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ABSTRACT 

The development of valid creep fra.:Iture criteria is a major topic in cur-

rent engineering research. Two path-independent integral parameters which show 

some degree of promise as fracture criteria are the C* and (AT)
c 
 integrals. 
 

The first portion of the present work reviews the mathematical aspects of 

these parameters. This is accomplished by deriving generalized vector forms 

of the parameters using conservation laws which are valid for arbitrary,three-

dimensional, cracked bodies with crack Surf ace tractions (or applied displace-

ments), body forces, inertial effects and large deformations. Two principal 

conclusions are that (AT) is a valid crack-tip parameter during nonsteady as 
— c 

well as steady-state creep and that (ST) has an energy rate interpretation 
c 

whereas C* does not. 

The development and application of fracture criteria often involves the 

solution of boundary/initial value problems associated with deformation and 

stresses in either laboratory specimens or actual components. Due to the power 

of the finite element method in treating complex geometries and non-linearities, 

it has often been used for this purpose. In the present work, an efficient, 

small displacement, infinitesimal strail, displacement based finite element 

model is developed for general elastic/plastic material behavior. For the 

present numerical studies, this model is specialized to two dimensional plane 

stress and plane strain and to power law creep constitutive relations. 

A mesh shifting/remeshing procedure is used for simulating crack growth: 

The model is implemented with the quarter-point node technique and also with 

specially developed, conforming, crack-tip singularity elements which provide 

for the
1.n/(1+n) 

strain singularity associated with the HRR crack-tip field. 



Comparisons are made with a variety of analytical solutions and alternate 

numerical solutions for a number of problems. 



SECTION I 

INTRODUCTION 

Fracture Problems and Fracture Criteria: A Review  

Characterizing the displacement, stress and strain fields associated 

with stationary and propagating cracks in solids characterized by various 

idealized constitutive relations is one of the most important areas of study 

in fracture mechanics. The importance of these studies is not only that we can 

predict the stress or displacement fields in a cracked body, but also that 

knowing the nature of such fields we can possibly correlate observed fracture 

behavior with some aspect of these fields and thus arrive at valid fracture 

criteria. 

Criteria for Crack Growth Initiation  

The two macroscopic aspects of fracture for which correlations are commonly 

sought are the initiation of crack growth and the rate of crack growth. The 

most notable initiation correlations are with the elastic stress intensity 

factor, K
I' 

for the elastic (and/or small scale yielding) case [1,2] and with 

the J
1
-integral for cases in which plasticity may not be limited to the crack-

tip [3,4]. The conditions under which these correlations are independent of-

geometry are discussed in the cited references. The critical values of K 1  and 

Ji  for a given material are denoted K
Ic 

and J
lc

, respectively. It is implied 

by the use of the subscripts "I" and "1" that these criteria are for the crack 
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opening mode (i.e., mode I). While similar criteria might be expected for the 

sliding and tearing modes (i.e., modes II and III), the experimental data for 

such studies is lacking. 

Both K and J
1 
have been shown to be crack-tip field parameters and both 

can be evaluated experimentally through energy considerations. The linear elas-

tic, mode I crack-tip field determined in [5] shows that the asymptotic crack-

tip fields are proportional to K1. Similarly, the asymptotic, mode I, crack-

tip fields for power-law deformation theory plasticity have been shown [6.7] to 

depend upon the single parameters J 1 .
1 

In the case of small scale yielding, K 

is easily related to the energy release rate, G
I 

[8], which is a measure of the 

potential energy decrease due to an increase in crack length. The quantity J 1 

 has a similar potential energy interpretation in the case of deformation theory 

plasticity, and becomes identical to G
I 

for small scale yielding of a stationary 

crack. 

In the foregoing discussion, the time dependence of the material's response 

and of the applied loading is assumed to be negligible. For creep crack growth 

these assumptions are no longer valid. We now consider crack growth initiation 

in materials which exhibit creep behavior. While a significant number of creep 

fracture experiments have been reported in the literature, it appears that the 

primary interest has been to find a creep crack growth rate criterion as opposed 

to an initiation criterion. As a result of this emphasis, many investigators 

use notched specimens rather than precracked specimens and many do not report 

data which could be useful in addressing the question of initiation. At 

present there seems to be some indication [9,10] that when precracked specimens 

are used, the time required for creep crack growth initiation is negligible when 

1 
The deformation theory of plasticity precludes elastic unloading from an elastic- 
plastic state and thus is mathematically equivalent to nonlinear elasticity. The 
crack-tip fields associated with power-law deformation plasticity are commonly 
referred to as HRR fields after the au,:hors of references [6] and [7]. 



compared to the life of the specimen. It should be understood that this is not 

a universally acknowledged conclusion [11] and that further study is indicated. 

As noted previously, the second macroscopic aspect of fracture for which 

correlations with crack-tip fields are commonly sought is crack growth or propa-

gation. The following summarizes the development of criteria relating to this 

aspect. 

Criteria for Crack Propagation  

Slow crack growth occurring under constant load implies that the material 

response is time dependent and is generally classified as creep crack growth. 

If the material's time dependent nature is negligible under the subject con-

ditions, then it is assumed that crack growth requires an increase in applied 

load. This latter case is typical of situations in which small scale yield 

conditions are not met and for which J
1 
has been found to correlate with crack 

growth initiation. The primary interest in this quasi-static mode of crack growth 

is that for some materials and geometries, the increase in load carrying capacity 

of the structure during quasi-static crack growth is significant. This implies 

that design procedures can be developed to take advantage of this added margin 

of safety. To justify such a procedure, however, there muast be some dependable 

means of predicting the crack growth versus load behavior as well as predicting 

at what load the crack becomes unstable (i.e., is no longer quasi-static). As 

noted, J 1  is generally accepted as a valid initiation criterion for this problem. 

For prediction of the subsequent growth, however, there are at least two proposed 

criteria which appear to provide reasonable correlations with experimental data. 

The first growth criterion can be stated as J 1=J1R (Aa), where J 111 (0) = Jlc  and 

j
1R

(Aa) is assumed to be a material property which depends on the amount of 

crack growth, a [12,13]. The subscript "R" denotes that this quantity 

characterizes the material's resistance to cracking. While strong theoretical 
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arguments can be given as to why this criterion should not be valid (except 

possibly for very limited amounts of crack growth [14]), it has been demon-

strated that reasonable predictions can result from the use of this criterion 

for at least some classes of problems [12,15]. 

Based on the theoretical objections to the use of J ilt  except for limited 

crack growth, a second criterion which is based on the crack-tip deformation 

has been proposed [16,17]. This criterion results from finite element simu-

lations of quasi-static crack growth experiments which indicate that the crack-

tip opening angle, CTOA (defined by the first finite element behind the crack-

tip) becomes constant during crack growth. Whereas the CTOA, so defined, is 

clearly a mesh dependent quantity, the concept of crack-tip deformations becoming 

constant with crack growth is physically meaningful. The procedure for applying 

this criterion in finite element based predictions of crack growth behavior is 

to use J
lc 

for initiation and J
1R 

for crack growth prediction until the computed 

CTOA has become constant with crack growth. Continued growth is then governed 

by this constant value of CTOA. Alternatively, a predetermined CTOA resistance 

curve can be used throughout growth. Crack growth instability is assumed to oc-

cur (for either CTOA or J
1R 

as the criterion) when further increase in crack 

length results in the criterion for growth being exceeded without further increase 

in applied loading. The J
1R 

and CTOA criteria appear to provide reasonable 

correlation of ductile slow crack growth behavior for a variety of materials, 

geometries and load conditions [15,18,19]. 

Creep crack growth generally becomes a concern when components are operated 

at elevated temperatures. Whereas quasL-static crack growth can be on the order 

of mm/sec, typical creep crack growth rates are on the order of pm/sec. Compared 

to elastic-plastic quasi-static crack growth, the problem of creep crack initiation 

and growth is a relatively new area of study. 
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Numerous experimental studies have been undertaken with the purpose of 

finding a parameter which correlates with creep crack propagation rate. (See, 

for example, the review article [20] and [21-24].) Most of these investigations 

consider as candidate parameters
, 
K
I' 

some form of net section (or reference) 

stress, and in more recent studies C*. The C* parameter is the steady-state 

creep analogue of JI  (in the sense of [25]) in that the definition of C* is the 

same as that for J
1 

except displacements and strains are replaced by their res-

pective rates [26]. 

It is illustrated in Fig. 1.1 that the above three parameters can be expected 

to correlate three distinctly different creep crack growth situations. In Fig. 

1.1a, a crack and its associated ligament are shown for a material and geometry 

which results in negligible creep strains everywhere except in the vicinity of 

the crack-tip. This condition is analogous to that of small scale yielding in 

elastic-plastic fracture. Fig. 1.1b represents a situation in which C* might 

be considered an appropriate parameter. This situation is characterized (i) by 

the body being essentially at steady-state creep conditions (which implies very 

slow crack propagation) and (ii) by the creep-damage process-zone being local 

to, and therefore controlled by, the crack-tip field. Fig. 1.1c illustrates 

the type of situation for which net section stress might be expected to control 

crack growth. In this case, the main feature is the widespread creep damage 

zone. 

It is seen from Fig. 1.1 that intermediate situations can occur. For 

example, suppose a particular material and geometry results in a crack propagation 

rate such that elastic strain rates are not negligible compared to creep strain 

rates (i.e., nonsteady creep) and at the same time, creep strains are no longer 

localized to the crack-tip region. While neither K
I 
or C* could be valid 

parameters for this case, it appears reasonable to expect that crack growth 
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a. K r  ,(AT)c  controlled 

behavior 

• 
b. C ,((T)c  controlled 

behavior 

c. crnet controlled 

behavior 

region with 
creep damage 

Fig. 1.1 Conditions for which creep crack growth 

parameters are expected to be valid 
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rate is still determined by the local crack-tip field since the creep damage 

process zone is still assumed to be local to the crack-tip. 

A parameter which is apparently capable of spanning the gap between K
I 

controlled growth and C* controlled growth has been introduced [27]. This 

parameter is referred to as (AT)
c 
 and is defined by a path-independent vector 
 

integral. A detailed discussion of a generalized C* (i.e., C*) and (AT) 
c 

is given in Section II of this work with a principal result being that the 

energy relationship commonly used for experimental measurement of C* does 

not apply to C* but rather applies to the (AT)
c 
 parameter. This means that 

the experimental results are actually showing a correlation with (AT) rather 
— c 

than with C. Based on the theoretical validity of (AT) c  as a crack-tip field 

parameter for nonsteady as well as steady-state creep and based on the mounting 

experimental evidence that crack propagation rate correlates well with (AT) c , 

it seems the creep crack growth rate problem is close to having a solution. 

Motivation for the Present Work  

In the following, we review previous studies to the extent required to 

place the present study in perspective and briefly introduce the present work. 

The nonlinear nature of creep constitutive relationa precludes analytical solu-

tions for either stationary or propagating cracks in a creeping material: For 

stationary cracks in a power-law creep material, however, it is known that 

the HRR fields are present in the vicinity of the crack-tip [26]. (Since the 

singularity in creep strain rates is greater than that in the stresses, and thus 

elastic strains, it follows that the HRR field exists at the crack-tip during 

nonsteady as well as steady-state creep.) For propagating cracks, it appears that 

the HRR fields no longer exist at the crack-tip, but that analytical tools exist to determine 

the fields which do exist [28,]9]. Whi:_e knowledge of the crack-tip field is 



valuable, the solution of boundary value problems must depend on numerical 

methods. The finite element method, in particular, shows promise for solving 

creep crack growth problems. 

Only a few studies on finite element modeling of creep crack growth have 

been reported. The earliest is apparently that of Ohtani and Nakamura [30]. 

This study simulated crack growth with a node-release technique and assumed a 

critical crack-tip plastic strain criterion for creep crack growth. The rate 

constitutive law contained an elastic term and a creep term based on the gen-

eralization of the uniaxial Norton power law. 

Hinnerchs [31] uses the Bodner-Partom constitutive law [32] and a node-

release technique for modeling crack growth. In this work, several candidate 

criteria are examined by simulating crack growth experiments. Due to the ap-

parently limited crack growth (<0.5 mm), the short test durations (one hour) 

and the lack of crack growth measurement data (which requires the development 

of a so-called hybrid experimental-numerical procedure to estimate the crack 

growth history), it seems the general applicability of the conclusions from 

this study are questionable. It also seems likely that the methods for evalu-

ating C* in this study are incorrect
1 

and thus the conclusions concerning C* 

should be regarded accordingly. 

Ehlers and Riedel [33] have conducted a finite element analysis of a 

stationary crack in a compact specimen. The primary emphasis in this study 

is on the nature of the crack-tip field during the transition from the initial 

elastic field to the steady-state creep field. 

1 
While the details of the numerical procedures for evaluating C* are not given 
in [31], it appears that the W* term of C* (see Section II) is incorrectly in-
terpreted as a history dependent quantity as opposed to a quantity dependent 
solely on the steady-state stress and strain rate. 
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1 The strength of the HRR field during the transition period is determined 

through fitting the near tip equivalent stress field. The calculations use 

eight-noded isoparametric elements with quarter-point elements being used at the 

crack-tip so as to have an 
r-1/2 

strain singularity. Creep crack growth and 

creep crack growth criteria are not considered in this study. 

The finite element equations fortFe creep crack growth model being used in the 

present study are derived from the principle of virtual work in Section III. 

Section V presents the results of several analyses involving both stationary cracks 

and propagating cracks. The creep crack growth simulation is via a mesh shifting/ 

remeshing procedure. Calculations are made using the quarter-point element tech-

nique as well as with a specially developed (SectionIV) compatible element which 

incorporates the HRR, 
r-n/(1), 

 strain singularity. 

An important aspect of the current work is the study of the (AI)
c 

parameter. 

In particular, the meaning of (AT)
c
, its relationship to Ct, and its calcula-

tion within the context of finite element analysis are explored in depth. 

A series of crack propagation calculations are combined with analytical and 

experimental results in Section V to show that creep crack growth in 304 stain-

less steel at 650°C occurs under essentially steady-state creep conditions. This 

implies that the crack growth rate for a given crack length and load can be 

determined from a steady-state creep solution which does not depend on the 

previous load and crack growth histories. This observation implies that 

simple crack growth prediction methodologies may be developed. 



SECTION II 

DERIVATION OF THE (AT) c , , J AND C* INTEGRALS 
— — 

Preliminaries  

We shall consider problems which exhibit the following constitutive be-

havior: 

ij 
	ce

ij 
+ 

cij 
 c = L

ijkZ kZ  + 
(3/2)7(a 

 eq
) n cy  

id 
	 (2.1) 

We denote the cartesian coordinates of the undeformed body as x.. Defining 

as the rate of displacement (or velocity) of a material particle from the cur-

rent configuration, thenis the symmetric part of the rate of displacement 
aa.ii _ . gradient e

ij 
E  (V

—t
T = — 

a 
- 
Eijij. 

 The gradient operator V is with res- 
. 373  

pect to the current coordinates yi  where it is understood that yi = xi  + i
. 

Lijk2  is the tensor of instantaneous elastic moduli. We let a  the 

corotational rate (or "Zaremba-Jaumann rate") of the Kirchhoff stress a.. 
aym  

wherea..is related to the Cauchy stress T.. by aij  = JT ij (J=det[ ax 	]). The 

equivalent Kirchhoff stress G
eq 

is related to the deviatoric Kirchhoff stress 

aij (= a " - 1/3 akk6 ij ) by a  
eq = (3/2)(al.a

ij  
)
1/2

. The parameters Y and n are 

those of the familiar Norton's law 

eq 	I  
= -(a )n  

eq 

were 

 eq 
= [(2/3)..E..] 

1/2 
13 13 
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We will use the notation: (_) denotes a second order tensor; (_) implies 

a vector; a = B . c implies a. = B..c.; A = B . C implies A.. = 	
k 

B. .C..; .. 	- 	 1 	13 j 	513 J 	ik 3 

A:B = A. B . Also note that V B:C implies 	C 	and V . B implies 
Y1 - - 	ij ij 	 -t- - 	
3jk 	
—il t 	-t - 

3B.. 

3y i  

A Conservation Law for Finite Elastic and  

Nonsteady Creep Material Behavior  

The discovery of conservation laws and the possibility of deriving path-

independent integrals from these laws are not particularly recent occurrences as 

discussed in [34]. However, the literature in this area has been rather piece-

meal and therefore difficult to assimilate. The recent work of Atluri [27] has 

done much to unify and generalize this subject and is the basis for the following 

presentation. 

We will consider a very general conservation law which has been given by 

Atluri, but will limit our discussion of this law to materials characterized 

by (2.1). We will use cartesian coordinates exclusively. Note that by 

special selection of material constants (i.e., y=0), (2.1) can be specialized 

to elasticity. Alternatively, by assuming that the stresses are invariant with 

time, (2.1) can be specialized to steady-state creep behavior. 

In the following presentation, the current configuration (i.e., the config-

uration at time t) is the reference configuration. There may be initial stresses 

existing for this reference configuration. If stresses do exist, then they are 

assumed to satisfy the linear and angular momentum balance condition (i.e., 

equilibrium) 

V 
t 

. T 	p 
t (f-t - 

a
-t 

 ) = 0; T = T
T 

-  

where p t , 
t 
f and at  are the current mass density, ..x)dy force vector and accel- 

eration vector. 
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A conservation integral relation given by Atluri [27] for a closed volume 

V
t 

(at the current time, t), which is free from singularities and any other 

defects (which would preclude the application of the divergence theorem), is: 

0 = f {V AW - (V
-t 	-t 

T):Ae - V . [(T+At) . Ae] 
V
t 	

t 
(2.2) 

- p 
t 
 (f-a) . Ae}dV + f [n

t 
 . (T+At) - E] . AedS 

S 

+  f n . (T+AO . (Ae-Ae)dS 
-t 	- 

S
e 

In (2.2), At is the incremental first-Piola-Kirchhoff (nonsymmetric) stress 

(At = [Aa - Ae . a]/J), where Ao is the material increment of Kirchhoff stress. 

The current mass density is denoted p t , and f and a are the body force and 

acceleration vectors at time t+At, respectively. S
t 

and S
e 
are the portions of 

the boundary of V
t 
upon which prescribed tractions, t, are acting and at which 

prescribed displacement gradients, Ae, exist, respectively. The current outward 

normal to S
t 

or S
e 

is n
t 
 . The quantity AW, discussed in detail in [27], is the 

incremental stress-working density in time At, and is given by: 

AW = T:Ae + 
1T 

 :Ae E T:Ae + AU 	 (2.3) 

where 

1 
AU = 

2
-At :Ae (2.4) 

The validity of (2.2) is readily verified through the two identities [27]: 

SAW 	
-t 

AW = V (T:Ae) + EAU = 	T:e 
-t 	-t- 

+ V
t 
 Ae:T + V Ae:At

T 
- 	-t 

(2.5) 

and 

t 
. [(T+At) . Ae] = [V . (T+At)] . Ae + V Ae:(T+At)

T 	 (2.6) 

- 12 - 
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the satisfaction of linear momentum balance in V
t

: 

-t 
V . [T+At] + p 

t
(f-a) = 0 	 (2.7) 

and the satisfaction of the boundary conditions: 
1 

nt  . [T+At] = E on St 
	 (2.8) 

Ae = to on S
e 
	 (2. 9) 

Note that identity (2.5) assumes that T ( the initial stress for the incre-

ment) is an explicit function of its position in V t . The existence of AU 

is shown and discussed in the work of Atluri [35]. 

Having the relation (2.2) it is now possible to specialize this relation 

to finite elastic behavior or to steady-state creep behavior. However, since 

we are primarily interested in the path-independent integrals which can be ob-

tained from (2.2) we will postpone the specialization till after we have de-

rived the general path-independent integral (AT) c . 

Path-Independent Integrals for Fracture Analysis  

The conservation integral (2.2) is used [27] to obtain a path-independent 

integral which is applicable to the analysis of cracks by considering a volume 

V
t 
- V such as illustrated in Fig. 2.1. (Note that a two-dimensional case 

is illustrated for simplicity). The use of the divergence theorem for the 

region depicted in Fig. 2.1 results in (2.2) being rewritten 

fr 
234 [n

t AW - at  . (T+At) . Ae]dS 	 (2.10) 

[(-V 	: e -p (f-a) . Ae]dV 
Vt-V E  

1
The validity of (2.2) does not require S t+S e=3Vt  where 3V  denotes the surface 
bounding V t . Therefore, ali t  need not coincide with the bo

t
undary of the body 

under consideration. 
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Lt 
- c 	c4-0 f -(-1t 	-t (AT) = 	 [ AW - n . (T+At) . Ae]dS 

r 

(2.11) 

+ 
Jr
r.  n AWdS + f n AWdS - Jr 	. AedS 

-t 	 -t 
12 45 	 S t 

- 	n . (T+At) . AedS 
-t 	- S 

e 

= 	[n
t 
 AW - n . (T+At) . Ae]dS E (AT) 6  (2.10) 

In writing (2.10) it has been assumed that 
Se+St=F12+r45' 

which implies that 

r234 does not coincide with any exterior boundaries. This has been assumed 

purely for convenience of notation. We have also used the notation r = F 165' 

Noting that (2.10) contains two equalities, it can be verified by inspection 

that (AT) E  depends on E (or more generally r ) but that it does not depend 
- c 

E 
i on the selection of r234 . In this sense (AI) c 

 is path-independent 

independent of the selected far-field path). Following the reasoning of Atluri 

[27], we define (AT)
c 

as the limit of (AT)
E 

as E goes to zero.
1 

[n
t 
 AW - n

--t 
 . (T+At) . Ae]dS 

-  

44° 

L t  
-t 

€ 	
t
-V 

[(-V T):Ae - p t (f-a) . Ae]dV 

+ 
 Jr

n AWdS + Jr n AWdS - Jr t. AedS 

	

-t 	 -t r 12 	r45 	 St 

-Jr n . (T+At) . Aed4 
-t - 

S
e 	 ) 

1
The existence of the limit is shown in Appendix A. 
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r23 4 

Fig. 2.1 Contours for applying the conservation law to 

a two-dimensional, cracked body 



By defining (AT)
c 
as the limit of (AT)

c 
as E goes to zero, it is seen that 

(AT) c is entirely determined by the asymptotic near-tip fields. It will be 

shown later that the converse to this statement is also valid when the near-

tip fields are the HRR fields. That is, it will be shown that (AT)
c 

 determines the asymptotic near-tip fields. 

Often it happens that only the first component of the vector quantity (AT) c 

 is of interest. We will write the first component of (AT)
c 
as (AT

1
)
c
. Also, 

the quantities (i) c  and (T 1 ) c  will often be used in place of (AT) c  and (AT i ) c . 

These quantities are related by 

(AT) 
c  

(.k) c = 	
Lt 	— 

At-)-0 	At 
(2.12) 

However, in the presentation of numerical evaluations of (AT i ) c  we use (T
1

)
c 

as a convenient, approximate notation for (AT1 ) c /At. 

We now consider two special cases of (2.11). For symmetrical deformation 

about the x
1 
axis and cracks oriented along the x

1 
axis with traction free 

crack surfaces, no body forces and negligible inertial effects, the first 

component of (AT) c  is 

(AT
1 
 ) = 	Jr 	[n

1AW - n.(r..+At. i 
 )Ae. )(IS 

c 	E-)- 
Lt 

	

0 	 j 31 	j 
F
E 

(2.13) 

= J 	[n
1J 
AW - n.(r..+At

ji
)Ae )dS 

r234 

J(
at.. 

V 	37 1_ jidV 
 

t 

 Note that the limit of the volume integral has been written in its explicit- 

form as a result of the arguments for the existence of this limit, given in 

Appendix A. If, in addition to the above conditions, the strains are in- 

finitesimal and the deformations small, then there is no need to differentiate 
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between x
i 

and y
i
, At becomes identical to AT

ij 
and we have (recalling 

Ae
ij 

E MuMy.): 
1 	j 

(AT
1

)
c 
= Lt 

E+(31 
[n 

1 
 AW - n.(T

j  ..+AT.j  .) Dx, 
	i]dS 

1 	i  (2.14) 

BAu 
[n
13 31 	1 
AW - n.(T.. 	3x

1 
+A

3
T..) 	ildS 

234 

jr 	ST.' 
AE

ij
dV 

V 
Bx 

t 	
1 

The replacement 	 AE.. in the volume integral is made possible by 
13 	ij 

the symmetry of T i . and thus 8T../6X
1

. 
j 	 lj 

Physical Interpretation of (AT) c  

It has been shown by Atluri [27], that the vector (AT) c  has the following 

physical meaning. Let two bodies with non-propagating
1 

cracks be identical 

except for the second body having an additional, arbitrarily directed, in-

finitesimal increment in crack length characterized by the vector dc. It is 

assumed that both bodies experience identical load histories. Define total 

potential energy increments corresponding to the time increment At as 2 

.LE
1 

=
1 

+ AO
1 
+ AK

1 

AE
2 

= Alp
2 

+ AQ
2 
+ AK

2 

for the first and second bodies, respectively. In (2.15), 	is the incre- 

mental work of external forces, AO is the incremental stress-work and AK is 

the increment in the kinetic energy. (It should be noted that AQ includes the 

inelastically dissipated energy.) Then 

1Atluri [27] has shown that the l/r singularity in kinetic energy, which is as-
sociated with dynamically propagating cracks, changes the interpretation. 

2
Note that sign convention for AE 1 

and AE
2 

is opposite to [27] so as to conform 
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(AT.) c bdc
i 
 = -(AE

2 
- AE

1 
 ) 

1  
(2.16) 

where b is the length of the crack front. 

If one is only interested in self-similar crack extension in the x
1
-direction, 

then dc2  = dc3  = 0 and 

AE
2 

- AE
1  

(AT1 ) c = 	bdc
l  

(2.17) 

Therefore, (AT) is related to the incremental potential energy difference 
— c 

between two bodies which are identical except for an incremental crack length 

difference dc. 

Finite Elasticity and J 

As noted previously, the constitutive law (2.1) can be specialized to 

elastic behavior by choosing y to be zero. Therefore, (AT) as defined by 
— c 

(2.11) is a valid crack-tip characterizing parameter for general nonlinear 

elasticity with finite strains, large deformation, body forces and inertial 

effects. Howerver, the basic premise of elastic behavior is that the con-

stitutive relations are independent of the histories of deformation and stress. 

This means that the constitutive relations can be derived from a potential. 

For instance, a potential, U, exists for t, the first Piola-Kirchhoff stress, 

such that 

T 	au 
t (2.18) 

In the following, we consider the reference configuration to be the stress-free, 

undeformed configuration at t=0, and therefore drop the subscript t for con-

venience. As a result of the existence of the relation (2.18), it is possible to 

state two identities which are analogous to those of (2.5) and (2.6) for the case 

tEO. 

3e 

De
DU   

3x
1 

mn  
= 	 = Ve:t

T 
- 

inn 
- 18 - 
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and 

V 	[t . el = V . t.e + Ve:t 
	

(2.20) 

Similarly, the linear momentum balance ;i.e., equilibrium) condition is now 

V . t + p(f - a) = 0 
	

(2.21) 

and the boundary conditions 

n . t = t 

- 

on S
t 
	 (2.22) 

e = e

- 

 on S
e 
	 (2.23) 

Noting the similarity of equations (2.18) through (2.23) with (2.4) through 

(2.9) it is easy to arrive at the following conservation law 

J {VU - V . [t . T] - p(f - a) . e}dV 	 (2.24) 
V 

+ ir 	[n . t - t] . edS + f n . t . (e - e)dS 
S
t 	

S
e 

Following the procedure used'in deriving (AT) c  from (2.2) we apply the diver- 

gence theorem to (2.24) for the volume V - V and take the limit as E goes 

to zero. The path-independent vector quantity resulting from this procedure will 

be called J. 

J = 
Lt 

[nU - 	. 	 . e]dS 
c-)-0 

(2.25) 

L 
c4-0 

 t / jr1.7_v  
=

234 

[nU - n . t . e]dS + 	 - f) . edV 
— —  

+ J . 	+ Jr 	nUdS - jr 	. edS - Jr n . 	. edS !  
r
12 	

F
45 	

S
t 
	S e 

In writing (2.22) through (2.25) it is understood that o is the mass density 

in the reference configuration, n is the unit normal in the reference configu-

ration, f are arbitrary body forces per unit mass, a is the absolute material 
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acceleration, and t are prescribed tractions per unit undeformed area S
t

. 

We now consider several special cases of (2.25). If the problem being 

considered involves a crack oriented along the x
1 

coordinate direction and is 

loaded so that only mode I crack-tip behavior occurs, then J I  is of primary 

interest and we have: 

[n U - n.t..e. ]dS + 	Jr 
jl = Jr 	1 	ij Jl 	E40) 	(ai 

- f
i
)edV 

	

r
234 	 V-V 

T.
1
e. dS - f n.t..e. dS 
11 	 1 1J J1 

	

t 	
S
e 

(2.26) 

If in addition the problem involves infinitesimal strains, small displacements 

and traction-free crack surfaces, we have 

jl = Jrr 
234 

au. 
-I  dS + 	Jr

1 
 p(a. 

V 
- f.) 

1 

91.1 4  
(2.27) Ln U - n.T 	- 

1 	ij 	DX
1 

dV 
Dx1 

where use has been made of the existence arguments of Appenix A in taking the 

limit of the volume integral. 

For elastic behavior and non-propagating cracks, Atluri [27] shows that 

J has the meaning of energy release rate to a process zone V in the sense that 

DE 
J
k
bdc

k 
= - 	dt 

Dt 

where b is the length of the crack front, 

DE 	D4,_ 	DS2E 	DKE  
---E- _ 
Dt 	Dt 	Dt 	Dt 

and 

[DE 
dt = E (t + dt) - E 

Dt 

(2.28) 

For an elasto-dynamically propagating crack (i.e., singular kinetic energy) 

Atluri [27] concludes that 
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DL 
 

Jkbdck  = [-- 
Dt 	

dt 	 (2.29) 

where L is the Lagrangian (i.e., L E K - ib  -Q) such that 

DL 	Dtp e 	DS-2 	DK 
— — 

Dt 	Dt 

- 

Dt 

▪  

Dt 

Therefore, Jk  has the meaning of "rate of change of Lagrangian per unit crack 

growth". 

We now consider the special case of steady-state creep behavior. 

Steady-State Creep and C*  

It has been shown that (AT) characterizes the crack-tip field for mat-
- c 

erials which exhibit creep behavior such as in (2.1). It is known that under 

certain conditions of applied loading, the constitutive relation (2.1) can (after 

long times) result in a steady-state. This steady-state is primarily charcter-

ized by the time independence of the stresses (i.e., AU = At.. = 0). Specializing 
J 1  

(2.13) to steady-state conditions, we define the steady-state value of (AT ) : 
-1 c 

Lt 
(AT ) 	= 	 [n 	.Ae. - n.T Ae 

1 css 	E4-0 	1 ij ij 	j ji 	
]dS 

 
(2.30) 

jr 	aT.. 
[n
1ij 	j 
T Ae 	- n.T..Ae. ]dS - 	

Aeij 
.dV 

• 

r
234 	

V Dy 
t  

Because (2.1) results in a power-law relation at steady-state, which is 

analogous to the power law deformation-theory plasticity (or essentially non-

linear elasticity), Goldman and Hutchinson [26] have suggested a path-independent 

C*
1 
 integral, 

where 

f 	 au 
C * = J  [11 w* - n.r.. 	I ] dS 

ij 3x 
1 

W* = j( 13 r
ij

d
ij 0 

(2.31) 

(2.32) 
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The question of how C*
1 
 and 

(AT1)css 
are related, is a natural one. Before 

obtaining an equation relating C* to 
(AT1)css' 

however, the conservation integral 

(2.2) will be used to derive a generalized vector  integral C*. 

In specializing (2.2) to steady-state we note that now stress is a 

function of the strain rate, and that stress increments are zero. Thus, 

AwEt:Ae. Also we may write: 

[V AW - (V T):Ae]dV = 	T:V AedV 
-t 	-t- 	 - -t 

/
t 	

iV
t 

Thus, at steady-state, we may write (2.2) as: 

0 = f 	[T:(V
-t 

 Ae) - V . (T.Ae) - p t (f - a) . te]dV 

Vt 
 -t 

[n
t 
 . T - t] . AedS + 	nt 	(fie - ie) dS 

- 
+

t 	
irs

e 

or equivalently, in 

0 = 

t 

+ 	[n
t  - 

Using the symmetry 

JO 	

[T: 

T:V e = 	T:V 
-t- 	-t 

As a result of the incompressibility 

T:V
t- 	— 

E = T T :V 

and 	W* = 	-1.1 	T T i 

rate form, 

(V 6) - Vt  • 	( I-0 - P t (f  - a) -t - 	- 

n 	. . 	- 	. edS + fs 	
t 

of T we note that: 

. 	. 
e
T 1 

 (e + 	)] = t:V 
2 	- 	 -t- 

condition G 

E 

• dE ij 

. 

ii 

&NV 

- 

= 

e)dS 

we have 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

which leads to 

_ 71 _ 



Lt 
-->.0 Jr 	 j 31 11 C1 	E 
	 [n 114* - n ... .T 	idS = (C1 

)
E 

r 

(2.40) 

3W*  = T. 
3.* 	ij 

Combining the results of the above manipulations we have: 

	

3W* 	31,1*  D mn  V w* - T / : V E = T:V 
-t 	ay i 	a mn ay. 	-t- 	-t- 

1 

(2.37) 

(2.38) 

Using (2.38) and the divergence theorem while applying (2.33) to V t  - VE , we 

define the vector quantity (C*) E : 

.11 [n
t 
 W* - n

-t 
 . T .e]dS - f t (E - a) . edV 	 (2.39) 

V
- 

234 	 t
-V 

 E 

+ Jr n W*dS + jr n W*dS - jr 	. 	edS - jr  n . T. TAB 
-t 	 -t 	 -t  r 12 	 r 45 	 S t 	 s

e 

= Jr [n W* - n . I . e]dS E (C*) 

If we define the limit of (C*) E  as E->.-0 to be C*, we have a quantity which 

characterizes the crack-tip field and is independent of the selection of r
234' 

Restricting our attention to problems involving symmetric deformations about 

the x
1 
axis and cracks oriented along the x

1 
axis, with traction-free crack 

faces, no body forces and negligible inertia effects, we find that 

-t -t - 

	

= f 	[n
1
W* - n. 	.e. IdS 

Y
234 	

31 11 

In computing W* it is convenient to invert (2.1), substitute the re-

suit into (2.36) and use the following identity to complete the integration: 

l+n 
1-n 

(2.41) 

	

d( eq) n 	2 l+n 
= 3-  (-17-17) U

eq) n EiJ 
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The result of this manipulation is: 

1 	
l+n 

W* - l+n (1)n( eq
) n 	 (2.42) 

or W' - 1  Y(6eq )
1n 

Relationship of 
(T1)css 

and C* for Steady-State Creep 

(2.43) 

  

Now we will relate C* of (2.40) to the steady-state value of (AT
1
)
c

. 

First we rewrite (2.30) in rate form as: 

(i 1 ) css 
Lt 
E4•0 

[n 1 	. 	. - n. T 	](IS 
1 ij ij 	j j il 

(2.44) 

[n 	. - n.T..e. ldS - 1. 	
B 	

e dV 1 13 ij 	3 ji 11 
t 

Y1 

Using the notation W=T..e. we have 
1J 1j 

(i1 ) css = if 	
(n
13 11 
W - n.T..e.

1 
 )dS 

234 

DT.. 
- 

	

 ay 	ij 
dv 

Noting that: 

. 

W  = T 	•• = Ti1 • 	(e  • 	e..)  = T ' •  • lj 	lj 2 	i3 	j 	• 	• 

(2.45) 

(2.46) 

it is seen that W is the rate of stress-working density,  while W* is just a  

mathematical potential for T!.. As a result of incompressibility we can write 
iJ 

	

1 	l+n 

	

W = aeqeq = Y(aeq )
l+n 

= (1) n 	) y 	eq 
(2.47) 

as contrasted to W* of (2.42) and (2.43). Comparing the left equalities of 

1
This result is only valid for steady-state creep and is obtained through the 
substitution of the steady-state specialization of (2.1) into (2.46). 
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(2.40) and (2.44), it is seen that (i1) css and C* are related by: 

( ii) 	c* 	Lt 
css 	1 

▪  

e4-0
F 	1 

n (W  
W) dS (2.48a) 

= c* 	Lt Jr n,(a n+1
dS e  )q  

1 

▪  

n+1 E-÷c) 	r 
(2.48b) 

E 

Appendix B gives several numerical examples of relation (2.48) for two rather 

extreme values of n. 

It is now clear that C* and (AT)
c 
are-not equivalent quantities under 

any condition despite their being derivable from the same conservation law
1
. The 

quantity (AI)
c 

follows more directly from the conservation law and is the more gen-

eral quantity not only in that it is applicable to nonsteady as well as steady- 

state creep but also in that it is applicable to constitutive laws which are more gen-

eral than (2.1). The quantity C* relies on the special property of (2.1) which allows 

the existence of a potential W* for the stresses (T'). Furthermore, since W* does 

not have any physical meaning, whereas W has the meaning of stress-working density, 

it is understandable that (AT) has an energy interpretation whereas C* does not. 
c 

It is for this reason that it seems more appropriate to refer to experimental measure-
. 

dE 
ments of - 

(1a 
as measurements of 

(T1)c 
as opposed to measurements of C or J . 

1 

The HRR Field  

We now give the HRR field in terms of (AT
1

)
c
. Whereas similar relations 

have been written in terms of C* for steady-state creep [36], the relations in 

terms of (,6,T
1

)
c 
will be valid for nonsteady creep as well as steady-state creep. 

The HRR field as given in [37] but modified for creep by replacing E 	and u
i 

by 
13 

and a. respectively, is: 
13 

1Note that these equations are derived on the assumption that 	(i.e., creep 
steady-state). Therefore, in order to have a well defined creep constitutive 
law we must have y#0 and n finite. 
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1 1* = I + 1711-1 jr [a
eg

( 0 )] 11+1  cosede 
-Tf 

TT 

(2.51) 

-1 

[T..,a 
eq 

 ] = K 
a
rn+1  rs..(0),Ffr

eq
(en 

lj  

-n 

= yK r
n+1 

E.(0) 
13 	E 	13 

1 
n+1 

	

1:1 = yK r 	u.(0) 
1 

(2.49a) 

(2.49b) 

(2.49c) 

where
eq

(0) has been normalized to have a maximum value of unity and K a and 

K
c 
are amplitude factors which are related by 

K = (K
a

) n 	 (2.49d) 

It can therefore be seen that the asymptotic crack-tip fields are entirely 

determined when Ka (or K ) is known or specified. Combining (2.49a,b,c) with 

the first equality of (2.14), using (2.49d) and rearranging, gives: 

1 	 1 
((AT

I.
) 
 c

)  n+1 ( (il)c  n+1 
Ka  _1 	yi*At 	- yI* (2.50) 

where I* is analogous to I defined by Eq. (24) of [6] except for the factor 

n/(n+1) multiplying the energy density term. To be explicit, 

It is therefore seen that knowing the value of 
(T1)c 

is equivalent to knowing 

K
a 
and thus is sufficient for defining all aspects of the asymptotic crack-tip 

field during nonsteady creep as well as under steady-state creep conditions. 



SECTION III 

DERIVATION OF FINITE ELEMENT EQUATIONS 

Before stating the variational principle and deriving the finite element 

equations, it is beneficial to illustrate the constitutive behavior to which 

the finite element model is addressed. 

Elastic/Viscoplastic Constitutive Relations  

A rather general rate constitutive law proposed by Perzyna [38], can be 

written in incremental form as: 

AE. 
= 	AT? 

4.  1-  
211 	

2v AT 
kk 6. 
	y<CD(F)). arDf  

j At 
ij 	3E 

i 
(3.1) 

where p, E and v are the elastic shear modulus, , Young's modulus and Poisson's 

ratio, respectively, T!. (=Tii 	
3 Tkk6 j )  

- — 	is the deviatoric stress and y is a 
13 	 i 

viscosity constant of the material. In writing (3.1) it is implied that 

e
+ 
 vp 

Acii = IEij 	Ac ij 

vp 
where Ac

e
. and AE

ij 
are the elastic and viscoplastic strain increments, res- 

pectively. The yield function F(T
ijk 

,cvP) governs the magnitude of the incremental 

viscoplastic strains through the function <cD(F)> where 

0 	for F < 0 
<cD(F)› = 
	 (3.2) 

(1)(F) for F > 0 



The relative magnitudes for the incremental viscoplastic strain components 

are seen to depend on the factor of/T...
1 

This implies that AE.
v
., when con-

sidered as a vector in nine-dimensional stress space, is always directed along 

the normal to the surface f(T
ij

,E
vp 
k 

). 

By choosing FE f=a [a
eq 

= (3/2(T' 1 .)
1/2

] such that af/3T
ij 

= (3/2) 
eq lJ iJ 

(Ti./a ), and choosing (D(F) = (F) n  we find that (3.1) becomes 
ij eq 

AE.. 

	

ij = 1 AT , 4.  1-2v  &r 6 	4. (3/2)y(a  : 
211 	ij 	3E 	kk ij 	 eq 	13 At  

This represents the special case of creep behavior which is considered exclusively 

in this study.
2 
 It should be understood, however, that the finite element 

model which is described below is applicable to the more general behavior rep-

resented by (3.1). 

Derivation of Finite Element Equations  

The finite element model is derived from the principle of virtual work 

T..(Se..dV - jr t idu idS = 0 	 (3.4) 
S
a 

rft the present finite element analysis, we assume only infinitesimal defor-

mations and strains; hence there is no need to differentiate between the deformed 

and undeformed configurations. 

Inwriting(3.4)itshouldbenotedthatT..are the stresses 

existing at time t + At (where t is the current time), t
i 
are the prescribed 

tractions on S at t + At, and Su.[SE.. = (1/2)(ou. .+6u. .)] are arbitrary 
Q 

	

1 	13 	 1,3 	3,1 

compatible virtual displacements. 

Following customary procedures we introduce the element displacement 

shape functions which relate element displacement u to element nodal 

i
It is common to choose fEF in which case we have what is called an associative 
law. 

2
While (3.3) is known to deviate from real material behavior (especially for primary 
creep) it is a widely used constitutive law and therefore has been adopted in the 
present study. 
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displacements { q } 

u = {u} = [N]{q}; du = {Su} = [N]{6q} 	 (3.5) 
1 

We again use the customary notation wherein strain (and stress) components 

are placed in one-dimensional arrays 

{c} = [B]{q}; {6E} = [B]fSql 	 (3.6) 

Substituting (3.5) and (3.6) into (3.4) and applying conventional procedures 

for assembling element matrices into global matrices we have 

E
ele [ 

	

{T}
T
[B]dV 

e 

- Jr 	{i}T[N]dli ele{601  E {F}T {6Q} = 0 

a
e 

Since {6q} are arbitrary virtual nodal displacements, it follows that 

r 
teleL f {T}

T
[B]dV - f 	a1

T
[N]dSA = {F} T 

 = {0}T f 
	 S 

(3.7) 

We now express the stresses {t} at t + At in terms of the current 

stresses, {T } I , and the incremental stresses corresponding to the time in-

crement At: 

{T} = fT1 I+1 = {T} + {AT} I+1 
	 (3. 8) 

In (3.8) and in the following, the I and I-I-1 subscripts designate the 

incremental solution with which the quantity is associated. Application of 

the incremental elastic constitutive law results in 

{T} I+1 = {T} + [E]{AE
el

}
I+1 
	 (3.9) 

= {T} I  + [E][{AE} I+1  - f A 'vp l i+11 

where {AE
vp}I+1 

are the incremental viscoplastic strains and [E] is the matrix 

_ 2 0  _ 



of elastic constants. Substituting (3.9) into (3.7), taking the transpose, 

and placing the known terms on the right hand side we have the final form of 

the finite element equations: 

where 

• 

[1(]141 I+1 = 1T1 I+1 	IS 	- {R} I vp 1+1 

[K] 	ele 
[B]

T
[E][B]dV 

e 
=  

{T} 

	

I+1 	ele J 	
[N]

T
{t} 1+1

dS 

o'
e 

fS vp 
1
I+1 	ele 

= 	 [B]
T
[E]fAc

vp
1
I+1

dV 
eE  

e 

{R}I 
	ele 
= 	Jr [B]

T
fT) dV 

V 
e 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The above volume integrals are evaluated in the current work by 2x2 Gauss 

quadrature. The array fT}  is input directly in terms of node point forces. 

Solution Procedures  

It should be noted that [K] of (3.10) is just the elastic stiffness 

and therefore only needs to be formed and decomposed
1 
once. This results in 

significant savings in the number of computations per time step as compared to 

methods using stiffness matrices which mast be reformed at each step (i.e., 

tangent stiffness methods). It should also be noted that the term {S
vp

} I+1 

is computed from incremental viscoplastic strains {4E
vp

}
1+1 

which are esti-

mated using {T} I  and the material constitutive law (3.1). Only for the 

1
The equations (3.10) are solved in the current work by the decomposition [K]= 
[L][D][L]T where [D] is a diagonal matrix (the only nonzero entries are those 
on its diagonal) and [L] is a lower triangular matrix (the only nonzero entries 
are those below its diagonal); see for example [39]. 
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special situation when the stresses do not change with time will this estimate 

be exact. Having obtained the incremental nodal displacements 
{AOI+1 

by 

solving (3.10), one can easily find the total incremental strains 
{AE)I+1 

via 

the incremental analogue of (3.6). We now describe two procedures for ob- 

taining 1711+1. 

The first and simpler method to cbtain 
{T}I+1 

is to substitute the esti- 

matedfAE
vp

1 I+1 used in solving for {AO I+1 into (3.9). If one does this, then 

it happens that 

{R}
I+1 

= {T}
I+1 

and therefore (3.10) becomes for the next step
1 

[K]{AQ} I+2  = f 1 -T- 1+2 	ISvpI+2 	{T}I+1 

. 
{AT}1+2 

+ {S
vp

}
1+2 

(3.15) 

(3.16) 

This method was compared to the following method and was found to require smaller 

time steps to achieve similar results. 

Rather than using the estimated values of 
{1cvp}1+1 

and (3.19) to 

determine 
{T}I+1' 

the constitutive relation (2.1) is integrated over the cur-

rent time step at each Gaussian quadrature point with the condition that total 

strain {E} varies linearly with respect to time from {E}
I 

to {E}
1+1" 

(The 

present study uses an Eulerian scheme with each time step being divided into 

five subincrements.) The result of this procedure is better adherence to the 

postulated constitutive law at the expense of introducing a somewhat unequili-

brated stress state. The amount of disequilibrium depends on the accuracy of 

the original estimate for the incremental viscoplastic strains and thus on the 

time step size. 

At this point one has two alternatives. The first is to use the 

1
This procedure results in the current model reducing to that of Zienkiewicz 
and Cormeau [40]. 
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viscoplastic strain increments obtained through the time integration procedure 

as an improved estimate and to re-solve (3.10) for the current time step. This 

procedure would, after several iterations, result in a stress state which is 

equilibrated to within some small user specified tolerance. With this type of 

procedure the time steps could be as large as those used with tangent stiffness 

methods. Further, it is reasonable to expect the solution to be at least as 

accurate as if a tangent stiffness method were used.
1 

The second alternative is to go immediately to the next time step with 

the understanding that the term till, in (3.10) results in the disequilibrium 

from the Ith step being corrected in the I+1 step. This feature is the result 

of the virtual work statement (3.4) being written in terms of total stress and 

tractions rather than incremental quantities. Owing to this corrective nature 

and to the diminishing returns one obtains from additional iterations, the 

second alternati7e is used in the present study. 

Regulation of Time Steps  

The creep calculations use a variable time step size which is auto-

matically regulated by the finite element program based on two criteria. The 

first criterion is the maximum percent difference between the incremental 

equivalent estimated creep strain and the incremental equivalent integrated  

creep strain for all the Gauss points in the mesh: 

C
1 
 = Max 

 

AE
EST 

- AE
INT 

 

(3.17) 

 

AE
INT 

 

     

The second criterion is the maximum ratio of incremental equivalent integrated 

1 
This procedure could actually be more accurate if similar constitutive law 
integration procedures and equilibrium iterations are not performed with the 
tangent stiffness procedure. Also, it has been shown [41] that many element 
types become overly stiff when using the tangent stiffness method for modeling 
constitutive behavior approaching incompressibility. This problem is not en-
countered with the current method. 

- 32 - 



creep strain to the equivalent elastic strain: 

C
2 

= Max 
[AEINT 5-] 
	

(3.18) 

The user specified, maximum permissible values for C
1 

and C
2 
are C

1- 
 and C2, 

respectively. The size of the next step is then obtained from 

[T 
At

I+1 
= At

I 
. Min Cl  , c  

2 
(3.19) 

Note that the initial time increment cannot be determined from (3.19) and must 

be specified by the user so as to satisfy the two step size criteria. 

In the present study, the values of C
1- 
 and C

2- 
 are 0.2 and 1.0, res-

pectively. With these values, it has been found that the initial time steps 

are controlled by C
1 
while later time steps are controlled by C 2. The values 

of C
1 

and C
2 

are strongly affected by the mesh refinement since a finer mesh 

results in Gauss points being closer to the crack-tip and therefore having larger 

stresses and strain rates. To determine the sensitivity of the solution to the 

selection of C
1 
 and C 2 , a compact specimen was analyzed with the above criteria 

and also with C
1 
and C being halved (i.e., C = 0.1 and C = 0.5). It was 

2 	 1 	 2 

found that the load point displacement differed by less than 0.5% for all 

time and that the steady-state solutions were essentially identical. It there-

fore appears these values of C
1 

and C
2 

are small enough to ensure that the 

solutions to be discussed do not depend on these step size criteria. 



SECTION IV 

ELEMENTS FOR SINGULAR CRACK-TIP BEHAVIOR 

This section describes and compares several two-dimensional crack-tip 

singularity elements. Perhaps the primary motivation for introducing singu-

lar crack-tip elements into finite element models is the significant savings in 

computational expense. It is shown in Section V, for example, that 57 element 

model with elastic, 
r-1/2, 

 singular elements results in a more accurate solution 

than a non-singular 102 element model. The savings in CP time in this case is 

greater than 50%. Generally, one must consider that some additional effort 

is required to develop and implement a special crack-tip element and that this 

tends to offset the savings in CP time. It has been discovered, however, that 

the very commonly used , eight-noded, isoparametric element can be made to 

produce an 
r-1/2 

strain singularity by merely shifting mid-side node locations 

via the node definition input data [42,43]. Therefore, a very convenient 

means for modeling linear elastic crack-tip behavior exists. It has also been 

shown [44] that a l/r type strain singularity can be obtained with this element 

type thus providing a suitable element for non-hardening plasticity problems. 

For more general singularity behavior, such as the 
r-n/(n+1) 

strain singularity 

associated with the HRR crack-tip field of power-law plasticity or creep, 

one must resort to sepcially formulated elements. 

In the following sections, we consider special elements for linear 
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elastic problem 
(r-1/2 

strain singularity) as well as special elements for 

problems involving the HRR, r
-n/(n+1) 

 , strain singularity. In discussing 

these elements, an attempt is made to point out their advantages and dis-

advantages. 

Elements for Linear Elastic Materials  

Although many special elements have been used for linear elastic frac-

ture analysis (see Atluri [45] for review), we consider here only the eight-

noded isoparametric element. There are two basic forms in which the eight-

noded isoparametric element can be used as a linear elastic crack-tip element. 

In the first form, the two midside nodes adjacent to the corner node located at 

the crack-tip are shifted toward the corner node so that they occupy the quarter-

point of their respective sides. This form is illustrated in Fig. 4.1 by the 

Type A crack-tip mesh. The second form in which the element can be used is 

illustrated in Fig. 4.1 by the Type B crack-tip mesh. In this form, the eight-

noded element is degenerated to a triangular element by defining two corner 

nodes and their midside node to be the same node which is located at the crack  

tip.  Then the two midside nodes adjacent to the crack-tip corner node are 

shifted to their quarter-points. It is important that only one node be used 

at the crack-tip, as opposed to three superposed nodes, since the latter case 

has been shown [44] to result in the 1/r type strain singularity. 

Barsoum [43,44] notes that numerical experimentation shows the degen-

erate triangular form yields more accurate results than the nondegenerate 

element. He goes on to recommend that the four-sided configuration be abandoned 

based on the premise that the 
r-1/2 

singularity exists only along the edges 

of the element and also that the strain energy for this element becomes unbounded 

if exact integration is used [44]. Ying [46], on the other hand, concludes 

that the r-1/2  singularity does exist within the four-sided element as well as 

along its edges and that the strain energy for the element is bounded (and thus 
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Fig. 4.1 Several crack-tip mesh configurations 



the element stiffness is well defined). 

Apart from the above considerations, there are two aspects of the 

degenerate Type B element which inherent:y make it preferable to the nondegenerate 

element. The first is that the process of collapsing one side of the element 

to coincide with the crack-tip results in the element local coordinates being 

transformed into a form of polar coordinates. Since the element's shape 

functions are defined in the element local coordinates it is to be expected 

that angular bias will be much less apparent for this element type. The second 

feature of the degenerate triangular element which makes it preferable is that 

it is geometrically better suited for creating crack-tip finite element 

meshes of arbitrary refinement. Since the angular dependence of the near tip 

solution is significant, this flexibility for increasing the mesh refinement 

in the angular direction is important. Combining these two aspects with the 

numerical evidence cited by Barsoum, it seems the triangular, degenerate 

element is the better element for modeling the elastic crack-tip singularity. 

For this reason, all quarter-point element calculations in the present study 

use the degenerate triangular form. In particular,themesh configuration 

Type B of Fig. 4.1 has been used exclusively. 

Elements for Materials with HRR Crack-Tip Fields  

In the previous section, we discussed crack-tip elements for linear 

elastic material behavior. It has been seen that the standard eight-noded 

isoparametric element can be made to have the 
r-1/2 

strain singularity and thus 

is useful for analysis of cracks in linear elastic materials. It can be shown 

(see for example, Atluri [451) that this is the only singularity which this eight-

noded element can exhibit. However, it can also be shown that higher order 

elements of the isoparametric family can result in singularities of the type 

-n/(n+1) provided n is an integer. If we denote the order of the isoparametric 
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interpolation as m, then singularities of the type 
r(1-0/t 

can be obtained for 

t an integer such that t<m [45]. In 1=erms of the HRR power law exponent n, 

this means we can have singularities of the type r-n/(n+1)  where n in an integer 

such that n<m-l. 

Based on the above discussion, it can be seen that it is possible to 

employ isoparametic elements as HRR crack-tip elements provided one is satisfied 

with integer values of the power law expcnent, n. By choosing the highest value 

of n which one is interested in modeling, one can then program the n+1 order 

isoparametric element. The problem with this approach is that values of n 

for common materials can be as high as 2C. This implies that one would need to 

program an isoparametric element of order 21. While this is perhaps within 

reason, it will be shown that nonisoparametric elements can be derived which are 

more readily implemented. 

Two Crack-Tip Elements from the Literature  

In this discussion of special elements we limit consideration to two-

dimensional, triangular elements with straight sides. The elements are derived 

in terms of the triangular polar coordinates (p,o) illustrated in Fig. 4.2 

andwhicharerelatecltotheglobalcartesiancoorclinates(x)by 

x.
1 
 = x.

1 
 + pfx

2 
1 	 1 

3 

	

- x
1
) 	+ 

1
-(cy + 1)(x. 

	

I_ 	2 	 1. 

2 
- x.)1 (4.1) 

In (4.1), the superscripts denote the node number. The crack-tip is assumed 

to be located at node 1 (i.e., at p=0). The geometric mapping of (4.1) is 

similar to circular polar coordinates in that the transformation cannot be 

inverted at d=0. 

We now consider several choices for the assumed displacement fields 

within the triangular region. The first choice is 

') 	, 	1, 	, 
u.(p,o) = u.

1 
 + p

X 
 (u. - u

1
.) + --kcy + 1)ku.

3  
- u-.)1 

1 	 1 	1 	2 
(4.2) 
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(..,1) X 2  

(1.,--I) 

(1,-1)----------  or=— I 	11■•• 

X I  

Fig. 4.2 Coordinate systems and node numbering conventions for the 

conforming, seven-noded arbitrary strain singularity element 



It can be seen that (4.2) Ls similar in form tc (4.1) except that P is replaced 

X 
by P (O<A<l) so as to induce a singularity in the displacement derivatives. The 

three-noded element resulting from (4.1) and (4.2) is of the type proposed by 

Tracey and Cook [47]. Inspection of (4.2) reveals that this element permits 

rigid body translation but does not permit rigid body rotations or constant 

strain modes. While problems exist for which this element provides reasonable 

results, the lack of rigid body and constant strain modes make this an un-

desirable element for general anlaysis. 

We now consider a straightforward procedure which allows an alternative 

to (4.2) to be written which (i) provides all the rigid body modes as well as 

all the constant strain modes, (ii) results in the desired r
X 
displacement be-

havior and (iii) results in compatible displacement fields with adjacent 

elements. First note that we can be assured our assumed displacement field 

contains all rigid body and constant strain modes provided it can accomodate 

the following general displacement field 

u
l 
= a

l 
+ b

l
x
l 
+ c

l
x
2 
	 (4.3a) 

u
2 
= a2 + b 2

x
1 
+ c

2
x
2 
	 (4.3b) 

where
1 
 b and c. are constants. Clearly, a l  and a2  provide for rigid 

i 	1 

translation modes, while b l  and c 2  provide for constant strains, E ll  and E
22 , 

respectively. The constants c l  and b 2  provide a rigid rotation if c l  = -b 2  0 0 

and a constant shear strain,€
12' if  cl 	

b
2 	

0. If we substitute (4.1) 

into (4.3) and regroup terms we have the result 

ul  = a + b*
1 
 P + CtPor 

u
2 

= a*
2 
 + b*

2 
 p + c

2 
 *oa 

' 

Starting from (4.4), we can now proceed to add terms as desired with the 

only condition being that we maintain compatible displacements with neighboring 

singular and nonsingular elements 
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We now consider a general approach for establishing displacement shape 

functions for triangular crack-tip elements. Since both displacement com-

ponents will follow the same form, we drop the subscript for simplicity. We 

now write 

u(p,a) = 
2 	

+ o)f3(p)  + 
1
-(1 - o)f

2
(p) 

2 
(4.5) 

with 

f 2 (P)  = a2 
	b2 p 	c2 p 

x 	
(4.6a) 

f 3 (p) = a 3  + b 3 p + c 3 p X 
	

(4.6b) 

Inspection of (4.5) shows that on the element side 1-2,u(p,-1) = f 2 (p) and 

on side 1-3,u(p,1) = f 3 (p). It can also be seen that u(l,o) is linear on 

side 2-3. Since f
2 

and f
3 

each have three unknowns, it follows that element 

sides 1-2 and 1-3 must have three nodes. This means two new nodes must be 

created. Since the geometric properties of the element do not depend on the 

locations of these nodes their positions along the edges of the element are 

arbitrary. In the following, however, we choose to place these nodes at the 

midsides. These new nodes correspond to positions 4 and 5 in Fig. 4.2. De-

noting the nodal displacements by u j , j=1,5, we now use the following con-

ditions to determine the six unknowns in (4.6a) and (4.6b) 

u(0,u) = u
1
; u(1,-1) = u

2
; u(1,1) = u

3 	
(4.7) 

u(2
'
-1) = u

4
;

2'
1) = u

5 

The result is 

a2  = a3  = u
1
; b 2  = u

2 
- u

1 
- c 2 ; b 3  = u

3 
- u

1 
- c 3  

2u 4 	u2 	ul 
2u

5 
- u

3 
-  u

1 
c
2 

= 	  c = 
2
1-X 

- 1 	
' 3 	

2
1-X 

- 1 

(4.8) 

Substituting (4.8) and (4.6) into (4.5) and defining the functions multiplying 
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i 	5  asN 

	

u 	.1.7c have 

where 

5 
5  u(p,a) = E N.0i  

i=1 I  
(4.9) 

5 	 1, X 	s 	5 	,5,h 5 
; N1 = - p - - P); N2 = 4'1 1 

N3 	4) 2 4) 2 ; N4  = y2 ; N 5  - 4) 2 41 2  

with 

1 
6 = 2

-X 
 - 1 

4)
5 

= 
1
-(1 - a) 

1 	2 
(1)
5
2 
 = 

1
-(1 + a) 

2 

5 	1 X 	 5 	2 X 
= P - TO - 	 11) 2  = TO - P) 

By examination, it can be seen that (4.9) has terms similar to those of (4.4) 

and thus can represent all the rigid body and constant strain modes. From the 

form of (4.5,6,8) it can be seen that the element must be compatible with 

neighboring elements. Therefore, we have an element whihc satisfies all the 

requirements which we originally stipulated. If the a in Fig. 4.2 and in (4.9) 

is replaced by 2a' - 1 we recover the form of the equations suggested by Stern 

[48]. 

As a result of the appearance of P
X 
in the shape functions for this 

element, the integration involved in evaluating the stiffness matrix (particularly 

the integration with respect to p) is not suited to Gauss quadrature. In [48], 

Stern derives a special integration rule, which when combined with standard 

Gauss quadrature for integration with respect to 5, results in exact stiffness 

integrations. Unfortunately, the expression (28) in [48] which specifies 

the relative radial location of the quadrature points is apparently in error. 

The corrected expression is as follows: 
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[ 1 + A - 2Ax2 -1 
 

X1 
x = Ex 
1 	2 

2X - X(1 + A)x
X-1 
2 

(4.10) 

where x
1 

and x
2 

denote the values of p at which the sampling points are located. 

The corresponding weights are then given by 

1 X-11 
2 x2 - X+1  

x = 

	

1 	A-1 	A x 	- x 
xl 2 	1 

1 A-1 	1 
27 x2 	- A+1  

	

w2 	x-1 
x2x1 - x2 

(4.11) 

(4.12) 

This quadrature rule integrates terms of the type P, P
X 

and 
P2X-1 

exactly. 

Since the rule has four parameters (xx2'ww2)  and is only required to integ-

rate three types of terms, the locations of the quadrature points are not 

uniquely defined. Selection of x2  according to the following cirterion results 

in both the numerator and denominator of the bracketed term of (4.10) being 

positive and thus results in a valid quadrature rule. 

1  

[X(2A 
1+1 1-A 

< x
2 
 < 1 
 -- 

(4.13) 

Stern [48] presents a family of elements which are developed so as to 

be compatible with surrounding nonsingular polynomial based elements of arbit-

rary order. While it should be possible to verify that each member of this 

family does indeed satisfy the requirements which were discussed in deriving 

the above element, this procedure provides little insight to the method for 

deriving such elements. In the next section, we generalize the procedure used 

in arriving at (4.9) to derive an element which is compatible with quadratic 

elements (e.g., eight-noded isoparametric elements). 

Derivation of a New Crack -Tip Element  

In this section we generalize the procedure used in the previous section 
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to derive a crack-tip element which (i) contains all rigid body and constant 

strain modes, (ii) results in compatible displacement fields with neighboring 

singular and nonsingular elements and (iii) results in an arbitrary strain singu-

larity at the crack-tip fo the type r
X-1 

(0.0,<1). 

We start in the same manner as before by writing the displacement field 

in the form 

1
c14 u(p,a) = (1-a

2
)f

1
(p) + --a

2
1 (a-l)f

2
(p) + 	(-1)f

3
(p) 

2 
--c- 

 

where 

f (p) = a. 	b.p + c.p
X 

 
1 	1 	1 

(4.14) 

(4.15) 

Noting that the form of (4.15) requires three displacements being specified 

along each of three radial line segments (a= -1, a = 0, a = 1) we introduce 

node points at locations 4 through 7 as illustrated in Fig. 4.2. At this 

point it is seen that this procedure will result in an interior node. It 

will be shown later that this node can be eliminated in a number of ways. 

Denoting the nodal displacements by u j , j=1,7 we now use the following 

conditions to determine the nine unknowns in (4.14,15): 

u(0,a) = u
1
; u(1,-1) = u

2
; u(1,1) = u

3 
(4.16) 

u(--
1  

2 
-1) = u

4
; u(- 

' 
1) = u5

; u(1,0) = u
6 

u(2 , 0) 	u
7 

2 

The result is 

a
l 
= a

2 
= a

3 
= u

l 

1) 1  = u
6 

- u1 - c l ; b 2  =u2 - u
1 

- c2 ; b 3  = u
3 
 -u1 - c3  

1 	7 	6 	1 	1 	4 	2 	1 
cl  = 	- u - u ); c 2  = T3-(2u - u - u ) 

1 	5 	3 	1 
c3 

= -(2u - u - u ) 

(4.17) 
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with 	s = 2
1-X 

 - 1 

Substituting (4.17) and (4.15) into (4.14) and defining the functions multiplying 

i 	7  as N u 	. we have 

where 

7 
7  

u(p,(5) = 	N.0
i  

i=1 i 
(4.18) 

N
7 
= 1 - p - 

1
.(P

X 
- p) 

7 	7 7 	7 	7 7 	7 	7 7 
N
2 

= (1)
2

II)
2
; N

3 
= (1) ti)

2
; N

4 
= (P

2
IP
1 

7 	7 7 	7 	7 7 	7 	7 7 
N
5 
=11)

1 
N
6 

= (t,
1

IP
2
; N

7 
=

1
IP
1 

with 

7 	
2  1 
	 7 	1 

--41 (1)
7
1 	 2 
= 1 - 2 ; 2 = —1c(cr - 1); 3 = 	(a + 1) 

7 	2 
= 	X - 1 	(3 

7 	1 
II)
2 
=i(1 + 	-

x I 

Inspection of the derived shape functions verifies that this element satisfies 

all the requirements which we stipulated at the beginning of the derivation. It 

was noted that this element has an interior node. While interior nodes are 

generally avoided so as to reduce the bandwidth of the equations to be solved, 

it seems that in the case of crack-tip elements the advantage of having additional 

degrees of freedom in the vicinity of the crack-tip more than compensates for 

the few additional equations which are involved. 

We now consider several alternatives for eliminating the interior node 

of this element and note that one of these results in the corresponding element 

of Stern [48]. We start by substituting (4.15) into (4.14); using the condition 

that f (0) = f
2
(0) = f

3
(0) and regrouping terms we can write 

1 

u(p,a) = [a
1 
 + b

1 
 p + c

l
p
x

] 
	

(con't on next page) 
	

(4.19) 
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-a 
1 

[(b
3 
 - b

2 
 )p + (c3  - c2

)p
x

] 
2  

b 	b, 	 c 	c, 	X 2 + 	p 
+ a  2 [ 22 + 	- bi)P (-2- 	2 	1 

It should be understood that any arbitrary condition relating u
7 
to one, several 

or all of u
1 
through u

6 
will suffice to remove the interior node (i.e., node 7) 

from the element relations. However, it seems more natural to eliminate the 

node by the removal of one of the terms of (4.19). Noting that the first 

two terms of the first square bracket and the first term of the second square 

bracket represent the rigid body modes and constant strain modes, we are left 

with four terms which can possibly be deleted so as to eliminate the interior 

node. 

If we choose to eliminate the term c
1
p
X 
 by constraining c

1 
to be zero 

we see from (4.17) that this implies u
7 

= 
1
-(u

6 
+ u

1
). This choice would some- 

2 

what defeat the objective of having singular displacement derivatives- and thus 

is not advisable. Furthermore, it is inconsistent to retain the higher order 

terms ap p` and a
2
p
X 
while not retaining p. Note that the term ap p` cannot be 

used to eliminate u
7 
since u

7 
does not appear in its coefficient (i.e., in 

either c 2  or c3). Therefore we are left with the terms o
2
p and

2
o
X
. Either 

of these terms can be chosen to eliminate u
7
. Stern's element [48] corres-

ponds to the case in which the coefficient of alp is set identically to zero. 

Of the elements discussed above, only the seven-noded element has been 

implemented in the present study. In Section V, this element is used for 

elastic analysis as well as for creep analysis. The special quadrature rule 

proposed by Stern [48] and summarized in (4.10) through (4.13) has been used-

exclusively in evaluating this element's stiffness. 



SECTION V 

CREEP CRACK GROWTH COMPUTATIONS 

Description of Problems 

The creep crack growth analyses which will be presented in this chapter 

deal with three distinct problems. The following sections introduce each 

problem by describing the physical aspects such as geometry, loading 

and material properties as well as by describing why the problem was selected 

and what is hoped to be gained by its consideration. 

All calculations in this chapter assume infinitesimal strains and small 

deformations. The crack propagation calculations use quarter-point crack-tip 

elements and a mesh shifting/remeshing procedure. 

Problem I: Non-Steady Creep of a Compact Specimen 

The compact specimen geometry was chosen for study because of its wide-

spread use in fracture experiments and because numerical solutions for this 

problem have appeared in the literature thus providing results with which to 

compare. The dimensions of the specimen as well as the material properties 

and applied loading (see Fig. 5.1) were chosen to coincide with those used 

recently by Ehlers and Riedel [33]. The problem is used for a mesh refinement 

sensitivity study and for exploring various aspects of the 
(T1)c 

and C*
1 
 con- 

tour integrals during both nonsteady and steady-state creep. 

Several finite element meshes have been uased in the analysis. All 
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of these meshes employ two-dimensional, eight-noded, isoparametric elements. 

The integrations for these elements are accomplished with 2x2 Gauss quadrature 

and therefore only elements with straight sides are employed. As seen from 

the meshes in Fig. 5, 2, the pin-loading hole is not modeled. In all models 

the horizontal placement of the point load corresponds with the load line of the 

ASTM standard geometry (x = 25.0 mm). The vertical position is y = 32.5mm. 

A sensitivity study showed that shifting the load to y = 40 mm has virtually 

no effect on the pertinent aspects of the solution. 

Most of the meshes contain collapsed eight-noded isoparametric elements 

at the crack-tip as illustrated in Fig. 6.2. In several calculations, the 

midside nodes of these crack-tip elements are shifted to their quarter-points 

so as to produce an 
r-1/2 

strain singularity at the crack-tip. Also, several 

calculations are performed with a special conforming seven-noded, triangular 

element which imposes the HRR, 
r-n/(n+1) 

 , type strain singularity. Table 5.1 iden-

tifies the meshes for which calculations are made and also gives the load point 

displacement and J
1 
for the elastic solutions. These J

1 
 values are compared to 

those based on the expression for K
I 

given by Srawley [49]. 

Problem II: Constant Velocity Propagation in a Creeping Strip  

This problem is concerned with a finite height, infinitely wide strip, 

with a semi-infinite crack. Loading consists of uniformly applied displacement 

rates at the top and bottom edges. This problem has been chosen for two 

reasons. First, since the strip is infinitely wide and the boundary conditions 

do not change with time, the propagating crack-tip fields can be expected to 

reach a "convecting steady-state" creep condition. Here we use the phrase 

"convecting steady-state" to mean that the field remains unchanged in time with 

respect to a coordinate system which is centered at and moving with the crack- 

tip. This terminology is used so as not to confuse this condition with the usual 

steady-state creep condition in which material stress rates are zero. 

- 49 - 



Ali 

I 
I 

I 
a 

I 
a 
a 

a I 
a 

. 

a 

I 
I \// 

a 

1 
, 

a 

i 
I 
a 

55 elements: 
198 nodes 
384 d.o.f. 

57 e lements - 

200 nodes 
388 d.o.f. 

a. The 55 (square crack tip elements) and 57 (triangular 
crack tip elements)element meshes 

b. The 102 element mesh (331 nodes; 642 d.o.f.) 

c. The 300 element mesh (941 nodes; 1840 

Fig. 5.2 Finite element meshes for the compact specimen 

(contour integral paths are indicated by dashed lines) 

- 50 - 



Table 5.1 Summary of Computational Aspects and Comparison with Results from the Literature 

Elastic Solution 	 Creep Solution  

mesh 	 load point 	 difference 	CP 	 6 t , number CP time* quasi steady- difference 
J 

Solution 	description 	displacement 	1 	fm 24.2 	time* 	initial/final' 	of 	per step statet Ct 
No. 	(see Fig. 3) 	(mm) 	(N/mm) [49 ](7) 	(sec) 	(hrs) 	steps 	(sec) (sec) 	(N/m. hr) 

0.224 22.8 (-5.8) 15 1.0 	/34 40 5 90. (-32.8) 

0.234 24.2 ( 	0.0) 15 0.009 	/17 61 5 121. ( 	-9.7) 

0.231 24.0 (-0.8) 34 0.02 	/24 50 8 116. (-13.4) 

0.232 24.0 (-0.8) 34 0.02 	/24 50 8 116. (-13.4) 

0.233 24.3 ( 	0.4) 34 0.0004/ 	6.0 143 8 130. (- 	3.0) 

0.234 24.1 (-0.4) 276 0.0008/ 	7.3 121 32 131. (- 	2.2) 

0.234 24.2 ( 	0.0) 18 0.005 	/16 66 5 121. (- 	9.7) 

0.229 23.6 (-2.5) 18 0.005 	/ 	9.1 97 5 126. (- 	6.0) 

0.233 24.2 ( 	0.0) 38 0.0003/ 	6.4 90 8 131. (- 	2.2) 

0.232 24.1 (-0.4) 38 0.0003/ 	3.7 132 9 132. (- 	1.5) 

1 	55 elements 
(nun-singular) 

2 	57 elements 
(1/4-point) 

3 	102 elements 
(non-singular) 

4 	102 elements 
p,3 y=40 mm 
(non-singular) 

5 	102 elements 
(1/4-point) 

6 	300 elements 
(non-singular) 

7 	57 elements 
(elastic, 7-node) 

8 	57 elements 
(creep, 7-node) 

9 	102 elements 
(elastic, 7-node) 

10 	102 elements 
(creep, 7-node) 

*Control Data CYBER 74 
tSolutions 1-8 are stopped at 600 hours; solutions 9-10 are stopped at 300 hours 



In the convecting steady-state case, stress rates for material points 

are not zero. As a result, C cannot (in a strict sense) be a valid crack-tip 

parameter. As should be clear from earlier discussions, 
(T1)c 

is a valid 

parameter at all crack speeds since it does not require material stress rates 

to be zero. From a practical point of view, if the crack speed is low enough, 

then one can expect C*
1 
 to be a useful quantity. By varying the crack propagation 

speeds for this problem over the range of velocities observed experimentally 

(for a given material), it should be possible to determine if this range has 

any portions in common with the range of velocities for which C is a useful 

parameter. 

The second reason for choosing this problem is that C* can be evaluated 

analytically for the special case when the crack is stationary. This allows an 

independent check on the finite element calculations and serves as a reference 

for the analyses in which the crack is propagating. The analytical evaluation 

of C*
1 
 parallels the evaluation of J

1 
for a similar elastic strip problem as 

discussed by Rice [50]. (See Appendix E) It should be noted that Ct has been 

shown to be related to the steady-state value of (T
1
)
c 

and therefore it is 

possible to obtain 
(T1)css 

for the stationary crack case from C*
1 
 and equation 

(B.1) of Appendix B. The direct evaluation of 
(T1)c 

in terms of either its in-

tegral representation or its energy representation requires knowledge of the 

stresses in the region of the strip adjacent to the crack-tip and therefore is 

not a trivial task. 

The material properties used in this problem are representative of 304 

stainless steel at 650 °C. These material properties and the finite element 

discretization are given in Fig. 5.3. The mesh for this problem may at first 

appear rather coarse; however, elastic and steady-state creep solutions obtained 

with this mesh are sufficiently accurate to justify its use. The comparison 

of computed elastic J
1 
values and steady-state C values with their analytic 
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Table 5.2 Summary of Analysis Parameters for Creep Crack Growth 

in the Plane Strain Strip of Fig. 5.3 

Analytic Results Computed Results 

dt 
42, from (6.4) 

(mm/hr) 

C* 1 

( N/mm • hr) 

remote 
T
yy 

( MPa ) 

1) 

( mm/hr) 

(5 
(elastic) 

(mm) 

J1 

(N/mm) 

C 1* 

(N/mm•hr) 

J 1 

(N/mm) average 
upper 
bound 

0.05 

< n , . - 

50.0 

83 

148 

197 

3.44 • 10 

1.94 • 10 - 2  

1.45 • 10 -1  

5.04 • 10 -2  

8.95 • 10 -2  

1.19. 10 -1  

4.18 

13.2 

23.5 

4.99 • 10 -2  

4.99 

49.8 

4.19 

13.2 

23.5 

1.00 • 10 -4  

2.22 • 10 2  

3.30 • 10 -1 

5.00 • 10 -4  

1.11 	• 10 -1  

1.65 



values is given in Table 5.2. 

Problem III: Creep Crack Growth in Double-Edge-Crack Specimens  

The purpose of considering this problem is to apply the model to a 

problem for which experimental data exists. While much experimental data has 

been reported in the literature, most authors do not include sufficient in-

formation to allow a numerical simulation of their experiments. The current 

problem is based on the experiments of Koterazawa and Iwata [51]. The primary 

reasons for selecting this work for study are that crack length versus time 

histories were given and that the experiments were performed on 304 stainless 

steel for which high temperature elastic and creep properties were already 

available. 

The geometry of the experimental specimens is given in Fig. 5.4. The 

finite element mesh for the calculations is shown in Fig. 5.5 with contour 

integral paths being indicated by dashed lines. It can be seen that the mesh 

takes advantage of the two planes of symmetry for the specimen and does not 

model the 60
o
notch.

1 
The initial crack :ength indicated in Fig. 5.5 corresponds 

to the notch depth in the specimen. All calculations for this specimen assume 

plane stress conditions and use the material properties given in Fig. 5.3. 

Elastic J
1 
 results for two crack lengths are compared in Table 5.3 with those 

(based on formulas for K
I
) from [52] and are seen to be in good agreement. 

Compact Specimen Analyses 

The following describes several calculations for a compact specimen 

during transition from an initial elastic state to one of steady-state creep. 

The geometry, loading, material properties and other details were described in 

the first section of this chapter as Probelm I. We first consider results for 

the 300 element mesh of Fig. 5.2 in terms of C* and then (T
1

)
c
. Then we address 

1 
1
Modeling the notch would have required the mesh shifting subroutines to be 
generalized. 
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Table 5.3 Computational Aspects of the Elastic and Non-Steady Creep 

Portion of the Double-Edge-Crack Calculations 

applied 

stress 

(MPa) 

crack 

length 

(mm) 

Elastic Solution Creep Solution 

total 

CP time 

(sec) 

j l 

(N/mm) 

difference 	CP 

from [52] 	time*  

(%) 	(sec) 
At(hr) 

initial/final 

steps to 

steady-state 

157 1.75 1.12 (-2.1) 38 8.10 -8/1.9.10 -2  90 795 

176 1.75 1.40 (-2.6) 38 8 • 10 -8/9.5 • 10 -3  100 880 

157 2.75 1.79 (-3.3) 38 4 	10 -8/8.6. 10 -3  211 1820 

176 2.75 2.25 (-3.2) 38 2 • 10 -8/4.4 • 10 -3  205 1770 

Control Data CYBER 74 

tSolutions are stopped at times indicated in Figs. 5,19 and 5.20 



the topics of mesh refinement and the use of special crack-tip singularity ele-

ments. 

Calculation of 
(T1)c 

and Cl for Nonsteady Creep 

The path-independence of (C*) during nonsteady creep is illustrated 

in Fig. 5.6 using results from the 300 element mesh. The E superscript 

designates the particular F
234 

contour which is used, with being the 

nondimensional distance from the crack-tip to the point where the contour 

crosses the crack plane. Therefore, E is zero at the crack-tip and has a 

maximum value of unity when the contour is at the boundary of the specimen. 

Values of (C*
1
) are plotted as a function of time for nine values of E ranging 

 from 0.03 to 0.92. It is seen that (C*
1
) is largest for contours close to the 

crack-tip (small E) and that as steady-state is approached, the values from 

all contours converge to C. The solution has essentially reached steady-

state at 300 hours. After 300 hours, the values of (C*
1
) for all nine contours 

are within 1.5 percent of their average value. This value of 	
, 

C*
1 
 as well as 

values from calculations with the other meshes, is given in Table 5.1. 

• E 
Now we consider computed values of 

(T1)c 
as approximated by (AT

1c
/At. 

The values of (AT
1
)
c 

are obtained through the specialization of (2.10) to the 

case of infinitesimal strains, small deformations, symmetric mode I behavior 

and traction-free surfaces: 

DAu 
(AT 

1  ) c 	rr 	
[ 
n
1j 
AW - n.(T.. + Ar id   ) 

Dx/ 	
dS 	 (5.1) 

234  

DT.. 
AE dV 

t -V e 
B 

 

1 
• • 	E 	 • 	E 

Since (T 1 ) c isthe limit of 
(T1)c 

as E goes to zero, 
(T1)c 

is plotted as a 

function of E for several times (see Fig. 5.7). In this figure, E is the 

nondimensional size of V and is measured in the same manner as 	the 
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Fig. 5.7 

0 

during non steady creep 

(results from 300 element mesh) 

0.2 	0.4 	(16 
	

0.8 
	

1.0 

as a function of E for several times 
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• 	E 
nondimensional size of 

F234. 
 The open points are the values of (T

1
)
c
, as com-

puted by (5.1), for nine contours in the 300 element model. The value of the 

crack-tip parameter 
(T1)c 

is given by the intersection of each respective curve 

• E 
with the E = 0 axis. Due to the large gradient in 

(T1)c 
for small c it is 

seen that the accuracy of any extrapolation based solely on these evaluations 

of 
(T1)c 

(i.e., open points) would be of questionable accuracy, except perhaps 

near steady-state conditions. The solid points at E = 0 in Fig. 5.7 have been 

obtained using (2.14). It is seen that these values of (T
1
)
c 

appear to be reasonable 

• E 
extrapolations of the curves of (T 1 ) c  (5.1) thus giving some degree of confidence in their 
accuracy. 
Path Independence of (T 1 )

c 

Based on arguments put forth in earlier portions of this paper, the 

value of (T 1 ) c  obtained through (2.14) should be independent of the path 

(i.e
" 1'234) which is used in its computation. This path-independence is 

illustrated by Fig. 5.8a where 
(T1)c 

is plotted as a function of the nondimen-

sional distance of F
234 

from the crack-tip, 	for several times. Generally, 

the path-independence is seen to be quite good. The largest deviation from 

path-independence in this figure is for the intermediate time of 10.8 hours 

with the difference between the extreme contour values being less than three 

percent. To further emphasize this path-independence, 
(T1)c 

is plotted as a 

function of time in Fig. 5.6. As a result of its path-independence, (T1) c  is 

represented by a single curve. Interestingly, this curve is a straight line 

for times before approximately 10 hours. 

Riedel and Rice [36] have arrived at the following approximation for 

K
a
(which they call A(t) based on the assumed approximate path-independence of 

J
1 

during the initial portion of nonsteady creep: 

r
2
(1 - v

2
)/E n+1 

] 1 

Ku 	(n+l)ylt 
(5.2) 
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Comparing (5.2) with (2.50) one concludes that (T 1) c  should behave like lit for 

times when (5.2) is valid. In a log-log plot of (T 1 ) c  versus time this would 

result in a straight line with a slope of -1. The straight line shown in Fig. 

5.6 is inclined from the hcrizontal by 40 °  and therefore has a slope of -0.84. 

The current work has resulted in some evidence that J
1 

is approximately path-

independent during initial nonsteady creep but that its value tends to increase 

with time. This tendency for J
1 
to increase with time could explain the rather 

significant departure of the current results from the behavior of (5.2). 

Quarter-Point Singularity Element Calculation  

We next consider the results of computations using 57 and 102 element 

meshes with quarter-point singularities. The purpose of considering these less 

refined meshes is to determine if the expense and effort in using the 300 element 

model is necessary for obtaining accurate results. Table 5.1 summarizes the 

results of these meshes for the limiting cases of purely elastic behavior 

and steady-state creep behavior. For the elastic problem it is seen that the 

results from these meshes agree with the 300 element mesh results to within 

one percent. At steady-state the 102 element model still agrees with the 300 

element mesh (in terms of C*
1
) to within one percent while the 57 element 

model now differs by approximately eight percent. 

The contours used for the 57 and 102 element mesh are indicated in Fig. 

5.2. The 57 element mesh has four contours while the 102 element mesh has 

eight. The path-independence of 
(T1)c' 

as computed from (2.14), is illustrated 

for these two meshes in Fig. 5.8b and 5.8c. It is seen that the degree of 

path-independence in both is similar to that observed for the 300 element mesh. 

Since we have evidence that the 57 element mesh is less accurate than the other 

meshes at steady-state, it appears that high quality of the path-independence 

cannot generally be interpreted as meaning the solution is accurate. 
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To determine the adequacy of the 57 and 102 element meshes for the non-

steady creep problem we now compare their (T 1) c  histories with that obtained 

with the 300 element mesh (see Fig. 5.9). The curve appearing in this figure 

has been placed through computed points from the 300 element mesh. The results 

of the 102 element mesh agree almost perfectly with this curve for times between 

0.2 hours and 16 hours. Prior to this period and after this period the results 

fall below the curve by as much as 20 percent. While little can be said about 

the absolute accuracy of the calculations for early portions of nonsteady creep, 

• 
we know (based on Appendix B) that (T 1) c  should agree numerically with Cl at 

steady-state to within a few percent. Therefore it can be said that the 

values of 
(T1)c 

from the 102 element mesh are significantly in error at steady-

state. Recalling that this model gave a steady - state value of C* which agree 

quite well with the 300 element mesh results (see Table 5.1) it is perhaps sur-

prising that such a significant error in the steady-state value of (T 1)
c 

can 

exist. To better understand the results of this model, (t
1  )

E  is plotted as a 

function of E in Fig. 5.10. It is noted from this figure that the values of 

(T
1
)
c 
based on (2.14) (i.e., the solid points) appear to be reasonable extrapo-

lations for times when the results are in agreement with the 300 element mesh 

results. However, as steady-state is approached, it is seen that these solid 

points no longer appear reasonable. If, however, one extrapolates the values 

of (t
1c  )

E  to E = 0 for the bottom two curves of Fig. 5.10, it is found that 

• 
these values of 

(T1)c 
are in good agreement with the 300 element mesh results. 

E 
In comparing the equations for evaluating C* (T1 

c 
 ) and 

(T1)c' 
it is 

seen that 
(T1)c 

is the only one of the three which involves an integration 

over the crack-tip quarter-point elements. Based on this and the apparently 

• 
 good accuracy of C*

1 
 and (T

1
)

E: 
  
it is believed that the integration over 

these elements is the major cause of discrepancy in 
(T1)c 

between the 102 

and 300 element mesh calculations. 



• a ..1,.I 	 I 	1 111111 	 , .". , 	A. 

0.1 	 1 	 10 	100 

time (hours) 

1000 

100,000 

(tOc 
(Ad 
10,000 

MESH 

• 300 element 
■ 102 element (quarter-point) 

A  57 element (quarter-point) 

■ 

• 

N 

100 	 • 
0.01 

Fig. 5.9 Comparison of (T1)c from calculations 

with three finite element meshes 



t =4.27 hr 0 
-0-0 0 

t= 26.1 hr 	0 

0-- 0-0 0 0 

0 'm.o..... 0 

0 -0 

100,000 

10,000 

(t, 

' mhr 

 

1000 

0  

1=0.0148 hr 

0 	
0 ■••••••..0 

t =0.309 hr 

0 

0 
0 -0 0 

100 	 t = 303 hr 

0 	0.2 	04 	0.6 	0.8 	1.0 

Fig. 5.10 (1'1)Ec  as a function of E for several times 

during non-steady creep 

(results from 102 element mesh with quarter-point singularity) 



The 57 element results do not compare favorably with the curve of Fig. 

5.9 for any significant portion of the solution. For most times the values of 

(T
1
)
c 
fall below the curve with the percent difference ranging from 50 percent 

at t = 0.02 hr. to 15 percent at steady-state. Based on the discrepancy of C* 
1 

indicated in Table 5.1 and in the generally bad comparison of 
(T1)c 

in Fig. 

5.9, it appears that the 57 element mesh with quarter-point singularity is not 

sufficiently refined for accurate creep calculations. This conclusion is per- 

haps a bit unexpected considering the degree of accuracy which this mesh displayed 

for the elastic probelm (see Table 5.1). The reason for this drastic change 

of accuracy in going from elastic to creep behavior may be that the crack-tip 

, is i strain singularity (i.e., r -1/2 ) s nappropriate for the r-n/(n+1)  type be-

havior expected to exist during creep. This topic is addressed in the following. 

HRR Singularity Element Calculations  

Based on the above observations, several analyses have been made using the 

seven-noded variable singularity element described previously (Section IV). The 

elastic solutions obtained with this element agree very well with those using 

the quarter-point isoparametric element as can be seen from the entries of 

J
1 

in Table 5.1. Also included in Table 5.1 are the quasi-steady-state values 

of C. The introduction of the correct strain singularity for steady-state 

creep reep (r 
 
) does not significantly affect the 102 element mode's C*

1 
 but 

does imporve that of the 57 element model. 

The analyses which use the seven-node singular element have the same 

singularity for the elastic solution and the subsequent creep solutions. At- 

tempts at changing the singularity from the elastic 
r-1/2 

to the r
-n/(n+1)  

value between the elastic and first creep solution have created numerical dif-

ficulties due to the disequilibrium introduced in the process. No attempt 

at a gradual transition has been made. 
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The 
(T1)c 

results using the sever-noded singular element are shown in 

Fig. 5.11. The solid curve represents the results of the 300 element model. 

The evaluation of (T 1 )
c 

is according to (2.14) with the numerical procedures 

being identical to those employed with the quarter-point elements except for 

the contribution of the singular elements to the volume integral. For the 

quarter-point elements, the stresses are assumed to be distributed lineraly with 

respect to the local coordinates. The volume integral is then evaluated in 

terms of quantities at the 2x2 Gauss ponts. For the seven-node element, linear 

interpolation is used and in addition, several calculations are done assuming 

radial dependence of the type a = a + b 
-/(1411)

. It can be seen from Fig. 5.11 

that none of the calculations agree well with the 300 element results. 

Based on this set of calculations, the general disagreement in (T
1

)
c 

between the singular crack-tip element models and the 300 element model does not 

appear to be due to the strength of the singularity which is introduced at 

the crack-tip. The general accuracy of C*
1 
 for all the solutions with either 

elastic or creep type strain singularities supports this view. Rather, it seems 

likely that the difficulty in computing the volume integral of (2.14) stems from 

the crack-tip element fields not satisfying the condition 

€40 
Lt Jr 9 T ij (E,O) 

 8c 
ij

(E,e)de = o 
— 7 	xl 

( 5 . 3) 

From the discussion of Appendix A it can be seen that if this condition is not 

satisfied while at the same time the fields have the correct asymptotic (singu-

lar) radial dependence, then the volume integral of (2.14) does not exist. 

It therefore appears that accurate evaluation of 
(T1)c 

using (2.14) 

cannot be accomplished if one uses crack-tip singular elements which provide 



300 element 
mesh 

results 
• 0 

a 

0.01 100 
.  

10 1.0 

time, hr 

Interpolation for Singular 

Element Volume Integral  

	

cr= a+bp 	=a+bp (-111+X)  

	

c+dp 	e = c +dp(-Xlifk)  

0 

❑ 

a 

102 ele. mesh 0 

57ele. mesh 

■ (k=1), c (a =n) 

• (X=I), a (a =n) 

creep singularity :0 , a , v, 

elastic singularity: ■ , • 

• 

0 

100,000 

10,000 

(ti)c 

N  
mhr 

1000 

100 

Fig. 5.11 (T1)c as a function of time for several calculations with 

the variable singularity seven-noded, crack-tip element 



for the satisfaction of condition (5.3). At this point, it appears that one must 

use a rather refined non-singular mesh (such as the current 300 element mesh) 

or introduce special crack•tip elements which satisfy (5.3) in order to compute 

(r
1

)
c 
accurately. The nexr section illustrates that for many probelms of 

practical importance, a more attractive alternative may exist. 

• E 
(T

1
)
c 
as a Crack-Tip Field Parameter 

The previous discussion has pointed out some computational difficulties 

involved with evaluating (T
1

)
c
. It was concluded that these difficulties 

are associated with the contirbution of the crack-tip singularity elements to the 

volume integral of (5.1). It has been seen that despite the elastic strain 

singularity introduced by the quarter -point element scheme, the 102 element 

mesh gives accurate values of C. Assuming this reflects the general accuracy 

of this solution, it is desirable to use this relatively inexpensive model as 

opposed to using a very refined non-singular mesh or to introducing a special 

crack-tip element which satisfies condition (5.3). 

The effect of deleting the crack-tip singular elements from the volume 

integral of (2.14) is shown in Fig. 5.12. Deleting these elements means that 

• e 
we are in fact evaluating 

(T1)c 
where V is the volume encompassed by the 

• E 	• 
crack-tip elements. We will denote this particular 

(T1)c 
as (T

1
)
c
6  
. It will 

be shown that depending on the relative size of the crack-tip elements and the 

, 
proximity of the solution to steady-state condition,

1
)
c
6  
 is a good approxi- 

mation to (T1 )  c . 
 

The solid curve in Fig. 5.12 represents the results of the 300 element 

• 
 mesh. The dashed curves are (T

1c 
6 
 in the case of the 57 and 102 element 

• E 
meshes and is 

(T1)c 
with E = 0.03 in the case of the 300 element mesh. The 

crack-tip element sizes for the 57 and 102 element meshes are 10 mm and 2.5 mm 

(or 20 and five percent of the ligament size), respectively. 
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• 	6 
The values of 

(T1)c 
for the 102 element mesh coincide with the solid 

• 6 
cuve for times after about 30 hours. Therefore 

(T1)c is a valid, path indepen- 

dent, crack-tip parameter for times after about 30 hours and for values of (T
1
)
c 

beginning at approximately 1.6 of the steady-state value. Fig. 5.6 shows that 

C*
1  is still significantly path- dependent at 30 hours and thus is not an acceptable 

crack-tip parameter until much later. 

The curve of (T
1
)
c
, (c = 0.03), for the 300 element model seems to indi- 

• 6 
cate that the validity of (T)

c 
can be expanded to earlier times by reducing 

the size of the quarter-point elements. For example, a 6 of three percent of the 

• 
 ligament would apparently result in (T

1
)
c
6  
 being valid as early as seven hours and 

6 	 • 
for values of 

(T1)c 
as large as 4.3 the steady-state value of (T

1
)
c
. The curve of 

(T
1
)
c
6  
 for the 57 element mesh tends to approach the solid curve as steady-state is 

approached but never acutally converges even at steady-state. This indicates that 

6 
this mesh is too coarse for 

(T1)c to be a useful parameter. 

Constant Velocity Propagation in a Strip  

We now present some calculations for the cracked strip problem previously 

referred to as Problem II. The geometry, loading and material properties for 

this problem are summarized in Fig. 5.3. The purpose of this problem is to 

determine how significantly the crack-tip fields are affected by crack propa-

gation velocities commonly observed in experiments. If for realistic crack 

speeds, the crack-tip field is essentially the same as for a stationary crack, 

then C*1 
 is path independent and characterizes the crack-tip fields. In any 

case, 
(T1)c 

is a valid parameter. 

As noted previously, the steady-state C*
1 
 values for the infinite strip 

problem can be obtained analytically without much difficulty. (See Appendix E.) 

Therefore, the procedure for this set of calculations is to select three values 
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of C* which span the range of values reported in the literature. The values 

which have been chosen are 0.05, 5.0 and 50 N/mm.hr. Having these values, the 

corresponding remote steady-state T 	is determined as well as the edge dis- 

placement which will result in the same remote elastic T. These displacements 
yy 

are applied to the model elastically at t = 0. The resulting values of J
1 

are 

compared to the analytic values in Table 5.2. Next, the steady-state edge dis-

placement rates are determined. Using the elastic solution as an initial 

state, the displacement rate, 6, is applied until the model reaches steady-

state. The computed steady-state values of C* are compared to their analytic 

values in Table 5.2. The next step is to determine -an upper bound crack 

velocity for each of the chosen values of C. The following formula is based 

on the experimental data reported in [23,24] and represents data from center-

crack, double-edge-crack, single-edge-crack, compact, and round-bar specimen 

types. 

where 

da 1.173 
= aC* 

dt 	1 
(5.4) 

1.68 . 10
-2 

(upper bound) 
a 

-3 
3.36 . 10 
	
(average 

Having reached steady-state, the crack is propagated at the upper bound velocity 

given by (5.4) until it is determined that a convecting steady-state has been 

reached. 

As noted previously, these calculations use the quarter-point crack-tip 

element. The crack growth simulation is accomplished through a combination of 

mesh shifting and remeshing as described in Appendix D. The nominal size of 

the crack growth increments is 0.4 mm or two percent of the crack-tip element 

width. For the highest velocity case (C ,t = 50 t/mm.hr), this procedure re-

sults in crack growth at approximately every fifth solution step. 
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Results for a Plane Strain  Strip  

The results of the plane strain strip calculation with C* - 50 N/mm.hr 

atand 
a

- = 1.65 mm/hr are given in Fig. 5.13. The values of (T 1)
c 
and C* are 

given for the portion of the calculation prior to steady-state as well as 

during the crack propagation protion. The band represents the range of values 

obtained from the four contours illustrated in Fig. 5.3. Both 
(T1)c 

and C* 

converge to the 50 N/mm.hr value at steady-state. During the crack propagation, 

it is seen that 
(T1)c 

and C* do not depart significantly from their steady-

state value. This means that this combination of loading and crack speed 

results in the crack-tip fields being essentially at steady-state conditions. 

• 
This in turn means that both 

(T1)c 
(or (Ti))

c 
 and C* are valid crack-tip 

field parameters. 

A closer view of the crack propagation portion of these curves is given 

in Fig. 5.14. The dashed curves braceting the initial portion of the solid 

curves represent the degree of path-independence and continue to be representative 

of the path-independence observed during the crack propagation steps. For both 

(T
1
)
c 

and 	
, 

C*
1 
 it is seen that the strip has essentially returned to its steady- 

state condition prior to each crack growth increment. It is thought that the large 

• 
departure of 

(T1)c (as compared to C*) is more representative of the nonsteadiness of 

the crack-tip field, since the validity of C in general, and the numerical evalua-

tion of W* (2.43) in particular, are based on the existence of steady-state conditions. 

The effect of remeshing is seen at approximately eight hours. The 

first two steps after the remeshing were found to result in rather erratic con- 

tour integral values and are not indicated in these figures. The equilibrium 

correction feature of the present model and the automatic time step regulation 

procedure both act to quickly restore equilibrium at the crack-tip. 

The propagation portion of the calculation with C* = 5 N/mm.hr and 
1 
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da • 6 
dt 

= 0.111 mm/hr is given f..n Fig. 5.15. Here again it is seen that both (T
1
)
c 

and C*
1 
 have converged to the analytical value of C*

1 
 (to within two percent, which 

is also about the degree of path-dependence). Comparing these results with 

those in Fig. 5.14 for the higher C*
1 
 and crack speed it is seen that steady- 

state creep conditions were not reached until 12 hours as opposed to approximately 

two hours in the previous case. Also, the return to the steady-state value after 

mesh shifting takes more time (two hours compared to 0.25 hours). However, when 

compared to the time between crack growth steps (both use 0.4 mm) it is seen 

that the lower velocity case return to steady-state well before the next growth 

step occurs. This result indicates that lower load levels and crack speeds 

are inherently closer to steady-state conditions. While this behavior may 

seem intuitively correct, ix. should be kept in mind that these results depend 

on the empirical formula (5.4) which is only valid for 304 stainless steel. 

It remains to be seen if similar behavior occurs in other materials. 

A calculation has also been done for the case of C*
1
=0.05 N/mm.hr. As 

a result of the large number of solution steps between crack growth steps, when 

using the maximum velocity of 5 . 10
-4 

mm/hr, the calculations used a higher 

velocity (5 . 10
-3 

mm/hr). Even at this unrealisitcally high velocity (for this 

level of loading), the behavior is more steady-state-like than the case of C*
1
=5.0N/mm. 

hr described above. 

Results for a Plane Stress Strip  

In both plane strain problems discussed above, the steady-state value of 

(T
1
)
c 

is equal to C*
1 
 to within the accuracy of the calculations. This is con- 

sistent with the, relationship and comparison of C*
1 
 and steady-state 

(T1)c 
given 

in Appendix B. According to the approximate numerical values of this appendix, 

there should not be as close agreement between C:'c
1 
 and 

(T1)c 
in the case of 

plane stress. The primary purpose of this analysis is to verify this predicted 

behavior. 
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For this plane stress analysis, Ct was chosen to be 50 N/mm . hr and 

the crack was again propagated at 1.65 mm/hr. The remote T , the steady-state 
yy 

displacement rate, 6, and the elastic displacement, 5, are 171 MPa, 0.168 mm/hr 

and 0.114 mm, respectively. 

The results of this calculation are given in Fig. 5.16 and 5.17. It 

• 	d 
is seen from these figures that 

(T1)c 
does converge to a somewhat higher 

value at steady-state then C. The steady-state is seen from Fig. 5.17 to be 

approximately 52 N/mm . hr which is higher than Ct by four percent. While 

this is a somewhat smaller difference than suggested by Appendix B, the sign of 

the difference is the same. In light of the approximate integration used in 

obtaining the numeric values in the appendix, this discrepancy is within reason. 

As expected, the general behavior for plane stress conditions is essentially the 

same as for the previous plane strain analyses. Therefore, previous observations 

concerning the steady-state nature of the crack-tip field during crack propa-

gation are unchanged by the shift to plane stress conditions. 

Double-Edge-Crack Specimen Analysis  

The following describes several calculations and their results for the 

problem previously referred to as Problem III. The geometry and finite element 

mesh for the double-edge-crack specimen are given in Figs. 5.4 and 5.5, respec-

tively. The material properties are those of 304 stainless steel at 650 C and 

are assumed to be the same as those used in the strip analyses. (See Fig. 

5.3) Calculations have been made for remote applied stresses of 157 and 176 MPa. 

The experimental crack growth histories for these two stress levels are repro-

duced from [51] in Fig. 5.18. It is seen from these curves that the first two-

thirds of the specimen lives are characterized by crack velocities of less than 

0.01 mm/hr compared to nearly 0.5 mm/hr as rupture is approached. 

The primary purpose of the following calculations is to verify the 

conclusions which were reached in the previously described strip calculations; 
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that is, that the crack-tip fields are essentially creep steady-state fields 

even for the most rapid creep crack velocities. These calculations will be a 

valid check because the input to the calculations is only the remote applied stress 

and the measured crack velocity history, and does not in any way depend on experi-

mental determination of C*
1 
 or 

(T1)c 
as did the strip calculations. In fact, 

Koterazawa and Iwata do not report such measurements in [51]. 

Analysis of Initial, Low Velocity Crack Growth  

This section describes the simulation of the initial portion of the 

crack velocity histories given in Fig. 5.18. In all of these calculations, the 

entire load is applied elastically at t = 0 and held constant throughout the 

subsequent creep solution steps. The convergence of 
(T1)c 

and C*
1 
 to their 

steady-state values is shown in Fig. 5.19, with the dashed lines in the Ct 

plots denoting the degree of path-dependence. It is seen that steady-state 

conditions are reached between a half and one hour after the load is applied. 

(Table 5.3 summarizes the computational aspects of this portion of the calcu- 

lation.) Therefore, it is seen by refereing to Fig. 5.18 that crack growth does 

not begin in the two specimens until well after steady-state conditions are 

reached. Since the current calculations assume small displacements and infinitesi-

mal strains, and since only the strain and displacement magnitudes depend on time 

once steady-state is reached, there is no reason to continue the numerical calcu-

lations to the crack initiation times indicated by the experimental results. 

Therefore, the initial crack propagation is simulated at times after steady-state 

conditions are reached but much earlier indicated by the experiments. 

The crack growth simulation results are shown in Fig. 5.19. The crack 

increment size for this study was approximately 0.01 mm which is nominally 2.4 

percent of the crack-tip element size. It can be seen that only one mesh shift 

(i.e., crack growth step) was modeled. It is clear from this figure that the 

time it takes for the specimen to return to steady-state is significantly less 
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than the time to the next crack growth increment (indicated by dashed lines). 

Therefore, the initial portion of the crack growth histories of Fig. 5.18 are 

clearly occurring under essentially steady-state conditions and thus C*
1  as 

well as 
(T1)c 

are valid crack-tip parameters. Since an increase in C*
1 
 re- 

sults in a more rapid return to steady-state conditions, the above conclusion 

will remain valid for the initial constant velocity portions of the curves of 

Fig. 5.18. 

When crack growth occurs so slowly that the crack-tip is essentially 

at steady-state, the crack-tip field does not depend on the history of the 

specimen. Therefore, assuming steady-state conditions continue to exist, it is 

possible to skip to the final stages of crack growth without modeling the 

intermediate crack growth. If it is found that crack growth is still slow 

enough for steady-state conditions to exist, then it seems reasonable to expect 

that the bevaivor at intermeiate crack lengths is also of a steady-state type. 

The following describes the results of this procedure when applied to the 

two double-edge-crack specimens. 

Analysis of Final Stage of :rack Growth  

To analyze the final stage of crack growth, the crack length is in-

creased to 2.75 mm and the process of applying the load elastically and creeping 

to steady-state is repeated. Table 5.3 summarizes the computational aspects of 

6 
this process. The convergence of 

(T1)c 
and C*

1 
 to their steady-state values is 

shown in Fig. 5.20. Having reached steady-state, the cracks are grown at the 

rate suggested by the last portion of the crack histories (Fig. 5.18) as shown 

in Fig. 5.20. The significant increase in the frquency of mesh shifting (compared 

to that in Fig. 5.19) due to the velocity increase makes the details of the 

curve difficult to distinguish in this figure. However, the time step size is 

such that six or seven steps occur between each crack growth increment. Unlike 

6 
the strip problem, the values of (T 1 ) c  and Ct are clearly increasing during 
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this crack propagation process. 

It is necessary to determine whether this increase in the crack-tip 

parameters is due to the crack-tip no longer being at steady-state conditions 

or whether it is due to the increase in crack length. This is accomplished 

by continuing the calculation without further crack extension. If the value 

of the parameters do not change significantly with time, this means the increase 

was largely due to the crack length increase and that crack growth is still 

occurring under essentially steady-state conditions. Examination of the final 

portions of the curves of Fig. 5.20 shows that this is the case. 

Based on this analysis; it appears that the conclusions reached as a 

result of the strip calculations are still valid. Since, (i) the strip analy-

ses are much less expensive than this analysis of the double-edge-crack geometry, 

(ii) the steady-state Ct for the strip is easily obtained analytically and (iii) 

the crack-tip parameters do not depend on crack length for the strip geometry, 

it seems that similar studies for other materials and/or other temperatures could 

most effectively be accomplished through the use of the strip geometry. The 

need for such studies follows from the vast simplification of fracture analysis 

and prediction which results if crack growth occurs under steady-state conditions. 

More will be said about this point in the conclusions. 



SECTION VI 

CONCLUSIONS 

Summary of Results  

A finite element model has been derived which is generally applicable 

to viscoplastic material models. This model uses an initial strain approach 

which reduces computation time spent on forming and decomposing stiffness 

matrices and also circumvents the problem of element incompressiblity constraints. 

Through special features, including a correction term in the finite element 

equation, this model provides for improved adherence to the postulated constitu-

tive behavior (as compared to the standard initial strain approach) and 

allows time steps which approach in size those used in tangent stiffness 

methods. The accuracy and efficiency of this model with eight-node isopara-

metric elements and the quarter-point crack-tip element approach have been 

verified through several calculations for a compact specimen geometry and a 

strip geometry. Also, a method of simulating crack growth through shifting 

of the quarter-point singularity elements and periodic remeshing has been 

described and demonstrated. 

It has been shown that despite the fact that C* characterizes the 

crack-tip fields under steady-state creep conditions, it does not have an 

energy or energy rate interpretation. A related path-independent integral 

parameter (T
1
)
c' 

however, does have the energy rate interpretation commonly 
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attributed to C. Since experimentalists use this energy interpretation to 

correlate creep crack growth rates, it appears that 
(T1)c 

(as opposed to Cl) 
1 

is gaining acceptance as a useful creep crack growth rate criterion . Further-

more, 
(T1)c 

does not rely on the existence of steady-state creep conditions 

and thus might be expected to be a valid criterion even if creep crack growth 

should occur at rates which preclude the existence of steady-state creep 

conditions at the crack-tip. 

A creep crack growth simulation for 304 stainless steel has shown that 

for realistic load levels and corresponding crack speeds the crack-tip field 

is essentially at a steady-state creep condition. This means that for this 

material, the propagating crack-tip field is largely unaffected by the 

history of crack growth or the history of loading. This feature can greatly 

reduce the analysis required for predicitng creep crack growth behavior 

in a component as can be seen from the following suggested methodology. 

at i  We assume that the crack propagation speed 
a

- is related to (T
1

)
css 

(i.e., -II) through the power law suggested by experimental data [23, dt 

24]. 

da•  dt = aE(T1)  css 
(6.1) 

Nwxt we determine (e.g., by steady-state creep finite element analysis) 

(T
1
)
css 

as a function of crack length. Because of the assumed steady-state 

crack-tip behavior, this can be accomplished by considering several discrete 

crack lengths and then fitting a curve. No crack growth simulation procedures 

are necessary. Combining (6.1) with this result provides the following 

relationship between time and crack length: 

a(t) [(T 	
]-S 

t = 

fab 
	a 	

da + t
i 
	 (6.2) 

whereao istheinitialcracklengthandt.is the time when crack growth initiates. 
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The only unknown quantity in (6.2) is the initiation time t.. If the initiation 

time for creep crack growth is assumed to be negligible (as might be suggested 

from the results of [9,10]) then (6.2) immediately provides the predicted crack 

growth history. 

Vitek [11] does not consider t
i 
to be negligible based on several 

experiments (compact and double-edge-crack specimens) on two CrMoV steels. 

Using a dislocation model he further concludes that a measure of crack opening 

displacement (COD) correlates well with the initiation of crack growth in these 

experiments. If the same conclusion is valid for 304 stainless steel, then 

one can presumably predict t
i 
based on a transient finite element analysis of 

the initial flawed configuration and a critical value of COD. If initiation 

occurs long after steady-state conditions are reached, it is then reasonable 

to estimate t. using the rate of COD obtained from a steady-state finite 

element solution. The use of (6.2) and of the critical COD concept has not 

been investigated in this study. 

All of the creep calculations have used the constitutive law which is 

obtained by generalizing the Norton constitutive law to three dimensions. 

Whereas this law is a good representation of steady-state creep behavior, it 

does not, in general, represent the primary stage of creep. Future work should 

include a study of other creep constitutive laws (such as that of Bodner and 

Partom [32]). Also, the present model is derived on the assumption that dis-

placements are small and strains infinitesimal. The strains in the vicinity of 

the crack-tip for the present calculations with 304 stainless steel material 

properties are on the order of 5-10% and therefore suggest that a finite 

strain formulation may be more appropriate. A study should be undertaken to 

examine this aspect of the model. 

As noted previously, the creep crack growth prediction methodology 

expressed in (6.1) and (6.2) has not been tested. A study to assess the 
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utility of this methodology should therefore be undertaken. This study 

should consider crack growth initiation as well as crack propagation and 

should include a range of load levels and several specimen geometries. If 

the methodology is found to be successful for constant applied loads, then 

the study should be extended to consider more general load histories. 



APPENDIX A 

Existence of Limits for Contour Integral Definitions  

This appendix discusses the existence of the various limits which have 

been taken in defining (LIT) c , , (T) C  and C*. In considering these limits, we —  

make use of the generally accepted result (see [6] for example) that the 

strain energy density quantities W and W as well as the quantity W* behave 

as l/r in the vicinity of the crack-tip. This is assumed to be valid for 

nonsteady as well as steady-state creep and also for the elastic state 

existing at t = 0. 

Based on the known asymptotic behavior at the crack-tip (i.e., the 

HRR fields) the limits of r E  contour integrals for equations (2.11,13,14,25,30, 

40,44) can be written in the following form provided one takes r as being a 

circular contour centered at the crack-tip. 

€,0 Jr 
 (7)f(E,e)ede = 	f(0)de 

1 ^ 	
7 

tt r  
(A.L) 

The nonsingular function f(E,e) becomes equal to f(e) when the limit is taken 

and reflects the asymptotic nature of the HRR fields. 

In the following we limit the discussion to symmetric problems involving 

only mode I crack-tip deformation. Further, we assume that crack surface trac-

tions and body forces are identically zero. With these conditions, we need only 

consider (AT
1
)
c 
and we can therefore rewrite (2.11) 

Lt (AT1 
c 	E±0 
) = 	jr [n AW - n. ('r. + At)Ae. Ids 

J Ji 	j' 11 
(A.2) 
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Now consider the limit of the V 
t 
 -V

E  integral of (A.2). Inspection of this 

integral shows that it can be put into the form: 

E÷0 in  f 	2 
Lt 	 1 

C + 	 — g(r,e)rdrde 
V 
t 
 -V

E 
 r 

(A.3) 

R 7 

0 

where V' is a small circular region centered at the crack-tip and C is the 

integral over the region Vt  - Vt . The function g(r,e) is a nonsingular 
function which becomes g(e) in the limit as r goes to zero, where g(e) is 

known in terms of the HRR fields. Upon a first inspection of (A.3) one is 

tempted to conclude that the limit does not exist since the integrand has 

a non-integrable singularity at r = 0. If, however, we look at the right 

equality of (A.2) it is seen that this conclusion results in a contradiction. 

Since we have shown that the limit of the integral on r E  does exist (and 

therefore (A.2) requires that the limit of the integral over V t  - VE  must 

exist). A re-inspection of (A.3) shows that the only way for this apparent 

contraction to be resolved is if the g(r,e) of (A.3) has the following 

property: 

Tr 

g(r,e)de 	g(e)de = 0 
	

(A.41 
-7 

If function g(e) is known explicitly for the linear elastic case and there-

fore (A.4) can be directly verified. For the HRR field g(e) is not known 

explicitly and therefore (A.4) can only be verified numerically. 
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For infinitesimal strain, nonlinear elasticity, the following relation 

provides an alternative to verifying (A.4) direclty 

Da 	 Du 	 au 

fV-V axk 	ij 	
J ij axl 	 ij ax

k 
Ac dV = jr 	n.Aa.. 	dS - Jr n.Aa.. 	dS 	(A.5) 

r234 	 r E  

The relation (A.5) (which assumes zero crack surface tractions and no body 

forces) illustrates that this volume integral of type (A.3) can be expressed 

in terms of the contour integral of type (A.1). The relation (A.5) can be 

verified through the divergence theorem, the linear momentum balance condition 

and the following identities: 
\ 
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APPENDIX B 

Numerical Difference Between 
(T1)css 

and C* 
1 

The purpose of this appendix is to give some examples to illustrate 

• 
the numerical difference between 

(T1)css 
and C* as given by (2.48). Using 

(2.50), (2.49a) and (2.51), we have 

n+1 (i 1
T* 

) css  - 
I * 

= 1 + 	 
(n+1)I 

a
eq

(0)cosed9 
1 	 -Ti 

(B. 1) 

The values tabulated in Table B.1 were computed approximately from values of 

I and plots of 6 
eq (8) given in [6] and should be viewed accordingly. 

Table B.1 Comparison of (T ) 	and C* 
1 css 	1 

Plane Strain 	Plane Stress 

(T 1 ) css 
C* 
1 

n = 3 n = 13 	n = 3 n = 13  

0.98 1.00 	1.11 1.14 

It is seen that for the range of n commonly encountered, 
(i1)css 

and C*
1 
 are 

numerically very similar for plane strain but differ significantly for plane 

stress. 



APPENDIX C 

Numerical Methods for Evaluation of Contour Integrals  

The numerical procedures for evaluating J 1  as defined by (2.27), (AT i ) c 

 as defined by (2.14) and Ct as defined by (2.31) are described in the following. 

General Procedures  

In studying the contour integral paths indicated in the finite element 

meshes of Figs. 5.2,3,5 (dashed lines) it is seen that the paths always pass 

through the centers of elements as opposed to along their edges. This procedure 

has been adopted so as to be-lefit from the presumably more accurate solution 

within the elements. Each element contour is divided into two segments with 

the integration being accomplished by two point Gaussian quadrature. All of 

the integrations are performed in the element local coordinates. 

The J1-Integral for Linear Elastic Analyses 

The contour integral portion of (2.27) involves the stresses, T.., and 

thedisplacementderivatives,DuJ3xl . Both of these quantities can be evalu-

ated at the required Gauss points through the element nodal displacements and 

simple manipulations with element matrices. In the current study, J 1  is only 

considered as a parameter for linear elastic material behavior and therefore 

U = (1/2)a .E... 

The C*-Integral 
1 

The C* integral of (2.31) consists only of a contour integral. The W* 

of (2.31) is evaluated using (2.43). The gradient rates are approximated by 

31 	1 DAu ..,  
ax 	At Dx 

1 	1 



and therefore are average rates for the increment as opposed to the rates at 

the end of the increment. The contour integration procedure for C* is as 

described above and uses two point quadrature for each element segment. Whereas 

stresses are easily computed at the required contour Gauss points in the elastic 

case, the stresses must be computed incrementally in creep analyses and there-

fore stress information must be stored for each contour integration point 

unless nonstandard element interpolations are used. In the present study, 

the stresses at the contour Gauss points are interpolated from the 2x2 element 

Gauss points through bilinear Lagrangian interpolation (in local coordinates), 

thus eliminating the need for additional storage. 

The ( T
1
)
c
-Integral 

In the evaluation of (2.14) it is understood that T.. are the stresses 
13 

at the beginning of the time increment being considered. The procedures for 

evaluating the contour integral portion of (2.14) are the same as used in evalu-

ating C*
1
. The incrmental stress-work density, WW, is computed from 

AW = (t.. + 1 
— 

lj 	2 	ij 

The stress derivative appearing in the area integral of (2.14) is evaluated 

based on the 2x2 element Gauss point values and the assumption that the stresses 

are distributed bilinearly wi .:h respect to element: local coordinates. Elements 

which are entirely within V
t 
are integrated with the usual 2x2 Gauss quadrature. 

Elements which are only partially within V
t 
have each applicable quadrant in-

tegrated by one point Gauss quadrature. 



APPENDIX D 

Simulation of Crack Extension  

Modeling the propagation of a crack using the finite element method 

requires some special procedure for representing the creation of new crack 

surface. A common procedure is to relax the nodal forces at the crack-tip 

node, thus in effect allowing the crack to extend to the next node along its 

path of propagation. This relaxation process car. be accomplished in one 

time step but usually is allowed to extend over several time steps due to the 

large change in nodal forces which is inherent in the process. The major attrac-

tion of this node-release procedure is its simplicity. There are two draw- 

backs of this procedure which resulted in an alternate procedure being adopted 

in this study. The first is that the increment in crack growth is directly 

determined by the nodal spacing in the mesh, therefore restricting the flex-

ibility one has in selecting a time step size, the mesh size and /or the 

number of nodal force relaxation steps. The second and perhaps more important 

drawback is that the method is not adaptable to models which use crack-tip 

singularity elements. 

A typical mesh in the vicinity of a crack-tip is shown in Fig. D.1. The 

region A represents the region being modeled by singular crack-tip elements 

which in the present case remain centered on the crack-tip. The Type B 

elements are eight-noded isoparametric elements which distort so that the 

region A can remain centered on the crack-tip. The sequence of element configu-

rations in Fig. D.1 illustrates the shifting/remeshing procedure used in [53, 

54] and adopted here. The region A is moved by shifting nodes without altering 

element connectivity until the Type B element ahead of the region A becomes 
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Fig. D.1 Example of mesh shifting/remeshing procedure 

for simulation of crack growth 



overly distored. At this point, the elements in the vicinity are redefined 

so that further shifting is possible. It can be seen that this procedure allows 

the increment in crack length to be arbitrarily small and does not involve 

release of nodes in the same sense as for the previously described node- 

release procedure. 

The added flexibility afforded b Ythis shifting procedure does require 

some additional work. For example, in the creep crack growth application, nodal 

displacements and element integration point stresses are interpolated. The 

method of interpolation which is employed in this procedure is discussed next. 

We consider that the solution at time t, has been obtained and we now 

must find the solution at time t 2 . During the interval (t 1 ,t 2) the crack has 

grown by an amount Aa. Since the crack growth simulation procedure requires 

that nodes be shifted, and since the solution at t
1 
must be represented in terms 

of nodal and Gauss point quantities for the shifted mesh, it is necessary to 

submit the affected nodes and Gauss point to an interpolation or fitting pro-

cedure. 

The simplest interpolation procedure for nodal displacements and the one 

used in [53,54] as well as for calculations in the present study is one which 

directly uses the element shape functions. In this method, the nodal positions 

for the mesh at t 2  are located in the mesh at t l . Knowing which element 

of the mesh at t
1 
encompasses this new node position allows the immediate 

calculation of displacements by use of the element shape functions and the 

nodal quantities for the mesh at t l . While this is a consistent procedure 

for transferring the solution at t 1  to the mesh at t 2 , it should be understood 

that the transfer cannot be perfect. That this must be the case can be seen 

by considering that spatial derivatives of displacements, etc., are not continu-

ous across element boundaries. Since the element boundaries change position 

during the shifting process, points which had continuous derivatives at t
l 
will 
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have discontinous derivatives in the mesh at t
2 

and vice-versa. 

When the mesh is shifted, the element Gauss points are also shifted; this 

means the Gauss points represent different material points before and after the 

shift. In order that the new Gauss point stresses accurately represent the cur-

rent stress state, it is necessary to interpolate stresses for the new Gauss 

point locations using the old Gauss point values and locations. The procedure 

for doing this is to assume the element stresses are distributed bilinearly with 

respect to the element local coordinates. Then it becomes possible to use 

bilinear Lagrangian interpolation polynomials and the 2x2 element Gauss point 

stresses to interpolate within each element. For all creep crack growth 

calculations in this study, the crack growth increment sizes were chosen small 

enough that the new Gauss point stresses for each shifted element were always 

the result of interpolation within that same element. 



APPENDIX E 

Analytical Evaluation of C* for the Strip Problem 
1  

This appendix briefly outlines the anlaytical evaluation of C* for two 

infinite strip problems and then summarizes the results in tabular form. 

The first strip problem is that which is illustrated in Fig. 5.3. We shall 

refer to this problem as Case A. The second problem, or Case B, is similar 

to Case A in every respect except the top and bottom edges of the strip are 

"clamped" rather than "on rollers". These boundary conditions are summarized 

as follows: 

Case A: 6 (x,h) = -6 	= 6 	 (E.1) 

T xy (x,h) = T 
xy

(x,-h) = 0 

Case B: 	(x,h) = -A (x,-h) = 
	

(E. 2) 

171
x
(x,h) =

x
(x,-h) = 0 

The crack surfaces are traction-free in both cases. 

We can select a C*-integral contour which allows C* to be evaluated 
1 	 1 

quite easily.
1 

Consider a contour of rectangular shape which coincides with the 

top and bottom edges of the strip, extends far enough ahead of the crack-tip 

so as to be in a steady-state stress field which is unaffected by the presence 

of the crack-tip, and extends far enough behind the crack-tip so as to be in 

stress-free material. We now evaluate C*
1
, as defined by (2.31), through the 

use of this contour. It can be seen that for both Case A and Case B, the 

horizontal portions of the contour at y = + h do not contribute to the 

1
This procedure parallels that used by Rice [50] for the evaluation of J

1 
in 

a similar elastic strip problem. 
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integral, nor does the portion in the stress-free material. At the veritcal 

portion of the contour ahead of the crack-tip, the only non-zero term is that 

involving W. Therefore, it is seen that for both Case A and Case B we have 

C* = 2W*h (E.3) 

where W* implies W* existing far ahead of the crack-tip. Using the boundary 

conditions (E.1) and (E.2) and the assumption of steady-state conditions, it 

is possible to evaluate the remote steady-state stresses, T... Using (2.43) re- 
l..) 

sults in W* and. thus C*. The results of this exercise are summarized in Table 

E. 1. 

The corresponding linear elastic strip problem which is obtained by re-

placing the displacement rate boundary conditions by the corresponding dis-

placement boundary onditions has been treated in a similar manner. These re-

sults are also given in Table E.1. 



Table E .1 Analytical Solutions for the 

Infinite Strip problem 

 

Steady-State Creep 

1  n 

B(1-1  Vrc° 	 n+1 
\ IVY/ \8) 1\ 2n1-1/-  

 

Linear Elasticity 

Case A 

   

plane stress 

plane strain 	2)n+1 	2 

1 

1  

1-v 2 

Case B 

plane stress 	2)n+1 	2 1 

1-v 2 

plane strain 1-v  
(l+v ) ( 1-2v ) 

*  
This case does not have a steady-state solution since the 
boundary conditions require a volumetric strain rate. 
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tions", in Proceedings of 3rd International Conference on Finite  
Elements in Water Resources,  Oxford, Ms., pp 7.79-7.89, May 19-23, 
1980. 

(84) Bratianu, C., and Atluri, S.N., "On the Accuracy of Finite Element 
Solutions of Navier-Stokes Equations Using a Velocity Pressure 
Formulation", Proceedings 3rd International Conference on Finite  
Elements in Water Resources,  Oxford, Ms., pp 4.92-4.101, May 19-23, 
1980. 

(85) Nishioka, T., and Atluri, S.N., "Stress Analysis of Holes in Angle-
Ply Laminates: An Efficient Assumed Stress "Special Hole-Element" 
Approach", AIAA Paper No. 80-0711, 21st AIAA/ASME/ASCE/AHS Structures,  
Structural Dynamics and Materials Conference,  Seattle, Wash., pp 
295-302, May 11-14, 1980. 



(86) Nishioka, T., and Atluri, S.N., "Numerical Modeling of Dynamic 
Crack Propagation in Finite Bodies, by Moving Singular Elements, 
Part I - Formulations", ASME Journal of Applied Mechanics, Vol. 
47, No. 3, pp 570-577, 1980. 

(87) Nishioka, T., and Atluri, S.N., "Numerical Modeling of Dynamic 
Crack Propagation in Finite Bodies, by Moving Singular Elements, 
Part II - Results", ASME Journal of Applied Mechanics, Vol. 47, 
No. 3, pp 577-583, 1980. 

(88) Nishioka, T., and Atluri, S.N., "Efficient Computational Techniques 
for the Analysis of Some Problems of Fracture in Pressure Vessels 
and Piping", ASME PVP-80-37, ASME . Century Two Technology Con-
ference, Pressure Vessels and Piping; Division, Aug. 1980, (also 
Journal of Pressure Vessel Technoloa, 1980), (invited paper). 

(89) Nakagaki, M., and Atluri, S.N., "Elastic-Plastic Analysis of 
Fatigue Crack Closure in Modes I and: II"; AIAA Journal, Vol. 18, 
No. 9, pp 1110-1118, 1980. 

(90) Nishioka, T., and Atluri, S.N., "Assumed Stress Finite Element 
Analysis of Through Cracks in Angle-Ply Laminates", AIAA Journal, 
Vol. 18, No. 9, pp 1125-1132, 1980. 

(91) Nishioka, T., Stonesifer, R.B., and Atluri, S.N., "Moving 
Singularity-Finite-Element Modeling of Fast Fracture in Finite 
Bodies" "Generation" and "Propagation" Studies", in Numerical  
Methods in Fracture Mechanics, (Editors: D.R.J. Owen and A. 
Luxmoore) Proceedings in 2nd International Conference on Numerical  
Methods in Fracture, Swansea, U.K., June 1980, pp 	- 	, 1980, 
(in press). 

(92) Nishioka, T., and Atluri, S.N., "Multilayer-Stress-Hybrid-Finite-
Element Method for Fracture Analysis of Angle-Ply Laminates", in 
Numerical Methods in Fracture Mechanics, (Editors: D.R.J. Owen 
and A. Luxmoore), Proceedings in 2nd International Conference on 
Numerical Methods in Fracture, Swansea, U.K., June 1980, pp - 

, 1980, (in press). 

(93) Atluri, S.N., Murakawa, H., Reed, K.W., and Rubenstein, R., "Finite 
Strain Inelasticity, Complementary Energy, and Finite Elements: 
Some Recent Computational Studies", in Proceedings of U.S.-Europe  
Workshop on Finite Elements in Nonlinear Structural Mechanics, 
Ruhr-University, Bochum, West Germany, July 1980, (invited paper). 

(94) Atluri, S.N., Murakawa, H., and Reed, K.W., "Stability Analysis 
Via a New Complementary Energy Principle", in Proceedings of 2nd  
International Conference on Future Trends in Nonlinear Structural  
Mechanics, George Washington University, Washington, D.C., pp 11-18, 
1980, (also in Journal of Computers  and Structures, Vol. 13, pp 11-18, 
1981). 

(95) Nishioka, T., and Atluri, S.N., "Analysis of a Propagating Central 
Crack in a Finite Plate", in Proceedings of International Conference  



on Analytical & Experimental Fracture Mechanics, Rome, Italy, 
June 23-27, 1980, (invited paper). 

(96) Nishioka, T., and Atluri, S.N., "Fracture Analyses of Angle-Ply 
Laminates", in Proceedings of Fifth International Conference on  
Fracture, ICF-5, Cannes, France, 1981, (in press). 

(97) Atluri, S.N., and Nishioka, T., "Dynamic Fracture Analyses: A 
Translating - Singularity Finite Element Procedure", in Proceedings  
of Fifth International Conference on Fracture, Cannes, France, 
1981, (in press). 

(98) Atluri, S.N., Bratianu, C., and Murakawa, H., "Recent Studies on 
Hybrid Finite Elements in Solids & Fluids, Proceedings of 17th  
Annual Society of Engineering Sciences Meeting, Atlanta, 1980, 
(extended abstract), (invited lecture). 

(99) Nishioka, T., Stonesifer, R., and Atiuri, S.N., "An Evaluation 
of Several Moving Singularity Finite Element Models for Fast 
Fracture Analysis", Engg. Fracture Mechanics, 1981, Vol. 15, No. 
1-2, pp 205-218, 1981. 

(100) Vijayakumar, K., and Atluri, S.N., "An Embedded Elliptic Flaw in 
an Infinite Solid, Subject to Arbitrary Crack-Face Tractions", 
Journal of Applied Mechanics, Trans. ASME, Vol. 48, No. 1, pp 
88-97, 1981. 

(101) Bratianu, C., and Atluri, S.N., "A Stress-Hybrid Finite Element 
Method for Stokes' Flow", Letters in Heat and Mass Transfer, 
Vol. 7, pp 227-233, 1980. 

(102) Bratianu, C., and Atluri, S.N., "A Hybrid Finite Element Method 
for Incompressible Flow: Part I — Formulation and Numerical 
Studies", Computer Methods in Applied Mechanics and Engineering, 
(to appear), 1981. 

(103) Ying, L-a, and Atluri, S.N., "A Hybrid Finite Element Method 
for Incompressible Flow: Part II - Studies of Convergence and 
Stability", Computer Methods in Applied Mechanics and Engineering, 
(to appear), 1981. 

(104) Bratianu, C., Atluri, S.N., Rust, J.H., "Hybrid and Mixed Methods 
for Fluid Flow", Proceedings of American Nuclear Society Annual  
Conference, Washington, DC, Nov. 1980, (invited extended abstract). 

(105) Bratianu, C., Atluri, S.N., Rust, J.H., "Hybrid Finite Element 
Studies of Some Lubrication Problems", Journal of Lubrication, 
Trans. ASME, 1981, (to appear). 

(106) Vijayakumar, K., and Atluri, S.N., "An Embedded Elliptical Crack 
in an Infinite Solid", in Proceedings of XVth International Congress  
of Theoretical and Applied Mechanics, University of Toronto, Canada, 
p. 95, August 1980, (abstract only), (also in Proceedings of 17th  



Annual Meeting of Society of Engineering Science, Atlanta, GA, Dec. 
1980), (invited paper). 

(107) Nishioka, T., and Atluri, S.N., "Numerical Analysis of Fast Fracture 
in Different Test Specimens: Simulation and Prediction Studies", 
Engg. Fracture Mech., 1981, (to appear). 

(108) Nishioka, T., and Atluri, S.N., "A Major Development Towards a 
Cost-Effective Alternating Technique for Fracture Analysis of 
Reactor Vessels", Trans. 6th Int. Conf. on Structural Mechanics  
in Reactor Technology, Paper G-2/1, Paris, France, 1981, (to 
appear). 

(109) Atluri, S.N., Murakawa, H., and Bratianu, C., "Use of Stress Functions 
and Asymptotic Solutions in FEM Analysis of Linear and Nonlinear 
Continuua", in New Concepts in Finite Element Analysis, ASME AMD 
Vol. 44 (Editors: T.J.R. Hughes, etc.), pp 11-28, 1981. 

(110) Nishioka, T., and Atluri, S.N., "Analysis of Cracks in Adhesively 
Bonded Metallic Laminates by a 3-Dimensional Assumed Stress Hybrid 
FEM", Proceedings of 22nd AIAA/ASME/ASCE/AHS Structures, Structural  
Dynamics and Materials Conference, Atlanta, GA, April 1981 pp 1-5, 
1981. 

(111) Murakawa, H., and Atluri, S.N., "Finite Deformations, Finite 
Rotations and Stability of Plates: A Complementary Energy-
Finite Element Analysis", Proceedings of 22nd AIAA/ASME/ASCE/AHS  
Structures, Structural Dynamics and Materials Conference, Atlanta, 
GA, April 1981, pp 7-15, 1981. 

(112) Rhee, R.C., and Atluri, S.N., "Hybrid-Stress Finite Element 
Analysis of Through-Cracks in a Plate in Bending", Intl. Jnl.  
of Numerical Methods in Engineering, 1981, (to appear). 

(113) Atluri, S.N., "Hybrid Finite Element in Fluid Flow Problems", 
in Proceedings of Conference on Mathematics of Finite Elements  
and its Applications, (Editor: J.R. Whiteman), Brunel University, 
England, April 1981, (to appear), (invited special lecture). 

(114) Atluri, S.N., "Hybrid Finite Element Analysis of Constraint Problems 
in Elasticity", in Proceedings of International Symposium on  
Numerical Methods in Partial Differential Equations, AMACS, 
Lehigh University, June 1981, (to appear), (invited paper). 

(115) Quinlan, P.M., Grannell, J.J., and Atluri, S.N., "Edge-Function 
Methods for Elliptical Cracks in Prismoidal Bodies", in Proceedings  
of 2nd International Symposium on Innovative Numerical Analysis  
in Engineering, Montreal, Canada, June 1980, (28 pp). 

(117) Nishioka, T., Perl, M., and Atluri, S.N., "An Analysis of, and Some 
Observations on, Dynamics Fracture in an Impact Test Specimen," 
ASME Paper No. 81-PVP-18, ASME Summer Conf., Denver CO, June 1981, 
(invited paper) (also to appear in ASME Jnl. of Pressure Vessel  
Technology). 



(118) Atluri, S.N., "Path-Independent Integrals in Finite Elasticity 
and Inelasticity with Body Forces, Inertia, and Arbitrary Crack-
Face Conditions", Engg. Fracture Mechanics, 1981, (in press). 

(119) Nishioka, T., and Atluri, S.N., "Stress Analysis of Holes in Angle-
Ply Laminates: An Efficient Assumed Stress "Special-Hole-Element", 
Approach and a Simple Estimation Method", Computers and Structures, 
1981, (in press). 

(120) Nishioka, T., and Atluri, S.N., "A Simple 2-D Estimation Method for 
Stress-Intensity Factors for Through Cracks in Angle-Ply Laminates", 
Engineering Fracture Mechanics, 1981, (in press). 

(121) Nishioka, T., and Atluri, S.N., "Simple 2-D Estimation Procedure 
for Stress-Concentration Around Holes in Laminates", Jnl. of  
Composite Materials, 1981, (in press). 

(122) Fukuchi, M., and Atluri, S.N., "Finite Deformation Analysis of 
Shells: A Complementary Energy-Hybrid Method", in Nonlinear  
Finite Element Analysis of Shells, ASME AMD Vol. 48, (Ed. 
Hughes), ASME, pp 233-249, 1981. 

(123) McGowan, J.J., and Atluri, S.N., "Damage Tolerant Design of Panels 
with Surface Cracks, A Study of Lower Bound Flaw Shapes", Advances  
in Aerospace Structures and Materials, ASME AD-01, 1981, pp 293-299. 

(124) Reed, K.W., and htluri, S.N., "Viscoplasticity and Creep: A 
Finite Deformation Analysis Using Stress-Based Finite Elements", 
Advances in Aerospace Structures and Materials, ASME AD-01, pp 
211-221, 1981. 

(125) Kobayashi, A.S., Atluri, S.N., Cheng, J.S., and Emergy, A.F., 
Love, W.J., "Elastic-Plastic Analyses of a Three-Point Bend 
Specimen and a Fracturing Pipe", invited contributions, 
U.S.-Japan Seminar and Elastic-Plastic Fracture, Hyama, Japan, 
Nov. 1979. 

(126) Rhee, H.C., and Atluri, S.N., "On the Accuracy of Finite Element 
Solutions of Problems with Traction Boundary Conditions, Int. 
Jnl. of Applied Mathematical Modellig, Vol. 5, pp 103-108, 1981. 

(127) Bratianu, C., and Atluri, S.N., "Studies of FEM Analysis of 
Fluid Flow Using Velocity - Pre-sure Formulation", Intl. Jnl.  
of Applied Mathematical Modelling, 1981, (to appear), (invited 
paper). 

(128) Atluri, S.N., Tong, P., and Murakawa, H., "Recent Studies in 
Hybrid and Mixed FEM in Continuum Mechanics", in Hybrid and  
Mixed FEM, (Ed.: S.N. Atluri, O.C. Z:Lenkiewicz, and R.H. 
Gallagher), John Wiley & Sons, 1981, (to appear). 

(129) Bratianu, C., Ying, L-a., and Atluri,, S.N., "Hybrid Elements 
for Fluid Flow", 3rd International Conference on Finite Elements  
in Fluid Flow, Tokyo, Japan, 1981, (to appear). 



(130) Rubenstein, R., and Atluri, S.N., "Objectivity of Incremental 
Constitutive Relations over Finite Time Steps in Computational 
Finite Deformation Analyses:, Computer Methods in Applied Mechanics  
Engineering, 1982, (in press). 

(131) Stonesifer, R.B., and Atluri, S.N., "On a Study of the (AT) and 
C* Integrals for Fracture Analysis under Non-Steady Creep", cEngg. Engg. 
Fracture Mechanics, 1981 (in press). 

(132) Stonesifer, R.B., and Atluri, S.N., "Moving Singularity Creep 
Crack Growth Analysis with the (AT) and C* Integrals", Engineering  
Fracture Mechanics, 1981, (in press. 

(133) Nishioka, T., and Atluri, S.N., "Finite Element Simulation of 
Problems in Dynamic Fracture Mechanics", Translations of Japanese  
Society of Mechanical Engineers, 1982 (in press). 

(134) Atluri, S.N., "Alternate Stress and Conjugate Strain Measures, and 
Mixed Variational Formulations Involving Rigid Rotations, for Compu-
tational Analyses of Finitely Deformed Solids, with Application to 
Plates and Shells-Part I: Thoery", Computers & Structures, 
1982, (to appear). 

(135) Nishioka, T., and Atluri, S.N., "Analytical Solution for Embedded 
Elliptical Cracks, and Finite Element Alternating Method for 
Elliptical Surface Cracks, Subjected to Arbitrary Loading", 
Engineering Fracture Mechanics, 1982, (to appear). 

(136) Nishioka, T., and Atluri, S.N., "Integrity Analyses of Surface 
Flawed Aircraft Attachment Lugs: A New, Inexpensive, 3-D Alternating 
Method", Proc. 22nd AIAA/ASME/ASCE/AHS Structures and Materials Conf., 
New Orleans, LA, 1982, (to appear). 

(137) Nishioka, T., and Atluri, S.N., "Finite Element Simulation of Fast 
Fracture in Steel DCB Specimen", Engg. Fracture Mechanics, 1981, 
(in press). 

(138) Nishioka, T., and Atluri, S.N., "A Method for Determining Dynamic 
Stress Intensity Factors from COD Measurements at the Notch 
Mouth Opening in Dynamic Tear Testing", Engg. Fracture Mechanics, 
1981, (in press). 

(139) Atluri, S.N., "Hybrid and Mixed FEM in Fluid Mechanics", 3rd Int.  
Conf. on Finite Elements in Water Resources, University of Hannover, 
W. Germany, June 1982 (to appear). 

(140) Nishioka, T., and Atluri, S.N., "Analyses of Semi-Elliptical Surface 
Cracks in Cylindrical Pressure Vessels Using New Finite Element-
Alternating Method", Proc. 1982 Pressure Vessels and Piping Conf., 
Orlando, FL, May 1982, (to appear). 

(141) Perl, M., and Atluri, S.N., "Dynamic Crack Propagation in a Very 
Ductile Material", Engg. Fracture Mechanics, 1982 (to appear). 



(142) Reed, K.W., and Atluri, S.N., "Generalization of Viscoplastic 
Constitutive Equations for Very Large Srains", Proc. Int. Conf.  
on Constitutive Laws for Engg. Materials: Theory and Application, 
Univ. of Arizona, 1982 (to appear). 

(143) Nakagaki, M., and Atluri, S.N., "Analysis of Fatigue Growth of 
Cracks Near Cold-Worked Fastener Holes", 1982 ASME Pressure  
Vessels & Piping Conf., June-July 1982, (to appear). 

(144) Atluri, S.N., "Current Studies in Inelastic, Dynamic, and 3-D 
Fracture Analysis", Proc. U.S.-Japan Seminar on Fracture Tolerance  
Evaluation, Honolulu, Hawaii, Dec. 1981, (in press). 

(145) Atluri, S.N., Reed, K.W., and Stonesifer, R.B., "Stress and Fracture 
Analyses Under Elasto-Plastic and Creep: Some Fundamental Develop-
ments and Computational Approaches", Proc. Symp. on Nonlinear  
Constitutive Relations for High Temperature Applications, University 
of Akron, OH, May 1982, (to appear). 

(146) Karamanlidis, D., and Atluri, S.N., "A Novel Family of Mixed-
Hybrid Finite Elements for 3-dimensional Large Deformation 
Dynamic Analysis", 2nd Int. Symp. on Advances and Trends in  
Structural and Solid Mechanics, Wash., DC, Oct. 1982, (to appear). 

(147) Wells, C.H., Nair, P.K., and Atluri, S.N., "Limitations of the 
Fracture Mechanics Approach to Determining Rotor Integrity", in 
Safety and Integrity Analyses of Turbine Rotors, EPRI, 1982, (in 
press). 



(C) 	Research Reports  

(Several of the archival papers published were first issued as grant/ 
contract reports. These are not included here.) 

(1) "PETROS 3: A Finite-Difference Program and Analysis for Large 
Elastic, Plastic. Dynamically Induced Deformation of Multilayer, 
Variable Thickness Shells," U.S. Army Ballistic Research Labora-
tory Report, August 1970 (with E.A. Witmer, J.W. Leech, and L. Morine) 
and M.I.T. ASEL TR-152-3, 1970, 330 pages. 

(2) "Non-linear Stress Analysis of Loaded Rolling Aircraft Tires", AFFDL 7 
 TR-73-130, Vol. 1, Wright-Patterson AFB, OH, 1973 (with A.L. Deak). 

(3) "Head Injury Studies", Final Contract Report to NIH, Contract No. 
NIH-NINDS-72-2325, Dept. of Mech. Engg., University of Washington, 
Seattle (with A.S. Kobayashi and S. Cheng). 

(4) "Static Analysis of Shells of Revolution Using Doubly-Curved Quad-
ralateral Elements Derived from Alternate VAriational Models", Space 
and Missiles Systems Organization, Norton Air Force Base, CA, SAMSO 
TR-69-394, June 1969. Also Aeroelastic and Structures Research 
Laboratory, M.I.T., ASRL TR-146-147, 190 pages. 

(5) "The Stress Analysis of Loaded Rolling Aircraft Tires", AFFDL-TR-
73-130, Vol. 1, Wright-Patterson AFB, OH, 1973, 300 pages. 

(6) "Static Analysis of an Aircraft Tire", Mathematical Sciences North-
west Report, August 1972, 200 pages (with A.L. Deak). 

(7) "Analysis of a Rolling Aircraft Tire", Mathematical Sciences North-
west Report, July 1972 (with A.L. Deak). 

(8) "On Solutions for Rotationally Symmetric Bending of Conical Shells", 
University of Washington, Department of Aeronautics and Astronautics, 
Report 71-1, 1971. 

(9) "Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in 
Mode I and Mode II Conditions", Scientific Report, NASA Grant NSG-1351, 
Sept. 1977, 40 pages (with M. Nakagaki). 

(10) "The Edge-Function Method", Scientific Report, NSF Grant, ENG 
76-16418, March 1978: GIT Report SCEGIT-78-169: ESM-78-1; 66 pages 
(with D.M. Quinlan, J.E. Fitzgerald), 

(11) "Finite Element Elastic-Plastic Analysis of Cracks", Scientific 
Report, AFOSR Grant 74-2667, AFOSR-TR-78-41; GIT-ESM-78-2; 42 pages. 

(12) "Stress Analysis of Automobile Tires", Final Report to General Tire 
& Rubber Company, 200 pages, April 1978, (with S. Chandrashekara). 

(13) "Homogeneous and Bi-Material Crack Elements for Analysis of Solid 
Rocket Motor Grains", Vol. 1, Edwards Air Force Base AFRPL-TR-78- 
286, Sept. 1978 (with K. Kathiresan) 200 pages. 



(14) "Homogeneous and Bi-Material Crack Elements for Analysis of Solid 
Rocket Motor Grains", Vol. II, AF RPL-TR-78-287, Sept. 1978 (with 
K. Kathiresan), 280 pages. 

(15) "Fatigue Crack Growth in Modes I and II Spectrum Loading" NASA-
CR-78-123. (with M. Nakagaki) Oct. 1978, 98 pages. 

(16) "Noz-Flaw: A Computer Program for Direct Evaluation of K-Factors 
for Pressure-Vessel Nozzle Corner Cracks", -  (with R. Bass, J.W. 
Bryson, K. Kathiresan) NUREG/CR-1843/ORNL/NUREG/CSD/TM-18, (Prep. 
for U.S. Nuclear Regulartory Comm. by Oak Ridge Natl. Labs), Nov. 
1980, 52 pages. 

(17) "Boundary Element Methods (BEM) and Combination of BEM-FEM" 
(with J.J. Grannell) GIT-CACM-SNA-79--16, 84 pages, 1979. 



(D) 	Papers Presented at International and National Conferences 

(1) "Nonlinear Free Oscillation of Shells", Regional Meeting of  
Society of Industrial and Applied Mathematics, November 1971, 
Ellensburg, WA 

(2) "Nonlinear Oscillations of a Hinged Beam Including Nonlinear Inertia 
Effects", ASME Joint National and Western Applied Mechanics Con-
ference, June 26-29, 1972, University of California, San Diego. 

(3) "Influence of Large Amplitudes and Boundary Conditions on the Super-
sonic Flutter of a Cylindrical Shell", presented at the 4th 
Canadian Congress of Applied Mechanics, May 28-June 1, 1973, 
Montreal, Canada. 

(4) Mechanics of Brain Tissue Fragility", ASME Special Symposium on  
Biomechanics: National Summer Conference on Applied Mechanics, 
June 20-22, 1973, Atlanta, GA. 

(5) "Nonlinear Flutter of a Cylindrical Shell", 7th SECTAM, Catholic 
University of America, March 1974. 

(6) "Application of an Assumed Displacement Hybrid Finite Element 
Model to Two-Dimensional Problems in Fracture Mechanics", 
AIAA/ASME/SAE 15th SDM Specialist Conference, Las Vegas, NV, 
April 1974. 

(7) "An Assumed Displacement Hybrid Finite Element Model for Linear 
Fracture Mechanics", presented at the 7th U.S. National Congress  
of Applied Mechanics, Boulder, CO, June 1974. 

(8) "Finite Element Program for Fracture Mechanics Analysis of 
Composite Materials", presented at ASTM Symposium on Fracture of  
High Modulus Fibers and their Composites, Natioal Bureau of  
Standards, Gaithersburg, MD, Sept. 25, 1974 (invited). 

(9) "Stress Intensity Factors of Cracked Orthotropic Plates", 
Conference on the Fundamental Aspects of the Deformation and  
Fracture of Composite Materials, Battelle Seattle Research 
Center, Seattle, Feb. 22-24, 1975. 

(10) "Brain-Tissue Fragility: A Finite Strain Analysis by a Hybrid 
Finite Element Method", American Society of Mechanical  
Engineers: Applied Mechanics Western Conference, University of 
Hawaii, March 25-27, 1975. 

(11) "Rotationally Symmetric Bending of Orthotropic Conical Shells: 
Transverse Shear and Couple Stress-Stress . Couple Effects", 
14th Midwestern Mechanics Conference, University of Oklahoma, 
Norman OK, March 23-25. 

(12) "Three-Dimensional Cracked Elements", AFRPL Edwards Air Force Base, 
CA, Contract Research Review, Caltech, Pasadena, May 8-9, 1975 (invited). 



(13) "Boundary Integral Equation Formulation for Three-Dimensional 
Elasticity Problems with Body Forces", 5th Canadian Congress of  
Applied Mechanics, New Brunswick, Canada, June 1975 (with A.L. Deak). 

(14) "Nonlinear Stress Analysis of Pneumatic Structures", 5th Canadian  
Congress of Applied Mechanics, New Brunswick, Canada, June 1975, 
(with A.L. Deak). 

(15) "Finite Element Approximation in Solid Mechanics", four lectures 
at the University of Tennessee Space Institute, Tullahoma, Nov. 
10-15, 1975. 

(16) "Large-Scale Yielding Fracture Mechanics", at the Committee E-24  
Meeting, 9th National Symposium on Fracture, University of 
Pittsburgh, Aug. 25-27, 1975 (invited). 

(17) "Analysis of Two-Dimensional Problems Involving Large-Scale 
Yielding", 12th Annual Meeting of the Society of Engineering  
Science, Austin, TX, Oct. 1975. 

(18) "An Assumed Displacement Hybrid Finite Element Model for Three-
Dimensional Linear Fracture Mechanics Analysis", 12th Annual  
Society of Engineering Science Meetia, University of Texas at 
Austin, Oct. 1975. 

(19) "Hybrid Elements for 3-D Fracture", Specialist Work Shop on 3-D 
Fracture Analysis, organized by AFOSR/NASA/ERDA/DOT, Battelle 
Columbus Labs., Columbus, OH (invited). 

(20) "Post-Yield Analysis of a Three-Point-Bend Fracture Test Specimen", 
8th Southeastern Conference on Theoretical and Applied Mechanics, 
VPI and SU, Blacksburg, VA, April 20•30, 1976. 

(21) "J-Integral Estimation Procedures for Strain-Hardening Materials", 
at AIAA/ASME/SAE, Structures, Structural Dynamics, and Materials . 
Specialist Conference, Valley Forge, PA, May 5-7, 1976. 

(22) "On a 3-D Singularity Element for Computation of Mixed Mode Stress 
Intensities", 13th Annual Society of Engineering Science Meeting, 
NASA-Langley, Hampton, VA, Nov. 1976. 

(23) "Fracture Analysis Under Large-Scale Plastic Yielding Conditions", 
10th U.S. National Conference in Fracture, American Society for 
Testing and Materials, Aug. 20-25, 1976, Philadelphia, PA. 

(24) "On Hybrid Stress Analysis of Laminated Shells by the Hybrid 
Stress Finite Element Model", presented at International Con-
ference on Computational Methods in Nonlinear Mechanics, Univer-
sity of Texas at Austin, Sept. 1974. 

(25) "On Hybrid Stress and Hybrid Displacement Models in Solid and 
Fracture Mechanics", AICA International Symposium on Computer  
Methods for Partial Differential Equations, Lehigh University, 
Bethlehem, PA, June 1975 (invited paper). 



(26) "Finite Element Analysis of Cracks Between Dissimilar Media", 
NATO Advanced Study Institute on Continuum Mechanics Aspects of 
Geodynamics and Rock Fracture Mechanics, Reykjavik, Iceland, 
Aug. 11-20, 1974 (invited). 

(27) "Finite Element-Perturbation Analysis on Nonlinear Dynamic Response 
of Elastic Continuua", invited presentation at the 1974 International  
Conference on Finite Element Methods in Engineering, Sydney, Aus-
tralia, Sept. 1974. 

(28) "Three-Dimensional Linear Fracture Mechanics: Analysis by a 
Displacement Hybrid Finite Element Model", invited presentation 
of the 3rd International Conference on Structural Mechanics in  
Reactor Technology, University of London, Sept. 1975, (with 
K. Kathiresan and A.S. Kobayashi). 

(29) "Stress Analysis of Cracks in Elasto--Plastic Range", (with M. 
Nakagaki), 4th Quadrennial International Conference on Fracture, 
University of Wa:erloo, Ontario, Canada, June 1977. 

(30) "Stress Intensity Factors for Surface Flaws in Pressurized Cylinders", 
(with K. Kathiresan), 3rd International Congress on Pressure Vessel  
Technology, Tokyo, Japan, April 1977. 

(31) "Fracture Initiation in Plane Ductile Fracture Problems", 3rd In-
ternational Congress on Pressure Vessel Technology, Tokyo, Japan, 
April 1977. 

(32) "On Hybrid Techniques for Fracture Analysis", (with P. Tong), 
International Conference on Fracture Mechanics and Technology, 
Hong Kong, March 1977 (invited). 

(33) "On the Formulation and Application of Rational Numerical Methods 
for Problems with Nonremovable Singularities", International Sym-
posium on Innovative Numerical Methods in Engineering Science, 
Paris, France, May 1977 (invited). 

(34) "Edge Function Method for Three-Dimensional Stress Analysis", 
(with P.M. Quinlan and J.E. Fitzgerald), at International Sym-
posium on Innovative Numerical Methods in Engineering Science, 
Paris, France, May 1977 (invited). 

(35) "Fracture Analysis of Structures Under Combined Mode Loading", 
2nd ASCE Engineering Mechanics Specialist Conference, Rayleigh, 
N.C., May 1977, (invited). 

(36) "Stress Analysis of Cracks in Elasto-Plastic Range", 4th Inter-
national Conference on Fracture, University of Waterloo, Canada, 
June 1977. 

(37) "Outer Surface Flaws in Pressure Vessels, 4th International  
Conference on Structural Mechanics in Reactor Technology, San 
Francisco, CA, August 1977. 

I 



(38) "Through Flaws in Plates in Bending", 4th International Con-
ference on Structural Mechanics in Reactor Technology, San 
Francisco, CA, Aug. 1977. 

(39) "Hybrid Finite Element Models in Nonlinear Solid Mechanics", 
International Conference on Finite Elements in Nonlinear Solid  
and Structural Mechanics, Geilo, Norway, August 30-September 1, 
1977 (invited). 

(40) "Analysis of Stable Crack Growth in Ductile Materials", 9th 
SAMPE National Conference, Atlanta, ,SA, Oct. 1977. (invited). 

(41) "Surface Flaws in Plates", 14th Annual Meeting of Society of  
Engineering Science, Lehigh University, Nov. 1977. 

(42) "A Finite Element Analysis of Stable Crack Growth - I", ASTM 
National Symposium on Elastic-Plastic Fracture, Atlanta, GA, 
Nov. 1977. 

(43) "Hybrid Finite Element Models in Linear and Nonlinear Fracture", 
International Conference on Numerical Methods in Fracture, 
Swansea, U.K., Jan., 1978, (invited). 

(44) "Bi-Material Fracture", 1978 Joint AFOSR/AFRPL Rocket Propulsion  
Research Meeting, Edwards Air Force Base, CA, March, 1978 (invited). 

(45) "Elastic-Plastic Analysis of 3-D Cracks", 1978 Joint AFOSR/AFRPL  
Rocket Propulsion Research Conference, Edwards Air Force Base, 
CA, March 1978, (invited). 

(46) "Stress Analysis of Typical Flaws in Aerospace Structural Components", 
19th AIAA/ASME Structures, Structural Dynamics and Mgteriala Con-
ference, Bethesda, MD, March 1978. 

(47) "Edge-Function Method for 3-D Elasticity", 8th'U.S. National  
Congress (Quadrennial) on Applied Mechanics, UCLA, Los Angeles, 
June 1978. 

(48) "Boundary-Discretization Method Using Edge Functions", International  
Conference on Recent Advances in Boundary Element Methods, Univer-
sity Southampton, U.K., July 1978 (invited). 

(49) "Complementary Energy Principles and Finite Strain Problems", 
Symposium of the International Union of Theoretical and Applied  
Mechanics on Variational Methods; Evanston, IL, Sept. 78, (invited). 

(50) "Numerical Modelling of Nonlinear Behavior of Soft Biological 
Materials", International Conference on Applied Numerical  
Modelling, University of Madrid, Spain, Sept. 78, (invited). 

(51) "On the Use of Stress Functions and Asymptotic Solutions in Solid 
and Structural Mechanics", Symposium on Future Trends in Computer-
ized Analysis of Structures's, Washington, DC, Nov. 78, (invited). 



(52) "An Efficient Assumed Stress Finite Element Method for Analysis 
of Angle-Ply Laminates", 15th Meeting of Society of Engineering  
Science, Univ. of Florida, Dec. '78. 

(53) "Finite Elasticity Solutions Using Hybrid Finite Elements Based 
on a Complementary Energy Principle", ASME Winter Annual Meeting, 
San Francisco, Dec. '78. 

(54) "Influence of Flaw Shapes on Stress Intensity Factors for Beltline 
Cracks", National Congress on Pressure Vessel Technology, San 
Francisco, June 1979. 

(55) "Finite Elasticity Solutions Using Hybrid Finite Elements Based 
on a Complementary Energy Principle II. Incompressible Materials", 
1979 Joint Applied Mechanics, Fluids Conference, Niagara Falls, 
New York, June 1979. 

(56) "Finite Element Methods for Finite Strain Plasticity Problems in 
Metalforming", International Conference on Computational Methods  
in Nonlinear Mechanics,(sponsored by NSF) Austin, TX, March 1979, 
(invited). 

(57) "Analytical Modelling of Surface Flaws", Fracture Research Sym-
posium, SESA, Annual Meeting, San Francisco, June 1979, (invited). 

(58) "Computational Methods for Engineering Fracture Analyses", Inter-
national Conference on Fracture Mechanics in Engineering, Bangalore, 
India, March 1979, (invited). 

(59) "Nozzle-Vessel-Intersection Cracks Under Thermal Shock", Inter-
national Conference on Structural Mechanics in Reactor Technology, 
W. Berlin, Aug. 1979, (invited). 

(60) "Hybrid Finite Element Methods for 3-D and Nonlinear Fracture Prob-
lems", Engineering Applications of the Finite Element Methods, 
Det Norske Veritas, Havik, Norway, June 1979, (invited). 

(61) "Complementary Energy and Finite Strain Plasticity", Advances in  
Theory and Practice of Finite Element Methods, Centennial Celebration 
of Chalmers University of Technology, Goteberg, Sweden, Aug. 1979, 
(invited). 

(62) "Static/Dynamic Analysis of Crack Propagation", 3rd ASCE Engineering  
Mechanics Specialty Conf., Univ. of Texas at Austin, Sept. 1979, 
(invited). 

(63) "Finite Strain Plasticity Computations", Society of Engineering  
Science Annual Meeting, Northwestern Univ., Evanston, IL, Sept. 
1979 (invited). 

(64) "Selection of Finite Element Bases", Specialist Workshop on Finite  
Elements, Washington Univ., St. Louis, MO, Nov. 1979, (invited). 



(65) "Numerical Modeling of Nonlinear and Dynamic Crack Propagation", 
Symp. on Nonlinear and Dynamic Fracture, ASME WAM, Dec. 79, 
(invited). 

(66) "Stress Analysis of Holes in Composite Laminates", 21st AIAA  
Structures, Structural Dynamics and Materials Conference, Seattle, 
WA, May 1980. 

(67) "Dynamic Propagation of a Central Crack in a Finite Panel", 
Int. Conf. on Analytical and Experimental Fracture Mechanics, 
Rome, Italy, June 1980, (invited). 

(68) "Use of Stress Functions and Asymptotic Solutions in FEM Analysis 
of Continuua", Symp. on New Concepts in FEM, 1981 Summer Annual  
Mechanics Meeting, Boulder, CO, June 1981, (invited). 

(69) "Recent Studies in Hybrid FEM for Solids and Fluids", Society  
of Engineering Sci. Meeting, Atlanta, GA, Dec. 1979, (invited). 

(70) "An Embedded Elliptical Flaw Subject to Arbitrary Loading, in an 
Infinite Medium", 15th Int. Congress on Theoretical and Applied  
Mechanics, IUTAM, Univ. of Toronto, Aug. 1979. 

(71) "Edge-Function Method for Buried Cracks", 2nd Int. Symp. on  
Innovative Numerical Analysis in Engineering, Montreal, Canada, 
June 1980, (invited). 

(72) "An Analysis of and Some Observations on Dynamic Fracture in an 
Impact Specimen", 1981 Pressure Vessels and Piping Conf., Denver, 
CO, June 1981, (invited). 

(73) "Finite Deformation Analysis of Shells, A Complementary Energy-
Hybrid Approach", Symp. on Nonlinear Finite Element Analysis  
of Shells, ASME, WAM, Nov. 81, (invited). 

(74) "Recent Studies on Dynamic, Inelastic, and 3-D Fracture Analysis", 
U.S.-Japan Seminar on Damage Tolerance Evaluation, Honolulu, 
Hawaii, Dec. 81, (invited). 



(E) 	Invited Seminars and Colloquia in U.S. and Abroad  

(1) "Finite Element Analysis of Shells", Department of Aerospace 
Engineering, University of Maryland, July 1969. 

(2) "Analysis of Large Amplitude Elastoplastic Dynamics of Shells", 
M.I.T., May 1970. 

(3) "Philosophical Implications of the Theory of Relativity", M.I.T., 
December 1970. 

(4) "Nonlinear Oscillations in Certain Elastic Systems", Indian 
Institute of Technology, Kanpur, September 1971. 

(5) "Recent Developments in Finite-Element Theory", Department 
of Aeronautical Engineering, Indian Institute of Science, 
Bangalore, September 1971. 

(6) "Helicopter Ground Resonance", Department of Aeronautics and 
Astronautics, University of Washington, October 1971. 

(7) "What an Applied Mechanician Can Do in. Medicine", Center for 
Bioengineering, University of Washington, February 1972. 

(8) "Peristaltic Pumping", Center for Bioengineering, School of 
Medicine, University of Washington. 

(9) "Nonlinear Oscillation in a Circular Cylindrical Shell", Depart-
ment of Mechanical, Mechanics and Aerospace Engineering, Illinois 
Institute of Technology, May 1973. 

(10) "Dynamic Stability of a Shell in Supersonic Flow", Department of 
Theoretical and Applied Mechanics, University of Illinois-Urbana, 
Champaign, June 1973. 

(11) "Analysis of a Rolling Aircraft Tire", Research and Development 
Center, General Tire and Rubber Company, Akron, OH, Aug. 9, 1974. 

(12) "Computational Methods in Fracture Mechanics", National Aeronautical 
Laboratory, Bangalore, India, Aug. 21, 1974. 

(13) "Elastic-Plastic Fracture Mechanics", Department of Aeronautics, 
Indian Institute of Science, Bangalore, India, Aug. 21, 1974. 

(14) "Perturbation Methods in Nonlinear Flutter", Department of Aero-
nautics, Indian Institute of Science, Bangalore, India, Aug. 30, 
1974. 

(15) "Singular Perturbation Methods in Shell Theory", lecture at Short 
Course on Singular Perturbation in Methods, University of Tennessee 
Space Institute, Tullahoma, TN, Nov. 4-8, 1974. 



(16) "Finite Element Approximation in Solid Mechanics", four lectures 
at Short Course on Approximate Methods in Engineering and Applied 
Sciences, University of Tennessee Space Institute, Tullahoma, TN, 
Nov., 10-14, 1975'. 

(17) "Computational Fracture Mechanics", College of Engineering, Boston 
University, Boston„ Feb. 24, 1976. 

(18) "Novel Methods for alysis of Singularity Problems", University 
College of Cork, Ireland, Jan. 78. 

(19) "Approximate Methods of Analysis", 4 lectures, University of 
Tennessee Space Institute, Tullahoma, TN, March 78. 

(20) "Recent Developments in Finite Element Methods", 4 lectures, M.I.T., 
July 78. 

(21) "Numerical Methods in Fracture Mechanics", University College, 
Cork, Ireland, Aug. 1979.  

(22) "Finite Strain Inelasticity Analysis Via Complementary Energy", 
Center for Computational Mechanics, Washington University, 
St. Louis, MO, Jan 80. 

(23) "Selection of Finite Element Basis", Center for Computational 
Mechanics, Washington University, St. Louis, MO, Nov. 1980. 

(24) "Dynamic Fracture Analysis", Dept. Mechanical Engg., University 
of Washington, Seattle, WA, May 1980. 

(25) "Path-Independent Integrals in Fracture Mechanics", National 
Tsing-Hua University, Hsinchu, Republic of China, Taiwan, 
May, 1981. 

(26) "Rate Complementary Energy Principles for Finite Element Analysis.  
of Finite Elasticity", National Taiwan University, Taipei, 
Republic of China, Taiwan, May 1981. 

(27) "Path-Independent Integrals in Fracture Mechanics", Rutgers 
University, N.J., July 1981. 

(28) "Path-Independent Integrals in Fracture Mechanics", Naval 
Research Laboratory, Washington, DC, Oct, 1981. 
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