-testing does not assume that

the error variances in W (t′) and W (t) are equal.

4.5 Experimental setup

4.5.1 Hypervisor and sensor module

The vPerfGuard framework is generic and can work with different virtualized plat-

forms and monitoring tools.

For the system metrics, we run VMware ESX 4.1 [17] as the hypervisor on each

host. The sensor module of vPerfGuard can collect the host metrics (∼1800 metrics

per host) from the “esxtop” [5] interface on ESX systems. Whereas our evaluation

is done using VMware’s hypervisor and tools, our framework generalizes to other

virtualized platforms where similar tools exist to gather system-level metrics, e.g.,

“xentop” for Xen-based systems [27] and “Hyper-V Monitor Gadget” for Hyper-V-

based systems [18]. For the VM metrics, we run “dstat” [1] and “iostat” [6] tools

within the guest VMs so that the sensor module of vPerfGuard can collect the VM

metrics (48 metrics per VM) from them.

For the application’s performance metrics, we collect the throughput and response

times per sampling interval directly from the benchmark workload generator. In fu-

ture work, we plan to leverage monitoring tools that can measure application metrics

from the hosting platform. One example of such tools is the VMware vFabric Hy-

peric [16], which offers out-of-the-box performance monitoring for a suite of Web

applications.
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4.5.2 Benchmarks and workloads

Although we run various benchmarks 3 on our virtualized testbed, due to space limita-

tions, we focus on the results from the RUBBoS [7] and the TPC-H [15] benchmarks.

In our experiments, we deploy the RUBBoS application with the browsing-only

transaction mix in a 4-tier setup, including one Apache server, two Tomcat severs,

one CJDBC cluster server and two MySQL servers as shown in Figure 26(a). The

sampling interval is 1 minute. We deploy the TPC-H benchmark with a scaling factor

3 using PostgresSQL. The total database size is 4571MB including all the data files

and index files. The original benchmark contains 22 queries, i.e., Q1 to Q22. We

choose Q6, Q7, Q12 and Q14 for our experiments because these are IO-intensive

queries and they can be completed within a sampling interval of 6 minutes. For

both benchmarks, we modify the original workload generator to dynamically vary the

number of concurrent users in the system.

4.5.3 Testbed setup and configurations

We run the RUBBoS benchmark on eight hosts, as shown in Fig. 26(a). Four hosts,

ESX1 through ESX4, are used to run the six VMs hosting the individual application

tiers, labeled as Web, App1, App2, CJDBC, DB1, and DB2, respectively. We also

run some co-hosted VMs on ESX1 and ESX4 to induce resource contention on the

respective host. The four client VMs run on the other four hosts.

We run the TPC-H benchmark on three hosts shown in Fig. 26(b). Two virtual

machines, TPCHF (foreground) and TPCHB (background), are deployed on one host,

ESX5, running two instances of the TPC-H DB server. The two client VMs run on

the other two ESX hosts.

The host and VM configurations are shown in Tables 9 and 10, respectively. All

3RUBiS, RUBBoS with the browsing-only and the read-write transaction mixes, TPC-W and
TPC-H.
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the VMs run Linux kernel 2.6.32. vPerfGuard runs on a separate host.
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Figure 26: Setup of two experimental testbeds

Table 9: Configuration of hosts
Testbed RUBBoS TPC-H, vPerfGuard

Model Dell Power Edge 1950 Dell OptiPlex 780

CPU 2 Intel Xeon E5420 1 Intel Core2 Q9650
2.5 GHz Quad-Core 3.0 GHz Quad-Core

Memory 32 GB 16 GB

Storage Clariion CX-40 SAN 7200 RPM local disk
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Table 10: Configuration of VMs
Testbed RUBBoS TPC-H

Application VM vCPU 2 4

Application VM vRAM 1 GB 2 GB

Client VM vCPU 2 4

Client VM vRAM 8 GB 4 GB

4.5.4 Naming convention

We describe the naming convention for all the metrics we collect in Table 11. For

example, THR,MRT and RT95p are application’s performance metrics, denoting

throughput, mean response time and 95th percentile response time, respectively. The

other metrics that begin with H and V are host and VM metrics, respectively. For

instance, H ESX1 Web CPU System represents the CPU “System” counter for the

“Web” VM running on the “ESX1” host, and V CJDBC Int represents the “Inter-

rupt” counter for the “CJDBC” VM.

Table 11: Metrics naming convention

Application’s performance metrics THR,MRT,RTstd, RT50p, RT75p,
RT90p, RT95p, RT99p

Host metrics H {ESX} {VM} {Metric} {Details}
VM metrics V {VM} {Metric} {Details}

4.6 Evaluation of model building module

In order to evaluate the model building module and compare the predictive capabil-

ities of different performance models, we use the RUBBoS benchmark in the setup

shown in Fig. 26(a), without the co-hosted VMs. We first run a calibration experi-

ment where we vary the number of users from 400 to 4000 with a step size of 400,

and observe that the application reaches a performance bottleneck at around 3000

concurrent users. This can be seen in Fig. 27(a) in the saturation of the application

throughput and the near 100% CPU utilization of the “Web” VM. We then run a

“random” workload for 400 minutes, where the number of users changes randomly
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Figure 27: Evaluation results for 2-phase metric selection and model building algo-
rithm

between 400 to 4000. A sampling interval of 1 minute is used in the sensor module,

resulting in 400 measurement samples that are used for the evaluation in this section.

Each measurement sample is a high-dimensional vector, consisting of the following

7522 metrics: 8 application’s performance metrics as shown in Table 11, 7226 host

metrics from the four ESX hosts, and 288 VM metrics from the six VMs.

4.6.1 Evaluation of phase 1

For evaluation purposes, instead of limiting the number of candidate metrics from

phase 1 as described in Algorithm 1, we report the number of candidate metrics

selected by the phase 1 algorithm as a function of two threshold values — a lower

bound, rLB, on the absolute value of the correlation coefficient, and an upper bound,

pUB, on the p-value of the observed correlation.

We use throughput as the perf metric and the 7226 ESX host metrics as the raw

metrics. The number of selected host metrics is shown in Fig. 27(b). For example,

for rLB = 0.8 and pUB = 0.1, a total of 132 metrics are selected out of the 7226 raw

metrics. That means these 132 metrics (or 2% of the raw metrics) are correlated with
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the observed throughput with rm ≥ 0.8 and pm ≤ 0.1. We can also infer that 98%

of the raw metrics are not highly correlated with the application throughput. The

number of selected metrics is reduced as the minimum correlation level increases or as

the maximum p-value decreases. The latter indicates an increased level of confidence

in the observed correlation.

We observe similar trends when MRT or RT95p is chosen as the perf metric. We

also observe similar trends when we use throughput or MRT as the perf metric and

the 288 VM metrics as the raw metrics.

4.6.2 Evaluation of phase 2

To evaluate the phase 2 algorithm, we set the number of candidate metrics from phase

1 to be 100 and the minimum incremental R2 improvement in phase 2 to be 0.01. For

illustration, we provide an example of building a linear regression model for MRT

in Figure 27(c), which shows the R2 value for the model when one, two and three

predictor metrics are selected sequentially. The phase 2 algorithm first chooses the

network UDP active status of the Web VM on the ESX1 host (V Web UDP Act),

resulting in an R2 value of 0.668 for the single-metric linear MRT model. The algo-

rithm then adds the second metric, the percentage of CPU Used of the Web VM on

the ESX1 host (H ESX1 Web vCPU Used), increasing the R2 value of the model

to 0.731. After adding the third metric, the total CPU Used on the ESX1 host

(H ESX1 CPU TotalUtil), the algorithm stops searching because the model qual-

ity improvement falls below the minimum incremental R2 improvement threshold

(0.01) when a 4th metric is added.

To evaluate the impact of the phase 2 metric selection algorithm, Fig. 27(d) reports

the R2 values for different model types in two scenarios: (1) using the 100 candidate

metrics from phase 1 directly as the predictor metrics (without phase 2 selection),

and (2) using the smaller number of predictor metrics selected from phase 2. For
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the first three model types (linear regression, k-NN, regression tree), the additional

metric selection in phase 2 helps improve the accuracy of the final model.

4.6.3 Discussion

The effectiveness of the two-phase algorithm depends on the values of the tunable

parameters, including (1) the number of selected candidate metrics from phase 1

(Ncan), (2) the type of model F chosen in phase 2, and (3) the minimum incremental

R2 improvement in phase 2 (R2
inc). We evaluate the impact of these parameters in

two aspects — model accuracy and computation overhead. We assume that MRT is

chosen as the perf metric.

First, we fix the minimum incremental R2 improvement in phase 2 at 0.01, and

vary the other two tunable parameters. More specifically, for each of the four types

of models, we limit the number of candidate metrics from phase 1 at [5, 10, 25, 50,

100, 200, 400, 800], and run the phase 2 algorithm to build a model for the MRT. In

both experiments, a 10-fold cross validation [100] is used to compute the R2 value for

each model type.

Figure 27(e) shows the R2 value of the final model as a function of the number

of candidate metrics from phase 1 (in log scale). Different lines represent different

model types. We make the following observations: (1) As more metrics are selected

in phase 1, the model accuracy from phase 2 is generally improved for all four model

types; (2) All the models achieve reasonably good accuracy (R2 > 0.8) with 25 or

more candidate metrics from phase 1, although the linear model’s R2 value is slightly

lower than those from the nonlinear models.

Figure 27(f) shows the computation time of both phase 1 and phase 2 as a function

of the number of candidate metrics from phase 1 (in log scale). Different lines for

phase 2 represent different model types. We make the following observations: (1)

The phase 1 overhead increases slowly with the number of candidate metrics; (2) For
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all four model types, the overhead in the phase 2 algorithm grows as we increase the

number of candidate metrics from phase 1; (3) The boosting model has the most

overhead, and the linear regression model has the least.

For demonstration purposes, we also run the phase 2 algorithm directly on all the

raw metrics, without initial metric selection in phase 1. The result shows that, for all

the model types, the metric selection in phase 1 helps achieve better accuracy in the

final model as well as reducing the overhead in model building in phase 2.

Second, we run similar experiments to evaluate the effect of the minimum incre-

mental R2 improvement in phase 2 (R2
inc). We do not show the detailed results here

due to space limitation. In summary, as this threshold value becomes smaller, we

have better model accuracy and more computational overhead in phase 2. We find

that the threshold value of 0.01 strikes a good balance between better accuracy and

lower overhead.

Finally, we choose the linear regression model as our default model because it has

the best human-interpretability and lowest overhead with only slightly lower accuracy

relative to the nonlinear models. In spite of better accuracy, the regression tree is

not a good candidate because (1) if we use shallow trees, the marginal ratio between

performance and predictor metric is zero at most points, making it unable to infer

which system metric is the bottleneck, and (2) if we use deep trees, the over-fitting

issue prevents the model from generalizing faithfully. The k-NN and boosting ap-

proaches are also not preferred because they are harder to interpret directly due to

model complexity.

4.7 Evaluation of model updating module

To evaluate the model updating module of vPerfGuard, we run the tool against

four typical, dynamic workload scenarios a Cloud service provider may experience,

including an application’s performance bottleneck caused by a surge in the workload
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intensity, and performance degradation in one application due to the CPU, memory,

or disk I/O contention from co-hosted VMs (aka. noisy neighbors).

Our evaluation criteria focuses on three aspects of the performance models gener-

ated: (1) prediction: whether a model provides an accurate prediction of the applica-

tion’s performance using the selected system metrics; (2) identification: whether the

selected system metrics point to the correct performance bottlenecks, including the

critical application component, the resource under contention, or the host where the

contention occurred; (3) adaptivity: whether the model is adaptive to the changes

in relationship between application’s performance and system resources. Note that

we do not expect the human analyst to interpret the models directly. We will show a

graphical user interface in the next section to illustrate how the top suspicious metrics

and the associated coefficients can be presented to the user for inspection.

The following subsections describe the experimental settings of the four scenarios,

present the detailed results in Figures 28-31, and summarize the evaluation in Ta-

bles 12 and 13. In particular, each figure is organized as follows. Fig. (a) shows the

workload(s) used, Fig. (b) and Fig. (c) compare the real and the model-predicted

throughput and mean response time (MRT), respectively, Fig. (d) shows the MRT

and the top selected metrics in the MRT model, and finally, the model accuracy mea-

sures including the p-value and the R2 value for the throughput and the MRT models

are shown in Fig. (e) and Fig. (f), respectively.

4.7.1 Workload surge

A. Experimental settings In this scenario, we use the testbed in Fig. 26(a) with

the RUBBoS application only (i.e., no co-hosted VMs). The browsing-only workload

mix is run for an hour (60 time intervals), with a surge in the workload intensity that

goes from 1000 to 2300 users (with small, random variation) and lasts from the 21st

to the 40th intervals (Fig. 28(a)).
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Figure 28: Experimental results for the workload surge scenario

B. Evaluation According to the experimental setting and our previous knowledge

from Fig. 5(a), the mean response time increases during the workload surge period

due to the CPU resource bottleneck in the Web tier of the RUBBoS application. As

shown in Fig. 28(e) and Fig. 28(f), the online module detects a change-point multiple

times, resulting in 6 throughput models and 3 MRT models for the duration of the

experiment, such that we maintain a high confidence in the learned models (p-value

≥ 0.05). The throughput models starting from the 1st, 24th, 32nd, 38th, 44th and

51st intervals are:

THR = 0.19 ∗ V CJDBC Int− 519.60,

THR = 0.05 ∗H ESX1 Web vSwitch PcksTrans/s+ 36.25

THR = 28.53 ∗H ESX2 App2 vSwitch MBitsRec/s

+ 22.53 ∗ V DB2 CPU Sys+ 358.79

THR = 16.16 ∗H ESX2 CPU Idle Overlap+ 1277

THR = 0.08 ∗ V Web ContextSwitch− 202.37

THR = 28.53 ∗H ESX2 App2 vSwitch MBitsRec/s+ 113.75
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The MRT models for the mean response time starting from the 1st, 25th and 54th

intervals are:

MRT = 2.17 ∗H ESX1 CPU TotalUtil − 20.91

MRT = −8.10 ∗H ESX1 Web CPU Idle + 545.10

MRT = 0.49 ∗ V CJDBC UDP Act− 162.75

We make the following observations. (1) The models have reasonably good pre-

diction capability as shown in Figs. 28(b), 28(c) and Table 12. The signs of the

coefficients in each THR or MRT model make sense, e.g., when throughput increases,

interrupts, CPU utilization, context switches and network packets transmitted or

received also increase. (2) The selected system metrics in all the THR models do

not point to the correct cause of the performance degradation. Three of the six

models choose network attributes as the top metrics, and two other models choose

system interrupts or context switches as the top metrics. The selected system metric

H ESX1 Web CPU Idle in the second MRT model as shown in Fig. 28(d) directly

points to not only the bottleneck host (ESX1), but also the bottleneck VM (Web)

and the critical resource (CPU).

Following the above observations, we conclude that, (1) both THR and MRT mod-

els have good prediction capability, and THR models have better prediction accuracy

due to its linear relationship with many system metrics, and (2) THR models are not

suitable for critical resource identification, and MRT models have good identification

capability during the periods of performance bottlenecks. This observation is also

validated in the next three scenarios and in [51]. When the application experiences

a performance bottleneck, the THR remains almost constant, making it harder for

our correlation-based selection to identify critical system metrics. At the same time,

a small change in a critical system metric may lead to a large change in the MRT,

making it easier for our algorithm to identify the correlation. For conciseness, we
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Figure 29: Experimental results for the CPU contention scenario

do not show the throughput models in the following scenarios, and we show only

the MRT models during the periods of performance degradation to illustrate their

identification capability.

The MRT models are also adaptive to the surge in the workload, with only 3

intervals of delay in response. As Fig. 28(f) shows, after the workload surge at the

21th interval, the application MRT increases dramatically. It takes 3 intervals for the

p-value of the first MRT model to drop below the threshold value of 0.05. The vertical

line in the figure (24th interval) indicates where the first change-point is detected,

after which the Web VM’s CPU idle time is chosen as the key metric for learning a

new MRT model starting from the next interval.

4.7.2 CPU contention

A. Experimental settings In this experiment, we run the RUBBoS benchmark

with a workload intensity randomly varying between 1100 and 1300 users, as shown

in Fig. 29(a). To create a CPU contention scenario, we use the four co-hosted VMs,

cpuload1 to cpuload4, as noisy neighbors, to share the CPUs on the ESX1 host
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with the RUBBoS Web VM (see Fig. 26(a)). Each cpuload VM is configured with

2vCPUs, 1GB vRAM, and runs a “CPU eater” application that consumes the vCPUs

at a specified utilization level for a specified time period. We let the CPU utilization

of each VM vary periodically between 10% and 40% with a period of 2 minutes.

All the four co-hosted VMs are idle for the initial 20 time intervals. We then start

the workload in cpuload1 and cpuload2 at the 21st interval, and start cpuload3 and

cpuload4 at the 41st interval. The workloads in these VMs are idle again at the 81st

and 101st intervals (Fig. 29(a)).

B. Evaluation According to the experimental setting, the application’s mean re-

sponse time starts to increase after the 21st interval due to the CPU resource bot-

tleneck on the ESX1 host, caused by the active workloads in the four cpuload VMs.

The MRT models starting from the 28th, 47th, 76th and 91st intervals are:

MRT = 1.97 ∗H ESX4 DB1 Mem Active+ 1.13 ∗H ESX1 CPU Util− 89.7

MRT = 752.76 ∗H ESX1 CPULoad 1MinuteAvg − 562.87

MRT = 12.48 ∗H ESX1 Web vCPU Ready − 25.01

MRT = 6.38 ∗H ESX1 Web vCPU Ready + 48.72

We make the following observations. (1) These MRT models have good prediction

capability as shown in Figs. 29(b), 29(c) and Table 12. (2) These models have good

identification capability because they all point to the correct performance bottleneck.

For example, one of the top system metrics, H ESX1 Web vCPU Ready, as shown

in Fig. 29(d), specifies not only the bottleneck host (ESX1), but also the bottleneck

VM (Web) and the critical resource (CPU). (3) The models are adaptive to the

increased CPU load from the noisy neighbors as shown in Fig. 29(f). After two of the

cpuload VMs become active in the 21th interval, it takes the model updating module

6 intervals to detect the change and build a new model.
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Figure 30: Experimental results for the memory contention scenario

4.7.3 Memory contention

A. Experimental settings In this experiment, we run the RUBBoS benchmark

with a workload intensity randomly varying between 900 and 1100 users, as shown

in Fig. 30(a). Because the size of the MySQL database is 498.88MB, the total size of

database files on the two database VMs, i.e., DB1 and DB2, are approximately 1GB.

We use a co-hosted VM, memload (configured with 4vCPUs, 1GB vRAM), as the

noisy neighbor, to run on the ESX4 host along with DB1 and DB2 (see Fig. 26(a)).

To create memory contention, we configure the ESX4 host with 4GB of physical

memory. Since about 3GB of memory is reserved by the hypervisor, only 1GB of

memory is available for the three VMs (DB1, DB2, and memload) to share. As a

result, the total memory commitment during these 40 intervals is much more than

the shared 1GB memory.

For the initial 40 intervals, the memload VM remained idle, so the total memory

commitment on ESX4 is close to 1GB. Between the 41st and the 80th intervals,

a four-thread “memory eater” application is started inside the memload VM. Each

thread in the application allocates 120-180MB memory and randomly touches the
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allocated pages to keep them actively used. As a result, the total memory commit-

ment during these 40 intervals is much more than the shared 1GB memory. When

the RUBBoS DB servers cannot access enough physical memory, more requests re-

quire disk accesses, reducing throughput (Fig. 30(b)) and increasing response times

(Fig. 30(c)).

B. Evaluation The MRT models starting from the 47th and 52th intervals are:

MRT = −0.75 ∗H ESX4 Network PksReceived/sec+ 3072.86

MRT = −25.38 ∗H ESX4 DB1 Mem GrantedMB + 4876.55

We make the following observations. (1) The models have reasonably good prediction

capability as shown in Figs. 30(b), 30(c) and Table 12. (2) The second model has good

identification capability, since the top system metric, H ESX4 DB1 Mem GrantedMB

as shown in Fig. 30(d), indicates not only the bottleneck host (ESX4), but also the

critical resource (Memory). (3) The models are adaptive to the increased memory

load in the system with 10 intervals of delay as shown in Fig. 30(f).

4.7.4 Disk I/O contention

A. Experimental settings In this experiment, we run two instances of the TPC-

H benchmark in parallel. A foreground database VM (TPCHF ) and a background

database VM (TPCHB) are co-located on the ESX5 host, as shown in Fig. 26(b).

Since the total database size is 4571MB, which cannot fit into the VM’s 2GB vRAM,

some of the queries much involve disk I/O. Fig. 31(a) shows the workloads used in

both VMs with a 6 minute sampling interval. The workload for TPCHF has the

number of users randomly varying between 3 and 4 throughout the experiment. The

background VM, TPCHB, is idle for the initial 20 intervals. Between the 21st and

the 40th intervals, the TPC-H workload is activated inside the TPCHB VM, a noisy

neighbor, with the number of users randomly varying between 1 and 2.
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Figure 31: Experimental results for the disk I/O contention scenario

B. Evaluation The MRT model between the 25th and 49th intervals for the

TPCHF application is:

MRT = 180.62 ∗H ESX5 PhysicalDisk Writes/s + 29.24

We make the following observations. (1) The models have reasonably good prediction

capability as shown in Figs. 31(b), 31(c) and Table 12. (2) The model has good identi-

fication capability because the top selected system metricH ESX5 PhysicalDisk Writes/s

points not only to the bottleneck host (ESX5), but also to the critical resource (disk

I/O), as shown in Fig. 31(d). Note that database servers often write temporary files

(e.g., sorting files) to the disk when the physical memory is scarce. (3) The models

are adaptive to the occurrence of the disk I/O bottleneck with only 3 intervals of

delay as shown in Fig. 31(f).

4.7.5 Evaluation summary

For the four dynamic workload scenarios that we test, we summarize the evaluation

results for the model prediction and the model identification accuracies of vPerfGuard.
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A. Prediction Besides showing the model prediction accuracy in R2 over a sliding

window of samples in the previous figures, we also report in Tab. 12 the statistics

(mean, standard deviation, 50th percentile, 90th percentile) of the relative error for

the individual THR and MRT samples, i.e., (|(predicted − real)/real|). In the last

column, we also show the overall relative error as (sum of |predicted − real|)/(sum

of real). We can see that vPerfGuard achieves reasonably good prediction accuracy.

We also notice that the relative error for THR is much smaller than that for MRT

in all four scenarios except the disk I/O contention scenario. This validates our

earlier observation in Sec. 4.7.1 that linear models capture the relationship between

application throughput and system metrics well in most cases.

Table 12: Relative error for THR and MRT

Scenarios(perf) Mean(std) 50p 90p overall

Workload(THR) 0.10(0.20) 0.01 0.53 0.10

Workload(MRT) 0.41(0.64) 0.12 0.96 0.35

CPU(THR) 0.01(0.01) 0.01 0.03 0.01

CPU(MRT) 0.29(0.26) 0.23 0.64 0.27

Memory (THR) 0.12(0.16) 0.06 0.33 0.10

Memory (MRT) 0.51(0.45) 0.25 0.95 0.37

Disk I/O(THR) 0.95(3.32) 0.11 1.58 0.24

Disk I/O(MRT) 0.29(0.39) 0.16 0.70 0.39

B. Identification Table 13 shows the identification accuracy of the MRT models

using precision and recall measures from pattern recognition literature, computed

only for the performance bottleneck period. In our context, we define precision to

be the fraction of all the selected metrics that are relevant (i.e., point to the correct

bottleneck); and if a metric appears in n intervals, it’s counted n times. We define

recall to be the fraction of all the intervals in which the selected metrics are relevant;

and for intervals with multiple selected metrics, that interval is counted using only

the fraction of the relevant metrics. We report precision and recall for the detection

of bottleneck resource and bottleneck host, separately. We use the CPU contention
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scenario as an example where the length of the bottleneck period is 80 intervals. In

intervals 21-27, the model contains an irrelevant metric; in intervals 28-46, the models

contains two metrics with one being relevant; in the remaining intervals the model

contains one relevant metric. Hence, precision=(19+54)/(7+19×2+54) = 74%, and

recall=(19/2 + 54)/80 = 79%. In the last column, we also report the delay in change-

point detection in number of intervals. We can see that models built by vPerfGuard

achieve good identification accuracy in terms of precision and recall, with short delays

in model updates.

Table 13: Identification summary

Scenarios
Precision Recall

Delay
resource host resource host

Workload 100% 100% 100% 100% 3

CPU 74% 74% 79% 79% 6

Memory 73% 85% 73% 85% 10

Disk I/O 80% 100% 80% 100% 3

4.7.6 Discussion

A. Adaptation overhead In Table 14, we show the mean and standard deviation

of the overhead in running vPerfGuard online for four dynamic scenarios, using 10

consecutive samples for both model building and change-point detection. The average

overhead is 67ms (standard deviation = 37ms) for the sensor module to pull the

application’s performance metrics and the system metrics from the hosts and the

VMs. The metric selection and model building module takes an average of 221ms,

the longest among all. The average model testing time is 54ms, and the average

hypothesis testing time is 5ms.

Table 14: Online model adaptation overhead(mean(std))

Metrics collection(ms) Building time(ms) Testing time(ms) Hypothesis testing(ms)

67(37) 221(148) 54(23) 5(18)
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Table 15: Sensitivity analysis

Method(# of samples) average R2 # of models (correct) # of metrics (correct)

p-value (10) 0.62 4 (4) 5(4)

p-value (20) 0.62 3 (2) 4 (2)

p-value (30) 0.76 3 (0) 3 (0)

R2 (10) 0.74 49 (32) 56 (32)

R2 (20) 0.73 40 (18) 45 (18)

R2 (30) 0.80 38 (12) 38 (12)

B. Sensitivity analysis We perform a sensitivity analysis using different change-

point detection criteria (p-value < 0.05 or R2 < 0.8) or a different number of samples

to explore the tradeoff between prediction accuracy and identification accuracy. In

Table 15, we summarize the average positive R2 value, the number of models gen-

erated, the number of models indicating the correct bottleneck, the total number of

selected metrics in all the models, and the number of metrics identifying the correct

bottleneck for the CPU contention scenario, during the contention period. As we

increase the number of samples, the average R2 increases (as one would expect), but

the percentage of correct models or metrics decreases. For change-point detection, if a

criterion of R2 < 0.8 is used instead of using hypothesis testing with p-value < 0.05,

we may generate too many models (due to over-fitting) for the human analyst to

reason about. This result indicates that using hypothesis testing is a more robust

method for change-point detection than using the R2 value directly.

4.8 Visualization of results

We introduce a primitive graphic user interface (GUI) for visualization of the results

from vPerfGuard. The GUI consists of four panels: a configuration tab, a real-time

tracking tab, a real-time analysis tab, and a real-time diagnosis tab. The configuration

tab is used to configure the necessary parameters for vPerfGuard to operate. The

real-time tracking tab consists of two windows: one shows the real and the predicted

performance metric values for comparison; the other shows the corresponding p-value
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and R2 value. Next we describe the other two tabs using the workload surge scenario

as an example.
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Figure 32: GUI for real-time analysis

The real-time analysis tab (shown in Figure 32) presents the selected metrics and

models in real time. The top-left window shows the selected metrics from phase 1

with absolute correlation coefficient in descending order. If a highlighted metric is

double-clicked, the time series of the metric and the application’s performance metric

will be shown in the top-right window. In the same tab, the bottom-left window

shows the series of models built in phase 2 with the top system metrics. Because

an abstract model may be hard to interpret by a Cloud service provider, when a

highlighted metric is double-clicked, the GUI translates the abstract metric name

into human readable description at the top of the window. At the same time, the

time series of the metric and the application’s performance metric are displayed in
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the bottom-right window.
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Figure 33: GUI for real-time diagnose

The real-time diagnosis tab (shown in Figure 33) points to possible performance

bottleneck locations for critical resource identification purpose. We utilize vCenter

map [17], a visual representation of the vCenter Server topology that captures the

relationships between the virtual and physical resources managed by the vCenter

Server. The selected system metrics are overlayed on top of the associated components

in the system. We use red fonts to locate the metrics from phase 1 and red star

icon to locate the metrics from phase 2, respectively. As a result, this tab offers a

Cloud service provider better visibility into the potential bottlenecks in a complex

and distributed environment.

One potentially useful feature we would like to implement is allowing a user to

manually add a metric to the model, by right clicking on a specific metric. This offers

a Cloud service provider an interface to provide inputs to the identification process by

applying domain knowledge. While model-driven approach is useful in highlighting

99



potential bottlenecks, incorporating domain knowledge from an experienced human

analyst may lead to even better results in the timely determination of the real root

causes of the performance problems.

4.9 Summary

In this chapter, vPerfGuard is proposed to enhance a classical critical resource iden-

tification approach by leveraging statistical machine learning techniques to address

the novel technical challenges due to high scalability and adaptability requirements

for a complex distributed application in the Cloud. The strengths and weaknesses

of vPerfGuard compared with a classical critical resource identification approach are

summarized as below:

4.9.1 Strengths

vPerfGuard is able to automatically identify the critical resource from thousands of

system raw metrics because the model building module of vPerfGuard will choose

tens of candidate metrics through correlation-based selection and then choose several

predictor metrics through model-based selection. Thus, vPerfGuard will show its sig-

nificant strength when the number of raw metrics is huge. However, since a classical

critical resource identification approach often needs to manually check the correla-

tion between performance metrics and system raw metrics, thousands of system raw

metrics will present scalability challenge for a classical critical resource identification

approach.

vPerfGuard is able to adaptively change the performance model because the model

updating module of vPerfGuard will trigger the model renewing process based on the

results from statistical hypothesis tests. The updated model will be able to identify

the updated critical resources. Thus, vPerfGuard will show its strength when the per-

formance model demands updating due to the variation of workload and environment.

However, since a classical critical resource identification approach is insensitive to the
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variation workload and environment, the dynamic workload and environment will

present adaptivity challenge for a classical critical resource identification approach.

4.9.2 Weaknesses and future work

vPerfGuard will show its limitation when it is expected to independently discover

the root cause of the application’s performance degradation. Note that vPerfGuard

could automatically select critical metrics from thousands of system raw metrics. The

metrics would help a Cloud service provider such as a PaaS provider to zero in the

root cause of the performance degradation based on the correlation. However, since

correlation does not imply causation, a PaaS provider still needs to further confirm

the root cause of the performance degradation based on the selected critical metrics

from vPerfGuard. In the future, we plan to add an interface to vPerfGuard in order

to incorporate domain knowledge from an experienced human analyst to determine

the root cause.

vPerfGuard may show its limitation in adapting to the change-point when it is

applied to identify the critical resource under the scenarios of non-step-wise workload

or non-step-wise resource contention. Note that vPerfGuard is only evaluated in

workload, CPU, memory and disk I/O contention scenarios under step-wise workload

and step-wise resource contention. It is not evaluated in scenarios under non-step-wise

workload or non-step-wise resource contention, which will be left for future work.
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CHAPTER V

HIERARCHICAL RESOURCE ALLOCATION

In the previous chapter, a critical resource identification framework is proposed to

address the high scalability and adaptability challenges to identify critical resources

for a complex distributed application in a Cloud environment. After the critical

resource that affects the application’s performance is identified, a resource allocation

controller can be applied.

In this chapter, a classical resource allocation controller is enhanced by lever-

aging hierarchical resource management to address novel technical challenges due

to the heterogenous resource type and amount requirements for components in a

multi-component application in the Cloud in order to achieve the highest resource

utilization.

5.1 Background

A common usage scenario of dynamic resource allocation is for a platform-as-a-service

(PaaS) provider who hosts an application and rents resources from an infrastructure-

as-a-service (IaaS) provider. The PaaS provider makes revenues through the delivery

of client request service under service-level agreements. And the PaaS provider pays

for the bill of renting resources similarly to other commodities. The PaaS provider

could make use of a resource allocation controller, which requires/releases critical

resources when workload increases/decreases to maintain service-level compliance for

an application with the lowest cost.

Due to the convenience of providing a model for developers to create a flexible and

reusable application, more and more multi-component applications are being deployed

in the Cloud nowadays. A multi-tier web application is a typical multi-component
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application. We show an example multi-tier web application called vSlashdot in

Figure 23 in the previous chapter which composes of several components such as Web

servers in the presentation tier, App servers in the application tier and the DB servers

in the database tier.

In this chapter, we propose ERController(Economical and Robust Controller),

which enhances a classical resource allocation controller by leveraging hierarchical

resource management to help a PaaS provider achieve the lowest resource cost while

guaranteeing service-level compliance for multi-component applications such as multi-

tier web applications in the Cloud environments.

The rest of this chapter is organized as follows. Section 5.2 and Section 5.3 give the

problem definition and the solution overview, respectively. Section 5.4 outlines our

experimental setup in this section. Section 5.5 models a multi-tier web application

as a tandem queue and proposes an optimal resource partition method, which is

evaluated in Section 5.6. Section 5.7 explores the relationship between the total

resource and the mean round trip time, and designs an application controller. The

performance controller which integrates the application controller and the resource

partition method is evaluated in Section 5.8. Section 5.9 summarizes the chapter.

5.2 Problem definition

We provide the problem definition following the previously defined equation where

“Profit = Revenue - Cost”. We define the problem as how to help a platform-as-a-

service (PaaS) provider who hosts a multi-tier web application to achieve the most

profit through dynamic resource allocation. There are several assumptions.

We assume the service-level compliance as the mean round trip time of all the

requests to the multi-tier web application. Although SLA cost function for the mean

round trip time may have various shapes, we believe that a step-wise function is a

natural choice used in the real-world contracts as it is easy to describe in natural
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language [87]. We use a single step function for SLA in this chapter as a reasonable

approximation. We assume that if the round trip time of the request is shorter than

Ref (reference time), then the service provider will earn some revenue. Otherwise,

the service provider will pay a penalty back to the client. As a result, in order to

achieve the most revenue without penalty, the performance controller should keep

the response time right below Ref . Note that the step-wise SLA cost function that

we use in this chapter is very similar to the SLA cost function in Figure 10(b) in

Chapter 3. In both SLA cost functions, the service provider will earn some revenue

when Ref (reference time) in this chapter or τ (deadline) in Chapter 3 is met and will

pay a penalty cost back when Ref (reference time) in this chapter or τ (deadline)

in Chapter 3 is not met. The difference between the two is that, the SLA cost

function is corresponding to a single query in Chapter 3 while the SLA cost function

is corresponding to a statistical value (mean round trip time) in this chapter. Both

types are widely adopted in research and industry and there exist techniques (e.g.,

[52]) that directly map quantile-based SLAs to per-query SLAs.

According to the previous assumption where the PaaS provider achieves the most

revenue because all the requests are admitted and meet their deadline, we need to

minimize the cost in order to maximize the profit. The problem becomes how to make

multi-level resource allocation decisions that can guarantee service-level compliance

with the lowest resource cost.

A classical resource allocation controller often allocates the same resource amount

or keeps the same resource utilization for all the components within an application.

However, different components within an application have heterogenous requirements

for both resource types and amounts. This presents novel technical challenges that

demand enhancement to a classical resource allocation controller in order to guarantee

service-level compliance with the lowest resource cost. There are two key technical

challenges: (1) Based on service-level compliance, what is the total resource budget;
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and (2) How to partition the total resource budget to each tier. The two challenges are

closely related with each other. The total resource budget affects the partition scheme

by setting an upper bound for the resource that could be partitioned. A partition

scheme affects the total resource budget through the service-level compliance vice

versa.

We assume that the CPU resource is the critical resource for the multi-tier web

application’s performance and we will use the notations in Table 16 in this section.

Specifically, we use S to denote the total resource budget and use RTT to denote

mean round trip time. We use “entitlement” (u) and “consumption or usage” (c) to

refer to the CPU shares (in percentage of total CPU capacity) allocated to a virtual

machine and the CPU share actually used by the virtual machine respectively. We

use “utilization” (r) to refer to the ratio between consumption and entitlement, i.e,

r =
c

u

Table 16: Notations

S total resource budget

RTT mean round trip time

k control interval for container level controller

K control interval for application level controller

N number of tiers (e.g., Web, App, DB)

Ω number of transaction types (e.g., Browse, Bid)

Tcpu average resident time on CPU resources

Tothers average resident time on non-CPU resources

λω average arrival rate of transactions type ω

λ aggregate arrival rate of all transaction types

αω average service time of non-CPU resources of transaction type ω

un CPU entitlement that is allocated to the virtual server at tier n

cn CPU consumption of the virtual server at tier n

rn CPU utilization of the virtual server at tier n

The problem can be defined as how to design a performance controller with a

partition scheme that can guarantee service-level compliance with the least of total
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resource budget as shown below.

Minimize S =
N∑
n=1

un

s.t. RTT ≤ Ref

Note that the total resource “consumption” of all the tiers/components is con-

stant since all the requests are admitted and meet their deadline. S in the previous

definition could be treated as the total resource “entitlement”. Thus, the problem of

how to make multi-level resource allocation decisions that can guarantee service-level

compliance with the lowest resource cost is equal to the problem of how to make

multi-level resource allocation decisions that can guarantee service-level compliance

with the highest resource utilization.

5.3 Solution approach overview

In order to solve the above problem and address the novel challenges due to heteroge-

nous resource type and amount requirements for components in a multi-component

application in the Cloud, in this chapter, we develop ERController 1 as shown in Fig-

ure 34 to guarantee service-level compliance with the least of total resource budget.

We use k and K to denote the control intervals of the container level and application

level controllers respectively. On the application level, an application controller is

used for end-to-end performance guarantee of the whole application through dynamic

tuning of the total amount of the resources allocated to the application. The con-

troller works in 90 seconds time interval. On the container level, there is one resource

partition controller that is to allocate the total resource to the application tiers or

the containers. The controller works in 10 seconds time interval.

The main contributions of this chapter are twofold:

1ERController stands for: Economical and Robust Controller.
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Figure 34: The architecture of our test bed.

1. We model an open multi-tier web application as a tandem queue, which consists

of several queueing systems in series. The Round Trip Time (RTT ) for each

tier is estimated through an M/G/1/PS queue. We show that under a given

total CPU budget, the optimal partition which minimizes the RTT , can be

calculated based on offline models for open workloads and online measurement.

Such a partition scheme can be used by a PaaS provider to economically operate

the service. We also test the optimal partition method against closed/semi-open

multi-tier web applications, which shows that the optimal partition scheme is ro-

bust enough w.r.t. the workload models. Although closed/semi-open multi-tier

web application cannot be modeled as M/G/1/PS queue, the optimal parti-

tion scheme still outperforms other approaches described in previous work, e.g.,

“Equal Shares” and “Equal Utilization”.

2. We propose a two-level control architecture by leveraging hierarchical resource

management for optimal resource allocation for a multi-tier web application.

On the application level, an adaptive feedback controller is applied to decide

the total resource demands of the application in real time to maintain the RTT
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threshold upon varying workload. On the container level, an optimal controller

partitions the total resource budget among the multiple tiers that can minimize

the end-to-end response time. The two controllers work together to achieve the

optimal resource allocation for the application. Through experiments, we show

that, the performance controller with the optimal partition scheme can achieve

at least the same performance as a couple of other schemes, e.g., ‘Equal Shares”

and “Equal Utilization”, while using up to 20% fewer resources. We also test

the two level performance controller with both open and closed multi-tier web

applications to show the robustness of our approach.

5.4 Experimental settings

5.4.1 Test Bed

We use RUBiS [14] as the benchmark application. It is an online auction benchmark

comprised of a front-end Apache Web server, a Tomcat application server, and a

back-end MySQL database server. There are 26 transaction types in RUBiS. The

types of the next request generated by the workload generator are defined by a state

transition matrix that specifies the probability to go from one transaction to another.

In our experiments, we use “Browsing mix” workload that has 10 transaction types,

e.g., Home, Browse, ViewItem. These transactions have different resource demands.

We assume that each of the three tiers of the application is hosted in one Xen

virtual machine [27]. Our test bed consists of three physical machines as shown

in Figure 34. One of them is used for hosting the three VMs, one for the client

emulator and the last one for running the controller. Each machine is an Intel Pentium

4 1.80GHz, 1 GB RAM PC with Gigabit Ethernet connected to the switch. All

machines run Linux kernel 2.6.16.29. The hosting machine runs Xen 3.0.3. We use

Apache v2.0.54 as the web server, Jakarta Tomcat v5.0.28 as the application server

and MySQL v3.23.58 as the database server.
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5.4.2 Closed, open and semi-open workload generators

A workload generator is needed to generate requests to emulate the behavior of clients.

To evaluate the robustness of our approach, we create three types of workload gener-

ators that can represent different client behaviors [104].

A workload generator is called closed if new requests are triggered only after previ-

ous requests have been completed or timeout. The original RUBiS implementation is

a standard closed-loop client emulator. The client generates new request(interaction)

after it receives the response of the previous request and waits for an exponentially

distributed “think time”. Then each client has three possible statuses: (a) waiting

in queue; (b) being served by server or (c) “thinking” for some amount of time. The

action sequence of each session follows these steps: (a) to (b), (b) to (c) and (c) back

to (a). Then the intensity of the workload depends on the number of the clients

and the think time. The number of the clients is also called multiprogramming level

(MPL). The think time is an exponentially distributed random variable. The mean or

expected value of the think time is 3.5s. Therefore, different MPLs represent different

intensities of the workload, or request rate.

A workload generator is called open if new requests are generated independently

of completion of previous requests. We modify the source code of original RUBiS

workload generator to emulate open clients where the number of requests follows the

Poisson distribution with a parameter of the arrival rate.

A workload generator is called semi-open if after a client receives a response for

the previous requests, it will stay and make a follow up request with some probability

p and will leave system with probability 1 − p. In the extreme cases with very

small or large p, the semi-open workload generator resembles an open or a closed one

respectively. We also modify the source code of original RUBiS workload generator

to be a semi-open client emulator. The intensity of the workload is determined by

the arrival rates as well as the probability p. In order to get a balance between closed
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and open models, we set the default probability p = 0.5 in our experiments.

It is worthwhile to note that, neither the open system model nor the closed system

model is entirely realistic [104]. The client behavior in many multi-tier web appli-

cations is best represented using an “in-between” system model, i.e., the semi-open

model. In the rest of the chapter, we call the RUBiS web application using closed,

open and semi-open workload generators as closed, open and semi-open RUBiS web

applications respectively.

5.5 Resource Partition Controller

For a given end-to-end performance target such as round trip time of request thresh-

old, there is one optimal resource allocation to the tiers of a multi-tier web applica-

tion that can minimize the total resource allocation. And, given certain amount of

resource available to the application, there exists also one optimal resource allocation

to the tiers that can minimize the end-to-end performance, which is studied in this

subsection based on queueing theory.

5.5.1 Modeling multi-tier web application with open workload

5.5.1.1 Multi-tier web application

In our model, we consider a multi-tier web application consisting of multiple tiers.

We assume that each tier runs on a separate virtual machine. We consider a workload

with Ω transaction types. If we define the intensity of the workload for the transaction

type ω as λω, then the intensity of the workload can be defined as a vector (λ1, ..., λΩ).

We also define the aggregate rate of the transaction as λ =
∑Ω

ω=1 λω.

5.5.1.2 End-to-end performance

The Round Trip Time (RTT ) of a multi-tier web application with open workload can

be calculated by aggregating the resident times over all resources (e.g., CPU, disk)

across all the tiers. The resident time on each tier is composed of two parts, i.e.,
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the resident time on CPU resource and that on non-CPU resources. We assume that

non-CPU resources are adequately provisioned and hence the effect of contention for

these resources on the response time (i.e., the queueing delay) is negligible.

Since processor sharing (PS) approximates round-robin scheduling with small

quantum size and negligible overhead, it is representative of scheduling policies in

current commodity operating systems [79]. Moreover, a Poisson process is a good

approximation of requests for open workload. We model CPU in each tier as an

M/G/1/PS queue.

We use Tcpu to denote the total resident time on CPU across all the tiers. Accord-

ing to the queueing theory, for M/G/1/PS queue, the CPU resident time in the n-th

tier is represented by

Tn =
rn

λ(1− rn)

where rn is the CPU utilization of tier n. Note that CPU utilization in the above

equation is the ratio between the virtual machine’s CPU consumption and its effective

CPU capacity, then we have

Tcpu =
N∑
n=1

Tn =
N∑
n=1

rn
λ(1− rn)

=
N∑
n=1

cn
λ(un − cn)

We use Tothers to denote the total resident time spent on all non-CPU resources. We

use αω to represent service times of transaction type ω on all non-CPU resources of

all tiers on the execution path of that transaction type. Then the mean resident time

on non-CPU resources can be approximated by the weighted sum of each transaction

type’s service time.

Tothers =
Ω∑
ω=1

αω
λω
λ

Assume that there is an additive relationship between time spent on CPU and non-

CPU resources, by combining Tcpu and Tothers, we have

RTT = Tcpu + Tothers =
1

λ
(
N∑
n=1

cn
un − cn

+
Ω∑
ω=1

αωλω)
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As stated in Section 5.4, the types of the next request generated by the virtual clients

are defined by a state transition matrix. Given a state transition matrix that describes

the transition relationship among the 10 transaction types in “Browsing mix” of

RUBiS, we can assume that the share of each transaction types is constant when the

experiment running time is long enough, i.e., λω
λ

is constant. For simplicity, we also

assume that the average service time of non-CPU resources of each transaction type

is constant since the effect of contention for these resources on the response time (i.e.,

the queueing delay) is negligible, i.e., αω is constant. If we can denote
∑Ω

ω=1 αω
λω
λ

= β

as a constant, then we have

RTT = Tcpu + Tothers =
1

λ

N∑
n=1

cn
un − cn

+ β

We can see that, the resource entitlement solution for a multi-tier web application is

not unique for a given RTT target. Similarly, for a given capacity available to the

application, there is an optimal solution for the resource allocation to the multiple

tiers that can minimize the RTT .

5.5.2 Optimal resource partition

Assume that the total CPU resource available for the application, or the total CPU

shares that the multi-tier web application provider rents, is fixed. Then we have an

optimization problem defined as following.

Minimize RTT =
1

λ

N∑
n=1

cn
un − cn

+ β

s.t. S =
N∑
n=1

un.

There are N independent variables, i.e., un where n = 1, ..., N . The problem can be

denoted as

Minimize f(u1, u2, ..., uN)

s.t. g(u1, u2, ..., uN) = 0
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where

f(u1, u2, ..., uN) =
1

λ

N∑
n=1

cn
un − cn

+ β

and

g(u1, u2, ..., uN) =
N∑
n=1

un − S = 0

Then we have the Lagrange function as

Γ(u1, u2, ..., uN) = f(u1, u2, ..., uN) + γg(u1, u2, ..., uN)

=
1

λ

N∑
n=1

cn
un − cn

+ β + γ(
N∑
n=1

un − S).

where γ is a Lagrange multiplier and the partial derivative equations are

∂Γ

∂un
= 0 = −1

λ

cn
(un − cn)2

+ γ = 0, n = 1, 2, ..., N

∂Γ

∂γ
= 0 =

N∑
n=1

un − S

By solving the above equations, we can get the optimal solution

un = cn +

√
cn∑N

n=1

√
cn

(S −
N∑
n=1

cn)

Then the controller to implement the optimal solution in every control interval k

is

un(k + 1) = cn(k) +

√
cn(k)∑N

n=1

√
cn(k)

(S(k)−
N∑
n=1

cn(k))

From the solution we can see that, the optimal resource budget for each tier is com-

posed of two parts: the first part is equal to the actual resource consumption of

that tier, and the second part is a weighted share of the remaining budget (i.e.,

S(k) −
∑N

n=1 cn(k)). It is worthwhile to note that, the optimal solution depends on

the CPU consumption of the tiers in the last interval, but not on β, the effect of

the non-CPU resources. Moreover, the optimal solution does not necessarily result in

the equal utilization of the tiers if the resource consumptions are different from each

other, as we will show in the next subsection.
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5.6 Evaluation of Resource Partition Controller

In this subsection, we evaluate the optimal partition controller through comparison

with two other approaches: “Equal Utilization” and “Equal Shares”.

5.6.1 Different resource partition schemes and experimental settings

Optimal : With the scheme “Optimal”, the resource is allocated to the tiers according

to optimal resource partition scheme as described in the previous subsection.

Equal Utilization : With the scheme “Equal Utilization”, the resource is allocated

to the tiers such that they have the same utilization, i.e., for n = 1, 2, .., N , rn are

the same.

Equal Shares : With the naive scheme of “Equal Shares”, the resource is shared

equally by all the tiers, i.e., for n = 1, 2, .., N , un are the same.

In our experiments, we fix the total CPU share for partition at 0.5 CPU. We

then vary the workload rate from 15req/s to 50req/s. For each workload style, each

workload rate and each partition scheme, we run one experiment for 900s. For open

workload generator, we change the arrival rate between 15req/s and 50req/s. For

closed one, we change the MPL between 52 and 175 such that the average request

rate is varied between 15req/s and 50req/s 2 with the response time of the requests

much less than the think time [121]. For semi-open one, we change the arrival rate

between 7.5req/s and 25req/s. Since the default probability p = 0.5, the average

request rate is 15req/s to 50req/s 3 since the response times of the requests are much

less than the think time [121]. Although the optimal solution is derived based on an

open queueing model, it would be interesting to evaluate how well it works for closed

2When the response time of the requests are much less than the think time and the system is not
saturated, the request rate can be simply calculated as MPL

ThinkTime . For example, given MPL = 52
and ThinkT ime = 3.5s, the request rate is around 15req/s according to queueing theory.

3When the response time of the requests are much less than the think time and the system is
not saturated, the request rate can be simply calculated as λ

1−p . For example, given λ = 7.5 and

p = 0.5, the request rate is around 15req/s according to queueing theory.
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or semi-open workloads.

5.6.2 Experimental results

We denote “Optimal”, “Equal Utilization” and “Equal Shares” as “Opt”, “Util” and

“Shares”, respectively. Figures 35-37 show the mean round trip time resulted from

the experiments for the three approaches, for the three workloads, “closed”, “open”,

or “semi-open”, when the rate can vary between 15 and 50req/sec.

Figure 35: Mean RTT for
Closed workload

Figure 36: Mean RTT for
Open workload

Figure 37: Mean RTT for
Semi-Open workload

Figure 38: Web tier with
Open workload

Figure 39: Application
tier with Open workload

Figure 40: Database tier
with Open workload

We have several observations. First, the “Opt” approach outperforms the other

two approaches. On average, with the same total CPU shares, our method “Opt” can

achieve about 20% shorter round trip time than the other two methods. Note that,

this better performance can be achieved under different workload intensities (from 15

req/s to 50 req/s) as well as under different workload type (open, close, semi-open).

This proves the robustness of our optimal partition scheme. Second, as we can see, the

performance of Semi-open is in between that of Open and Closed. This validates the
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previous results that different workload type will demonstrate different performance as

reported in [104] and [121]. Finally, Figures 35-37 show the relationship between the

response time and the workload, or equivalently the relationship between the response

time and the resource utilization as the total CPU allocation is the same, and the CPU

consumption is almost the same with the different workload models. The response

time is a nonlinear, but monotonically increasing function of CPU utilization. Note

that the change of utilization can result from both workload variance and dynamic

resource entitlement.

We zoom in the application with open workload generator. Figures 38-40 show

the resource utilization levels of the three tiers of the application with open workload

generator, when the resource is under control of the three approaches respectively. We

can also have several observations. (1)As we expect, the utilization of the three tiers

for the “Util” partition scheme is always the same when the workload varies. This is

because the “Util” partition scheme tries to keep the same utilization level for all the

three tiers. (2) When the application is under control of the “Opt” controller, the

utilization of the web tier is overall lower than that resulted from “Util” controller,

while that of the DB tier is overall higher. This implies that, compared with “Util”

controller, relatively less CPU is allocated to the DB tier, while more CPU is provided

to the Web tier. (3) The CPU resource is equally shared by the three tiers when

the application is under control of “Shares” controller. It results at further lower

utilization at Web tier, the higher utilization at the DB tier than those from the

other two controllers. When workload is high, e.g., 50req/s, “Equal Shares” has very

long round trip time, because of the extremely high CPU utilization of the DB tier

as shown in Figure 40.
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5.6.3 Discussion

The solution that is proposed in the previous two sections can be generally used to ad-

dress the optimal partition problem for the multi-tier web application provider. It is

worthwhile to note that the optimal solution does not depend (directly) on the work-

load parameters such as the workload intensities, the workload transaction types, and

the service times that are usually challenging to be derived or measured. Instead, it

depends on the CPU consumption of the individual tiers, which are readily available

in standard systems with non-intrusive measurement. Moreover, the solution is inde-

pendent of the service time on all non-CPU resources (with the general assumption

that they are not bottleneck). In the future, we will use more complicated model,

e.g., layered queueing model [69], to consider other system resources (e.g., disk and

network).

From the experiments, although M/G/1/PS model is a good approximation for

the average behavior of the open RUBiS web application, it is interesting to find out

that the “Opt” partition scheme still outperforms the other methods for closed and

semi-open workload styles as well. As a piece of future work, we are to explore further

on how well this approximation can be to improve the resource efficiency.

5.7 Application Controller Design

We describe how to design an application level feedback controller in this subsection.

For the multi-tier web application, the application controller design objective can be

formalized as a constraint optimization problem, i.e., to minimize the total resource

consumption with constraints on the reference response time Ref .

Minimize S =
N∑
n=1

un

s.t. RTT ≤ Ref
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However, there are several issues that make it challenging to solve the optimization

problem directly. First, a relationship model between S and RTT needs to be built.

Second, there is always in-accuracy with the model. And third, the workload can

vary along the time.

In our approach, we solve the problem in two steps, or two levels. In the first

step, we use system identification method to build the relationship model. In the

second step, a feedback controller is applied to find the minimal total amount of

CPU resource that can meet the end-to-end response time threshold. We call it the

application controller. Due to the feedback property, the feedback controller is able

to overcome the model in-accuracy as well as the time-varying workload.

5.7.1 System Identification

As stated in related work [118], the relationship between the resource entitlement

and response time is nonlinear and depends on the variation of workloads. However,

we can still assume that the relationship can be estimated by a linear function in

the neighborhood of an operating point. We adopt autoregressive-moving-average

(ARMA) model [97] to represent this relationship.

We run system identification experiment to determine the relationship between the

mean RTT and the total CPU allocation to all the three tiers. In each experiment

with workload rate λ, the total CPU is randomly varied in [0.20CPU, 0.80CPU].

The mean RTT sampling interval is fixed at 90 seconds. Each experiment runs 100

intervals, i.e., 9000 seconds. The workload rate λ varies from 10 to 25 requests per

second. The experiment is repeated for each rate. We use the first 50 samples to

train the model and then use the second 50 samples to evaluate the model.

We find that, if we take the mean RTT as output and CPU shares as input in

the ARMA model, there is no good fit model. However, if we take the reverse of

mean RTT as output and CPU share as input in the ARMA model, there exist good
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fit models. Assume that the mean RTT at the K-th interval is RTT (K), we define

y(K) = 1/RTT (K). We define the operating point of y(K) as y0 and the CPU share

as S0, define ∆y(K) = y(K)− y0, and ∆S(K) = S(K)−S0. We choose the following

ARMA model to represent the dynamic relation between ∆y(K) and ∆S(K).

∆y(K) =
n∑
i=1

ai∆y(K − i) +
m∑
j=1

bj∆S(K − j).

where the parameters ai, bj, the orders n and m characterize the dynamic behavior of

the system. For convenience, we refer to such a model as “ARXnm” in the following

discussion. The model above is estimated offline using least-squares based methods

in the Matlab System ID Toolbox [9] to fit the input-output data collected from the

experiments. The models are evaluated using the R2 metric defined in Matlab as a

goodness-of-fit measure. In general, the R2 value indicates the percentage of variation

in the output captured by the model.

From the data in Table 17, we can find that a simple model ARX01 can fit the

input-output data well enough, although the ARX11 model has marginally better

fitting numbers. This is reasonable, given that, the modeling and control interval is

much longer than the queueing time, and the queueing process is the main resource

of the dynamics in the system. Figure 41 demonstrates how the model works when

rate is 20req/s. However, we also find that, the parameters of the models vary along

the workload, which implies that a controller with fixed parameters may not work in

the whole range of operation conditions.

Table 17: R2 values for ARX models

Rate(req/s) 10 15 20 25

R2 (ARX01) 0.9370 0.9123 0.9015 0.8687

R2 (ARX11) 0.9410 0.9282 0.9265 0.8935
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Figure 41: Fitting result for 20req/s

5.7.2 Controller Design

In our experiments, we choose ARX01 as our model, which implies that

∆y(z)

∆S(z)
= az−1

where y(z) and S(z) are the z-transform of y and S. We use an proportional-integral

(PI) controller whose transfer function can be described as

∆S(z)

e(z)
= kp +

kiz

z − 1

where kp and ki are the proportional and integral gains of the controller, respectively

and e(z) is the z-transform of the error. Then we have the closed model transfer

function:

C(z) =
G(z)

1 +G(z)
=

(ki + kp)az − kpa
z2 + ((ki + kp)a− 1)z − kpa

During our experiments, the parameter a of the model above is identified online

through a recursive least square method to fit the nonlinear and time-varying behavior

of the system. Then we use the Root Locus [61] method to design the controller

parameters kp and ki so that the setting time of the controller is within three steps

and the overshoot of the controller is within 10% for a step response.
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5.8 Performance guarantee through adaptive PI control

We evaluate the two-level performance controller that integrates application controller

with different resource partition schemes in this subsection. We first show how the

different resource partition schemes can be formulated as different constraint opti-

mization problems. Then we describe the time-varying workload that we use for

evaluation in detail. Finally, we present the evaluation results using different SLAs.

5.8.1 Comparison of performance controller based on different resource
partition schemes

the application’s performance controller with “Optimal” partition scheme solves the

constraint optimization problem as shown in (1), (2) and (3).

Minimize S =
N∑
n=1

un (1)

s.t. RTT ≤ Ref (2)

RTT =
1

λ

N∑
n=1

cn
un − cn

+ β (3)

According to the definitions, the application’s performance controller with “Equal

Utilization” solves the following constraint optimization problem:

Minimize S =
N∑
n=1

un (4)

s.t. RTT ≤ Ref (5)

r =
c1

u1

=
c2

u2

= ... =
cN
uN

(6)

Similarly, the application’s performance controller with “Equal Shares” solves the

following constraint optimization problem:

Minimize S =
N∑
n=1

un (7)

s.t. RTT ≤ Ref (8)

u = u1 = u2 = ... = uN (9)
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Comparing the different constraint optimization problems, we can see that, all the

three problems share the same objective and one constraint RTT ≤ Ref . However,

“Optimal” leverages a queueing model (3). “Equal Utilization” appends the con-

straint (6) while “Equal Shares” has the constraint (9). “Equal Utilization” has been

used in [12] for the benefits of simple communication between an application con-

troller and container controllers. Although it does differentiate the resource partition

to the three tiers using the relative metrics, e.g., the resource utilization, it is still

not optimal as there is no guarantee that constraint (6) will still hold in the optimal

solution.

5.8.2 Time-varying workload for evaluation

Figure 42: World Cup Trace

We use a real workload trace as shown in Figure 42 to evaluate the applica-

tion’s performance under the application controller with different resource partition

schemes. The workload trace is generated based on the Web traces from the 1998

World Cup site [23]. We extract the “request rate” metric from the Web trace and

scale it down to fit our experiment environment. For example, we use 10req/s to

mimic 10k request rate and use 20req/s to mimic 20k request rate. The initial CPU

shares are set to 50. Each experiment runs 9000 seconds. To evaluate the controllers,
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we run a set of experiments with different styles of workloads (open or closed), and

different resource partition schemes (“Opt” or “Util”) on the container level. Thus,

there will be four cases in a set of experiments. In our experiments, we try two SLAs

where the threshold for the mean round trip time is 35ms and 200ms, respectively.

5.8.3 Setting point for the mean round trip time is 35ms

Figure 43: Mean RTT with Closed
Workload

Figure 44: Mean RTT with Open
Workload

Figures 43 and 44 show the experimental results when the setting point for the

mean round trip time is 35ms. Table 18 shows more statistics of the four cases: the

mean, the standard deviation, the 50/90/95 percentiles of the response times of the

individual requests, the throughput (req/sec), the total CPU entitlement and the

total CPU consumption. The samples for the statistics are between the 10th interval

and the 70th interval, where there are no obvious overshoots of the response times

and the mean RTT is maintained much closer to the reference values. We make the

following observations: (1) up to 20% less amount of CPU resource is provisioned to

the application in the cases with “Opt” controller than the application in the cases

with “Util” controller. This validates the economical property of our controller. (2)

The cases with “Opt” controller have lower percentile response times, compared with

those with “Util” controller. This validates the robust property of our controller.

123



Table 18: Steady-state performance when setting RTT=35ms

Response Time (ms)
Thr

CPU Resource
Mean (std) 50p 90p 95p Ent Con

Opt 36 (52) 12 103 139 18.8 0.54 0.16
(close)

Util 36 (56) 12 115 153 18.9 0.64 0.16
(close)

Opt 37(53) 12 104 142 19.1 0.57 0.16
(open)

Util 37 (58) 12 115 154 19.1 0.67 0.16
(open)

5.8.4 Setting point for the mean round trip time is 200ms

The application with closed workload is a “self-tuning” system. According to Lit-

tle’s law, we can derive that the relation between the throughput and RTT for the

application with closed workload can be approximated as

Throughput =
MPL

RTT + ThinkT ime

The above model implies that the throughput should vary along with the RTT .

However, as shown in Table 18, the throughput of the applications with the open or

closed workloads is almost the same. This is because that, in the above experiments,

the default think time has a mean of 3.5s and the setting point of RTT=35ms, that

is, RTT << ThinkT ime. So the throughput is almost not affected by the RTT , and

the closed system works very similar as the open one.

To see the difference of the closed and open systems, we reduce the think time

for the closed system to a mean of 350ms and increase the setting point of RTT to

200ms. We run the same set of experiments. The RTT during each interval and the

steady state performance are shown in Figures 45-46 and Table 19. Table 19 shows

that the throughput can be affected by the response time for the closed system.

We have similar observations: (1) less amount of CPU resource is provisioned to

the application in the cases with “Opt” controller than the application in the cases
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with “Util” controller. (2) The cases with “Opt” controller have lower percentile

response times, compared with that with “Util” controller. The above observations

validate the economical and robust property of our controller.

Moreover, from Figure 45, we can see that the controller works well with closed

workload and the performance is well tracked as shown in Table 19. However, the

performance seems out of control for the open system as shown in Figure 46. Upon

sharp changes of the workload, there are very long transient processes before the

response time converges. This can be due to the high utilization of the applications,

when the response time is very sensitive to changes of the resources. It implies that,

the parameters of the adaptive PI controllers have to be carefully tuned for the open

system when the utilization is pushed high. As one more piece of work, we are working

with a more robust adaptive controller to fit different types of workloads in a wider

operation region.

Figure 45: Mean RTT with Closed
Workload

Figure 46: Mean RTT with Open Work-
load

5.9 Summary

In this chapter, ERController is proposed to enhance a classical resource allocation

controller by leveraging globally-optimizing multi-level resource allocation based on

hierarchical resource management to achieve the highest resource utilization for a
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Table 19: Steady-state performance when setting RTT=200ms

Response Time (ms)
Thr

CPU Resource
Mean (std) 50p 90p 95p Ent Con

Opt 205(214) 140 461 608 28 0.26 0.213
(close)

Util 205(229) 142 472 617 28 0.29 0.214
(close)

Opt 225(363) 136 475 661 42 0.43 0.301
(open)

Util 230(399) 136 481 686 42 0.47 0.313
(open)

PaaS provider. The strengths and weaknesses of ERController compared with a

classical resource allocation controller are summarized as below:

5.9.1 Strengths

Under a step-wise SLA, ERController is able to achieve the highest resource uti-

lization for a PaaS provider when a multi-tier web application could be modeled as

a tandem queue. However, since a classical resource allocation controller assumes

“Equal Utilization” or “Equal Shares”, which is not optimal for resource utilization,

ERController will show its strength to obtain the highest resource utilization so that

the profit for a PaaS provider could be maximized.

5.9.2 Weaknesses and future work

ERController will show its limitation under a non-step-wise SLA because it would

be very difficult to determine the setting point for the application controller under a

non-step-wise SLA. In the future, we need to look into more general SLA cost function

and explore how it can affect the application of the derived results.

ERController will show its limitation when the SLA is affected by more than one

resources and there is no additive relationship between time spent in CPU resource

and non-CPU resources because we assume that there is an additive relationship

between time spent in CPU resource and non-CPU resources when we derive the
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optimal resource partition for the resource partition controller. However, if we treat

networking as a non-CPU resource (e.g., data transfer between two tiers), then data

transfer time can overlap with CPU time. Hence, we need a better model in the

future for the complicated dependencies among different resources.
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CHAPTER VI

RELATED WORK

6.1 Overview

Monitoring, modeling and management of performance and resources for applications

in the Cloud is always one of the hottest topics in Cloud computing research area.

In this chapter, we summarize and compare the work related to our thesis according

to three aspects, i.e., admission control, critical resource identification and resource

allocation. Specifically, we demonstrate the advantages after we enhance the classical

control-based approaches by leveraging decision theory, statistical machine learning

and hierarchical resource management.

6.2 Admission control

6.2.1 Classical control-based approaches

We survey previous work in admission control for application’s performance in two

categories: general admission control and DBMS admission control.

General admission control Most of the classical techniques are based on reject-

ing incoming work to a service by refusing to accept new requests. For example,

Schroeder et al. [103] dynamically adjust the lowest MPL that corresponds to the

best application’s performance. Welsh and Culler propose an adaptive approach to

overload control in the context of the SEDA Web server [120] to control the 90th-

percentile response time of requests. Popovici and Wilkes [98] use simulation to

develop scheduling policies to make profits in the uncertain resource environment.

Kamra [71] designs a self-tuning admission controller for 3-tier web sites. Karlsson et

al. [72, 73] develop a self-tuning adaptive controller for admission control in storage
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systems based on online estimation of the relationship between the admitted load

and the achieved performance. The admission control mechanisms in the above work

are general admission control mechanisms, which can be not only used in database

management systems, but also used in general applications or systems.

DBMS admission control Contrast to general admission control mechanisms

which are oblivious to query types and query mixes, Q-Cop [112], QShuffler [21]

and Gatekeeper [46] take into consideration the different requirement for different

type of queries when admission control decisions are made in database management

systems. For example, Q-Cop is a prototype system for improving admission con-

trol decisions that considers a combination of the load on the database management

system, the number of concurrent queries being executed, the actual mix of queries

being executed, and the expected time a user may wait for a reply before they or

their browser give up (i.e., time out). Compared with the query type and query mix

oblivious methods, Q-Cop makes more informed decisions about which queries to

reject and as a result significantly reduces the number of requests that time out by

47% [112].

6.2.2 Our approach ActiveSLA

ActiveSLA has the advantage of [103] where the decision module dynamically tunes

the best MPL as there are different optimal MPLs for different workloads. ActiveSLA

also has the advantage of [112, 21] where the query type and query mix are taken

into consideration.

However, ActiveSLA distinguishes itself from the above work by leveraging deci-

sion theory in two major aspects. (1) It estimates the probability for a new query to

meet/miss service-level agreements before it is admitted. ActiveSLA builds a non-

linear classification model to predict this probability rather than a linear regression

model that is used in Q-Cop [112]. Moreover, besides query type and query mix that
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are used in existing work, ActiveSLA also takes into consideration query features as

well as the database-specific and system-level metrics, which further help to improve

the prediction accuracy. (2) The admission control decisions made by ActiveSLA are

steered by the expected profits, which are derived by the probability for a new query

to meet/miss service-level agreements and the profit/penalty specified in service-level

agreements. Therefore, differentiated services, which are very important in the Cloud

databases, are also provided. The experimental results demonstrate that ActiveSLA

is able to make admission control decisions that are both more accurate and more

profit-effective (at least 20% better) than several classical methods.

6.3 Critical resource identification

6.3.1 Classical control-based approaches

We survey previous work in critical resource identification for application’s perfor-

mance in two categories: model construction and model management.

Model construction A performance model is crucial for critical resource identi-

fication because it connects the application’s performance and the system resource

metrics. Tremendous amounts of human effort has gone into application’s perfor-

mance modeling. A performance model may be a mental model, which is unnecessar-

ily restrictive based on human expert experience and domain knowledge or the desire

to produce an analytical model that is both reasonably accurate and computationally

scalable.

Several projects propose a performance model based on low-overhead end-to-end

tracing (e.g., [20, 26, 35, 102, 47]), which captures the flow (i.e., path and timing)

of individual requests within and across the components of a distributed system.

For example, Aguilera et al. [20] develop two different algorithms, i.e., RPC mes-

sages based and signal-processing based ones for inferring the dominant causal paths

through a distributed system. Magpie [26] extracts the resource usage and control
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path of individual requests in a distributed system and tags incoming requests with

a unique identifier and associating resource usage throughout the system with that

identifier. Chen et al. [35] describe Pinpoint, a system for locating the components

in a distributed system most likely to be the cause of a fault. Sambasivan et al. [102]

compares request flows from two executions (e.g., of two system versions or time peri-

ods) to diagnose performance changes in a distributed storage service caused by code

changes, configuration modifications, and component degradations.

Some researchers propose a performance model based on collected metrics rather

than communication patterns among components. For example, Urgaonkar et al. [115]

present an analytical performance model for multi-tier Internet services based on a

traditional queueing network model. Stewart et al. [108] leverage the nonstationarity

in an application’s transaction mix to build a model for estimating the mean response

time. Padala et al. [97] propose an auto-regressive moving average model to represent

the relationship between application’s performance and its CPU and disk I/O resource

allocations, where the model parameters are updated online using a recursive least

squares method. Heo et al. [62] build a prototype of a joint resource control system

for allocating both CPU and memory resources to co-located VMs in real time. Lu

et al. [84] dynamically adjust the cache size for multiple request classes. Kundu et

al. [78] build application’s performance models for virtualized environments based on

artificial neural networks, using several pre-selected system-level metrics.

Other researchers take into consideration of the consolidation influence for a per-

formance model. For instance, Q-Clouds [91] ensures that the performance expe-

rienced by applications is the same as they would have achieved if there were no

performance interference. Govindan et al. [54] develop Cuanta to manage resource

contention and performance degradation. Their methods actively predict the degra-

dation that will be observed after applications are consolidated. Then they develop

methods that select the optimal workload placements to make desirable performance
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and energy trade-offs. Koh et al. [75] study the effects of performance interference by

looking at system-level workload characteristics. Mei et al. [89] study the effects of

performance interference of network I/O applications. The above work assumes that

they know the application’s critical resources from domain knowledge or experience.

Then they can build a static model, e.g., the linear model in [75] based on the critical

resources and benchmark performance.

Model management Model management or adaptive model is also important be-

cause different applications’ performance can be affected by different system-level

resource metrics at different times in a virtualized environment. Moreover, the Cloud

service provider’s actions such as VM consolidation and migration [74] can affect the

expected resource-performance relationships. Cohen et al. [38] use a data-driven ap-

proach to build a tree-augmented naive (TAN) Bayesian network model to learn the

probabilistic relationship between the SLO state and system metrics. However, their

models are built offline after an SLO violation to identify performance bottlenecks.

Bod́ık et al. [30] use models to map application workload-levels to the resources (num-

ber of virtual machines) needed to satisfy SLOs for applications running in a public

Cloud. Then they use hypothesis testing of prediction errors to identify degradation

in the accuracy of the models.

6.3.2 Our approach vPerfGuard

vPerfGuard distinguishes itself from the above work by leveraging statistical machine

learning in two major aspects.

Model construction Although some model construction approaches [108, 97, 62,

84, 78] have the potential to provide performance predictions for a single applica-

tion, these models rely on a small number of metrics or control knobs that are pre-

determined through human expert experience and domain knowledge.
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Leveraging statistical machine learning techniques, our vPerfGuard to model con-

struction is data-driven (or “black-box”) – learning from the rich telemetry collected

from the application, VMs and the hypervisors. We argue that this approach com-

plements the use of expert-built models (or “white-box”). Note that Bod́ık et al. [29]

present a methodology for automating the identification of performance crises using

a data center fingerprint, which reflects the data center state. However, their ap-

proach depends on the previous fingerprint. The more data center states they have

collected, the more accurate their identification is. Compared with their approach,

vPerfGuard leverages statistical learning techniques to be totally open to the new

Cloud environment states that have never been seen before due to statistical learn-

ing techniques’ data-driven characteristic. Our work complements theirs by helping

identify the root-cause using models.

Model management Classical methods based on low-overhead end-to-end tracing

(e.g., [20, 26, 35, 102, 47]) could not be applied directly into the consolidated Cloud

environment due to two reasons: (1) Although their method pinpoints the critical

component within an application, it is not able to pinpoint the critical resources. (2)

Their method is not suitable to the Cloud environment when different applications’

performance can be affected by different system-level metrics at different times in a

virtualized environment.

Compared with their method, vPerfGuard leverages statistical machine learning

techniques for the virtual machine and the hypervisor metrics. The metrics which

come from our adaptive models point to not only the critical component within an

application but also the critical resources. Moreover, due to the enhancement by

leveraging statistical hypothesis tests, vPerfGuard automatically detects the need to

update the performance model when it no longer accurately captures the relationship
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between performance and system resources. Note that the adaptive model manage-

ment method in [30] is limited to the resources of the number of virtual machines.

Thus, the metrics that are considered in their model management method is only a

subset of the thousands of virtual machine and host metrics that are considered in

our vPerfGuard.

6.4 Resource allocation

6.4.1 Classical control-based approaches

We survey previous work in resource allocation in two categories: single-component

application and multi-component application.

Single-component application Resource allocation controller can be used to

achieve the lowest resource cost while guaranteeing service-level compliance. For

a single-component application, a feedback controller can be used to allocate re-

sources [42, 80, 119] based on control theory which offers a principled way for de-

signing feedback loops to deal with unpredictable changes, uncertainties, and distur-

bances in systems. The input of the controller is the difference between the measured

performance metric and the reference performance metric according to service-level

agreements while the output of the controller is the critical resource that affects

service-level compliance. For example, if the service-level agreement is a function of

round trip time and CPU is the critical resource that affects service-level compliance,

then a feedback controller can be built to achieve minimal-cost rental of CPU resource

(e.g., from an IaaS provider) while maintaining a sufficiently low round trip time level

under the time-varying workload.

Multi-component application Compared with a single-component application,

many applications are deployed in the Cloud in a totally distributed way, which makes
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the dynamic and adaptive resource allocation even more challenging. For a multi-

component distributed web application [81], there are also lots of special intrinsic

parameters that can be tuned to improve resource utilization. By carefully exploiting

those potential parameters, we are able to use the resources more efficiently. For

example, some previous work implements an utilization controller for each compo-

nent inside the application [118, 97]. The utilization settings are the same for all

the utilization controllers in their work [118, 97]. A few workload management prod-

ucts such as HP global workload manager [12] maintain the utilization at a default

utilization target, e.g., 75%.

Moreover, when a multi-level controller is used, the robustness and stability under

different workload type and intensity become a major concern. However, most of the

current work adopts either closed workload or open workload and pays little attention

to whether a workload generator is closed or open. For example, Pradeep et al.

develop an adaptive resource control system that dynamically adjusts the resource

shares to applications in order to meet application-level QoS goals while achieving

high resource utilization in the data center [97]. Lu et al. dynamically adjust the

cache size for multiple request classes [84]. Krasic et al. [76] propose an approach

called cooperative polling to ensure that all applications fairly share resources. Lu et

al. propose scheduling scheme to satisfy the requirements of different QoS requests

for access to the networked storage system [85]. The workload types used in the above

work are either open or closed ones. However, as illustrated in [104], there is a vast

difference in behavior between open and closed models in real-world settings.

6.4.2 Our approach ERController

ERController distinguishes itself from the above work by leveraging hierarchical re-

source management to build an outer-level application controller and an inner-level

resource partition controller.
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Similar to the feedback controller that is applied to a single-component applica-

tion, ERController also leverages a feedback controller on the outer-level to guarantee

service-level compliance by maintaining the difference between the measured perfor-

mance metric and the reference performance metric at zero. However, compared with

the above work where simple “equal utilization” or “equal share” are used, the feed-

back controller on the outer-level coordinates the total resources through a resource

partition controller on the inner-level. On the inner-level, the resource partition con-

troller leverages queueing theory to help allocate resources for a multi-tier distributed

web application. After modeling each tier with an M/G/1/PS queue, we formulate the

problem as an optimization problem and also derive a solution for the problem. The

experiment shows that the resource partition controller outperforms “equal utiliza-

tion” or “equal share” by achieving a shorter response time with the same resource.

As a result, when an outer-level application controller and an inner-level resource

partition controller work collaboratively, ERController can save around 20% resource

cost than classical methods but achieve the same service-level compliance.

Furthermore, compared with the existing work which uses either open or closed

workload type, ERController not only exhibits how control policies are impacted by

different workload types but also explains the differences in service-level compliance.

These results have never been reported before in related literatures. For example,

we show that there is more fluctuation for open workload type than closed workload

type when the same controller is applied. We also show that the standard deviation

for the response time under open workload type is larger than that for the response

time under closed workload type. These useful results will be very helpful for the

system management where a controller is designed and applied. Moreover, besides

open workload type, our method still outperforms others with different workload

styles such as closed and semi-open, which proves the robustness and stability of our

controller.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

Although Cloud computing has seen explosive growth in recent years, dynamically

monitoring, modeling and management of performance and resources is still a hard

problem due to the increasing complexity of automated performance and resource

management for applications in Cloud computing. This thesis leverages decision the-

ory, statistical machine learning and hierarchical resource management to improve

classical control-based approaches to automated performance and resource manage-

ment. The major objective is to help Cloud service providers achieve the most profit.

To that end, a set of enhanced control-based approaches are designed and imple-

mented to address the increasing complexity of automated performance and resource

management for applications in Cloud computing

7.1 Summary of thesis contributions

The thesis has three major contributions:

1. Based on decision theory, it enhances classical admission control by leveraging

risk assessment to achieve the most profitable service-level compliance as shown

by ActiveSLA in Chapter 3;

2. Based on statistical machine learning, it enhances a classical critical resource

identification approach by leveraging statistical filtering to identify critical re-

sources as shown by vPerfGuard in Chapter 4;

3. Based on hierarchical resource management, it enhances a classical resource

allocation controller by leveraging globally-optimizing multi-level resource allo-

cation to achieve the highest resource utilization as shown by ERController in
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Chapter 5.

7.1.1 ActiveSLA: automatic control featuring risk assessment

The main contribution of ActiveSLA is to enhance a classical control-based approach

by leveraging decision theory, which is concerned with identifying the profit and

penalty values, uncertainties and other issues relevant in an admission decision. More

specifically,

1. In order to derive the probabilities for different outcomes, such as the proba-

bilities that a query meets or misses deadline, which are the prerequisite for

decision theory, ActiveSLA leverages machine learning techniques. The ma-

chine learning model takes into consideration of many query related features as

well as database and system related features and provides detailed probabilities

for different outcomes.

2. In order to make the most profitable admission decision, ActiveSLA leverages

the decision theory. The decision theory takes into consideration of not only

probabilities for different outcomes, such as meet or miss deadline, but also

the profit consequences of alternative actions and outcomes. Moreover, the

potential impact of admitted query on the currently running queries as well as

on the future queries are also incorporated into the decision theory.

ActiveSLA is implemented as two modules. First, a prediction module is built to

estimate the probability for a new query to finish the execution before its deadline.

Second, based on the predicted probability, a decision module is built to determine

whether or not to admit the given query into the database system. The decision is

made with the profit optimization objective, where the expected profit is derived from

service-level agreements between a service provider and its clients.

ActiveSLA is evaluated by extensive real system experiments with standard database

benchmark TPC-W, under different traffic patterns such as static and dynamic traffic
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patterns, different DBMS settings such as read commit and serialization, and differ-

ent SLAs such as gold and silver SLAs. The evaluation results demonstrate that

ActiveSLA can make a more precise prediction of whether the query will meet or

miss the deadline and make more profit by obtaining better service-level compliance.

For example, Figure 14 shows that the prediction error for one of the classical

methods (Q-Cop) is around 25% when the deadline is 30s. However, the prediction

error for our ActiveSLA is around 13%, which cuts the prediction error almost by

half. For another example, Table 8 shows that the total SLA profit for one of the

classical methods (Q-Cop) is 752.5. However, the total SLA profit for our ActiveSLA

is 970.3, almost 29% increase of the profit compared with 752.5.

7.1.2 vPerfGuard: automatic control featuring statistical filtering

The main contribution of vPerfGuard is to enhance a classical control-based approach

by leveraging statistical machine learning that describes how one or more random

variables (resource metrics) are related to one or more random variables (application’s

performance metrics) to identify critical resources automatically and adaptively. More

specifically,

1. vPerfGuard leverages statistical filtering, i.e., a two-phase metric filtering algo-

rithm, to automatically identify the system metrics that are the most critical

to the application’s performance metrics. That is, first (in phase 1) selecting a

small number of candidate metrics that are most strongly correlated with the

application’s performance; and then (in phase 2) identifying even fewer predic-

tor metrics that can give the best prediction accuracy for a specific model from

among the candidate metrics.

2. vPerfGuard leverages online change-point detection techniques to generate a

performance model using the predictor metrics adaptively. When the applica-

tion workload or the execution environment changes significantly, vPerfGuard
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automatically updates the set of critical resource metrics it uses in its perfor-

mance model and rebuilds the model at runtime by online monitoring of model

prediction accuracy.

vPerfGuard is implemented as three modules - a sensor module, a model building

module, and a model updating module. Once an application is running, vPerfGuard’s

sensor module collects two categories of system metrics - VM metrics from the oper-

ating systems within individual VMs and host metrics from the physical hosts run-

ning the hypervisors and the virtual machines. The sensor module also collects the

application’s performance metrics. These metrics are processed through the model

building module, which will output a model with an appropriate set of predictor met-

rics. The model updating module will identify when the model’s predictions have

significantly diverged from the observed performance via hypothesis testing over the

residuals of the model. If the model passes the hypothesis testing, this shows that it

still accurately captures the relationship between the system resources and applica-

tion’s performance. However, if the model fails the hypothesis testing, it is considered

unsuitable for the current situation and a new model will be constructed.

vPerfGuard is evaluated through real system experiments using a set of common

benchmarks such as RUBBoS, RUBiS, TPC-W and TPC-H, under different traffic

patterns such as constant and dynamic traffic patterns, in a number of common usage

scenarios such as VM colocation and consolidation, and different types of resource

contention such as workload, CPU, memory and disk I/O contentions in the Cloud

environments. The evaluation results demonstrate that vPerfGuard makes improve-

ment over the classical methods because vPerfGuard can (1) automatically select

the critical system resource that affects service-level compliance; and (2) adaptively

update the critical system resource when the application environment changes.

For example, Figure 28 shows that vPerfGuard is able to automatically and adap-

tively identify that the CPU resource on the ESX1 host, which hosts the web server
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virtual machine is the critical system resource that affects service-level compliance

from thousands of raw metrics. The example shows that, vPerfGuard will liberate

a PaaS provider from the sheer amount of telemetry and the requirement for expert

experience and domain knowledge, and thus save a lot of manpower. Moreover, the

identified critical resource and critical component provide valuable information for

constructing automatic resource allocation control systems. Based on the informa-

tion, a correct control system will allocate more CPU resource to the web server

virtual machine rather than the other resources or the other components. Thus,

vPerfGuard prevents a control system from blindly adding useless resource, which

will incur a large bill of cost.

7.1.3 ERController: automatic control featuring hierarchical resource
management

The main contribution of ERController is to enhance a classical control-based ap-

proach by leveraging hierarchical resource management to help a Cloud service provider

achieve the highest utilization for multi-component applications while guaranteeing

service-level compliance.

Based on hierarchical control, ERController arranges resource allocation in a hi-

erarchical tree. Each element of the hierarchy is a linked node in the tree. The

total resource budget flows down the tree from superior nodes to subordinate nodes,

whereas the result response time of each tier flows up the tree from subordinate to

superior nodes. More specifically,

1. The higher level operates with a longer interval of planning and execution time

than its immediately lower level. It is responsible to decide the total resource

budget for the critical resources in order to meet service-level compliance.

2. The lower level operates with a shorter interval of planning and execution time

than its immediately higher level. It is responsible to decide how to partition
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the resource budget to each tier to achieve the highest resource utilization.

Our ERController is implemented as a two-level controller. On the application

level, an adaptive feedback controller is applied to decide the total resource demands

of an application in real time to maintain the mean round trip time (RTT ) at the

desired value specified in service-level agreements upon varying workload. The con-

trol model is built based on an ARMA model and system identification method. The

proportional-integral (PI) controller is designed based on the control model and the

Root Locus [61] method. On the container level, an optimal resource partition con-

troller partitions the total resource budget among the multiple tiers that can minimize

RTT . The controller is built using Lagrange multiplier method based on M/G/1/PS

model. The two controllers work together in a hierarchical way to accomplish the

optimal resource allocation that can guarantee service-level compliance and achieve

the highest resource utilization.

ERController is evaluated through real system experiments using a real bench-

mark RUBiS, under static and dynamic traffic patterns, with three different work-

load models—open, closed, and semi-open in the Cloud environments. The evaluation

results indicate two major advantages of ERController in comparison to previous ap-

proaches.

First, ERController is more economical than classical method such as “Equal Uti-

lization” for maintaining a specific service-level compliance. According to the results

in Table 18, the average CPU shares that are used by ERController and “Equal Uti-

lization” are 54 and 64, respectively when we set RTT as 35ms with closed workload.

This shows that ERController can save around 19% CPU resource. According to

the results in Table 19, the average CPU shares that are used by ERController and

“Equal Utilization” are 26 and 29, respectively when we set RTT as 200ms with

closed workload. This shows that ERController can save around 12% CPU resource.
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Second, ERController is more robust than classical method such as “Equal Utiliza-

tion”. According to the results in Table 18, the standard deviation of response time

when we use ERController and “Equal Utilization” are 52ms and 56ms, respectively

when we set RTT as 35ms with closed workload. According to the results in Table 19,

the standard deviation of response time when we use ERController and “Equal Uti-

lization” are 214ms and 229ms when we set RTT as 200ms with closed workload,

respectively. The smaller value of the standard deviation shows that ERController is

more robust than the classical methods.

7.2 Limitations of the thesis and short term future work

Although we show that classical control-based approaches to automated performance

and resource management for applications in Cloud computing can be enhanced by

leveraging decision theory, statistical machine learning and hierarchical resource man-

agement, there are still a number of limitations, which are left for immediate future

work.

7.2.1 Improving global optimal decisions

In ActiveSLA, we have leveraged decision theory to make admission decisions for each

query. In order to make global optimal decision rather than local optimal one, we

include the opportunity cost concept as a way of managing multiple query decisions

and shows its effectiveness through experimental studies. The determination of the

exact value of the opportunity cost is an interesting problem. One direction of the

extension of the thesis would be to develop new techniques or new models such as

leveraging certain business considerations or workload characteristics through feed-

back to resolve this value.
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7.2.2 Improving human readability

In vPerfGuard, we have leveraged statistical machine learning to identify critical

resources. The critical resources are demonstrated by the names of the variables

used in the online adaptive models. In order to help a Cloud service provider who is

not familiar with the naming convention to understand and locate the metrics such

as H ESX1 Web CPU Idle, we develop GUI and also leverage the vCenter map.

One direction of the extension of the thesis would be to develop new techniques or

new models such as leveraging techniques from semantic web or natural language

processing to develop automated reasoning systems to improve human readability of

the results.

7.2.3 Modeling complicated dependencies

In ERController, we have assumed that we can identify the dependencies that can

be modeled explicitly. For example, we assume that in a multi-tier web application,

the dependency chain goes from web server to application server, and then goes from

application server to database server. However, this may not always be apparent

for components in an application. For example, it would be difficult to use a tan-

dem queue to model the complicated dependencies between MySQL server node and

MySQL data node [87, 88] in a MySQL cluster. One direction of the extension of

the thesis would be to develop new techniques or new models to manage performance

and resources for applications with complicated dependencies.

7.3 Long term future work

My long term future research will consistently follow the direction of enhancing clas-

sical control-based approaches to automated system management by leveraging other

techniques. The potential targets would be the new challenges that arise with the

advent of new hardware technology, new software framework and new computing
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paradigms. More specifically, the following new application contexts sound interest-

ing for the long-term future work.

7.3.1 Big data

Because big data [2, 55] are not suitable to work with using on-hand database manage-

ment tools, the technologies being applied to them mainly include massively parallel

processing (MPP). However, there are two main problems closely related to the MPP

performance: automatic configuration of the parameters; and load balance of all the

working nodes. A control-based approach is promising to solve these two problems

in the dynamic parallel processing environments.

Timely and cost-effective processing of large datasets has become a critical ingredi-

ent for the success of many academic, government, and industrial organizations. The

combination of MapReduce frameworks and Cloud computing is an attractive propo-

sition for these organizations. However, even to run a single program in a MapReduce

framework, a number of tuning parameters have to be set by users or system admin-

istrators. Users often run into performance problems because they don’t know how

to set these parameters, or because they don’t even know that these parameters exist.

With MapReduce being a relatively new technology, it is not easy to find qualified

administrators.

Classical control-based approaches which are enhanced by leveraging a statistical

method could be used to automate the setting of tuning parameters for MapReduce

programs. A statistical method could build a what-if engine for “what is the expected

performance if this set of parameters are applied?”. A controller could take correct

actions to configure the parameters based on the what-if engine. The whole system

can go a long way towards improving the productivity of users who lack the skills to

optimize programs themselves due to lack of familiarity with MapReduce or with the

data being processed.
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7.3.2 Parallel and distributed databases

The performance of a traditional database can be improved through parallelization

of various operations, such as loading data, building indexes and evaluating queries

or through the distribution of storage devices [94, 95, 96, 59, 19]. A control-based

approach shows the potential to coordinate all the resources, e.g., CPU, memory and

disk to work together to achieve the best performance.

Classical control-based approaches to automated quality-of-service management

for parallel and distributed databases can be enhanced by leveraging hierarchical

resource management, especially global load balancers. It is a challenging task to

provide quality-of-service guarantees for data services in a parallel and distributed en-

vironment. The transaction workloads may have time-varying intensities and skewed

patterns. And, the transaction workloads in distributed databases may not be bal-

anced although data replication is used.

Following a hierarchical resource management scheme, a hierarchical controller

which is composed of an admission controller on the outer-level and a load balancer

on the inner-level could be designed. The outer-level admission controller controls

the admission process of incoming transactions. The control objective is to meet

the quality-of-service guarantee, e.g., the mean response time for the transactions.

The inner-level load balancer collects the performance data from other nodes and

balances the system-wide workload to each data replica. The outer and the inner-

level controllers work in a collaborative way that the quality-of-service for a parallel

and distributed database could be guaranteed.

7.3.3 Green computing

As current data centers are consuming an extraordinary high energy demand, reducing

their energy consumption is a primary focus for proponents of green computing [4].

A control-based approach is not only potential for routing data to data centers where
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electricity is less expensive, but also potential for combining several physical systems

into virtual machines on one single, powerful system, thereby unplugging the original

hardware and reducing power and cooling consumption.

Classical control-based approaches to automated power management for data cen-

ters can be enhanced by leveraging cost-sensitive adaptation. Generally, classical

control-based approaches to automated power management involve two ways, i.e.,

migrate/route incoming workloads to data centers where electricity is less expensive

and migrate/route servers to data centers where power and cooling consumption are

reduced. Classical control-based approaches do not consider the cost or the power

consumption during the adaptation and it is easy for them to fall into the pitfall of

“consuming power to save power”.

Enhanced by cost-sensitive adaptation, a classical control-based approach could

take much wiser actions when it performs automated power management. For ex-

ample, when it considers migrating a virtual machine which hosts a database server

to another host in order to save power, it should take into the consideration of the

adaptation cost due to data migration, load balance and buffer pool warmup. This

prevents the controller from the scenario such as “the data migration cost is much

higher than the power saving”. For another example, when it considers migrating a

virtual machine to another host which makes use of renewable energy such as wind

turbines and solar panels, it should also take into the consideration of the adapta-

tion cost due to the intermittent nature of renewable energy sources. This prevents

the controller from the scenario such as “the cost that enables a server to use re-

newable energy sources is more expensive than brown energy that is produced with

conventional fossil-based fuel”.

147



APPENDIX A

QUERY FEATURES USED IN ACTIVESLA

We use “explain” command in PostgreSQL and MySQL to provide the necessary

support to obtain query specific features. For example, the query cost in PostgreSQL

depends mainly on 5 parameters, i.e., the number of sequential I/O (seq page), the

number of non-sequential I/O(random page), the number of CPU tuple operations

(cpu tuple), the number of CPU index operations (cpu index), and the number of

CPU operator operations (cpu operator). Each operation is assigned a unit cost by

PostgreSQL, e.g., by default these unit costs are set to 1.0, 4.0, 0.01, 0.001, and

0.0025, respectively. The total estimated cost for a query plan is

cost = 1.0× seq page+ 4.0× random page+ 0.01× cpu tuple

+ 0.005× cpu index+ 0.0025× cpu operator

With this background information, we can either directly look into the detailed query

cost, or indirectly infer the values of the 5 parameters of a query in the following

way. For example, in order to get the query feature seq page, we call the “explain”

command twice, with 1.0 and (1.0+∆) as the unit cost for seq page. Assuming the

results of the two are cost and cost′, with

cost′ = (1.0 + ∆)× seq page+ 4.0× random page+ 0.01

× cpu tuple+ 0.005× cpu index+ 0.0025× cpu operator,

If ∆ is a very small and the best query plan does not change, then have seq page =

(cost′ − cost)/∆.

Similarly, the “explain” command in MySQL outputs a table, in which two im-

portant columns are ‘type’ and ‘rows’. Column ‘type’ shows what kind of scan to be
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used, e.g., ‘ALL’ means a sequential scan of the whole table. Column ‘rows’ shows

the estimation on how many rows will be returned.
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APPENDIX B

DATABASE AND SYSTEM CONDITIONS USED IN

ACTIVESLA

Here are database and system features that we collected.

Transaction isolation: The SQL standard defines four levels of transaction isola-

tion, i.e., Read Uncommitted, Read Committed, Repeatable Read, and Serializable.

In PostgreSQL, for example, Read Uncommitted is treated as Read Committed, while

Repeatable Read is treated as Serializable. As a feature, we use a nominal variable

FALSE,TRUE to denote whether Read Committed or Serializable is chosen.

Buffer cache: Each cache entry in buffer cache points to an 8KB block (sometimes

called a page) of data. When a process requests a buffer, it calls BufferAlloc with

what file/block it needs. If the block is already in the cache, it gets pinned and then

returned. Otherwise, a new buffer must be found to hold this data. Therefore, for

example, if a query is going to do a sequential scan of a table whose size is 100 pages

and there are 50 pages in the buffer cache, we use 50 as the value for the feature

DB buffer. In order to obtain such information, for the buffer cache, we create a view

called “pg buffercache” to collect the number of pages of a table in DB buffer and we

query this view to get the feature value.

System cache: Databases are designed to rely heavily on the operating system

cache. The DB buffer and system cache usually work as follows: Backends that

need to access tables first look for needed blocks in DB buffer. If they are already

there, they are fetched right away. If not, an operating system request is made to

load the requested blocks. The blocks are loaded either from the kernel disk buffer

cache, or from disk. Therefore, for example, if a query is going to do a sequential
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scan of a table whose size is 100 pages among which 10 pages are in the system

cache, then we use 10 as the value for the feature Sys cache. We describe how we

obtain it PostgreSQL and MySQL. Similar methods can be used to monitor system

cache content for other OS and RDBMS. It mainly contains two steps. (1) Obtain

the data file location. PostgreSQL uses a directory to store all the data in all the

databases. The default location is “/usr/local/pgsql/data/base”. An object in Post-

greSQL has its unique oid. Assume that the database and the table that we are

interested in have oid doid and toid, respectively, where toid and doid can be obtained

from pg database table. Then the filename to store the data of this table turns out to

be “/usr/local/pgsql/data/base/doid/toid”
1. The default data directory for MySQL

is “/var/lib/mysql”. Assume that the database and the table name that we are in-

terested in are dname and tname, respectively. Then the file to store the data of this

table is “/var/lib/mysql/dname/tname.MYD” 2. (2) We wrote a Perl script to return

the portion of the files in the system cache, from which we get the number of pages

of a table in system cache.

Besides cache, we also collect some other general system metrics, such as CPU

stats, memory stats and disk stats. These metrics are obtained by running dstat 3

and iostat. 4. We summarize all the features that we use in ActiveSLA and the

methods by which we obtained these features in Table 20.

1If the table is larger than 1GB, there will be several files
2MyISAM storage engine
3http://dag.wieers.com/home-made/dstat/
4http://linuxcommand.org/man pages/iostat1.html
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Table 20: Features, description, and obtain methods.

Features Description Obtain
methods

Query type and mix
type query type
num i,avg i number and average running time of queries of type i Server

Query features
seq page sequential I/O PostgreSQL
rand page non-sequential I/O PostgreSQL
cpu tuple CPU tuple operations PostgreSQL
cpu index CPU index operations PostgreSQL
cpu operator CPU operator operations PostgreSQL

System features
Transaction Read Commit(FALSE), Serializable(TRUE) Server
isolation
DB buffer pages in DB buffer PostgreSQL
Sys cache pages in System cache Perl
CPU CPU usr,CPU sys,CPU idl, CPU wai,CPU hiq,CPU siq dstat
MEM MEM used,MEM free dstat

MEM buff,MEM cach
DISK rrqm/s, DISK wrqm/s, DISK r/s, DISK w/s iostat

DISK DISK rsec/s, DISK wsec/s, DISK rq, DISK qu,DISK await
DISK svctm, DISK %util
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