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SUMMARY 

 

High-throughput computational screening of thousands of metal-organic 

frameworks (MOFs) have been performed for separation applications using selective 

adsorption. First, a MOF-specific benchmarking study of DFT functionals for predicting 

MOF structural parameters, elastic properties, and atomic point charges was performed. 

To achieve this task, a test set of diverse MOFs with high accuracy experimentally derived 

crystallographic structures was compiled. Results indicate that the discrepancies in the 

properties predicted by the various functionals is small compared the accuracy necessary 

for most practical applications. Motivated by these observations, the PBE functional was 

used to assign atomic point charges derived from periodic DFT electronic structure 

calculations for thousands of MOFs. As an example of using these charges, each MOF was 

examined for adsorptive removal of tert-butyl mercaptan (TBM) from natural gas. Monte 

Carlo (MC) simulations revealed many candidate MOF structures with high selectivity for 

TBM. Based on results from the benchmarking study, DFT was used to predict the energy 

minimized structure of over 800 MOFs. These energy minimized structures are used to 

analyze the relationship between nanopore structure and gas adsorption properties. Results 

indicate that structure precision is crucial for MC prediction of CO2 adsorption in MOFs. 

Given the findings, preliminary studies of impact of MOF flexibility on the MC prediction 

of adsorption properties of CO2 and xylenes were performed. 



1 

CHAPTER 1 

INTRODUCTION 

 

Separation technologies account for a substantial portion of the energy use in the 

United States. Innovations in low-energy separation methods, such as adsorption, have the 

potential to substantially reduce industrial energy consumption. Metal-organic frameworks 

(MOFs) are a class of materials with great promise in separations. Thousands of MOFs 

have been synthesized with a range of properties. The engineering challenges in 

implementing such adsorption based separations include the identification of the 

appropriate material and the characteristics of the material that enhance adsorption 

properties. Computational methods can significantly enhance the efficiency with which we 

study properties of a large set of materials. A combination of geometric, atomic Monte 

Carlo, density functional theory, and statistical analysis can be applied in high-throughput 

screening processes to thousands of existing MOFs to quickly identify promising 

candidates for a range of applications. 

1.1 Metal-Organic Frameworks  

MOFs are crystalline nanoporous materials of inorganic secondary building units 

(SBU) connected together with organic linkers. The term MOF first appeared in literature 

by Yaghi et at. in 1995.1 The first example of a stable, porous MOF, IRMOF-1, was 

reported by Eddaudi et al. in 1999.2  Since their first appearance in literature, thousands of 

MOF structures have been synthesized.3 These synthesized materials only represent a small 

fraction of possible structures. The large number of possible combinations of SBUs and 

linkers of different length, conformation and functionalization allow for MOFs of versatile 
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range in pore topologies and chemical environments. Over 137,000 hypothetical MOFs 

based on 102 SBUs and structures of known MOFs have been identified by Snurr et al..4 

The versatility of MOFs make them attractive for applications such as  gas adsorption,5-7 

separation,8-11 purification,12 catalysis,13, 14  chemical sensors,15, 16 and  drug delivery.17-19  

More recently, MOFs have shown their potential for use in liquid phase applications such 

as adsorption,20-27 separation28-32  and catalysis33, 34 

1.2 MOF Databases  

An initial step in computer simulation of MOFs is to obtain crystallographic 

information of the structure. The experimentally refined crystal structure can be obtained 

either from the supporting information of the synthesis literature or from the Cambridge 

Structural Database (CSD).35 MOF structure data is typically determined using single 

crystal x-ray diffraction (XRD) or x-ray powder diffraction (XRPD). XRD is typically used 

to determine structure for crystal sizes larger than 5 micrometers and XRPD is used for 

smaller crystals.36 More than 90% of the MOF structures found in the CSD were resolved 

using XRD. The quality of diffraction tools and characterization conditions play a role in 

the quality of the crystal data obtained experimentally. The choice of diffractometer may 

affect the data resolution of resulting crystal structures and structures obtained at higher 

temperatures will include the impact of thermal motion.36 These reported structures often 

include artifacts such as solvent molecules and partially occupied or disordered atoms. 

Solvent molecules exist because crystal structures are often resolved before activation, with 

the presence of residual synthesis solvent molecules within the MOF pores. In some cases, 

the crystal structure data will include the solvent, but in other cases the solvent is not 
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resolved during the structural refinement. To perform reliable simulations, these 

components of the crystal structure must be corrected.  

The Computation-Ready Experimental MOF (CoRE MOF) database of Chung et 

al.37 constructed a large set of experimentally refined MOF structures from the CSD by 

removing solvent molecules and selecting a single representation of any disordered atoms 

in the reported structures. The CoRE MOF database eliminates an initial hurdle to high-

throughput molecular simulations of MOFs and has already been used to screen MOFs in 

applications such as methane storage38 and natural gas (including higher hydrocarbons) 

storage.39 While the CoRE MOF database is a helpful step in performing efficient high-

throughput screening of MOFs, additional concerns about the MOFs structures should be 

addressed. Structures resolved with residual solvent within the pores or with solvent 

molecules bound to the metal centers may adopt a different geometry once solvent is 

removed. Each MOF in the CoRE MOF database is represented by a structure without 

solvent. Generating these structures assumed that the structure geometry remains the same 

after activation.37  

1.3 DFT for Predicting MOF Structural Properties  

Density functional theory (DFT) methods express the ground-state energy of a 

system as a function of electron density. The use of electron density significantly reduces 

the number of degrees of freedom in the system. This makes it possible to apply quantum 

chemistry to larger systems like MOFs, specifically for structural properties. Although 

DFT methods are exact in principle, they are approximate in practice because the functional 

that maps between electron density and energy is only known as an approximate. Some 

examples of such approximate functionals used for MOFs include Perdew-Burke-
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Ernzerhof (PBE),40 Perdew-Wang 91 (PW91)41, the semiempirical approach of Grimme42, 

43 with PBE-D2, the nonempirical vdW-DF method of Dion et al.,44 and Minnesota 

Functionals such as M05 and M06.45 Poloni et al. have benchmarked a range of DFT 

functionals, concluding that vdW-DF and vdW-DF2 approaches can predict CO2 

adsorption enthalpies in MOFs with chemical accuracy.46 Yu et al. have assessed various 

DFT functionals for prediction of CO2 adsorption in the CPO-27 MOF by comparing to 

both experimental and MP2 results.47 Assessment of the quality of experimental data, 

specifically structure, for these materials is difficult. However, many computational 

methods, especially screening procedures, depend critically on access to accurate MOF 

structure. Although there are multiple possible methods to verify the structure of a MOF, 

including a vast range of quantum chemistry methods,48 to date there has been no 

systematic assessment of methods for MOF structure predictions.  

1.4 Monte Carlo Methods for Predicting Adsorption in MOFs 

Grand canonical Monte Carlo (GCMC) simulations have played an important role 

in the development of adsorbents for gas storage and separations.49-53 GCMC simulations 

have also been increasingly used to screen big databases of MOFs for application in 

separations and storage. Such screening studies are accessible given the assumption that 

the MOF framework can be treated as rigid during the GCMC simulation. While it has 

been assumed, with the exception of breathing7, 54-56 and gate-opening57, 58 MOFs, that the 

impact of flexibility will be negligible for adsorption simulations, it is also a known fact 

that MOFs are not rigid. Many studies of gas diffusion in MOFs have demonstrated the 

importance of small fluctuations in the MOF framework on the predicted adsorption 

property.55, 57-59 Recently, there has been development of methods to account for 
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framework flexibility during GCMC simulations, but these methods are computationally 

expensive and not yet commonly used.60-62 While there are numerous examples of 

computational studies which have successfully reproduced experimental adsorption 

results, there is currently no consensus on the importance of flexibility on predicting 

adsorption. However, it is clear that there are cases where flexibility can play an important 

role, especially when applied to adsorption of larger polar adsorbates.62, 63  
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CHAPTER 2 

COMPUTATIONAL METHODS 

 

2.1 Computational Screening Methods for Nanoporous Materials 

Computational screening of metal organic frameworks (MOFs) has become more 

prevalent with development of efficient algorithms and greater access to crystal structure 

information of MOFs and high performance computing systems. This section will discuss 

the methods used in our hierarchical approach to high-throughput screening of MOF 

adsorption properties. First, we obtain the crystal structure information of a large set of 

MOFs. Using the structure information, we assess kinetic barriers to adsorption by 

calculating geometric characteristics such as pore limiting diameters (PLDs) and largest 

cavity diameters (LCDs)1. In the third step, we analyze materials for adsorbates at the limit 

of infinite dilution. The adsorption is characterized by calculating the Henry’s constant and 

heat of adsorption using a Monte Carlo integration over the potential energy surface. After 

reducing the number of possible candidates from thousands to hundreds, we analyze 

materials for adsorbates at the application conditions. In the final step, we analyze materials 

for stability and ease of synthesis by referring to literature.  

2.1.1 CoRE MOF Database 

In all screening processes in this work, we have used the Computation-Ready 

Experimental MOF (CoRE MOF) database of Chung et al.2. The CoRE MOFs are a large 

set of experimentally refined MOF structures from the Cambridge Structural Database3 
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(CSD) that were prepared for molecular simulations by removing solvent molecules and 

selecting a single representation of any disordered atoms in the reported structures. The 

CoRE MOF database eliminates an initial hurdle to high-throughput molecular simulations 

of MOFs and has already been used to screen MOFs in applications such as methane 

storage, natural gas (including higher hydrocarbons) storage, and geometric analysis of 

molecular infiltration.  

2.1.2 Geometric Characteristic Analysis  

Pores in MOFs can have a large variety of shapes and connectivities. Because the goal 

of this work is determine the adsorption properties within a material, it is important to 

quantify the features of the pores that controls access of adsorbed molecules. One such 

geometric characteristic is the pore limiting diameter (PLD) is defined such that a sphere 

with a diameter larger than the PLD to travel through the structure without overlapping one 

or more framework atoms. Since MOF atoms are not rigid, molecules larger than the PLD 

can diffuse (although very slowly) through the MOF. Therefore, a pore is considered 

accessible by an adsorbate if its pore size is 1 Å smaller than the adsorbate size. Another 

pore size that can influence a molecule’s access to an adsorption site is the largest cavity 

diameter (LCD), defined as the largest spherical particle that can be inserted at some point 

within the material’s pores without overlapping with any framework atoms1. The LCD, 

PLD, and pore size distributions were calculated using the Zeo++ geometry analysis 

package.4 

2.1.3 Henry’s Constant and Heat of Adsorption 

For selective adsorption, the material of interest should have a high affinity for the 

adsorbate. An efficient method of quantifying affinity is the Henry’s constant, which 
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defines the slope of the adsorption isotherm in the limit of low activity. A thorough 

measurement of the Henry’s constant would require a fully flexible adsorbent structure and 

adsorbate molecule. However such calculations are too expensive to apply to a large set of 

structures. Since structure change will most likely be induced for MOFs with high affinity 

for the adsorbate, calculating the Henry’s constant in rigid MOFs is acceptable for an initial 

screening method.  

For a spatially periodic material simulated as a rigid structure, the Henry’s constant can 

be calculated using the Widom particle insertion method. The  Widom particle insertion 

method is used to calculate the residual chemical potential at the limit of infinite 

dilution. The Henry’s constant (KH) and the infinite dilution residual chemical 

potential of an adsorbate are related by  

𝐾𝐻 = 𝜌𝑘 + 𝐵 exp (
𝜇𝑟𝑒𝑠

𝑘𝐵𝑇
)     (2.1) 

where 𝜇𝑟𝑒𝑠 = 𝜇 − 𝜇𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠 and 𝜇 is the chemical potential of the adsorbate, 𝜇𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠 

is the chemical potential of an ideal gas at the same temperature and pressure, and 

𝑘𝐵 is the Boltzmann constant.5 Given these Henry’s constants, we can eliminate MOFs 

with low affinity. The heat of adsorption is related to Henry’s constant as  

𝑄𝑠 =
𝑑𝑙𝑛𝐾𝐻

𝑑𝛽
     (2.2) 

where 𝛽 =
1

𝑘𝐵𝑇
. Given the heat of adsorption, we can draw conclusions regarding the 

affinity of the adsorbate and the reversibility of the adsorption to the material.5 Classical 

grand canonical Monte Carlo (GCMC) simulations of methane adsorption were conducted 

on all optimized structures using the RASPA 2.0 code6. 
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2.1.4 GCMC at Application Conditions  

While evaluation of adsorption properties at infinite dilution are an efficient and helpful 

step in determining adsorption affinity, they represent only a first step in understanding the 

capabilities of MOFs. Many interesting and worthwhile investigations take place at higher 

pressure and with multicomponent fluid mixtures. In such cases, simulations are used at 

the application condition (whether that be higher temperature, pressure or multicomponent 

mixtures) to determine the adsorbate loading within the framework. Because adsorption is 

an equilibrium property, it can be averaged over a relevant thermodynamic ensemble, the 

grand canonical ensemble, which includes all system configurations that correspond to a 

specific value of temperature, pressure and chemical potential. The grand canonical 

ensemble can be sampled using a Monte Carlo sampling scheme. This is known as grand 

canonical Monte Carlo (GCMC). During a Monte Carlo calculation the system undergoes 

a series of random transformations chosen to sample all the degrees of freedom which are 

accepted or rejected based on a probability criterion. The Monte Carlo moves required to 

calculate adsorption typically include insertions and deletions of adsorbate molecules 

within the unit cell volume, translational moves in all three directions, and rotational 

moves.7  For certain calculations, adsorption of tert-butyl mercaptan, we have used the 

configurational biased Monte Carlo (CBMC) method in improve the move acceptance 

rate.8 For adsorption of xylenes, we have adopted a continuous fractional component 

Monte Carlo (CFCMC) method.9  

2.2 Potentials for Interatomic Interactions 

To predict adsorption properties such Henry’s constant and loading, we describe the 

physisorption inside the framework pores with Van der Waals and Coulombic interactions. 
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Prediction of adsorption properties in this work was done entirely at the classical level, 

using an empirical pairwise Lennard-Jones potential function for the var der Waals 

interactions and Coulomb’s law using point charges calculated for each atom in the system. 

The Lennard-Jones potential for an atomic pair ij is defined as  

𝑈𝐿𝐽
𝑖𝑗

= 4𝜀 [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

]     (2.3) 

where 𝑟𝑖𝑗 is the interatomic distance between the atoms, 𝜎 is a value characteristic of the 

size of an atom, and 𝜀 is a value characteristic of how strongly the atom interacts.10 For 

screening studies, these parameters are typically obtained from “off-the shelf” generic 

force fields. For MOFs, the Universal Force Field (UFF)11 and the Dreiding12 force field 

are commonly used for modeling Van der Waals interactions between guest molecules and 

adsorbates. Good agreement between experiments and calculations has been observed13, 

although progress is increasing in developing more reliable FFs for specific classes of 

materials using extensive data derived from electronic structure calculations.14-17 

Typically, the 𝜎 and 𝜀 are typically reported for interactions between atoms of the same 

type. To combine parameters of interaction between different atom types, the Lorentz-

Berthelot mixing rules are commonly applied. This involves taking the mean of the 𝜎 

parameters and the geometric mean of the 𝜀 parameters. 18 

 In the event that electrostatic interactions play a role in adsorption, such as CO2, 

the interactions between atoms ij can be accounted for using Coulomb’s law defined as  

𝑈𝑐
𝑖𝑗

=
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
      (2.4) 

where 𝑞 is the point change and 𝜀0 is the permittivity of vacuum. Calculating point charges 

will be described in more detail in Section 4.2.2. It is important to note that classical 
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simulations of MOFs do not have to rely on point charges assigned to framework atoms. If 

calculations are performed in which the MOF framework is assumed to be rigid, the 

electrostatic potential due to the MOF can be more accurately represented by directly 

tabulating the electrostatic potential energy surface as computed from an electronic 

structure calculation inside the material’s pores and interpolating among these tabulated 

values during classical simulations.19  Explicitly polarizable forcefields are a promising 

alternative to fitting to an effective potential. There are ongoing efforts to develop 

transferable polarizable forcefields, but currently such forcefields have been used mostly 

for zeolitic imidazolate framework and are not readily implemented in standard classical 

simulations codes.20, 21 Therefore, the approach of assigning point charges to framework 

atoms is likely to remain the standard approach in essentially all classical calculations. 

2.3 Density Functional Theory 

Density Functional Theory (DFT) is a quantum mechanics-based method for describing 

a system of electrons and nuclei based on the total electron density. Although DFT methods 

are exact in principle, they are approximate in practice because the functional that maps 

between electron density and energy is only known as an approximate.22 Despite this 

approximation, DFT has been found to accurately reproduce the geometry of nanoporous 

materials.23  

2.3.1 The Functionals  

When using DFT, the choice of the approximate functional is crucial to 

reproduction of material geometry. The simplest approximation to the true Kohn-Sham 

functional is the local density approximation (LDA) functional defined as the exchange 

potential for the spatially uniform electron gas with the same density as the local electron 
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density. The next set of functionals are the generalized gradient approximations (GGA) 

which take into account the local electron density and the gradient in the electron density. 

Typical GGA functionals used for MOFs include Perdew-Burke-Ernzerhof (PBE)24 and 

Perdew-Wang 91 (PW91)25. The next level of theory includes meta-GGA functional which 

contain the same physical information as the Laplacian of the electron density. The 

Minnesota Functionals such as M05 and M06 are commonly used meta-GGA functionals.26 

A higher level of theory, hyper-GGA, describes exchange using a mixture of exact 

exchange and GGA exchange functional. The most commonly used hyper-GGA functional 

is B3LYP.27-30 

A shortcoming of DFT is its inadequate description of dispersion interactions. DFT 

functionals can be further improved by adding dispersion-like contributions to the total 

energy between each pair of atoms. Two notable methods are the semiempirical approach 

of Grimme,31, 32 referred to as DFT-D1, DFTD2, or DFT-D3, and the nonempirical vdW-

DF method of Dion et al.33 Walker et al. compared the performance of several DFT 

functionals for MIL-53 and show that dispersion corrected functionals are required to 

predict phase transition behavior and sorption properties of MOF material.34 

2.3.2 Ab initio Molecular Dynamics35  

Another use for DFT is to use to perform ab initio molecular dynamics (AIMD), which 

works by numerically solving Newton’s equations of motion and updating the positions 

and velocities of the particles in the system based on the applied forces. In AIMD, the 

forces are obtained by performing a DFT calculation at every step. This does not require 

specification of a force field and is suitable for treating chemically diverse materials. 
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Because AIMD is a computationally expensive method, the time scales accessible to AIMD 

are on the order of picseconds.  

2.3.3 Elasticity Tensor  

DFT methods can also be used to compute the elastic tensor of a material.  Each ion is 

displaced in the direction of each Cartesian coordinate and the forces are calculated using 

DFT. From the forces the Hessian matrix is determined.36 Then using the strain-stress 

relationship obtained by six finite distortions of the lattice the elastic tensor is determined. 

Using the elastic tensor, mechanical properties (Young’s modulus, shear modulus, linear 

compressibility and Poisson’s ratio) were calculated using ELATE, a program by Coudert 

et al..37 

2.4 Atomic Point Charge Assignment  

There is no unique solution to the task of assigning point charges to represent the 

full three dimensional distribution of charge in a material.38 To date, multiple methods have 

been explored for assigning charges in MOFs. Semi-empirical methods such as charge 

equilibration have been used because they can be applied without performing an electronic 

structure calculation.18, 39 When possible, it is preferable to use atomic charges derived 

from the electron density calculated from an electronic structure calculation for either 

discrete clusters cleaved from MOF structures or from fully periodic representations of 

MOF crystals.40 Methods for assigning charges based on partitioning the electron density 

of MOF clusters include ChelpG41 and more recent charge model techniques.42  

Cluster techniques have been used to screen small numbers (~ 20 MOFs) of 

experimentally synthesized MOF for CO2 storage.43, 44 Fully periodic methods for 

partitioning the electron density such as DDEC38, fitting the local electrostatic field around 
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atoms such as REPEAT45, or period populations analysis such as CM542 avoid the problem 

of ambiguous bond termination inherent in cluster based methods.40, 46 Both the DDEC and 

REPEAT methods were designed in part to accurately reproduce the electrostatic potential 

energy surface for locations outside the van der Waals radius of atoms in the material, a 

property that is desirable in modeling adsorption in MOFs.  

Other methods that have been widely used to assign point charges to periodic 

materials such as Bader charges do not have this property.38, 47 Unlike the Bader method, 

DDEC incorporates spherical averaging and uses reference ion densities to enhance the 

transferability and chemical meaning of the charges. Studies have shown that DDEC 

charges minimize the Bader overestimation of atomic multipole moments. 
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CHAPTER 3 

BENCHMARKING DENSITY FUNCTIONAL THEORY 

FUNCTIONALS FOR PREDICTING METAL-ORGANIC 

FRAMEWORK STRUCTURAL PROPERTIES 

 

3.1 Introduction   

Simulations have become an indispensable tool to characterize, screen and design 

Metal Organic Frameworks (MOFs).1-5 The computational methods for describing 

molecular adsorption,1 diffusion,6, 7 and stability8 in MOFs include classical simulation 

(Monte Carlo (MC), Molecular Dynamics (MD) or combination MC-MD) as well as plane-

wave Density Functional Theory (DFT). A combination of such methods is used in 

screening procedures to find promising materials for a range of applications.9-17 The choice 

of computational methods depends on the size of the system under consideration, the type 

of property being predicted and the level of accuracy required. For example, classical 

methods perform well for predicting gas adsorption in materials without strong binding 

sites but insufficiently describe strong gas/framework interactions.18-21  

There are a large number of options available for each method, including choice of 

code (LAMMPS22, CHARMM23, VASP24, GAUSSIAN25, etc.), calculation scheme, 

parameters (force field choice for classical and functional choice for DFT simulations), 

etc.. The choice of an appropriate method is important for the reproduction of material 

properties. Therefore, the accuracy of and variance within methods should be quantified 

before application.  The performance of a method can be assessed either by comparing its 
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results to the results of a higher-order computational method or the results of a high quality 

experiment. Higher-order quantum chemical methods such as MP226 and CCSD(T)27 have 

been used to benchmark prediction of structural, thermochemical and electronic properties 

of small molecules in databases such as the S22 database28-30 and AM database.31 These 

methods can be computationally demanding for property prediction in larger periodic 

structures. For certain property calculations such as adsorbate/adsorbent binding energies 

in larger structures like MOFs, it is possible to use fragments to represent the crystal 

system. However, the size of the fragment can significantly impact the results.1 Witte et al. 

have assessed the strengths and weakness of multiple wave-function and DFT methods for 

gas-ligand interactions in MOFs.32 

Computational methods used for MOFs are typically assessed by their ability to 

predict experimental results such as lattice parameters and adsorption isotherms. Poloni et 

al. have benchmarked a range of DFT functionals, concluding that vdW-DF and vdW-DF2 

approaches can predict CO2 adsorption enthalpies in MOFs with chemical accuracy.33 Yu 

et al. have assessed various DFT functionals for prediction of CO2 adsorption in the CPO-

27 MOF by comparing to both experimental and MP2 results.34 Assessment of the quality 

of experimental data, specifically structure, for these materials is difficult. However, many 

computational methods, especially screening procedures, depend critically on access to 

accurate MOF structure data typically obtained using x-ray powder diffraction (XRPD) or 

single crystal x-ray diffraction (XRD).35 These reported structures often include 

complications such as partially occupied or disordered atoms. A common issue for reported 

structures is residual solvent left in the MOF pores. Structures reported with residual 

solvent may have a different structure once solvent is removed. Although there are multiple 
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possible methods to verify the structure of a MOF, including a vast range of quantum 

chemistry methods,36 to date there has been no systematic assessment of methods for MOF 

structure predictions.  

The aim of this study is to compile and demonstrate the use of a test set of MOFs 

with high quality experimental structure data and chemical diversity to assess methods for 

MOF property predictions. We have benchmarked the performance of DFT functionals for 

prediction of MOF structure by comparing to the accurate experimental data. We also 

assessed the variance among DFT functionals for prediction of elastic properties and partial 

charges. Mechanical properties such as Young’s modulus, shear modulus, linear 

compressibility, and Poisson ratio, provide useful insight to MOF flexibility and stability. 

For example, for MOFs that have a spontaneous ferroelectric polarization, an ease of 

flexing the materials can result in higher flexoelectricity, a technologically important 

property that is measurable as well as computable.37, 38 Such properties can be predicted 

using ab initio or classical methods.39 Although there are no experimental elastic properties 

available for the structures in the test set we have compiled, we can quantify the variance 

in predicted values among functionals for a diverse set of MOFs.  

Many computational property predictions for MOFs require a description of the 

electrostatic potential energy surface.40, 41 For classical methods, the electrostatic potential 

energy surface can be described with point charges assigned to each atom in the structure. 

These point charges are determined using methods such as the Density Derived 

Electrostatic and Chemical (DDEC) method,42, 43 which uses ab initio derived electron and 

spin density distributions as input. We studied the impact of DFT functional on the assigned 
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charges by quantifying the variance in assigned charges calculated using a range of 

functionals for a diverse test set of MOFs. 

3.2 Methods and Computational Details 

3.2.1 Criteria for test set 

To ensure high quality structural data, only crystallographic structure information 

obtained from single X-ray diffraction (XRD) data with an RF2-value of less than 10 was 

used. The R-value quantifies the agreement of calculated and observed structure factors, 

with lower R-values indicating better structure data.44 For consistency, only materials with 

XRD data obtained at room temperature (290-310 K) were considered. XRD data with 

disorder or residual solvent were excluded. We chose to pursue structures that are solvent 

and disorder free with low R-value over structures that have been observed frequently in 

literature. While MOFs like MOF-5, ZIF-8 and HKUST-1 have been repetitively studied, 

they are reported in the CSD with a range of structures, each with slightly different angles 

and bond lengths. These differences are most likely due to solvent and disorder. We also 

endeavored to develop a diverse test set as characterized by the metal of the structure 

building unit (SBU) of each MOF. Twelve different metal centers were chosen, including 

two different oxidation states of copper and iron. Below, MOFs are denoted using the 

REFCODE associated with each structure in the Cambridge Structural Database (CSD) 

and CoRE MOF database.17 

3.2.2 Benchmarking DFT functional performance for structure predictions 

We considered functionals commonly used in literature for MOF structure and 

property predictions, including the GGA functionals PBE,45, 46 and PW91,45, 47-49 the 
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dispersion corrected functionals PBE-D2,50 PBE-D3,51, 52 and vdw-DF2,53 and the meta-

GGA functional M06L.54 M06L uses semilocal functionals with parameters fit 

semiempirically to a diverse data sets which can minimize the deficiencies in treatment of 

dispersion by traditional functionals.  

We chose to include PBE-D3 because unlike PBE-D2, the dispersion coefficient 

used in PBE-D3 are geometry dependent and are adjusted on the basis of the local 

coordination number around the atoms of interest. PBE-D3 calculations were carried out 

using the plane-wave DFT computational package VASP5.3.5. All other calculations were 

carried out using VASP5.2.12. For all simulations, the Brillouin zone was sampled with a 

Monkhorst-Pack grid. To determine the parameters for the grid size, two structures were 

chosen from the test set: a small structure, HAWVOQ01 (Co) with 22 atoms and a 

moderate size structure, QEJZUB01 (Cu), with 56 atoms. Each structure was energy 

minimized with varying grid densities. Based on results shown in Figure 3.1, a grid density 

of 1000 points per atom was chosen and used for all materials.  
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Figure 3.1: HAWVOQ01 and QEJZUB01, with metal centers of Co and Cu, respectively 

were analyzed for change in predicted energy per atom with increase in kpoint density.  

The PBE-D2 functional was used. After 1000 kpoints/atom, the predicted energies are 

within the convergence criteria of  0.0001 eV. 

 

 

The impact of including spin polarization was also studied. Three structures, 

HAWVOQ01, HOGWAB, and the anti-ferromagnetic DEMLIR with magnetic centers, 

Co, Fe, and Fe respectively, were chosen from the test set and energy minimized using the 

PBE functional. These structures were analyzed for change in volume, the geometry of the 

local metal center environment (bond length, bond angle, and torsion angle) and ground 

state energy. We found that including spin polarization noticeably impacts the volume of 
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all three MOFs (see Figure 3.2).This indicates that spin polarization should be included for 

some structures with ferromagnetic metals. To determine which structures should include 

spin polarization, an initial, short DFT calculation was performed for each structure to 

determine its magnetic moment. Structures found to have high magnetic moments greater 

than 0.004 µB per atom were treated with spin polarization during minimization. 

 

Figure 3.2:  HAWVOQ01, HOGWAB, and anti-ferromagnetic DEMLIR with magnetic 

centers, Co, Fe, and Fe, respectively, were analyzed for change in volume, the geometry 

of the local metal center environment (bond length, bond angle, and torsion angle) and 

ground state energy. The results are shown as magnitude of percent change compared to 

structures predicted without spin polarization. The PBE functional was used.   
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For the two anti-ferromagnetic materials in the test set, DEMLIR (Fe) and 

MURCEH(Cu), an exhaustive set of  initial metal electron spin states were tested. The 

initial spin configuration that produced the lowest ground state energy was used for 

remaining calculations. See Table A.1 for initial spin states for each metal in the structures. 

Simulations were performed in two parts. First, we performed energy minimization 

for only ionic positions based on a conjugate gradient algorithm. A subsequent 

minimization used the final positions of the first minimization, introduced the cell shape 

and volume as degrees of freedom and switched to a quasi-Newton minimization 

algorithm. For elements with atomic number higher than 94, the missing C6 and R0 

parameters needed for the PBE-D2 scheme were taken from the D3 scheme (see Table 

A.1). To determine the performance of the functionals, strict Cartesian coordinate 

convergence criteria of a maximum change in system energy of 1 𝑥 10-3 eV per atom and 

a maximum change in force of 1 𝑥 10-4 eV Å-1 were applied to all energy minimization 

calculations. 

The lattice parameters, unit cell volume, bond length, bond angle, and torsion 

angles associated with the metal center, and pore limiting and largest cavity diameter (PLD 

and LCD) were measured using the crystallographic data of the experimental and DFT 

predicted structures.  The PLD is defined as the diameter of the smallest sphere along a 

free path15.  The LCD is defined as the largest sphere along a path through the material.15 

These pore diameters were measured using the zeo++ software.55-57 For each MOF, the 

parameters of each predicted structure were compared to those of the experimental 

structure. Most results are reported in terms of Mean Absolute Deviation (MAD) from the 

experimental structure parameters, defined as 
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𝑀𝐴𝐷𝑓 = ∑
𝑎𝑏𝑠(𝑥𝑒𝑥𝑝,𝑖−𝑥𝑖)

𝑁

𝑁
𝑖     (3.1) 

 

 

where 𝑓 is the functional of interest, 𝑁 is the total number of bond length, angles, or 

torsions considered for a MOF or a collection of MOFs, 𝑥𝑒𝑥𝑝,𝑖  is the measured value for 

the experimental structure and 𝑥𝑖  is the measured value for the DFT predicted structure. 

To determine if the calculated MAD of the five functionals are statistically distinguishable, 

analysis of variance (ANOVA) tests were applied.  

3.2.3 Variance in Prediction of Mechanical Properties 

The elastic tensor for each structure was calculated using the strain-stress 

relationship obtained by six finite distortions of the lattice.58 All calculations were carried 

out in VASP. Mechanical properties (Young’s modulus, shear modulus, linear 

compressibility and Poisson’s ratio) were calculated using ELATE, a program by Coudert 

et al.39 The process was repeated for each functional. Convergence tests were performed 

on 3 of structures with grid densities ranging from 500 to 4,000 kpoints per atom. We found 

a less than 0.3% difference between moduli calculated for 4,000 and 500 grid density. For 

consistency with geometry optimization calculations, we chose 1000 points per atom grid 

density.       

3.2.4 Assigning DDEC Point Charges 

Charges were assigned using the January 2014 version of the Density Derived 

Electrostatic and Chemical (DDEC) program provided by Manz et al.42 DDEC charges 

have been tested for dense and porous solids, surfaces of solids, small molecules, and large 

molecules with buried atoms.59 The electron and spin density distributions used as input 
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for the DDEC code were generated with VASP. Single ionic step self-consistent plane 

wave DFT calculations with each functional were performed using the same criteria 

described for energy minimization of the test set. Given that Grimme dispersion corrections 

are added after the DFT calculation, PBE-D2 and PBE-D3 calculations will result in the 

same charge density as PBE after a single step. Therefore, D2 and D3 were not included in 

these calculations. While the DDEC method provides an individual charge for each atom 

in the system, it is computationally more convenient to distinguish between atom types 

within a structure. Therefore, point charges were assigned for each atom type in a structure. 

Atom types were assigned based on the atom’s neighboring environment and charges for 

each atom type are averaged to obtain a net neutral system. 

3.3 Test Set Results 

An initial set of candidate materials was chosen from the CoRE MOF database.17 

Of the thousands of already synthesized MOFs, approximately 2000 structures were found 

to be solvent and disorder free. Three quarters of these structures were porous but only 300 

qualified as high quality based on R-value. The 300 structures consisted of 75 different 

metal types, including MOFs with multiple metals. Of these, twelve structures, with a 

different metal center including two oxidation states of copper and iron (commonly found 

in MOFs), were chosen for the test set.  To increase topological porosity, we included an 

additional cadmium MOF with a large LCD of 12.59 Å. As shown in Table 3.1, structures 

also vary in porosity with a LCD range of 1.1 - 12.6 Å. 
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Table 3.1: Test set of chemically diverse MOFs with high quality experimental 

crystallographic structure information. 

Metal  Chemical 
Formula  

REFCODE LCD (Å) 

Ag Ag4C12Cl4O8 RORQOE 1.57 

Cd Cd6H24C36N36O24 GUPCUQ01 12.59 

Cd Cd2H10C16N4O10 PIJGEV 1.37 

Co Co2C8N12 HAWVOQ01 1.85 

Cu Cu3H4C10O10 MURCEH  3.24 

Cu Cu8H8C8N12Cl8 QEJZUB01 1.10 

Dy Dy2H12C12N2O16 YORSII 1.92 

FeII Fe4H4C4O12 HOGWAB 1.83 

FeIII Fe4P4H16C8O24 DEMLIR 1.37 

Li, Zn Li32Zn32H24C72O96 WAJJAU 7.48 

Sm Sm2H12C10O14 KOMJEC 3.28 
Zn Zn1H4C4O4 OFUWIV01 1.81 

 

 

 

3.4 Benchmarking Structural Properties  

To compare the performance for overall structure prediction, the predicted lattice 

parameters and volume of each structure were compared to the experimental values. Figure 

3.3 shows the MAD and the corresponding 95% confidence interval, indicated by error 

bars, of all lattice parameters and volumes in the test set. Figure 3.3 (b) shows an up to 8 

% MAD in volume for the structures in the test set. Simulations of properties such as gas 

adsorption typically require that lattice parameters be accurate within a few percent. The 

larger change in volume seen in Figure 3.3 (b) are primarily due to the small size of the 

unit cells in the test set. In such small structures, minor changes in the lattice parameters 

result in relatively large percent change in cell volume. While there is a difference in the 
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MAD of lattice parameters among the functionals, the MAD of less than 0.3 Å is 

insignificant relative to the accuracy necessary for most applications. 

The dashed lines in Figure 3.3 show that there is essentially no overlap of the 

confidence intervals of PBE-D2 and PBE-D3 with PBE, PW91, M06L or vdw-DF2. That 

is, the MAD of PBE-D2 and D3 predicted lattice parameters and volumes show a 

statistically significant difference from PBE, PW91, and M06L functional predicted 

values. 
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Figure 3.3: The MAD and the corresponding 95% confidence interval (shown as error 

bars) of all predicted (a) lattice parameters and (b) unit cell volume relative to the 

experimental structure. The dashed lines encompassing the 95% confidence interval of 

the vdw-DF2 MAD overlap with values of all other functionals. 

 

The unit cell volumes for the individual materials in the test set are shown in Figure 

3.4. The dispersion corrected functionals, PBE-D2, PBE-D3 and vdw-DF2, are in general 

closest to the experimental values and tend to under predict unit cell volumes. It is 

important to note that no single functional is the most accurate for all materials. Examples 

exist, for instance, where the dispersion corrected functionals do not give the most accurate 

results. 

(a) 

(b) 
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Figure 3.4: The percent deviation of unit cell volume from the experimental structure for 

each material in the test set. Structures ordered with increasing unit cell volume. 

 

 

The RORQOE (Ag) DFT predicted structure with PBE, shown in Figure 3.5, has 

the largest deviation in unit cell parameters (0.5 Å, 0.3 Å, 1.0 Å), shape (orthorhombic to 

triclinic) and volume (12%). This is due largely to the 10° over prediction of an O-Ag-Cl 

angle by the PBE, PW91, and M06L functionals. This particular bond angle is predicted 

more accurately by the PBE-D2 and vdw-DF2 functionals, with a deviation of less than 

0.5°.  Figure 3.6 examines this example in terms of the charge density predictions of 

functionals. We analyzed the difference between change density isosurfaces predicted by 

vdw-DF2 and PBE and found slightly higher oxygen and chlorine density is predicted for 

oxygen with vdw-DF2 than PBE. 
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Figure 3.5: The RORQOE (Ag) structure, with yellow representing the experimental 

structure and green represents the PBE predicted structure, shows a change in shape and 

size of the unit cell. 

 

Deviations from experimentally predicted structures were investigated in more 

detail through analysis of bonded interactions. Only bond   lengths    associated   with   the 

metal center and bond and torsion angles with a metal at the center were considered. As 

shown in 3.7, when averaged among all structures, torsion angles predicted with vdw-DF2 

deviate the least from the experimental structures. The MAD of bond angles show that 

PBE-D3 predicted bond angles deviate the least on average from experimentally observed 

bond angles. 
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Figure 3.6: Charge density difference isosurfaces between vdw-DF2 and PBE for the 

experimental structure of RORQOE MOF.  (Ag: silver, C: brown, O: red, Cl: green). 

Isosurfaces plotted at 0.002 electrons/ bohr3 with red indicating a positive and blue a 

negative difference. Slightly higher oxygen and chlorine density is predicted for oxygen 

with vdw-DF2 than PBE. When the structure of RORQOE energy is minimized, vdw-

DF2 predicts a more accurate, 10° smaller, Cl-Ag-O bond angle then PBE. 

  

 

The dashed lines in Figure 3.7 (b) show that the confidence interval of vdw-DF2 

MAD for bond angles overlaps with the MAD interval of all other functionals. However, 

the average deviations in bonded interactions are small relative to the accuracy necessary 

for most applications. When the performance of the different functionals was compared for 

each structure, we found that the largest deviation in bond length, 0.25 Å, is seen in a Cu-

N bond of QEJZUB01 predicted by PBE. 
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Figure 3.7: The MAD and the 95% confidence interval of bonded parameters relative to 

the experimental structure are shown. (a) MAD of bond lengths (b) MAD of bond angles 

(c) MAD of torsion angles. 

 

(a) 

(b) 

(c) 
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The absolute deviation for the predicted bond angles within a MOF were averaged 

for each MOF in the test set. No MOFs were found with significant differences among the 

MAD of PBE, PW91 and M06L predicted bond angles. In the twelve structures, only nine 

structures were found to have a statistically significant difference in bond angle prediction 

among functionals. The PBE-D2 and vdw-DF2 predicted a lower deviation for four 

structures, while PBE, PW91 and M06L predict a lower deviation for three structures. 

We observed large deviations of specific angles in the RORQOE (Ag) and 

HOGWAB (FeII) structures. As discussed earlier, PBE, PW91, and M06L predicted 

RORQOE (Ag) O-Ag-Cl angles deviate by 12° while vdw-DF2 and PBE-D2 predict the 

angles more accurately, see Table A.8 for the type and magnitude of angles considered. 

For HOGWAB (FeII), some vdw-DF2 and PBE-D2 predicted O-Fe-O angles deviate by 

13° while PBE, PW91 and M06L functionals predict the angles more accurately. This 

supports the concept that there is no “one size fits all” option for functionals in terms of 

accurately predicting MOF structures. This observation suggests that selecting a functional 

to optimize MOF structures based largely on computational accessibility or efficiency is a 

reasonable approach when applied to a diverse set of MOFs.  

Torsion angles are typically softer degrees of freedom than bond angles and can 

have larger deviations without significant impact on the structure. In our study we observed 

deviations in the range of 0.5-20° for torsion angles. When comparing the MAD of torsion 

angles for structures individually, vdw-DF2 or PBE-D2 results in the lowest MAD for only 

five structures. One such example is HAWVOQ01 (Co), with a more than 7° larger MAD 

for PW91 than PBE-D2 (see Table A.5). These differences in torsion angle are apparent in 

the shift in pore morphology as shown in Figure 3.8. PBE, PW91 and M06L outperformed 
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PBE-D2 and vdw-DF2 with statistical significance for only two structures, DEMLIR and 

HOGWAB.  We found that the HOGWAB iron MOF (with spin polarization included in 

the DFT predictions) showed a larger deviation between DFT predicted and experimentally 

observed structures. 

 

 

Figure 3.8: Impact of large deviation in torsion angle on pore morphology on HOGWAB 

(Fe II) and HAWVOQ01 (Co). 

 

 

Despite deviations in torsion angles, the deviations from the calculated PLD and 

LCD of the experimental crystallographic structure data are less than 0.5 Å. One-way 

ANOVA analysis of the deviation of PLDs and LCDs from the experimental values show 

there is no statistical difference between the MAD of pore descriptors calculated by any of 

the functionals. That is, we have no evidence that any functional performs better than 

another (see Figure 3.9). When considering the mean deviation of PLDs and LCDS, we 

find that PBE-D2 and vdw-DF2 tend under predict PLDs (see Table A.6 and Table A.7). 
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Figure 3.9: MAD of PLDs and LCDs for all MOFs in test set. 

 

 

 

3.5 Benchmarking Elastic Properties5 

The minimum and maximum Young’s modulus, shear modulus, linear 

compressibility and Poisson ratio were calculated for all twelve structures.  Figure 3.10 (a) 

shows  the  minimum  Young’s modulus for 10 of 12 structures in the test set, calculated 

with PBE, PW91, M06L, vdw-DF2, PBE-D2, and PBE-D3 functionals. The results show 

that the test set includes a wide range of Young’s modulus in the MOF’s direction of lowest 

rigidity. According to the nomenclature of Ortiz et al., the large values for minimum 

Young’s modulus indicate that the test set does not contain flexible materials.39 Figure 3.10 

(b) shows similar trends for the minimum shear modulus of the test set MOFs. 
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Figure 3.10: The predicted magnitude of the (a) Young’s modulus and (b) shear modulus 

in the direction of least rigidity for each structure computed using six functionals. Results 

with PBE are shown with a dotted line to guide the eye.   
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When comparing results among functionals, we find that on average vdw-DF2 

predicts a more rigid structure. In rigid structures, the minimum Young’s modulus has an 

average range of 9 GPa among functionals and shear an average range of 3 GPa. For some 

structures, results can differ up to 20 GPa. While this provides a clear distinction between 

functionals, a 20 GPa deviation is not large relative to the typical accuracy of experimental 

results available for elastic properties of rigid MOFs such as those in the test set. Tan et al. 

found that calculated values for moduli are noticeably higher than experimental 

observations potentially due to physical degradation of the crystals.60 

As shown in Figure 3.11, the minimum Young’s modulus calculated by M06L for 

QEJZUB01(Cu) noticeably deviates from PBE and PW91. Similarly, M06L calculated 

maximum linear compressibility and Poisson ratio also deviate significantly, up to 20%, 

from PBE calculated values. This deviation is higher than those observed for other 

structures in the test set. The direction of minimum Young’s modulus for QEJZUB01 is 

along the channel axis of the yz plane, see Figure 3.11. Two of the four sides of this channel 

are dominated by Cl-Cu-Cl bonds. Deformations in these bonds are also responsible for 

the maximum linear compressibility. Similarly, the Cl-Cu-N bonds adjacent to the channels 

of the MOF are the primary bonds under strain in the direction of the maximum Poisson 

ratio of QEJZUB01. 
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Figure 3.11: The structure of QEJZUB01(Cu) with black arrows showing direction of 

stress and green arrows showing direction of strain in (a) maximum Poisson ratio, (b) 

maximum linear compressibility, and (c) minimum Young’s modulus. 

 

 

We find similar deviations of M06 from PBE calculated elastic properties for 

RORQOE (Ag), another Cl containing MOF. RORQOE has oval shaped channels that run 

diagonally across its unit cell. The Young’s modulus, maximum linear compressibility and 

Poisson ratio of RORQOE are all properties related to distortions associated with torsion 

angles of Cl-Ag-O-Ag. For these properties, M06 predict an approximately 20% more rigid 

MOF than PBE calculated values. 

Because of the absence of experimental data, we cannot conclude which functional 

accurately predicts the elastic properties of these MOFs. However, results for our test set 

show that vdw-DF2 on average predicts higher rigidity for MOFs compared to other 

functionals. We also find that while M06 produces comparable results to PBE and PW91 

for most MOFs, it predicts more rigid properties associated with Cl-Metal bonds. However, 

the magnitude of the differences among the functionals is small relative to the accuracy of 

experimental results. 
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3.6  Benchmarking Atomic Point Charges 

Partial charges on individual atoms are not experimental observables, but they are 

crucial ingredients in many atomistic simulation methods. We examined the influence of 

functional choice on the assignment of partial charges in two ways. First, we considered 

differences in partial charges between calculations with different functionals. Second, for 

each functional, we examined the difference in predicted partial charges for the 

experimentally observed MOF geometry and the unit cell optimized with DFT. 

To compare predicted atomic charges using different functionals, we calculated the 

DDEC partial charges for only the experimental structure of the MOFs in the test set based 

on the charge density calculated by PBE, PW91, M06L and vdw-DF2. For each MOF, 

atoms with similar charge and same coordination were categorized into atom types, 

resulting in 100 atom types. To quantify the variance in assigned charges among 

functionals, we calculated the mean absolute deviation relative to other functionals. The 

MAD for charges is defined as 

 

𝑀𝐴𝐷𝑓 = ∑ ∑
(𝑥𝑖

𝑓
−𝑥𝑖

𝑗
)

3𝑁
 𝑗≠𝑓𝑖     (3.2) 

 

 

where 𝑓 is the functional of interest, 𝑖 is atom type. 𝑗 is all functionals other than 𝑓, 𝑥 is 

the DDEC charge, and 𝑁 is the number of atom types. 

One-way ANOVA analysis of the arc cosine normalized partial charges show no 

difference between the MAD of partial charges calculated by PBE, PW91, and M06L for 

the MOFs in our test set (see Table 3.2). Unlike the MAD calculated for structural 

parameters, the magnitude of the MAD calculated for changes here only captures if there 

is a statistically difference between the predicted charged by different functionals and does 
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not represent the average deviation from a value calculated for an experimental structure. 

Overall, the variation in partial charges between calculations with different functionals is 

small. This is consistent with the earlier results of Manz et al. for DFT calculations with a 

range of materials.59 

 

Table 3.2: The MAD and the 95% confidence interval of partial charges. 

 MAD 
Confidence 

interval (+/-) 

PBE 0.0359 0.0042 

PW91 0.0380 0.0042 

M06L 0.0357 0.0042 

vdw-DF2 0.0961 0.0042 

 

 

Partial charges calculated by vdw-DF2 deviate the most from the calculations of 

other functionals. The largest deviation was 0.12 electrons for Phosphorus in DEMLIR 

(FeII) where vdw-DF2 predicted larger charge transfer. Previous studies suggest that the 

self-consistent vdw-DF2 method is most accurate for layered materials with magnetic 

metal ions where the charge-transfer plays a crucial role in predicting the spin-polarized 

electronic configuration of the ion and modifies its  polarizability significantly compared 

to the metal-atom and hence equivalently the empirical C6 parameter in the Grimme 

parametrization.61 

To test the impact of charge transfer as described by vdw-DF2 on prediction of 

MOF structure, we compared the MAD of predicted partial charges to the difference in 

MAD of vdw-DF2 and PBE-D2 for structural parameters (see Table A.16). However, no 
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correlation was found between larger charge transfer being predicted by vdw-DF2 and 

better prediction of structural parameters when compared to PBE-D2. 

As discussed above, optimization of MOF structures with DFT gives structures that 

deviate slightly from experimentally observed crystal structures. To assess the impact of 

these deviations on partial charges, we calculated the partial charges of the DFT energy 

minimized structures and compared them to charges calculated for the experimental 

structure. 

For simplicity, we used PBE to assign the partial charges in all cases, noting from 

the discussion above that the variation in partial charges among functionals (for the same 

structure) is small. Figure 3.12 shows the MAD of PBE partial charges for each DFT 

predicted structure relative to the experimental. On average, partial charges change by less 

than 0.06 electrons. The oxygen atom connected to a Sm atom in the vdw-DF2 predicted 

KOMJEC(Sm) has the largest change in charge of 0.3 electrons. These results suggest that 

assigning partial charges directly from experimentally observed MOF structures is likely 

to be sufficient to provide accurate charges for atomistic simulations; the additional effort 

of optimizing a structure using DFT prior to assigning charges leads to little change in the 

assigned charges. 

 



The content of this chapter has been published: D. Nazarian, P. Ganesh and D. S. Sholl, J Mater Chem A, 2015, 3, 22432-22440 

51 

 

Figure 3.12: The MAD of partial charges calculated for DFT minimized structures 

(minimized using PBE, PW91, M06L, PBE-D2, PBE-D3, and vdw-DF2) from the partial 

charges calculated the experimental structures.  All partial charges calculated with PBE 

functional. 

 

3.7 Conclusions 

We have compiled a test set of chemically diverse MOFs with high accuracy 

experimentally derived crystallographic structure data. The test set contains MOFs with a 

range of topologies and elastic properties. We have demonstrated the significance of a test 

set with high accuracy structural data by benchmarking the performance of DFT 

functionals for predicting lattice parameters, unit cell volume, bonded parameters and pore 

descriptors. We found that for MOFs with magnetic metals, with calculated magnetic 

moments, spin polarization can significantly impact structure prediction. We have found 

that on average PBE-D2, PBE-D3, and vdw-DF2 calculations predict a lower deviation in 
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structure than the other functionals we tested. However, we found that M06L, PBE, and 

PW91 each predict lower deviation for some MOFs in the test set. Despite deviations in 

unit cell and bonded parameters, we found that all functionals predicted the PLD and LCD 

for every MOF in the test set within 0.5 Å of the experimental value.       

We have also demonstrated the significance of a chemically diverse test set by 

assessing the variance in DFT functional performance for properties where accurate 

experimental values are unavailable. We first showed that DFT predicted elastic properties 

such as the minimum shear modulus and Young’s modulus can differ by an average of 3 

and 9 GPa for rigid MOFs such as those in the test set. This deviation is small relative to 

the precision of experimental results available for elastic properties of MOFs. By 

calculating DDEC partial charges, we found that there is no correlation between the DFT 

functional’s ability to reproduce structural parameters and electrostatic potential surface of 

a MOF. When assessing the variance in assigned charges among functionals, we showed 

that there is no difference between the MAD of partial charges calculated by PBE, PW91, 

and M06L for the MOFs in our test.  

Our results indicate that there is no “one size fits all” functional suitable for 

accurately predicting the structure and other properties of MOFs. That is, no single 

functional shows accuracy that demonstrates strong statistical significance over other 

functionals for the full range of MOFs in our test set. Although the choice of specific 

functional may be justified in some limited instances, it appears that the choice of 

functional for efforts aimed at screening large numbers of MOFs can justifiably be made 

based on computational convenience and availability.  
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CHAPTER 4 

A COMPREHENSIVE SET OF HIGH QUALITY POINT CHARGES 

FOR SIMULATIONS OF METAL-ORGANIC FRAMEWORKS 

 

4.1 Introduction   

Computer simulations are an indispensable tool for studying characteristics that 

emerge from interactions between adsorbates and MOF frameworks. Electronic structure 

calculations such as DFT and other quantum chemistry methods have been shown to 

reliably match experimental measurements of properties of MOFs such as adsorbate 

interaction energies.1 It is computationally infeasible, however, to use electronic structure 

methods to simulate phenomenon such as adsorbate diffusion occurring in timescales of 

nanoseconds or longer. Similarly, grand canonical Monte Carlo (GCMC) simulations of 

adsorption within nanopores require thousands or millions of computational iterations to 

converge and thus cannot be directly simulated with electronic structure methods. For these 

reasons, simulations of MOFs often rely on classical force fields (FFs), especially in efforts 

to examine large numbers of materials.2-6 In many cases, calculations of this sort are based 

on generic (“off the shelf”) FFs with increasing progress in developing more reliable FFs 

for specific classes of materials using extensive data derived from electronic structure 

calculations.5, 7-9 This parameterization approach has been successful in reproducing 

experimental adsorbate diffusion coefficients and adsorption isotherms in MOFs.9 

In essentially all FF calculations with MOFs, Coulombic interactions between 

atoms in a MOF and also between those atoms and adsorbate molecules are modeled by 
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assigning point charges to each atom of the framework. The assignment of point charges 

to MOF atoms is therefore a necessary step in enabling computational screening of large 

libraries of MOFs. Because there is no unique solution to the task of assigning point 

charges to represent the full three dimensional distribution of charge in a material,10 

multiple methods have been explored for assigning charges in MOFs. Semi-empirical 

methods such as charge equilibration have been used because they can be applied without 

performing an electronic structure calculation.11, 12 When possible, it is preferable to use 

atomic charges derived from the electron density calculated from an electronic structure 

calculation for either discrete clusters cleaved from MOF structures or from fully periodic 

representations of MOF crystals.13 Methods for assigning charges based on partitioning the 

electron density of MOF clusters include ChelpG14 and more recent charge model 

techniques.15 Cluster techniques have been used to screen small numbers (~ 20 MOFs) of 

experimentally synthesized MOF for CO2 storage.16, 17 Fully periodic methods for 

partitioning the electron density such as DDEC,10 fitting the local electrostatic field around 

atoms such as REPEAT,18 or periodic populations analysis such as CM515 avoid the 

problem of ambiguous bond termination inherent in cluster based methods.13, 19 Both the 

DDEC and REPEAT methods were designed in part to accurately reproduce the 

electrostatic potential energy surface for locations outside the van der Waals radius of 

atoms in the material, a property that is desirable in modeling adsorption in MOFs. Other 

methods that have been widely used to assign point charges to periodic materials such as 

Bader charges, do not have this property.10, 20 Unlike the Bader method, DDEC 

incorporates spherical averaging and uses reference ion densities to enhance the 

transferability and chemical meaning of the charges. In one example of using charge 
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assignments from electronic structure calculations, the DDEC method was used to assign 

charges to 359 experimentally synthesized MOFs to screen for application in CO2/N2 

separation.21 This represented a significant computational investment because DDEC 

requires a DFT calculation for each periodic MOF structure. The study showed that DDEC 

charges minimize the Bader overestimation of atomic multipole moments.22  

It is important to note that classical simulations of MOFs do not have to rely on 

point charges assigned to framework atoms. If calculations are performed in which the 

MOF framework is assumed to be rigid, the electrostatic potential due to the MOF can be 

more accurately represented by directly tabulating the electrostatic potential energy surface 

as computed from an electronic structure calculation inside the material’s pores and 

interpolating among these tabulated values during classical simulations.23  Although this 

approach is conceptually appealing, it cannot be used easily in any simulation where 

flexibility in the MOF framework is included. Polarizable forcefields are a promising 

alternative to fitting to an effective potential. There are ongoing efforts to develop 

transferable polarizable forcefields, but currently such forcefields have been used mostly 

for zeolitic imidazolate frameworks and are not readily implemented in standard classical 

simulations codes.24 Therefore, the approach of assigning point charges to framework 

atoms is very likely to remain the standard approach in essentially all classical calculations.   

The central result of this chapter is to report atomic point charge assignments for 

2,932 experimentally synthesized MOF structures using plane wave DFT calculations and 

the DDEC charge partitioning method. The great majority of these experimentally reported 

MOF structures were gathered from the Computation-Ready Experimental MOF (CoRE 

MOF) database of Chung et al.25 The CoRE MOFs are a large set of experimentally refined 
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MOF structures from the Cambridge Structural Database26 (CSD) that were prepared for 

molecular simulations by removing solvent molecules and selecting a single representation 

of any disordered atoms in the reported structures. The atomic point charges calculated in 

this work are publicly available as a supplement to the CoRE MOF database. To date, the 

CoRE MOF database has been used to screen MOFs in applications that do not require 

atomic point charges such as methane storage,27 natural gas (including higher 

hydrocarbons) storage,28 and geometric analysis of molecular infiltration.29 Our dataset of 

DDEC derived atomic point charges will enable use of the CoRE MOF structures for a far 

broader range of applications where electrostatic interactions must be included such as 

simulations of the adsorption and diffusion of polar or quadrupolar adsorbates. 

Excluding duplicate copies of MOF structures such as CuBTC that are represented 

more than once in the CoRE MOF database, we have performed periodic DFT calculations 

and assigned atomic point charges to framework atoms for over 2,000 unique 

experimentally synthesized MOFs. We have analyzed this dataset in two ways. First, we 

investigated whether atomic point charges on metal atoms can be inferred from their 

bonding connectivity. This has been proposed as a general approach for estimating 

framework charges in metal-organic frameworks.30 Second, we compared our dataset to 

results from the extended charge equilibration method (EQeq)12 to assess the accuracy of 

semi-empirical charge equilibration methods for MOFs. Semi-empirical methods such as 

EQeq and the periodic charge equilibration method (PQeq)11, 31 are typically employed in 

literature because they are much less computationally expensive than charge assignments 

based on electronic structure calculations.32 
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4.2 Methods and Computational Details    

4.2.1 Selection of MOF structures 

Our starting dataset of MOF structures included each of the 4,519 computation-

ready MOF structures distributed in the CoRE MOF database without mobile charge 

compensating ionic species.25 To these CoRE MOF structures, we added 90 commonly 

studied MOFs distributed with the RASPA 1.0 molecular simulation code.32 The CoRE 

MOF structures include duplicates for many of the most common MOFs deposited in the 

Cambridge Structural Database16 such as CuBTC and MIL-53(Al).  

For the purpose of analyzing patterns such as the distribution of charges on 

equivalent metal atoms, we identified duplicate representations of MOFs in our starting 

dataset. To find these duplicate structures, each structure was compared in a pairwise 

manner with each other structure using the Python Materials Genomics (Pymatgen) 

package.33 First, the stoichiometry and number of atomic species in each P1 cell were 

compared. Structures with the same number and type of atoms were reduced to Niggli 

cells34 (unique primitive unit cells with the shortest possible lattice vectors) and the root-

mean-square deviation (RMSD) in atomic positions was calculated. Structures with a 

RMSD of less than 0.1 Å were considered equivalent. For MOF structures with multiple 

representations in our starting dataset, the structure with the lowest experimental R-value 

was chosen to represent the structure. The R-value quantifies the agreement of calculated 

and observed structure factors, with lower R-values indicating better structure data. The 

material with the largest number of structures in the CoRE MOF database is CuBTC (also 

known as HKUST-1), which is represented by 60 distinct CSD entries. This analysis shows 
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that among the 4,519 structures we examined from the CoRE MOF database, there are 

3,852 distinct materials.  

4.2.2 Atomic point charge assignment 

A single self-consistent ionic step was attempted in the VASP 5.3.5 plane-wave 

DFT package for each MOF in our starting dataset to generate the electron and spin density 

distributions used as inputs for point charge assignment.35 We have previously shown that 

there is negligible difference in the DDEC derived atomic point charges from electronic 

densities generated with the PBE, PW91, M06L or vdw-DF2 functionals for a diverse test 

set of MOF structures.36 This is consistent with earlier results by Manz and Sholl for a 

broad range of materials.10 The PBE functional was used throughout this work to minimize 

computational expense. Calculations on the same test set of MOFs mentioned above also 

indicated negligible differences in point charges between calculations using the 

experimental structures reported in the CoRE MOF database and structures that were fully 

geometrically optimized with DFT.36 As a result, geometric relaxation of the MOFs was 

not employed for any of the calculations described below. For most structures, the Brillouin 

zone was sampled with a 1000 points per atom density Monkhorst‐Pack grid. For about 

200 structures, calculations with a Gamma grid was necessary for proper convergence (see 

table Table B.1).  

Spin-polarization was included for all calculation, adopting a ferromagnetic high 

spin states for magnetic elements.37, 38 While there are many structures in the database that 

exhibit antiferromagnetic spin ordering, it is difficult to efficiently identify these structures 

a priori.  We have found that for Cu-BTC, which includes a copper dimer with a ground 

state antiferromagnetic spin state,39, 40 a ferromagnetic calculation results in a Cu charge 
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that is different by less than 0.02 electrons than the antiferromagnetic structure (Table 5.1). 

This observation suggests that using ferromagnetic states is sufficient for assigning point 

charges.   

 

Table 4.1: DDEC atomic point charges calculated for Cu-BTC using ferromagnetic and 

antiferromagnetic description of electron spin states. 

Assuming Ferromagnetic Spin 

Ordering  

Assuming Antiferromagnetic 

Spin Ordering  

DDEC Charges    DDEC Charges  

Element Charge [electrons]   Element Charge [electrons] 

C1 0.694   C1 0.691 

C2 -0.170   C2 -0.164 

C3 0.034   C3 0.031 

Cu1 0.938   Cu1 0.920 

H1 0.115   H1 0.117 

O1 -0.571   O1 -0.567 

 

The electron density was successfully computed for about 75% of the structures in 

the starting dataset. Of the calculations that did not converge in VASP, about half exceeded 

the maximum virtual memory imposed by our computing resources, and most of these 

calculations were for the largest CoRE MOF structures, with primitive cells of several 

hundred atoms or more. The remaining calculations failed due to other VASP errors 

including issues with k-point grid density requirements and unresolved segmentation 
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faults. We intend to address the structures for which our calculations to date have been 

unsuccessful in ongoing work and will update information in the publically available CoRE 

MOF database as this happens.  

The converged electron densities from VASP were used as inputs to the January 

2014 version of the Density Derived Electrostatic and Chemical (DDEC) charge 

assignment code distributed by Manz et al.10, 41, 42 Atomic point charges were successfully 

calculated for 2,932 structures. All charges below are reported in units of electron charge. 

A small number of these structures (14 MOFs, including 9 with silver atoms) were assigned 

unphysical negative charges to cationic metal centers. These MOFs were found to be 

missing bound solvent atoms in close proximity to metal centers that were removed in the 

construction of the CoRE MOF database. In these cases, restoring the bound solvent 

molecules to their crystallographically refined positions produces realistic positive charges 

for the cationic metal atoms. We have reported the charges for cationic metal atoms in 

these structures with and without the bound solvent (Table 4.2.) To remain consistent with 

the structures in the current CoRE MOF Database, we excluded these 14 structures from 

further analysis.  
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Table 4.2: charges for cationic metal atoms in these structures with and without the 

bound solvent. 

CORE Ref Code  Metal DDEC Charge ( e )  EQEQ Charge  ( e ) 

AVEMOE_clean Ag -0.368926 0.37611 

AVEMOE_clean Ag -0.103077 0.393983 

FIMNIA_clean Ag -0.268466 0.279505 

HIFTUM_clean Fe -0.506587 0.643316 

INIQUR_clean Fe -0.473054 0.658835 

INIRAY_clean Co -0.453642 0.774718 

IPIFAP_clean Ag -0.189343 0.429748 

JAVWUY_clean Ag -0.254777 0.463942 

MIHBAG_clean Mn -0.487654 0.910316 

NEGGOX_clean Mn -0.170156 0.315024 

OFUSAL_clean Ag -0.289736 0.482407 

OFUSEP_clean Ag -0.285048 0.392976 

OFUSEP_clean Ag -0.172895 0.378415 

OFUSEP_clean Ag -0.107346 0.451723 

OMAWOP_clean Ag -0.205843 0.347537 

VEDVUW_clean Ag -0.280406 0.3464 

VIGNOQ_clean Ag -0.236074 0.0741267 
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4.3 Creating a Publically Available Database of Point Charges   

Our dataset of structures with DDEC derived atomic point charges constitute a 

chemically diverse collection of organometallic MOFs featuring 10 different alkali and 

alkaline earth elements, 32 transition metals, and 15 rare earth metals. The modified cif 

files with associated DDEC point charges for the nearly 3,000 structures in our dataset can 

be found at http://dx.doi.org/10.11578/1118280. We anticipate that the publically available 

dataset of DDEC derived atomic point charges will extend the use of the CoRE MOF 

structures to answer a range of interesting questions concerning adsorption and diffusion 

of polar adsorbates in MOFs. 

4.4 Group Coordination Point Charge Assignment   

In the over 2,000 in the database of MOFs with multiple charges, some structural 

motifs are represented many times. For example, there are 109 structures with a zinc metal 

atom coordinated to 4 oxygen atoms. This affords the opportunity to investigate whether 

the point charge on a given metal can be accurately estimated from the metal’s coordination 

environment. Good agreement between charges on metals of a given coordination 

environment could facilitate the development of a transferable set of charges applicable to 

any new MOF with known bonding connectivity. This approach was proposed by Xu et 

al., who called it the “connectivity-based atom contribution” (CBAC) method.30 Xu and 

coworkers performed ab-initio charge assignment on clusters derived from a training set of 

30 different MOF structures. From this sample, they suggested generalized charges for the 

6 different metal types shown in Table 15.3and several non-metallic groups based on 

nearest neighbor connectivity. For example, CBAC assigns Zn atoms coordinated to 4 O 
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atoms a charge of 1.583 in any structure. Xu and coworkers found that the CBAC charges 

inferred from the training set of 30 MOFs agreed well with a test set of 13 other MOFs.30 

To test the CBAC approach, we “typed” metal atoms by finding the chemically and 

electronically distinct atomic species within each of the 2,234 unique MOFs in our dataset. 

This procedure identifies situations in which slightly different charges were assigned to 

symmetry related, chemical identically copies of atoms within a given MOF structure. For 

example, our DDEC calculation assigned six chemically identical Zn atoms in ZIF-8 

(CoRE MOF database: OFERUN02_clean) atomic point charges ranging from 0.7502 to 

0.7622 electrons. The distinct types of metal atoms in each MOF were enumerated by 

grouping metals with the same bonding neighbors and charge differences of less than 0.05 

electrons. Bonds between metals and other atoms were found using the Cambridge 

Structural Database covalent radii and skin distance parameters.47 This algorithm returned 

a single metal atom type within ZIF-8, which we denote “ZnN4” because the Zn atoms are 

coordinated to 4 N atoms with a DDEC charge of 0.765±0.008 electrons. To give one more 

example, in the MFU-4 structure, (CoRE MOF database: IGOCOX_clean) there are two 

distinct types of Zn atoms. MFU-4 contains ZnN6 atoms with a Zn charge of 0.370±0.005 

electrons and ZnN3Cl atoms (zinc coordinated to 3 N and 1 Cl) with a Zn charge of 

0.63±0.01 electrons.  

After typing the metal atoms in this way, the charges on the same types of metals 

were compared across the 2,234 unique MOF in our dataset. Table 5.3 shows the mean and 

standard deviation of our DDEC derived atomic point charges on the six different metal 

types represented in the CBAC report by Xu et al.30  Overall, the agreement between this 

work and the CBAC charges is at best moderate. The most numerous metal type in our 
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dataset was ZnO4, which range in charge between 0.99 and 1.28 electrons compared to 

1.583 in the CBAC dataset. The disagreement between DDEC derived charges on ZnO4 

and CBAC most likely results from the different charge assignment methods used in the 

two sets of calculations. The range of values observed in our results is more important, 

since it indicates that using a single value to represent this environment in all structures 

can potentially miss important information about the local charge arrangement. This 

difficulty is also seen in the other metal types described by CBAC, particularly CoN4 and 

CrO6, where our DDEC results show a range of 0.22-1.05 and 1.18-1.85 electrons, 

respectively. 

 

Table 4.3 Distribution of DDEC derived atomic point charges for metals represented in 

the CBAC dataset.1  

Metal 
type 

CBAC 
charge 

# in this 

 dataset 

Charges in 
this 

dataset 

Range of 
charges 

ZnO4 1.583 109 1.09 ± 0.07 0.99 - 1.28 

ZnN4 0.787 19 0.81 ± 0.07 0.55 - 0.87 

CuO4 1.065 25 1.07 ± 0.09 

 

0.88 - 1.37 

CoN4 0.700 15 0.71 ± 0.25 0.22 - 1.05 

CoO5 1.529 15 1.12 ± 0.07 0.99 - 1.23 

CrO6 2.310 8 1.61 ± 0.22 1.18 - 1.85 

 

 

Figure 4.1 shows the distribution of charges on the 310 instances of Cu metal atoms 

in our dataset. These 310 Cu atoms have 62 distinct coordination environments (using the 

nearest neighbor definition given above), which demonstrates the great structural diversity 

found in MOFs. Many Cu atom types are represented only once, which would make 
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construction of a comprehensive set of transferrable charges difficult. The most numerous 

copper atom type in our dataset is CuO6, with 52 instances in our dataset and charges with 

large variability (0.05 to 2.89). The CuO4 metals range in charge range from 0.88 to 1.37. 

 

 

 

Figure 4.1: Frequency of charges for 310 Cu metal atoms with 62 distinct coordination 

environments. The distribution of charges the for CuO4 and CuN4 coordination 

environments are shown in blue and red, respectively. 

 

 

The 25 instances of Cu atoms in the CuO4 coordination environment may be 

subcategorized by the identity of their second nearest neighbor atoms. The most numerous 

of these is CuO4-C4, which denotes Cu atoms coordinated to 4 oxygen atoms, each of which 
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are bonded to 4 carbon atoms. A slightly narrower distribution of charges is observed the 

CuO4-C4 subtype relative to CuO4, but there is still a wide range. Overall, our results 

indicate that CBAC-like approaches that define a single point charge for atoms based on 

the identity of their neighboring atoms are unlikely to be robust for screening of large MOF 

databases because of the wide range of possible coordination environments and the wide 

distribution of charges on metal atoms on a given coordination environment. 

4.5 Comparison of DDEC to EQeq Point Charges   

The extended charge equilibration (EQeq)12 and periodic charge equilibration 

(PQeq)31 methods are computationally efficient extensions of the semi-empirical charge 

equilibration (Qeq) method to periodic structures.43 PQeq was previously used to assign 

point charges to hundreds of experimentally synthesized MOFs to screen for CO2 

adsorption properties.11 The EQeq method has been used to assign point charges to a 

database of over 137,000 hypothetical MOFs.44 To evaluate the accuracy of these methods, 

we compared the EQeq charges to DDEC charges for each MOF in our dataset. EQeq 

charges were computed with the standalone code distributed by NuMat Technologies using 

default metallic oxidation states.12 This standalone code was found produce charges 

consistent with the EQeq equilibration method implemented in RASPA 1.0.32 

Figure 5.2 shows the comparison between DDEC and EQeq for each of the over 

10,000 distinct metal atoms in our dataset.  A small number of neodymium and uranium 

metals with unrealistically large (greater than 4) EQeq charges are excluded from this plot. 
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Figure 4.2: Charges from EQeq charge equilibration com-pared to DDEC derived charges 

for over 10,000 distinct metal atoms in MOFs. Rare earth metals include lanthanides and 

actinides.   

 

Figure 5.2 shows that EQeq predicts higher charges for metals than DDEC on 

average. This observation has previously been made by Haldoupis et al.11 EQeq predicts 

highly unrealistic charges for many structures containing alkali metals. While DDEC 

charges for alkali metals cluster around the +1 oxidation expected from their position on 

the periodic table, EQeq predicts a range of alkali charges from -2 to +4 electrons. Table 

4.4 lists a number of statistics assessing charge differences between EQeq and DDEC.  
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Table 4. 1: Statistics assessing charge differences between EQeq and DDEC. 

  Mean Absolute 

Deviation  

Maximum Absolute 

Deviation  

Alkali 1.67 2.96 

Alkaline  0.37 1.67 

Transition 0.35 1.45 

Rare earth 0.41 1.6 

Metalloid 0.67 1.77 

 

In Chapter 5 we will discuss using DDEC point charges to calculate adsorption 

properties of tert-butyl mercaptan (TBM) and methane in a high-throughput screening 

study. When used for studying selectivity of TBM, we found that using EQeq charges 

instead of DDEC charges can have a significant influence on the results of GCMC 

simulation of adsorption. In many cases EQeq charges give significantly different 

selectivities of the larger and polar TBM over CH4 in the Henry’s regime compared to 

DDEC charges. This is both true for alkali metals (Figure 4.3) and for randomly selected 

MOFs with selectivity of varying order of magnitude (Figure 4.4). 
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Figure 4.3: Henry’s regime selectivity of TBM over methane predicted using DDEC 

charges vs EQEq charges for MOFs with alkali metal centers 

 

 

These differences, however, are less pronounced for binary GCMC at the TBM and 

CH4 concentrations found in natural gas.  Calculation of selectivity for TBM and CH4 will 

be discussed in more detail in Chapter 6. 
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Figure 4.4: Henry’s regime selectivity of TBM over methane predicted using DDEC 

charges vs EQEq charges for randomly selected MOFs with selectivity of varying order 

of magnitude. 

 

4.6 Conclusions    

In this chapter, we have produced a set of high quality point charges for nearly 

3,000 experimentally synthesized MOF structures using plane wave DFT calculations and 

the DDEC charge partitioning method. By using a periodic representation of each MOF, 

these charges avoid problem of ambiguous bond termination inherent in cluster based 

methods.  Because the DDEC method was designed in part to accurately reproduce the 

electrostatic potential energy surface for locations outside the van der Waals radius of 
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atoms in the material, our dataset of charges is well suited for modeling adsorption in 

MOFs.  

We have compared the CBAC charge assignment approach, which was developed 

and tested for approximately 30 MOFs, to thousands of point charges predicted based on 

structure specific DFT calculations. Our results indicate that CBAC charges may not be 

robust for screening a large MOF database.  We have also demonstrated that charges 

assigned by the semi-empirical EQeq method can differ drastically from charges calculated 

with the DDEC method. These discrepancies in point charges can impact the calculated 

adsorption selectivities for the sample adsorbate, making the case that whenever possible 

using charges directly determined from electronic structure calculations such as the ones 

we have used is preferable to semi-empirical approaches.  

In all of the calculations we have reported here, charges have been assigned using 

electronic structure calculations with the experimentally reported crystal structures. 

Previous calculations have shown that the variation in point charges associated with 

relaxing crystal structures using DFT39 or including MOF flexibility using ab initio MD is 

small21. These observations suggest that the charges we have reported will be useful in a 

wide range of calculations, not only those that assume that the crystal structure of a MOF 

is fixed in its reported crystal structure. 
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CHAPTER 5 

METAL-ORGANIC FRAMEWORKS FOR REMOVAL OF TERT-

BUTYL MERCAPTAN FROM NATURAL GAS 

 

5.1 Introduction   

Tert-butyl mercaptan (TBM) is one of the principal gaseous sulfur odorants used in 

pipeline natural gas for leak detection. Regulations specify that the gas must be detectable 

at one-fifth of the lower explosive limit of natural gas in air such that the average person 

can detect odorized natural gas at a maximum of 1% in air.1 While mercaptans are highly 

useful for safety reasons, combustion of TBM in natural gas in turbines produces 

undesirable corrosive compounds. The sulfur present in the natural gas reacts with alkali 

material in blades of turbines used to generate electricity. This combustion product is a 

molten reactive residue containing alkaline sulfates which accumulates over turbine rotor 

blades, nozzle guide vanes, and other hot-section components2. Therefore, removing the 

TBM prior to electricity generation is desirable. Removal of TBM from natural gas fuel 

streams is traditionally accomplished by a two-step catalytic hydrodesulfurization process.3 

This process is efficient and effective for treating large volumes of gas with long cycle 

times.1 However, this process is energy intensive and expensive5. Another common method 

to remove mercaptans is use of activated carbon catalysts to selectively oxidize 

organosulfur compounds.6 Unfortunately, the formation of poisonous byproducts such as 

SO2 and COS and the need for their removal is a problem.4,7 A third method for removal 

mercaptans from natural gas involves selective adsorption on solid adsorbents such as 
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metal oxides, metal-containing zeolites, and metal-containing aluminum  oxides. In this 

method, the sulfur compounds are adsorbed onto the surface by its attraction to the basic 

surface sites of the adsorbent.5,8 Selective adsorption can be performed either by a 

temperature swing or pressure swing adsorption process. Selective adsorption is a 

promising method for this application but a challenge is determining the appropriate 

sorbent material with high sulfur capacity and selectivity. Metal Organic Frameworks 

(MOFs) have high surface areas, pore volumes, and tunability, making them potential 

sorbents for trace sulfur removal from natural gas. Recently, three common MOFs and 

zeolite NaY were experimentally tested for use in the selective adsorption of TBM from 

natural gas.9 UiO-66(Zr) was found to have promising properties that make it a good 

candidate material for this application. Below, we use a hierarchical high-throughput 

screening approach based on grand-canonical Monte Carlo (GCMC) simulations to 

identify additional MOF materials with high selectivity for TBM over CH4 and a high 

saturation capacity for TBM.  

As described in Chapter 4, simulations of MOFs often rely on classical force fields 

(FFs), especially in efforts to examine large numbers of materials.10-14 In many cases, 

calculations of this sort are based on generic (“off the shelf”) FFs, although increasing 

progress is being made in developing more reliable FFs for specific classes of materials 

using data derived from electronic structure calculations.13,15-17 This parameterization 

approach has been successful in reproducing experimental adsorbate diffusion coefficients 

and adsorption isotherms in MOFs.17  When performing GCMC calculations for non-polar 

molecules, describing the vdW interactions with generic force fields is sufficient. There 

exist numerous computational high-throughput screening studies in MOFs for simple, 
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nonpolar adsorbates such as methane18 and hydrocarbons.19 However, for more 

complicated adsorbates, such as TBM, we must describe both the vdW and electrostatic 

interactions of adsorbate and adsorbent. In essentially all FF calculations with MOFs, 

Coulombic interactions between atoms in a MOF and also between those atoms and 

adsorbate molecules are modeled by assigning point charges to each atom of the 

framework. Haldoupis et al. used the semi-empirical method to assign partial charges to 

approximately 500 MOFs which were then screened for CO2/N2 selectivity.20 Li et al. used 

the group coordination CBAC method to assign partial charges to 151 diverse MOFs to 

calculate CO2/CH4 selectivity.21 McDaniel et al. used DFT calculations along with 

distributed multipole analysis and charge fragmentation on MOF clusters to assign partial 

charges to 424 MOFs to ultimately compute CO2 and CH4 isotherms.22  

The MOF DDEC Point Charge database described in Chapter 4 provides point 

charges calculated using the Density Derived Electrostatic Chemical (DDEC) charges for 

almost 3,000 MOFs.23 This is the largest database of partial charges for MOFs to date. This 

database can be seamlessly used for high-throughput computational screening to study 

adsorption of TBM in MOFs.  As mentioned above, TBM is ubiquitous in pipeline natural 

gas at ppm levels as an odorant. We know of no previous simulations of TBM adsorption 

in MOFs. Below, we report on the predicted adsorption properties of TBM and methane in 

the MOF DDEC Point Charge database. Though there are 2,234 unique MOFs in the 

dataset, we performed adsorption calculations on all 2,932 MOFs, so these calculations 

include multiple experimental structures for a number of MOFs. 
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5.2 Methods and Computational Details 

A hierarchical high-throughput screening approach using grand-canonical Monte 

Carlo simulations was used to identify candidate MOF structures for selective adsorption 

of trace TBM from methane (CH4). MOFs were evaluated on the basis of selectivity for 

TBM in the Henry’s regime, saturation capacity of TBM, binary selectivity for trace TBM 

over CH4, and synthetic and structural properties.  

All GCMC simulations of adsorption were performed in the RASPA 1.0 molecular 

simulation package.24 The configurational-bias Monte Carlo (CBMC) method was used to 

model the internal flexibility of TBM molecules as described by the TraPPE force field25, 

while CH4 was modeled a single TraPPE united atom. Dispersion forces between 

adsorbates and the MOF framework were described by combining Lennard Jones 

parameters from the Universal Force Field26 (MOF framework atoms) and TraPPE 

(adsorbates) with the Lorentz-Berthelot mixing rule. Electrostatic interactions were 

modeled by using our DDEC derived atomic point charges for MOF framework atoms and 

TraPPE charges for TBM and CH4 molecules. All Lennard-Jones interactions were 

truncated at 16 Å, while all electrostatic interactions were computed pairwise to 16 Å and 

a long range Ewald summation scheme was used thereafter.  

The Henry’s constants of TBM and CH4 were calculated from 5×105 Widom particle 

insertions.27 The adsorption selectivity in the Henry’s regime was defined as the ratio of 

the single component TBM and CH4 Henry’s constants.28 The single component saturation 

capacity of each MOF structure for TBM was calculated by performing GCMC at very 

high fugacity (5×104 bar) using 3×104 initialization and 4×105 production Monte Carlo 

cycles.  The binary selectivity for TBM over CH4 was calculated at a composition 
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representative of a natural gas pipeline composition (10 ppm TBM in CH4) and pressure 

(18.1 atm) using 2×105 initialization cycles and 5×105 production cycles. The binary 

selectivity was defined as  

 

𝑥𝑇𝐵𝑀

𝑥𝐶𝐻4

𝑦𝐶𝐻4

𝑦𝑇𝐵𝑀
      (5.1) 

 

where x and y are the concentrations in the adsorbed phase and vapor phase, respectively.9 

Pipeline natural gas can contain a range of other species at low concentrations19, including 

low molecular weight hydrocarbons and CO2; these components have not been considered 

in our screening calculations. 

In this work we have not considered reactive dissociation of TBM or similar thiols. 

While there are a significant number of structures with methanol solvent molecules (33 

instances) and bound methoxide solvents (19 instances) in the CoRE MOF database, there 

are no structures with free methanethiol and only one structure with a methanethiolate 

anion (CSD: EMEGEJ). One of the structures with a methoxide bound solvent (CSD: 

BIJDUV) was reported by Zhu et al. for use in sulfoxidation reactions, but this example 

does not involve a dissociation reaction.29 DFT studies of adsorptive dissociation of 

methanethiol in MOFs are possible but are beyond the scope of this work.30 
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5.3 Results and Discussion 

5.3.1 Selectivity and Heat of Adsorption in Henry’s Regime  

First, we calculated the Henry’s constant and isosteric heats of adsorption of CH4 

and TBM in each structure in the dataset. These quantities are computationally inexpensive 

to compute for large numbers of materials using Widom insertions in RASPA. The Henry’s 

regime selectivity in each MOF was defined as the ratio of the TBM and CH4 Henry 

constants, where values above 1 indicate preferential adsorption of TBM in the Henry 

regime. About a quarter of structures exhibited very low Henry regime selectivities (less 

than 10-12) and were excluded from further analysis. Most of these structures have largest 

cavity diameter (LCD) less than 4.5 Å, indicating nanopores too small to accommodate a 

TBM molecule. Even excluding these structures, our results have MOFs than span an 

enormous range of selectivities. Figure 5.1 shows the Henry regime selectivities for the 

remaining structures plotted as a function of the largest cavity diameter and TBM isosteric 

heat of adsorption. 
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Figure 5.1: Henry’s regime selectivity versus TBM heat of adsorption, where negative 

heats indicate energetically favorable adsorption. Lighter colored data points are 

associated with structures with larger LCDs. 

  

 

 

The results in Figure 5.1 allow a relatively simple description of the competing 

effects that control selective adsorption of TBM relative to CH4.  Structures with very small 

pores cannot easily accommodate TBM molecules but readily adsorb CH4, leading to 

Henry’s regime selectivities less than 1 and positive TBM heats of adsorption. For 

materials with slightly larger pores (LCD ~5-6 Å), steric repulsive forces become less 

important relative to energetically favorable electrostatic and dispersive forces.  This 

regime is associated with negative heats of adsorption for TBM and high Henry’s regime 

selectivities for TBM over CH4. The lowest TBM heats of adsorption (less than -70 kJ/mol) 

are associated with LCDs of 6-6.5 Å. In structures with LCDs in this range, the TBM 
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molecules fit readily into the largest pore within each MOF. Although these MOFs exhibit 

very high Henry’s regime selectivities (> 108), the adsorption of TBM is likely irreversible 

within these materials and access of TBM into the pores may be subject to severe kinetic 

limitations. At LCDs over 8 Å, TBM molecules experience somewhat weaker energetic 

interactions with nearby MOF framework atoms, although these interactions are still 

typically considerably stronger than for CH4. The structures with the largest LCDs (over 

20 Å) have relatively modest Henry’s regime selectivities (< 104).  

5.3.2 Henry’s regime vs. pipeline conditions  

The correlation between these Henry’s regime selectivities and selectivities computed 

from binary GCMC calculations at a representative pipeline composition of natural gas (10 

ppm TBM in CH4, 18.1 atm total pressure)32 was evaluated. Binary GCMC simulations 

simulate competitive adsorption effects at finite loadings that single component Henry’s 

regime calculations cannot capture. However, these simulations are considerably more 

computationally expensive than calculations in the Henry’s regime. We first performed 

these binary calculations for a subset of around 100 MOFs with Henry’s regime 

selectivities ranging from 1 to 1010. The 100 MOFs were chosen to represent a range of 

selectivities for TBM and produced well converged results within 5×105 Monte Carlo 

cycles. Figure 5.2 shows the binary selectivity (Eq. 5.1) as a function of the Henry’s regime 

selectivity for these 100 materials. With the bulk phase condition we considered a binary 

selectivity of 105 corresponds to an equimolar adsorbed mixture of TBM and CH4. 
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Figure 5.2: Binary GCMC selectivity at a representative pipeline composition of natural 

gas (10 ppm TBM in CH4, 18.1 atm) compared to Henry’s regime selectivity for 100 

MOFs. At values above 104, selectivities from binary GCMC deviate significantly from 

the Henry’s regime. 

 

Figure 5.2 shows that when the Henry’s regime selectivity is less than ~104, the 

Henry’s regime selectivity is strongly correlated with the binary selectivity. For Henry’s 

regime selectivities above ~104, the Henry’s regime prediction tends to strongly 

overestimate the binary selectivity. It is challenging to achieve complete numerical 

convergence in binary GCMC for the most selective materials, and we observed relatively 

large fluctuations in the observed GCMC selectivity for some structures because of the 

very small amounts of CH4 observed. Nevertheless, the uncertainties associated with this 

effect are small enough to allow us to conclude that the trend shown in Figure 5.2 for high 

selectivity materials is a physical effect. This effect arises because the TBM adsorption is 
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not accurately described by Henry’s law in these highly selective materials under the bulk 

phase conditions we examined, meaning that the adsorbed amount of TBM is 

overestimated by using the Henry’s regime results. Although this means that using binary 

GCMC calculations is necessary to quantitatively describe TBM/CH4 mixture adsorption 

in the most selective materials we have considered, Figure 5.2 shows that using the Henry’s 

regime selectivity is a useful way to order materials using computationally efficient 

methods.  

5.3.3 Binary GCMC and Saturation Loading  

Based on the results above, we narrowed our attention to materials with Henry’s regime 

selectivity higher than 103. While MOFs with high selectivity for TBM are desired, MOFs 

with large TBM heat of adsorption are likely to irreversibly adsorb TBM. To include the 

feature in our calculations in a simple way, we also eliminated MOFs with a Henry’s 

regime heat of adsorption for TBM more favorable than -70 kJ/mol. We also removed all 

MOFs containing lanthanide metals from further consideration. For the remaining 1,497 

distinct MOFs, we performed calculations to evaluate each material’s capacity for TBM 

and the binary selectivity at the natural gas pipeline conditions defined above. The TBM 

saturation capacity was calculated using single component GCMC at a fugacity (50 kPa) 

above the vapor pressure of TBM at 25 °C.31 As expected, these results correlate strongly 

with the MOF pore volume. Figure 5.3 shows the saturation TBM loading of each MOF as 

a function of selectivity at the natural gas pipeline composition calculated using binary 

GCMC. 

We anticipate that top performing MOFs for TBM removal will have a saturation 

loading for TBM greater than 200 mg/g. We find 354 MOFs that meet this criteria. We 
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reiterate that by virtue of selecting these materials from the CoRE MOF database, every 

material has a previously reported synthesis and structure. Among these promising 

candidates are multiple representations of the commonly studied MOFs reported in 

different experimental reports. Among these common MOFs are MIL-53 and Cu-BTC, 

which were identified by Chen et al. as highly selective but structurally unstable during 

TBM adsorption.9 ZIF-8, a commonly studied and readily available MOF that is stable 

under humid conditions, is predicted to have a binary selectivity of 1.17 × 104 and 

saturation loading of approximately 270 mg of TBM per gram of adsorbent.  It has been 

shown in both experiments and using molecular modeling that ZIF-8 can adsorb molecules 

that are considerably larger than its nominal pore diameter due to flexibility in the small 

windows that control molecular diffusion in this material.32-35 These observations lessen 

concerns that TBM adsorption in ZIF-8 would be limited by kinetic considerations. Other 

less studied but water stable and promising candidates include BIBXUH, a nickel based 

MOF with a 691 mg/g capacity for TBM, and MFU-4, a zinc and chlorine based MOF with 

6.85 × 105 selectivity for TBM over methane.  
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Figure 5.3: TBM/CH4 selectivity  at the pipeline composition as a function of saturation 

loading of TBM in 1497 MOFs. Cu-BTC and MIL-53, two MOFs studied experimentally 

for TBM adsorption by Chen et al.9 are highlighted. Three other promising and water 

stable MOFs are also highlighted. 

 

  

5.4 Conclusions  

We have screened each MOF in the DDEC Point Charge MOF database for 

potential use in the adsorptive removal of tert-butyl mercaptan from methane. Our efficient 

screening procedure has identified hundreds of MOFs with high selectivity and capacity 

for TBM. These results suggest multiple directions for future experimental efforts, 

including the identification of some well-known materials as potential candidates for this 
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separation. We have not attempted in these screening calculations to pick a single 

“winning” material for the challenge of selectively adsorbing TBM from CH4. Finding 

appropriate materials for practical use must involve considerations that are beyond the 

scope of our current calculations, including the long term stability of materials, the cost 

and ease of synthesis of materials and so on. Nevertheless, the observation that our 

calculations have identified a large number of materials with appealing adsorption 

selectivities and adsorption capacities for TBM provides a strong basis for continued 

development of high performance materials for this application. 

The high selectivities of MOFs in our study reveal a potential challenge with the 

application of MOFs for methane storage. In the original CoRE MOF report, MIL-53 was 

found to have among the highest capacities for methane storage.36 In our study, we find 

that MIL-53 is highly selective for TBM and most likely for other polar components of 

natural gas. This selectivity may drastically reduce methane capacity during cyclic 

adsorption, especially if TBM accumulates over the many cycles in the life time of the 

material. Zhang et al. have studied the adsorption and shown the accumulation of ethane, 

propane and butane in some common MOFs19, but there has yet to be a study on adsorption 

impact of trace components such as TBM and other polar species such as H2O and CO2 in 

natural gas.  
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CHAPTER 6 

DENSITY FUNCTIONAL THEORY OPTIMIZED DATABASE OF 

EXPERIMENTALLY DERIVED METAL-ORGANIC 

FRAMEWORKS 

 

6.1 Introduction   

Computational models of metal-organic frameworks (MOFs), especially screening 

procedures, depend critically on access to accurate MOF structure data typically obtained 

using single crystal x-ray diffraction (XRD) or x-ray powder diffraction (XRPD). XRD is 

typically used to determine structure for crystal sizes larger than 5 micrometers and XRPD 

is used for smaller crystals.1 More than 90% of the MOF structures found in the Cambridge 

Structural Database2 (CSD) were resolved using XRD. These reported structures often 

include complications such as partially occupied or disordered atoms. This information is 

crystallographically meaningful but must be removed prior to computer simulations.3 The 

Computation-Ready Experimental MOF (CoRE MOF) database of Chung et al.3 

constructed a large set of experimentally refined MOF structures from the CSD by 

removing solvent molecules and selecting a single representation of any disordered atoms 

in the reported structures. The CoRE MOF database eliminates an initial hurdle to high-

throughput molecular simulations of MOFs and has already been used to screen MOFs in 

applications such as methane storage4 and natural gas (including higher hydrocarbons) 

storage5.  
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In their study of methane uptake in the CoRE MOFs, Chung et al. found that there 

are at least 13 different crystal structures of the commonly studied MIL-53(Al), with 

significant variation in their simulated methane uptake. The different MIL-53(Al) 

structures in the database, synthesized independently, have varying experimentally 

resolved lattice parameters and atomic coordinates (see Figure 6.1).  

 

 

 

Figure 6.1: Cleaned versions of three MIL-53(Al) structures, (a) WAYMIU6, (b) 

SABVOH7, and (c) HAFQUC8, found in the CoRE MOF database. The GCMC methane 

uptake at 65 bar and 298 K for WAYMIU, SABVOH, and HAFQUC are 250, 180, and 

270 volSTP/vol of adsorbate per framework, respectively.3   

 

The differences in the 13 structures is in part related to the inconsistencies in 

methods used to obtain crystal structures. Crystal structures are often resolved before 

activation, with the presence of residual synthesis solvent molecules within the MOF pores. 

In some cases, the crystal structure data will include the solvent, but in other cases the 

solvent is not resolved during the structural refinement. Structures resolved with residual 

solvent within the pores or with solvent molecules bound to the metal centers may adopt a 

different geometry once solvent is removed. Each MOF in the CoRE MOF database is 

represented by a structure without solvent. Generating these structures assumed that the 

structure geometry remains the same after activation.3  

a) b) c) 
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The quality of diffraction tools and characterization conditions also play a role in 

the quality of the crystal data obtained experimentally. The choice of diffractometer may 

affect the data resolution of resulting crystal structures and structures obtained at higher 

temperatures will include the impact of thermal motion.1 The uncertainties in crystal 

structures described may be resolved through systematic energy minimization of the initial 

geometry to obtain an optimized structure.9 These efforts typically result in small changes 

relative to the initial experimental structure, and are defined by Catlow et al. as refinements, 

not predictions.10 These authors reserve the phrase “structure prediction” for methods that 

do not depend on any empirical information about the atom positions of the structure. In a 

recent review, Catlow et al. provide a comprehensive summary of the current state of the 

art methods used for crystal structure prediction.10 In a recent review of computational 

methods for MOFs, Coudert et al. also summarize such methods.11 The result of such 

methods include the database of hypothetical zeolites generated by Deem et al.12 While 

such predictive methods are valuable tools for genomic and material discovery efforts, 

experimental synthesis of many of the predicted materials still remains a challenge.  

In this work we are concerned with the CoRE MOF database, which includes only 

structures with a known and published synthesis procedure. Given an initial experimental 

structure, we use plane wave Density Functional Theory (DFT) refinement methods to 

minimize each structure’s energy and generate a more accurate structure. DFT calculations 

are routinely used to determine the ground state structure of MOFs before adsorption and 

diffusion predictions.  Recently we have benchmarked commonly used DFT functionals 

and demonstrated that DFT methods reliably predict MOF lattice parameters and atomic 

coordinates (see Chapter 3).13  
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A range of studies have used DFT based calculations to refine and analyze large 

sets of crystal structures. Sharma et al. conducted a search for novel dielectric polymeric 

materials by screening 1D repeat units for high dielectric constants using DFT.14  

Chandrasekhar et al. used DFT methods to predict solubility, diffusivity, and permeability 

of hydrogen in intermetallic membrane materials.15  Armiento et al. performed a large-

scale DFT study of the ABO3 chemical space in the perovskite crystal structure to identify 

promising piezoelectric materials.16 Yan et al. screened hundreds of transition metal oxides 

for photocatalytic materials for water splitting.17 Nicholson et al. used DFT-based methods 

to assess this stability of metal hydride systems by predicting thermodynamic properties.18 

The Materials Project has applied DFT+U methods, using a combination of sophisticated 

high-throughput infrastructure and crowd-sourcing, to energy minimize thousands of 

structures obtained from the Inorganic Crystal Structure Database and predict a range of 

material properties.19, 20  

Due to the relatively high computational cost of such calculations, DFT based 

structure refinements of MOFs have previously only been applied when considering only 

a small number of structures. To date, all high-throughput screening studies of MOFs have 

used the experimentally observed crystal structures or collections of hypothetical structures 

generated in silico. There have been no systematic attempts to refine the structures of a 

large and diverse set of MOF structures and study the impact of refinement on predicted 

properties. The central aim of this work is to produce a large and diverse set of DFT 

optimized MOF structures, to use this data to evaluate the correctness of the experimentally 

refined structures currently available, and assess the impact of optimization on adsorption 

properties of the MOFs. The DFT energy minimized structures in this work are publicly 
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available at http://dx.doi.org/10.11578/1118280 as a supplement to the CoRE MOF 

database. As discussed earlier, methane uptake studies of the CoRE MOFs has shown that 

variations in atomic positions can impact methane uptake.3 We anticipate that with the 

availability of DDEC charges for a large database of materials, as discussed in Chapter 4, 

there will be a shift to screening MOFs for adsorption properties of larger polar 

molecules.21 It seems likely that the impact of structure refinement will be more 

pronounced for adsorption of polar molecules than for simple species like CH4. 

In our previous benchmarking study of DFT functionals for MOFs, we have shown 

that small changes in MOF structure do not impact DDEC point charges.13 In this work, 

we have used our refinement results to consider the impact of large structural changes on 

predicted DDEC charges.  

6.2 Methods and Computational Details    

6.2.1 Structure Refinement  

All DFT calculations were carried out using the Gaussian plane-wave (GPW) 

computational package CP2K 2.622 on the Argonne National Laboratories supercomputer 

MIRA. Based on the results of our previous benchmarking study, we chose to use the 

Gordecker, Teter, Hutter dual-space pseudopotentials (GTH)23 with the PBE-D324, 25 

functional. PBE-D3 introduces empirical dispersion corrections to the generalized gradient 

PBE functional. As described in Chapter 3, the dispersion coefficient used in PBE-D3 are 

geometry dependent and are adjusted on the basis of the local coordination number around 

the atoms of interest. After a series of convergence tests, a plane-wave energy cutoff of 

800 Ry was chosen. We have used the double-zeta valance polarized (DZVP)26 basis sets 
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for all elements except Lanthanum (La). The basis set used for La is provided in Appendix 

D. Spin polarization was considered for all calculations. Geometry optimization of the 

system was performed using a BFGS optimizer, allowing for full atomic and cell 

relaxation, until the largest force on atoms reached less than 0.0003 Hartree/Bohr. 

Optimization was attempted for 3,000 MOFs in the CORE MOF database. These 

structures were chosen based on basis-set availability in the CP2K package.  Of the 3,000 

structures, calculations for 879 structures converged successfully within a reasonable 

computation time.   

6.2.2 Structure Analysis  

The changes in geometry associated with energy minimization were analyzed for 

each successfully optimized structure. Structural parameters considered include unit cell 

parameters (a, b, c, 𝛼, 𝛽, and 𝛾), unit cell volume, helium void fraction, largest cavity 

diameter (LCD), and pore limiting diameter (PLD). The void fraction was computed using 

the RASPA 2.0 classical simulation package.27 The LCD, PLD, and pore size distributions 

were calculated using the Zeo++ geometry analysis package.28 Structures were considered 

significantly different than the original experimental structure if pore descriptors changed 

by more than 1 Å  or volume was changed by more than 10% after refinement.  

6.2.3 Methane and CO2 Adsorption  

Classical grand canonical Monte Carlo (GCMC) simulations of methane adsorption 

were conducted on all optimized structures using the RASPA 2.0 code29. Methane 

adsorption was simulated at 65 bar and 298 K. The Peng Robinson equation of state30 was 

used to calculate the fugacity values necessary to impose equilibrium between the system 
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and the external gas reservoir. Methane-methane and methane-framework interactions 

were modeled with a Lennard-Jones (LJ) 12-6 potential using the Lorentz-Berthelot mixing 

rules. The LJ parameters for all framework atoms were obtained from the Universal Force-

Field (UFF).31 The LJ parameters for methane (ε/kB = 148.0 K; σ = 3.73 Å) were obtained 

from the TraPPE force-field, modeled as a single sphere with one LJ interaction site.32 All 

LJ interaction potentials were truncated at 12.8 Å. To satisfy the minimum image 

convention all simulation cells were replicated to at least 25.6 Å along each axis. All 

GCMC simulations included a 2,500-cycle equilibration period followed by a 2,500- cycle 

production period.33 GCMC simulations included random insertion, deletion, translation, 

and re-insertion moves with equal probabilities.  

GCMC calculation of CO2 adsorption were conducted for structures with available 

charges in the MOF DDEC charge database discussed in Chapter 4. Simulations were 

performed for 502 structures at 1 bar and 298 K in a similar manner to our methane 

adsorption calculations. DDEC charges from the experimentally observed structures were 

directly mapped onto the optimized structures. The LJ parameters for CO2 were obtained 

from the TraPPE force-field, modeled as a 3-site molecule as described in Appendix D.32  

6.2.4 Calculating DDEC Charges After Structural Optimization  

For each MOF with significant structural change and available DDEC charges in 

the MOF DDEC Point Charge database (87 MOFs), a single self-consistent ionic step was 

attempted in the VASP 5.3.5 plane-wave DFT package34 to generate the electron and spin 

density distributions used as inputs for point charge assignment. The Brillouin zone was 

sampled with a 1000 points per atom density Monkhorst‐Pack grid. Spin-polarization was 

included for all calculation, adopting a ferromagnetic high spin states for magnetic 
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elements.19, 35  Point charges were assigned for each atom type in a structure. Atom types 

were assigned based on the atom’s neighboring environment and charges for each atom 

type are averaged to obtain a net neutral system. 

6.3 Results and Discussion     

6.3.1 Structure Refinement   

To compare the extent and type of geometry change in each MOF structure after 

energy minimization, we considered charges in four structural parameters: unit cell 

volume, helium void fraction, unit cell angles, and LCD. As shown in Figure 6.2, a majority 

of structures show a less than 10% change in unit cell volume and void fraction and 2° 

change in unit cell angles (𝛼, 𝛽, and 𝛾 considered)  after energy minimization. We also 

find that most structures experience small changes in pore diameter; more than 90% of 

structures experience less than 1 Å change in the LCD. We find little correlation between 

changes in volume and void fraction. While most of structures increase in volume and 

LCD, many structures decrease in void fraction. Figure 6.3 shows that most structures all 

in the upper left quadrant with an increase in volume but decrease in void fraction.  
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Figure 6.2: Histogram of changes in structural parameters upon DFT energy 

minimization for 879 structures. The vertical axis in each case is the number of 

structures. More than 90% of structures showed a less than (a) 10% change in cell 

volume after optimization, (b) 0.1 change in void fraction, (c) 5% or 2 degree change in 

cell angle after optimization, (d) 1 Å change in the LCD. 
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Figure 6.3: Comparison for percent change in cell volume and change in void fraction 

due to DFT refinement for 879 structures shows a weak correlation between these 

quantities. A majority of structures experience an increase in volume but a decrease in 

void fraction. The left figure shows all 879 structures, while the right figure focuses on 

structures with small change due to optimization. 

 

 

6.3.2 Impact of Residual Solvent    

While most MOFs in the CoRE MOF structures show only small structural changes 

between their experimental and energy minimized representations, a subset of MOFs exists 

with substantial changes in their structures after energy minimization. Examination of these 

materials indicates that this subset is comprised mainly of structures that contained residual 

solvent in the structure when the original XRD or XRPD was performed. In the process of 

constructing the CoRE MOF database, Chung et al. identified MOFs with solvent and 

without solvent in the crystallographic structure information provided in the CSD. We used 

this information to divide the 879 structures from our DFT calculations into these two 

categories. When the structural parameters discussed above (overall change in unit cell 

volume, helium void fraction, unit cell angles, and LCD) are analyzed for each group 
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separately, we find a stark difference among the groups on the impact of energy 

minimization on geometry. Figure 6.4 shows a box and whisker diagram for each structural 

parameter with and without solvent in the CSD version of the structure.  Experimental 

MOF structures which included solvent during structural analysis display a larger number 

and magnitude of outliers.  

 

 

 

Figure 6.4: A box and whisker diagram for change in volume, change in LCD, change in 

cell angles, and change in void fraction for structures during DFT energy minimization 

with and without solvent in the CSD version of the structure. The markers represent the 

lowest 1.5 IQR, 1st quartile, median, 3rd quartile, and highest 1.5 IQR where IQR is the 

difference between the 3rd and 1st quartile. 

 

 

MOF structures with solvent in the CSD representation can further be divided into 

two categories, those with at least one bound solvent and those with only free solvent. 

We find only small differences in the impact of solvent type on changes in structural 

parameters (see Figure 6.5).   
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Figure 6.5: A box and whisker diagram for change in volume, change in LCD, change in 

cell angles, and change in void fraction for structures during energy minimization with at 

least one bound solvent and only free solvent in the CSD version of the structure. The 

markers represent the lowest 1.5 IQR, 1st quartile, median, 3rd quartile, and highest 1.5 

IQR where IQR is the difference between the 3rd and 1st quartile. 

 

 

The Cd based MOF JUC-63 (REFCODE: OFODAP)36 is an example of MOF with 

substantial change in the structure after energy minimization. Figure 6.6(a) shows a 

representation of the MOF as found the CSD. This structure includes both types of solvent, 

freely suspended DMF molecules inside the MOF pores as well as DMF molecules bound 

to the Cd metal center. In the synthesis literature for JUC-63, Qiu et al. note that the 

structure was obtained with residual solvent and report structural parameters consistent 

with Figure 6.6(b), which is what can be found in the CoRE MOF database. When this 

structure is energy minimized, the structure deforms substantially and decreases in volume, 



 

109 

see Figure 6.6(c). This energy minimized structure is 44.4% smaller in volume than the 

original structure, with a 2 Å smaller LCD.   

The observation that a MOF structure can change significantly upon solvent 

removal is not surprising. Indeed, one of the major advances in early work on MOFs was 

the discovery of materials which did not undergo pore collapse after solvent removal. Our 

results, have important implications for effort to use high-throughput computational 

methods to assess properties of MOFs because they represent an important refinement to 

the original CoRE MOF database, which ignored potential structural effects due to solvent 

removal.  

 

 

 

Figure 6.6: (a) Representation of JUC-63 as found in the CSD containing both bound (in 

purple) and free (in green) DMF molecules.  (b)Representation of JUC-63 discussed in 

synthesis literature and found in the CoRE MOF database. (c) Representation of JUC-63 

after DFT minimization, implying that the MOF changes drastically after activation. 

 

6.3.3 Impact of Large Structural Changes on DDEC Point Charges     

In Chapter 3, we showed that point charges assigned to MOFs using the DDEC 

method are insensitive to small structural changes. It is important, however, to reexamine 

this issue for materials that undergo significant structural change during DFT energy 

minimization. For the purpose of this study, we have identified structures with a large 

a) b) c) 
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change as those for which pore descriptors changed by more than 1 Å or volume changed 

by more than 10%. We only examined MOFs in the DDEC MOF Point Charge database. 

A total of 87 structures met both of these criteria (see Appendix D). For these MOFs we 

recalculated DDEC point charges for the energy minimized structures as explained in 

section 6.2.4. Point charges were assigned to each atom type based on coordination. Figure 

6.7 shows a comparison of DDEC point change for each atom type for the experimental 

and energy minimized structure. Despite the significant structure changes that exist for 

these structures, we find similar results to those discussed in Chapter 3.  The largest 

difference between charges for an energy minimized and experimental structures, 0.19 

electrons, is seen in the Cd atom of MOF ICEGED37. Point changes show a mean absolute 

deviation (MAD) of 0.023 electrons where MAD is defined as 

 

𝑀𝐴D = ∑
𝑥𝑖𝑜𝑟𝑖𝑔

−𝑥𝑖𝐷𝐹𝑇

𝑁𝑖     (3.2) 

 

 

where 𝑖 is atom type. 𝑥𝑖𝑜𝑟𝑖𝑔
 is the point charge for atom type 𝑖 predicted for the original 

experimental structures, 𝑥𝑖𝐷𝐹𝑇
 is the point charge for atom type 𝑖 predicted for the energy 

minimized structures, and 𝑁 is the number of atom types for all MOFs. These observations 

suggest that using point charges for any of the structures linked in the DDEC MOF point 

charge database without change in a reasonable approximation for any of the ~900 DFT 

relaxed structure we have reported is acceptable.  
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Figure 6.7: Direct comparison of DDEC charges predicted for each atom type of a MOF 

structure before and after energy minimization. 

 

6.3.4 Adsorption Properties      

GCMC predictions of methane uptake at 65 bar and CO2 update at 1 bar were 

calculated for the experimentally observed and energy minimized representations of the 

502 structures with DDEC point charges. For consistency, all charges, including charges 

for MOFs with significant structural changes, were assigned based on the MOF DDEC 

Point Charge database. We emphasize that in all GCMC calculations the structure of the 

adsorbent was assumed to be rigid.  
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As shown in Figure 6.9, there is a less than 25% change in methane uptake for 78% 

of the structures and less than 25% change in CO2 uptake for 46% of the structures after 

energy minimization of the structure, respectively. We find that the degree of change in 

uptake is not correlated with magnitude of uptake. That is, structures that have higher or 

lower uptake are not necessarily more sensitive to structure changes. For simulations, a 5% 

difference between the initial and refined structures considered acceptable. We find that 

CO2 changes more than the acceptable 5% for approximately 90% of the structures. This 

is a significant observation, specifically for the high-throughput screening community, and 

indicates the importance of structure precision.   

As expected, we find that the change in uptake for structures with significant 

change in geometry correlates strongly with change in void fraction. However, we find 

only a weak correlation between change in void fraction and uptake for structures with 

minor changes in geometry. As shown in Figure 6.9, some structures experience a change 

in void fraction of less than 0.05 but more than 100% increase in CO2 uptake or 200% 

increase in methane uptake. For example, MOF HUHJAW38, a Cd and Cl based MOF, 

shows a 3% increase in volume and a 0.047 change in void fraction after energy 

minimization. Even with this apparently small change in geometry, the computed methane 

uptake increases from 8.48 to 25.97 cm3 of adsorbate (STP)/cm3 of MOF. MOF NASCIV39, 

a Cd based MOF, shows an 8% change in volume and 0.04 change in void fraction after 

energy minimization but an increase in CO2 uptake of 9.28 to 18.26 cm3 of adsorbate 

(STP)/cm3 of MOF.  
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Figure 6.8: Histogram of percent difference in computed uptake between the original 

experimental and the DFT energy minimized structures for 502 MOFs. The vertical axis 

in each case is the number of structures. A less than 25% difference is observed for (a) 

methane uptake for 78% of the structures and (b) CO2 uptake for 46% of the structures.   
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Figure 6.9: Percent difference in CO2 (1 bar and 298 K) and CH4 (65 bar and 298 K) 

uptake and void fraction between structures found in the CoRE MOF database and 

energy minimized structure. 

 

 

 Our results show that adsorption properties can be dependent in a complex 

manner on the potential energy landscape of the adsorbate molecule within the structure. 

Figure 6.10 shows the relationship between change in adsorbate uptake and pore 

diameters of the original structure. The results show that almost all structures with a 

significant difference in uptake have pore sizes less than 5 Å, indicating a larger degree of 
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adsorbate interaction with the pore walls. It is important to note, however, that not all 

MOFs with a LCD of less than 5 Å behave this way. Of the 165 structures with an LCD 

less than 5 Å, 108 and 120 structures showed a difference in computed CO2  and CH4 

uptake of less than 25% after DFT energy minimization of the structure, respectively. 

Figure 6.10 shows that for structures with 6 Å  or larger LCDs, CH4 uptake is less 

sensitive to structural change. This is not true for CO2 uptake, where structures with LCD 

of 12 Å can still undergo up to 100% change in uptake. 

For some MOFs, we find that structural relaxation leads to an increase in methane 

uptake but a decrease in CO2 uptake. One such example is MOF CICYIX40, a Cd based 

MOF shown in Figure 6.11. During minimization, the unit cell of CICYIX transitions from 

an orthorhombic structure into a triclinic structure. The LCD of the structure increases by 

5% and framework density increases by 3%. This results in an increase from 0.22 to 15.87 

cm3 (STP)/cm3 increase in methane uptake. While methane uptake goes from almost no 

uptake to a noticeable amount, CO2 uptake drops from a relatively high uptake of 154.40 

cm3 (STP)/cm3 to almost no uptake of 3.29 cm3 (STP)/cm3.  As shown in Figure 6.11, in 

the experimental structure, CO2 adsorbs systematically in a single location in every pore. 

That is, there are specific pockets within the MOF pore that are ideal for CO2 adsorption. 

In the energy minimized structure, the GCMC results show only one CO2 molecule 

adsorbed in the supercell considered. This adsorption is not statistically relevant and can 

be considered the higher limit of CO2 uptake for the MOF.  
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Figure 6.10: Percent difference in CO2 (1 bar and 298 K) and CH4 (65 bar and 298 K) 

uptake between structure found in the CoRE MOF database and energy minimized 

structure as a function of the original structure’s LCD. 

 

 

 

 

Figure 6.11 The framework of CICYIX shown in grey and CO2 molecules adsorbed 

during GCMC calculations at 1 bar and 298 K shown in red for (a) the structure of 

CICYIX found in the CoRE MOF database and (b) after energy minimization. 

a) b) 
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To further probe the sensitivity of CO2 uptake in CICYIX, small structure changes 

were introduced to the DFT minimized structure through a 400 fs dynamics calculation 

using ab initio molecular dynamics (AIMD), which does not require specification of a force 

field for the MOF degrees of freedom. Further details on AIMD calculations are given in 

Appendix D. GCMC calculations for CO2 adsorption were performed for four snapshots 

taken from the AIMD simulations, at 2 fs, 269 fs, 320 fs, and 369 fs. The snapshot at 2 fs 

represents a minor change in atomic positions of the structure. We find that even with this 

small change in atomic positions, CO2 uptake can increase to 110.32 cm3
 (STP) /cm3, see 

Figure 6.11. To evaluate more random displacement in atomic positions and changes in the 

unit cell, three snapshots were obtained at random intervals starting at the randomly chosen 

269 fs AIMD step. All reported uptakes and heats of adsorption for CICYIX were 

calculated by averaging and calculating the standard error among 10 GCMC calculations 

of uptake at 1 bar and 298 K.  Adsorption studies in these snapshots show uptakes ranging 

from 70 to 90 cm3
 (STP) /cm3

. These changes in uptake at 50 fs intervals correspond to less 

than 1° change in the unit cell angles and 0.5 Å change in unit cell lengths.  

As shown in Figure 6.12 (d), the DFT energy minimization of the structure results 

in a shift in pore size distribution. After 2 fs of AIMD in the energy minimized structure, 

we find a 40% increase in the number of 3.3 Å pores and a 25% decrease in the number of 

3.4 Å pores. Along with this structural change, we find a 10 kJ/mol increase in heat of 

adsorption. It is possible that the smaller pores result in an increased pore wall and 

adsorbate interaction and ultimately a favorable CO2 adsorption environment. We did not 

expect such a large difference in adsorption properties after 2 fs of AIMD. This observation 

highlights the high sensitivity of CICYIX to changes in atomic position. After 269 fs of 
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AIMD, we find a larger and wider range of pore sizes. In these structures, the most 

prevalent pore sizes are 3.7- 4.2 Å, resulting in a CO2 heat of adsorption that is an average 

of 4.4 kJ/mol less than at 2 fs (Figure 6.12 (a)).Upon visualization of adsorption, see Figure 

6.12 (c), we find that CO2 is adsorbed in fewer of the larger pores than the smaller pores. 

Using snapshots also allows us to consider the flexibility of the framework and its impact 

on adsorption properties. However, using snapshots from AIMD of the empty framework 

assumes that the framework flexibility is decoupled from the adsorbate.  
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Figure 6.12: (a) Heat of adsorption calculated at 1 bar and 289 K. (b) Uptake of CO2 at 1 

bar and 298 K shows that choice of framework can drastically affect calculated results.  

(c) The framework of CICYIX shown in grey and CO2 molecules adsorbed during 

GCMC calculations at 1 bar and 298 K shown in red. (d) Pore size distribution of each 

framework shows a large range of possible pore sizes for CICYIX.  

 

To understand the framework response to the presence of CO2 within the pores and 

to better understand the high uptake of the original experimental structure, we DFT energy 

minimized the structure with adsorbed CO2 at 154.40 cm3 (STP)/cm3. Figure 6.13 shows 



 

120 

the pore size distribution of four cases: (1) Structure after DFT energy minimization of 

empty framework, (2) Structure from CoRE MOF database, (3) Structure from CoRE MOF 

database after energy minimization with CO2 adsorbed in pores at 154.40 cm3 (STP)/cm3, 

(4) Structure after DFT energy minimization of empty framework after 2 fs of AIMD.  The 

pore size distribution of case 3 is closely related to that of case 4. Next we removed the 

CO2 from the pores of case 4 and recomputed a CO2 uptake.  The new CO2 heat of 

adsorption (36.1 kJ/mol) is also closely related to that of the 2 fs snapshot (38.7 kJ/mol). 

As discussed earlier, 3.3 Å pores seem to be more favorable for CO2 adsorption.  This new 

structure, case 3, has 30% more 3.3 Å pores than the 2 fs snapshot which may account for 

its increased uptake of 130.37 cm3 (STP)/cm3 (see Appendix D).  

 

 

Figure 6.13:  Pore size distribution (PSD) of structures in Case 1-4. The vertical axis 

represents normalized frequency. 

 

 

In this chapter, we have identified MOFs like CICYIX where the high levels of 

pore wall and adsorbate interaction make the computed adsorption properties of CO2 highly 
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sensitive to the precision of the framework structure. These results indicate that for MOFs 

with pore sizes close to that of the adsorbate in question, framework dynamics during 

adsorption studies can significantly impact the computationally calculated adsorption 

properties. While such structures require more care during simulation, they also present 

new opportunities in tuning pore structures to design highly CO2 selective MOFs41-43.  

6.4 Conclusions  

We have produced a diverse set of 900 DFT optimized MOF structures which is 

publicly available at http://dx.doi.org/10.11578/1118280 as a supplement to the CoRE 

MOF database.  We have also assessed the change to the experimentally refined structures 

upon DFT energy minimization and shown that a majority of the structures undergo less 

than 10% change in structural parameters such as pore size, unit cell length, unit cell angles, 

unit cell volume, and void fraction.  For MOFs with large changes upon energy 

minimization, we have highlighted the correlation between large structural change and 

presence of solvent during structural analysis. Previous high-throughput computational 

methods for assessing properties of MOFs have relied on the experimentally derived MOF 

structure. Such studies have ignored potential structural effects due to solvent removal. We 

anticipate our database of refined structures will have important implications for such high-

throughput MOF screening efforts. 

We have used the large set of DFT optimized structures to assess the effect of 

structural changes on adsorption properties of the MOFs. By studying uptake of CH4 and 

CO2 before and after optimization, we have shown that, for a majority of MOFs, methane 

uptake is not sensitive to small structural changes. However, we find that, for 56% of 

MOFs, CO2 uptake changed by more than 25% upon minimization of the structure. We 
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found a weak correlation between change in structure and change in uptake. These results 

indicate that adsorption properties can be dependent in a complex manner on the potential 

energy landscape of the adsorbate molecule within the structure. We have also shown that 

almost all structures with a significant difference in uptake have small pore sizes, 

signifying the importance of adsorbate interaction with the pore walls. The CICYIX MOF, 

which has a pore size comparable to CO2, was studied further to demonstrate the 

significance of small structural difference on computed adsorption properties. Specifically, 

this highlights the drastic difference including framework dynamics can have on computed 

adsorption properties of some MOFs. 

Our results have significant implications for the MOF community. Structure 

precision is typically ignored in simulation of adsorption in MOFs. We have identified two 

types of precision which should be considered why performing adsorption calculations. 

First, great care should be given to the starting structure. If the MOF structure if obtained 

with residual solvent present in the pores, the structure should be energy minimized and 

validated. Even if the structure does not change significantly after energy minimization, 

GCMC calculations in the new energy minimized structure may result in a significantly 

different uptake value, especially for polar molecules where electrostatic interactions play 

an important role. Second, for MOFs with pore sizes comparable to the adsorbate, small 

fluctuations in the pore size can drastically change uptake properties. For such situations, 

consideration of framework flexibility is essential for a reliable predication of adsorption. 

To more reliably study adsorption properties, especially in a high-throughput manner, the 

MOF community must development a range of inexpensive methods to incorporate 

framework flexibility in adsorption calculations.   
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CHAPTER 7 

IMPACT OF FRAMEWORK FLEXIBILITY ON PREDICTED 

ADSORPTION PROPERTIES  

 

7.1 Introduction   

Computational modeling of Metal-Organic Framework (MOFs) properties have 

contributed greatly to the understanding of MOFs and their potential applications. 

Specifically, modeling gas adsorption with grand canonical Monte Carlo (GCMC) 

simulations has played an important role in the development of adsorbents for gas storage 

and separations.1-5 As discussed in Chapter 4-6, GCMC simulations are used increasingly 

used to screen databases of MOFs for application in separations and storage. Such 

screening studies are accessible given the assumption that the MOF framework can be 

treated as rigid during the GCMC simulation.  

As with any material, MOFs are not perfectly rigid. Multiple studies of gas 

diffusion in MOFs have demonstrated the importance of small fluctuations in the MOF 

framework on the predicted adsorption property.6-9 Until recently, with the exception of 

breathing6, 7, 10 and gate-opening8 MOFs, the impact of flexibility was considered negligible 

for adsorption simulations. Recently methods have been developed to account for 

framework flexibility during GCMC simulations, but these methods are computationally 

expensive and not yet commonly used.11-13 While there are numerous examples of 

computational studies which have successfully reproduced experimental adsorption 

results,14, 15 there is currently no consensus on the importance of flexibility on predicting 
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adsorption. However, it is clear that there are cases where flexibility can play an important 

role. Our work in Chapter 6 demonstrates that small fluctuations in atomic positions and 

pore sizes can significantly change the predicted CO2 adsorption properties. Forster et al. 

have also shown that predicted adsorption properties of Ar, Kr, and Xe are sensitive to the 

precision of the HKUST-1 structure.16 Gee et al. have demonstrated that framework 

flexibility is crucial for predicting selectivity for o-xylene/ethylbenzene(oX/eb) in MIL-

47.13 In their study, Gee et al. showed that GCMC with a rigid DFT energy minimized 

structure for MIL-47 predicts a selectivity that is an order of magnitude larger than the 

experimentally predicted value. However, using a “snapshot method”, they captured 

flexibility in MIL-47, predicting a more accurate selectivity, closer in magnitude to the 

experimental result. In this snapshot method, Gee et al. obtained structures from a 

molecular dynamics simulation of the empty framework. They used the snapshots as input 

to a GCMC simulation of adsorption where the framework is treated as rigid. This method 

is useful for considering the flexibility of the framework and its impact on adsorption 

properties. However, using snapshots from molecular dynamics of the empty framework 

assumes that the framework flexibility is decoupled from the adsorbate.17, 18 

The aim of this project is to further quantify the extent to which flexibility of the 

MOF framework may impact adsorption. We have chosen three commonly studied MOFs 

(UiO6619, HKUST-120, IRMOF-121) with a moderate pore size (5-10 Å) and, using the 

snapshot method, investigated prediction of adsorption of methane, CO2, and oX/eb. 

Methane represents a control adsorbate, CO2 was chosen due to the intriguing results in 

Chapter 6, and oX/eb was chosen to extend upon work done by Gee et al. We emphasize 

that we have not considered examples where the overall crystal structure changes upon 
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adsoption, such as breathing or deformations of the framework induced by the adsorbate, 

such as swelling or gate-opening.   

7.2 Methods and Computational Details    

7.2.1 AIMD Simulations   

Prior to AIMD simulations, each MOF structure was energy minimized. All energy 

minimizations were performed using the plane-wave DFT computational package 

VASP5.2.12.22 We have previously shown that funcitonals  PBE23, PBE-D224, and PBE-

D325, 26, PW9127-29, M06L30 or vdw-DF231 all reliably predict MOF structure and that 

dispersion corrected functionals, on average, tend to perform best.32 Given our findings, 

the PBE-D2 functional was used. The Brillouin zone was sampled with a 1000 points per 

atom density Monkhorst‐Pack grid. An energy cut off of 520 eV was used for all 

calculations without spin polarization. Simulations were performed in two parts. First, we 

performed energy minimization for only ionic positions based on a conjugate gradient 

algorithm. A subsequent minimization used the final positions of the first minimization, 

introduced the cell shape and volume as degrees of freedom and switched to a quasi-

Newton minimization algorithm. Cartesian coordinate convergence criteria of a maximum 

change in system energy of 5 x 10-4 eV per atom and a maximum change in force of 3 x 

10-3 eV Å-1 were applied to all energy minimization calculations. 

All dynamics calculations were performed using ab initio molecular dynamics 

(AIMD), which does not require specification of a force field for the MOF degrees of 

freedom. AIMD calculations were carried out on the empty framework using the Gaussian 

plane-wave (GPW) computational package CP2K 2.633 on the Argonne National 
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Laboratories supercomputer MIRA. The Goedecker, Teter, Hutter dual-space 

pseudopotentials (GTH)34 with the PBE functional, 650 Ry cutoff, and double-zeta valance 

polarized (DZVP)35 basis sets were used. Simulations were performed in the NPT ensemble 

at 300 K (Nose thermostat) and 1 bar, using a 1 fs timestep.  

To analyze changes in structure throughout the AIMD simulation, we have 

calculated unit cell volume, unit cell angles, unit cell lengths, and pore descriptors. Pore 

descriptors were measured using the Zeo++ geometry analysis package.36  

7.2.2 GCMC Simulations of Uptake and Selectivity    

GCMC simulations of methane adsorption were conducted using the RASPA 2.0 

code.37, 38 Methane adsorption was simulated at 65 bar and 298 K. The Peng Robinson 

equation of state39 was used to calculate the fugacity values necessary to impose 

equilibrium between the system and the external gas reservoir. Methane-methane and 

methane-framework interactions were modeled with a Lennard-Jones (LJ) 12-6 potential 

using the Lorentz-Berthelot mixing rules. The LJ parameters for all framework atoms were 

obtained from the Universal Force-Field (UFF).37 The LJ parameters for methane (ε/kB = 

148.0 K; σ = 3.73 Å) were obtained from the TraPPE force-field, modeled as a single 

sphere with one LJ interaction site.40 All LJ interaction potentials were truncated at 13.0 

Å. To satisfy the minimum image convention all simulation cells were replicated to at least 

26.0 Å along each axis. All GCMC simulations included a 200,000-cycle equilibration 

period followed by a 200,000- cycle production period.22 GCMC simulations included 

random insertion, deletion, translation, and re-insertion moves with equal probabilities.  

GCMC calculation of CO2 adsorption were performed at 65 bar and 298 K in a 

similar manner to methane adsorption calculations. Point charges used for each structure 
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can be found in Appendix E. All GCMC simulations included a 500,000-cycle 

equilibration period followed by a 500,000- cycle production period. The LJ parameters 

for CO2 were obtained from the TraPPE force-field, modeled as a 3-site molecule as 

described in Appendix D.40  

Binary GCMC calculations of ethylbenzene and o-xylene were calculated at 0.05 

bar and 298 K.  Simulations included a 500,000-cycle equilibration period followed by a 

500,000- cycle production period. The LJ parameters and charges for ethylbenzene and o-

xylene were adopted from the work by Gee et al.13 In this work, selectivity is defined as  

 

𝑥𝑜𝑋

𝑥𝑒𝑏

𝑦𝑒𝑏

𝑦𝑜𝑋
     

 

where x and y are the concentrations in the adsorbed phase and equimolar vapor phase, 

respectively.  

7.3 Results and Discussion    

7.3.1 Analyzing Extent of Flexibility    

Each AIMD simulation was allowed 2 ps of equilibration. Although this is a short 

time scale it appears to be sufficient for adequate exploration of the energy and lattice 

parameters for each material.  For UiO66 and HKUST-1, unit cell lattice angles (𝛼, 𝛽, 𝛾) 

fluctuate within 4°  and unit cell lengths (a, b, c) fluctuate within 2 Å. For IRMOF-1, the 

fluctuations are slightly larger, with angles fluctuating within 6°  and lengths fluctuations 

within 4 Å. We have successfully computed AIMD calculations for 14 ps in UiO66, 5.8 ps 
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for HKUST-1, and 19 ps for IRMOF-1. We have isolated four snapshots from the UiO66 

simulation at 0.5 ps intervals, seven snapshots from the HKUST-1 simulation at 0.25 ps 

intervals, and six snapshots from the IRMOF-1 simulation at 2 ps intervals. The number of 

snapshots was arbitrarily chosen. For these snapshots, we have also calculated the pore size 

distribution.  

UiO66 and IRMOF-1 show a larger range of pore distributions, noticeably different 

than that of their DFT minimized structure. However, the pore size distribution of HKUST-

1 fluctuates less and does not deviate drastically from the DFT minimized structure. This 

is expected as HKUST-1 is typically considered a “rigid” MOF, with each organic linker 

secured into position through bonds with 3 different metal centers. This allows for less 

flexibility in the linker relative to the 2-node linker connections found in UiO66 and 

IRMOF-1. Pore size distributions are shown and discussed in more detail in section 7.3.2.  

7.3.2 Impact on Adsorption  

Figure 7.1 shows methane uptake at 65 bar and 298 K for all the snapshots 

considered in each MOF. We find that while the predicted uptake is different among 

snapshots, the magnitude of the difference is less than 5%, a typically acceptable amount 

of imprecision for GCMC calculations. For UiO66, we find an average of 110.62 

cm3(STP)/cm3 methane uptake with a standard deviation of 0.93 compared to 111.27 

cm3(STP)/cm3 methane uptake in the DFT energy minimized structure. For HKUST-1, we 

find an average of 161.89 cm3(STP)/cm3 methane uptake with a standard deviation of 2.51 

compared to 166.39 cm3(STP)/cm3 methane uptake in the DFT energy minimized structure. 

For IRMOF-1, we find an average of 129.13 cm3(STP)/cm3 methane uptake with a standard 
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deviation of 2.32 compared to 125.09 cm3(STP)/cm3 methane uptake in the DFT energy 

minimized structure. 

 

 

 

Figure 7.1: GCMC-simulated methane uptake in HKUST-1, IRMOF-1, and UIO66 at 65 bar and 

298 K using the DFT energy minimized structure and the snapshots obtained from AIMD 

simulations. Error bars represent the standard error derived from block averaging during GCMC 

simulations.  

 

To consider a more complicated case, we have simulated the adsorption of CO2 , 

where electrostatic interactions with the MOF framework play a role in adsorption. Figure 

7.2 (a) shows the uptake and heat of adsorption (Qs) of CO2 in the energy minimized UiO66 

and the four AIMD snapshots. Figure 7.2 (c) shows the corresponding pore size distribution 

of each UiO66 structure. When comparing results from the snapshots to the DFT method, 

we find at most a 2 cm3
 (STP)/cm3 increase in predicted CO2 uptake and 1 kJ/mol increase 

in heat of adsorption. While there is a statistically significant different between the 

properties predicted for the DFT minimized structure and the snapshots, the magnitude of 

this difference is relatively small, less than 5%. This is unexpected given the noticeable 
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difference in pore size distribution. Structures obtained from the AIMD snapshots have a 

third smaller pore size, around 6.5 Å, which is not present in original UiO66 structure.   

Figure 7.2 (b) shows how such structure precision and flexibility may impact 

prediction of binary adsorption for a system with larger molecules, eb and oX. We find that 

selectivity for oX over eb from an equimolar mixture can be as different as 30% if a 

snapshot structure instead of the DFT energy minimized structure is used for GCMC 

calculations. However, as shown in Figure 7.2(b), the calculated selectivities are within 

error and no conclusions can be drawn from the following simulations without more 

converged data.  
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Figure 7.2: (a) GCMC-simulated CO2 uptake and heat of adsorption, (b) GCMC-

simulated oX/eb selectivity (c) pore size distribution (PSD) of the UiO66 framework 

DFT energy minimized and obtained from AIMD simulations. 

 

 

Similarly, we have studied CO2 uptake and oX/eb selectivity in HKUST-1. Figure 

7.3 (a) shows the uptake and Qs of CO2 in the energy minimized HKUST-1 and the seven 

a) 

b) 

c) 
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AIMD snapshots. Figure 7.3 (c) shows the corresponding pore size distribution of each 

HKUST-1 structure. There is a less than 1% difference in predicted uptake and heat of 

adsorption for CO2 among structures. For the case of HKUST-1, we find that snapshot 

method and the conventional method (using the DFT minimized structure) predict similar 

results. This holds true for prediction of oX/eb selectivity (see Figure 7.3 (b)). However, 

this is not true for the individual loading of oX and eb during the binary GCMC 

simulations. We find that while selectivity is unaffected, loading of eb fluctuates between 

37-53 cm3 (STP)/cm3 and can be up to 15% different from the uptake predicted for the DFT 

minimized structure. Similarly, loading of oX fluctuates between 53-58 cm3 (STP)/cm3 and 

can be up to 8% different from the uptake predicted for the DFT minimized (See Appendix 

E). This is a significant observation given the nuance changes in pore size distribution for 

the considered snapshots of HKUST-1. It suggests that depending on the system and the 

specific adsorption property considered, flexibility may play an important factor or the 

results. Table 7.1 shows the average value and standard deviation among GCMC 

simulations of snapshots compared to the property predicted in DFT energy minimized 

structure.  
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Figure 7.3: (a) GCMC-simulated CO2 uptake and heat of adsorption, (b) GCMC-

simulated oX/eb selectivity (c) pore size distribution (PSD) of the HKUST-1 framework 

DFT energy minimized and obtained from AIMD simulations. 

 

 

Finally, we have considered CO2 uptake and oX/eb selectivity in IRMOF-1. Figure 

7.4 (a) shows the uptake and Qs of CO2 in the energy minimized IRMOF-1 and the six 

AIMD snapshots. Figure 7.4 (c) shows the corresponding pore size distribution of each 

IRMOF-1 structure. The snapshot methods predicts a higher CO2 uptake, but there is a less 

than 5% difference in predicted uptake and Qs among structures. This holds true for 

a) 

b) 

c) 
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prediction of oX/eb selectivity (see Figure 7.4 (b)). Similarly we see minor differences in 

the pore size distributions calculated for all IRMOF-1 structures.  

 

 

 

Figure 7.4: (a) GCMC-simulated CO2 uptake and heat of adsorption, (b) GCMC-

simulated oX/eb selectivity (c) pore size distribution (PSD) of the IRMOF-1 framework 

DFT energy minimized and obtained from AIMD simulations. 

 

 

a) 

b) 

c) 
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Table 7.1: GCMC simulated adsorption properties for UiO66, HKUST-1, and IRMOF-1. 

Reasonable agreement between average property values from snapshots to the DFT 

structure properties.  

 UiO66 HKUST-1 IRMOF  

 DFT Snapshot 

Avg.  

Std. 

Dev. 

DFT Snapshot 

Avg.  

Std. 

Dev. 

DFT Snapshot 

Avg.  

Std. 

Dev. 
Co2 uptake 

[cm3 

(STP)/cm3] 

158.28 159.64 0.78 324.77 325.60 1.56 237.23 246.74 2.50 

Co2 Qs 

[kJ/mol] 
26.38 27.20 0.18 34.79 35.43 0.21 21.45 22.48 0.17 

Ox/eb  

[cm3 

(STP)/cm3] 

5.00 5.65 0.49 1.26 1.19 0.20 1.33 1.34 0.04 

 

 

7.4 Conclusions     

In this work we have expanded upon our findings in Chapter 6 and further 

investigated the impact of framework flexibility on molecular simulations of adsorption in 

MOFs with moderate size pores. We have considered adsorption of methane, CO2, and 

binary oX/eb in three commonly studied MOFs: UiO66, HKUST-1, and IRMOF-1. Our 

results show that flexibility of the framework does not significantly impact CO2 or methane 

uptake in these MOFs. However, including flexibility can noticeably impact the predicted 

loading of xylenes as in the case of HKUST-1. Throughout this work we have utilized the 

snapshot method which uses structures from molecular dynamics of the empty 

framework.13 This is an efficient method which we believe can be used to quickly gauge 

the sensitivity of predicted adsorption properties to incorporation of framework selectivity. 

However, this methods assumes that the framework flexibility is decoupled from the 



 

140 

adsorbate. It will be important in the future to consider a coupled interaction between the 

framework and adsorbate to better understand the important of MOF flexibility on 

prediction of adsorption behavior.  
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CHAPTER 8 

OUTLOOK 

 

In this work we have performed a comprehensive assessment of several key 

assumptions associated with high-throughput computational screening for metal-organic 

frameworks (MOFs) for separation applications using selective adsorption. We have 

benchmarked performance of DFT functionals. We have assessed the different point charge 

assignment methods for MOFs and the state of the experimentally derived MOF structures 

in the CoRE MOF database. We have quantitatively studied the impact of structure 

precision on prediction of adsorption properties and began investigating the importance of 

MOF framework flexibility for adsorption properties. A novel aspect of this work is the 

data driven approach, considering thousands of diverse materials to better understand the 

landscape of MOF properties.  

8.1 Benchmarking Density Functional Theory Functionals for MOFs 

We compiled a test set of chemically diverse MOFs with high accuracy 

experimentally derived crystallographic structure data. The test set contains MOFs with a 

range of topologies and elastic properties. We anticipate that this test set will prove useful 

in a range of benchmarking studies relevant to MOFs. In this work, we have also 

demonstrated the significance of our test set by assessing the variance in performance of 

DFT functional for properties where accurate experimental values are available (structure) 

and unavailable (point charges and elastic properties).  
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Our results indicate that there is no “one size fits all” functional suitable for 

accurately predicting the structure and other properties of MOFs. Although the choice of 

specific functional may be justified in some limited instances, it appears that the choice of 

functional for efforts aimed at screening large numbers of MOFs can justifiably be made 

based on computational convenience and availability.  

8.2 A Comprehensive Set of High Quality Point Charges for MOFs  

We produced a set of high quality point charges for nearly 3,000 experimentally 

synthesized MOF structures using plane wave DFT calculations and the DDEC charge 

partitioning method. We have made these charges, the DDEC Point Charge MOF database, 

publically available. These charges are well suited for modeling adsorption in MOFs. We 

have compared the CBAC charge assignment approach to thousands of point charges 

predicted based on structure specific DFT calculations and demonstrated that CBAC 

charges may not be robust for screening a large MOF database.   

We have also demonstrated that charges assigned by the semi-empirical EQeq method 

can differ drastically from charges calculated with the DDEC method. These discrepancies 

in point charges can impact the calculated adsorption selectivities for the sample adsorbates 

we have examined, making the case that whenever possible using charges directly 

determined from electronic structure calculations such as the ones we have used is 

preferable to semi-empirical approaches. We anticipate that the publically available dataset 

of DDEC derived atomic point charges will extend the use of the CoRE MOF structures to 

answer a range of interesting questions concerning adsorption and diffusion of polar 

adsorbates in MOFs.  
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While attempting to assign point charges to the entire CoRE MOF database, we 

encountered MOF structures that we believe should be reevaluated.  Some of these 

structures have atoms that were too close to one another and resulted in a high initial 

energy. This could be due to an incorrect initial structure. Other structures resulted in 

unphysical charges. We believe this is due to incorrect removal of bound solvents during 

generation of the CoRE MOF database.  

We have also demonstrated that point charges are not sensitive to small or large 

structural changes, given no change in atom coordination. Therefore, we believe it is a 

worthwhile endeavor to continue to calculate point charges for the remaining MOFs in the 

CoRE MOF database and further expand the DDEC Point Charge database. 

8.3 High-Throughput Computational Screening of MOFs for trace contaminant 

removal  

We have screened each MOF in the DDEC Point Charge MOF database for 

potential use in the adsorptive removal of tert-butyl mercaptan (TBM) from methane. Our 

efficient screening procedure has identified hundreds of MOFs with high selectivity and 

capacity for TBM. These results suggest multiple directions for future experimental efforts, 

including the identification of some well-known materials as potential candidates for this 

separation. The observation that our calculations have identified a large number of 

materials with appealing adsorption selectivities and adsorption capacities for TBM 

provides a strong basis for continued development of high performance materials for this 

application. 

The high selectivities of MOFs in our study reveal a potential challenge with the 

application of MOFs for methane storage. In our study, we find that MIL-53 is highly 



 

148 

selective for TBM and most likely for other polar components of natural gas. This 

selectivity may drastically reduce methane capacity during cyclic adsorption, especially if 

TBM accumulates over the many cycles in the life time of the material. Zhang et al. have 

studied the adsorption and shown the accumulation of ethane, propane and butane in some 

common MOFs1, but there has yet to be a study on adsorption impact of trace components 

such as TBM and other polar species such as H2O and CO2 in natural gas. 

8.4 DFT Optimized Database of Experimentally Derived MOFs 

We have produced a diverse set of over 800 DFT optimized MOF structures which 

is publicly available as a supplement to the CoRE MOF database.  We have also assessed 

the change to the experimentally refined structures upon DFT energy minimization and 

found a strong correlation between large structural change and presence of solvent during 

structural analysis. Previous high-throughput computational methods for assessing 

properties of MOFs have relied on the experimentally derived MOF structure. Such studies 

have ignored potential structural effects due to solvent removal. We have used a large set 

of DFT optimized structures to assess the effect of structural changes on adsorption 

properties of the MOFs. By studying uptake of CH4 and CO2 before and after optimization, 

we have shown that for a majority of MOFs methane uptake is not sensitive to small 

structural changes. However, we find that for 56% of MOFs CO2 uptake changed by more 

than 25% upon minimization of the structure. We found a weak correlation between change 

in structure and change in uptake. These results indicate that adsorption properties can be 

dependent in a complex manner on the potential energy landscape of the adsorbate 

molecule within the structure. We have also shown that almost all structures with a 
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significant difference in uptake have small pore sizes, signifying the importance of 

adsorbate interaction with the pore walls.  

These results have significant implications for the MOF community. Structure 

precision is typically ignored in simulation of adsorption in MOFs. Great care should be 

given to the starting structure. If the MOF structure if obtained with residual solvent present 

in the pores, the structure should be energy minimized with DFT (if possible) and validated. 

Therefore, we believe it is worthwhile endeavor to continue energy minimization of the 

remaining MOF structures in the CoRE MOF database. In our work we have applied the 

BFGS optimization algorithm for efficiency reasons. We believe that using the conjugate 

gradient optimizer will increase the convergence success rate for energy minimization of 

the remaining MOF structures.  

We have also found that even if the structure does not change significantly after 

energy minimization, GCMC calculations in the new energy minimized structure may 

result in a significantly different uptake values, especially for polar molecules where 

electrostatic interactions play an important role. For MOFs with pore sizes comparable to 

the adsorbate, small fluctuations in the pore size can drastically change uptake properties. 

For such situations, consideration of framework flexibility is essential for a reliable 

predication of adsorption.  

8.5  Impact of Framework Flexibility on Predicted Adsorption Properties of 

MOFs 

We have considered adsorption of methane, CO2, and binary o-xylene and 

ethylbenzene in three commonly studied MOFs: UiO66, HKUST-1, and IRMOF-1. Our 

results indicate that flexibility of the framework does not impact CO2 or methane uptake in 
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these MOFs. However, including flexibility can noticeably impact the predicted loading of 

xylenes as in the case of HKUST-1. Throughout this work we have utilized the snapshot 

method which uses structures from molecular dynamics of the empty framework.2 This is 

an efficient method which we believe can be used to quickly gauge the sensitivity of 

predicted adsorption properties to incorporation of framework selectivity. However, 

assumes that the framework flexibility is decoupled from the adsorbate. It is also important 

to consider a coupled interaction between the framework and adsorbate to better understand 

the important of MOF flexibility on prediction of adsorption behavior. To more reliably 

study adsorption properties, especially in a high-throughput manner, the MOF community 

must development a range of computationally inexpensive methods to incorporate 

framework flexibility in adsorption calculations. 
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DETAILED RESULTS FOR BENCHMARKING OF DFT 

FUNCTIONALS FOR MOFS 

 

A.1 Additional Computational Details and Results  

Our studies show that results for the mechanical properties for DEMLIR are 

sensitive to the number of processors used for the calculations. Each calculation for 

DEMLIR has been tested along four differently compiled versions of VASP, using version 

5.2.12 and 5.3.5 and two different computing environments. We’ve found that result are 

reproducible as long as the same number of processors are used. Energy and geometry 

optimization calculations are not effected by parallelization. For our study, DEMLIR 

mechanical properties were calculated using 32 processors. 
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Table A. 1: MOF primitive unit cell size and computational parameter setup. An energy 

cut off of 520 eV was used for all calculations. 

REFCODE Chemical Formula 

Experimental Lattice 

Parameters (Å) 

Kpoints Comments 

  a b c   

QEJZUB011 Cu3H4C10O10 6.77 6.89 12.36 4 x 4 x 2  

HOGWAB2 Fe4H4C4O12 5.54 5.93 7.27 4 x 4 x 4  

HAWVOQ013 Co2C8N12 5.97 7.06 7.41 4 x 4 x 4  

RORQOE4 Ag4C12Cl4O8 5.29 6.34 11.40 6 x 4 x 2  

OFUWIV015 Zn1H4C4O4 4.83 4.83 6.25 6 x 6 x 4  

MURCEH6 Cu8H8C8N12Cl8 5.02 5.81 19.25 4 x 4 x 2 
Antiferromagnetic: see 

below for spin states f 

WAJJAU7 Li32Zn32H24C72O96 11.28 16.34 16.34 2 x 2 x 2 

For PBE-D2 ( Li: C6 = 

31.47 
𝐉𝐧𝐦𝟔

𝐦𝐨𝐥
 R0 = 2.077 Å ) 

PIJGEV8 Cd2H10C16N4O10 7.55 7.64 8.47 4 x 4 x 4  

KOMJEC9 Sm2H12C10O14 6.76 7.67 8.05 4 x 4 x 4 

For PBE-D2  ( Sm: C6 

=33.98 
𝐉𝐧𝐦𝟔

𝐦𝐨𝐥
 R0 = 2.226 Å) 

YORSII10 Dy2H12C12N2O16 6.74 7.81 9.17 4 x 4 x 2  

DEMLIR11 Fe4P4H16C8O24 6.61 8.36 9.62 4 x 4 x 2 
Antiferromagnetic: see 

below for spin states  
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Fractional coordinates of Cu atoms and corresponding initial spin state in MURCEH  

     0.000000000         0.500000000         0.500000000 -2 

     0.000000000         0.500000000         0.000000000 -2 

     0.812179983         0.957530022         0.437770009  2 

     0.812179983         0.957530022         0.937770009  2 

     0.187820002         0.042470001         0.062229998 -2 

     0.187820002         0.042470001         0.562229991    2 

 

Fractional coordinates of Fe atoms and corresponding initial spin state in DEMLIR 

     0.023400  0.511260   0.402520    2 

     0.476600  0.488740   0.902520   -2 

     0.976600  0.011260  0.097480   -2 

     0.523400  0.988740    0.597480       2 
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The following results (A.2 – A.7) represent the mean absolute deviation (MAD) of 

structural properties calculated for the DFT minimized structure from the experimental 

structure. Averaging is performed per structure. MAD is defined as  

 

𝑀𝐴𝐷𝑓 = ∑
𝑎𝑏𝑠(𝑥𝑒𝑥𝑝,𝑖−𝑥𝑖)

𝑁

𝑁
𝑖     (A.1) 

 

 

where 𝑓 is the functional of interest, 𝑁 is the total number of bond length, angles, or 

torsions considered for a MOF, 𝑥𝑒𝑥𝑝,𝑖  is the measured value for the experimental structure 

and 𝑥𝑖  is the measured value for the DFT predicted structure. 

Table A. 2: MAD of ∆ in lattice parameters (Å) by MOF 

 M06L PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 0.59 0.58 0.57 0.27 0.02 0.20 

PIJGEV (Cd ) 0.25 0.25 0.20 0.03 0.07 0.16 

HAWVOQ01 (Co) 0.37 0.41 0.42 0.21 0.18 0.09 

QEJZUB01 (Cu I) 0.24 0.24 0.24 0.11 0.16 0.16 

MURCEH (Cu II) 0.16 0.17 0.16 0.05 0.07 0.21 

YORSII (Dy) 0.12 0.15 0.11 0.04 0.05 0.11 

HOGWAB (Fe) 0.17 0.17 0.18 0.08 0.06 0.23 

DEMLIR (Fe ) 0.15 0.12 0.13 0.21 0.21 0.06 

KOMJEC (Sm) 0.18 0.18 0.18 0.09 0.06 0.12 

OFUWIV01 (Zn) 0.16 0.16 0.16 0.03 0.09 0.10 

GUPCUQ01 (Cd) 0.30 0.30 0.28 0.10 0.14 0.32 

WAJJAU (Li Zn) 0.14 0.16 0.16 0.07 0.06 0.40 
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Table A. 3: MAD of ∆ in bond length (Å) by MOF 

 M06L PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 0.076 0.074 0.064 0.028 0.015 0.078 

PIJGEV (Cd ) 0.062 0.062 0.055 0.022 0.033 0.077 

HAWVOQ01 (Co) 0.213 0.208 0.203 0.186 0.198 0.182 

QEJZUB01 (Cu I) 0.112 0.112 0.109 0.051 0.050 0.064 

MURCEH (Cu II) 0.032 0.028 0.035 0.009 0.014 0.064 

YORSII (Dy) 0.024 0.035 0.023 0.022 0.025 0.045 

HOGWAB (Fe) 0.085 0.085 0.083 0.052 0.051 0.030 

DEMLIR (Fe) 0.033 0.065 0.068 0.075 0.076 0.036 

KOMJEC (Sm) 0.026 0.027 0.026 0.011 0.015 0.056 

OFUWIV01 (Zn) 0.038 0.038 0.034 0.023 0.041 0.054 

GUPCUQ01 (Cd) 0.051 0.053 0.047 0.023 0.032 0.080 

WAJJAU (Li Zn) 0.029 0.024 0.028 0.023 0.021 0.073 
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Table A. 4: MAD of ∆ in bond angle (°) by MOF 

 M06L PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 4.76 4.72 4.78 3.67 0.55 1.48 

PIJGEV (Cd ) 2.14 2.08 1.80 1.17 1.17 0.65 

HAWVOQ01 (Co) 0.93 0.95 0.98 0.36 0.44 0.64 

QEJZUB01 (Cu I) 2.95 2.96 2.88 0.77 0.53 2.60 

MURCEH (Cu II) 1.82 1.85 2.39 1.06 0.91 1.37 

YORSII (Dy) 1.95 2.07 2.01 2.15 1.37 1.20 

HOGWAB (Fe) 1.88 1.88 2.14 3.43 3.13 5.17 

DEMLIR (Fe) 1.09 1.62 1.73 1.97 1.94 1.74 

KOMJEC (Sm) 2.40 2.34 2.40 1.32 1.17 1.50 

OFUWIV01 (Zn) 2.24 2.24 2.35 0.86 1.01 0.97 

GUPCUQ01 (Cd) 0.52 0.74 0.47 1.35 1.40 2.39 

WAJJAU (Li Zn) 0.83 0.69 0.56 0.99 1.02 1.39 
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Table A. 5: MAD of ∆ in torsion angle (°) by MOF 

 M06L PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 9.37 9.27 9.39 7.28 1.06 2.21 

PIJGEV (Cd ) 5.78 5.67 4.86 3.91 2.84 2.42 

HAWVOQ01 (Co) 11.21 14.73 13.24 8.13 7.72 6.79 

QEJZUB01 (Cu I) 6.18 3.95 5.83 7.87 7.55 5.94 

MURCEH (Cu II) 12.90 11.38 6.73 12.93 8.11 11.63 

YORSII (Dy) 8.54 8.58 8.85 6.57 7.14 5.09 

HOGWAB (Fe) 2.15 2.15 2.80 4.78 4.30 7.92 

DEMLIR (Fe) 3.43 8.78 8.79 11.48 10.74 8.98 

KOMJEC (Sm) 10.87 10.83 10.87 4.17 3.95 5.62 

OFUWIV01 (Zn) 5.05 5.05 4.92 2.78 2.83 4.20 

GUPCUQ01 (Cd) 1.14 1.27 1.08 1.63 1.75 2.16 

WAJJAU (Li Zn) 1.52 1.83 1.70 1.44 1.27 4.04 

 

 

 

 

 

 

 

 

 

 



 

159 

Table A. 6: ∆ in PLD (Å) by MOF 

 M06L PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 0.20 0.20 0.20 -0.20 -0.01 0.13 

PIJGEV (Cd ) 0.13 0.13 0.06 0.01 -0.03 -0.01 

HAWVOQ01 (Co) 0.33 0.20 0.36 -0.30 -0.28 -0.22 

QEJZUB01 (Cu I) 0.11 0.11 0.10 -0.11 -0.10 -0.25 

MURCEH (Cu II) 0.15 0.16 0.16 -0.03 0.02 0.08 

YORSII (Dy) 0.14 0.15 0.15 -0.03 0.02 0.07 

HOGWAB (Fe) -0.17 -0.18 -0.17 -0.32 -0.32 -0.41 

DEMLIR (Fe) 0.06 -0.10 -0.11 -0.23 -0.20 -0.13 

KOMJEC (Sm) 0.09 0.09 0.09 -0.15 -0.13 -0.09 

OFUWIV01 (Zn) 0.18 0.18 0.18 -0.11 -0.05 -0.05 

GUPCUQ01 (Cd) 0.07 0.08 0.08 -0.02 -0.01 -0.01 

WAJJAU (Li Zn) 0.04 0.01 0.03 -0.04 -0.08 0.22 
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Table A. 7: ∆ in LCD (Å) by MOF 

 M06L PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 0.28 0.28 0.28 -0.03 0.00 0.09 

PIJGEV (Cd ) -0.01 -0.02 -0.07 0.06 0.07 0.10 

HAWVOQ01 (Co) 0.27 0.40 0.23 -0.24 -0.22 -0.11 

QEJZUB01 (Cu I) 0.18 0.18 0.18 0.00 0.01 -0.10 

MURCEH (Cu II) 0.15 0.14 0.14 -0.11 -0.09 0.06 

YORSII (Dy) 0.01 -0.03 -0.04 -0.30 -0.24 -0.14 

HOGWAB (Fe) 0.06 0.06 0.06 -0.06 -0.02 -0.10 

DEMLIR (Fe) 0.11 -0.03 -0.04 -0.09 -0.09 -0.03 

KOMJEC (Sm) 0.05 0.04 0.04 0.15 0.17 0.09 

OFUWIV01 (Zn) 0.23 0.23 0.22 -0.17 -0.12 -0.12 

GUPCUQ01 (Cd) 0.21 0.24 0.21 -0.05 -0.02 0.09 

WAJJAU (Li Zn) 0.04 0.10 0.03 0.10 0.04 0.20 
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Table A. 8:  Angles of the experimental crystal structures considered for three example 

MOFs in the test set. 

HOGWAB RORQOE HAWVOQ01 

O Fe O 78.47 Cl Ag O 68.37 N Co N 94.86 

O Fe O 73.86 Cl Ag O 74.94 N Co N 85.14 

O Fe O 88.31 Cl Ag O 135.63 N Co N 91.05 

O Fe O 161.34 Cl Ag O 137.90 N Co N 88.95 

O Fe O 87.09 O Ag O 110.23     

O Fe O 152.01 O Ag O 108.82     

O Fe O 93.86 O Ag O 139.57     

O Fe O 87.34 O Ag O 137.82     

O Fe O 88.92 O Ag O 65.96     

O Fe O 89.51 O Ag O 74.16     

O Fe O 120.59         

O Fe O 85.59         

O Fe O 80.54         

O Fe O 174.05         

O Fe O 104.87         
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Table A. 9: Minimum Young’s modulus for MOFs in the test set (GPa) 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 22.7 19.6 20.7 16.5 17.1 17.9 

PIJGEV (Cd ) 102.1 98.1 99.4 96.6 100.3 103.7 

HAWVOQ01 (Co) 23.2 19.0 21.8 21.4 20.7 17.2 

QEJZUB01 (Cu I) 46.1 36.3 36.5 35.0 33.9 40.8 

MURCEH (Cu II) 48.1 48.2 48.6 48.3 48.2 47.1 

YORSII (Dy) 143.9 141.4 141.5 140.5 140.8 150.2 

HOGWAB (Fe) 67.0 67.7 67.9 64.8 66.4 81.2 

DEMLIR (Fe) 184.9 185.1 168.3 184.2 184.2 179.6 

KOMJEC (Sm) 146.0 145.0 145.0 141.1 144.4 156.4 

OFUWIV01 (Zn) 111.4 110.2 110.7 110.4 111.4 110.4 
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Table A. 10: Maximum Young’s modulus for MOFs in the test set (GPa) 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 284.9 281.4 284.5 282.5 283.4 285.3 

PIJGEV (Cd ) 406.7 403.5 403.2 401.7 404.7 405.4 

HAWVOQ01 (Co) 482.1 461.2 466.8 464.9 468.6 461.4 

QEJZUB01 (Cu I) 361.3 359.5 353.7 361.8 354.9 362.8 

MURCEH (Cu II) 430.7 425.4 428.3 425.1 434.2 437.9 

YORSII (Dy) 340.7 340.2 339.9 337.3 337.9 343.1 

HOGWAB (Fe) 461.4 460.1 460.8 461.9 453.3 468.5 

DEMLIR (Fe) 351.1 352.8 339.5 354.2 354.2 342.8 

KOMJEC (Sm) 432.0 431.4 431.4 427.8 431.3 430.6 

OFUWIV01 (Zn) 379.3 380.4 379.8 380.6 380.2 376.6 

 

Table A. 11: Minimum linear compressibility for MOFs in the test set (TPa-1) 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) -20.6 -25.3 -23.4 -31.1 -29.9 -28.5 

PIJGEV (Cd ) 0.7 0.7 0.7 0.7 0.7 0.8 

HAWVOQ01 (Co) -3 -3.6 -3.4 -3.5 -3.5 -3.2 

QEJZUB01 (Cu I) 1.1 1.2 1.3 1.2 1.4 1.1 

MURCEH (Cu II) 0.9 1.1 0.9 1.1 0.9 0.9 

YORSII (Dy) 1.1 1.1 1.1 1.1 1.1 1.1 

HOGWAB (Fe) 1.0 1.0 1.0 0.9 1.0 1.1 

DEMLIR (Fe) 0.9 0.8 1.027 0.8 0.8 0.9 

KOMJEC (Sm) 0.8 0.7 0.7 0.7 0.8 0.8 

OFUWIV01 (Zn) 1.0 1.0 1.0 1.0 1.0 1.0 
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Table A. 12: Maximum linear compressibility for MOFs in the test set (TPa-1) 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 31.7 38 36.1 46 44.4 40.3 

PIJGEV (Cd ) 5.6 5.9 5.8 6 5.7 5.4 

HAWVOQ01 (Co) 21.2 26.2 22.9 24.5 25 25 

QEJZUB01 (Cu I) 11.1 14 13.2 15.1 15 10.8 

MURCEH (Cu II) 3.6 3.5 3.6 3.6 3.7 3.4 

YORSII (Dy) 4.3 4.4 4.4 4.4 4.4 4 

HOGWAB (Fe) 10.8 10.4 10.4 11 10.8 8.6 

DEMLIR (Fe) 2.6 2.5 3.1 2.6 2.6 2.8 

KOMJEC (Sm) 3.6 3.6 3.6 3.7 3.6 3.3 

OFUWIV01 (Zn) 4.4 4.5 4.5 4.4 4.4 4.4 
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Table A. 13: Minimum shear modulus for MOFs in the test set (GPa) 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 7.5 6.4 6.9 5.4 5.6 5.7 

PIJGEV (Cd ) 43.4 42.3 42.7 41.7 43.0 44.6 

HAWVOQ01 (Co) 8.6 7.3 8.2 8.3 8.0 6.1 

QEJZUB01 (Cu I) 14.0 10.9 10.9 10.6 10.2 12.0 

MURCEH (Cu II) 15.1 15.3 15.3 15.2 15.2 14.9 

YORSII (Dy) 60.2 59.5 59.5 59.2 59.6 62.2 

HOGWAB (Fe) 35.3 35.0 35.2 34.1 34.8 40.1 

DEMLIR (Fe) 79.2 79.1 72.2 79.4 79.4 76.1 

KOMJEC (Sm) 56.2 55.8 55.8 54.3 55.6 59.1 

OFUWIV01 (Zn) 44.5 44.4 44.5 44.1 44.5 43.4 
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Table A. 14: Maximum shear modulus for MOFs in the test set (GPa) 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 112.5 111.9 112.8 112.6 112.4 112.9 

PIJGEV (Cd ) 162.3 161.2 161.4 160.5 161.4 162.2 

HAWVOQ01 (Co) 126.0 126.7 127.5 127.1 126.3 123.4 

QEJZUB01 (Cu I) 149.4 147.8 147.5 149.3 148.0 149.2 

MURCEH (Cu II) 172.1 171.2 170.2 171.9 173.1 176.0 

YORSII (Dy) 137.9 137.6 137.6 137.0 138.1 141.3 

HOGWAB (Fe) 136.8 127.1 127.4 129.0 127.0 132.9 

DEMLIR (Fe) 144.5 144.3 143.1 144.8 144.8 142.6 

KOMJEC (Sm) 155.8 155.1 155.1 153.2 154.3 160.0 

OFUWIV01 (Zn) 157.0 156.7 156.6 156.5 157.7 156.1 
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Table A. 15: Minimum Poisson ration for MOFs in the test set 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) -1.16 -1.30 -1.25 -1.46 -1.43 -1.40 

PIJGEV (Cd ) -0.35 -0.36 -0.35 -0.37 -0.35 -0.32 

HAWVOQ01 (Co) -0.79 -0.89 -0.82 -0.81 -0.82 -1.03 

QEJZUB01 (Cu I) -0.39 -0.50 -0.48 -0.54 -0.54 -0.39 

MURCEH (Cu II) -0.82 -0.81 -0.81 -0.82 -0.83 -0.85 

YORSII (Dy) -0.09 -0.09 -0.09 -0.09 -0.08 -0.06 

HOGWAB (Fe) -0.43 -0.39 -0.39 -0.43 -0.40 -0.31 

DEMLIR (Fe) 0.02 0.03 -0.04 0.02 0.02 -0.02 

KOMJEC (Sm) -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 

OFUWIV01 (Zn) -0.04 -0.05 -0.05 -0.04 -0.04 -0.06 
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Table A. 16: Maximum Poisson ration for MOFs in the test set 

MOF M06 PBE PW91 PBE-D2 PBE-D3 vdw-DF2 

RORQOE (Ag) 1.70 1.83 1.78 2.01 1.97 1.94 

PIJGEV (Cd ) 0.78 0.79 0.78 0.78 0.78 0.77 

HAWVOQ01 (Co) 1.74 2.04 1.84 1.85 1.88 2.18 

QEJZUB01 (Cu I) 0.85 0.88 0.89 0.89 0.90 0.88 

MURCEH (Cu II) 1.43 1.43 1.42 1.43 1.44 1.49 

YORSII (Dy) 0.53 0.54 0.54 0.53 0.53 0.52 

HOGWAB (Fe) 0.69 0.70 0.69 0.72 0.69 0.64 

DEMLIR (Fe) 0.44 0.45 0.40 0.46 0.46 0.43 

KOMJEC (Sm) 0.59 0.60 0.60 0.60 0.60 0.60 

OFUWIV01 (Zn) 0.61 0.61 0.61 0.61 0.61 0.62 
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Table A. 17: The difference between MAD of vdw-DF2 and PBE-D2 for lattice 

parameters, bond lengths, Bond Angles and Torsion Angles. Negatives values are 

highlighted indicate that vdw-DF2 more accurately measured that property. Structures 

highlighted in red represent MOFs with little difference and highlighted in green 

represent MOFs with higher differences in predicted charges with vdw-DF2 and PBE and 

structures. We do not find a strong correlation between charge transfer predicted by vdw-

DF2 and better prediction of structural parameters compared to PBE-D2 

 Lattice Bond 

Length 

Bond Angle  Torsion 

Angle 
RORQOE (Ag) -0.07 0.036 0.63 2.11 

PIJGEV (Cd ) 0.13 0.033 0.62 0.95 

HAWVOQ01 (Co) -0.12 0.017 2.11 6.21 

QEJZUB01 (Cu I) 0.05 0.058 1.02 -0.09 

MURCEH (Cu II) 0.12 0.026 -0.14 2.21 

YORSII (Dy) 0.07 0.001 -1.29 2.28 

HOGWAB (Fe II) 0.15 0.031 -0.2 -1.98 

DEMLIR (Fe III) -0.01 

 

0.013 

 

0.62 

 

-0.60 

 
KOMJEC (Sm) -0.01 0.015 1.49 6.7 

OFUWIV01 (Zn) 0.07 0.011 -0.88 2.14 

GUPCUQ01 (Cd) 0.04 0.024 -0.43 -0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

170 

A.2 References  

1. W. Ouellette, A. V. Prosvirin, V. Chieffo, K. R. Dunbar, B. Hudson and J. 

Zubieta, Inorganic Chemistry, 2006, 45, 9346-9366. 

2. M. Molinier, D. J. Price, P. T. Wood and A. K. Powell, J Chem Soc Dalton, 1997, 

DOI: Doi 10.1039/A704400c, 4061-4068. 

3. M. Kurmoo and C. J. Kepert, New J Chem, 1998, 22, 1515-1524. 

4. W. Frenzer, R. Wartchow and H. Bode, Zeitschrift Fur Kristallographie, 1997, 

212, 237-237. 

5. T. A. Bowden, H. L. Milton, A. M. Z. Slawin and P. Lightfoot, Dalton 

Transactions, 2003, DOI: Doi 10.1039/B211181k, 936-939. 

6. R. Cao, Q. Shi, D. F. Sun, M. C. Hong, W. H. Bi and Y. J. Zhao, Inorganic 

Chemistry, 2002, 41, 6161-6168. 

7. L. H. Xie, J. B. Lin, X. M. Liu, Y. Wang, W. X. Zhang, J. P. Zhang and X. M. 

Chen, Inorganic Chemistry, 2010, 49, 1158-1165. 

8. C. C. Wang, C. T. Kuo, J. C. Yang, G. H. Lee, W. J. Shih and H. S. Sheu, Cryst 

Growth Des, 2007, 7, 1476-1482. 

9. X. J. Zhang, Y. H. Xing, J. Han, X. Q. Zeng, M. F. Ge and S. Y. Niu, Cryst 

Growth Des, 2008, 8, 3680-3688. 

10. X. J. Kong, G. L. Zhuang, Y. P. Ren, L. S. Long, R. B. Huang and L. S. Zheng, 

Dalton Transactions, 2009, DOI: Doi 10.1039/B819792j, 1707-1709. 

11. J. J. Hou and X. M. Zhang, Cryst Growth Des, 2006, 6, 1445-1452. 

 



 

171 

 

HERE IS THE TITLE OF APPENDIX A 

B.1 Additional Computational Details  

Table B. 1: List of grid type and subdivisions of the brillouin zone for each dft 

calculations using Gamma.  

ACUBAB NUVYOT DORDUK SEQSOY ITETEH VOTMAS IBICUT GAXKOH 

AJAYIT OBUBOC ECAHAT SOXHUI JETNOL VUHJAK IBIDAA FUSYUO 

AVEROJ ODIMAQ ECOSIY TAKYOV JUCXEK WAHMEY01h IGAHAB FANWOI 

BEPMAM ODOXEK EMANAH TAPXIT01 KIYMIQ WEMXIX ILUGOM CUVTUJ 

BEPMEQ OJICUG EXOTUH VACFOV01 KOFPEB WEVQOD ILUHUT CUIMDZ01h 

BEPMIU ONIXOZ FAKMAH VACFOV KOFPEB02 WEZCIO ILUJAB COXQUB 

BEPNIV PAPPIH FALQEQ VACFUB01 KOFPEB05 WUTBIW ILUJEF CODRUJ 

BEXPAX PAPRUU FALQOA VACFUB LAGBUS XADCOW ILUJIJ CODROD 

BOMCUB PARNON FEXCES VARREL LAGCUT XAKQIL JAHNEM CIGFEF 

CERMIV PELGOE FIVYEP01 VARRIP LAGHIL XIPBII JEBCOJ CAXWIJ 

DOTTUC PUQXUV GADMAA WUTBES LAJDUV XOVVOU JOGBIR CAXWEF 

DOTWAL RAVWAO GAYFUJ YIWPEZ LAJDUV01 XUNJEW KANCIN CAXWAB 

ILIGEP VOCXUH IBICON HOMZEP BIYTEJ PAPPED NUCREJ MIL-88C-dry 

GELVID01 DEQFOU LAJDUV02 YARGAB KANMIX CAXVUU COF-1 RIVDEF 

GERPUP DAXHUH01 LAJDUV03 YAZWOM KIGCEK CAXVOO COF-5 RONCIG 

HAMREU DAVYEG LEDLEN YUKBIP01 KOFPEB03 CAXVII CEFLEF RUCGOM 

HEBZAR CILDAD ATOTIM ZILBAZ KUDLUR CADPII PEKKAS SERKAC 

HEBZEV CAYSOK BANMAG MAZJEC LAGCED BUVXOG NUVWIL SERKEG 

HIGRIA BUVYIB BARZUR NABMUA LARVIL BENXUP MIL-88C-open SETSIV 

HIHJUF ATIJUJ BEPLUF NABMUA01 LOQLEJ BELYIC IBICED TAPXIT 

HOGLEV01 ANUGUM BEPNOB NOCLOH01 MURCIL BAHGUN IBICIH TUVDIX 

HOGTOM ANOMUM BEPNUH NOCLOH02 MURCOR BAHGUN04 ILIFOY TUVDUJ 

HUTZAX01 AMAFOK BEPPAP NOCLOH03 NALYEG BAHGUN01 ILIFUE UJEDIX 

IBARUA AFOVOH BEPPIX NOCLOH NANMEW MIL-88A-dry ILIGAL VATXEU 

IBASEL PUQYAC BEPPOD OFESAU NIJZIP01 MIL-88A-open HAMRIY VECWUX 

IBICAZ KATDAM BICDAU OFESIC NIJZOV MIL-88B-dry HURQUG  

FAKLIO FAKLOU FIVYEP GELVEZ GELVEZ02 GELVID REGQUR  
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ADDITIONAL GCMC RESULTS  

C.1 Additional Adsorption Analysis  

 

Figure C. 1: TBM saturation loading from single component GCMC simulations versus 

gravimetric pore volume. 
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Figure C. 2: Henry’s regime selectivity versus largest cavity diameter (LCD). 
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Figure C. 3: Binary GCMC selectivity at a representative pipeline composition of natural 

gas (10 ppm TBM in CH4, 18.1 atm) vs. Henry’s regime selectivity for 654 structures. 
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COMPUTATIONAL DETAILS  

D.1 Additional Computational Details  

Basis set for Lanthanum prepared for use in CP2K:  

 

La DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q11 

 1 

 2 0 3 7 3 2 2 1 

      2.61043358  0.35199091  0.10272260 -0.06808113 -0.15151046  

0.13381188  0.07768261 -0.04502434  0.56108153 

      1.97548354 -0.60467225 -0.25822195  0.15310013  0.39322808 -

0.41126147 -0.24128689  0.08813749 -0.67966568 

      1.37683237 -0.12976539  0.21539666  0.05799973 -0.18082295  

0.15710279  0.17606169 -0.16037691  0.42347127 

      0.50317401  0.38709867 -0.03637620 -0.61681449  0.01304460  

0.76568902  0.24859282  0.69197494  0.07320467 

      0.21379586  0.29290169 -0.25270638 -0.06902891 -0.40402320  

0.24356893  0.69804651  0.32599357  0.19414921 

      0.08361942  0.48342794  0.12965143  0.75484782 -0.67849916 -

0.31853420  0.56934571 -0.49399811  0.02544931 

      0.03181016 -0.15586999  0.89128029 -0.11636537 -0.40737349 -

0.20299666  0.17755680 -0.36789751  0.01461982 
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Trappe1 force field used for CO2: 
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Structures used in study of DDEC Charges:  

 

ABUWOJ_clean CATART03_clean CUNXIS10_clean FOHCIP_clean HEBKEG_clean 

AGARUW_clean CEGDUO_clean DEGJIK_clean FUNCEX_clean HOWPOZ_clean 

AMUCOB_clean CEGFAW_clean EBEMEF_clean GEHSAN_clean IBUDOZ_clean 

APEBED_clean CEGWER_clean EBEMII_clean GIDKOU_clean ICEGED_clean 

BALMUW01_clean CESYEF_clean ECODEG_clean GIMSIG_clean JIVFUQ_clean 

BONWAD_clean CESYEF01_clean EGEJIK_manual GUYLOC_clean KAYBIX_clean 

BOWQAG_clean CICYIX_clean EKOPIE_clean GUYMAP_clean KAYBUJ_clean 

BUDDIO_clean COYTEQ_clean EZUCIM_clean HAFQUC_clean KEXKAB_clean 

BUKMUQ_clean CUNXIS_clean FEFDAX_clean HAKWUM_clean KEXKEF_clean 

 

KINKAV_clean MATVEJ_clean PUSDOX_clean RATDAS02_clean SUHHOT_clean 

LABJUV_clean NADZEZ_clean QATHOK_clean RAXDAX_clean TARWAK_clean 

LAGNOY_clean NAKLIW_clean QEKLID01_clean REGLOG_clean TESGOO_clean 

LELMIA01_clean NARTUX_clean QIFLIC_clean RUFMUA01_clean TESGUU_clean 

LENRUS_clean NASCIV_clean QOJVAM_clean RURPEA_clean TEVZEA_clean 

LIKFOB_clean OFODAP_clean QOKCID_clean RUVMAX_clean TEVZOK_clean 

LUFQUZ02_clean PAKXIK_clean QOMDUS_clean SEFBOV_clean 

MADVUJ_clean PAPXUB_clean QUGBUQ_clean SETFUT_clean 

MATTUX_clean PORVUO_clean QUPHUF_clean SEYDUW_clean 

AIMD calculation details:  

All AIMD calculations were carried out using the Gaussian plane-wave (GPW) 

computational package CP2K 2.62 on the Argonne National Laboratories supercomputer 
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MIRA. We have chosen to use the Gordecker, Teter, Hutter dual-space pseudopotentials 

(GTH)3 with the PBE functional, 650 Ry cutoff, and double-zeta valance polarized 

(DZVP)4 basis sets. Simulations were performed in the NPT ensemble at 300 K (Nose 

thermostat) and 1 bar, using a 1 fs timestep.  

 

 

 

 

 

Heat of adsorption and uptake of CO2 in HKUST-1 at 1 bar and 298 K using the snapshot 

method.  
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ADITIONAL COMPUTATIONAL DETAILS  

Point charges used for UiO66: 

 

Atom Type Charge (e)   

C1 -0.0762 

C3 -0.1039 

C2 0.7469 

H1 0.1184 

H2 0.4807 

O1 -1.2298 

O3 -1.2372 

O2 -0.6761 

Zr1 2.5734 
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Point charges used for HKUST-1: 

 

Atom Type Charge (e)   

C3 -0.1229 

C1 -0.0079 

C2 0.6500 

H1 0.1339 

O1 -0.5436 

Cu1 0.8682 

 

 

 

 

Point charges used for IRMOF-1: 

Atom Type Charge (e)   

C3 -0.078 

C1 0.698 

C2 -0.091 

H1 0.121 

O1 -1.262 

Zn1 1.118 
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E.1 Loading of oX and eb in a GCMC-simulated binary uptake for a bulk 

equimolar mixture 

 

 

GCMC-simulated loading of oX and eb from a binary equimolar mixture. Loading of eb 

fluctuates between 37-53 cm3 (STP)/cm3 and can be up to 15% different from the uptake 

predicted for the DFT minimized. Similarly, loading of oX fluctuates between 53-58 cm3 

(STP)/cm3 and can be up to 8% different from the uptake predicted for the DFT 

minimized 

 

 

 

  


