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SUMMARY

In this thesis ultrasonic Lamb wave measurements are performed to detect

material nonlinearity in aluminum sheets. When a Lamb wave propagates, higher

harmonic wave fields are generated and under certain conditions the second harmonic

is cumulative. When these conditions hold the Lamb waves are serviceable for mate-

rial nonlinearity measurements. For generation, a wedge–transducer combination is

used. The detection of the Lamb wave are performed with either a laser interferom-

eter or a second wedge–transducer combination and the results are benchmarked. A

short–time Fourier transformation (STFT) is applied to the detected signal to extract

the amplitudes of the first and second harmonics. A relative ratio of the first and

second harmonics is deduced from nonlinear wave theory to assign the nonlinearity

of the material. To verify the capability of the measurement setup and to show that

cumulative second harmonics are generated, measurements for different propagation

distances are performed. Further measurements on plasticly deformed specimens are

carried out to examine the change of the material nonlinearity as a function of plas-

ticity.
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CHAPTER I

INTRODUCTION

Ultrasonic wave measurements are a common way to monitor damage in materials.

Classical nondestructive evaluation (NDE) techniques quantify microcracks in a ma-

terial by measuring the scattered wave field. A new trend in nondestructive evaluation

seeks to characterize the fatigue state of a component before the first microcracks are

formed. Specifically the aerospace industry has the concern to continuously assess the

fatigue state of a component. A promising technique is to measure the higher harmon-

ics of a propagating ultrasonic wave generated from a wave guide material. The higher

harmonics are excited by the material nonlinearity, which can be described with the

nonlinear stress–strain relationship. Material nonlinearity is inherent in most solid

materials. In addition, material nonlinearity can be induced by plastic deformation.

Recent research has shown a significant increase in the measured material nonlinear-

ity parameter with the accumulation of damage (plastic deformation) [7, 16, 21, 26].

This points out a potential for the development of a quantitative NDE measurement

technique for fatigue state assessment with ultrasonic waves.

Compared to linear ultrasonic measurements, nonlinear measurements are more sen-

sitive to detect changes in the material structure. The group velocity, phase velocity

or attenuation do not change in a significant fashion with damage, since the induced

changes in the material microstructure are much smaller than the typical wavelength

of ultrasonic waves. The linear properties change less than 1 %, however the non-

linear acoustical properties change by more than 50 % [9]. Different ultrasonic wave

types have been applied to measure nonlinearity in a material. Most often used are

longitudinal, bulk waves [5, 32], but also Rayleigh [2, 5, 21] and Lamb waves [4, 16]
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have been applied. Rayleigh and Lamb waves have the advantage that they prop-

agate far distances. They are useful for long range inspection. However, Rayleigh

waves propagate only on the surface and so are very sensitive to changes in surface

condition. Lamb waves differ from the other wave types. They propagate in multi-

ple modes. Because Lamb waves are dispersive, the modes additionally travel with

different phase and group velocities. Therefore special conditions have to be meet so

that a cumulative higher harmonic Lamb wave is generated [10, 12, 13, 14].

First in this work the performance of the experimental setup to measure the material

nonlinearity in a material is verified. The Lamb waves are generated by a wedge–

transducer combination. For the detection of the propagating Lamb waves, a non-

contact laser interferometer and a second wedge–transducer combination have been

applied. To verify the measurement setup, measurements are performed on two alu-

minum plates with different alloys. The cumulative effect of the second harmonic can

be clearly observed. Additionally, the ratio of the measured nonlinearity is compared

to the results of former measurement with longitudinal waves [32]. To show that

a material nonlinearity increase can be detected with Lamb waves, measurements

on plastically deformed specimens are performed. Finally, the signal processing is

adapted to illustrate its influence on the measurements results.

This thesis first provides in Chapter 2 a review of the linear wave propagation the-

ory in elastic solids. Further, important nonlinear wave propagation theory for this

work is described. The absolute nonlinearity parameter β for the longitudinal wave

propagation is derived. Because there exists no expression for a absolute nonlinearity

parameter for Lamb waves, a relative nonlinearity value A2/A
2
1 is deduced from β. In

Chapter 3 the conditions for the excitation of cumulative second harmonics for Lamb

waves are derived. Chapter 2 and Chapter 3 are the fundamentals for the experimen-

tal work. The experimental setup for the Lamb wave measurements is described in

Chapter 4. The generation of the Lamb wave is explained. Further, the detection

2



of the propagating wave with a laser interferometer and with a wedge–transducer

combination is illustrated. In the end of this chapter, an explanation of the short–

time Fourier transformation and its application to the detected Lamb wave signal is

given. With the transformed time signal, the separation of the modes amplitudes is

possible. The limitation of the resolution of the short–time Fourier transformation is

explained in detail in the appendix A. In Chapter 5, the results of the Lamb wave

measurements are presented. A linear increase of the relative nonlinear value A2/A
2
1

with growing propagation distance is verified and also a comparison of the ratio of

two alloys with the results from longitudinal wave measurements is made. For the

damage identification in material with Lamb waves, different specimens are loaded

over yield so that plastic deformation occurred. With the Lamb wave measurements,

a change of relative nonlinear value A2/A
2
1 is observed. Furthermore, it can be shown

the significant influence of the short–time Fourier transformation window adjustment

on the measurements results. In the last chapter(Chapter 6) interpretation of the

results and a summery is given. Moreover a outlook of further improvements and

challenges of Lamb wave measurements is provided.
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CHAPTER II

FUNDAMENTAL THEORY

This chapter gives an introduction in the fundamental theory of linear and nonlinear

wave propagation. It is the necessary background for this research.

2.1 Linear wave propagation

The theory of linear wave propagation is well–known and –documented. Good sources

are for instance Achenbach [1] and Graff [18]. The following sections will briefly

describe the fundamental aspects of linear wave propagation. Additionally, wave

phenomena like reflections are discussed. Finally, the key wave type for this research,

the Lamb waves, will be explained.

2.1.1 Equations of motion

The equations of motion will be derived on a volume V at time t bounded by the

surface S (see Figure 2.1). For this volume the force balance is set up. The time rate

dV

S

V

ρbdV

tdS

dS

Figure 2.1: Momentum balance.

of the total momentum change for the collection of particles equals the vector sum of

the external forces.
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The total momentum change for the mass of the volume can be described as d
dt

∫

ρvidV .

d
dt

is the material derivative of the integral. The momentum balance is given by the

equation
∫

S

tidS +

∫

V

ρbidV =
d

dt

∫

V

ρvidV, (2.1)

where ti are the surface tractions, bi are the body forces and vi are the velocity. With

the substitution of surface traction by the Cauchy formula

ti = σijnj (2.2)

in equation (2.1) and transformation of the surface integral using the Gauss’ theorem

gives
∫

V

[σij,j + ρbi − ρv̇i]dV = 0. (2.3)

The material derivative inside the integral is converted by the Reynolds formula.

Since equation (2.3) valid for any arbitrary volume the integral can be left, which

leads to the Cauchy’s equations of motion.

σij,j + ρbi = ρv̇i . (2.4)

The stress tensor σij in this equation is symmetric.

Representing the equations of motion only in terms of the displacements ui and with

the Hooke’s law for a homogeneous, isotropic and linear elastic medium leads to

σij = λεkkδij + 2µεij, (2.5)

where εij is expressed by the strain tensor displacements ui relation

εij =
1

2
(ui,j + uj,i) . (2.6)

From equation (2.5) we can derive the Navier’s equation of motion. The equation is

represented in the indical notation and in a form with vector operators.

µui,jj + (λ + µ)uj,ji = ρüi (2.7)

µ∇2u + (λ + µ)∇∇ · u = ρü, (2.8)
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where λ and µ are the Lamé constants. In this expressions the body forces are ne-

glected.

The Helmholtz decomposition (2.9) is applied to uncouple the coupled partial differ-

ential equation (2.8)

u = ∇ϕ + ∇× ψ. (2.9)

where the components of the displacement u are described in four potential functions

ϕ, ψ1, ψ2 and ψ3. Another constraint is necessary to guarantee the uniqueness of the

solution:

∇ · ψ = 0. (2.10)

Applying the Helmholtz decomposition (2.9) on the displacement equations of mo-

tion (2.8) gives two uncoupled wave equations expressed in terms of the displacement

potentials ϕ and ψ:

∇2ϕ =
1

c2
L

ϕ̈, (2.11)

∇2ψ =
1

c2
T

ψ̈. (2.12)

cL defined the wave speed of the longitudinal wave (also called dilatational, irrota-

tional, pressure or P–wave), where cT is the wave speed of the vertically and hori-

zontally polarized shear waves (also called transverse, rotational, distortional or S–

waves). Expressed with the material properties, the wave speeds are given by

c2
L =

λ + 2µ

ρ
(2.13)

and

c2
T =

µ

ρ
. (2.14)

Substitute the potentials in the wave equations (2.11)–(2.12) by the displacements or

the strains, the equations will still be valid.
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Note, that always cL > cT. Further the Lamé constants λ and µ can be expressed

with Young’s modulus E and Poisson’s ratio ν by the relation

λ =
Eν

(1 + ν)(1 − 2ν)
, (2.15)

µ =
E

2(1 + ν)
. (2.16)

2.1.2 Wave phenomena

All in this section discussed wave phenomena are based on the plane wave assumption,

i.e., that we assume the wave has constant properties (ε, σ, u) on a plane perpendicular

to its direction of propagation p (propagating vector). The mathematical expression

of a plane wave is

u = df(x · p − ct) , (2.17)

In this equation d and u are unit vectors. They defining the direction of particle mo-

tion and propagation. c being either the longitudinal wave speed cL or the transverse

wave speed cT. Insert of (2.17) into equation of motion (2.8) follows

(µ − ρc2)d + (λ + µ)(p · d)p = 0 . (2.18)

p and d are two different unit vectors, so we can get two different solutions from the

equation (2.18). The first solution is d = ±p, the second is p · d = 0. The solutions

forming the basis of wave propagation. Next we discuss this two cases:

(1) If d = ±p we obtain p · d = ±1. With (2.13) and (2.18) gives c = cL. Since

d and p are linearly dependent. This describes the particle movement parallel

to the direction of the wave propagation and is denoted as a longitudinal or

P–wave.

(2) If p ·d = 0 we obtain with (2.14) and (2.18) that c = cT. The direction of motion

is normal to the direction of the wave propagation. This wave is denoted as

7



transverse or S–wave. If a two–dimensional plane of propagation is considered

(for example, the (x1, x2)-plane), a wave with an in–plane displacement (in

the (x1, x2)-plane) is called SV–wave (vertically polarized), while a wave with

out–of–plane displacement (in the x3–direction) is called SH–wave (horizontally

polarized).

In a homogeneous, isotropic material, transverse and longitudinal wave speeds are

independent of frequency, therefore they are nondispersive.

2.1.3 Wave reflection on a plane interface

As derived so far, the different wave types propagating independently from each

other. But, if the medium is finite in the direction of propagation, reflections and

coupling will appear on the boundary. To meet the boundary condition, an incident

P–wave is mostly reflected as both P–and SV–wave at a stress free boundary (σ22 = 0

and σ21 = 0). Likewise, on a stress free boundary an incident SV–wave is normally

reflected as both SV–and P–waves. This effect is known as mode conversion. A

reflection of P–wave on a free surface is displayed in Figure 2.2a, a reflection of a

SV–wave is displayed in Figure 2.2b.

A common way to define a displacement field of a harmonic wave in the (x1, x2)–

plane (propagating in infinite media, plane–strain case) is

u(n) = And
(n) exp

[

ıkn(x1p
(n)
1 + x2p

(n)
2 − cnt)

]

, (2.19)

where n denotes the wave characteristics (longitudinal or transverse) and kn = ω
cn

is

called the wavenumber of the nth wave with the respective wave speeds cn. With

this representation of a wave field, the constraint of equal angular frequency ω for the

incident and the reflected waves and the boundary conditions it is possible to obtain

the relationship between the angle of the incident and the angles of the reflected

waves (Table 2.1). To get a non–trivial solution for the amplitudes An, the angles of

8



PP

SV

x1

x2

θ0

θ1

θ2

(a)

P

SV SV

x1

x2

θ0

θ1

θ2

(b)

Figure 2.2: Wave reflections. (a) Reflection of a P–wave. (b) Reflection of a SV–
wave.

Table 2.1: Angle relations for reflection on a stress–free surface.

incident θ0 reflected P θ1 reflected SV θ2

P θ1 = θ0 sin θ2 = (cT/cL) sin θ0

SV sin θ1 = (cL/cT) sin θ0 θ2 = θ0

incident and reflected waves θ0, θ1 and θ2 in Figure 2.2 have to satisfy Snell’s law:

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 . (2.20)

There exist two exceptions for mode conversion: First case, the incidence wave is

normal to the reflection surface. So θ0 = 0 and the waves are reflected as themselves.

The second case occurs if the angle θ0 is greater than a critical angle

θcritical = arcsin
cT

cL

, (2.21)

only an SV–wave is reflected. The P–wave portion of the reflected signal degenerates

into a Rayleigh surface wave, which is a specific type of two–dimensional harmonic

wave.

2.1.4 Lamb waves

Lamb waves are a typical representative of a guided wave. A wave guide is a body

with at least one, but normally two boundaries. Figure 2.3 shows the reflection of

9



the waves at the interfaces. This leads to a multiple reflection on the surfaces in

propagation direction. With every reflection mode conversion occurs and more waves

propagate in the waveguide, which ends in an interference pattern of a standing wave

in x2-direction and a traveling wave in x1-direction.

x1

x2

2h
PP SVSV

Figure 2.3: Multiple reflections in a waveguide.

The wave equation in potential from is used in order to model the phenomenon of

guided waves:

∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

=
1

c2
L

∂2ϕ

∂t2
(2.22)

∂2φ

∂x2
1

+
∂2φ

∂x2
2

=
1

c2
T

∂2φ

∂t2
(2.23)

We consider the complex potentials solution as[30]

ϕ = Φ(x2)e
ı(kx1−ωt) (2.24)

ψ = Ψ(x2)e
ı(kx1−ωt). (2.25)

Insert (2.24) and (2.25) in (2.22) and (2.23) we obtain

ϕ(x2) = A1sin(px2) + A2cos(px2) (2.26)

ψ(x2) = B1sin(qx2) + B2cos(qx2) (2.27)

with

p2 =
ω2

c2
L

− k2, q2 =
ω2

c2
T

− k2. (2.28)

10



The additionally assumption for x1–direction as propagation direction and plane

strain stress free boundaries at x2 = ±h gives the Rayleigh–Lamb frequency equations

as shown Achenbach [1]:

tan(qh)

tan(ph)
= −

4k2pq

(q2 − k2)2
(2.29)

and

tan(qh)

tan(ph)
= −

(q2 − k2)2

4k2pq
. (2.30)

Equation (2.29) declares the symmetric Lamb modes and equation (2.30) declares the

antisymmetric Lamb modes. Symmetric and antisymmetric stays for the displacement

distribution over the plate thickness with respect to the propagation direction p,

here the x1–direction. In Figure 2.4 the in–plane and out–of–plane displacement

distribution for the first three symmetric and antisymmetric modes are sketched. The

tickness of the waveguide is defined as 2h. Every Lamb mode has a frequency ω and

a specific phase velocity cph = ω
k
. Lamb waves are dispersive and the mode velocities

are dependent on the frequency. Today there exist only numerical solution for the

Rayleigh-Lamb equation. Figure 2.5 shows the calculated mode curves illustrated in

the normalized frequency over the phase velocity. The symmetric modes obtained

from equation (2.29) are labeled si, i = 0...4, the antisymmetric modes obtained from

equation (2.30) are labeled ai, i = 0...4. First, the numerical solution for all modes in

the (ω, k)–domain (and with f = ω
2π

in the (f, k)–domain, respectively) is computed,

and afterward f is differentiated partially with respect to the wave number k for all

modes. The derivative, representing the group velocity cg(f), is

cg(f) = 2π
∂f

∂k
. (2.31)

The group velocity accounts for the velocity of the energy propagating with the wave

and comes from the superposition of waves. In general the group velocity cg is smaller

than the phase velocity cph. The phase velocity cph is defined as cph = ω
k

and describes

11
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Figure 2.4: In–plane (solid line) and out–of–plane (dotted line) displacement dis-
tribution for a aluminum plate normalized with wave number k=5.

the velocity of points with constant phase. Note, that for nondispersive , i.e. infinitely

linearly elastic media, group and phase velocity are equal.

The energy slowness sle(f) can be derived form the equation (2.31) by

sle(f) =
1

cg(f)
. (2.32)

For the theoretical solution in the time–frequency domain, the relationship

t(f) =
sle(f)

d
(2.33)

is used. Time t represents the expected arrival time for a specific mode at frequency

f with a propagation distance of d between sender and receiver.

Figure 2.6 present a theoretical Lamb wave for a plate with 1mm thickness, calcu-

lated with a existing and modified Matlab code. The waveform results from the
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Figure 2.6: Theoretical solution for the Lamb wave.
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superposition of the first six symmetric and anti–symmetric modes with a modeled

sampling frequency of 100MHz. More details about the implementation of dispersion

curves and normal mode expansion can be found in Pao [31].

2.2 Nonlinear wave propagation

In this sub chapter the one–dimensional nonlinear wave propagation will be described.

Figure 2.7 illustrate the effect of the nonlinearity of a solid on a propagating wave.

While in a linear medium only the exited frequency of the wave will be detected after

transverse through the material, higher harmonic frequencies will occur in a nonlin-

ear medium. These higher harmonic frequencies are integer multiples of the exited

fundamental frequency. The wave will be distorted by the material nonlinearity as

Linear medium Nonlinear medium

U1 sin(ω0t) A1 sin(ω0t) U1 sin(ω0t)

A1 sin(ω0t)

A2 sin(2ω0t)

An sin(nω0t)

Figure 2.7: Linear and nonlinear wave propagation in a solid.

it propagates [22, 6]. The material nonlinearity is generated by either material in-

herent or damages due to plastic deformation. The inherent nonlinearity are caused

for example by lattice anharmonicities, precipitates or vacancies. The damage caused

nonlinearity is generated from dislocations or microcracks.
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2.3 Nonlinearity parameter β

A nonlinearity parameter β will be induced, a quantitative parameter for the degree

of nonlinearity of the medium. It is experimentally proved, that β depends on the

material properties [3]. Additionally, the value of β changes, if plastic deformation

damaged the material [20]. A relationship between the parameter β and of the am-

plitudes of the fundamental and second harmonic frequency is derived. The detailed

derivation of β can be found in [7]. This expression is only valid for longitudinal

waves measurements and is used for the definition of the relative nonlinearity ratio

A2/A
2
1 for the Lamb waves. The introduction of the nonlinearity ratio A2/A

2
1 and the

derived conditions for the cumulative second harmonic wave field are the theoretical

background for experiments in this thesis.

Longitudinal stress perturbation σ̄ due to a propagating ultrasonic wave creates a

longitudinal strain

ε = εe + εpl , (2.34)

where εe stays for the elastic strain component and εpl stays for the plastic strain

component associated with the motion of dislocations in the dipole configuration.

The nonlinear Hooke’s law (quadratic nonlinear approach) gives the relation between

stress perturbation σ̄ and elastic strain component εe by

σ̄ = Ae
2εe +

1

2
Ae

3ε
2
e + higher order terms (h.o.t.) (2.35)

or

εe =
1

Ae
2

σ̄ −
1

2

Ae
3

(Ae
2)

3
σ̄2 + h.o.t. . (2.36)

Ae
2 and Ae

3 account for the Huang coefficients [24] and denote also the initial stress

configuration.

As described in [7], the correlation between the stress perturbation σ̄ and the plastic

15



strain component εpl can be achieved by account the dipolar forces. For edge dislo-

cation pairs with opposite polarity, the force per unit length along the glide plane is

defined as

F̄x1
= −

Gb2

2π(1 − ν)

x1(x
2
1 − x2

2)

(x2
1 + x2

2)
2

, (2.37)

where G is the shear modulus, b is the Burgers vector, ν is Poisson’s ratio and x1

and x2 are the Cartesian coordinates of one dislocation pair relative to the other. It

is supposed, the motion in dipole pairs taking place just along parallel slip planes

separated by the so–called equilibrium dipole height x2 = h, where h is the dipole

height. The equilibrium at this height can be expressed by

F̄x1
+ bRσ̄ = 0. (2.38)

where R is the longitudinal–to–shear conversion factor or also denoted as Schmid

factor along the slip planes.

In addition the correlation between the plastic strain component εpl and the relative

dislocation displacement ξ = x − h can be write

εpl = ΩΛdpbξ. (2.39)

with Ω is refered to the conversion factor from the dislocation displacement in the

slip plane to a longitudinal displacement along an arbitrary direction and Λdp is the

dipole density.

It follows from the equations (2.38)–(2.39) and a power series expansion from (2.37)

that

σ̄ = Adp
2 εpl +

1

2
Adp

3 ε2
pl + h.o.t. , (2.40)

where

Adp
2 = −

(

G

4πΩRΛdph2(1 − ν)

)

,

Adp
3 =

(

G

4πΩ2R(Λdp)2h3(1 − ν)b

)

.

(2.41)
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And the inverse relation for εpl is

εpl =
1

Adp
2

σ̄ −
1

2

Adp
3

(Adp
2 )3

σ̄2 + h.o.t. . (2.42)

Further, replace εe and εpl in equation (2.34) by (2.36) and (2.42) gives the longitu-

dinal strain as

ε =

(

1

Ae
2

+
1

Adp
2

)

σ̄ −
1

2

(

Ae
3

(Ae
2)

3
+

Adp
3

(Adp
2 )3

)

σ̄2 + h.o.t. , (2.43)

with the inverse relation

σ̄ = Ae
2

[

ε −
1

2

(

Ae
3

Ae
2

+
Adp

3 (Ae
2)

2

(Adp
2 )3

)

ε2 + h.o.t.

]

. (2.44)

The one–dimensional wave equation with respect to the Lagrangian coordinate X can

be written with the result before as

ρ
∂2ε

∂t2
=

∂2σ̄

∂X2
. (2.45)

(2.44) in (2.45) leads in the strain–based nonlinear wave equation

∂2ε

∂t2
− c2 ∂2ε

∂X2
=

c2β

Ae
2

[

ε
∂2ε

∂X2
+

(

∂ε

∂X

)2
]

, (2.46)

where

c =

√

Ae
2

ρ
,

β = βe + βdp,

βe = −
Ae

3

Ae
2

,

βdp =
16πΩR2Λdph

3(1 − ν)2(Ae
2)

2

G2b
.

(2.47)

The Huang coefficients are often given in terms of the higher elastic constants, so that

Ae
1 = C1 with C1 equal to the initial stress, Ae

2 = C1 + C11 and Ae
3 = 3C11 + C111.

Assuming that the initial stress is zero, means C1 = 0, the portion of β describing
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the nonlinearity contribution from lattice elasticity can be expressed in terms of the

higher order elastic constants as

βe = −

(

3 +
C111

C11

)

. (2.48)

Only the displacement can be measured experimentally. The nonlinearity parameter

β in terms of displacement u is

ρ
∂2u

∂t2
=

∂2σ̄

∂X2
. (2.49)

Insert (2.44) in (2.49) leads in a nonlinear wave equation expressed in displacement

representation

∂2u

∂t2
= c2

[

1 − β
∂u

∂X

]

∂2u

∂X2
. (2.50)

Suppose an sinusoidal input wave in a form u0 cos(kX − ωt) the solution of (2.50) is

derived by

u =
1

8
βk2u2

0X + u0 cos(kX − ωt) −
1

8
βk2u2

0X cos[2(kX − ωt] + h.o.t. . (2.51)

Define A1 = u0 and A2 = 1
8
βk2u2

0X as amplitudes for fundamental and second har-

monic wave and neglect the higher order terms of (2.51), the nonlinear parameter β

can be expressed by

β =
8

k2X

(

A2

A2
1

)

. (2.52)

With substitute the wavenumber with the expression k = ω
c

defines an alternative

form of (2.52)

β = 8
c2

ω2X

(

A2

A2
1

)

. (2.53)

Because there exist at the moment no expression for absolute nonlinearity parameter

β for Lamb waves, the relative nonlinear value A2/A
2
1 is used in the experiments

to determine the material nonlinearity. This value is proportional to the absolute
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nonlinearity parameter β. Hence the ratio A2/A
2
1 is a relative value it can only be

applied to determine the difference of nonlinearity of various materials or the changes

of the nonlinearity due to plastic deformation. In the experiments of this thesis the

amplitudes A1 and A2 are the from the measurement system detected normal surface

velocities of the waveguide.
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CHAPTER III

EXCITATION OF CUMULATIVE SECOND

HARMONICS IN LAMB WAVES

The objective of this work is to generate and detect second harmonics of propagating

Lamb waves for nondestructive evaluation. To be possible to reliably measure the sec-

ond harmonic, the generation must be cumulative over the propagation distance. But

certain conditions must be satisfied that cumulative second harmonic Lamb waves are

exited. Deng, Hamilton and further assigned these conditions [12, 13, 14] and proofed

this experimentally [3, 15, 16]. The conditions has to be satisfied in the experimental

work.

3.1 Theoretical fundamentals for cumulative sec-

ond harmonic

In general, second harmonics of a propagating Lamb wave are not cumulative. How-

ever, under certain conditions cumulative second harmonics are generated. The con-

ditions will be derived in this section.

The Lamb wave propagates with four partial waves: two longitudinal waves and two

transverse waves. The generation of the second harmonic is due to the nonlinearity

of the waveguide material and the following nonlinear interaction of the four partial

bulk waves. The nonlinear wave equation for homogeneous solid with no attenuation

and no dispersion expressed in terms of displacement vector u is

ρ
∂2u

∂t2
−

(

λ +
4µ

3

)

∇(∇ · u) + µ∇× (∇× u) = F(u) , (3.1)
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where ρ is the solid’s density, λ and µ are the Lamé constants. The right hand side

of the wave equation is quadric and the displacement vector u has normally a finite

amplitude, so the right side will be smaller than the linear left hand side. To get

the solution for (3.1), u will be expanded in the fundamental and second harmonic

frequency component

u = u(1) + u(2). (3.2)

Replace u in equation (3.1) we obtain to two linear equations:

ρ
∂2u(1)

∂t2
−

(

λ +
4µ

3

)

∇(∇ · u(1)) + µ∇× (∇× u(1)) = 0, (3.3)

ρ
∂2u(2)

∂t2
−

(

λ +
4µ

3

)

∇(∇ · u(2)) + µ∇× (∇× u(2)) = F(u(1)). (3.4)

F(u(1)) comes from F(u), where u is replaced by u(1). A Cartesian coordinate system

is selected. The origin is placed in the center of the plate. The x2–axis is perpendicular

to the plate boundaries and the x3–axis is parallel to the plate boundaries. The

displacement vectors u of the four partial bulk waves lie in the (x1, x2)–plane. With

regard of Snell’s law for the four partial Lamb waves, propagating with frequency f

and angular frequency ω, the solution can be derived from (3.3)

uT1 = uT1(x̂1 × K0
T1) exp[ıKT1 · r1 − ıωt],

uL1 = uL1K
0
L1 exp[ıKL1 · r1 − ıωt],

uT2 = uT2(K
0
T2 × x̂1) exp[ıKT2 · r2 − ıωt],

uL2 = uL2K
0
L2 exp[ıKL2 · r2 − ıωt],

(3.5)

with

KPm · rm = kx3 + (−1)m−1αP kx2, m = 1, 2,

KP =
ω

VP

= |KP1| = |KP2|, k = KP sin θP ,

αP k = KP cos θP ,

αP =

√

(

c2
ph

c2
P

)

− 1, P = L, T.

(3.6)
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The longitudinal and transverse wave vectors for the partial bulk waves are KLm and

KTm (m = 1, 2). θT and θL are the angle between the wave vectors and the x2–axis,

x̂1 stays for the unit vector in x1–direction. k represents the components of KLm and

KTm in x3–direction, uLm and uTm (m = 1, 2) accounts for the partial longitudinal

and transverse waves amplitudes. Finally, KP (P = L, T) denotes the magnitude of

KPm, cP refers to the longitudinal or transverse velocity and cph to the phase velocity

of the lamb wave.

The boundary conditions of the surfaces x2 = ±h are, that the stress Tx2x2
(±h) =

Tx2x3
(±h) = 0. So the four wave amplitudes uLm and uTm (m = 1, 2) can be deter-

mined. One can write

ık[M(ω, k)]



















uL1

uT1

uL2

uT2



















= 0 (3.7)

with the coefficient matrix

[M(ω, k)] =



















2µ cos θLRL+ (α2
T − 1)µ sin θTRT+ −2µ cos θLRL− −(α2

T − 1)µ sin θTRT−

2µ cos θLRL− (α2
T − 1)µ sin θTRT−

−2µ cos θLRL+ −(α2
T − 1)µ sin θTRT+

M31RL+ M32RT+ M31RL− M32RT−

M31RL− M32RT−
M31RL+ M32RT+



















.

with RL± = exp(±ıαLkh), RT± = exp(±ıαTkh), M31 = (C11α
2
L + C12) sin θL and

M32 = (C12 −C11) cos θT with C11 = λ + 4µ

3
and C12 = λ− 2µ

3
. To derive a nontrivial

solution from equation (3.7), the determinant of [M(ω, k)] must be zero. From this

condition the two dispersion equations of Lamb mode propagation arise

tan(αTkh)

tan(αLkh)
= −

4αTαL
(

2 −
c2
ph

c2
T

)2 , (3.8)

tan(αTkh)

tan(αLkh)
= −

(

2 −
c2
ph

c2
T

)2

4αTαL

, (3.9)
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where kh represents the normalized thickness of the solid plate. Insert (3.8) in (3.7)

leads to the symmetric Lamb mode propagation condition

uP1 = uP2, P = L, T (3.10)

while insert (3.9) in (3.7) the antisymmetric equivalent

uP1 = −uP2, P = L, T (3.11)

is obtained.

Since we examine the interaction of multiple waves, the fundamental displacement

field u(1) can be expressed as the superposition of the four partial bulk waves of Lamb

propagation with

u(1) = uT1 + uL1 + uT2 + uL2. (3.12)

Set (3.12) in F(u(1)) of equation (3.4) gives a expression for the nonlinear interac-

tion of the fundamental partial bulk waves. This describes both self–interaction of

each partial wave and cross–interaction between two different partial bulk waves.

F(u(1)) can be decomposed into driving forces for the longitudinal and transverse

waves, respectively, which leads to the driving second harmonics u
(DT)
Tm−Ln (m,n = 1, 2),

u
(DL)
Lm−Lm (m,n = 1, 2), u

(DL)
Tm−Tm (m,n = 1, 2), u

(DL)
Tm−Ln (m,n = 1, 2) and u

(DL)
P1−P2 (P =

L, T). The superscripts DL and DT denote the driven longitudinal and transverse

components of these second harmonics. Since it is assumed that no dispersion is in

the material of the waveguide, a cumulative effect taken place for the driven second

harmonic u
(DL)
Lm−Lm (m = 1, 2).

As shown in [29, 33], the solution is given as

u
(DL)
Lm−Lm = u

(DL)
Lm−Lm

[

sin θL
x3

h
+ (−1)m−1 cos θL

x2

h

]

×K0
Lm exp[ı2KLm · rm] (3.13)
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where

u
(DL)
Lm−Lm =

ıF
(DL)
Lm−Lm

4KL(λ + 4µ

3
)
h

=
4µ + 3λ + 2A + 6B + 2C

4(λ + 4µ

3
)

×

(

KL

k

)2

(kh)2

(

u2
Lm

h

)

. (3.14)

F
(DL)
Lm−Lm represents the longitudinal driving force component and A, B and C are the

third order elastic constants of the plate material. The displacement amplitude of

the second harmonic is increasing with propagation distance, as u
(DL)
Lm−Lm is a linear

function of the longitudinal coordinate x3. Therefore u
(DL)
Lm−Lm accounts for the driven

cumulative second harmonic. Additionally there is the driven second harmonic where

no cumulative effect occur. It is termed as driven plane second harmonic.

The second harmonic must also satisfy the boundary condition of a stress free plate

surfaces. This conditions can in general not be hold by the driven second harmonic

only. As the driven second harmonic is just the particular solution of (3.4) the general

solution can be find by stetting F(u(1)) = 0. Because there is no driving force,

the general solution of equation (3.4) is denoted as the freely propagating second

harmonic. According to [11, 33] it is formulated as

u
(F)
Lm = u

(FC)
Lm + u

(FP)
Lm

=
{[

cos θL
x3

h
+ (−1)m sin θL

x2

h

]

u
(FC)
Lm + u

(FP)
Lm

}

×K0
Lm exp[ı2KLm · rm] (3.15)

and

u
(F)
Tm = u

(FC)
Tm + u

(FP)
Tm

=
{[

cos θT
x3

h
+ (−1)m sin θT

x2

h

]

u
(FC)
Tm + u

(FP)
Tm

}

×(−1)m−1(x̂1 × K0
Tm) exp[ı2KTm · rm], (3.16)

m = 1, 2 and u
(F)
Lm and u

(F)
Tm account for the freely propagating longitudinal and

transverse second harmonics and u
(FC)
Pm (P = L, T) is the cumulative and u

(FP)
Pm (P =
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L, T) the plane second harmonic.

The particular and general solution together gives the ultimate second harmonic of

Lamb mode propagation, which satisfy the boundary condition:

u(2) =
2

∑

m=1

[

u
(DL)
Lm−Lm + u

(DL)
Tm−Tm +

2
∑

n=1

(u
(DL)
Tm−Ln + u

(DT)
Tm−Ln)

+u
(F)
Tm + u

(F)
Lm

]

+ u
(DL)
T1−T2 + u

(DL)
L1−L2 . (3.17)

Reducing the solution to its cumulative terms it becomes the ultimate cumulative

second harmonic of Lamb mode propagation:

u(2C) =
2

∑

m=1

[

u
(DL)
Lm−Lm + u

(FC)
Tm + u

(FC)
Lm

]

. (3.18)

In solid materials the second harmonic stress comes from both u(2) due to the linear

Hooke’s law and u(1) from the nonlinear Hooke’s law. The second harmonic boundary

condition gives that

ı2k[M(2ω, 2k)]



















u
(FC)
L1 cos θL + u

(DL)
L1−L1 sin θL

u
(FC)
T1 cos θT

u
(FC)
L2 cos θL + u

(DL)
L2−L2 sin θL

u
(FC)
T2 cos θT



















(x3

h

)

+ı2k[M(2ω, 2k)]



















u
(FP)
L1

u
(FP)
T1

u
(FP)
L2

u
(FP)
T2



















= −



















T
(2)
x2x3(+h)

T
(2)
x2x3(−h)

T
(2)
x2x2(+h)

T
(2)
x2x2(−h)



















(3.19)

where coefficient matrix [M(2ω, 2k)] comes from the coefficient matrix [M(ω, k)] by

applying 2kh for kh. In (3.19) the second term on the left hand side contains the

parts of the driven plane second harmonic, the ultimate cumulative second harmonic

and the four partial bulk waves.
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To hold (3.19) on both boundaries,

[M(2ω, 2k)]



















u
(FC)
L1 cos θL + u

(DL)
L1−L1 sin θL

u
(FC)
T1 cos θT

u
(FC)
L2 cos θL + u

(DL)
L2−L2 sin θL

u
(FC)
T2 cos θT



















= 0 (3.20)

and

ı2k[M(2ω, 2k)]
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. (3.21)

must be satisfied. The condition |M(ω, k)| = 0 defines the dispersive equation of

Lamb mode propagation (3.8)–(3.9), but in general the condition |M(2ω, 2k)| = 0

can not get from |M(ω, k)| = 0. |M(2ω, 2k)| 6= 0 derive a trivial solution for (3.20).

This leads to a second harmonic of Lamb mode propagation with no cumulative effect,

where is not our focus on. So only for |M(2ω, 2k)| = 0 cumulative second harmonic

arise. |M(2ω, 2k)| = 0 gives a nontrivial solution for (3.20) and from (3.21) it can be

obtained that u
(DL)
L1−L1 = u

(DL)
L2−L2 holds for uP1 = uP2 as well as uP1 = −uP2 (P = L, T).

This shows that only the symmetric second harmonic of Lamb mode propagation is

cumulative.

Take the condition |M(2ω, 2k)| = 0 yields to

u
(FC)
L1 cos θL + u

(DL)
L1−L1 sin θL = u

(FC)
L2 cos θL + u

(DL)
L2−L2 sin θL,

u
(FC)
T1 cos θT = −u

(FC)
T2 cos θT, (3.22)

u
(FC)
L1 cos θL + u

(DL)
L1−L1 sin θL = −u

(FC)
L2 cos θL − u

(DL)
L2−L2 sin θL,

u
(FC)
T1 cos θT = u

(FC)
T2 cos θT. (3.23)

From (3.22) and (3.23) we can see that the ultimate cumulative second harmonic

can be symmetric or antisymmetric. But the driven and freely propagating second
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harmonics should have the same symmetry characteristics. The freely propagating

second harmonic have to be symmetric due to term u
(DL)
L1−L1 = u

(DL)
L2−L2. Therefore, the

ultimate cumulative second harmonic u(2) must be symmetric.

This condition for the cumulative second harmonic generation must be considered by

the choice of the excitation setpoints, which will be described later.

3.2 Existence condition for the cumulative

second harmonic field

As shown, |M(ω, k)| = 0 mostly not lead that |M(2ω, 2k)| = 0. But for the generation

of cumulative second harmonic |M(ω, k)| = 0 and |M(2ω, 2k)| = 0 must be satisfied

simultaneous. As the ultimate cumulative second harmonic u(2C) is symmetric, the

symmetric term (3.8) of the dispersion equation must be considered:

tan(αT2kh)

tan(αL2kh)
= −

4αTαL
(

2 −
c2
ph

c2
T

)2 (3.24)

Combine this equation with the one of the dispersion equations of Lamb mode pro-

pagation (3.8) or (3.9) gives

tan(αTkh) = tan(αLkh), (3.25)

or more simplified

αTkh = αLkh + nπ n∈N. (3.26)

Replacing αT and αL by the expressions of (3.6) leads to

kh =
nπ

(

√

(

c2
ph

c2
T

)2

− 1 −

√

(

c2
ph

c2
L

)2

− 1

) , cph 6= cL, cT. (3.27)

By combine equation (3.8) and (3.27) or equation (3.9) and (3.27) the existence

conditions |M(ω, k)| = |M(2ω, 2k)| = 0 for cumulative second harmonics can be

achieved. A numerical solution can be computed [12]. From the numerical solution
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the condition for cumulative second harmonics is derived. The phase velocities of

the exciting mode at the fundamental frequency and the excited mode at the second

harmonic frequency have to be equal.

In conjunction, following conditions has to be satisfied that generation of cumulative

second harmonic occur:

• The excited mode of the second harmonic frequency has to be symmetric, that

a cumulative effect for a propagating Lamb wave exist

• The phase velocities of exciting fundamental frequency mode and excited second

harmonic frequency mode must be equal.

With this defined conditions for cumulative second harmonics an excitation setpoints

for cumulative second harmonic generation can be found. A cumulative second har-

monic excitation setpoint accounts for two points on two different symmetric modes,

which have the same phase velocity for fundamental and second harmonic frequency

(see Figure 3.1). In this work the setpoint for the symmetric mode pair s1 → s2

is chosen, like in Bermes work [3]. This excitation setpoint has the advantage com-

pared to other setpoints, that the modes s1 and s2 are “forerunner” and therefore

not influenced by other modes as shown in Figure 3.2 , the in time-frequency domain

representation of the mode curves. The numerical values for the s1 → s2 pairs are

3.5685 MHz for the fundamental frequency f1, 7.1370 MHz for the second harmonic

frequency f2 and a phase velocity cph of 6349.0 m
s
. The values are based on the deter-

mined dispersion curves, which are computed for a normalized frequency f

h
. h stays

for the plate thickness, which is chose here with 1mm. If the plate thickness differs,

the frequency of the fundamental and second harmonic must be divided by the plate

thickness.
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Figure 3.1: Cumulative second harmonic excitation setpoint s1 → s2.
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CHAPTER IV

EXPERIMENTAL PROCEDURE

In this section the experimental procedure is explained. The experimental setup can

be divided into two parts. First, the generation side of a Lamb wave in the wave

guide. Second, the detection side to measure the out–of–plane velocity a point on the

surface of the plate caused by the propagating Lamb wave. Also an exact description

of the used specimens will be given.

Foremost a overview of the complete experimental setup is represented.

4.1 Experimental setup

Trigger

Low Voltage Signal

High Voltage Signal

Oscilloscope

PC

Ch1 Ch2 Ch3 Ch4

Wave Detection

Instrumentation

High Power Amplifier

RAM–5000

Specimen

50 Ω Termination

GPIB

Figure 4.1: Experimental setup.

In Figure 4.1 the complete setup is illustrated. For the generation of the Lamb

wave a high power amplifier RITEC RAM–5000 Mark IV is used to create a high
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voltage toneburst signal of a frequency of 2.225 MHz. No extra waves generator is

necessary hence the RAM–5000 has an internal wave generator. As shown in [3], [21]

the input voltage level for the excitation transducer has no influence on the nonlinear-

ity value A2/A
2
1. Therefore the maximum output level of the amplifier with 1280V is

chosen to get the biggest wave displacement amplitude. The cycle length is 25 to get

a long enough steady–state part of the output signal. This waveform signal is led in a

narrow band ultrasonic transducer PANAMETRICS X1055 (lead zirconate titanate)

with a center frequency fcenter = 2.25MHz. The transducer is coupled with oil on a

plexiglas wedge. The wedge is than also coupled with oil and fixed on the specimen

thin metal sheet specimen. For the detection of the propagating wave two different

instruments were used: a laser interferometer system and the detection with a wedge

and transducer. They will be explained in detail and compared later. The detection

system gives a voltage signal proportional to the displacement of the specimen. The

noise level of the signal has to be as small as possible since the amplitude of the

second harmonic is very low. For this reason, the voltage signal is filtered by a low

pass filter with an edge frequency of 20.4MHz to reduce the noise level and than been

sent in to a second Tektronix TDS 420 oscilloscope. For the detection of the relative

weak second harmonic the noise of the signal has to be as small as possible. To get a

higher signal–to–noise ratio a average of repeated measurements is computed with the

oscilloscope. Since the noise is random, it will be canceled out with the averaging the

signal. The average of 1000 measurements is made in the measurements, which gives

adequate noise reduction [20]. The oscilloscope discretized the signal with a sampling

frequency of 25MHz and 15000 sample points. The digital signal is than transfered

with a General Purpose Interface Bus (GPIB) connection from the oscilloscope to a

PC. The PC is used to process the signal. The signal processing is explained in a

later section. The internal trigger signal of the RAM–5000 amplifier is used as trigger

signal of the complete setup.
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4.2 Generation of Lamb waves in wave guides

Several methods are known for inducing a Lamb wave. Theres is the generation

with a pulsing laser source, electromagnetic acoustic transducers (EMATs), the comb

transducer technique or the angle beam excitation [28], also termed as wedge method.

The wedge method is often used to create surface waves in waveguides [3, 16, 20] and

is also applied in this research. The wedge method itself, the requirements and design

of the wedge will be explained in the following section.

4.2.1 Wedge method

Transducer

φcr

Wedge

Specimen
cLw

clamb

Figure 4.2: Generation of a Lamb wave with the wedge method.

The setup of the wedge method is illustrated in Figure 4.2. The ultrasonic trans-

ducer is coupled to the wedge. The wedge itself is again coupled on the waveguide. To

avoid to strong reflections on the transitions transducer–wedge and wedge–waveguide,

oil is used as acoustic coupling. The piezoelectric transducer is bounded on the sloping

surface of the wedge. So the from transducer generated longitudinal waves propagates

through the wedge and hits the wave guide surface in the critical angle φcr. To in-

duce a Lamb wave, the angle has to meet the surface wave excitation condition. The

correct angle can be defined with the Snell’s law (Figure 4.3).
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φcr

φ2

cLw

clamb

Wedge

Specimen

Figure 4.3: Snell’s law for angle beam analysis.

sin(φ2) cLw = sin(φcr) clamb, (4.1)

where clamb is the phase velocity of the chosen cumulative second harmonic excitation

setpoint, cLw the longitudinal wave speed of the wedge material, φ1 the incident and

φ2 the refraction angle. To generate a surface wave the angle φ2 has to be φ2 = 90◦

or sinφ2 = 1. So from equation (4.1) the critical angle φcr of wedge is given as

φcr = arcsin

(

cLw

clamb

)

. (4.2)

Due to the argument of the arcsin must be ≤ 1 it follows that the longitudinal wave

speed of the wedge material has to be equal or less than the the phase speed of the

Lamb wave. To satisfy this condition the material of the wedge should have small

longitudinal wave velocity for example plastic.

Compared to other excitation methods, the wedge method sends all the energy in one

single wave mode and in one particular direction. For this work it has the advantages

that the cumulative second harmonic can be better observed and the amplitudes of

the wave displacements are bigger. If a more broadband frequency spectrum is needed

an excitation with a laser is a more proper choice.
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4.2.2 Wedge design

To excite a Lamb wave with high partial motion amplitude as possible, several energy

losses from the transducer to the actual wave guide has to be taken into account.

Bermes [4] and Herrmann [21] examined different influences and improved the wedge

design. There is the effect of beam divergence or also called ultrasonic diffraction. The

ultrasonic transducer can not launch a perfect plane longitudinal wave. Diffraction

occurs and so not the complete beam from the transducer hits the interface between

wedge and specimen in the critical angle. The beam components, which hit the

interface not the critical angle will not excite the wanted Lamb wave mode. Instead

bulk waves or other Lamb wave modes are generated. This results in an loss of

energy for the excitation of the right Lamb wave mode and so in a smaller motion

amplitude. To reduce this effect the propagation distance in the wedge should be as

short as possible.

Further there is attenuation in the wedge material. As mention before the phase

velocity of the wedge must be smaller as the phase velocity of the wave guide to

fulfill the excitation condition. So plastic is a good choice. The disadvantage is, that

plastic has a relatively high attenuation. Hence, there is a decrease of the signal

strength due to the attenuation. The attenuation coefficient is defended as decibel

per millimeter. This leads to the same criteria, that the propagation distance in the

wedge between transducer and specimen should be as short as possible. According to

Ginzel [17] polystyrene and plexiglass have a low attenuation coefficient and so are

proper materials. To compare the two different wedge materials, two items have to

be considered. First the attenuation coefficient of the material at the first harmonic

frequency f = 2.225 MHz. With the propagation distance we can calculate the

damping D. But additional the critical angle is changing due to the different phase

velocities of the wedge materials. So the propagation distance is also changing.

The critical angle can be computed with the Snell‘s law as described before. The
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longitudinal wave speed at the frequency f = 2.225 MHz for polystyrene is cLw,po =

1960 m
s

and plexiglass is cLw,pl = 2751 m
s

[20]. The Lamb phase velocity for the chosen

aluminum 1100-H14 is clamb = 6349 m
s
. So the critical angle for the cumulative second

harmonic excitation s1 for the two materials is

φcr,po = arcsin

(

cLw,po

clamb

)

= arcsin

(

1960 m
s

6349 m
s

)

= 17.98◦ (4.3)

φcr,pl = arcsin

(

cLw,pl

clamb

)

= arcsin

(

2751 m
s

6349 m
s

)

= 25.68◦. (4.4)

The propagation distance can be derived by (see Figure 4.4)

φcr

dtr

Propagation distance X

Wedge

Transducer

Figure 4.4: Propagation distance in the wedge

Xpo =
dtr

2
∗ tan (φcr,po) =

16mm

2
∗ tan (17.98◦) = 2.60mm (4.5)

Xpl =
dtr

2
∗ tan (φcr,pl) =

16mm

2
∗ tan (25.68◦) = 3.85mm. (4.6)

The attenuation coefficient at the first harmonic frequency f = 2.225 MHz is for

polystyrene ≈ 0.18 dB
mm

and for plexiglas ≈ 0.6 dB
mm

. So the damping D results as

Dpo = Xtr ∗ 0.60
dB

mm
= 2.60mm ∗ 0.60

dB

mm
= 1.60dB (4.7)

Dpl = Xtr ∗ 0.18
dB

mm
= 3.85mm ∗ 0.18

dB

mm
= 0.69dB. (4.8)
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It polystyrene would be used as wedge material the attenuation of the wave in the

wedge would be almost double so high. Therefore plexiglas is taken in the experiments

as wedge material.

To get the shortest possible propagation distance for the longitudinal wave, the wedge

design of Bermes [3] can be improved as shown in Figures 4.5 and 4.6. So the base

Clamping axis

Transducer

Acoustical axis

θ

Glue couplant

Figure 4.5: Old wedge design

Clamping axis

Transducer

Acoustical axis

θ

Oil couplant

Figure 4.6: Improved wedge design
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of the wedge has been removed. The top of the wedge is now used as the clamping

surface. This also has the advantage that the clamping axis is in the middle of wedge–

specimen interface, which guarantees better contact. The voluminous part above the

incline θ acts as the attenuation area. The reflected waves from the wedge–specimen

interface are reflected, so that as less as possible comes back to the interface and

excites other, unwanted waves. Air and solid have very different acoustic impedances.

On air–solid–interfaces, most of the wave energy is reflected and not transmitted. So

only a small amount of energy from the excited wave is transmitted in the next body

through the gaps between the transducer–wedge and wedge–specimen interfaces.

A thin film of oil, glycerin, water or glue is placed in the gap to significantly reduce

the impedance mismatch. Both used glue as coupling between the transducer and the

wedge and oil between wedge and specimen. In Herrmann‘s [20] work the coupling

glue and oil are compared. Oil gives much better coupling material than glue, because

in glue pattern and even air bubble can be found in the glue after hardening. It

could also be observed, that the glue corrodes the plexiglas. If the transducer has

been removed and glued anew, the surface of the wedge was no longer even and the

coupling quality declined. This manifested itself as attenuation in excited wave. A

clamping fixture for the transducer on the wedge has been developed as illustrated

in Figure 4.6, so oil-coupling is possible. This improvement of the wedge design gives

a significant increase in the generated first harmonic wave amplitude as shown in

Figure 4.7.
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Figure 4.7: Amplitude of the fundamental wave

4.3 Wave detection instrumentation

Two different methods are used to detect the out–of–plane motion of the specimen

caused by the propagation Lamb wave.

4.3.1 Single probe heterodyne laser interferometer

Figure(4.8) shows the complete laser interferometer system as used from Herrman [20]

and Bermes [3]. A laser measurement system is a broadband and highly sensitive de-

tection system. With the Doppler effect, the absolute particle velocity is determined.

The particle velocity amplitude is proportional to the displacement amplitude, which

we want to detect. The laser beam is produced by a 2Watt Argon Laser. The single

beam has a wavelength of 514.4nm and is vertically polarized. To split the beam in a

object and reference beam a acousto–optic modulator (AOM) is used. AOM consists

of an activated piezocrystal. This crystal splits the incoming laser beam in a infinite

number of separate beams. But the zero–and first–order beam together already carry

already approximately 95%. This two are taken as objective and reference beam.

The first–order beam is addionally frequency shifted by fb = 40MHz due to the beat
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2
–wave plate

AOM
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Figure 4.8: Laser interferometer detection system.

frequency of the piezocrystal. The unshifted object beam is sent in a ploarized beam

splitter (PBS). The PBS let horizontally polarized light pass and reflect vertical po-

larized light. The beam is defleced to the specimen, focused by a lense and reflected

back from the specimen surface to the PBS. On the way to the specimen and back

to the PBS the beam passes two times a 1
4
–wave plate. This rotate the beam about

90◦. So the beam is now horisontal polarized and pass the PBS. The beam goes in

nonpolarzed beam splitter (NPBS). The object beam recombine in the NPBS with

the from mirrors deflected and from a 1
2
–wave plate rotated reference beam. If there

is no out–of–plane velocity of the specimen surface the recombined laser beam has

the same frequency f as the orginal laser signal, but is modulated with the AOM fre-

quency fb = 40MHz. When a out–of–plane velocity is generated by the propagating

wave the object beam will be shift again. This is called Doppler shift. The frequency

shifted can be calculated with

∆f =
2fv

c
, (4.9)
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with v is the out–of–plane surface velocity of the specimen, f is the original frequency

of the object beam, and c stays for the speed of light. So the modulation frequency

of the combined beam changes. The laser beam is than detected by a photo diode.

The photo diode converts the light intensity changes due to the modulation in a

voltage signal. The signal is feed in a FM discriminator. The FM discriminator

transform the frequency shift of the input signal in output voltage signal proportional

to the frequency shift. This signal is proportional to the out–of–plane velocity of the

specimen and is sent it a oscilloscope to monitor and discretized it.

4.3.2 Wedge method

Excitation transducer Detection transducer

Specimen

Figure 4.9: Wave detection with wedge-transducer combination

A other technique to detect the out–of–plate motion of the specimen surface is to

use a wedge–transducer combination such as for the generation the Lamb wave (Fig-

ure 4.9). The wave is converted in a longitudinal wave, travels through the wedge and

deformate the transducer. The transducer gives a voltage output signal due to the

piezoelectric effect. Because the amplitude of the second harmonic is relatively low

compared to the fundamental harmonic amplitude, a narrow band ultrasonic trans-

ducer PANAMETRICS A109S with a center frequency of fcenter = 5MHz is taken for

the receiving side. So the second harmonic components with a frequency of 4.45MHz

will be better detected.
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4.3.3 Comparison of the laser interferometer and the wedge–transducer

method

Both the laser interferometer and the wedge–transducer techniques have advantages

and disadvantages. As mentioned the laser is a broadband measurement system. Ad-

ditionally the out–of–plane velocity of the specimen can be measured non–contact and

without mechanical resonance of the transducer. So the amplitudes of the first and

second harmonic are absolutely measured in a resonance free ratio. If the absolute

parameter β needs to be determined, the laser interferometer has to be used. But if

the absolute value of β is not critical, as in this work, a relative nonlinearity value

A2/A
2
1 can be determined.

For the detection with a wedge detection method, a transducer with a center frequency

of fcenter = 5MHz been chosen. So the weaker second harmonic wave is measured

in a relatively more sensitive fashion. Even with the wedge generation method, not

only one single mode is excited; there are other modes launched. Since the detection

wedge must also satisfy the critical angle condition, the modes s1 and s2 are detected

in a more sensitive fashion. This behavior can be observed in the plots of the first

and second harmonic frequency as a function of time of a detected Lamb wave signal

(Figures 4.10 and 4.11). The time–domain representation for a certain frequency can

be obtained with a short–time Fourier transformation (STFT), which is explained in

detail later in this chapter.

The laser measures at one single point with high resolution. For fundamental re-

search of the wave field in detail, a raster–scanning of the specimen with a laser

can be performed[5]. The result is a image with high resolution of the displacement

field. The wedge gives the average of the wave motion over an area. For the nar-

row specimens which are used in this study the average over a area from the wedge

has a advantage. The edge reflections from the sides of the specimen give a distinct

modulation structure [5]. Since the structures are not equal for the fundamental
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Figure 4.10: Fundamental and second harmonic frequency as functions of time
detected with the laser interferometer.
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Figure 4.11: Fundamental and second harmonic frequency as functions of time
detected with the wedge method.
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and second harmonics, the determined nonlinearity value A2/A
2
1 is dependent on the

measurement point. This can be avoided when a wedge and a transducer is used for

the measurement. To avoid the influence poor coupling between the wedge and the

specimen, the average of three measurements is been taken and every time the wedge

is completely removed an re–coupled between the measurements. For the application

in the field, the laser system has the drawback of being sensitive to vibrations. For a

laser measurements the surface has to be highly reflective, so sometimes polishing is

necessary. On the other hand to coupling the wedge to the specimen, the specimen

has to be even, which is not the case for the laser measurement. Both the laser inter-

ferometer and the wedge method are applied in the experiments and the measurement

results are compared.

4.4 Specimens

The specimens which are used to detect the effect of change the of microstructure on

the nonlinearity parameter is shown in Figure 4.12. The specimen is made as long

t=1.6

Propagation distance

430

16 25
.4

Figure 4.12: Specimens (all measures in mm)

as possible. The longer the specimen the better is the nonlinearity parameter change

is measurable and also the modes are better separated in the time domain. But the

length of the specimen was limited by the clamping length in the load frame for the

load tests. The material is a aluminum 1100-H14. The thickness has to be chosen so

that fundamental frequency for the excitation of the s1–mode comes close as possible

to the center frequency of fcenter = 2.25MHz of the wave generation transducer. The

fundamental frequency is f1 = 3.5685MHz mm. This leads to the optimal plate
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thickness of

dopt =
f1

fcenter

=
3.5685 MHz mm

2.25 MHz
= 1.586 mm. (4.10)

As Bermes [4] a aluminum plate with thickness of d = 1.6mm is chosen so that

the excitation frequency is shifted to f = 2.23MHz. In this work a frequency of

f = 2.225MHz is taken for the wave generation in the experiments. The frequency is

close to the center frequency of the transducer fcenter = 2.25MHz, which gives a large

oscillation amplitude of the transducer.

4.5 Signal processing

Detecting the material nonlinearity and the increase with change of microstructure

in metals is very difficult. The Lamb wave has a dispersive and multimode charac-

teristic. Every mode travels with a different group velocity and therefore each mode

arrives at a different time. But for short propagation distance, the modes not separate

clear from each other (see Figure 4.13). The signal processing of the signal from the

detection unit is a crucial factor to separate the modes.

No really steady state parts for every mode can be observed. So the single time

window and fast Fourier transformation is not a sufficient technique since the sin-

gle modes can not right identified. To be sure to extract the right amplitudes for

the first harmonic A1 and second harmonic A2 a representation of the signal in a

time–frequency representation is necessary. There are different methods to get the

time–frequency representations of the signal [3]. In this work the short–time Fourier

transformation (STFT) is taken to get a time–frequency representation of the time–

domain signal. With a illustration in time–frequency the arriving time of the different

modes for certain frequencies can be determined. So is secure that the right peaks

for the amplitudes A1 and A2 for the first and second harmonic are picked. Also can

be seen if the modes influencing each other because even if the wedge method should

launch only the s1–mode, several modes are exited.
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Figure 4.13: Typical time signal with overlapping Lamb modes.

A short instruction of the short–time Fourier transformation will provided. The dis-

crete Fourier transformation is defined as

s[n] =

2π
∫

0

S(ω)eıωndω (4.11)

with

S(ω) =
1

2π

∞
∑

n=−∞

s[n]e−ıωn (4.12)

S(ω) is the Fourier transformation of discrete signal s(n). The frequency f is referred

to the angular frequency ω by the equation

ω = 2πf. (4.13)

The values of the Fourier transformation S(ω) are usually complex. A common way

is to calculate the energy density spectrum

Ed = |S(ω)|2. (4.14)
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This gives the energy distribution over the frequency. To get in addition the infor-

mation which frequency appears at which time a time–frequency analysis is required.

For example a short–time Fourier transformation (STFT)

Sstft(ω, t) =
1

2π

∞
∫

−∞

e−ıωτs(τ)h(τ − t)dτ, (4.15)

h(t) is the window function of the Fourier transformation. The complete discrete

time–domain signal in fractioned by the window function in small overlapping parts.

Each part represent a small time window and Fourier transformed separated. Thus

it can be detect which frequency is how strong present at a certain time. The energy

density spectrum of the STFT is calculated identical as for the Fourier transformation

Ed(ω, t) = |Sstft(ω, t)|2. (4.16)

A plot of the energy density spectrum over frequency and time is called energy spectro-

gram. This is used for the analysis of the measurement signal in this work. It should

be mentioned that the sampling frequency for the continuous time signal should be

at least double so high as the frequency what will be observed. In the experiments

the highest frequency is the second harmonic with 4.3MHz. So the sampling fre-

quency should be at least 8.6MHz. Therefore the chosen sampling frequency in the

experiments of 25MHz is high enough. A example of a spectrogram of a Lamb wave

from the experiments is given in the Figure 4.14. The lines in the spectrogram are the

theoretical disperse curves and obtained from the group velocity representation in the

frequency domain. We can see, that it is not possible to excite only one single mode

even with the wedge method. But the theoretical curves a clear mode identification

is feasible. The wave amplitudes parallel to the theoretical wave mode curves are the

reflection of the Lamb wave on the side edges of the specimen. For the computation

of the relative nonlinearity value A2/A
2
1 the amplitude of s1–mode at the fundamen-

tal frequency and amplitude of the s2–mode at the second harmonic frequency has

46



to be identified. The horizontal lines in the spectrogram mark the fundamental and

second harmonic frequency. Peaks of the energy density for the s1–mode (A1) and

the s2–mode (A2) can be found close to the theoretical curves. Figure 4.15 shows the

cuts of spectrogram at the according frequencies.
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Figure 4.14: Spectrogram and dispersion curves.

It gives the energy density over the time for a first and second harmonic. The

peaks becoming more distinct in this illustration and with the information of the

spectrogram the different modes can identified clearly.

Compared to Bermes[3], who chosen a lower excitation frequency in his work, the

s1–mode can clear separated from the a1–mode. The modes s1 and s2 arriving first,

as expected. So they are not influenced by other modes. With the peaks (A1) and

(A2) the relative nonlinearity ratio A2/A
2
1 can be calculated for the evaluation of the

experimental results in Chapter 5.
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CHAPTER V

EXPERIMENTAL RESULTS

With the nonlinear measurements as defined in Chapter 4, the increase of dislocation

density due to plastic deformation has been detected and the results are described

in this chapter. The specimens are statically loaded to different stain levels. For

each specimen, the relative value A2/A
2
1 is evaluated and assigned to different plastic

strains. To get reliable results from the signal processing, the time window has to be

adjusted to the given conditions. To demonstrate that the system setup and signal

processing measure the cumulative effect of the second harmonic generation in the

propagating lamb wave, first measurements for different propagation distances are

done.

5.1 Evaluation of the system setup and signal

processing

Bermes [4] verified that the measured material nonlinearity is not superposed from

the introduced nonlinearity of the measurement setup. To identify the influence of

the instrumentation nonlinearity, the input voltage for the transducer is increased.

The value of A2/A
2
1 did not change with increasing input voltage. This demonstrates

that the experimental setup does not create a significant second harmonic frequency,

which could distort the experimental results.

The objective is to generate Lamb waves with the correct conditions, that excite the

cumulative second harmonic of a Lamb waves. To verify that the correct mode with

the right frequency is excited to get a cumulative effect for the second harmonic,

measurements for different propagation distances are preformed. On account of the
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diffraction effect, the relative value A2/A
2
1 should proportionally increase with the

propagation distance [19]. To show that also a difference of the material nonlinearity

can be detected, measurements for two aluminum plates with different alloys (Al

6061-T6 and Al 1100-H14) are executed. The propagation distance varied from 200

to 600 mm and the sheet thickness was 1.6 mm. For the signal processing with the

short–time Fourier transformation a Hanning window of 256 points is used. The result

with the best fitting straight lines is given in the Figures 5.1. The ratio A2/A
2
1 for the

two aluminum plates is plotted over the propagation distance. The linear increase of

Al6061
Al1100

200 300 400 500 600

0.34

0.30

0.26

0.22

0.18

0.14

propagation distance [mm]

A
2
/A

2 1

Figure 5.1: Relative nonlinearity value A2/A
2
1 over the propagation distance for the

two different aluminum alloys.

A2/A
2
1 with the propagation distance is the evidence that the excited second harmonic

is cumulative for the chosen setpoint. Also the relative values of A2/A
2
1 are higher

for the Al 1100-H14 plate than for the Al 6061-T6 plate, which agrees with the

experimentally determined absolute nonlinearity values β [32]. The absolute value,
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measured with longitudinal waves is for Al 1100-H14 β = 12.0 and for Al 6061-T6

β = 5.67. To compare this with relative Lamb wave measurements the ratio of the

different material nonlinearities is calculated.The absolute ratio from the longitudinal

measurements βAl1100/βAl6061 is 2.12. With the fundamental frequency choice of f =

2.225MHz and a separation of the s1–mode from the influencing a1–mode the ratio

of the relative nonlinearities of the Lamb wave measurements came closer to the

absolute ratio from the nonlinear longitudinal measurements. The derived ratio from

the Lamb wave measurements is 1.89 compared to the ratio of 2.58 from previous

Lamb wave measurements [4]. This demonstrates that it is feasibility to detect the

material nonlinearity with the applied system setup and signal processing.

5.2 The impact of the short–time Fourier trans-

formation window length

Even with the wedge excitation method, is it not possible to generate only the s1–

mode. Also the a1–mode is excited. But with the short–time Fourier transformation

as described in Chapter 4, is it feasible to identify the single modes in the time–

domain wave signal and to specify the amplitudes A1 for the s1–mode and A2 for

the s2–mode. After a certain propagation distance, the individual modes are well

separated. However, if the propagation distance is not so far, the modes overlap and

influence each other. Figures 5.2 and 5.3 shows the amplitudes of the fundamental

and second harmonic Lamb wave for 200 mm and 400 mm. The big amplitude of the

a1–mode can impact in the s1–mode. This leads to the result that erroneous values

for the mode amplitude A1 and A2 are displayed by the signal processing.

By examining the spectrograms from measurements before and after plastic de-

formation a change of wave modes curves is visible. The wave modes propagating

apparently not as close “packages” due to the changes of the material properties (Fig-

ures 5.4 and 5.5). The spreading out of the modes is particularly easy to observe
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Figure 5.2: Fundamental and second harmonic frequency as functions of time after
wave propagationed a distance of 200 mm.
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Figure 5.3: Fundamental and second harmonic frequency as functions of time after
wave propagationed a distance of 400 mm.
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Figure 5.4: Spectrogram from measurement on a specimen with no plastic defor-
mation.
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Figure 5.5: Spectrogram from measurement on a specimen with plastic deformation.
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in the marked areas. For short propagation distances this effect makes it harder to

separate the individual modes with the signal processing.

Because of the described effects, the choice of the short–time Fourier transfor-

mation window size has to be done in a clever fashion. To assure that the modes

are separated completely from the signal processing, the window length has to be

adjusted to the given experimently conditions. With a more narrow window the time

resolution improves and the modes are not overlapping and influencing each other

(Figures 5.6 and 5.7). Niethammer [27] showed that due to Heisenberg uncertainty

principle, a simultaneous increase of the resolution for time and frequency is not pos-

sible (see Appendix A for details). A more narrow window size increases the time

resolution, but at the same time worsens the frequency resolution. This is not a dis-

advantage for the Lamb wave measurements with the chosen s1 → s2 setpoint. At

the time when the s1–and s2–modes arrive, no other mode is in the frequency region

of fundamental and second harmonic arriving.
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uated with wide Fourier Transformation window.
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5.3 Assessment of material nonlinearity change

due to plastic deformation

Plastic deformation increases the dislocation density in a material. This damage of

the microstructure causes material nonlinearity, so more second order harmonic waves

are excited when the wave propagates through the material. To demonstrate that

this can be detected with ultrasonic Lamb wave measurements, specimens are loaded

over yield so that plastic deformation occurs. Six specimens with the dimensions

illustrated in Chapter 4 are prepared from the same batch of material. Each specimen

is loaded statically to different final loads above yield. The stress–strain curve for the

aluminum and the load points for the different specimens is given in Figure 5.8. The

corresponding values can be found in Table 5.1.
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Figure 5.8: Stress–strain curve with load–points for the different specimens.
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Table 5.1: Data tables for the different stress and strain level of the specimens.

specimen–number 1 2 3 4 5 6

max. stress [MPa] 0 120.66 124.53 126.75 127.31 128.02

strain at max. load 0 0.0049 0.0080 0.0110 0.0141 0.0171

plastic strain 0 0.0019 0.0062 0.0093 0.0123 0.0154

The specimen with the most load (specimen 6) was loaded close to ultimate

strength of the material. Over the ultimate strength necking occurs. That would

influence the measurements. Lamb wave measurements are performed on the un-

loaded specimens. Both detection methods are applied. The propagation distance

for the laser interferometer was 200 mm and for the wedge detection was 220 mm.

The measurements are repeated three times. Thereby, the wedge(s) were completely

removed and re–coupled for every measurement to avoid the influence of improper

coupling. The average of the three measurements is calculated for the amplitudes of

A1 and A2 and the ratio A2/A
2
1. The evaluated relative values A2/A

2
1 are normal-

ized by the relative value measured before the specimens were loaded. This extracts

the innate material nonlinearity. The determined values are plotted over the plastic

strain of the specimens. For normalized ratios A2/A
2
1 also the error bar from the three

measurements is illustrated. Note that the thickness of the specimens only changed

a maximum of 1.3 % due to the platic deformation. This results in a insegnificant

change of the excitation condition of the cumulative second harmonic generation and

has therefore no effect on the measurements. To demonstrate the importance to

adapte the short–time Fourier transformation window in the signal processing the
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measured wave signals are analysed with two different window sizes.

5.4 Analysis of the detected signal with a wide

short–time Fourier transformation window

For the analysis of the the measurement results with the use of the laser interferometer

for wave detection a Hanning window with size of 201 points for the short–time Fourier

transformation are chosen. For the wedge detection a the window size of 256 points

was applied. In the Figures 5.9, 5.10, 5.11 and 5.12 the amplitudes for the s1–mode A1

and the s2–mode A1 is plotted for the each specimen. Both for the wave detection with

laser interferometer and wedge method an increase of A1 and A2 can be observed. The

increase of A2 was expected due to the accumulation of the dislocation density. The

material nonlinearity raised and cumulative second harmonics has been excited more.

But the amplitude A1 should be constant since the first harmonic is independent of

the material nonlinearity. The increase is induced by the a1–mode. The s1–mode

and the a1–mode overlapping each other when a wide window for the short–time

Fourier transformation is applied. With more plastic deformation the influence of the

a1–mode is stronger, because the mode‘s spreading more.

In the Figures 5.13 and 5.14, the normalized nonlinearity values A2/A
2
1 are as-

signed over strain for the laser interferometer and wedge method wave detection.

The bar diagrams show the mean value of three measurements. In the second plot,

the error bars of measurements are shown. For the measurements with the laser in-

terferometer A2/A
2
1 keeps almost constant and for the measurements with the wedge

method a decrease of A2/A
2
1 is to see. This does not agree with what has theoreti-

cally and experimentally been derived in previous works [7, 8, 20, 25]. An increase

of A2/A
2
1 should arise from the measurements. The reason for this is that the ampli-

tude A1 for the s1–mode is much bigger than the amplitude A2 for the s2–mode and

in addition the amplitude A1 is in squared in the nonlinearity value A2/A
2
1. So the
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Figure 5.9: A1 over the plastic strain detected with the laser interferometer and a
wide short–time Fourier transformation window.
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Figure 5.10: A2 over the plastic strain detected with the laser interferometer and a
wide short–time Fourier transformation window.
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Figure 5.11: A1 over the plastic strain detected with the wedge method and a wide
short–time Fourier transformation window.
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Figure 5.12: A2 over the plastic strain detected with the wedge method and a wide
short–time Fourier transformation window.
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Figure 5.13: Normalized relative value A2/A
2
1 over the plastic strain detected with

the laser interferometer and a wide short–time Fourier transformation window.

61



0.2

0.4

0.6

0.8

0

1

1 2 3 4 5 6

0 1.9 6.2 9.3 12.3 15.4
× 10 -3

Plastic strain

N
or

m
al

iz
ed

re
la

ti
ve

va
lu

e
A

2
/A

2 1

Specimen number

(a) Mean values of the measurements

3

5

0
0

1.2

1

1

0.8

0.6

0.4

0.2

2

2

4

4

6

6 8 10 12 16 16

× 10-3

Mean value

Specimen number

Plastic strain

N
or

m
al

iz
ed

re
la

ti
ve

va
lu

e
A

2
/A

2 1

(b) Mean values and error bars of the measurements

Figure 5.14: Normalized relative value A2/A
2
1 over the plastic strain detected with

the wedge method and a wide short–time Fourier transformation window.
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increase of the amplitude A1 due to the signal processing with the wide short–time

Fourier transformation window leads to incorrect relative ratios A2/A
2
1. An increase

in the material nonlinearity due to the plastic deformation could not be ascertained.

5.5 Analysis of the detected signal with a narrow

short–time Fourier transformation window

To avoid that the modes overlapping the size of short–time Fourier transformation

window is reduced. A Hanning window with 64 points is taken for analysis of the

measured wave signals. This window size is used for both measurements, the mea-

surements with the laser interferometer and with the wedge method. Again, the

amplitudes for the s1–mode, A1 and the s2–mode, A1 are plotted for each specimen

(Figures 5.15, 5.16, 5.17 and 5.18). With the new signal analysis the amplitude, A1

should now be constant. The a1–mode no longer affects the s1–mode, even the modes

spreading more with higher plastic deformation. But a decrease of A1 can be observed

for the measurements with the laser interferometer. This is caused by the effect that

the modes are spreading out, and so the amplitudes decrease relatively with higher

plastic deformation. With the averaging effect over an area with the wedge detection

method, the impact of the mode spreading is not so strong and the amplitude A1

is constant for the different measurements. Also, the detected amplitude A2 of the

s2–mode is influenced by the mode spreading effect. Consequently A2 decreases with

more plastic strain even though it should increase.
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Figure 5.15: A1 over the plastic strain detected with the laser interferometer and a

narrow short–time Fourier transformation window.
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Figure 5.16: A2 over the plastic strain detected with the laser interferometer and a

narrow short–time Fourier transformation window.
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Figure 5.17: A1 over the plastic strain detected with the wedge method and a

narrow short–time Fourier transformation window.
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Figure 5.18: A2 over the plastic strain detected with the wedge method and a

narrow short–time Fourier transformation window.
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The Figures 5.19 and 5.20 show the relative values A2/A
2
1 determined with the

narrow short–time Fourier transformation window. The normalized relative values

are plotted for the different specimens determined with the laser interferometer and

wedge method wave detection. A increase of the ratio A2/A
2
1 is visible for the both

wave detection techniques. This increasing trend conforms with the results obtained

with longitudinal and Reyleigh wave measurements [21, 25].

It can be demonstrated that for short propagation distances and with the influence

of the mode spreading effects, an adjustment the short–time Fourier transformation

window is necessary. The reduction of the window size increases the time resolution

and the modes do not influence each other any more. Therefore, with the narrow

window size an increase of the material nonlinearity due to plastic deformation is

detected with the proposed Lamb wave measurements. Measuring of the propaga-

ting Lamb wave with a wedge has the advantage that the spreading effect has not so

much influence on the amplitudes A1 and A2. But also with the application of the

laser interferometer to detect the wave the change of the material nonlinearity can be

determined. The stronger increase of the relative value A2/A
2
1 with growing plastic

deformation detected by the wedge–transducer combination is caused by the amplifi-

cation of the second harmonic due to the inherent resonance of the transducer. The

second harmonic frequency is closer to the center frequency of the detection trans-

ducer than the first harmonic frequency. The lower value of material nonlinearity of

the specimen number 5 could be observed with both detection methods.
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Figure 5.19: Normalized relative value A2/A
2
1 over the plastic strain detected with

the laser interferometer and a narrow short–time Fourier transformation window.
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Figure 5.20: Normalized relative value A2/A
2
1 over the plastic strain detected with

the wedge method and a narrow short–time Fourier transformation window.
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CHAPTER VI

CONCLUSIONS AND FURTHER WORK

In this thesis Lamb wave measurements are performed to detect an increase of mater-

ial nonlinearity due to plastic deformation. Under certain conditions, the propagating

Lamb wave generates cumulative second harmonic waves, which can be used to track

material nonlinearity.

In the experimental setup, the wedge generation method was employed to launch the

fundamental wave. The design of the wedge is improved to generate a significantly

higher wave displacement amplitude. The propagation distance of the wave in the

wedge is reduced and a clamping fixture for the transducer has been designed so that

oil could be used as couplant between transducer and wedge. The phase θ could be

made bigger, so that the edge of the wedge is closer to the acoustical axis. This

reduced the excitation energy component which goes in to the unintentional excited

a1–mode. Also, the coupling of the wedge to the specimen is an important factor

in the measurements. A great part of the measurement inaccuracy comes from bad

coupling of the wedge to the specimen [23]. To increase the reliability of the measure-

ments, the fixing of the wedge should be advanced to make the measurements more

robust.

For the detection of the propagating wave a laser interferometer and wedge–transducer

combination are used and their advantages and disadvantages are discussed. To sep-

arate the modes in the detected wave signal, a short–time Fourier transformation

(STFT) is applied.

To verify that the experimental setup is sufficient to measure material nonlinearity

with Lamb waves, measurements are executed for various distances on two aluminum
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sheets with different alloys. A linear increase of the relative value A2/A
2
1 with increas-

ing propagation distance was observed. This agrees with theoretical and experimental

works and shows that the measured second harmonic frequency is not created by the

experimental setup, but in fact due to inherent material nonlinearity. The relative

ratio of the material nonlinearity from the two alloys has been measured and com-

pared with the ratio measured with longitudinal waves. With a better fundamental

frequency choice, and the separation of the s1–mode from the a1–mode, the ratio

measured with Lamb waves came closer to the value of the absolute nonlinear longi-

tudinal measurements.

To assess the change of material nonlinearity due to plastic deformation, six speci-

mens are loaded over yield so that plastic deformation occurs. The specimens length

was limited by the load frame dimensions. The relatively short specimens and the

mode spreading with increasing plastic deformation made the mode separation with

the short–time Fourier transformation more difficult. To illustrate the influence of

the short–time Fourier transformation window length on the possibility to separate

the modes, the detected signals from the Lamb wave measurements are analyzed with

a wide and narrow window. With the narrow window, the modes can be better sep-

arated since the time resolution is better. The measured relative nonlinearity value

A2/A
2
1 increases with plastic deformation as expected. That the frequency resolu-

tion worsens with the reduction of short–time Fourier transformation window length

had no influence on the experimental results. No other modes are in the frequency

region of the fundamental and second harmonic, when the s1–and s2–mode arrive.

The measurement results showed that with both wave detection methods (laser in-

terferometer and wedge–transducer combination) the propagating Lamb wave can be

detected well and the material nonlinearity can be reliable characterized. The Lamb

wave measurements seem to be a robust technique to characterize the relative non-

linearity of a material.
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With the wedge method for the wave detection, the modes amplitudes of s1 and s2

increased. When the center frequency of the detection transducer is chosen close to

the second harmonic frequency, the relatively weak second harmonic displacement

field is recorded additionally stronger. To further extract the low second harmonic

wave signal, components from the strong first harmonic signal can be split into two

signals. One part can be used to acquire the first harmonic components. The second

part is sent in an appropriate narrow bandpass filter and low–noise amplifier. This

gives a high second harmonic signal with no influence of the first harmonic.

When in future the absolute nonlinearity parameter β will be determined, the absolute

measure of the wave displacement is necessary. Measurements with laser interferom-

etry are then the more useful way, since the displacement is direct related to the

wavelength. Further, the laser interferometer is truly broadband. All frequency com-

ponents are detected equally and are not tempered by the frequency resonance of the

detection transducer.

To verify that the Lamb wave measurement are suitable for the assessment of material

fatigue life, cycling loading test should be performed as done in other works [16, 21]. A

strong increase should observable since cycling loading increase highly the dislocation

density in a material.
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APPENDIX A

LIMITATION OF THE SHORT–TIME FOURIER

TRANSFORMATION RESOLUTION DUE TO

THE HEISENBERG UNCERTAINTY

A short–time Fourier transformation (STFT) is a suitable technique to determine

quantitative changes of the frequency content of signal as function of the time. How-

ever, there are limitations in resolution. The short–time Fourier transformation and

the representation in a spectrogram are restricted by the Heisenberg uncertainty. The

term uncertainty is misleading. The effect is complete predictable. Due to Heisen-

berg uncertainty is in not possible to get with the short–time Fourier transformation

a ideal resolution in time and frequency at the same time.

For the derivation of the uncertainty principle some prefatory definitions are neces-

sary.

The square norm ‖s(t)‖ of a function s(t) is given by

‖s(t)‖ =





∞
∫

−∞

|s(t)|2dt





1
2

. (A.1)

The definition of the normalized function sn(t) is

sn(t) =
s(t)

‖s(t)‖
. (A.2)

Because the square norm of a normalized function is one, the squared magnitude can

be seen as a probability density. With the squared magnitude is it feasible to compute
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the mean time of function s(t) with

E[t] =

∞
∫

−∞

t|sn(t)|2dt (A.3)

and the mean angular frequency with

E[ω] =

∞
∫

−∞

ω|Sn(ω)|2dω. (A.4)

Sn(ω) stays the normalized Fourier transform of the time function s(t). The variances

for t and ω can be obtained with

σ2
t =

∞
∫

−∞

(t − E[t])2|sn(t)|2dt (A.5)

and

σ2
ω =

∞
∫

−∞

(ω − E[ω])2|Sn(ω)|2dω. (A.6)

The resolution is restricted by the uncertainty principle to

σ2
t σ

2
ω ≥

1

4
. (A.7)

For this reason the standard deviation of the time and frequency can not changed

independent from each other.

The value of time–frequency spread depends on the used time window. With the

equations above the time–frequency spread for different window types can be calcu-

lated. The minimum value of 1
4

in Equation (A.7) is only possible for the functions

of the form

s(t) = aeiξte−b(t−u)2 . (A.8)

or a product of a complex harmonic multiplied with a Gaussian. For a Hanning

window, which is used in this work, the time–frequency spread σ2
t σ

2
ω is 0.5133.
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The time resolution is optimal in the time domain and the frequency resolution is

optimal in the Fourier domain representation as illustrated in Figure A.1. But in this

representation a resolution of the frequency or respectively of the time is not available.

If a representation of the signal simultaneousely in time–and frequency–domain is

necessary, like for the Lamb wave signal processing in this work, the resolution is

limited by the uncertainty principle. Not both resolution can be optimized at the

same time. In a short–time Fourier transformation the resolution depends only on

the time–window size. A wide window gives a better frequency resolution, but worse

the time resolution. On the other hand a more narrow window gives a better frequency

resolution, but worse the time resolution. This is shown in Figure A.2.

To illustrate the influence of the window size on the resolution the frequency and

time variations are calculated [27]. In Figure A.3a a normalized Hanning window

is illustrated and Figure A.3b shows the Fourier transform of the window. For the

calculations a sampling frequency for the time signal of 100 MHz is chosen. So 1000

points representing 10 µs of the signal. Figure A.3c shows time deviation over the

window length. A increase in the window length results in a larger time deviation.

Additionally the time variance σt is illustrated. In Figure A.3d and A.3e, σt and σf

are assigned over the window length in points. It can be seen, that a too narrow

window results in a large frequency standard deviation. But on the other hand, a

too wide window gives a large time standard deviation. So a compromise has to be

found, which fits best to the resolution requirements.
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(a) Time domain representation
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(b) Fourier domain representation

Figure A.1: Time and Fourier domain signal representations
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(a) STFT domain representation with a nar-
row window
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(b) STFT domain representation with a wide
window

Figure A.2: STFT signal representations
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