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SUMMARY

Nondestructive evaluation using ultrasonic waves is commonly used to exper-

imentally probe for the presence of defects (i.e. dislocations, precipitates, cracks)

in complex metallic microstructures. Such defects and abnormalities are evidenced

by monitoring the acoustic attenuation coefficient α. However, from a mathematical

standpoint, the correlation between the microstructural behavior and the measured

acoustic attenuation behavior is not yet explicit. The present work aims to assess

the existence of statistical correlations between microstructural defects and acoustic

attenuation. The effects of defect geometry, density, and geometrical arrangements

(i.e. relative position) on acoustic attenuation are studied. To do so, the acoustic

response of Fe-Cu single crystals containing 1 % Cu precipitates with radii on the or-

der of 2 nm is simulated by means of finite element analysis. Several thousand initial

microstructures with random arrangement of precipitates are virtually tested using

statistical methods, such as principal component analysis. Therefore, it is expected

that a causal link can be made between the acoustic attenuation coefficient and the

precipitates-induced microstructural behavior via the proposed numerical analysis.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation and Objective

Nondestructive evaluation techniques using ultrasonic waves are commonly used to

experimentally probe for the presence of defects, such as cracks, precipitates, and

dislocations in complex metallic microstructures by monitoring the attenuation coef-

ficient and acoustic nonlinearity parameter. Many components in technical applica-

tions are critical for a safe operation and therefore a continuous evaluation throughout

the lifetime of the changes in the material is necessary.

Since the measurement of the material acoustic properties, namely, the attenua-

tion coefficient α do not provide the information on the exact defect type present,

numerical analyses need to be performed in order to assess the eventual influence of

each defect type. The defect type of main interest in this work are precipitates or

more specifically intragrain precipitates, in other words precipitates inside of a grain.

All other defect types are assumed to be nonexistent.

The first unknown in the case of the influence of intragrain precipitates on the

acoustic properties is how the arrangement of the precipitates affect the attenuation

coefficient α and the acoustic nonlinearity parameter β. Assuming a nonlinear stress-

strain relation as in (1), the exact form of the resulting wave equation would be

(2).

σij = Cijklǫkl +
1

2
Cijklmnǫklǫmn + ... (1)

ρ
∂2ui
∂t2

=
∂σij
∂xj

= Cijklǫkl,j + Cijkl,jǫkl +
1

2
Cijklmn (ǫkl,jǫmn) +

1

2
Cijklmn,j (ǫklǫmn) (2)

ρ
∂2ui
∂t2

=
∂σij
∂xj

= (Cijkl + Cijklmnǫmn) ǫkl,j (3)
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However, most derivations usually neglect the influence of spatially changing material

properties although precipitates clearly constitute a heterogeneous material. The

commonly used form of the wave equation is therefore equation (3). The question

that remains open whether Cijkl,j and Cijklmn,j have a major impact on the accuracy

of the results. Another aspect is if or how sensitive acoustic parameters are to other

material properties, such as volume fraction, size, and mechanical properties of the

precipitates.

Previous works by Cantrell and Zhang [3], Matlack [13], Thiele [20] as well as

Herrmann [8] mainly focus on the influence of the comparatively large defects dislo-

cations and cracks. Even though almost every defect type originates from a certain

precipitate behavior, the precipitates themselves are usually not considered as a main

impact on acoustic properties.

To fill this gap, the first objective of this work is to numerically show the existence

of a correlation between precipitates as a microstructural defect type and the acoustic

attenuation property α by applying a statistical analysis. To do so, a large number of

initially same microstructures with random arrangements of precipitates are virtually

generated and the attenuation coefficient is determined for each structure by solving

the wave equation numerically.

After showing the existence of a correlation, the second part of the objective is to

quantify how the spatial distribution of precipitates affects the attenuation coefficient

α. Thereto, the microstructural information on the one side and the acoustic prop-

erties on the other are linked together and examined with the principal component

analysis.

The material studied in this research is a iron - 1% copper binary alloy, a well-

suited material to investigate precipitation caused by radiation damage. A validation

of the current work is possible with Scott’s study [19].

2



1.2 Structure of Thesis

An introduction into the fundamentals of wave propagation will be given in Chapter

2 leading to the derivation of the stress-strain relation and basic characteristics of

linear wave propagation. Moreover, a brief explanation of wave scattering and atten-

uation is provided. Chapter 3 discusses the statistical methods principal component

analysis and two-point statistics that are utilized to evaluate the correlation between

microstructural and acoustic properties. The main part of this work, the numeri-

cal analysis, including a short section about finite element methods, actual material

properties, and the structure of this specific analysis is presented in the Chapter 4.

Chapter 5 presents all the results and findings of the present study. Finally, Chapter

6 draws conclusions and gives an outlook for future work.

3



CHAPTER II

WAVE PROPAGATION IN ELASTIC SOLIDS

This chapter introduces and explains the basics of wave propagation in elastic solids.

Starting off with the linear stress strain relation, wave propagation and its weak form

that is necessary for the finite element solver that is used in this work and proceeding

with the backgrounds of Transmission, Reflection, Scattering and Attenuation, this

chapter illuminates essential parts of the great area of wave propagation and sets the

main foundation for this thesis.

2.1 Elastic Material and Linear Stress Strain Relation

To have a common basis and distinct use of language, a clear definition of the inves-

tigated case and all related terms is essential. Therefore, the definition of an elastic

material is regarded in the first instance. An elastic material is a material that has a

one-to-one correspondence between stress and strain. An elastic material follows the

same stress-strain path during loading and unloading and the strain density function

U0 exists which can be expressed in terms of the state of current strain only, inde-

pendent of the strain history or strain path. Note that the elastic material does not

necessarily mean that the stress-strain relation is linear. If the stress-strain path is

different during loading and unloading, then the material is no longer elastic even if

the path is linear during loading and unloading.

For conservative materials, that is materials with no energy dissipation, the ex-

ternal work done on the material has to be equal to the total change in the strain

energy of the material. The latter relation can be expressed as

δW = δU (4)

4



where δW and δU are the variations of the external work done on the material body

and the variation of internal energy of the material body. The variation of the external

work can be rewritten in terms of the applied body force fi and the surface traction

ti (i indicates summation over all three directions)

δW =

∫

V

fiδuidV +

∫

S

tiδuidS. (5)

Also, the variation of the internal energy corresponds to the volume integral of the

strain energy density variation δU0

δU =

∫

V

δU0dV . (6)

Using equations (5), (6), and the definition of the surface traction ti

ti = σijnj , (7)

the energy balance equation (4) can be reformulated as

∫

V

δU0dV =

∫

V

fiδuidV +

∫

S

tiδuidS =

∫

V

fiδuidV +

∫

S

σijnjδuidS

=

∫

V

fiδuidV +

∫

S

(σijδui)njdS. (8)

Applying the divergence theorem on the surface integral of the right hand side, one

gets

∫

V

δU0dV =

∫

V

fiδuidV +

∫

V

(σijδui) ,j dV

=

∫

V

fiδuidV +

∫

V

(σij ,j δui + σijδui,j ) dV

=

∫

V

(fiδui + σij ,j δui + σijδui,j ) dV

=

∫

V

((fi + σij ,j ) δui + σijδui,j ) dV . (9)

With the force equilibrium for an elemental volume

σij,j + fi = 0 (10)

5



equation (9) is simplified to

∫

V

δU0dV =

∫

V

(σijδui,j ) dV

=

∫

V

1

2
(δui,j + δuj,i) dV

=

∫

V

σijδǫijdV . (11)

Since equation (11) is valid for any volume V , both integrands have to be equal to

each other

δU0 = σijδǫij (12)

and therefore the strain energy density U0 is only a function of the strain ǫij. Including

the given definition of elastic materials, equation ( 12) concludes with

σij =
∂U0

∂ǫij
. (13)

The strain energy density function U0 (ǫij) is usually assumed to be a complete second-

degree polynomial of the form

U0 = D0 +Dklǫkl +Dklmnǫklǫmn (14)

and thus

σij =
∂U0

∂ǫij

= Dklδikδjl +Dklmn (δikδjlǫmn + ǫklδimδjn)

= Dij +Dijmnǫmn +Dklijǫkl

= Dij + (Dijkl +Dklij) ǫkl. (15)

With (Dijkl +Dklij) = Cijkl (Cijkl is the fourth order stiffness tensor) and Dij = 0

(no residual stress assumption) the linear constitutive relation

σij = Cijklǫkl (16)

is obtained.

6



Figure 1: Wave types

In the same manner, a nonlinear, quadratic material will have the constitutive

relation

σij = Cijklǫkl + Cijklmnǫklǫmn. (17)

2.2 Equation of Motion

In this section the equation of motion of an isotropic elastic medium will be derived

in terms of particle displacements. It will be shown that these equations of motion

correspond to two types of waves which can propagate through an elastic solid. These

two types of wave are called dilatational or pressure wave (p-wave) and distortional

or shear wave (s-wave). The particle motion in a plane dilatational wave is along the

direction of propagation, whereas in a plane distortional wave the particle motion is

perpendicular to the direction of propagation.

If the solid is unbounded these are the only existing types of wave. When the

solid has a free surface or where surface boundaries exist between two solids Rayleigh

7



Figure 2: Stress components acting on an infinitesimal rectangular cube

surface waves may be present. Since Rayleigh wave measurements require the ac-

cessibility of only one surface this method is highly qualified for on-site scrutinies of

structures. The works of Thiele [20] and Doerr [6] focus on Rayleigh wave measure-

ments to determine the relative acoustic nonlinearity parameter β.

Components of Stress and Strain

The stress on a surface element in a solid does usually not act solely normally on that

surface but has components both normal and tangential to that plane. If the axes

of a three-dimensional, orthogonal coordinate system are referred to as x-, y-, and

z-axis and stresses are considered in every direction on planes perpendicular to each

axis, there will be nine stress components for the volume element. These components

are denoted by σxx, σyy, σzz, σxy, σxz, σyx, σyz, σzx, and σzy. The first letter in the

suffixes indicates the direction of the stress and the second letter the plane in which

it is acting.
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Considering an infinitesimal, equilateral, and rectangular cube with its faces nor-

mal to the axes (see Fig. 2) and taking the sum of all forces and moments, it may be

seen that for equilibrium

σxy = σyx (18)

σxz = σzx (19)

σyz = σzy, (20)

so that only six independent components remain. With that, the general stress tensor

σ =













σxx σxy σxz

σyx σyy σyz

σzx σzy σzz













=













σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33













=













σx τxy τxz

τyx σy τyz

τzx τzy σz













(21)

can be rewritten as the simplified engineering stress vector σeng. This represen-

tation of the stress tensor is often used in engineering calculations or for material

property determination and is only valid for elastic and isotropic materials.

σeng =































































σxx

σyy

σzz

σxy

σxz

σyz































































=































































σ11

σ22

σ33

σ12

σ13

σ23































































=































































σx

σy

σz

τxy

τxz

τyz































































(22)

The displacement of any point in the body may be represented as a superposition

of displacements u,v, and w parallel to the x, y, and z axes. In order to find the

strain at a point P in the body, the displacement of P has to be determined relative

to its adjacent points. Considering a point very close to P , which in the undisplaced

position had the coordinates (x+δx), (y+δy), (z+δz), and displacement components

(u + δu), (v + δv), (w + δw), following relations result for sufficiently small δx, δy,

9



and δz:

δu =
∂u

∂x
δx+

∂u

∂y
δy +

∂u

∂z
δz, (23)

δv =
∂v

∂x
δx+

∂v

∂y
δy +

∂v

∂z
δz, (24)

δw =
∂w

∂x
δx+

∂w

∂y
δy +

∂w

∂z
δz. (25)

Thus, if the nine quantities from the three equations above are known for a distinct

point P , the displacements of all surrounding points may be found. Usually, these

nine quantities are regrouped and denoted as the strain components ǫxx, ǫyy, ǫzz, ǫyz,

ǫzx, and ǫxy.

ǫxx =
∂u

∂x
(26)

ǫyy =
∂v

∂y
(27)

ǫzz =
∂w

∂z
(28)

ǫyz =
∂w

∂y
+
∂v

∂z
(29)

ǫzx =
∂u

∂z
+
∂w

∂x
(30)

ǫxy =
∂v

∂x
+
∂u

∂y
(31)

The first three strain components ǫxx, ǫyy, and ǫzz correspond to the fractional

expansions and contractions of infinitesimal line elements passing through the point

P and parallel to x, y, and z respectively. The last three components ǫyz, ǫzx, and

ǫxy represent the shear strain amount in the planes indicated by their suffixes.

Generalized form of Hooke’s law

For most solids it is found experimentally that the measured strains are proportional

to the applied load, as long as the load does not exceed a certain value which is known

as the elastic limit of a material. Therefore, each of the six components of stress is at

any point a linear function of the six components of strain (Kolsky [11]). Whilst the
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law in this form is incapable of direct experimental proof, it summarizes the results

of different types of experimental loading. Wherever the mathematical consequences

can be tested, the formulated law is found to be true within the elastic range of a

material.

The generalized form of Hooke’s law is finally stated as

σxx = C11ǫxx + C12ǫyy + C13ǫzz + C14ǫyz + C15ǫzx + C16ǫxy (32)

σyy = C21ǫxx + C22ǫyy + C23ǫzz + C24ǫyz + C25ǫzx + C26ǫxy (33)

σzz = C31ǫxx + C32ǫyy + C33ǫzz + C34ǫyz + C35ǫzx + C36ǫxy (34)

σyz = C41ǫxx + C42ǫyy + C43ǫzz + C44ǫyz + C45ǫzx + C46ǫxy (35)

σzx = C51ǫxx + C52ǫyy + C53ǫzz + C54ǫyz + C55ǫzx + C56ǫxy (36)

σxy = C61ǫxx + C62ǫyy + C63ǫzz + C64ǫyz + C65ǫzx + C66ǫxy (37)

where the coefficients Cij are the elsatic constants of the material.

The number of independent coefficients can be reduced from 36 to 21 by showing

that the condition for the elastic energy to be an injective function of the strain is that

any coefficient Cij is equal to the coefficient Cji. In a material where no particular

spacial symmetry exists the values of 21 different quantities must be known in order to

define the elastic properties of the medium. However, materials with axes or planes

of symmetry allow an establishment of relations between these coefficient and the

number of independent coefficients can be further reduced. Thus for a cubic crystal

there are only three independent constants. For the case of an isotropic solid the

values of the coefficients must be independent of the set of rectangular axes and

therefore the generalized form of Hooke’s law has just two independent constants left.

11



These are denoted by λ and µ and replace the initial coefficients as follows:

C12 = C13 = C21 = C23 = C31 = C32 = λ (38)

C44 = C55 = C66 = µ (39)

C11 = C22 = C33 = λ+ 2µ (40)

and all the other 24 coefficients become zero.

The generalized form of Hooke’s law (equations (32) - (37)) can then be rewritten

in

σxx = λ(ǫxx + ǫyy + ǫzz) + 2µǫxx (41)

σyy = λ(ǫxx + ǫyy + ǫzz) + 2µǫyy (42)

σzz = λ(ǫxx + ǫyy + ǫzz) + 2µǫzz (43)

σyz = µǫyz (44)

σzx = µǫzx (45)

σxy = µǫxy (46)

where (ǫxx + ǫyy + ǫzz) represents the change in volume of a unit cube and is called

the dilatation ∆.

The two elastic constants , λ and µ, are known as Lamé constants and completely

define the elastic behavior of an isotropic solid. For the sake of convenience, however,

four elastic constants are used. These are Young’s modulus E, Poisson’s ratio ν,

bulk modulus k, and the rigidity modulus which is identical with the second Lamé

constant µ. Using equations (41) to (46), E, ν, and k can be expressed in terms of λ

and µ:

E =
σxx
ǫxx

=
µ(3λ+ 2µ)

λ+ µ
(47)

ν =
λ

2(λ+ µ)
(48)

k = λ+
2µ

3
. (49)
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Figure 3: Variation of stress components acting on an infinitesimal rectangular cube

Finally, the shear modulus or rigidity is µ and characterizes the ration between the

shear stress and shear strain as given by equations (35) - (37):

µ =
σyz
ǫyz

=
σzx
ǫzx

=
σxy
ǫxy

. (50)

Equations of motion in an elastic solid

In order to obtain the equations of motion for an elastic medium the variation in

stress across a infinitesimal, equilateral, and rectangular cube with its sides parallel

to a set of rectangular axes (see Fig. 3) has to be considered. The components of

stress vary across the faces. To approximate the force that is acting on each face, the

value of stress at the center of each face is taken and multiplied by the area of the

corresponding face. As the figure suggests, six separate forces act along each axis.

13



For instance, the sum of all forces along the x-axis is

∑

Fx =

(

σxx +
∂σxx
∂x

δx

)

δyδz − σxxδyδz

+

(

σxy +
∂σxy
∂y

δy

)

δxδz − σxyδxδz

+

(

σxz +
∂σxz
∂z

δz

)

δxδy − σxzδxδy (51)

which simplifies to

∑

Fx =

(

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

)

δxδyδz. (52)

Including Newton’s second law of motion and neglecting body forces such as gravity,

the right-hand sides of above equations are equal to

(ρδxδyδz)
∂2u

∂t2
(53)

with the material density ρ and the displacement in x-direction u, so that

ρ
∂2u

∂t2
=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

(54)

and similarly

ρ
∂2v

∂t2
=
∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

(55)

ρ
∂2w

∂t2
=
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

. (56)

These equations will hold, no matter how the stress-strain behavior of the medium

looks like. In order to solve them, the previously defined elastic equations can be

applied.

Finally, the general form of the three-dimensional wave equation using index no-

tation is

ρ
∂2ui
∂t2

=
∂σij
∂xj

(57)

or

ρ
∂2ui
∂t2

=
∂ (Cijklǫkl)

∂xj
(58)

by plugging in the constitutive relation for linear elastic materials.
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2.3 Weak Formulation of Linear Wave Equation

Now that the phenomenon is described and the wave equation is set up, a way needs

to be found how the differential equation (57) can be solved.

There are several analytical solutions that can precisely represent the wave field

for simple cases, such as homogeneous and isotropic materials. However, for more

complex materials that are neither homogeneous nor isotropic an analytical solu-

tion is very difficult to find. Therefore, scientists tend to apply numerical methods

to solve complicated differential equations. A very common numerical method is

the finite element method FEM that is utilized to simulate mechanical, thermal,

thermo-mechanical, and electrical problems by solving the specific differential equa-

tion. Thereto, the differential equation has to be transformed from the strong form

into a weak form. In other words, the conventional differential equation is trans-

formed into an alternate representation of the differential equation and it is called

weak since the order is reduced by one. The strong form imposes continuity and

differentiability requirements on the potential solutions to the equation, whereas the

weak form relaxes these requirements on solutions to a certain extent. This means

that a larger set of functions are solutions of the weak form (Gelfand and Fomin [7]).

In order to fully understand how the transformation works and why it is applied,

the wave equation (57) will be transformed into its weak form. The first step is to

write down the initial strong form of the differential equation. As the equation is to

be solved on the entire domain the previously provided form needs to be integrated

over the entire volume.
∫

V

ρ
∂2ui
∂t2

dV =

∫

V

∂σij
∂xj

dV (59)

Moving all terms to the left-hand side leads to

∫

V

ρ
∂2ui
∂t2

dV −

∫

V

∂σij
∂xj

dV = 0. (60)
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Multiplying both sides of equation (60) by a random, nonzero test function vi

∫

V

ρ
∂2ui
∂t2

vi dV −

∫

V

∂σij
∂xj

vi dV = 0. (61)

will not change the equality of the equation. Equation (61) can be rewritten as

∫

V

ρ
∂2ui
∂t2

vi dV =

∫

V

∂σij
∂xj

vi dV (62)

=

∫

V

∂ (Cijklǫkl)

∂xj
vi dV (63)

= Cijkl

∫

V

∂2uk
∂xj∂xl

vi dV (64)

by assuming

∂Cijkl

∂xj
= 0 (65)

and

ǫkl =
∂uk
∂xl

. (66)

Using the integration by parts method for the right-hand side yields

∫

V

ρ
∂2ui
∂t2

vi dV = Cijkl

[
∫

V

∂

∂xj

(

∂uk
∂xl

vi

)

dV −

∫

V

∂uk
∂xl

∂vi
∂xj

dV

]

. (67)

The first term in the brackets in equation (67) can be converted from a volume integral

into a surface integral by exploiting the divergence theorem

Cijkl

∫

V

∂

∂xj

(

∂uk
∂xl

vi

)

dV = Cijkl

∫

S

(

∂uk
∂xl

vi

)

ni dS, (68)

where ni is the outward normal vector and S the surface of the domain.

Since

Cijkl

∫

S

(

∂uk
∂xl

vi

)

ni dS =

∫

S

Cijkl

(

∂uk
∂xl

vi

)

ni dS =

∫

S

(σijvi)ni dS (69)

and the applied stress free boundary condition requires

σijni = 0 (70)
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Figure 4: Shear wave scattering from a circular cavity

on the surface S of the domain, the term

Cijkl

∫

S

(

∂uk
∂xl

vi

)

ni dS =

∫

S

(σijvi)ni dS = 0 (71)

vanishes.

Lastly, the weak form of the wave equation is represented by

∫

V

ρ
∂2ui
∂t2

vi dV = −

∫

V

Cijkl
∂uk
∂xl

∂vi
∂xj

dV (72)

or
∫

V

ρ
∂2ui
∂t2

vi dV +

∫

V

Cijkl
∂uk
∂xl

∂vi
∂xj

dV = 0. (73)

Clearly, the order of the differential equation could be reduced by one and this form

can now be used as input for the numerical solving process.

2.4 Wave Scattering and Attenuation

In order to illustrate the method of scattering theory, scattering of shear horizontal

(SH) waves by a cylindrical cavity is considered (see Rose [18]). That is one of the

simplest cases because there is only one governing equation of motion for one unknown

displacement u = ux(y, z) in the x-direction, while uy = uz = 0 (compare Fig. 4).

The equation of motion for this simplified case is

∇2u =
1

c2T

∂2u

∂t2
(74)
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or expressed in cylindrical coordinates

∇2u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2
+
∂2u

∂x2
, (75)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(76)

and

c2T =
µ

ρ
. (77)

Considering traction-free boundary conditions on the cavity surface

τrr = τrθ = τrx at r = a (78)

τrr = λ

(

∂ur
∂r

+
1

r

∂uθ
∂θ

+
ur
r

+
∂ux
∂x

)

+ 2µ
∂ur
∂r

(79)

τrr = µ

(

1

r

∂ur
∂θ

+
∂uθ
∂r

−
uθ
r

)

(80)

τrr = µ

(

∂ux
∂r

+
∂ur
∂x

)

, (81)

where λ and µ are the Lamé coefficients. It follows that

ur = uθ = 0 (82)

and ux is not dependent on x. Therefore, the obtained boundary condition for the

cavity surface is

∂u

∂r
= 0 at r = a. (83)

The incident SH wave (subscript i) propagating in the z-direction is

ui = U0e
i(ωt−kz), (84)

where

k =
ω

cT
, (85)

which satisfies the governing equation of motion (74).
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When the incident wave interacts with the cavity, a scattering field will occur.

Because of the harmonic character, the scattered wave field (subscript s) can be

written as

us = Us(r, θ)e
iωt. (86)

The unknown amplitude Us(r, θ) is independent from the x-location and can be seen

as a product of R(s) and S(θ):

Us(r, θ) = R(r)S(θ). (87)

The resulting total displacement field is given by

u(r, θ)eiωt = ui + us (88)

and should satisfy equation (74).

Substituting (88) into (74) and using the method of separation of variables as well

as the symmetry of results with respect to the x-axis, it follows that

S(θ) = C cosnθ (89)

and

R(r) = AH(2)
n (kr) (90)

with the Hankel function of the second kind H
(2)
n for k >> 1

H(2)
n (kr) =

√

2

πkr
exp

{

−i
(

kr −
π

4
−
nπ

2

)}

(91)

to satisfy the radiation condition. From equations (87), (89), (90), (86), and by

including Bessel functions to solve the problem, the final form of the scattered wave

field can be stated as

us(r, θ, t) = U0

√

2

πkr
ei(ωt−kr)ψs(θ), (92)

with a known function ψs(θ) and the condition kr >> 1.
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Scattering in general and the above shown example of scattering produce both

magnitude reductions and pulse spreading in dispersive media as a result of wave

propagation and interaction with small obstacles or flaws. The pure effect of reduction

in wave magnitude, no matter what the cause is, is known as attenuation. It can

come about from internal friction, energy absorption, energy deviation, or also from

geometric effects as in the case of spherical or cylindrical wave propagation.

The most accurate way to take general attenuation into account is to assume an

exponential amplitude decay along the propagation direction

A(x) = A0 e
−αx, (93)

where A(x) is the amplitude transmitted across some distance x, A0 the initial ampli-

tude, and α the material specific attenuation coefficient. The attenuation coefficient

α describes the fraction of waves that is absorbed, scattered, or simply lost per unit

length (one-dimensional) or unit volume (three-dimensional) of the medium. This

value essentially accounts for the number of defects per unit length or unit volume

of material and the probability of a wave being scattered or absorbed in that specific

region.

Finally, the simplified resulting wave field for the one-dimensional case can be

written as

u(x, t) = A(x)ei(kx−ωt) (94)

= A0 e
−αx ei(kx−ωt). (95)
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CHAPTER III

STATISTICAL METHODS

3.1 Microstructure Function

In general, it can be assumed that a realistic microstructure has at least two different

length scales that differ from each other by several orders of magnitude. At a lower

length scale, a material point in the microstructure is associated with a clearly iden-

tifiable local state. As one moves from one location to another in the microstructure,

the local states as well as local properties may vary substantially. However, at the

higher length scale, a statistically homogeneous sample is expected to show uniform

effective properties. These uniform effective properties are often very different from

a simple volume average of the local properties at the lower length scale [16].

Consider a heterogeneous material sample Ω from which a group of lower length

scale regions (Ω1,Ω2, ...,Ωj) are extracted. The internal structure of each region Ωj

can be described completely by specifying the local state h at each spatial position

x ∈ Ωj within the region. The local state h is an element of the local state space H

that comprises the complete set of all possible states in the given material system. The

local state is typically defined as a combination of several variables. Consequently,

if the local state is specified by a set of z parameters, the local state space, H, is a

z-dimensional space and each local state h is described by a vector with z components.

Having defined an appropriate local state space of interest for a selected material

system, the next task is to quantify the microstructure. The microstructure of each

region Ωj can be accurately captured by the probability density function mj(x, j),

associated with finding the local state h in the probe area around the spatial location
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x. Mathematically, this definition of the microstructure function is expressed as [15]

m(x, h)dh =
Vh ±

dh
2
(x)

V (x)
, (96)

∫

H

m(x, h)dh = 1, (97)

∫

H

dh = 1, (98)

where V (x) denotes the volume of the material probed by the microstructure char-

acterization equipment in the measurement taken at spatial location x, Vh ±
dh
2
(x) is

the component of V (x) associated with local states that lie within (h − dh
2
, h + dh

2
),

and dh is an invariant measure of the local state space. Let the spatial domain of the

microstructure be binned into a uniform grid of S cells, whose nodes are enumerated

by the ordered tuple (s1, s2, s3) that is represented by the vector s. In an analogous

manner, the local state space H be binned into a uniform grid of N discrete local

states. For convenience, the same approach is applied that is used for the spatial

discretization. Each grid point in the local state space is represented by an ordered

discrete state vector n. The resulting discrete microstructure function over the region

Qj is derived from equations (96) - (98) and thus denoted by the form

N−1
∑

n=0

nmj
s = 1, (99)

0 ≤ nmj
s, (100)

N−1
∑

n=0

nmj
s =

nV jS, (101)

where nV j is the volume fraction of the local state n in the region Ωj and S the

product of the node coordinates Si.

3.2 n-Point Statistics

After the discretization of the domain and its properties, the next logical question

is how to characterize the details of the microstructure statistically. Many spatial
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descriptive statistics exist and have been utilized successfully. However, for the actual

case of describing the spatial distribution of precipitates or essentially describing the

distribution of circles in a rectangular domain, the n-point statistics allows the most

comprehensive treatment and provides a set of hierarchical measures.

In this section, the 1-point and 2-point statistics are explained corresponding to

the discretized microstructure realization nmj
s from the previous section. These first

two forms of the n-point statistics are defined as

nf j =
1

S

S−1
∑

s=0

nmj
s (102)

for the 1-point statistics and

npf j
t =

1

S

S−1
∑

s=0

nmj
s
pmj

s+t (103)

for the 2-point statistics.

The expression nf j for the 1-point case is the probability of finding the local state

n at a randomly selected point in the region Ωj and is equivalent to nV j from (101).

Basically, it is nothing more than the volume fraction or number density of state n

within the specified region.

The latter case of 2-point statistics can be interpreted as the joint probability

density of finding local states belonging to n and p at the tail and head of a randomly

shaped and oriented vector t thrown into Ωj. The random vector t is discretized

using the same scheme used for the spatial domain of the microstructure. In the k-

dimensional case, the vector t is described by the lengths from tail to head along the

k coordinate axes (negative lengths possible). Furthermore, it should be noted that

there is a tremendous leap in the amount of microstructure information contained in

the 2-point statistics compared to the 1-point statistics. The use of 2-point statis-

tics offers many useful statistical measures of the microstructure, such as information

on the average shape, size, and spacing of the constituent local states. The most
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efficient way to calculate these 2-point statistics is by applying fast Fourier transfor-

mation (FFT) methods [14]. Thus, the discrete Fourier transformation (DFT) of the

microstructure function nms (superscript j omitted now for the sake of simplicity) is

expressed as

nMk = ℑ(nms) =
S−1
∑

s=0

nmse
2πi sk/S = |nMk| e

i nθk , (104)

where the term |nMk| is referred to as the amplitude of the Fourier transform, nθk

as the phase, and k the harmonic index. The discrete Fourier transformation of the

2-point statistical values npft is computed as

npFk = ℑ(npft) = ℑ

(

1

S

S−1
∑

s=0

nms
pms+t

)

(105)

=
1

S
nM∗

k
pMk (106)

=
1

S
|nMk| |

pMk| e
−i nθkei

pθk (107)

by exploiting the convolution theorem for two random functions f and g (∗ is convo-

lution operator)

ℑ(f · g) = ℑ(f) ∗ ℑ(g) (108)

and where nM∗

k is the complex conjugate of nMk. The case n = p in (107) represents a

special set of real-valued correlations termed the autocorrelation. The general case of

n 6= p leads to cross-correlations and is usually quantified by complex-valued numbers.

3.3 Principal Component Analysis

The central idea of principal component analysis (PCA) is to reduce the dimension-

ality of a data set which consists of a large number of interrelated variables, while

retaining as much as possible of the variation present in the data set. This is achieved

by transforming to a new set of variables, the principal components (PC), which are

uncorrelated, and which are ordered so that the first few retain most of the variation

of the original data.
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Assume that x is a vector of p random variables and that the variances of the p

random variables and the structure of the covariances between the p variables are of

interest. Unless p is small or the structure is very simple, it will often not be very

helpful to simply look at the p variances and all of the 1
2
p(p − 1) covariances. An

alternative approach is to look for a few derived variables which preserve most of the

information given by these variances and covariances.

Although PCA does not ignore covariances, it concentrates on variances. The first

step is to look for a linear function α
T
1
x of the elements of x which has maximum

variance, where α1 is a vector of p constants α11, α12, ..., α1p and
T denotes transpose,

so that

α
T
1
x = α11x1 + α12x2 + ...+ α1pxp =

p
∑

j=1

α1jxj. (109)

Next, the linear function α
T
2
x, uncorrelated with α

T
1
x, has to be found and so on

until a certain number k with (k ≤ p) of functions is determined. These variables

α
T
k
x are the principal components. Up to p principal components could be found

but it is hoped that most of the variation in x will be encountered for the first m

principal components, where m << p.

Having defined principal components, the consequent question is how to find them.

Considering the covariance matrix S of the vector x with its (i, j)th elements rep-

resenting the covariance between the ith and jth element of x when i 6= j and the

variance of the jth element when i = j, it turns out that for k = 1, 2, ..., p the kth

principal component is given by

zk = α
T
k
x, (110)

where αT
k
is an eigenvector of the covariance matrix S corresponding to its kth largest

eigenvalue λk. Furthermore, αT
k
is chosen to have unit length, so that the variance

of zk equals the kth eigenvalue

var(zk) = λk. (111)
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CHAPTER IV

NUMERICAL ANALYSIS

4.1 Finite Element Method

The finite element method (FEM) is a numerical method that is very general and

powerful in its application to real-world problems that involve complicated physics,

geometry, and boundary conditions. The method is endowed with three distinct

features that account for its superiority over other competing methods. First, a

geometrically complex domain Ω of the problem is represented as a collection of

geometrically simple subdomains, called finite elements. Each finite element Ωj is

viewed as an independent domain by itself. In this context, domain refers to the

geometric region over which the equations are solved. Second, over each finite element,

algebraic equations among the quantities of interest are developed using the governing

equations of the problem. Third, the relationships from all elements are globally

assembled using certain interelement relationships. Thus, the result for the entire

domain can be computed.

Approximations play an important role in many engineering analyses to handle

complex problems but are inherently connected with different types of errors. The

division of the whole domain into finite elements is one of them. The second stage

is when element equations are derived. Typically, the dependent unknowns u of

the problem are approximated using the basic idea that any continuous function

can be represented by a linear combination of known function φi and undetermined

coefficients ci

u ≈ uh =
∑

ciφi. (112)
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Algebraic relations among the undetermined coefficients ci are obtained by satisfy-

ing the governing equations, in a weighted-integral sense, over each element. The

approximation functions φi are often assumed as polynomials, and they are derived

using concepts from interpolation theory. Therefore, they are termed interpolation

functions. Thus, approximation errors in the second stage are introduced both in

representing the solution u as well as in evaluating the integrals. Finally, errors are

introduced in solving the assembled system of equations. Obvisously, some of the

errors discussed above can be zero. When all the described errors are zero, the exact

solution of the problem is obtained. Unfortunately , the latter case is not true for

most of the actual problems.

4.2 Material Properties

Even though numerical analyses are usually formulated in a very general way and

therefore any option, setting or material changes are easily incorporated, the present

study focuses on one specific material. The material chosen is a iron-copper FeCu-

steel with an amount of about 1 wt% Cu. Copper is of primary importance in the

embrittlement of the neutron-irradiated reactor pressure vessel (RPV) steels. This

copper has been observed to segregate into copper-rich precipitates within the ferrite

matrix under irradiation. Since its role was discovered more than 40 years ago, Cu

precipitation in α-Fe has been studied extensively under irradiation as well as under

thermal aging using atom probe tomography, small angle neutron scattering, and high

resolution transmission electron microscopy.

As the number density of copper precipitates can be an indicator for radiation

damage, the exact knowledge about material, measurement methods, and interpre-

tation of measured data is an essential aspect. This study will help to interpret
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Table 1: Material properties of FeCu-system components
Material Material Property Value
Fe (matrix) Pressure wave speed cp 5912m/s

Shear wave speed cs 3240m/s
Mass density ρ 7874 kg/m3

Lamé coefficient λ 1.09894 1011

Lamé coefficient µ 8.26581 1010

Cu (precipitate) Pressure wave speed cp 4760m/s
Shear wave speed cs 2325m/s
Mass density ρ 8960 kg/m3

Lamé coefficient λ 1.06143 1011

Lamé coefficient µ 4.84344 1010

experimentally measured attenuation coefficients and relate them to important mi-

crostructural configuration details. Important mechanical properties of each compo-

nent of the FeCu system are given in Table 1, which are also used for the present

numerical analysis.

4.3 Structure of Analysis

The main goal of the numerical analysis is to show the existence of and to find a quan-

tification of correlations between microstructural defects, in this case precipitates, and

the material attenuation, by performing a statistical analysis. A statistical analysis

implies the assessment of a large number of random microstructures. These random

microstructures are generated virtually and evaluated with numerical and statistical

methods to determine if there is a causal link between microstructural configuration

and acoustic properties.

The present section is divided into three parts. In the first, the generation of the

microstructure is described, and which exact properties are varied throughout the

analysis. The second part explains every detail of how the microstructure is evaluated,

how the wave equation is solved, and how the acoustic properties are computed.

Finally, the third and last part links the results and shows how microstructural and

acoustic properties are correlated.
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Table 2: Initial material information for microstructure generation
Precipitate Phase Property Value
Number density φ 0.88 %
Total number N 200
Shape Circular
Mass density ρ Constant
Spatial arrangement Random/ Statistically constant
Size/ Radius r Random/ Statistically constant
Stiffness Random/ Statistically constant

4.3.1 Microstructure Generation

The microstructure is assumed to have an initial monocrystalline microstructure with

absolute constant material properties, that are number density of precipitates, total

number of precipitates, shape of precipitates, stiffness of lattice structure, and den-

sity of precipitates and lattice structure (see Table 2). Besides that, the arrangement,

individual size, and stiffness of the precipitate phase is random but still statistically

constant. By statistically constant, it is assumed that these three precipitate charac-

teristics (arrangement, size, and stiffness) show a normal distribution with a standard

deviation σ around the mean value µ. So, statistically, on a large length scale, the

stated characteristics will be globally constant, but on a much smaller length scale,

a local variation of those values is clearly detectable. To satisfy the requirements of

a statistical analysis, many samples have to be taken into account (>> 100). The

higher the number of linked microstructures, the more accurate the information on

average acoustic properties and their respective microstructural properties. In this

study, the number of microstructures generated is usually 200, depending on mesh

density and time step size. Furthermore, as a first step in this complex network, only

the precipitate arrangement or their spatial distribution, respectively, is varied while

keeping the size and stiffness of the precipitates constant.

Now, the microstructures are virtually generated, with only the spatial distribu-

tion as random in this first case. In other words, N precipitates of size or radius r are
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randomly distributed in a squared two-dimensional domain of edge lengths l while

satisfying the number density constraint. The number density φ and the edge length

l of the domain considered are redundant and related by

φ =
Nπr2

l2
. (113)

Therefore, the domain size or the length l, respectively, is automatically determined

by defining φ, N , and r.

Since in reality precipitates cannot intersect, a compatibility check has to be

performed after generating the random positions of the precipitates. The minimum

distance between two precipitate centers equals the sum of their radii:

dij ≥ ri + rj (114)

or for the current case of no variation in the precipitate size (ri = rj)

dij ≥ 2ri. (115)

Another important aspect of this domain is its periodicity. Periodicity in this case

means that a string of several identical microstructures forms a new, continuous

microstructure. That means the left and right as well as the upper and lower boundary

of a single domain show identical microstructural details. This is what makes a row of

them continuous. However, due to practicality and compatibility, no precipitates are

located on the boundary. In other words, precipitates are not cut off by the domain

boundary.

Once these constraints are fulfilled, the microstructure is completely defined and

needs to be discretized to allow further numerical evaluations. Discretization in this

context concerns the process of transferring the continuous model into discrete coun-

terparts. The discretization method that is applied for the present microstructure is

called voxelization. Voxelization (rasterization), as stated before, is concerned with

converting geometric objects from their continuous geometric representation into a
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set of voxels that best approximates the continuous object [5]. In 2D voxelization the

squared voxels (pixels) are directly drawn onto the surface (see Figure 5(b)) to be

visualized, and eventually filtering is applied to reduce the aliasing artifacts. The ex-

ample in Figure 5 does not represent the previously introduced microstructures (Table

2) but is chosen to explain the voxelization in a more comprehensive way. For the

current case of a two-phase structure, the voxels are either assigned as precipitate or

as lattice structure (not precipitate). This twofold situation is very well suited to be

represented by a binary system (also called digitization) or for the two-dimensional

case by a binary matrix where 1 indicates precipitates, 0 no precipitates, and the

index of each entry the location on the voxelized surface (see Figure 5(d)). For visu-

alization purposes, as in Figure 5(c), the color white is used to represent precipitates

(binary value 1) and black to show the lattice structure (binary value 0). The higher

the voxel density the higher the accuracy of the voxelized representation of the orig-

inal structure. The previous statement is true for low voxel densities, however voxel

densities that exceed a certain threshold do not lead to an increased accuracy but to

a disproportionately high computational cost. Therefore, voxelized structures that

allow to identify major microstructural characteristics are sufficient for the current

study since only two different states are observable.

The previous step yielded the discretized, as well as the digitized form of the

initial, two-dimensional microstructure with precipitates. To characterize the precip-

itate distribution and individual size of precipitates within each microstructure, the

statistical method of n-point statistics or two-point statistics, respectively, is applied.

The latter case of two-point statistics can be interpreted as the joint probability den-

sity of finding local states at the tail and head of a randomly shaped and oriented

vector t thrown into the microstructure domain. Figure 6 visualizes the two-point

statistical results of the microstructure shown in Figure 5(a). In Figure 6, the axes or

the coordinates, respectively, indicate the shape and orientation of the random vector
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(a) Original microstructure (b) Microstructure voxelization

(c) Voxelized microstructure

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

(d) Digitized microstructure

Figure 5: Microstructure voxelization and digitization
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(a) (b)

Figure 6: Two-point statistics of microstructure in Figure 5(a)

t for the two-dimensional case. The abscissa describes the horizontal and the ordinate

the vertical length of t, whereas the colors red and blue represent the probability of

finding distinct states at both ends of the vector t. Figure 6(a) shows the autocor-

relation of the state no precipitate. In particular, it is the probability to find the

previously mentioned state no precipitate at both ends of the random vector t with

its shape and orientation defined by the x- and y-position of the specific probability.

The expected value of probability is illustrated by the color of the point. For exam-

ple, the vector t with coordinates (x, y) = (0, 30) is expected to have a probability of

about 92% to have the state no precipitate at its head and tail. Another interesting

instance is the zero vector t = (0, 0) that traces back to the one-point statistics and is

nothing else than the average probability to find a distinct state within the regarded

domain.

Comparing Figures 6(a) and 6(b), it occurs that both have the same probability

distribution, however with different values as the colorbars indicate. The reason is

that the autocorrelation of the state precipitate (both ends of the vector t are located

in the state precipitate) is the exact complementary event of the autocorrelation for

the state no precipitate since the current case only includes the two different states

precipitate and no precipitate. Therefore, the information contained in Figures 6(a)

and 6(b) is redundant for the case of exactly two distinct states and can be expressed
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by a single autocorrelation plot.

Furthermore, the two-point statistics not only provide knowledge about the pure

location or spatial distribution of the precipitates, but also knowledge about their

physical shape. Focusing on the center of the two-point statistics plot in Figure 6(a),

it clearly unveils similarities with the initial microstructure’s individual precipitate

shape in Figure 5(a). High valued expectations are found in the middle of the star-

shaped entity with decreasing probabilities towards the tips. The tips have lower

values since random vectors, t with a comparatively high length |t| are less likely to

fit completely in the voxelized precipitate. Also, as precipitate shape and size do

not change throughout the study, the entities in the two-point statistics plot exactly

match the actual physical appearance of the precipitates. Otherwise those entities

would be a representation of the average size and shape of all precipitates occurring.

Moreover, the quality of information that such a two-point statistical evaluation

includes is highly determined by the goodness of voxelization. The higher the voxel

density the higher the accuracy of the discretized representation and two-point statis-

tics of the microstructure, shown in Figure 7. By increasing the voxel density the

actual voxel size decreases and entities within the domain can be represented more

precisely. First, the voxelized representation of a circle looked more like a star (Figure

5(c)) with 900 voxels for the entire domain. Increasing the number of voxels to 8100

(Figure 7(a)) and 72900 voxels (Figure 7(b)) leads to much more realistic and repre-

sentative forms than before. Not only does the voxelized version of the microstructure

shows a more circular shape of the precipitates, but also the two-point statistics plot

is obviously less noisy and the defined number density of precipitates can be repre-

sented more accurately. However, increasing the voxel density over a certain threshold

value is not necessarily desirable, as the influence of increasing computational cost

gets much bigger than the actual accuracy gain. The number of voxels chosen for this

study is 6002 = 360000 as it is assumed to be very close to the threshold mentioned.
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(a) Voxelization with 8,100 voxels
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(b) Voxelization with 72,900 voxels
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Figure 7: Voxelization and two-point statistics accuracy in dependency of the voxel
density 35
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Figure 8: PCA of two-point statistics, 200 random microstructures

Once the two-point statistics is calculated for each microstructure generated, the

data size and dimensionality have risen by a large amount. As the main goal is

to relate microstructural to acoustic properties, a way has to be found to easily

characterize and distinguish between each microstructure. A possible and effective

way to do so is the statistical method principal component analysis (PCA). The

central idea of principal component analysis is to reduce the dimensionality of a data

set which consists of a large number of interrelated variables, while retaining as much

as possible of the variation present in the data set. This is achieved by transforming

to a new set of variables, the principal components, which are uncorrelated, and which

are ordered so that the first few retain most of the variation of the original data.

Figure 8 shows a PCA plot that reduces the dimensionality to three or to three
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Figure 9: Voxelized microstructure with random distribution of 200 precipitates

principal components. Each dot in the PCA plot represents a distinct microstruc-

ture by relating its spatial position to the first three principal values. Thus, the

microstructures and their physical precipitate appearance are statistically character-

ized and can be clearly distinguished. A sample of a voxelized microstructure with a

random distribution of 200 precipitates and a discretization with 360,000 voxels, as

it is used for the current analyses, is displayed in Figure 9. This is the basis for the

next task, the microstructure evaluation or determination of the acoustic properties,

respectively, of each test object.

4.3.2 Microstructure Evaluation

To evaluate the acoustic properties, that is the attenuation behavior and material

nonlinearity, the wave equation (116) has to be solved for each microstructure.

ρ
∂2ui
∂t2

=
∂σij
∂xj

(116)

Since closed form analytical solutions for such complex geometries are generally un-

available, numerical methods have to be applied to approximate the exact solution

of the wave equation. Since computers work with finite memories and perform only
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finite calculations, approximations must be made in order to solve the wave equation

numerically. The numerical method used in this study is the finite element method

(FEM) that discretizes the continuous domain. These approximations have to deal

with issues concerning the discretization of space and time, methods of solving the

discretized version of the equation, and error analysis.

Spatial and time discretizations are related through the Courant-Friedrichs-Lewy

(CFL) condition (117), a necessary condition for convergence while solving the hy-

perbolic partial differential wave equation

CFL =
c∆t

∆x
, (117)

where c is the magnitude of the wave speed, ∆t the time step, and ∆x the element

length of the discretized domain. Depending on whether the method to solve the

discretized equation is explicit or implicit, the optimal CFL-number changes. In this

study, an explicit central difference [12]

U ′(xi) =
U(xi+1)− U(xi−1)

2h
(118)

is utilized for the spatial derivative, where h corresponds to ∆x and denotes the dis-

tance between two node points. The time integration on the other hand is approached

with the implicit multi-step Bathe-method [1]. In Bathe’s method, the complete time

step ∆t is subdivided into two equal sub-steps. For the first sub-step the trape-

zoidal rule is used and for the second sub-step the 3-point Euler backward method is

employed with the resulting equations

t+∆t
2 U̇ = tU̇ +

∆t

4

(

tÜ + t+∆t
2 Ü
)

(119)

t+∆t
2U = tU +

∆t

4

(

tU̇ + t+∆t
2 U̇
)

(120)

t+∆tU̇ =
1

∆t
tU −

4

∆t
t+∆t

2U +
3

∆t
t+∆tU (121)

t+∆tÜ =
1

∆t
tU̇ −

4

∆t
t+∆t

2 U̇ +
3

∆t
t+∆tU̇ , (122)
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Table 3: Discretization properties
Discretization Property Method / Value
Discretized derivatives in space Central difference (explicit)
Discretized derivatives in time Bathe method (implicit)
Element type Linear, triangular (2D)
Mesh density 30 elements/wavelength
CFL-number 1.0

where U , U̇ , and Ü represent the approximation of the exact displacements and their

derivatives u, u̇, and ü.

Since the input wave equation for the finite element solver is in its weak form

∫

V

ρ
∂2ui
∂t2

vi dV +

∫

V

Cijkl
∂uk
∂xl

∂vi
∂xj

dV = 0, (123)

only first order spatial derivatives are necessary for the displacements ui and the the

test functions vi. Substituting all continuous expressions by discrete formulations,

the problem can be solved with a finite element solver. In this specific study, the

partial differential equation solver FreeFEM++ is applied with a conjugate gradient

(CG) method and a CFL-value of 1.0 (see Table 3).

As the case here is just two-dimensional and the order of spatial derivatives is

reduced to one through the weak formulation, linear triangular finite elements are

sufficient to represent the displacements in an accurate manner. However, the ap-

propriate size of those elements is not determined yet. In order to find a well-suited

element size, a convergence analysis has to be performed by incrementally reducing

the element size or increasing the mesh density, respectively. Usually, an increased

mesh density leads to a higher accuracy of results until a certain threshold is reached.

After passing that threshold, an increase in mesh density will not cause but marginal

difference of the results (displacements in this case). The actual convergence analysis

is using 10, 15, 20, 25, 30, and 35 elements per wavelength λ. The coarsest mesh

has 10 elements per wavelength and the finest 35. To show that the convergence is

independent of the chosen frequency, two normalized frequency cases ka = 0.25 and
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Figure 10: Displacement convergence analysis for ka = 0.25

ka = 0.5 are investigated, which are shown in Figures 10 and 11, respectively. Both

cases unveil converging displacements for increasing mesh densities and it can be as-

sumed that mesh densities higher than 35 elements per wavelength do not improve

accuracy. It shows that the convergence limit (position of setting in convergence) is

not dependent on the absolute excitation frequency ka and therefore the mesh den-

sity can be chosen similarly for all different (normalized) frequencies. Furthermore,

an assumed convergence limit of 35 elements per wavelength allows calculations with

mesh densities of 30 elements per wavelength with less than 1% uncertainty. Paired

with acceptable calculation times, 30 elements per wavelength are set as the standard

mesh density or element size, respectively, for all discussed frequency cases.

Once all parameters are determined, the domain needs to be meshed. The previ-

ously set standard mesh density is defined on the edges of the squared domain and is

increasing towards to middle, towards the precipitates. The precipitates are meshed

separately with a slightly smaller element size in order to take their relatively small

size correctly into account. Within the discretized precipitate boundaries different

material properties such as stiffness can be defined, since in real case the precipitate
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Figure 11: Displacement convergence analysis for ka = 0.5

material (Cu) differs from the adjacent lattice material (Fe). Intersecting precipi-

tates are physically impossible and virtually avoided by checking minimum distances

between generated precipitates in the previous microstructure generation step. An

enlarged sample mesh of a microstructure with 200 randomly arranged precipitates

is presented in Figure 12. The green line on the right end is the domain boundary

where the boundary conditions are applied on. Precipitates are marked as colored

circles and the black lines represent the edges of the triangular elements. In addition,

it clearly shows the changing mesh density from the boundary on the right to the

colored precipitates.

The last step before the finite element solver can be launched is to define the

boundary conditions. As the name says, boundary conditions describe the results’

behavior on the domain edges. Assume a two-dimensional coordinate system with

its x-axis pointing to the right and its y-axis pointing upwards and the squared

microstructure domain’s edges parallel to the axes. The left and right boundaries or

edges (along the y-axis), respectively, are set to have a periodic boundary condition.

That means, displacements and at least their first spatial derivative are symmetric
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Figure 12: Meshed microstructure (enlarged)

at both boundaries. Moreover, the bottom edge (x-axis or y = 0) is said to be the

excitation edge and is continuously excited in y-direction with a harmonic function

A(t, x, y = 0) = Â0 sin(ωt) ∀ x. (124)

Thus, a plane wave is propagating in positive y-direction. The remaining, upper edge

is basically a free end but is actually treated as a non reflecting boundary by stopping

the simulation as soon as the wave reaches that upper edge. The simulation time is

therefore determined by the domain edge length l and the fastest wave speed, the

p-wave speed cp:

tsim =
l

cp
. (125)

Now, all parameters are specified and the simulation can start to solve for the displace-

ment field or wave field, respectively. Because the domain is discretized in distinct

nodes that are connected to triangular elements, the resulting displacement field is

also discrete and consisting of nodal displacement values. Displacements for posi-

tions that do not exactly lie on a node are linearly interpolated between nodes of the

particular element. Thus, the displacement field is continuous but not continuously

differentiable. A visualization of the resulting wave field is given in Figures 13 and
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Figure 13: Two-dimensional p-wave field

14, where the wave front has not reached the upper edge yet. The colors indicate the

displacements in y-direction for the p-wave and in x-direction for the s-wave. As a

plane wave is excited at the excitation edge, the p-wave field always exists, no matter

what. The shear wave field, however, only exists if defects are present, such as the

introduced precipitates in the actual study. These precipitates are responsible for the

scattering effect and thus responsible for shear wave generation and the distortion of

the initial wave field. Initial lines of same displacement in Figure 13 get successively

noisy as they travel through the material. Not only the dispersivity but also reflec-

tions make lines that are close the excitation edge look very odd since that is the

location with maximum interference of all reflected waves. Besides, shear waves are

definitely existent but not of major importance in this work. They are generated as

the p-waves scatter with angles other than 90◦.

With that, all needed information is now provided to reach the main goals of this

section, namely the determination of the attenuation coefficient α and the nonlinearity
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Figure 14: Two-dimensional s-wave field

parameter β.

Attenuation coefficient α

Harmonic wave propagation in viscoelastic materials involves an attenuation of the

wave, or in other words a reduction of the displacement amplitude, as it propagates

due to the conversion of mechanical energy into heat. However, in this study only the

wave propagation in heterogeneous elastic materials is considered. Since elastic ma-

terials are completely conservative, the question is how there can be an attenuation

effect when mechanical energy is conserved. The answer is that the total mechanical

energy must be conserved within the elastic media domain, however, there can be

an apparent attenuation effect from incoherent scattering due to the random het-

erogeneity or the randomly distributed precipitates in this study, respectively. The

random nature of the precipitate distribution variation is the essential ingredient to

encounter the attenuation effect. In contrast, there are apparent scattering effects in

heterogeneous and in all length scales periodic media, but the scattered wave remains
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coherent, because of the periodicity of the medium, and thus no attenuation effect is

observed.

The determination or measurement of the attenuation behavior can reveal many

microstructural properties or even property changes. Nondestructive-evaluation tech-

niques exploit this attenuation behavior information to reveal microscale material

damages and predict material life expectancies. To quantify the attenuation behav-

ior, a general assumption of an exponential amplitude decay along the propagation

axis is made

A(y) = Â0 e
−αy, (126)

where Â0 is the initial excitation amplitude, y the propagation distance along the y-

axis, and α the attenuation coefficient. The attenuation coefficient α is dependent on

both the material type (iron, copper, aluminum, ...) and the material configuration,

where the material configuration is of main interest in this study.

In order to compute α for each virtually generated microstructure, the calculated

displacements are fitted to the general attenuation function (126). Thereto, the peaks

in the wave field of the very last time step along the y-axis for specific x-positions

are considered, as shown in Figure 15. Most of the shown data is obtained through

interpolation, only few displacement peaks are actually spatially represented by a

node. Having determined the value and spatial position of the peaks, they can be

now fitted to (126). The resulting exponential attenuation fit, indicated by red lines in

Figure 15, might raise two questions: why are the lines for an exponential fit straight

and why are the amplitudes not decreasing monotonically. The answer to the first

question is the domain size. Since the regarded propagation distance is relatively small

(less than 500nm), the exponential function line seems to be linear although it is not.

For the second question, remember the current material: a heterogeneous lattice-

precipitate composite. Some waves might get reflected at out-of-line precipitates and

cause interference at a point where lower amplitudes would have been expected. This
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(a) x = 0.25 l, α = 1.29m−1
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(b) x = 0.75 l, α = 1.36m−1

Figure 15: Displacement peaks in wave field along y-axis and given x-position

is the case as it occurs in reality, the monotonic decrease is just an ideal assumption.

Due to the random spatial distribution of precipitates, the amplitude decay along

the propagation axis y is not the same for every x-position, compare Figures 15(a)

and 15(b). In other words, imagine straight lines at different x positions and parallel

to the y-axis. The displacements along those lines are not identical and therefore the

amplitude decay or the attenuation coefficient α, respectively, is dependent on the

spatial position of the chosen line. In order to have one distinct attenuation coefficient

for each microstructure, all computed attenuation coefficients per microstructure are

combined to an average attenuation coefficient. The present study encompasses 100

equally spaced lines with numerical measurements of the attenuation coefficient to

compute the final average attenuation coefficient that will be representative for the

respective microstructure.

Not only every line in one microstructure yields different attenuation coefficients

but also every entire microstructure will generally reveal distinct average attenuation

coefficients. Due to this fact, that is mainly caused by the random precipitate distri-

bution, the results of the statistical analysis will show a standard distribution with a

standard deviation σ around the overall mean value µ. An example of such a standard

distribution for an analysis of 200 random microstructures and the above presented
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Figure 16: Distribution of average attenuation coefficients

normalized frequency case of ka = 0.5 is shown in Figure 16. Interpretations and

conclusions of this appearance can be found in the next chapter.

4.3.3 Coupling Microstructural and Acoustic Information

The methods that have been introduced in the last two sections are capable of gener-

ating and quantitatively describing the microstructures as well as determining their

acoustic properties, while all these methods are utilized virtually. As the main goal

of this study is to find correlations between microstructural and acoustic properties,

both sides have to be coupled. More precisely, on the one hand the first three compo-

nents of the principal component analysis of the two-point statistics and on the other

hand the average attenuation coefficient of each microstructure are linked together.

By linking, literally the concatenation of the principal component matrix (200 by 3)

and the attenuation coefficient vector (200 by 1) is understood. The result is a 200 by

4 matrix with the first three columns representing the principal components and the

last column the average attenuation coefficient. Now, the two sides of information are

linked but the question if there is a correlation between them is still not answered. To

do so, a second and last principal component analysis on the generated linked data

matrix is applied. Again, the original data is projected along axes with the highest
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Figure 17: PCA of linked data matrix

variance and the data dimension for this application is reduced to two. Therefore,

if range of the first principal components is greater than the range of the second

principal components, a certain type of correlation might exist. Figure 17 illustrates

the results of this second principal component analysis, where each dot represents a

coupled information. The closer those points are located to the first principal axis,

the higher the correlation between the analyzed entities. The reason for that is the

underlying variance in the data. The smaller the variation along the principal axes

other than the first, the data basically changes only in one direction, thus the vari-

ables are clearly related. Figure 17 suggests a correlation of the data, however the

quality of correlation is not particularly high.

In summary, the methods introduced and described in the last three sections

are fully capable of performing a powerful statistical analysis. In addition to that, all

these methods are implemented in a Python script that automatically sweeps through

all these steps and is very flexible in accepting and changing analysis options and

properties. An extract of that Python script and the used FreeFEM++ finite element

algorithm can be found in the appendix. The results of the performed statistical

analyses and their appraisal follow in the next chapter.

48



CHAPTER V

NUMERICAL RESULTS

The previously introduced methods microstructure generation, microstructure evalu-

ation, and coupling of microstructural and acoustic information are now practically

applied using Python to virtually apply all the introduced methods and FreeFEM++

to solve the wave equation numerically. As the precipitate size is held constant, a

variation of the excitation frequency will inevitably change the resulting wave field.

Since the wave speed c

c = λf (127)

is constant in each case, an increasing frequency f has a decreasing wavelength λ as

a result and vice versa. For the sake of comprehensibility, the normalized frequency

ka

ka =
ω a

c
=

2πf a

λf
=

2π a

λ
(128)

is introduced, where k is the wave number and a the precipitate radius.

Four cases are covered in this work: the normalized frequencies ka = 0.25, 0.5, 0.75,

and 1.0. The absolute frequencies and additional information related to each case are

provided in Table 4.

The four distinct cases are chosen since the most scattering effects are expected

Table 4: Calculation cases for numerical analysis
Case 1 2 3 4
Norm. frequency ka 0.25 0.5 0.75 1.0
Abs. frequency f 1.176 · 1011 Hz 2.352 · 1011 Hz 3.529 · 1011 Hz 4.705 · 1011 Hz
Abs. wavelength λ 5.026 · 10−8 m 2.513 · 10−8 m 1.675 · 10−8 m 1.257 · 10−8 m
Precip. radius a 2 · 10−9 2 · 10−9 2 · 10−9 2 · 10−9

λ/a 25.13 12.57 8.38 6.28
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to be observed for 0 < ka ≤ 1.0, according to Kim [10]. Higher normalized frequen-

cies tend to have too small wavelengths to have a major influence on the scattering

and attenuation behavior of the material. Moreover, high valued normalized or abso-

lute frequencies, respectively, are associated with very dense and fine finite element

meshes with a very high number of degrees of freedom. Therefore, calculations with

frequency cases ka > 1.0 either run out of memory or take computation times that

are not compatible with large statistical analyses. The following sections will first

illustrate the variation of the attenuation coefficients for each case to show the exis-

tence of a correlation between microstructural and acoustic properties. Second, the

latter correlation is quantified by performing the second principal component analysis

followed by a discussion of the presented results.

5.1 Variation of Data

This first section is concerned with the first part of the statistical analysis results,

the variation of the attenuation coefficient. As stated before, each microstructure

is related to a distinct attenuation coefficient α. If there is a correlation between

the spatial distribution of the precipitates and the attenuation coefficient, a variation

of the precipitate distribution has to have an influence on the attenuation behavior.

Even if the exact impact is unknown, there has to be a noticeable change of results.

To find out whether or not α is sensitive to the spatial distribution of the precipi-

tates, all α-values are depicted in histograms. Figures 18, 19, 20, and 21 depict the

histograms for all four cases in the form of histogram combined with a kernel density

estimation (KDE). A kernel density estimation is a non-parametric way to estimate

the probability density function of a random variable. The optimal number of bins

and their size h for the histogram is determined by the Freedman-Diaconis rule

h = 2
IQR

n1/3
, (129)
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where IQR is the interquartile range and n the number of data points. The interquar-

tile range is a measure of variability, based on dividing a data set into quartiles.

Quartiles divide a rank-ordered data set into four equal parts. The values that divide

each part are called the first, second, and third quartiles; and they are denoted by

Q1, Q2, and Q3, respectively.

IQR = Q3 −Q1 (130)

In other words, the IQR is a measure for the size of the subspace that contains

approximately 50% of the data located around the median. Therefore, the IQR can

be understood as a measure of statistical dispersion.

As the Figures 18 to 21 suggest, the attenuation coefficient α generally shows a

clear variation in its absolute value. Depending on the specific case, also the means

and standard deviations are noticeably different. To take account of every single

detail, each frequency case will be discussed separately below.

Case 1: ka = 0.25

The first case with ka = 0.25 is the one with the lowest excitation frequency and

therefore with the largest wavelength. A relatively large wavelength compared to the

precipitate size (λ/a = 25.13) results in the smallest mean attenuation coefficient α

of approximately ᾱ1 = 1.143m−1. The relatively small precipitate size causes only

a very weak scattering effect and therefore a weak energy deviation and a low-value

attenuation coefficient. However, the related Figure 18 shows a very nice and almost

symmetric distribution of the measured values.

Case 2: ka = 0.5

An increased normalized frequency of ka = 0.5 is associated with a decrease in wave-

length and therefore smaller wavelength-precipitate size ratio. The smaller ratio in

turn leads to a stronger scattering effect and to an increased average attenuation co-

efficient ᾱ2 = 1.382m−1. The absolute spread of the data points in this case is slightly
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higher than for the first case. Thus the bin size is slightly increased, as 129 suggests.

Again, the data shows a Gaussian like distribution around ᾱ2.

Case 3: ka = 0.75

Despite the outlier around α = 2.03, the data is very nicely distributed around

ᾱ2 = 1.607m−1.

Case 4: ka = 1.0

The data variation for case four can be seen in Figure 21. This case is the one with

the most wave interaction with the precipitates. As the wavelength-precipitate size

ratio dropped to λ/a = 6.28 the wavelength is in a region where the same precipitate

size as before has the most impact on the propagating wave. Consequently, the

attenuation coefficient further grows to an average value of ᾱ2 = 1.815m−1. The more

impactful scattering behavior results in a higher uncertainty in the α distribution and

a relatively big range. Therefore, the shape of the illustrated distribution looks subtly

odd.

The discussed figures have all one thing in common: they show a distribution of

the numerically determined attenuation coefficients. That means the arrangement

of the precipitates, with the number density and all other material properties held

constant, does have an influence on the material attenuation. Thus, the answer

to the question if the spatial distribution of the precipitates is correlated with the

attenuation behavior or the attenuation coefficient, respectively, is yes. With that

the existence of the correlation is shown, the quantification of that correlation is the

second problem and is covered in the following section.
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Figure 18: Variation of α for ka = 0.25 and 200 data points

Figure 19: Variation of α for ka = 0.5 and 200 data points
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Figure 20: Variation of α for ka = 0.75 and 200 data points

Figure 21: Variation of α for ka = 1.0 and 200 data points
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5.2 Correlation of Data

This section is concerned with the correlation of the data or to be exact with the qual-

ification of the data correlation. As described in the previous chapter, the correlation

between the spatial distribution of the precipitates and the attenuation coefficient α

can be assessed by combining both information for each microstructure and perform

a (second) principal component analysis. That principal component analysis reduces

the data dimension to the size of two principal components which are plotted into a

two-dimensional coordinate system, as shown in Figures 22, 23, 24, and 25. Gener-

ally, the distribution of the points has a larger spread along the first principal axis

compared to the spread along the second and all other axes. To assess the strength of

correlation, those spreads have to be weighed up. A relatively big range of the data

point locations along the first principal axis compared to the second and all other

axes can indicate a correlation or a certain relationship between the input data. On

the other hand, similar ranges may imply low or no correlation of the data. It is

important to note that the ranges ratio (first and second principal axes) rr12

rr12 =
PC1,max − PC1,min

PC2,max − PC2,min

(131)

measures the strength of the linear relationship between the two input data sets, but

a high value of |rr12| does not necessarily imply a cause and effect relationship or

that the two variables are linearly related. It is easy to devise nonlinear relationships

that give a high correlation coefficient and it is important to look at the data and use

common sense.

The results for the present study are shown in Figures 22 to 25 for the normalized

frequency cases ka = 0.25, 0.5, 0.75 , and 1.0. To analyze each case, the spreads along

the first and second principal axes, as well as the ratio of those ranges are listed in

Table 5. The ratio rr12 and consequently the strength of correlation increase from 4

for the first case to 60 for the fourth case, what strengthens two main assumptions.
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Table 5: Overview of principal component ranges and their ratios
Case 1 2 3 4
Normalized frequency ka 0.25 0.5 0.75 1.0
Range of first PC 0.3 0.4 0.4 0.6
Range of second PC 0.075 0.02 0.02 0.01
Ranges ratio rr12 4 20 20 60

First, the growing ratio rr12 shows the growing influence of the scattering effect for

higher normalized frequencies ka. Since ka is the only parameter that changes point-

edly throughout this study, it has to be in charge of the increasing ratio. As an

increasing ratio requires more information, especially more distinguishable informa-

tion, an increasing scattering influence and thus a more distinct wave field stands to

reason. Second, the principal component analysis is capable of measuring the cor-

relation of the data. Assume the first premise described before is correct and the

increasing scattering effect makes the microstructures easier to distinguish between

different acoustic properties, the principal component analysis is indeed capable of

measuring the changing degree of correlation.

Now, focus on the actual correlation of the depicted data. With a ranges ratio

of rr12 = 4 the first frequency case in Figure 22 shows only a very weak correlation

between the spatial distribution of the precipitates and the attenuation coefficient

α. The reason for that is most likely the very weak scattering effect that does not

generate remarkable scattering and attenuation patterns.

By raising the frequency to ka = 0.5 or ka = 0.75, the data points tend to

be located closer to the first principal axis and therefore the range ratio jumps to

rr12 = 20 for both cases (see Table 5). Higher frequencies lead to smaller wavelengths

and therefore to more interaction between the wave and the precipitates whose sizes

do not change throughout the present study.

The fourth and last case with the highest normalized frequency ka = 1.0 and thus

the smallest wavelength is supposed to reveal the most impactful wave-precipitate
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interaction. That can be supported by a tripling of the range ratio to a value of

rr12 = 60. Furthermore, the correlation that is detected by the principal component

analysis turned to a much stronger relation compared to the first case of ka = 0.25

and the related rr12 = 4. Although Figure 25 shows some exceptional values or

outliers, respectively, outside of the main body, the main data bulk is well behaving

and can be definitely used for evaluation purposes.

Even though the principal component analysis for the fourth case shows a compar-

atively strong correlation, the overall performance is mostly weak. Microstructures

with a large wavelength to precipitate size ratio do not show a clear correlation be-

tween their spatial distribution of precipitates and the attenuation behavior due to a

very weak scattering effect. In summary it can be said, that a correlation definitely

exists between microstructural and acoustic properties, but the qualification of that

relation is fairly difficult. Restricting the statement to high scattering influence, a

moderate correlation can be testified.
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Figure 22: PCA of linked data for ka = 0.25
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Figure 23: PCA of linked data for ka = 0.5
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Figure 24: PCA of linked data for ka = 0.75
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Figure 25: PCA of linked data for ka = 1.0
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CHAPTER VI

CONCLUSION AND OUTLOOK

This research demonstrates a statistical analysis using statistical and numerical meth-

ods to assess the correlation between the spatial distribution of precipitates and the

acoustic attenuation behavior of a monocrystalline iron-copper FeCu-steel. Both

statistical and numerical methods are described and the existence as well as the qual-

ification of the correlation are shown.

To link microstructural information and acoustic properties, two-dimensional monocrys-

talline microstructures were virtually generated with a random spatial distribution of

precipitates but defined and constant material properties number density, stiffness,

and analyzed domain size. The generated microstructures are statistically evaluated

with two-point statistics and the principal component analysis. Each microstructure

is then discretized and the wave equation is solved on that discretized domain to

determine the attenuation behavior of each distinct structure. Lastly, both sides, the

spatial distribution information and the attenuation behavior, are combined and cor-

relations are investigated by analyzing the data spread and the first two components

of a second principal component analysis of the combined data.

It could be shown that a correlation between the spatial distribution of the pre-

cipitates and the attenuation behavior exists by varying the spatial distribution and

measuring the prevailing attenuation coefficient α. The attenuation coefficients also

showed a certain spread of their values, so that a sensibility of α to the spatial dis-

tribution is highly certain. Furthermore, the quality of correlation is investigated.

The principal component analysis of the combined microstructural information and

acoustic attenuation behavior reveals low range ratios and thus a weak correlation
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of the input data for low normalized frequency domains. Higher frequency domains,

where the wavelength to precipitate size ratio is smaller and therefore the scattering

effect more impactful, the correlation is stronger but still on a moderate level. As

the scattering effect plays a key role to correlate microstructural information of the

spatial distribution of the precipitates and the related attenuation coefficient, the

introduced and applied methods are the most effective for relatively high frequency

spectra with a low wavelength to defect size ratio.

The same statistical analysis can and will be applied in future works to determine

the influence of precipitate size and stiffness on the attenuation behavior. Moreover,

the main focus will be on introducing a nonlinear residual stress field around the

precipitates to also investigate the influence of spatial distribution, size, and stiffness

of the precipitates on the acoustic nonlinearity parameter β. These studies can po-

tentially contribute to solve the so-called inverse problem and lead to major progress

in practical nondestructive evaluation applications.
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APPENDIX A

PYTHON CODE

################################################################################

############################ EDITOR ’S INFORMATION ##############################

################################################################################

# Danie l Gruen

# dgruen6@gatech . edu

# Georgia I n s t i t u t e o f Technology , At lanta , GA, USA

# Un i v e r s i t y o f S t u t t g a r t , S t u t t g a r t , Germany

#

# This code i s pa r t o f Danie l Gruen ’ s Master Thes i s in t h e area o f Non−Des t r u c t i v e−

# Eva lua t i on (NDE)

#

# Adv i so r s : Dr . Laurence Jacobs , Georgia I n s t i t u t e o f Technology

# Dr . Laurent Capolungo , Los Alamos Na t i ona l Labora tory

# Dr . Jin−Yeon Kim , Georgia I n s t i t u t e o f Technology

#

# Date o f c r e a t i o n : Spr ing & Summer 2016

################################################################################

############################ FUNCTION INFORMATION ##############################

################################################################################

#

# ma i n f i l e

#

# This i s t h e c o n t r o l f u n c t i o n o f t h e p r e p r o c e s s i n g and main c a l c u l a t i o n .

# I t has t h e h i g h e s t p o s i t i o n in t h e command s t r u c t u r e .

################################################################################

######################### SET MICROSTRUCTURE PROPERTIES ########################

################################################################################

class s t ruc t type ( ) :

pass

micro s t ruc tu re = s t ruc t type ( )

mic ro s t ruc tu re . s t a t a n a l y s i s = 1 # s t a t i s t i c a l a n a l y s i s sw i t c h (2 po i n t s t a t s and PCA f o r mu l t i

a n a l y s i s ) 0 : OFF, 1 : ON

micro s t ruc tu re . analtype = 1 # 1: s i n g l e ( one m i c r o s t r u c t u r e g ene ra t ed ) , 2 : mu l t i ( s e v e r a l

m i c r o s t r u c t u r e s genera ted , number d e f i n e d in <mic r o s t r u c t u r e . no m i c r o s t r u c t u r e s >)

micro s t ruc tu re . output = 1 # 0: a l l o u t pu t s suppre s sed , ve ry qu i c k program f low , ne c e s s a r y f o r b i g

data computing !
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micro s t ruc tu re . l o c a t i o n v a r i a t i o n = 1 # sw i t c h f o r v a r i a t i o n o f p r e c i p i t a t e arrangement , 0 : OFF,

1 : ON ( i f OFF s tandard arrangement i s used −> checke r boa rd )

micro s t ruc tu re . s i z e v a r i a t i o n = 0 # sw i t c h f o r v a r i a t i o n o f p r e c i p i t a t e s i z e , 0 : OFF, 1 : ON

micro s t ruc tu re . s t i f f n e s s v a r i a t i o n = 0 # sw i t c h f o r v a r i a t i o n o f p r e c i p i t a t e s t i f f n e s s , 0 : OFF, 1 :

ON

# Enter ma t e r i a l p r o p e r t i e s ( edge l e n g t h o f domain i s de termined a u t oma t i c a l l y ! )

micro s t ruc tu re . vo lume f rac t i on = 0.0088 # volume f r a c t i o n ( u n i t l e s s , not p e r c en t ! ! −> min :0 max :

1)

micro s t ruc tu re . n o p r e c i p i t a t e s = 200 # number o f p r e c i p i t a t e s in squared domain f o r s t a t i s t i c a l

a n a l y s i s (FEM an a l y s i s might have ano ther number o f p r e c i p i t a t e s ! )

micro s t ruc tu re . e d g e l e ng th nop r e c i p i t a t e s = 20e−8 # edge l e n g t h i f z e ro p r e c i p i t a t e s s e l e c t e d

micro s t ruc tu re . p r e c i p i t a t e r a d i u s = 2e−9 # rad i u s o f p r e c i p i t a t e in m

micro s t ruc tu re . m in p r e c c en t e r d i s t anc e = 4.00001 e−9 # minimum d i s t a n c e between two c en t e r s o f

p r e c i p i t a t e s ( in nm)

micro s t ruc tu re . s i z e s t d e v = 0.15 # standard d e v i a t i o n o f o f p r e c i p i t a t e s i z e in pe r c en t

micro s t ruc tu re . s t i f f n e s s s t d e v = 0.15 # standard d e v i a t i o n o f o f p r e c i p i t a t e s t i f f n e s s in pe r c en t

micro s t ruc tu re . voxpedge = 600 # number o f v o x e l s a l ong edge ( squared domain )

micro s t ruc tu re . no mic ro s t ruc tu r e s = 5 # number o f randomly g ene ra t ed m i c r o s t r u c t u r e s

micro s t ruc tu re . check mic ro s t ruc tu r e = 0 # Option to p l o t m i c r o s t r u c t u r e when s e v e r a l s t r u c t u r e s

are c r e a t e d ( s ee d e s c r i p t i o n be low )

# ( 0 : OFF, 1 : ON, choose # o f MS below , 2 : ON, MS wi th max and min p r i n c i p a l v a l u e s p l o t t e d ) , 3 :

ON, 1 . PC wi th max , z e ro and min PV wh i l e a l l o t h e r PV o f o t h e r PC nea r l y z e ro

micro s t ruc tu re . check mic ro s t ruc tu r e no = 0 # number o f m i c r o s t r u c t u r e to be p l o t t e d ( f o r op t i on

m i c r o s t r u c t u r e . c h e c k m i c r o s t r u c t u r e = 1)

micro s t ruc tu re . no components var iance p lot = 2 # number o f components b e in g p l o t t e d in t h e

component va r i ance p l o t

################################################################################

############################## SET FEM PROPERTIES ##############################

################################################################################

fem = st ruc t type ( )

fem . ana l y s i s = 0 # main sw i t c h f o r FEM an a l y s i s ( 0 : OFF, 1 : ON)

fem . conve rg enc e ana l y s i s = 0 # sw i t c h f o r convergence a n a l y s i s ( 0 : OFF, 1 : ON)

fem . convergence ana l type = 1 .5 # 1: s t op when e r r o r drops be low t h r e s h o l d , 2 : s t op a f t e r d e f i n e d

number o f s t e p s

fem . conve rgence th re sho ld = 0.05 # minimum r e l a t i v e d i f f e r e n c e o f mean e r r o r s be tween two s t e p s

t h a t i n d i c a t e s convergence

fem . convergence nos teps = 1 # number o f s t e p s in convergence a n a l y s i s ( a t l e a s t 2)

fem . conve rg enc e edge f a c t o r = 1 .5 # in c r e a s i n g f a c t o r o f e l emen t s e l ong edge in convergence

a n a l y s i s

fem . c onv e r g e n c e p r e c i p i t a t e f a c t o r = 1 .5 # in c r e a s i n g f a c t o r o f e l emen t s e l ong p r e c i p i t a t e

boundary in convergence a n a l y s i s

fem . mic ro s t ruc ture output = 1 # save m i c r o s t r u c t u r e as v t k / eps image ( 0 : OFF, 1 : ON) ( IF ON,

convergence a n a l y s i s ve ry s low s i n c e user has to c l o s e window eve ry l oop )

fem . save animat ion = 1 # save animated wave as v tk− f i l e ? ( 0 : NO, 1 :YES) ( turn o f f f o r HPC usage ! )

fem . dimension = 2 # dimension o f wave e qua t i on ( 1 : 1D, 2 :2D)

fem . s o l v e r = ’CG’ # FEM s o l v e r (CG, s p a r s e s o l v e r , . . . )

fem . e l emen t s f a c t o r p r e c i p i t a t e bounda ry = 3 # f a c t o r by which e l emen t s on p r e c i p i t a t e boundary

are sma l l e r than on the edge s ( r e s p e c t d i f f e r e n t wave v e l o c i t y in prec . )
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fem . no measurement l ines = 10 # number o f e v en l y spaced measurement l i n e s a l ong which t h e mean

d i s p l a c emen t i s de termined ( l i n e s are o r t h o g ona l t o p ropaga t i on d i r e c t i o n ) ( number o f p o i n t s

on each l i n e c o r r e l a t e s w i th e l ement s i z e )

fem . no measurement l ines prop = 100 # number o f e v en l y spaced measurement l i n e s a l ong t h e

p ropaga t i on d i r e c t i o n ( l i n e s are p a r a l l e l t o p ropaga t i on d i r e c t i o n ) ( number o f p o i n t s on each

l i n e c o r r e l a t e s w i th e l ement s i z e )

fem . n o p o i n t p e r l i n e f a c t o r p r o p = 10 # f a c t o r by t h a t t h e number o f measurement p o i n t s on th e

p ropaga t i on l i n e i s h i g h e r than th e na t u r a l number o f p o i n t s ( e l ement s i z e )

fem . t ime i n t e g r a t i on = 2 # time i n t e g r a t i o n scheme ( 1 : e x p l i c i t , 2 : i m p l i c i t w i t h bathe−method )

fem . e lement type = 1 # element t ype ( 1 : l i n e a r , 2 : q u a d r a t i c )

fem . e l ements per wave l ength = 10 # e lemen t s a l ong e x c i t a t i o n edge ( s t a r t v a l u e f o r convergence

a n a l y s i s ) [ number o f e l emen t s a l ong o t h e r edge are s e t a u t oma t i c a l l y ]

fem . autotime = 1 # automat i c t ime s t e p and endt ime de t e rm ina t i on by u s ing CFL number and on l y one

e d g e l e n g t h p ropaga t i on ( 0 : OFF, 1 :ON)

fem . t imestep = 4.25 e−13 # time s t e p in seconds ( s t a r t v a l u e f o r convergence a n a l y s i s )

fem . s imu l a t i on s t a r t t ime = 0.0 # s t a r t t ime f o r which e qua t i on i s s o l v e d

fem . s imulat ion endt ime = 0.000000000028137757 #4.4 e−9 # end t ime f o r which e qua t i on i s s o l v e d

fem . c f l = 1 .0 # CFL number ( i f fem . au to t ime == 1)

fem . no excwaves = 100 # number o f waves in e x c i t a t i o n wavepacke t

fem . e x c i t a t i o n f r e qu en cy = 1.17 e11 #50 e9 # e x c i t a t i o n f r e qu ency in Hz

fem . exc i t a t i on amp l i tude = 1e−6 # e x c i t a t i o n amp l i t ude in m

fem . p r e c i p i t a t e pwaveve l = 4760 # p−wave v e l o c i t y in p r e c i p i t a t e in m/ s ( copper )

fem . p r e c i p i t a t e swav ev e l = 2325 # s−wave v e l o c i t y in p r e c i p i t a t e in m/ s ( copper )

fem . p r e c i p i t a t e r h o = 8960 # p r e c i p i t a t e d e n s i t y in kg /mˆ3

fem . l a t t i c e pwavev e l = 5912 # p−wave v e l o c i t y in l a t t i c e s t r u c t u r e in m/ s ( i ron )

fem . l a t t i c e swav e v e l = 3240 # s−wave v e l o c i t y in l a t t i c e s t r u c t u r e in m/ s ( i ron )

fem . l a t t i c e r h o = 7874 # l a t t i c e d e n s i t y in kg /mˆ3

################################################################################

################### CHECK DEFINED OPTIONS AND PRINT THEM #######################

################################################################################

import sys

import os

sys . path . append ( ’ . ’ + os . sep + ’ Subfunct ions ’ )

from f u n c t i o n s e t 1 import ∗

check opt i ons ( micros t ructure , fem )

################################################################################

########################### PATHNAMES AND FILENAMES ############################

################################################################################

import time

# Def ine pathnames . R e l a t i v e pathnames !

pathnames = s t ruc t type ( )

currentt ime = time . s t r f t ime ( ’ Date %Y %m %d Time %H %M %S ’ )

pathnames . a l l r e s u l t s = ’ . ’ + os . sep +’ Resu l t s ’ + os . sep + currentt ime
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pathnames . a l l r e s u l t s n o d o t = pathnames . a l l r e s u l t s [ 1 : ]

pathnames . s t a t i s t i c a l r e s u l t s = pathnames . a l l r e s u l t s + os . sep + ’ S t a t i s t i c a l a n a l y s i s ’

pathnames . f em r e s u l t s = pathnames . a l l r e s u l t s + os . sep + ’ FreeFEM results ’

pathnames . f em r e s u l t s g l o b a l v a r i a b l e s = pathnames . a l l r e s u l t s + os . sep + ’ Python Data ’

pathnames . f em re su l t s each ms = pathnames . f em r e s u l t s + os . sep + ’ Mic ro s t ruc tu r e ’

pathnames . fem convergence = pathnames . a l l r e s u l t s + os . sep + ’ FEM convergence analys is ’

pathnames . ma i n f i l e f o l d e r p a t h = os . path . dirname ( os . path . r ea lpath ( f i l e ) )

# Def ine f i l e n ame s .

f i l enames = s t ruc t type ( )

f i l enames . i n f o f i l e = ’ De f i n ed p rope r t i e s . txt ’

f i l enames . pca p l o t = ’ PCA plot ’

f i l enames . fem input = ’ FreeFEM input . edp ’

f i l enames . f em r e s u l t s = ’Wave out . txt ’

f i l enames . f em mesh i n f o f i l e = ’ Meshinfo . txt ’

f i l enames . fem meshimage = ’Meshimage . eps ’

f i l enames . convergence d i sp lacements = ’ Convergence disp lacements . eps ’

f i l enames . conve rgence e r ro r = ’ Convergence er ror . eps ’

f i l enames . g l oba l s ave = currentt ime + ’ data ’

f i l enames . f em disp lacements = ’ Displacements . txt ’

################################################################################

########################### CREATE FOLDER STRUCTURE ############################

################################################################################

from mic ro s t ru c tu r e sub func t i on s import ∗

from f em subfunct ions import ∗

# Create f o l d e r s

os . makedirs ( pathnames . a l l r e s u l t s )

os . makedirs ( pathnames . s t a t i s t i c a l r e s u l t s )

os . makedirs ( pathnames . f em r e s u l t s )

os . makedirs ( pathnames . f em r e s u l t s g l o b a l v a r i a b l e s )

i f fem . conve rg enc e ana l y s i s == 1 :

os . makedirs ( pathnames . fem convergence )

i f micro s t ruc tu re . analtype == 2 :

for ms in range (1 , mic ro s t ruc tu re . no mic ro s t ruc tu r e s+1) :

os . makedirs ( pathnames . f em re su l t s each ms+str (ms) )

else :

os . makedirs ( pathnames . f em re su l t s each ms+’ 1 ’ )

################################################################################

############################ STATISTICAL ANALYSIS ##############################

################################################################################

( micros t ructure , s t a t i s t i c a l r e s u l t s ) = s t a t i s t i c a l a n a l y s i s ( micros t ructure , fem , pathnames ,

f i l enames )

# s t a t i s t i c a l r e s u l t s :

# . l o c p r e c i p i t a t e s (3D)

# . vox ma t r i x (3D)

# . l a t t i c e p o i n t (2D)

# . p r i n c i p a l c omponen t s (2D)
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################################################################################

############################## FEM CALCULATION #################################

################################################################################

f em r e s u l t s = s t ruc t type ( )

s t a t i s t i c a l r e s u l t s 2 s a v e = s t ruc t type ( )

# read FreeFEM r e s u l t s ( . t x t ) and save FreeFEM++ r e s u l t s as python f i l e

f em r e s u l t s = f em ana ly s i s ( micros t ructure , fem , pathnames , f i l enames , s t a t i s t i c a l r e s u l t s ,

f em re su l t s , s t a t i s t i c a l r e s u l t s 2 s a v e )

# f em r e s u l t s :

# . d i s p l a c emen t s (2D: s imu l a t i o n time , x−l oc , y−l oc , y−d i s p l a c emen t )
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APPENDIX B

FREEFEM++ CODE

// Locat ion var i a t i on , 200 p r e c i p i t a t e s

v e rbo s i t y =0;

load ”msh3”

load ” iovtk ” // load l i b r a r y o f vtk

int C1=100;

int C2=200;

int C3=300;

int C4=400;

int C5=500;

int C6=600;

int C7=700;

int C8=800;

int C9=900;

int C10=1000;

int C11=1100;

int C12=1200;

int C13=1300;

int C14=1400;

int C15=1500;

int C16=1600;

int C17=1700;

int C18=1800;

int C19=1900;

int C20=2000;

int C21=2100;

int C22=2200;

int C23=2300;

int C24=2400;

int C25=2500;

int C26=2600;

int C27=2700;

int C28=2800;

int C29=2900;

int C30=3000;

int C31=3100;

int C32=3200;

int C33=3300;

int C34=3400;

int C35=3500;

int C36=3600;

int C37=3700;

int C38=3800;

int C39=3900;

int C40=4000;
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int C41=4100;

int C42=4200;

int C43=4300;

int C44=4400;

int C45=4500;

int C46=4600;

int C47=4700;

int C48=4800;

int C49=4900;

int C50=5000;

int C51=5100;

int C52=5200;

int C53=5300;

int C54=5400;

// Bui ld ing the Mesh

border a0 ( t =0 ,0.000000225189) { x=0.000000225189; y= t ; l a b e l=C1;}

border a1 ( t =0 ,0.000000225189) { x=0.000000225189− t ; y=0.000000225189; l a b e l=C2;}

border a2 ( t =0 ,0.000000225189) { x=0; y= 0.000000225189− t ; l a b e l=C3;}

border a3 ( t =0 ,0.000000225189) { x=t ; y=0 ; l a b e l=C4;}

border b1 ( t=0,2∗ pi ){x=0.000000041907+0.000000002000∗ cos ( t ) ; y=0.000000097382+0.000000002000∗ s i n ( t )

; l a b e l=C5;}

border b2 ( t=0,2∗ pi ){x=0.000000163743+0.000000002000∗ cos ( t ) ; y=0.000000219099+0.000000002000∗ s i n ( t )

; l a b e l=C6;}

border b3 ( t=0,2∗ pi ){x=0.000000026799+0.000000002000∗ cos ( t ) ; y=0.000000015036+0.000000002000∗ s i n ( t )

; l a b e l=C7;}

border b4 ( t=0,2∗ pi ){x=0.000000067295+0.000000002000∗ cos ( t ) ; y=0.000000092266+0.000000002000∗ s i n ( t )

; l a b e l=C8;}

border b5 ( t=0,2∗ pi ){x=0.000000221685+0.000000002000∗ cos ( t ) ; y=0.000000063299+0.000000002000∗ s i n ( t )

; l a b e l=C9;}

border b6 ( t=0,2∗ pi ){x=0.000000025079+0.000000002000∗ cos ( t ) ; y=0.000000121478+0.000000002000∗ s i n ( t )

; l a b e l=C10 ;}

border b7 ( t=0,2∗ pi ){x=0.000000213151+0.000000002000∗ cos ( t ) ; y=0.000000113524+0.000000002000∗ s i n ( t )

; l a b e l=C11 ;}

border b8 ( t=0,2∗ pi ){x=0.000000209479+0.000000002000∗ cos ( t ) ; y=0.000000042031+0.000000002000∗ s i n ( t )

; l a b e l=C12 ;}

border b9 ( t=0,2∗ pi ){x=0.000000033220+0.000000002000∗ cos ( t ) ; y=0.000000071655+0.000000002000∗ s i n ( t )

; l a b e l=C13 ;}

border b10 ( t=0,2∗ pi ){x=0.000000117830+0.000000002000∗ cos ( t ) ; y=0.000000161841+0.000000002000∗ s i n ( t

) ; l a b e l=C14 ;}

border b11 ( t=0,2∗ pi ){x=0.000000209029+0.000000002000∗ cos ( t ) ; y=0.000000173194+0.000000002000∗ s i n ( t

) ; l a b e l=C15 ;}

border b12 ( t=0,2∗ pi ){x=0.000000069027+0.000000002000∗ cos ( t ) ; y=0.000000033109+0.000000002000∗ s i n ( t

) ; l a b e l=C16 ;}

border b13 ( t=0,2∗ pi ){x=0.000000075445+0.000000002000∗ cos ( t ) ; y=0.000000188659+0.000000002000∗ s i n ( t

) ; l a b e l=C17 ;}

border b14 ( t=0,2∗ pi ){x=0.000000131376+0.000000002000∗ cos ( t ) ; y=0.000000155621+0.000000002000∗ s i n ( t

) ; l a b e l=C18 ;}

border b15 ( t=0,2∗ pi ){x=0.000000193538+0.000000002000∗ cos ( t ) ; y=0.000000092872+0.000000002000∗ s i n ( t

) ; l a b e l=C19 ;}

border b16 ( t=0,2∗ pi ){x=0.000000094845+0.000000002000∗ cos ( t ) ; y=0.000000052308+0.000000002000∗ s i n ( t

) ; l a b e l=C20 ;}

68



border b17 ( t=0,2∗ pi ){x=0.000000178375+0.000000002000∗ cos ( t ) ; y=0.000000176374+0.000000002000∗ s i n ( t

) ; l a b e l=C21 ;}

border b18 ( t=0,2∗ pi ){x=0.000000206139+0.000000002000∗ cos ( t ) ; y=0.000000032343+0.000000002000∗ s i n ( t

) ; l a b e l=C22 ;}

border b19 ( t=0,2∗ pi ){x=0.000000111823+0.000000002000∗ cos ( t ) ; y=0.000000083824+0.000000002000∗ s i n ( t

) ; l a b e l=C23 ;}

border b20 ( t=0,2∗ pi ){x=0.000000109762+0.000000002000∗ cos ( t ) ; y=0.000000007408+0.000000002000∗ s i n ( t

) ; l a b e l=C24 ;}

border b21 ( t=0,2∗ pi ){x=0.000000200882+0.000000002000∗ cos ( t ) ; y=0.000000009868+0.000000002000∗ s i n ( t

) ; l a b e l=C25 ;}

border b22 ( t=0,2∗ pi ){x=0.000000050097+0.000000002000∗ cos ( t ) ; y=0.000000063690+0.000000002000∗ s i n ( t

) ; l a b e l=C26 ;}

border b23 ( t=0,2∗ pi ){x=0.000000194882+0.000000002000∗ cos ( t ) ; y=0.000000176595+0.000000002000∗ s i n ( t

) ; l a b e l=C27 ;}

border b24 ( t=0,2∗ pi ){x=0.000000113312+0.000000002000∗ cos ( t ) ; y=0.000000196076+0.000000002000∗ s i n ( t

) ; l a b e l=C28 ;}

border b25 ( t=0,2∗ pi ){x=0.000000175133+0.000000002000∗ cos ( t ) ; y=0.000000218465+0.000000002000∗ s i n ( t

) ; l a b e l=C29 ;}

border b26 ( t=0,2∗ pi ){x=0.000000159398+0.000000002000∗ cos ( t ) ; y=0.000000204260+0.000000002000∗ s i n ( t

) ; l a b e l=C30 ;}

border b27 ( t=0,2∗ pi ){x=0.000000091418+0.000000002000∗ cos ( t ) ; y=0.000000081900+0.000000002000∗ s i n ( t

) ; l a b e l=C31 ;}

border b28 ( t=0,2∗ pi ){x=0.000000015278+0.000000002000∗ cos ( t ) ; y=0.000000072338+0.000000002000∗ s i n ( t

) ; l a b e l=C32 ;}

border b29 ( t=0,2∗ pi ){x=0.000000214311+0.000000002000∗ cos ( t ) ; y=0.000000131690+0.000000002000∗ s i n ( t

) ; l a b e l=C33 ;}

border b30 ( t=0,2∗ pi ){x=0.000000028950+0.000000002000∗ cos ( t ) ; y=0.000000007548+0.000000002000∗ s i n ( t

) ; l a b e l=C34 ;}

border b31 ( t=0,2∗ pi ){x=0.000000023045+0.000000002000∗ cos ( t ) ; y=0.000000176029+0.000000002000∗ s i n ( t

) ; l a b e l=C35 ;}

border b32 ( t=0,2∗ pi ){x=0.000000200612+0.000000002000∗ cos ( t ) ; y=0.000000106518+0.000000002000∗ s i n ( t

) ; l a b e l=C36 ;}

border b33 ( t=0,2∗ pi ){x=0.000000159004+0.000000002000∗ cos ( t ) ; y=0.000000141889+0.000000002000∗ s i n ( t

) ; l a b e l=C37 ;}

border b34 ( t=0,2∗ pi ){x=0.000000025994+0.000000002000∗ cos ( t ) ; y=0.000000138290+0.000000002000∗ s i n ( t

) ; l a b e l=C38 ;}

border b35 ( t=0,2∗ pi ){x=0.000000094399+0.000000002000∗ cos ( t ) ; y=0.000000215263+0.000000002000∗ s i n ( t

) ; l a b e l=C39 ;}

border b36 ( t=0,2∗ pi ){x=0.000000084135+0.000000002000∗ cos ( t ) ; y=0.000000220913+0.000000002000∗ s i n ( t

) ; l a b e l=C40 ;}

border b37 ( t=0,2∗ pi ){x=0.000000026415+0.000000002000∗ cos ( t ) ; y=0.000000168884+0.000000002000∗ s i n ( t

) ; l a b e l=C41 ;}

border b38 ( t=0,2∗ pi ){x=0.000000084513+0.000000002000∗ cos ( t ) ; y=0.000000175444+0.000000002000∗ s i n ( t

) ; l a b e l=C42 ;}

border b39 ( t=0,2∗ pi ){x=0.000000045533+0.000000002000∗ cos ( t ) ; y=0.000000134811+0.000000002000∗ s i n ( t

) ; l a b e l=C43 ;}

border b40 ( t=0,2∗ pi ){x=0.000000041026+0.000000002000∗ cos ( t ) ; y=0.000000005111+0.000000002000∗ s i n ( t

) ; l a b e l=C44 ;}

border b41 ( t=0,2∗ pi ){x=0.000000140919+0.000000002000∗ cos ( t ) ; y=0.000000217355+0.000000002000∗ s i n ( t

) ; l a b e l=C45 ;}

border b42 ( t=0,2∗ pi ){x=0.000000121876+0.000000002000∗ cos ( t ) ; y=0.000000214829+0.000000002000∗ s i n ( t

) ; l a b e l=C46 ;}

border b43 ( t=0,2∗ pi ){x=0.000000095291+0.000000002000∗ cos ( t ) ; y=0.000000189185+0.000000002000∗ s i n ( t

) ; l a b e l=C47 ;}
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border b44 ( t=0,2∗ pi ){x=0.000000116923+0.000000002000∗ cos ( t ) ; y=0.000000111145+0.000000002000∗ s i n ( t

) ; l a b e l=C48 ;}

border b45 ( t=0,2∗ pi ){x=0.000000028845+0.000000002000∗ cos ( t ) ; y=0.000000129697+0.000000002000∗ s i n ( t

) ; l a b e l=C49 ;}

border b46 ( t=0,2∗ pi ){x=0.000000181037+0.000000002000∗ cos ( t ) ; y=0.000000112767+0.000000002000∗ s i n ( t

) ; l a b e l=C50 ;}

border b47 ( t=0,2∗ pi ){x=0.000000168414+0.000000002000∗ cos ( t ) ; y=0.000000089493+0.000000002000∗ s i n ( t

) ; l a b e l=C51 ;}

border b48 ( t=0,2∗ pi ){x=0.000000117945+0.000000002000∗ cos ( t ) ; y=0.000000193586+0.000000002000∗ s i n ( t

) ; l a b e l=C52 ;}

border b49 ( t=0,2∗ pi ){x=0.000000210268+0.000000002000∗ cos ( t ) ; y=0.000000160765+0.000000002000∗ s i n ( t

) ; l a b e l=C53 ;}

border b50 ( t=0,2∗ pi ){x=0.000000199800+0.000000002000∗ cos ( t ) ; y=0.000000137039+0.000000002000∗ s i n ( t

) ; l a b e l=C54 ;}

r e a l dt =0.000000000000854701 ,Ts=0.000000000000000000 ,Tf=0.000000000038090164 , tcurrent , tmiddle ;

r e a l g=0. ;

r e a l f r e q =117000000000.000000000000;

r e a l ampl=0.000001000000;

func pe r i o = [ [ 1 0 0 , y ] , [ 3 0 0 , y ] ] ;

mesh Th=buildmesh ( a0 (44)+a1 (44)+a2 (44)+a3 (44)+b1 (7)+b2 (7)+b3 (7)+b4 (7)+b5 (7)+b6 (7)+b7 (7)+b8 (7)+b9

(7)+b10 (7)+b11 (7)+b12 (7)+b13 (7)+b14 (7)+b15 (7)+b16 (7)+b17 (7)+b18 (7)+b19 (7)+b20 (7)+b21 (7)+b22 (7)

+b23 (7)+b24 (7)+b25 (7)+b26 (7)+b27 (7)+b28 (7)+b29 (7)+b30 (7)+b31 (7)+b32 (7)+b33 (7)+b34 (7)+b35 (7)+

b36 (7)+b37 (7)+b38 (7)+b39 (7)+b40 (7)+b41 (7)+b42 (7)+b43 (7)+b44 (7)+b45 (7)+b46 (7)+b47 (7)+b48 (7)+b49

(7)+b50 (7) ) ;

f e spac e Vh(Th,P1 , p e r i o d i c=pe r i o ) ;

f e spac e Wh(Th, P0) ;

int i n c l u s i o n 1 = Th(0 .000000041907 ,0 .000000097382) . r eg i on ;

int i n c l u s i o n 2 = Th(0 .000000163743 ,0 .000000219099) . r eg i on ;

int i n c l u s i o n 3 = Th(0 .000000026799 ,0 .000000015036) . r eg i on ;

int i n c l u s i o n 4 = Th(0 .000000067295 ,0 .000000092266) . r eg i on ;

int i n c l u s i o n 5 = Th(0 .000000221685 ,0 .000000063299) . r eg i on ;

int i n c l u s i o n 6 = Th(0 .000000025079 ,0 .000000121478) . r eg i on ;

int i n c l u s i o n 7 = Th(0 .000000213151 ,0 .000000113524) . r eg i on ;

int i n c l u s i o n 8 = Th(0 .000000209479 ,0 .000000042031) . r eg i on ;

int i n c l u s i o n 9 = Th(0 .000000033220 ,0 .000000071655) . r eg i on ;

int i n c l u s i on10 = Th(0 .000000117830 ,0 .000000161841) . r eg i on ;

int i n c l u s i on11 = Th(0 .000000209029 ,0 .000000173194) . r eg i on ;

int i n c l u s i on12 = Th(0 .000000069027 ,0 .000000033109) . r eg i on ;

int i n c l u s i on13 = Th(0 .000000075445 ,0 .000000188659) . r eg i on ;

int i n c l u s i on14 = Th(0 .000000131376 ,0 .000000155621) . r eg i on ;

int i n c l u s i on15 = Th(0 .000000193538 ,0 .000000092872) . r eg i on ;

int i n c l u s i on16 = Th(0 .000000094845 ,0 .000000052308) . r eg i on ;

int i n c l u s i on17 = Th(0 .000000178375 ,0 .000000176374) . r eg i on ;

int i n c l u s i on18 = Th(0 .000000206139 ,0 .000000032343) . r eg i on ;

int i n c l u s i on19 = Th(0 .000000111823 ,0 .000000083824) . r eg i on ;

int i n c l u s i on20 = Th(0 .000000109762 ,0 .000000007408) . r eg i on ;

int i n c l u s i on21 = Th(0 .000000200882 ,0 .000000009868) . r eg i on ;

int i n c l u s i on22 = Th(0 .000000050097 ,0 .000000063690) . r eg i on ;

int i n c l u s i on23 = Th(0 .000000194882 ,0 .000000176595) . r eg i on ;

int i n c l u s i on24 = Th(0 .000000113312 ,0 .000000196076) . r eg i on ;

int i n c l u s i on25 = Th(0 .000000175133 ,0 .000000218465) . r eg i on ;

int i n c l u s i on26 = Th(0 .000000159398 ,0 .000000204260) . r eg i on ;
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int i n c l u s i on27 = Th(0 .000000091418 ,0 .000000081900) . r eg i on ;

int i n c l u s i on28 = Th(0 .000000015278 ,0 .000000072338) . r eg i on ;

int i n c l u s i on29 = Th(0 .000000214311 ,0 .000000131690) . r eg i on ;

int i n c l u s i on30 = Th(0 .000000028950 ,0 .000000007548) . r eg i on ;

int i n c l u s i on31 = Th(0 .000000023045 ,0 .000000176029) . r eg i on ;

int i n c l u s i on32 = Th(0 .000000200612 ,0 .000000106518) . r eg i on ;

int i n c l u s i on33 = Th(0 .000000159004 ,0 .000000141889) . r eg i on ;

int i n c l u s i on34 = Th(0 .000000025994 ,0 .000000138290) . r eg i on ;

int i n c l u s i on35 = Th(0 .000000094399 ,0 .000000215263) . r eg i on ;

int i n c l u s i on36 = Th(0 .000000084135 ,0 .000000220913) . r eg i on ;

int i n c l u s i on37 = Th(0 .000000026415 ,0 .000000168884) . r eg i on ;

int i n c l u s i on38 = Th(0 .000000084513 ,0 .000000175444) . r eg i on ;

int i n c l u s i on39 = Th(0 .000000045533 ,0 .000000134811) . r eg i on ;

int i n c l u s i on40 = Th(0 .000000041026 ,0 .000000005111) . r eg i on ;

int i n c l u s i on41 = Th(0 .000000140919 ,0 .000000217355) . r eg i on ;

int i n c l u s i on42 = Th(0 .000000121876 ,0 .000000214829) . r eg i on ;

int i n c l u s i on43 = Th(0 .000000095291 ,0 .000000189185) . r eg i on ;

int i n c l u s i on44 = Th(0 .000000116923 ,0 .000000111145) . r eg i on ;

int i n c l u s i on45 = Th(0 .000000028845 ,0 .000000129697) . r eg i on ;

int i n c l u s i on46 = Th(0 .000000181037 ,0 .000000112767) . r eg i on ;

int i n c l u s i on47 = Th(0 .000000168414 ,0 .000000089493) . r eg i on ;

int i n c l u s i on48 = Th(0 .000000117945 ,0 .000000193586) . r eg i on ;

int i n c l u s i on49 = Th(0 .000000210268 ,0 .000000160765) . r eg i on ;

int i n c l u s i on50 = Th(0 .000000199800 ,0 .000000137039) . r eg i on ;

int e f f e c t i v e=Th(0 .000000000188 ,0 .000000000188) . r eg i on ;

// Def ine measurement l i n e s

int no l i n e s = 10 ;

int pp l ine = 44 ;

r e a l [ int ] x l o c a t i on s ( pp l ine ) ;

r e a l [ int ] y l o c a t i on s ( no l i n e s ) ;

for ( int i i =0; i i <pp l ine ; i i ++){

x l o c a t i on s [ i i ] = i i ∗0.000000225189051/( ppl ine −1) ;

}

for ( int j j =0; j j<no l i n e s ; j j++){

y l o c a t i on s [ j j ] = j j ∗0.000000225189051/( no l ine s −1) ;

}

ofstream fout ( ”Displacements . txt ” , append ) ;

fout<< ”FILE INFORMATION: DISPLACEMENT AT DISTINCT POINTS IN TIME AND DOMAIN (INTERPOLATED) (x−

coord , y−coord , y−disp lacement ) ” << endl ;

r e a l r h o l a t t i c e =7874.000000;

r e a l rhoprec ip =8960.000000;

r e a l v p l a t t i c e =5912.000000;

r e a l v s l a t t i c e =3240.000000;

r e a l l ambda la t t i c e = r h o l a t t i c e ∗( v p l a t t i c e ˆ2−2∗ v s l a t t i c e ˆ2) ;

r e a l mulat t i c e = r h o l a t t i c e ∗ v s l a t t i c e ˆ2 ;

71



Wh lambda=lambda la t t i c e ∗( r eg i on==e f f e c t i v e ) +−1230886400.000000∗( r eg i on==in c l u s i o n 1 )

+−1230886400.000000∗( r eg i on==in c l u s i o n 2 ) +−1230886400.000000∗( r eg i on==in c l u s i o n 3 )

+−1230886400.000000∗( r eg i on==in c l u s i o n 4 ) +−1230886400.000000∗( r eg i on==in c l u s i o n 5 )

+−1230886400.000000∗( r eg i on==in c l u s i o n 6 ) +−1230886400.000000∗( r eg i on==in c l u s i o n 7 )

+−1230886400.000000∗( r eg i on==in c l u s i o n 8 ) +−1230886400.000000∗( r eg i on==in c l u s i o n 9 )

+−1230886400.000000∗( r eg i on==inc l u s i on10 ) +−1230886400.000000∗( r eg i on==inc l u s i on11 )

+−1230886400.000000∗( r eg i on==inc l u s i on12 ) +−1230886400.000000∗( r eg i on==inc l u s i on13 )

+−1230886400.000000∗( r eg i on==inc l u s i on14 ) +−1230886400.000000∗( r eg i on==inc l u s i on15 )

+−1230886400.000000∗( r eg i on==inc l u s i on16 ) +−1230886400.000000∗( r eg i on==inc l u s i on17 )

+−1230886400.000000∗( r eg i on==inc l u s i on18 ) +−1230886400.000000∗( r eg i on==inc l u s i on19 )

+−1230886400.000000∗( r eg i on==inc l u s i on20 ) +−1230886400.000000∗( r eg i on==inc l u s i on21 )

+−1230886400.000000∗( r eg i on==inc l u s i on22 ) +−1230886400.000000∗( r eg i on==inc l u s i on23 )

+−1230886400.000000∗( r eg i on==inc l u s i on24 ) +−1230886400.000000∗( r eg i on==inc l u s i on25 )

+−1230886400.000000∗( r eg i on==inc l u s i on26 ) +−1230886400.000000∗( r eg i on==inc l u s i on27 )

+−1230886400.000000∗( r eg i on==inc l u s i on28 ) +−1230886400.000000∗( r eg i on==inc l u s i on29 )

+−1230886400.000000∗( r eg i on==inc l u s i on30 ) +−1230886400.000000∗( r eg i on==inc l u s i on31 )

+−1230886400.000000∗( r eg i on==inc l u s i on32 ) +−1230886400.000000∗( r eg i on==inc l u s i on33 )

+−1230886400.000000∗( r eg i on==inc l u s i on34 ) +−1230886400.000000∗( r eg i on==inc l u s i on35 )

+−1230886400.000000∗( r eg i on==inc l u s i on36 ) +−1230886400.000000∗( r eg i on==inc l u s i on37 )

+−1230886400.000000∗( r eg i on==inc l u s i on38 ) +−1230886400.000000∗( r eg i on==inc l u s i on39 )

+−1230886400.000000∗( r eg i on==inc l u s i on40 ) +−1230886400.000000∗( r eg i on==inc l u s i on41 )

+−1230886400.000000∗( r eg i on==inc l u s i on42 ) +−1230886400.000000∗( r eg i on==inc l u s i on43 )

+−1230886400.000000∗( r eg i on==inc l u s i on44 ) +−1230886400.000000∗( r eg i on==inc l u s i on45 )

+−1230886400.000000∗( r eg i on==inc l u s i on46 ) +−1230886400.000000∗( r eg i on==inc l u s i on47 )

+−1230886400.000000∗( r eg i on==inc l u s i on48 ) +−1230886400.000000∗( r eg i on==inc l u s i on49 )

+−1230886400.000000∗( r eg i on==inc l u s i on50 ) ;

Wh mu=mulat t i c e ∗( r eg i on==e f f e c t i v e ) +1189759744.000000∗( r eg i on==in c l u s i o n 1 ) +1189759744.000000∗(

r eg i on==in c l u s i o n 2 ) +1189759744.000000∗( r eg i on==in c l u s i o n 3 ) +1189759744.000000∗( r eg i on==

in c l u s i o n 4 ) +1189759744.000000∗( r eg i on==in c l u s i o n 5 ) +1189759744.000000∗( r eg i on==in c l u s i o n 6 )

+1189759744.000000∗( r eg i on==in c l u s i o n 7 ) +1189759744.000000∗( r eg i on==in c l u s i o n 8 )

+1189759744.000000∗( r eg i on==in c l u s i o n 9 ) +1189759744.000000∗( r eg i on==inc l u s i on10 )

+1189759744.000000∗( r eg i on==inc l u s i on11 ) +1189759744.000000∗( r eg i on==inc l u s i on12 )

+1189759744.000000∗( r eg i on==inc l u s i on13 ) +1189759744.000000∗( r eg i on==inc l u s i on14 )

+1189759744.000000∗( r eg i on==inc l u s i on15 ) +1189759744.000000∗( r eg i on==inc l u s i on16 )

+1189759744.000000∗( r eg i on==inc l u s i on17 ) +1189759744.000000∗( r eg i on==inc l u s i on18 )

+1189759744.000000∗( r eg i on==inc l u s i on19 ) +1189759744.000000∗( r eg i on==inc l u s i on20 )

+1189759744.000000∗( r eg i on==inc l u s i on21 ) +1189759744.000000∗( r eg i on==inc l u s i on22 )

+1189759744.000000∗( r eg i on==inc l u s i on23 ) +1189759744.000000∗( r eg i on==inc l u s i on24 )

+1189759744.000000∗( r eg i on==inc l u s i on25 ) +1189759744.000000∗( r eg i on==inc l u s i on26 )

+1189759744.000000∗( r eg i on==inc l u s i on27 ) +1189759744.000000∗( r eg i on==inc l u s i on28 )

+1189759744.000000∗( r eg i on==inc l u s i on29 ) +1189759744.000000∗( r eg i on==inc l u s i on30 )

+1189759744.000000∗( r eg i on==inc l u s i on31 ) +1189759744.000000∗( r eg i on==inc l u s i on32 )

+1189759744.000000∗( r eg i on==inc l u s i on33 ) +1189759744.000000∗( r eg i on==inc l u s i on34 )

+1189759744.000000∗( r eg i on==inc l u s i on35 ) +1189759744.000000∗( r eg i on==inc l u s i on36 )

+1189759744.000000∗( r eg i on==inc l u s i on37 ) +1189759744.000000∗( r eg i on==inc l u s i on38 )

+1189759744.000000∗( r eg i on==inc l u s i on39 ) +1189759744.000000∗( r eg i on==inc l u s i on40 )

+1189759744.000000∗( r eg i on==inc l u s i on41 ) +1189759744.000000∗( r eg i on==inc l u s i on42 )

+1189759744.000000∗( r eg i on==inc l u s i on43 ) +1189759744.000000∗( r eg i on==inc l u s i on44 )

+1189759744.000000∗( r eg i on==inc l u s i on45 ) +1189759744.000000∗( r eg i on==inc l u s i on46 )

+1189759744.000000∗( r eg i on==inc l u s i on47 ) +1189759744.000000∗( r eg i on==inc l u s i on48 )

+1189759744.000000∗( r eg i on==inc l u s i on49 ) +1189759744.000000∗( r eg i on==inc l u s i on50 ) ;
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Wh rho=r h o l a t t i c e ∗( r eg i on==e f f e c t i v e )+rhoprec ip ∗( r eg i on==in c l u s i o n 1 )+rhoprec ip ∗( r eg i on==

in c l u s i o n 2 )+rhoprec ip ∗( r eg i on==in c l u s i o n 3 )+rhoprec ip ∗( r eg i on==in c l u s i o n 4 )+rhoprec ip ∗( r eg i on==

in c l u s i o n 5 )+rhoprec ip ∗( r eg i on==in c l u s i o n 6 )+rhoprec ip ∗( r eg i on==in c l u s i o n 7 )+rhoprec ip ∗( r eg i on==

in c l u s i o n 8 )+rhoprec ip ∗( r eg i on==in c l u s i o n 9 )+rhoprec ip ∗( r eg i on==inc l u s i on10 )+rhoprec ip ∗( r eg i on==

inc l u s i on11 )+rhoprec ip ∗( r eg i on==inc l u s i on12 )+rhoprec ip ∗( r eg i on==inc l u s i on13 )+rhoprec ip ∗( r eg i on

==inc l u s i on14 )+rhoprec ip ∗( r eg i on==inc l u s i on15 )+rhoprec ip ∗( r eg i on==inc l u s i on16 )+rhoprec ip ∗(

r eg i on==inc l u s i on17 )+rhoprec ip ∗( r eg i on==inc l u s i on18 )+rhoprec ip ∗( r eg i on==inc l u s i on19 )+rhoprec ip

∗( r eg i on==inc l u s i on20 )+rhoprec ip ∗( r eg i on==inc l u s i on21 )+rhoprec ip ∗( r eg i on==inc l u s i on22 )+

rhoprec ip ∗( r eg i on==inc l u s i on23 )+rhoprec ip ∗( r eg i on==inc l u s i on24 )+rhoprec ip ∗( r eg i on==inc l u s i on25

)+rhoprec ip ∗( r eg i on==inc l u s i on26 )+rhoprec ip ∗( r eg i on==inc l u s i on27 )+rhoprec ip ∗( r eg i on==

inc l u s i on28 )+rhoprec ip ∗( r eg i on==inc l u s i on29 )+rhoprec ip ∗( r eg i on==inc l u s i on30 )+rhoprec ip ∗( r eg i on

==inc l u s i on31 )+rhoprec ip ∗( r eg i on==inc l u s i on32 )+rhoprec ip ∗( r eg i on==inc l u s i on33 )+rhoprec ip ∗(

r eg i on==inc l u s i on34 )+rhoprec ip ∗( r eg i on==inc l u s i on35 )+rhoprec ip ∗( r eg i on==inc l u s i on36 )+rhoprec ip

∗( r eg i on==inc l u s i on37 )+rhoprec ip ∗( r eg i on==inc l u s i on38 )+rhoprec ip ∗( r eg i on==inc l u s i on39 )+

rhoprec ip ∗( r eg i on==inc l u s i on40 )+rhoprec ip ∗( r eg i on==inc l u s i on41 )+rhoprec ip ∗( r eg i on==inc l u s i on42

)+rhoprec ip ∗( r eg i on==inc l u s i on43 )+rhoprec ip ∗( r eg i on==inc l u s i on44 )+rhoprec ip ∗( r eg i on==

inc l u s i on45 )+rhoprec ip ∗( r eg i on==inc l u s i on46 )+rhoprec ip ∗( r eg i on==inc l u s i on47 )+rhoprec ip ∗( r eg i on

==inc l u s i on48 )+rhoprec ip ∗( r eg i on==inc l u s i on49 )+rhoprec ip ∗( r eg i on==inc l u s i on50 ) ;

// Def ine problem

Vh u1h , u2h , u1h0=0.0 , u2h0=0.0 , u1h1=0.0 , u2h1=0.0 , u1h2 , u2h2 , v1h , v2h , v1h2 , v2h2 , u1h1dot=0. , u1h1ddot=0. ,

u1h2dot , u1hdot , u1hddot , u2h1dot=0. , u2h1ddot=0. , u2h2dot , u2hdot , u2hddot ;

macro Grad (u1 , u2 ) [ dx ( u1 ) , dy ( u1 ) , dx ( u2 ) , dy ( u2 ) ]//

func C = [ [ lambda+2∗mu, 0 , 0 , lambda ] , [ 0 , mu, mu, 0 ] , [ 0 , mu, mu, 0 ] , [ lambda , 0 , 0 , lambda+2∗mu ] ] ;

problem step1 ( [ u1h2 , u2h2 ] , [ v1h2 , v2h2 ] , s o l v e r=CG) = int2d (Th) (Grad ( v1h2 , v2h2 ) ’∗C∗( dt ˆ2)∗Grad(u1h2 ,

u2h2 )∗ rho ˆ(−1) )

+ int2d (Th) (16∗u1h2∗v1h2 ) − int2d (Th) (16∗u1h1∗

v1h2 + 8∗u1h1dot∗v1h2∗dt + u1h1ddot∗v1h2∗dt ˆ2)

+ int2d (Th) (16∗u2h2∗v2h2 ) − int2d (Th) (16∗u2h1∗

v2h2 + 8∗u2h1dot∗v2h2∗dt + u2h1ddot∗v2h2∗dt ˆ2)

+ on (400 , u1h2=0.0 , u2h2=ampl∗ s i n (2∗ pi ∗ f r e q ∗

tmiddle ) ) ;

problem step2 ( [ u1h , u2h ] , [ v1h , v2h ] , s o l v e r=CG) = int2d (Th) (Grad ( v1h , v2h ) ’∗C∗( dt ˆ2)∗Grad(u1h , u2h )∗ rho

ˆ(−1) )

+ int2d (Th) ( u1h1dot∗v1h∗dt − 4∗u1h2dot∗v1h∗dt + 3∗

u1h1∗v1h − 12∗u1h2∗v1h ) + int2d (Th) (9∗u1h∗v1h )

+ int2d (Th) ( u2h1dot∗v2h∗dt − 4∗u2h2dot∗v2h∗dt + 3∗

u2h1∗v2h − 12∗u2h2∗v2h ) + int2d (Th) (9∗u2h∗v2h )

+ on (400 , u1h=0.0 , u2h=ampl∗ s i n (2∗ pi ∗ f r e q ∗ t cu r r en t ) ) ;

func funcu1h2dot = (u1h2−u1h1 ) ∗(4/ dt )−u1h1dot ;

func funcu2h2dot = (u2h2−u2h1 ) ∗(4/ dt )−u2h1dot ;

func funcu1hdot = (u1h1−4∗u1h2+3∗u1h ) /dt ;

func funcu2hdot = (u2h1−4∗u2h2+3∗u2h ) /dt ;

func funcu1hddot = ( u1h1dot−4∗u1h2dot+3∗u1hdot ) /dt ;

func funcu2hddot = ( u2h1dot−4∗u2h2dot+3∗u2hdot ) /dt ;

savemesh (Th, ”Meshinfo . txt ” ) ;

p l o t (Th, ps=”Meshimage . eps ” ) ;
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int k=0;

for ( r e a l t=Ts ; t<(Tf+dt ) ; t+=dt ) {

i f ( t < 0.000000000854700855){

t cu r r en t=t ;

}

else {

t cu r r en t =0.0;

}

s tep1 ;

// time d e r i v a t i v e o f d i sp lacement at time t+(dt /2)

u1h2dot = funcu1h2dot ;

u2h2dot = funcu2h2dot ;

s tep2 ;

// time d e r i v a t i v e s o f d i sp lacement at time t+dt

u1hdot = funcu1hdot ;

u1hddot = funcu1hddot ;

u2hdot = funcu2hdot ;

u2hddot = funcu2hddot ;

// save d i sp lacements over time o f measurement edge

fout<< ” ” << endl ;

fout<< ”SIMULATION TIME ( seconds ) ” << ” ” << t << ” CPU TIME ( seconds ) ” << c l o ck ( ) <<

endl ;

for ( int j j =0; j j<no l i n e s ; j j++){

for ( int i i =0; i i <pp l ine ; i i ++){

fout<< x l o c a t i on s [ i i ] << ” ” << y l o c a t i on s [ j j ] << ” ” << u2h ( x l o c a t i on s [ i i ] , y l o c a t i on s [

j j ] ) << endl ;

}

}

// new time step va lues

u1h0 = u1h1 ;

u1h1 = u1h ;

u1h1dot = u1hdot ;

u1h1ddot = u1hddot ;

u2h0 = u2h1 ;

u2h1 = u2h ;

u2h1dot = u2hdot ;

u2h1ddot = u2hddot ;

i f ( k%10 == 0) { savevtk ( ”Wave”+k+” . vtk” , Th, [ u1h , u2h ] ) ;}

k++;

}

// save d i sp lacements along l i n e s that are p a r a l l e l to propagat ion d i r e c t i o n

int no l ine sprop = 100 ;

pp l ine = 440 ;

r e a l [ int ] x l o ca t i on sp rop ( no l ine sprop ) ;

r e a l [ int ] y l o ca t i on sp rop ( pp l ine ) ;

for ( int i i =0; i i <no l ine sprop ; i i ++){

x loca t i on sp rop [ i i ] = i i ∗0.000000433861641/( no l inesprop −1) ;

}

for ( int j j =0; j j<pp l ine ; j j++){
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y loca t i on sp rop [ j j ] = j j ∗0.000000433861641/( ppl ine −1) ;

}

fout<< ” ” << endl ;

fout<< ”DISPLACEMENTS ALONG PROPAGATION LINES FOR VERY LAST TIMESTEP (x−l o ca t i on , y−l o ca t i on , y−

disp lacement ) ” << endl ;

for ( int i i =0; i i <no l ine sprop ; i i ++){

for ( int j j =0; j j<pp l ine ; j j++){

fout<< x loca t i on sp rop [ i i ] << ” ” << y loca t i on sp rop [ j j ] << ” ” << u2h ( x l oca t i on sp rop [ i i

] , y l o ca t i on sp rop [ j j ] ) << endl ;

}

}
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