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SUMMARY 

 

The chemical industry is constantly moving to find newer and more 

environmentally benign methods for chemical synthesis.  This work is aimed at 

developing novel solvents for sustainable technology.  Specifically, this thesis addresses 

two different types of solvents.  The first type has been dubbed “switchable solvents”.  

The goal is to develop a solvent specifically designed for a reaction that can be easily 

removed by decomposition with some type of “switch”, such as heat, UV light, CO2 

pressure, or some other external stimulus.  The decomposition products would then be 

collected and reformed to make the solvent.  The second type of solvent is a gas-

expanded liquid (GXL).  Many organic solvents swell with the addition of a gas such as 

carbon dioxide.  CO2 itself is a poor solvent, but its combination with an organic solvent 

enables the ability to tune many of the solvent’s properties, such as viscosity, dielectric 

constant, and polarity.  This allows reaction conditions to be changed to fit the 

requirements for each individual process. 
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CHAPTER I 

INTRODUCTION 

 

 Many synthetic chemical systems are hampered by either solubility limitations in 

the solvent system, or by problems with product separation.  The development of new 

solvent systems that combine appropriate solvents with advantageous separations 

schemes would greatly benefit the chemical industry.  My work aims to develop these 

types of solvents in order to bridge the gap between reactions and separations. 

 Switchable / cleavable solvents are a relatively new type of solvent that change 

properties with the application of an external stimulus such as heat, UV light, pH, or CO2 

pressure.  The goal is to design a solvent that has good properties for the chemical 

reaction, but with a built-in switch to make separations easier.  Chapter II details my 

work with our first foray into the switchable solvent field, thiirane oxide.   

 While thiirane oxide was useful as a proof of concept, it became clear that a 

solvent with better separations characteristics was needed.  Specifically, we needed a 

solvent whose decomposition products could be reformed into the original solvent.  Thus, 

we moved on to piperylene sulfone.  Chapter III shows the work to date with piperylene 

sulfone.   Piperylene sulfone offers a number of separations advantages over thiirane 

oxide.   

 Gas-expanded liquids (GXL’s) also show great promise as a reaction medium.  

GXL’s are created by pressurizing an organic liquid with a gas, typically carbon dioxide.  

The pressure of the gas has a large effect on the physical properties of the bulk solvent 

such as density, viscosity, and polarity.  This “tunability” offers immense control over the 

reaction conditions.  Chapter IV discusses our research into the microstructure of gas-

expanded liquids.   
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 Finally, Chapter V summarizes the importance of the research and suggests some 

directions for the research to go.  Switchable solvents offer many possibilities for cleaner 

solvents and while scant research exists on the topic, this work provides a working 

example of a solvent of this type. 
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CHAPTER 2 

THIIRANE OXIDE AS A SWITCHABLE SOLVENT 

 

Introduction 

 The solubility of materials in a solvent depends on, among other parameters, the 

relative polarities of solute and solvent.  If a polar solvent will dissolve a species, then a 

nonpolar solvent likely will not dissolve that same species.  It would be advantageous for 

a solvent to dissolve the chemical species under reaction conditions, change polarity with 

a switch, then precipitate out remaining species.  A molecule that decomposes to lose a 

polar species while leaving a nonpolar species would satisfy this criterion.  This change 

in polarity can be abrupt, as with the decomposition of the solvent, or it can be smooth 

transition with tunable properties.  The magnitude of the polarity change as well as the 

type of change will dictate the appropriate applications for the solvent. 

Information on switchable solvents is scarce, though in 1978, Iwatani et al 

claimed that the amidine 1,8-diazobicyclo-[5.4.0]-undec-7-end (DBU) reversibly formed 

an adduct with CO2 [1]  as shown in Figure 2-1.  

 

Figure 2-1.  Reaction of DBU with CO2 to form adduct. 

 
However, spectroscopic evidence in a recent paper [2] has shown that instead of 

the adduct being formed, the reaction of DBU with CO2 actually forms a bicarbonate salt 

while in the presence of water (Figure 2-2).   
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Figure 2-2.  Reaction of CO2 in the presence of water to form carbonate salt. 

 

In the absence of water, no reaction occurs.  Jessop et al [3] have recently reported a 

reversible ionic liquid formed from DBU, an alcohol, and CO2 (Figure 2-3).  This is 

discussed in more detail in Chapter V.   

 

  

N

N

+  ROH
N

N
H

RCO3
-

CO2

-CO2

 

Figure 2-3.  Example of reversible ionic liquid. 
 

One difficult separations scheme is the reaction of an organic with a salt.  

Typically, a phase transfer catalyst (PTC) such as a quaternary salt is utilized [4].   After 

the reaction, the PTC, which is often toxic and expensive, must be separated from the 

product.  Under these biphasic conditions, maximum contact between the phases is 

required to minimize the mass transfer barrier between the phases.  In addition, 

significant amounts of water are required to wash the PTC, yielding much aqueous waste.  

As a result, it would be both economically and ecologically advantageous to find a better 

option than a PTC.  Another option is to use a dipolar, aprotic solvent such as DMSO, 

DMF, or HMPA  which will dissolve both species.  However, dipolar, aprotic solvents 

have high boiling points which makes distillation difficult.  DMSO, DMF, and HMPA 
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are also such a good solvents that liquid extraction is difficult.  As a result, we sought to 

develop a solvent with DMSO-like properties, but with a switch for easy removal.  The 

solvent should have a number of properties advantageous for use as a reaction medium, 

including the following: 

• Useable liquid range (preferably room temperature) 

• Chemical stability for the reactions (i.e. the solvent doesn’t react) 

• Dissolve both organics and salts 

The solvent should also have a number of characteristics advantageous for separations, 

including the following: 

• Decomposition at moderate conditions with reasonable rate 

• Decomposition products have very low or very high vapor pressure 

• Easy recombination to form solvent 

The first example of a switchable solvent is thiirane oxide.  

 

Thiirane Oxide 

 Thiirane oxide represents the cyclic analog to DMSO, as shown in Figure 2-4.  

Thiirane oxide has similar solvent strength parameters to DMSO, which can be applied to 

solvent systems. 

∆S
O

+   SO
 

Figure 2-4.  Decomposition of thiirane oxide to form ethylene and SO. 
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Unlike DMSO, thiirane oxide decomposes at temperatures above 100 oC to form ethylene 

and sulfur oxide.  This represents the unique separations advantage conferred by thiirane 

oxide over DMSO.   We can use thiirane oxide’s exceptional solvent ability for reactions 

and its unique decomposition for separations.  Theoretically, the reverse reaction of sulfur 

oxide and ethylene to reform thiirane oxide is possible; however, the rapid 

disproportionation of SO to form various sulfur products makes this reversal impossible.  

Still, this “cleavable” solvent is useful as a proof of concept and may find uses in 

specialty applications where reaction and product isolation are difficult. 

 This work seeks to characterize the relevant solvent properties of thiirane oxide 

and to determine its decomposition characteristics.  In addition, thiirane oxide was tested 

as the solvent in a nucleophilic substitution reaction shown in Figure 2-5.   

 

Cl SCN

+   KSCN +   KCl

 

Figure 2-5.  Nucleophilic substitution of benzyl chloride by potassium thiocyanate. 
 
 
This reaction provides a means of comparison between thiirane oxide and a standard 

dipolar, aprotic solvent such as DMSO in terms of overall solvent ability.  However, the 

critical aspect of thiirane oxide is the ability to remove it with a “switch”.  

 

Solvent Parameters 

 Several experimentally determined parameters can be used to characterize the 

solvent’s properties.  The Et(30) solvent strength and Kamlet-Taft parameters α, β, & π* 

[5,6,7] are based on the solvent-induced shift in absorbance of a probe dye.  This 

phenomenon is known as solvatochromism and is often used to probe the molecular 
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interactions between solvent and solute.  The final solvent parameter is the dielectric 

constant ε, which is the permittivity of a medium relative to a vacuum.  The dielectric 

constant is related to a solvent’s polarity and represents its ability to separate ions in 

solution. 

 

Et(30) 

 The solvent’s Et(30) value represents the molar transition energy, which is the 

energy required to bring one mole of the standard dye dissolved in the solvent from 

electronic ground state to the first excited state [8].  The Et(30) value is the most general 

measure of a solvent’s strength.  It is a combination of dipolarity / polarizability and 

hydrogen bond donating ability and is based on the wavelength of maximum absorbance 

of Reichardt’s dye (2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate dihydrate, 

C41H29NO 2H2O). 

 

Kamlet-Taft 

 The parameter π* value is a measure of dipolarity / polarizability and represents 

the ability of a solvent to stabilize charges and dipoles.  We can then correlate the 

solvent’s ability to stabilize the respective ground states and excited states of the probe 

molecule, N,N-dimethyl-4-nitroaniline by observing the longest wavelength absorption 

band of the π to π* transition in the UV spectrum.   

 The parameter α represents the acidity, or hydrogen bond donating (HBD) ability 

of the solvent.  It is a measure of the solvent’s ability to donate a proton in a solute-to-

solvent hydrogen bond.  Rather than measure α directly, we can isolate α based on two 
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other solvatochromic parameters.  Et(30) is a measure of dipolarity / polarizability and 

HBD acidity, and π* is a measure of dipolarity / polarizability.  Thus we can decouple the 

effect of acidity from a combination of these two parameters. 

 The final Kamlet-Taft parameter, β, represents the hydrogen bond accepting 

ability of the solvent.  The numerical value of β is based on the UV absorbance of 4-

nitroaniline. 

 

Experimental Materials 

All chemicals used were purchased from Sigma Aldrich, unless otherwise noted, 

and used without further purification.  The chemicals used were ethylene sulfide (98%), 

m-chloroperbezoic acid (≥77%), methylene chloride (HPLC grade, > 99.8%), anhydrous 

ammonia (≥99.99%), magnesium sulfate (Fisher, certified anhydrous), 4-nitroaniline 

(99+ %), Reichardt’s dye (~90%), N,N-dimethyl aniline (99%), potassium thiocyanate 

(reagent), benzyl chloride (99%), dimethyl sulfoxide (99.7%), cyclohexane (99.5%).  1H 

and 13C NMR spectra were recorded using a Varian Mercury Vx 400 spectrometer using 

residual CHCl3 peak as an internal reference.  Gas chromatography was performed on an 

Agilent 6580 GC with an FID detector.  TGA and DSC data were acquired using a 

Netzsche Model STA-409PC.  The dielectric constant was measured using a Model 870 

Dielectric Constant Meter by Scientifica.  

 

Thiirane Oxide Synthesis 

 This procedure was modified from the method described by Kondo et al [9].  10 

mL of ethylene sulfide was added to 50 mL CH2Cl2 and stirred.  A prepared solution of 
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30 g. 3-chloroperbonzoic acid (≤ 77%) in 250 mL CH2Cl2 was added via addition funnel 

to the ethylene sulfide solution over 3 hours at room temperature.  After stirring for 

another hour, the addition funnel was replaced with a dry ice/acetone cooled condenser 

fitted with a septum at the top.  Approximately 6 mL anhydrous ammonia was condensed 

and added as liquid to the vigorously stirred reaction mixture two times.  The solution 

was filtered, the solids washed with CH2Cl2, and the filtrate dried with MgSO4.  The 

solvent was removed by rotary evaporation, then by high vacuum.  Distillation of the 

crude material at 70 oC  ~10-2 torr on a short-path, vacuum distillation apparatus with 

condenser cooled to -15 °C yields analytically pure thiirane oxide in 56% recovered yield 

based on ethylene sulfide.  1H NMR: Complex multiplets are centered at 1.99 ppm and 

2.41 ppm.  13C NMR:  EI-MS: m/z = 76.   

 

Apparatus and Procedures 

Et(30) Determination 

 The Et(30) value is based on the wave number of the maximum UV absorption of 

Reichardt’s dye in the solvent.  The energy of transition can be calculated using equation 

2-1, where Et(30) is the energy of transition in J/mole, h is Planck’s constant in Js 

/molecule, c is the speed of light in cm/s, ν is the wavenumber in cm-1, and NA is 

Avagadro’s number in molecules/mole. 

ANhcEt ν=)30(    Equation 2-1 
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Kamlet-Taft Parameter Determination 

 For the parameter π*, I dissolved N,N-dimethyl-4-nitroaniline in the solvent at a 

concentration of approximately 5*10-3 mol/L.  The maximum absorbed wavelength was 

observed, and π* was then calculated based on equation 2-2, where λ is the wavelength 

of maximum absorbance.  Cyclohexane is used as a reference and is arbitrarily assigned a 

value of 0, while DMSO is assigned a value of 1. 

)()(
)()(*

ecyclohexanDMSO
ecyclohexanidethiiraneox

νν
ννπ

−
−

=   Equation 2-2 

The acidity α is decoupled from the Et(30) and  π* values, as shown in equation 2-3. 

)30(0508.0*532.07.14 TE+−−= πα    Equation 2-3 

The method for β was similar to that of π*.  Again, cyclohexane was assigned a value of 

0 while DMSO was assigned its literature value of 0.76. 

 

Reaction of Benzyl Chloride with Potassium Thiocyanate 

 I studied the reaction in Figure 2-4 as a means of comparing the relative solvent 

ability of thiirane oxide to a standard solvent, in this case DMSO.  The kinetic 

experiments in DMSO were performed as follows: 0.29g of KSCN was added to 50 mL 

DMSO in a stainless steel Parr reactor and stirred until the KSCN appeared to be 

dissolved.  The vessel was heated to reaction temperature (40 oC to 70 oC, +/- 1 oC) and 

approximately 0.12 g to 0.18 g benzyl chloride was added.  Samples were taken at regular 

intervals and dissolved in toluene  to quench the reaction.  The results were quantified by 

GC / FID analysis (HP 6890). 
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 The kinetic experiments in thiirane oxide were performed as follows:  0.016 g of 

KSCN was added to 1.3 mL thiirane oxide in a round-bottom flask in a heated oil bath, 

and stirred until the KSCN appeared to be dissolved.  The flask was heated to reaction 

temperature (40 oC to 60 oC, +/- 1 oC) and approximately 7 mg to 10 mg of benzyl 

chloride was added.  Samples were taken at regular intervals and dissolved in toluene to 

quench the reaction.  The results were quantified by GC / FID analysis.  The integrated 

second-order rate equation is shown in Equation 2-4, where x is conversion, θ is initial 

molar ratio of KSCN to benzyl chloride, k is the second order rate constant in L/mol/s, 

CAo is the initial molar concentration of benzyl chloride in mol/L, and t is the time in s. 

 

( 1***
1

1ln −−=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

− θ

θ

tCk
x
x

Ao )    Equation 2-4 

 

Thus a plot of 
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

θ
x
x

1

1ln  vs. t yields a straight line with slope equal to [-k*CAo*(θ-1)]. 

 

Product Isolation 

The key to the use of this cleavable solvent is our ability to remove the solvent by 

decomposition.  After one of the kinetic runs, the solvent mixture with reactants and 

products remaining in solution was added to a heated round-bottom flask at 100 oC and 2 

torr absolute until all of the liquid solvent had decomposed. 

 Since the decomposition of thiirane oxide produces several species that are not 

gases, TGA data is not suitable for determination of decomposition rate.  The 
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decomposition data obtained using benzyl thiocyanate as an internal reference for 1H 

NMR shows that at 100 °C the half-life is 52 minutes, and at 120 °C it is 18 minutes.   

 

Results and Discussion 

Solvent Properties  

Table 2-1 show the solvatochromic properties and dielectric constant for thiirane 

oxide and compares them to DMSO.  The values for thiirane oxide are very similar to the 

values for DMSO, which is expected given their related structures.   

 
Table 2-1.  Solvent property comparison for DMSO vs. thiirane oxide 
 

  DMSO Thiirane Oxide 

α 0 0 

β 0.76 0.74 

π* 1.00 1.02 

ET30 189 kJ/mol 191 kJ/mol 

ε  46.7 45.0 

 

Demonstration Reaction 

 The reaction between benzyl chloride and potassium thiocyanate shows a rate of 

reaction that is slightly higher in DMSO than in thiirane oxide.  Table 2-2 shows a 

comparison of the kinetic data I recorded. 
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Table 2-2.  Kinetic data for BzCl + KSCN in DMSO & thiirane oxide.  Error is 
uncertainty in rate constant; duplicate runs are averaged. 
 

DMSO Thiirane Oxide 

T, °C k x 103, L mol-1 

s-1  

T, °C k x 103, L 

mol-1 s-1

44.8 0.97 ± 0.04 40 0.42 ± 0.02 

49.5 1.46 ± 0.14 43 0.56 ± 0.04 

57.4 2.63 ± 0.04 52 0.97 ± 0.06 

61.2 3.35 ± 0.12 61 1.62 ± 0.12 

62 3.33 ± 0.11 62 1.61 ± 0.12 

68.5 5.65 ± 0.19    

70 6.54 ± 0.18    

 

A plot of the ln (k) vs. 1 / T will yield a slope that is proportional to the activation energy 

of the reaction in the solvent.  Figure 2-6 depicts this plot.  

 

Figure 2-6.  Second order rate constant of BzCl + KSCN as a function of temperature.  ∆ 
= thiirane oxide; Ο = DMSO 
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An analysis of the kinetic data also allows us to determine other thermodynamic 

properties of the reaction, as shown in Table 2-3.  The activation energy in DMSO is 

higher than that in thiirane oxide, which suggests that the reaction rate should be slower 

in DMSO.  However, the data indicate that this is not true.  But we speculate that if we 

consider the relative acidity of the protons in DMSO compared to thiirane oxide, the 

greater acidity of thiirane oxide (due to the increased s character of the hybrid orbitals 

due to ring angle) would solvate the –SCN ion more strongly and thus inhibit the reaction.   

 

Table 2-3.  Thermodynamic properties of example reaction. 
 ∆G‡ KJ/mol ∆H‡ KJ/mol ∆S‡ KJ/mol 

DMSO 66.6 ± 1.6 63.7 -0.8 

Thiirane oxide 53.2 ± 2.3 50.3 -2.5 

 

 

Product Isolation 

 One of the decomposition products, sulfur monoxide, is unstable and 

disproportionates according to equation 2-5 [10]. 

x SO → S2O + SO2 + (SO)2 + S   Equation 2-5 

Although the thiirane oxide was completely decomposed, some sulfurous materials 

remained in the flask.  The remaining materials were extracted with methylene chloride 

and analyzed for benzyl chloride and benzyl thiocyanate.  The overall yield was > 48% 

recovery of benzyl thiocyanate and unreacted benzyl chloride, as determined by GC/FID. 
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Figure 2-7.  TGA for thiirane oxide.  Heating rate = 20 oC/min. 
 

 Figure 2-7 is a thermogravimetric analysis (TGA) for thiirane oxide.  The graph 

shows that at temperatures over 300 oC, approximately 20% of the original mass is still 

remaining.  This is consistent with the results of the decomposition experiment where we 

observed sulfurous mass remaining in the flask after decomposition. 

 Differential scanning calorimetry (DSC) is another method for characterizing the 

decomposition.  Figure 2-8 shows DSC results for thiirane oxide. 
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Figure 2-8.  DSC for thiirane oxide.  Heating Rate = 20 oC/min. 
 

The DSC shows a sharp exotherm at 60 oC and anther broad exotherm around 150 oC.  

DSC and TGA together can give important information about the mechanism and rate of 

decomposition.  The first exotherm in the DSC does not show a corresponding mass loss 

in the TGA, suggesting that this exotherm is indicative of a bond breaking step.  The 

broad exotherm in the DSC does correspond to mass loss in TGA, indicating the release 

of ethylene and / or sulfur oxide.  Additional DSC / TGA data at different heating rates 

will allow us to better characterize the decomposition process and give us more accurate 

data on the decomposition rate and mechanism.   

 

Conclusions 

 This work has demonstrated a new cleavable solvent that combine advantages for 

both reactions and separations.  These types of solvents represent a new paradigm in 

product isolation.  This thesis summarizes the solvent properties and characteristics of 

thiirane oxide and found that its solvent properties were very near to those of its cyclic 
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analog, DMSO.  This work also shows a nucleophilic substitution reaction that would be 

typically run in a dipolar, aprotic solvent such as DMSO and found that the reaction rate 

in thiirane oxide corresponds well to the rate in DMSO.  This work also shows that 

thiirane oxide can be removed by decomposition by heating it at temperatures above 100 

oC, which is much lower than the temperature required to remove DMSO and did not 

cause degradation of the product.    

 Thiirane oxide meets all of the requirements for a switchable solvent, save for 

one.  TGA data show that thiirane oxide does not decompose cleanly to form two gases 

that are then easily removed.  The reactivity of sulfur monoxide to form sulfurous 

products renders this solvent a one-way switch.  We desire to have a solvent whose 

decomposition products can be recombined to form the solvent again.  Although thiirane 

oxide does not meet this criterion, it is still very useful as the first demonstration of a 

switchable solvent. 
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CHAPTER III 

PIPERYLENE SULFONE AS A SWITCHABLE SOLVENT 

 

Introduction 

 Due to the inherent limitations of thiirane oxide outlined in Chapter II, we sought 

to develop a better solvent.  Our design criteria were the same, i.e. useable liquid range, 

chemical stability, ability to dissolve both organics and salts, decomposition at moderate 

conditions, decomposition products with appropriate vapor pressures, and easy 

recombination of decomposition products to reform the solvent.  To this end, we are 

developing the use of piperylene sulfone for switchable applications. 

 Piperylene sulfone decomposes with temperature to form the diene piperylene and 

sulfur dioxide, as shown in Figure 3-1. 

S

O

O

SO2

m.p. = -12 oC b.p. = 42 oC b.p. = -10 oC 

Figure 3-1.  Decomposition of piperylene sulfone to form diene and SO2.

 

Piperylene sulfone is a liquid at room temperature.  The decomposition products have 

appreciably different boiling points, making separation much easier.  Piperylene sulfone 

is also synthesized from piperylene and sulfur dioxide, so the reverse reaction should be 

possible.  Piperylene sulfone is also reported to have a reasonable decomposition rate at 
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moderate temperatures, especially when compared to other sulfones as shown in Figure 

3-2 [1]. 

 

Figure 3-2.  Sulfone decomposition rates. 

 
These rates indicate that the decomposition rate should be acceptable to our goals. 

 The goal of this work is to characterize the solvent in a manner similar to thiirane 

oxide.  As most of the background information on the solvent parameters was covered in 

Chapter II, it will not be repeated here.  I have measured the Et(30) value, Kamlet-Taft 

parameters, and dielectric constant of piperylene sulfone.  I have also shown that 

piperylene sulfone is a capable medium for the reaction of benzyl chloride with 

potassium thiocyanate.   

 The Kamlet-Taft β value procedure was modified slightly from the previous 

experiment.  Since piperylene sulfone absorbance in the UV renders 4-nitroaniline 

unusable, I used the dye pair N,N-dimethyl-4-nitrosoaniline and N-methyl-nitrosoaniline 

for β determination.  Piperidine (β = 1.04) and cyclohexane (β = 0) were used as the 

reference solvents, and the equation is modified as shown, where vdiff is the difference in 

 20



wave numbers for a solvent between the maximum absorbance of the two dye probes, 

and -809 is based on the reference solvents used.   

809
,,

−
= − ecyclohexandiffsulfonepiperylenediff

sulfonepiperylene

νν
β   Equation 3-1 

The procedures for α, π*, Et(30) and the dielectric constant all stayed the same. 

 It was also necessary to show that piperylene sulfone could support a chemical 

reaction such as the nucleophilic substitution between benzyl chloride and potassium 

thiocyanate shown in Figure 2-4.   

  

Experimental Materials 

 All chemicals used were purchased from Aldrich and used without further 

purification unless otherwise noted.  1,3-pentadiene (piperylene) (mixture of cis and 

trans, 90%), sulfur dioxide (≥ 99.9%), N-phenyl-1-napthylamine (98%), chloroform 

(CHROMASOLV Plus  HPLC 99.9%), water (HPLC grade), 4-nitroaniline (99+ %), 

Reichardt’s dye (~90%), N,N-dimethyl aniline (99%), potassium thiocyanate (reagent), 

benzyl chloride (99%), dimethyl sulfoxide (99.7%), cyclohexane (99.5%), piperidine 

(99.0%), N,N-dimethyl-4-nitrosoaniline (97%), N-methyl-4-nitrosoaniline.  1H and 13C 

NMR spectra were recorded using a Varian Mercury Vx 400 spectrometer using residual 

CHCl3 peak as an internal reference.  Gas chromatography was performed on an Agilent 

6580 GC with an FID detector.  TGA and DSC data were acquired using a Netzsche 

Model STA-409PC.  The dielectric constant was measured using a Model 870 Dielectric 

Constant Meter by Scientifica. 
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Piperylene Sulfone Synthesis 

This method was adapted from Krug and Rigney [2].  25 mL (0.25 mol) of 

piperylene and 2.75 g. (0.0125 mol) of phenyl-β-napthylamine was added to a 750 mL 

stainless steel bomb.  200 to 250 mL of liquid SO2 (3.9  to 4.9 mol; < 5 bar pressure) was 

added and the mixture was shaken at room temperature for 2 days.  The vessel was 

vented slowly.  Approximately 36 g. of a red oil was recovered and to that was added 10 

mL of CHCl3.  The crude material was extracted three times with 50 mL of HPLC grade 

water.  The aqueous layers were combined and extracted three times with 10 mL of 

CHCl3.  The organic layer was dried over MgSO4 and the solvent was removed in vacuo 

to yield 7.4 g. of piperylene sulfone.  A second aqueous extraction of the crude product 

and back extraction into CHCl3 yielded another 4.3 g.  The combined samples were 

distilled at ~10-2 torr at 65 °C to yield a clear, colorless oil.  1H NMR (ppm): δ = 1.36 (d, 

3H), 3.69 (m, 3H), 5.96 (m, 2H).  13C NMR (ppm): 12.9, 54.8, 59.4, 122.5, 131.4.   

 

Apparatus and Procedures 

 The procedures for α, β, π*, Et(30) and the dielectric constant all stayed the same 

as they were for thiirane oxide.  The kinetic experiments performed in piperylene sulfone 

were also done using the same procedure.    

 In order to show the switchable nature of this solvent, we need to be able to 

decompose it into piperylene and sulfur dioxide.  One of the problems with piperylene is 

that it tends to polymerize. As a result, we need to pay special considerations to ensure 

that a significant amount of the piperylene does not become unusable in this manner.  I 

propose to decompose the piperylene sulfone at elevated temperatures and shuttle the 
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resulting piperylene and sulfur dioxide into a “sea” of liquid SO2.  By keeping the path 

between the decomposition and the liquid SO2 as short as possible, I believe that we can 

suppress the polymerization and ensure that if the piperylene does react, that it will react 

with SO2 to reform the solvent.   

 

Results and Discussion 

Solvent Parameters 

 The solvent properties for piperylene sulfone are listed in Table 3-1.  The α, π*, 

Et(30), and dielectric constant are all similar to DMSO and thiirane oxide.  The value of 

α is higher than expected, but there is some uncertainty in the measurements and this 

may not be an anomaly at all.   

  

Table 3-1.  Solvent properties for piperylene sulfone and comparison with DMSO & 
thiirane oxide 

  DMSO Thiirane Oxide Piperylene 
Sulfone 

α 0 0 0.07 

β 0.76 0.74 0.46 

π* 1.00 1.02 0.87 

ET30 189 kJ/mol 191 kJ/mol 189 kJ/mol 

ε  46.7 45.0 42.6 

 

 

These results show that piperylene sulfone has solvent properties similar to other dipolar, 

aprotic solvents.   
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Demonstration Reaction 

 I also performed the nucleophilic displacement reaction between benzyl chloride 

and potassium thiocyanate.  At 50 oC, the reaction rate constant k = 1.12*10-3 L mol-1 s-1.  

This is approximately the same rate constant that was obtained for thiirane oxide at this 

temperature.  Thus, piperylene sulfone is an acceptable solvent for our demonstration 

reaction.  Data at additional temperatures will allow the determination of activation 

properties and give a more thorough comparison to a standard solvent such as DMSO.   

 

Decomposition Studies 

 Figure 3-3 shows a thermogravimetric analysis (TGA) for piperylene sulfone.   
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Figure 3-3.  TGA for piperylene sulfone.  Heating rate = 20 oC/min. 
 

The graph shows that decomposition is complete at about 160 oC.  However, about 40% 

of the original mass is still remaining.  This was unexpected and we do not yet know the 

composition of the remaining mass.  It is possible that the piperylene polymerized and 

remained behind.  Further tests are needed, especially at lower heating rates.   
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 Figure 3-4 shows the corresponding differential scanning calorimetry (DSC) 

results. 
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Figure 3-4.  DSC for piperylene sulfone.  Heating rate = 20 oC/min. 
 

TGA and DSC data at more than one heating rate can yield even more clues as to the 

method and rate of decomposition. 

 

Conclusions 

 This work has sought to characterize the use of piperylene sulfone as a solvent.  

Piperylene sulfone exhibits properties that are similar to another dipolar, aprotic solvent.  

The reaction rate of a demonstration nucleophilic substitution reaction is comparable to 

the rate of the same reaction in DMSO and thiirane oxide.  These qualities mean that 

piperylene sulfone shows promise as a dipolar, aprotic solvent. 
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 The key for piperylene sulfone is the ability to “switch” it by heating to form 

piperylene and sulfur dioxide.  Since piperylene sulfone can be synthesized from these 

two components, in principle we should be able to decompose and reform our solvent.  

Although the TGA data did show considerable mass remaining, we do not yet know if 

this is a barrier.  More TGA data at different heating rates is required for any 

determination to be made.  The polymerization of piperylene may also be a problem.  

Indeed, piperylene is packaged along with a polymerization inhibitor.  The 

polymerization of this diene must be suppressed or stopped in order for this solvent to 

find a practical use.  Decomposing the solvent into liquid SO2 may solve this problem.   

The current results show that piperylene sulfone has excellent solvent qualities and has 

romise for use in switchable applications.    
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CHAPTER IV 

CAGE REACTIONS IN GAS-EXPANDED LIUQIDS 

 

Introduction 

The recent shift toward environmentally friendly solvents has led many 

researchers to carbon dioxide, which is relatively inexpensive, non-toxic, and non-

flammable.  However, compressed carbon dioxide is a poor solvent.  Intermediate 

between conventional organic solvents and pure carbon dioxide are gas-expanded liquids 

(GXL’s).  GXL’s are formed by dissolving a gas, generally CO2, into the organic liquid.  

The solubility of CO2 in many organic solvents is quite high and this allows properties 

such as dielectric constant, polarity, viscosity, and solubility of a third component to be 

tuned [1].  This tunability means that solvent systems can be optimized in terms of rate, 

selectivity, and solubility. 

 GXL’s have the potential to be an extremely useful solvent medium for reactions 

and separations.  However, before these solvents can be used effectively, we must first 

understand the molecular structure of the systems.  While many experiments have 

measured bulk, or average, properties of GXL’s, compressible and incompressible fluids 

show local compositions that differ from the bulk compositions.  It is this cybotactic 

region where the solvent structure is influenced by solute-solute, solute-solvent, and 

solvent-solvent interactions [2] that I will be studying.  I will use the cage effect to study 

the local diffusivity of gas-expanded liquids and compare this local property to the bulk 

diffusivity.  These results will be coupled with theoretical molecular modeling results as 
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well as molecular rotor results that probe local viscosity in order to obtain an 

understanding of the local composition of GXL’s. 

 

Cage Effect 

A pair of radicals that are produced within a solvent “cage” can either recombine 

within the cage or diffuse out of the cage.  Studies in both conventional solvents [3] as 

well as supercritical fluids [4] have shown that the extent with which the radicals react 

within the cage is directly proportional to the viscosity of the medium [3].  However, 

there may be additional factors that influence the cage effect in supercritical fluids.  

Studies have shown that cage lifetimes may be enhanced near the critical point because of 

an increase in the local solvent density around the solute [5].  This “solvent / solute 

clustering” may affect the rates of chemical phenomena [6,7].  It is for this reason that we 

wish to explore the cage effect in GXL’s. 

I had planned to use trityl peroxide as the probe molecule for the cage reactions.  

Trityl peroxide has several major advantages over other types of molecules typically used 

to probe cage reactions:  

• Trityl peroxide does not release a gas upon cage recombination, which could 

complicate the cybotactic region. 

• The O-O bond in trityl peroxide can be easily broken with UV light. 

• The cage recombination product is different from the starting material. 

Figure 4-1 is a schematic of the reaction.   
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Figure 4-1.  Cage reaction probe with trityl peroxide.  
 
 
 
The trityl peroxide (A) is first irradiated with UV light.  This will form a pair of radicals 

(B) in the cage with rate constant k1.  The oxygen radical is not stable, and one of the 

phenyl groups will immediately migrate to form the carbon radical (C).  The radicals can 

then either diffuse out of the cage with rate constant kD where they can be trapped, or 

they can recombine inside the cage (D) with rate constant kC.  Herein lies the advantage 

of using this peroxide as a probe molecule: the rearranged product is different from the 

starting material, meaning the analysis is straightforward and the reaction does not need 
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to be followed with exotic methods such as laser flash photolysis.  The ratio of the 

concentration of the trapped product to the concentration of the recombined product is a 

direct measure of the cage effect.   

 

Experimental Goals 

My goal wass to explore the cage effect in a number of gas-expanded solvents.  I 

wanted to investigate the effect of CO2 pressure on the extent of the cage reactions.  I 

planned to also use a number of different solvents including toluene, acetonitrile, hexane, 

and DMSO.  This will help elucidate chemical effects.  Protic solvents may complicate 

the cybotactic region due to H-bonding, so they were to be avoided.  I also wanted to 

investigate branched versus unbranched alkanes to separate the effect of viscosity.  These 

results, combined with microviscosity probes, bulk viscosity measurements, and 

molecular dynamics simulations that other members of our group are doing, will provide 

us with an understanding of the factors affected by CO2 pressurization.  We can then use 

this information to design processes that take advantage of the alterations to rate and 

selectivity afforded by local enhancements in the cybotactic region.   

 

Experimental Materials 

Trityl peroxide is not commercially available, so we attempted to synthesize it in 

the lab.  Several syntheses are published in the literature, but we were unsuccessful in 

recreating all of them.  Henry-Riyad and Tidwell report [8] that trityl chloride and Zn 

dust in cyclohexane and open to the atmosphere will make trityl peroxide in 30 minutes 

at room temperature, as shown in Figure 4-2. 
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Figure 4-2.  Reaction of trityl chloride in Zn dust and cyclohexane to form trityl chloride.  
T = 25 oC, 30 min, open to the atmosphere. 
 

We ran the reaction under the specified conditions with no yield.  We also ran the 

reaction with conditions up to 60 oC, 60 hours, and stirred with an air bubbler, and no 

reaction.  Upon further inspection of the reported NMR characterization, we discovered 

that their reported product values exactly matched our starting material NMR.   

 We also attempted to synthesize trityl peroxide using potassium superoxide, trityl 

chloride, and 18-crown-6 in benzene, as shown in Figure 4-3. 

 

Cl +  KO2

O
O

O

OO
O
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Figure 4-3.  Reaction of trityl peroxide with potassium superoxide in 18-crown-6 and 
benzene. 
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Our first attempt at room temperature and 3 hours gave approximate 75% yield of trityl 

peroxide.  However, subsequent attempts at times up to 72 hours showed no product 

formation. 

As an alternative to trityl peroxide, we propose to use bis(triphenylsilyl) peroxide. 

Bis(triphenylsilyl) peroxide is structurally similar to trityl peroxide, the only difference 

being that the two central carbons are replaced with Si atoms.  The synthesis and 

characterization of this molecule are reported in the literature [9].  This molecule is also 

expected to undergo a rearrangement to a new molecule. 

 

Conclusions 

 GXL’s offer a number of environmental, reaction, and processing advantages over 

traditional organic solvents.  They are tunable, allowing for a wide range of reaction 

conditions.  They also show rate enhancements in the cybotactic region.  It is for this 

reason that we wish to study the solute-solvent and solute-solute interactions in GXL’s.  

We have chosen to study the cage effect by use of a peroxide probe molecule that has a 

different product distribution depending on whether it diffuses out of the cage or 

recombines within the cage.  However, we were unsuccessful in synthesizing the 

peroxide for laboratory use.  We feel that the silicon derivative of trityl peroxide is a 

promising alternative to use as a probe molecule.   
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

 My work has focused on new solvents to both enhance chemical reactions and 

improve the separation of products.  One part of my work is switchable solvents.  The 

goal of these solvents is to be able to run troublesome reactions such as a nucleophilic 

substitution reaction between an organic and a salt.  Rather than use costly separations 

techniques or toxic PTC’s, we would like to be able to combine the entire process into 

one save, environmentally benign, cost-effective system.  The solvent will contain a 

built-in switch for facile separation of the product. 

 Thiirane oxide represents the cyclic analog to DMSO.  As one would expect from 

the structure, thiirane oxide has similar properties in polarity, acidity, basicity, and 

solvent strength.  I have also shown that thiirane oxide is a capable solvent for our 

demonstration nucleophilic substitution reaction.  The keys to the use of a switchable 

solvent are the ability to remove, isolate, and reform the solvent.  I have shown that 

thiirane oxide can be removed by simple heating; however, the disproportionation of SO 

into various sulfur products renders the back reaction impossible.  For this reason we 

sought to develop a new solvent. 

 Piperylene sulfone is another dipolar, aprotic solvent with good solvent 

properties.  It also gave a reaction rate constant for the demonstration reaction that was 

similar to DMSO.  Piperylene sulfone is synthesized from piperylene and sulfur dioxide, 
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so in principle we should be able to decompose and subsequently reform the solvent if 

the polymerization of the piperylene can be suppressed.  Piperylene sulfone offers 

promise as a viable switchable solvent. 

   

Recommendations 

Switchable Solvents 

 Switchable solvents show a lot of promise as a viable reaction medium.  Thiirane 

oxide proved to be a very good dipolar, aprotic solvent that we could remove by heating.  

However, the inability to reform the solvent from the reverse reactions makes thiirane 

oxide unusable in most applications, except for possibly a few specialty systems.  

Piperylene sulfone shows a great deal of promise.  It has good solvent characteristics, and 

the reverse reaction is certainly possible. 

 Even if piperylene sulfone does prove to be a viable switchable solvent, there is 

room for improvement.  One of the products is sulfur dioxide, which is decidedly 

unfriendly to the environment.  The goal of the switchable solvent is the same: to create a 

molecule that can drastically change properties on demand.  I think that we should be 

looking at a number of different options for the next generation of switchable solvents. 

 Dr. Philip Jessop at Queen’s University has worked to characterize a reversible 

ionic liquid that his group has developed.  Ionic liquids are salts that are liquid at (or 

near) room temperature and they have gained attention over the last several years due to 

their abilities as solvents, as well as their vanishingly low vapor pressures.  It is this 

characteristic of their low vapor pressures that makes them attractive as environmentally 
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benign solvents.  Dr. Jessop has developed a solvent that turns from a molecular (non-

ionic) liquid into an ionic liquid upon exposure to CO2 gas, and then turns back to the 

molecular liquid upon exposure to N2 or Ar gas.  Specifically, he has found that exposing 

a 1:1 mixture of DBU (1,8-diazabicyclo-[5.4.0]-undec-7-ene) and an alcohol to carbon 

dioxide will form an ionic liquid, as in Figure 5-1. 

N

N

+  ROH
N

N
H

RCO3
-

CO2

-CO2

 

Figure 5-1.  Reaction of DBU, alcohol, and CO2 to form ionic liquid 
 

 

The molecular liquid has markedly different properties from the ionic liquid.  

Theoretically, one could run a one step of a reaction in the less polar molecular liquid, 

and then convert to the ionic liquid for a subsequent step or easier separation. This would 

eliminate the need to remove and change solvents for each reaction step.  The ionic liquid 

has been characterized spectroscopically.  Dr. Jessop reports an ET30 value of 184 kJ / 

mol for the liquid under N2 pressure and a value of 222 kJ / mol under CO2 pressure.   

Another example of the type we are investigation is the cyclization of a carbonate, 

as in Figure 5-2. 
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Figure5-2.  Decomposition of propylene carbonate to di-ol and CO2. 
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Propylene carbonate is very polar and has a dielectric constant of 62.9 and an Et(30) 

value of 195 kJ / mol.  It decomposes to form the di-ol and carbon dioxide, both of which 

are nonpolar.  If we could find a way to make the reverse reaction, then this would 

represent an ideal candidate since propylene carbonate is already used as a green solvent.  

While this specific reaction may not be exactly the goal, it represents the type of reaction 

that we should look at: a drastic change in solvent properties.  The molecule goes from a 

highly polar molecule to two nonpolar molecules.   

Gas-Expanded Liquids 

 Gas-expanded liquids are becoming increasingly popular in research.  They offer 

the potential to greatly enhance reaction rates, while making product separation easier.  

We were unsuccessful in synthesizing our probe for the microstructure, trityl peroxide.  I 

believe that the silicon derivative will afford us the same advantages as trityl peroxide, 

yet with an easier synthesis.  
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