Improved Randomized Broadcast Protocols
in Multi-hop Radio Networks

Chungki Lee James E. Burns®* Mostafa H. Ammar
GIT-CC-93/14
February 1993

Abstract

This paper presents a suite of randomized broadcast protocols for the prob-
lem of broadcasting a message in multi-hop radio networks. The protocols
are compared with the randomized broadcast protocol by Bar-Yehuda et al.
The time complexity of one of the randomized broadcast protocols presented
in this paper is shown, by simulation, to be much better than those of other
protocols in most of the typical cases.

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

*Author’s current address: Bellcore, P.O. Box 7040, Red Bank, NJ 07701-5699.

1 Introduction

A radio network is a collection of radios that communicate with each other over radio
channels. If all units in a network can hear each other, the radio network is single-hop;
otherwise it is multi-hop and repeaters must be used to provide network connectivity.
Radio networks have recently received significant attention due to the growing interest
in cellular telephones and wireless communication networks. In this paper, the problem
of broadcast in multi-hop radio networks is considered. Broadcast is initiated by a single
node, called the source, which sends a message to all nodes in the network. Broadcast
communication is an essential ingredient in many distributed network applications. De-
spite the broadcast nature of the radio medium, broadcast in multi-hop radio networks
requires careful consideration due to the increased potential for collisions.

The broadcast problem in radio networks has been studied extensively in the liter-
ature [CK85, CK87, CW87, BII89, BGI91, BGI92, ABLP91, ABLP92]. Chlamtac and
Kutten [CK85] showed that, given a radio network and a designated source, finding an
optimal broadcast schedule that uses the minimum number of timeslots is NP-hard.
Also they [CK85, CK8T] presented broadcast protocols based on using a spanning tree.
Chlamtac and Weinstein [CW8T7] presented a polynomial-time (centralized) algorithm
for constructing a broadcast schedule that uses O(D(log N)?*) timeslots, where N is the
number of nodes in the network and D is its diameter. Bar-Yehuda et al. [BGI92] pre-
sented a randomized broadcast protocol that runs in expected O((D + log(%)) log A)
timeslots to ensure that with probability 1 — € all nodes receive the message, where
A is the maximum degree. For D = O(1), they also showed a Q(N) lower bound for
deterministic broadcast protocols. Thus, for the broadcast problem, they claimed that
there exist randomized protocols that are much more efficient than any deterministic
one. Alon et al. [ABLP91] presented radio networks with diameter D = O(1) in which
every broadcast requires ((log N)?) timeslots, using a probabilistic argument.

In this paper, we present a suite of randomized broadcast protocols. Unlike deter-
ministic broadcast protocols in which each node is assumed to know either the complete
network topology or its neighbors, randomized broadcast protocols need no topological
knowledge of the network except for some upper bounds on its size and its maximum de-
gree. This property makes randomized protocols adaptive to changes in topology which
occur throughout the execution, and resilient to non-malicious faults. Also randomized
broadcast protocols are conceptually simple and require a minor amount of local com-
putation. The (average) time complexity of one of the randomized broadcast protocols
in this paper is shown, by simulation, to be much better than that of the randomized
broadcast protocol by Bar-Yehuda et al. [BGI92] in many typical topologies.

This paper is organized as follows. In section 2, a model of radio networks with
some necessary assumptions is presented. The randomized broadcast protocol by Bar-
Yehuda et al. is summarized in section 3. A suite of randomized broadcast protocols
is presented in section 4. Section 5 discusses the issue of termination of the protocols.
Section 6 compares the various randomized protocols. Section 7 concludes the paper.

2 The Model

A radio network is modeled by a connected, undirected graph whose vertices represent
nodes (radios) and whose edges represent two-way communication channels between
their incident vertices. Thus, we assume that adjacent radios are of comparable power
and are within range of each other. Nodes communicate in synchronous timeslots using
radio transmissions. All nodes agree on the beginning of each timeslot (using, say, a
satellite to provide timing signals). The length of a timeslot is assumed to be at least
as long as the transmission time of the longest message plus the maximum propagation
delay of messages between any pair of nodes.

The properties of radio communication are described by the following rules. In each
timeslot, a node can act either as a transmitter or as a receiver, but not both. Thus, a
transmitting node cannot directly detect whether or not its transmission is successtul.
A node receives a message in a timeslot if it acts as a receiver and exactly one of
its neighbors transmits. If more than one neighbor of a node transmits, a collision
occurs. If a collision occurs, receiving nodes cannot determine reliably that a collision
has occurred because collisions are indistinguishable from background noise. Except for
collisions, channels are assumed to be error-free.

A broadcast message is sent by a node, called the source, to all nodes in the network.
Our randomized protocols make use of the following quantities:

e N, the number of nodes in the network (It is sufficient to know an upper bound

on N).

e A, the maximum degree over all nodes in the network (It is sufficient to know an
upper bound on A).

These quantities are assumed to be globally known and be constant throughout the
execution of the protocols. They are used to parameterize the protocols. (It is sufficient
for only the source to know the quantities since they could be sent along with the
broadcast message.) Also, we assume as in [BGI92] that only a single broadcast by
a single source is in progress at any point in time. The protocols require no other
knowledge about the network, which allows them to tolerate changes in the network
over time.

The performance measures considered are the expected reception time (the time until
all nodes receive the broadcast message), and the expected termination time (the time
until the protocol terminates). Another measure of interest in a randomized broadcast
protocol is the success probability defined as the probability that all nodes receive a
copy of the broadcast message before the protocol terminates.

3 The Original Randomized Broadcast Protocol

For completeness we first summarize the randomized broadcast protocol by Bar-Yehuda
et al. and its properties [BGI92]. The basis for the protocol is a randomized procedure

called Decay. The main idea of the procedure Decay is to resolve conflicts among
the transmitting neighbors of a receiver by randomly eliminating half of them at each
timeslot. Suppose that d < A nodes are competing. Simultaneously, they all start a
game of coin flips. At each timeslot half of the remaining nodes remove their candidacy
on the average. It is expected that, with constant probability, before all nodes remove
their candidacy there exists a timeslot with exactly one candidate. The procedure is
described in Figure 1. In the description k£ is a parameter and m is the message to
be sent. Decay is a randomized protocol with the property that if & = 2[log A] and
several neighbors of a node v use Decay to send messages, then with probability greater
than 1, node v receives one of the messages. Throughout the paper all logarithms are

27
to base 2.

procedure Decay(k,m);

repeat at most £ times
send m to all neighbors;
flip (binary) coin

until coin = 0

Figure 1: Procedure Decay

The randomized broadcast protocol by Bar-Yehuda et al., called Protocol 0, makes
use of Decay. The protocol executed by each node except the source is described in
Figure 2. A network is said to execute a broadcast if the source transmits a broadcast
message at timeslot 0 and every other node executes the protocol in Figure 2. Note that
Time in the protocol is the current timeslot. The protocol has the following properties:

1. It terminates within O((D + (log &))log A) timeslots.

2. If threshold = [log %W and the network executes a broadcast then each node has
received the broadcast message with probability > 1 — €, before termination.

Note that all participating nodes start executing Decay at the same timeslot (i.e.,
only at one plus integer multiples of 2[log A]). Define the ith phase, or phase ¢, to be
the duration of time from timeslot 1 4 ((¢ — 1) * (2[log A])) to timeslot ¢ * (2[log A]).
We observe the following features of Protocol 0.

1. Whenever a node receives a message during a phase, the node should wait to for-
ward the message until the beginning of the following phase. Thus upon receiving
a message for the first time, each node waits for [log A| timeslots on the average
before it starts to forward the message. This feature will delay propagation of the
message.

procedure Protocol 0;
k= 2[log Al;
wait until receiving a message, say m;
do threshold times
wait until (7vme mod k) = 1;
Decay(k,m);
od

Figure 2: Protocol 0

2. During a phase a node can receive the same message several times from a neighbor
because each neighbor keeps sending it until cotn = 0. This continuous transmis-
sion by a neighbor helps to resolve collisions at nodes with more than one sending
neighbor during the phase. However, there is some redundancy involved in the
continuous transmission. We define a set X to be a success set of a node y in a
timeslot if every node in X receives a message from y in that timeslot. Note that
during a phase the size of the maximal success set is monotonically increasing
with each timeslot until y stops sending. Thus, all timeslots of a phase before the
final sending timeslot are redundant.

We conjecture that these features degrade the performance of the protocol. The proto-
cols in the following section attempt to eliminate these features in one way or another
to improve the performance.

4 New Randomized Broadcast Protocols

In this section a suite of new randomized broadcast protocols is presented.

4.1 Protocol 1

The first protocol, Protocol 1, is the same as Protocol 0 except that after a node
receives a message for the first time, the node tries to forward the message from the
next timeslot without waiting. Thus the protocol described in Figure 3 also uses the
procedure Decay. However, unlike Protocol 0 the protocol does not require that all
participants start executing Decay simultaneously. So the concept of a phase does
not apply here. It seems that immediate transmission of the message by the node
upon receiving it will speed up propagation of the message and allow more concurrent
transmission of messages (i.e., we can make better use of spatial reuse of transmission
timeslots). Thus we conjecture that Protocol 1 is better than Protocol 0 in most
typical cases.

procedure Protocol 1;

k= 2[log Al;
wait until receiving a message, say m;
t .= Time;

to:= (1 + 1) mod k;

do threshold times
wait until (7vme mod k) = to;
Decay(k,m);

od

Figure 3: Protocol 1

4.2 Protocol 2

The second protocol we consider, Protocol 2, is also a variation of Protocol 0. The
protocol tries to avoid an undesirable feature of Protocol 0, i.e., (possibly) continuous
transmission by a node during a phase until it tosses 0. That is, unlike Protocol 0, a
node flips a binary coin before it sends a message. If the value of the coin is 1, the node
sends the message and keeps quiet during the remaining timeslots of the phase. Thus
each node sends a message at most once during a phase. Note that in Protocol 0 each
node sends a message at least once during a phase. The protocol uses a new procedure
Decay? described in Figure 4. As proved in the appendix, Decay?2 is a randomized
protocol with the property that if £ = 2[log A] and several neighbors of a node execute
Decay? simultaneously to send messages, the node receives one of the messages with
probability > %

procedure Decay2(k,m);
do at most k times
flip (binary) coin
if coin = 1 then send m to all neighbors; exit

od

Figure 4: Procedure Decay2

The protocol executed by each node except the source is described in Figure 5. If
the source transmits a broadcast message at timeslot 0 and every other node executes
the protocol, the following properties (proved in the appendix) hold:

1. A broadcast terminates within O((D + (log ¥))log A) timeslots.

2. If threshold = [log %L each node has received the message with probability
> 1 — ¢, before termination.

Note that all participating nodes start executing Decay? at the same timeslot.

procedure Protocol 2;
k= 2[log Al;
wait until receiving a message, say m;
do threshold times
wait until (7vme mod k) = 1;
Decay2(k,m);
od

Figure 5: Protocol 2

Unlike Protocol 0, if d < A neighbors of a node start executing Decay?2 simulta-
neously, the node can receive a message exactly once from a neighbor during a phase.
Also every node is given an opportunity to send until it actually sends during a phase.
Notice that a node can receive the same message several times from different neighbors
during a phase. Protocol 2 requires that after a node has received the message during
a phase, the node waits until the next phase to start sending. Again it seems that
immediate transmission of the message by the node will speed up propagation of the
message and allow multiple simultaneous transmissions of messages to be received. The
protocol in the following subsection eliminates the wait.

4.3 Protocol 3

The third protocol, Protocol 3, is the same as Protocol 2 except that after a node
receives a message for the first time, the node tries to forward the message from the
next timeslot without waiting. Thus the protocol uses the procedure Decay?2 again and
is described in Figure 6. However, unlike Protocol 2 the protocol does not require
that all participants start executing Decay2 simultaneously. We conjecture that this
protocol is the best among the protocols in arbitrary networks.

4.4 Protocol 4

The fourth protocol, Protocol 4, uses a simple strategy. That is, after a node receives
a message for the first time, the node sends the message with probability m for a

certain number of times from the following timeslot. To guarantee the termination of the
protocol at non-source nodes, we limit the number of times to a threshold value. Due to
the random nature of the protocol, only if the threshold value is infinite is the protocol

procedure Protocol 3;

k= 2[log Al;
wait until receiving a message, say m;
t .= Time;

to:= (t + 1) mod k;

do threshold times
wait until (7vme mod k) = to;
Decay2(k,m);

od

Figure 6: Protocol 3

procedure Protocol 4;
k= 2[log Al;
wait until receiving a message, say m;
do threshold times
generate a uniform random number, r;
if r < ¢
then send m to all neighbors
else keep quiet;

od

Figure 7: Protocol 4

guaranteed to broadcast a message before termination. The protocol is described in
Figure 7. In the protocol at most ﬁ neighbors of a node on the average can send
a message during a timeslot, which helps to reduce the number of collisions. Note that

Tos AT noAg AT is relatively very small compared with A.

4.5 Determining Appropriate Threshold Values

The success probability of each protocol is strongly dependent on the value of the thresh-
old parameter. For Protocol 0 it has been shown that if threshold = [log %W then suc-
cess probability > 1 —e. With the exception of Protocol 2, we have not yet been able to
analytically determine threshold values required to achieve given success probabilities
for our protocols.

For Protocol 2 it can be shown (see Appendix) that with threshold = [log %L

success probability > 1 — €. For the other protocols (Protocol 1, 3, and 4) and after
considerable experimentation we use the following thresholds

e Protocols 1 & 3: threshold = [log I
e Protocol 4: threshold = 4[log &

where § is a small constant. Our simulation results indicate that for 6 = 0.01 and with
the above thresholds, success probabilities are > 0.99.

5 Termination Time Analysis of the Protocols

We prove that if the reception time of any protocol is known, the termination time can
be computed easily. Our results in the next section show the average reception time for
the various protocols in several network environments.

Theorem 1. Let ty be the reception time of Protocol 1 (Protocol 3) in a given
network with N nodes and at most A degree. Assume that the source initiates a
broadcast at timeslot 0 in Protocol 1 (Protocol 3). Let k be 2[log A|. Then the
termination time of Protocol 1 (Protocol 3) is to + k[log(X)].

Proof: Let x be a node that received a broadcast message last at timeslot o — 1. Then
node x will terminate last because every other node starts Protocol 1(Protocol 3)
not later than node x. The execution time of Protocol 1(Protocol 3) by each node is
kﬂog(%ﬂ because each node executes the procedure Decay (Decay?2) ﬂog(%ﬂ times.
This implies the theorem.

Theorem 2. Let ty be the reception time of Protocol 2 in a given network with N
nodes and at most A degree. Assume that the source initiates a broadcast at timeslot
0 in Protocol 2. Let k be 2[log A]. Then the termination time of Protocol 2 is
to+ (k — (to — 1) mod k) mod k + kﬂog(%ﬂ.

Proof: Let x be a node that received a broadcast message last at timeslot o — 1. Then
node x will terminate last because every other node starts Protocol 2 not later than
node z. After it received the message during a phase, it waits for the beginning of
the next phase. The number of the timeslots to wait is the difference between the first
timeslot of the next phase and the timeslot when it received a message. Since phases
always start at timeslot one plus integer multiples of k, it is (k — (¢ — 1) mod k) mod
k. Then node z will execute the procedure Decay?2 ﬂog(%ﬂ times. This implies the
theorem. O

Theorem 3. Let ty be the reception time of Protocol 4 in a given network with N
nodes and at most A degree. Assume that the source initiates a broadcast at timeslot
0 in Protocol 4. Then the termination time of Protocol 4 is to + 4[log(X)].

Proof: Let x be a node that received a broadcast message last at timeslot {5 — 1. Then
node x will terminate last because every other node starts Protocol 4 not later than
node z. The execution time of Protocol 4 by each node is 4[log(X)] after it received
the message. This implies the theorem. O

6 Reception Time Analysis of the Protocols

Determining reception times of our protocols is very difficult for arbitrary graphs, so we
first consider some graphs with simple structure that lend themselves to analysis. While
these are not very realistic models of radio networks, they do help us to understand
the behavior of the protocols in extreme conditions. We then consider graphs that are
more representative of realistic radio networks.

The network topologies considered are lines, complete binary trees, meshes, and
geometric graphs. These topologies give a broad selection of different diameters and
degrees of nodes. Note that the time complexity of the protocols strongly depends on
the diameter of the network and degrees of nodes. The maximum degrees and diameters
of these topologies with N nodes are summarized in Table 1. The maximum degree and
diameter of geometric graphs (defined below) are obtained empirically.

Topology Mazimum Degree | Diameter
line 2 N -1
complete binary tree 3 |log V|
mesh 4 O(\/ﬁ)
geometric graph O(log N) O(\/IOQTN)

Table 1: Maximum Degrees and Diameters of Network Topologies

The reception time of the protocols is the time (the number of timeslots) until every
node receives the message from the source. Where possible we derive average reception
times analytically. In other situations we resort to simulation. For a network of a given
size except geometric graphs, 100 runs with different random number seeds are made
and the performance measures of those runs are averaged. In geometric graphs, for a
given size, 100 different networks are generated, a run is made per network, and the
performance measures of those runs are averaged.

6.1 Graphs of Small Degree

For graphs of small degree, we consider

10

e a line of N nodes with the source at one end,
e a complete binary tree with the source being the root,

e a mesh of N (even) nodes with the source at the upper left corner.

6.1.1 Lines

Line networks are not very realistic for radio networks, but provide a simple structure
that lends itself to precise analysis.

Theorem 4. Assume that the graph corresponding to a network is a line with N
nodes with the source at one end, where N > 2. Also suppose that the source initiates
a broadcast at timeslot 0. Then all nodes using Protocol O receive the message with
probability one by time 2(N — 2).

Proof: A neighbor of the source receives a message at timeslot 0. After that, it takes
k = 2[log A] = 2 timeslots to forward the message one distance down the line network,
because the message is received at the first timeslot of a phase but the receiver has to
wait until the beginning of the next phase. It takes only one timeslot for the node at
the other end to receive a message after its neighbor sends a message. Therefore the

total time needed is 1 + 2(N —3) 4+ 1 = 2(N — 2). O

Theorem 5. Assume that the graph corresponding to a network is a line with N
nodes with the source at one end, where N > 1. Also suppose that the source initiates
a broadcast at timeslot 0. Then all nodes using Protocol 1 receive the message with
probability one by time N — 1.

Proof: In Protocol 1 every node sends a message in the following timeslot after it
receives the message. Also when a node sends a message, there is no collision at its
intended receiver. Therefore every node receives the message by time D = N —1. 0O

Theorem 6. Assume that the graph corresponding to a network is a line with N
nodes with the source at one end, where N > 1. Also suppose that the source initiates
a broadcast at timeslot 0. Then all nodes using Protocol 2 receive the message on the
average by time (8N — 13).

Proof: A neighbor of the source receives a message at timeslot 0. Let us calculate how
many phases are needed to forward a message one distance down the line network. At
the start of the phase each node with a message sends the message with probability %

11

If it did not send, it sends the message with probability % in the second (last) timeslot
of the phase. So the probability that a node sends a message during a phase is

1 1.1 3
3 + (5)(5) =1

Thus the probability that + > 1 phases are needed for a node to send a message suc-

cessfully is (i)"_l(%). Therefore the expected number of phases needed for a node to

send a message successfully is

=1

Since the duration of a phase is 2, the expected time that all nodes receive a message is
4 1
I+ (g)Z(N —-2)= §(8N —13).

O

Theorem 7. Assume that the graph corresponding to a network is a line with N
nodes with the source at one end, where N > 1. Also suppose that the source initiates
a broadcast at timeslot 0. Then all nodes using Protocol 3 receive the message on the
average by time 2N — 3.

Proof: A neighbor of the source receives a message at timeslot 0. Upon receiving a
message, a node sends the message with probability § in the following timeslot. If it did
not send, it sends the message with probability % in the second following timeslot. Then
it repeats this sending process. Thus the probability that ¢ > 1 timeslots are needed
for a node to send a message successfully is (1)’. Therefore the expected number of

2
timeslots needed for a node to send a message successfully is

21(5) =2
=1

The expected time that all nodes receive a message is
1+2(N—-2)=2N -3.

O

Theorem 8. Assume that the graph corresponding to a network is a line with N
nodes with the source at one end, where N > 1. Also suppose that the source initiates
a broadcast at timeslot 0. Then all nodes using Protocol 4 receive the message on the
average by time 2N — 3.

