
MANAGEMENT OF REFERENCE FRAMES IN SIMULATION

AND ITS APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

by

Satchidanand A. Kalaver

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
May 2006

MANAGEMENT OF REFERENCE FRAMES IN SIMULATION

AND ITS APPLICATIONS

Approved by:

Dr. Amy R. Pritchett, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

 Dr. Eric N. Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Dewey H. Hodges
School of Aerospace Engineering
Georgia Institute of Technology

 Dr. Angus L. McLean
College of Computing
Georgia Institute of Technology

Dr. John R. Olds
School of Aerospace Engineering
Georgia Institute of Technology

 Date Approved: February 17, 2006

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and guidance of my

advisor, Dr. Amy R Pritchett. Her guidance, knowledge and patience were instrumental

in the completion of this dissertation.

I would like to extend my gratitude to Dr. Dewey Hodges, Dr. John Olds, Dr. Eric

Johnson, and Dr. Thom McLean, for taking the time and effort to serve on my

dissertation committee. Their suggestions and insight proved invaluable to the

completion of this dissertation.

I would also like to thank my parents, Anil and Nivedita, for their constant

support in all my endeavors.

I would especially like to thank Anuj Shah and Karen Feigh for their insights and

suggestions on object oriented software and statistics respectively as well as their

camaraderie. I would also like to thank Luis Nicolas Gonzalez Castro and Alexander

Quinn for their lively banter and camaraderie that kept life interesting.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES viii

LIST OF FIGURES xi

LIST OF SYMBOLS AND ABBREVIATIONS xv

SUMMARY xviii

CHAPTER

1 INTRODUCTION 1

1.1 Proposed Solution 3

1.2 Thesis Objectives 6

1.3 Thesis Outline 7

2 BACKGROUND 9

2.1 Reference Frames 9

2.1.1 Representing Motion with Reference Frames 10

2.1.2 Coordinate Systems in Simulation 12

2.1.3 Kinematics Equations and Rotations of Motion Parameters 13

2.2 Dynamic Modeling of Aerospace Vehicles 23

2.2.1 Common Reference Frames in 6DOF Dynamic Models 23

2.2.2 Kinetics and Kinematics in 6DOF Dynamic Models 26

2.2.3 Typical Software Implementation of 6DOF Dynamic Models 28

2.3 Numerical Integration and Numerical Error in Simulation 30

2.3.1 Numerical Integration Methods 31

2.3.2 Truncation Error in Numerical Integration 32

2.3.3 Floating-Point Variables and Roundoff Error in Simulation 33

2.3.4 Reduction of Total Numerical Error in Simulation 37

2.4 Parallel and Distributed Simulation 39

 v

2.4.1 Evolution of Parallel and Distributed Simulations 40

2.4.2 High Level Architecture (HLA) and its Implementation 43

2.4.3 Dynamic Models and Dead Reckoning in PDS 46

2.4.4 Reference Frames and Coordinate Systems in PDS 48

2.5 Development and Reusability of Simulation Software 50

2.5.1 Benefits, Costs and Metrics for Software Reuse 51

2.5.2 Software Reuse in Dynamic Models 53

2.5.3 Reference Frames and Interaction of Simulation Components 56

2.6 Summary of Issues with the Representation of Reference Frames in
Simulation 57

3 MANAGEMENT OF REFERENCE FRAMES 60

3.1 Network of Reference Frames 60

3.1.1 Selecting a Network Topology for Reference Frames 62

3.1.2 Linking Nodes in the Network 66

3.1.3 Standard Operations in an Extensible Network 71

3.1.4 Standard Representation for Reference Frames in a Network 75

3.2 Kinematics and Rotations in a Network of Reference Frames 76

3.2.1 Assembling a Path Using a Search Algorithm 77

3.2.2 Evaluating Kinematics and Rotations along a Path 79

3.3 Effect on Dynamic Modeling 85

3.4 Interfaces and Implementation of a Reference Frame Management
Mechanism 86

3.4.1 Structure of the Reference Frame Manager 88

3.4.2 Operations of the Reference Frame Manager 92

4 MANAGEMENT OF ROUNDOFF ERROR 94

4.1 Intermediate Frames 95

4.1.1 Definition of Intermediate Frames 95

4.1.2 Effect of Intermediate Frames on Dynamic Modeling 96

4.2 Critical Levels and the Reduction of Roundoff Error 99

4.2.1 Definition of Critical Levels 99

4.2.2 Estimation of Roundoff Error Using Intermediate Frames 103

 vi

4.2.3 Selection of Critical Levels to Reduce Errors 105

4.3 Implementation of Intermediate Frames 110

4.3.1 Class Definitions for Intermediate Frames 111

4.3.2 Network Operations for Intermediate Frames 113

4.3.3 Standard Operations for Intermediate Frames within the RFM 116

5 DEVELOPMENT OF A GENERIC DYNAMIC MODEL 119

5.1 Conceptual Development of Generic Dynamic Models 120

5.1.1 Dynamic Model Elements Unique to a Vehicle 121

5.1.2 Generic Dynamic Model 122

5.2 Implementation of the Generic Dynamic Model 126

5.2.1 Class Definition for Implementing a Generic Dynamic Model 127

5.2.2 Standard Operations in Assembling Generic Dynamic Models 129

6 REFERENCE FRAME MANAGEMENT IN PDS 133

6.1 Managing Reference Frames in PDS 133

6.1.1 Design Parameters for a Network of Reference Frames in PDS 134

6.1.2 Population and Evaluation of the Design Space 142

6.2 Implementation 143

6.2.1 Networking in the Reconfigurable Flight Simulator 143

6.2.2 Implementation of RFM in Configuration C1 145

6.2.3 Implementation of RFM in Configuration C2 146

7 DEMONSTRATION OF REFERENCE FRAME MANAGEMENT 148

7.1 Measures of the Capabilities, Benefits and Costs of RFM and its Applications
 148

7.2 Simulation Configurations for the Demonstrations 153

7.2.1 Satellite Dynamic Models and Reference Frames 153

7.2.2 Demonstration 1: Capabilities of the RFM and GDM 156

7.2.3 Demonstration 2: RFM in PDS 159

7.2.4 Demonstration 3: Intermediate Frames 161

7.3 Results 163

7.3.1 Demonstration 1 Results: Capabilities of the RFM and GDM 164

 vii

7.3.2 Demonstration 2 Results: RFM in PDS 170

7.3.3 Demonstration 3 Results: Intermediate Frames 173

8 CONCLUSION 181

8.1 Summary 181

8.2 Contributions of Work 185

8.3 Future Directions 187

APPENDIX A: THE RECONFIGURABLE FLIGHT SIMULATOR 189

APPENDIX B: CLASS DESCRIPTIONS OF THE REFERENCE FRAME
MANAGER 196

APPENDIX C: DEMONSTRATION RESULTS 214

REFERENCES 226

 viii

LIST OF TABLES

Page

Table 2.1: Motion Parameters and Their Notation 12

Table 2.2: Generation of Rotation Matrix from Euler Angles and Quaternions 18

Table 2.3: Motion States of Dynamic Models as Motion Parameters of Body Frames 26

Table 2.4: Number of Bits and Machine Accuracy for Floating-Point Numbers 34

Table 3.1: Components Within a Network of Reference Frames 62

Table 6.1: Design Parameters and Their Combinations for Distributed RFM 142

Table 7.1: Evaluating the Capabilities, Benefits & Costs of RFM 149

Table 7.2: Evaluating the Capabilities, Benefits & Costs of GDM & UDC 150

Table 7.3: Evaluating the Capabilities, Benefits & Costs of Intermediate Frames 151

Table 7.4: Evaluating the Capabilities, Benefits & Costs of RFM in PDS 152

Table 7.5: Methods and Metrics in Demonstration 1 157

Table 7.6: Independent Variables and Their Levels in Demonstration 1 158

Table 7.7: Methods and Metrics in Demonstration 2 159

Table 7.8: Reference Frames Used by Satellites & Displays on Each Federate 160

Table 7.9: Methods and Metrics in Demonstration 3 162

 ix

Table 7.10: Independent Variables and Their Levels in Demonstration 3 163

Table 7.11: Reduction in Development Effort With RFM & GDM 166

Table 7.12: Test Statistic for Actual Error 176

Table 7.13: Test Statistic for Theoretical Error Limit 176

Table B.1: Standard Interfaces and Functionality for Frame Definition 198

Table B.2: Standard Interfaces and Functionality for Frame Manager Interface 200

Table B.3: Standard Interfaces and Functionality for Intermediate Frame Interface 201

Table B.4: Standard Interfaces and Functionality for Generic Dynamics Interface 202

Table B.5: Standard Interfaces and Functionality for Model Component Interface 204

Table B.6: Implementation of Functionality for Reference Frame Manager 206

Table C.1: Runtime for Scenarios with a Time Step of 1.06795 TU 215

Table C.2: Runtime for Scenarios with a Time Step of 0.106795 TU 215

Table C.3: Reference Frames Loaded on Each Federate (excluding Body Frames) 217

Table C.4: Number of Path Operations for Configuration 1 217

Table C.5: Number of Path Operations for Configuration 2 217

Table C.6: Runtime for Control Model 219

Table C.7: Runtime Using Intermediate Frame With Adaptive Critical Levels 219

 x

Table C.8: Runtime Using Intermediate Frame With Fixed Critical Levels 219

Table C.9: Number of Time Steps for Adaptive Time Step 220

Table C.10: Mean Critical Level for Position 220

Table C.11: Mean Critical Level for Velocity 220

Table C.12: Statistic for Paired t-Test for Difference in Actual Error 221

Table C.13: Statistic for Paired t-Test for Difference in Theoretical Error Limit 221

 xi

LIST OF FIGURES

Page

Figure 2.1: Relative Motion Between Reference Frames 11

Figure 2.2: Reference Frame With Multiple Coordinate Systems 13

Figure 2.3: Body and Navigation Frames of 6DOF Dynamic Models 24

Figure 2.4: Typical Software Representation of 6DOF Dynamic Models 29

Figure 2.5: Typical Simulation Loop 32

Figure 2.6: Representation of Bits in a 32 Bit Floating-Point Number 33

Figure 2.7: Roundoff Error in a 4 Bit Mantissa 36

Figure 2.8: Schematic of Truncation, Roundoff and Total Error with Time Step 39

Figure 2.9: Point to Point Interactions Between Components 57

Figure 3.1: Number of Links in Common Network Topologies 63

Figure 3.2: Unidirectional and Bi-directional Links Between Nodes 67

Figure 3.3: Levels in a Partially Ordered Tree 69

Figure 3.4: Links Add Child Nodes to Network 70

Figure 3.5: Grafting and Pruning Trees in a Network 72

Figure 3.6: Adding and Removing Nodes in a Network 73

 xii

Figure 3.7: Closed Loop Within a Tree Network 74

Figure 3.8: Transformation Path in a Network 77

Figure 3.9: Forward and Reverse Paths Merge at Shared Node 78

Figure 3.10: Exploring Branches in the Tree 78

Figure 3.11: Forward and Reverse Paths Along a Chain 81

Figure 3.12: Generalizing Kinematics for Nodes in the Forward Path 83

Figure 3.13: Generalizing Kinematics for Nodes in the Reverse Path 83

Figure 3.14: Reference Frame Manager in the Simulation Environment 87

Figure 3.15: Component Interaction Diagram 91

Figure 3.16: Object Inheritance Diagram 91

Figure 4.1: Simulation Loop With Intermediate Frame 98

Figure 4.2: Critical Level Regulates Updates of the Intermediate Frame 101

Figure 4.3: Intermediate Frames Within the RFM 113

Figure 5.1: The Dynamic Model as a Combination of Unique and Generic Elements 121

Figure 6.1: Centralized Control Links All Other Processors to ‘Controller’ RFM 137

Figure 6.2: ‘Virtual’ Network Created in Controller RFM 137

Figure 6.3: Network of RFM Using Decentralized Control 138

 xiii

Figure 6.4: Linking RFM Can Ideally Assemble Larger Networks 139

Figure 6.5: Actual Reference Frame Distribution Complicates Network Assembly 140

Figure 6.6: Network With a Common Reference Frame Shared by All Processors 141

Figure 6.7: All Reference Frames Loaded in Each Federate 146

Figure 6.8: Network Frame Used to Share Motion Parameters Between Federate 147

Figure 7.1: Schematic of 10 Satellites and the Reference Frames in Demonstration 1 158

Figure 7.2: Schematic of Satellites and Reference Frames in Demonstration 2 160

Figure 7.3: Schematic of 10 Satellites With Randomized Longitude of Perigee 162

Figure 7.4: Actual Position Error for a Time Step of 1.06795 TU 167

Figure 7.5: Actual Position Error for a Time Step of 0.106795 TU 168

Figure 7.6: Computational Cost of RFM & GDM 170

Figure 7.7: Number of Path Operations for the Two Configurations 171

Figure 7.8: Number of Reference Frames on Each Federate 172

Figure 7.9: Magnitude of Position Vector for Eccentricity of 0.25 174

Figure 7.10: Position Error for Different Time Steps 177

Figure 7.11: Effect of Different Critical Levels on Error 178

Figure 7.12: Effect of Time Step on Adaptive Critical Level 179

 xiv

Figure 7.13: Computational Cost of Intermediate Frames 180

Figure A.1: Modular Architecture of RFS 190

Figure A.2: RFS Component Interaction 191

Figure B.1: Algorithm to Recursively Set Node Levels in the RFM 208

Figure B.2: Algorithm to Identify the Shared Node 210

Figure C.1: Runtimes of GDM and Control Models for Time Step of 1.06795 TU 215

Figure C.2: 90th, Median and 10th Percentile Position Error at 1.06795 TU 216

Figure C.3: 90th, Median and 10th Percentile Position Error at 0.106795 TU 216

Figure C.4: Number of Reference Frames Loaded (including Body Frame) 218

Figure C.5: Total Number of Path Operations 218

Figure C.6: Magnitude of Position Vector of a Satellite With e = 0.25 222

Figure C.7: Mean Position Errors for Different Time Steps 222

Figure C.8: Ratio of Mean Actual Errors for Position at Different Eccentricities 223

Figure C.9: Ratio of Mean Error Limits for Position at Different Eccentricities 223

Figure C.10: Mean of Actual Errors for Position With Different Critical Levels 224

Figure C.11: Variation of Adaptive Critical Level for Velocity With Time Step 224

Figure C.12: Mean Runtimes for Scenarios in Demonstration 3 225

 xv

LIST OF SYMBOLS AND ABBREVIATIONS

B
C

A
j X jth element of motion parameter of A with respect to B expressed in C

B
B

A P Position vector of A with respect to B expressed in B

BAQ Orientation of A with respect to B

B
A

AV Velocity of A with respect to B expressed in A

B
A

Aω Angular velocity of A with respect to B expressed in A

B
A

A
V& Acceleration of A with respect to B expressed in A

B
A

Aω& Angular acceleration of A with respect to B expressed in A

[] XB
A

Aω~ Matrix representation of cross product: XB
A

A ×ω

()[]φXC Matrix Rotation about X-axis by angle φ

()[]θYC Matrix Rotation about Y-axis by angle θ

()[]ψZC Matrix Rotation about Z-axis by angle ψ

()[]XTr Homogenous matrix representing a translation by X

()[]CTr Homogenous matrix representing a rotation by matrix []C

()B
A

A
B

X
dt
d

 Time derivative of B
A

A X to an observer in B

bf Body Fixed Frame

bc Body Carried Frame

n Navigation Frame

i Inertial Frame

 xvi

mX Motion states of a dynamic model

bf
bf F Force on the body fixed frame expressed in the body fixed frame

bf
bf M Moments about the body fixed frame expressed in the body fixed frame

m Mass of body

bf
bf I Inertia tensor of the body about the body fixed frame

ψθφ ,, Components of orientation in Euler angles

3210 ,,, q q q q Components of orientation in Euler parameters /quaternions

ψθφ &&& ,, Components of orientation rates expressed in rates for Euler angles

3210 ,,, q q q q &&&& Components of orientation rates expressed in rates for a quaternion

rqp ,, Components of angular velocity in an orthogonal frame

zyx ,, Components of position in an orthogonal frame

wvu ,, Components of velocity in an orthogonal frame

{ }nX State vector at time n

{ }nX& Derivative vector at time n

t∆ Time step for integration

{ } tnX ∆•& Incremental Term at time n

X∆ Total error per time step

LTEX∆ Local truncation error (truncation error per time step)

RndX∆ Local roundoff error (roundoff error per time step)

s Sign bit in the floating-point representation of a variable

M Value of bits in mantissa for the floating-point representation of a variable

B Base used for exponent in the floating-point representation of a variable

 xvii

e Value of bits in exponent for the floating-point representation of a variable

E Bias of exponent in the floating-point representation of a variable

mε Machine accuracy for the floating-point representation of a variable

MSB Most significant bit in the mantissa

LSB Least significant bit in the mantissa

N Number of bits in the mantissa

PDS Parallel and Distributed Simulation

RFS Reconfigurable Flight Simulator

ECAD Environment Controller and Database

RFM Reference Frame Manager

Crj jth element in the vector of Critical Levels

CrX∆ Roundoff error due to critical levels

UX∆ Roundoff error due to update of intermediate frame

tk∆ Number of time steps in the simulation run

uk Vector of updates for the intermediate frame

e Eccentricity of elliptical orbit

 xviii

SUMMARY

The choice of reference frames used in simulations is typically fixed in dynamic

models based on modeling decisions made early during their development, restricting

model fidelity, numerical accuracy and integration into large-scale simulations.

Individual simulation components typically need to model the transformations between

multiple reference frames in order to interact with other components, resulting in

additional development effort, time and cost.

This dissertation describes the methods for defining and managing different

reference frames in a simulation, thereby creating a shared simulation environment that

can provide reference frame transformations, comprising of kinematics and rotations, to

all simulation components through a Reference Frame Manager. Simulation components

can use this Reference Frame Manager to handle all kinematics and rotations when

interacting with components using different reference frames, improving the

interoperability of simulation components, especially in parallel and distributed

simulation, while reducing their development time, effort and cost. The Reference Frame

Manager also facilitates the development of Generic Dynamic Models that encapsulate

the core service of dynamic model, enabling the rapid development of dynamic models

that can be reused and reconfigured for different simulation scenarios and requirements.

The Reference Frame Manager can also be used to introduce Intermediate Frames that

bound the magnitudes of vehicle states, reducing roundoff error and improving numerical

accuracy.

 1

CHAPTER 1

INTRODUCTION

Simulations are widely used in the aerospace industry and can be tailored to

specific applications, including design and evaluation of aerospace vehicles, pilot

training, mission planning and the modeling of large systems such as air-traffic control or

command and control networks. Dynamic models form the conceptual basis of aerospace

simulations, propagating motion states such as position, orientation and velocity,

represented with respect to clearly defined reference frames.

The utility of simulations is limited by the accuracy of their dynamic models and

the cost-effectiveness of both developing them and reconfiguring them to different

scenarios. The accuracy of dynamic models refers to the fidelity of their sub-systems and

kinetics models as well as the numerical accuracy of propagating the models through

time with numerical integration. For the purpose of this research, fidelity expresses how

closely a dynamic model matches the behavior of the real vehicle [1]. The fidelity required

of a dynamic model may vary based on the requirements of different simulation scenarios

or even during the course of a simulation run, necessitating its reconfiguration.

Furthermore, different scenarios may require the use of different simulation components.

Therefore, reconfiguring dynamic models may require their motion to be expressed with

respect to different reference frames, introduce interactions with different simulation

components, or even necessitate changes to the subsystems and kinetics model.

Consequently, improving the cost-effectiveness of developing and reconfiguring dynamic

 2

models facilitates their reuse in subsequent simulations, reducing the cost, time and effort

needed to develop a large variety of simulations and scenarios [2][3].

Reference frame definitions are currently implicit within the simulation software

and can vary with the individual simulation components. For example, dynamic models

and displays implicitly use reference frames when representing motion. The choice of

reference frames used is based on modeling decisions made early during simulation

software development. Different dynamic models and displays may use different

reference frames based on the scenarios they are designed to support. This implicit

representation of reference frames within individual simulation components creates the

following problems with accuracy of the model as well as its cost-effectiveness,

especially with regards to software development, reconfiguration and reuse:

• Software needs to be developed within each simulation component to enable its

interaction with other simulation components using different reference frames,

increasing development time and cost of the simulation. This software is often

implemented in multiple simulation components, leading to a duplication of

development effort. Furthermore, it is unique to each pair of reference frames, and

can lead to the N2 problem if each component uses a different reference frame and

interacts with all the other components, limiting the scalability of the simulation. This

is especially true for large-scale simulation, and for parallel and distributed

simulation, where knowledge of all the reference frames may not be feasible. While

the selection of a common reference frame for component interaction during the

software development phase has been used in distributed simulation to address this

 3

issue, forcing all simulations components to use a pre-defined common reference

frame can introduce separate problems, as it may not be appropriate for all scenarios.

• The choice of reference frames can affect the accuracy of the simulation. The kinetics

fidelity of the dynamic model depends upon the choice of inertial frame used to

evaluate the model’s acceleration. Different scenarios or different stages of a

simulation run may require different kinetics fidelity due to the motion of the

dynamic model, necessitating a change of the inertial frame used, requiring a change

in the software implementation of the model.

• The numerical error incurred by the integration routine consists of truncation error

and roundoff error. The truncation error depends upon the choice of integration

routine and size of the time step while the roundoff error depends upon the relative

magnitudes of the motion states and their time derivatives as scaled by time step [4].

Therefore, choosing a reference frame that may be ideal for kinetics fidelity may in

fact be detrimental to roundoff error.

• Reconfiguring scenarios and reusing simulation components to modify or expand

existing simulations may introduce additional reference frames that a simulation

component needs to interact with. Existing simulation components may need to be

further modified to support interactions with new simulation components or may be

required to express their motion with respect to different reference frames, further

increasing development time and cost.

1.1 Proposed Solution

The proposed solution is to view reference frames as unique entities within the

simulation environment that can be used by all the simulation components, enabling

 4

individual components to interact with one another, irrespective of the reference frames

used to express their motion. This eliminates the need for specialized software to enable

interactions between components, improving scalability, reconfiguration and reuse of

existing components. Dynamic models are able to use reference frames suitable for the

kinetics fidelity required for each stage of the simulation and can also select reference

frames that bound the roundoff error for their motion states.

Conceptually, reference frames can be viewed as entities in motion with respect to

other reference frames. Consequently, the motion of vehicles can be treated as the motion

of their body frames with respect to their navigation frames. Therefore, the kinematics of

the vehicle can be viewed as the kinematics between reference frames. Even the kinetics

model of the vehicle can be viewed as a relation utilizing the unique inertial properties of

the vehicle and the motion of reference frames.

In a simulation environment, reference frames can be treated as a common

resource, available to all simulation components through a centralized mechanism. This

centralized mechanism calculates and provides the simulation components with the

kinematics and rotations between reference frames. This mechanism, called the

Reference Frame Manager or RFM, is also responsible for maintaining the reference

frames in the simulation environment and forms the central part of the proposed solution.

The Reference Frame Manager assembles a modifiable network of reference

frames in the simulation environment at runtime. The RFM is able to add or remove

reference frames from this network during the course of the simulation, allowing the

network to provide the reference frames required for different scenarios and simulation

configurations. The individual reference frames are viewed as nodes within this network

 5

and the RFM is able to traverse the links in the network to calculate the kinematics and

rotations between any pair of reference frames in the network.

Simulation components are therefore able to request the kinematics and rotations

between any pair of reference frames in the simulation environment through the RFM,

allowing them to express the motion of other simulation components with respect to their

preferred reference frames. Simulation scenarios can therefore be reconfigured rapidly

without requiring modifications to existing components in order to interact with new

components using new reference frames. Similarly, dynamic models are also able to use

reference frames required by the scenario or kinetics fidelity and change them at runtime

if necessary, improving the ease with which these models can be reused and reconfigured

for different simulation scenarios. The RFM also enables the following applications to be

developed:

• Intermediate frames that can be requested by dynamic models from the RFM to

control roundoff error. These intermediate frames bound the magnitude of the

model’s motion states, allowing the roundoff error to be controlled independently of

time step and truncation error.

• Software component representing a generic dynamic model that encapsulates the core

services and functionality common to 6DOF dynamic models, especially kinetics,

kinematics, transformation of motion parameters and integration routines. A generic

model would encourage code reuse and reduce the cost, time and effort of developing

new dynamic models. The software developer only needs to develop the components

unique to the specific vehicle being modeled, primarily the external forces and

moments on the vehicle, its internal sub-systems and its inertia properties. The ability

 6

to choose its inertial frame as required and request an intermediate frame to control

roundoff error would also be built into the generic model.

• The data passing protocols in parallel and distributed simulation can be modified so

that the choice of a common reference frame, if desired, does not have to be made

during the development phase. Each component within the simulation can express

motion with respect to its preferred reference frame. The RFM on each processor

handles all the kinematics and rotations to ensure that components on different

processors can interact using their preferred reference frames. If a common reference

frame is desired, it is selected at runtime to suit the simulation scenario.

1.2 Thesis Objectives

1. Represent reference frames as entities whose motion can be defined with respect to

other reference frames.

2. Represent reference frames in the simulation environment as unique objects such that

they can form nodes in a network of reference frames.

3. Develop a Reference Frame Manager that is able to assemble a network of reference

frames as well as add or remove reference frames from the network at runtime.

4. Develop algorithms to calculate kinematics and rotations between arbitrary pairs of

reference frames in the network

5. Develop intermediate frames that can be used to reduce the roundoff error incurred by

vehicles during numerical integration.

6. Develop algorithms to adaptively control the motion of intermediate frames based on

the vehicle dynamics.

 7

7. Develop a generic dynamic model that encapsulates the core services of 6DOF rigid

body dynamic models.

8. Identify the unique elements of dynamic models that can be used by the generic

dynamic model to assemble models of different vehicles.

9. Develop data passing protocols to utilize RFM in parallel and distributed simulation,

enabling components on each processor to use their preferred reference frames to

express motion. Correspondingly, eliminate the need to fix a common reference

frame during the development phase of the simulation components.

1.3 Thesis Outline

This thesis is divided into 3 sections. The first section, Chapter 2, deals with the

background information highlighting key concepts in managing reference frames. The

primary topics covered are reference frame, their kinematics and rotations, dynamic

models and their components, numerical error and their associated errors, parallel and

distributed simulation and software reuse.

The second section consists of 4 chapters, where each chapter deals with a major

aspect of the research effort. Each chapter is further divided so as to include a conceptual

treatment of the research and its implementation into software. Chapter 3 deals with the

definition of reference frames and its management within the simulation environment to

create an extendable network of reference frames. The instantiation of the Reference

Frame Manager using the Reconfigurable Flight Simulator is briefly described. Chapter 4

deals with the use of reference frames to reduce roundoff error. The parameters for

defining these intermediate frames are discussed with regards to their effect on roundoff

error. This chapter also describes the development of an algorithm to adaptively select

 8

these parameters based on the dynamics of the model. Chapter 5 deals with the modeling

of dynamics using reference frames. This leads to the development of a generic dynamic

model as well as the interface requirements for creating dynamics components that model

the elements unique to each vehicle. Chapter 6 deals with the use of the RFM in PDS.

This chapter looks at several design parameters that need to be considered and develops

the data passing protocols to use RFM in PDS.

The final section describes the demonstration effort and discusses the

contributions of this work and areas of future research. Chapter 7 demonstrates the

capabilities and benefits of RFM and its applications. The costs of using RFM and

generic models are also discussed. Chapter 8 provides a summary of this thesis and

discusses the contributions of this work as well as areas of future research.

 9

CHAPTER 2

BACKGROUND

This chapter describes the fundamental concepts required for the development of

a reference frame management mechanism and its applications to dynamic modeling,

error reduction and distributed simulation. Reference frames and their properties with

regards to coordinate systems, kinematics equations and rotations are introduced and the

reference frames commonly used in simulation are described. Dynamic modeling of

vehicles, especially with regards to motion using Newton’s 2nd Law, is then discussed.

Numerical integration routines and the sources of numerical error in simulation are also

described. Common software representations of dynamic models in simulation are

illustrated. The effects of reference frames on distributed simulation and on the assembly

and modification of simulation environments are discussed.

2.1 Reference Frames

A reference frame determines the origin and directions used for expressing the

motion between different bodies. The origin is the point from which position with respect

to the reference frame is determined while the axes define the direction vectors used to

express the motion vectors as sets of scalar quantities. The directions of the axes can be

defined using a left-hand system or a right-hand system. The following subsections deal

with the representation of motion with respect to reference frames, the use of coordinate

systems, and the kinematics and rotations needed to express motion with respect to

different reference frames.

 10

2.1.1 Representing Motion with Reference Frames

A reference frame can be viewed as a rigid entity as the orientation of its axes

does not change with respect to one another. Consequently, a reference frame can be

attached to a rigid body and the motion of the reference frame can be used to represent

the motion of the rigid body. Since reference frames are used to express the motion of

rigid bodies, representing the motion of rigid bodies with motion of reference frames

implies that the motion of reference frames can be expressed with respect to other

reference frames. Furthermore, the kinematics of these vehicles can be treated as the

kinematics of reference frames.

The parameters used to define the motion of rigid bodies can be applied to

reference frames. These parameters, called motion parameters in this thesis, commonly

consist of position, orientation, velocity, acceleration, angular velocity and angular

acceleration [5] and define the relative motion between two reference frames. Expressing

the motion of a reference frame with respect to another reference frame, called the

definition frame, determines the direction of the vectors representing these parameters. In

this thesis, the reference frame whose motion is being expressed will be called the object

frame. In Figure 2.1, the vector X represents the relative motion between the reference

frames A and B and its direction depends upon the identity of the definition frame. This

thesis uses a left superscript to identify the reference frame whose properties are being

expressed while the right superscript identifies the definition frame. Therefore, the

motion of A with respect to B is expressed as AXB while the motion of B with respect to A

is expressed as BXA; these corresponding vectors are illustrated in Figure 2.1.

 11

X

Frame A

Frame B

AXB

BXA

X

Frame AFrame A

Frame BFrame B

AXB

BXA

Figure 2.1: Relative Motion Between Reference Frames

While the identity of the definition frame determines the direction of the vector

representing the motion parameters, the direction vectors used to express the motion

parameters as sets of scalar quantities is determined by a measurement frame. The vector

for each motion parameter is projected on the direction vectors defined by the axes of the

measurement frame. The exception is the reference frame’s orientation, which represents

the rotation from the definition frame’s axes to the object frame’s axes. The measurement

frame may be the reference frame in question, the definition frame or a third frame. This

thesis uses a right subscript to denote the identity of the measurement frame. A left

subscript may be used to identify a particular element of the motion parameter. Thus,

B
C

A
j X represent the jth element of the motion parameters of object frame A with respect to

definition frame B in measurement frame C.

The measurement frame used during the propagation of motion parameters of

reference frames and dynamic models in simulation determines the implementation of its

 12

kinematics equations. This thesis uses the object and definition frames of motion

parameters as their measurement frames to facilitate a consistent representation of the

kinematics equations throughout this document as listed in Table 2.1. However, these

motion parameters can also be expressed in arbitrary measurement frames.

Table 2.1: Motion Parameters and Their Notation

Motion Parameter Notation

Position B
B

A P

Orientation
BAQ

Velocity B
A

AV or
B
B

AV

Acceleration B
A

A
V& or

B
B

A
V&

Angular Velocity B
A

Aω

Angular Acceleration B
A

Aω&

The motion parameter for position uses the definition frame as its measurement

frame. As discussed above, the orientation of the reference frame represents the rotation

required to change the measurement frame from the definition frame to itself. Therefore,

specifying a measurement frame is not applicable for orientation. The default

measurement frame for the velocity and acceleration parameters is the object frame,

although the definition frame can also be used as the measurement frame for velocity and

acceleration if necessary.

2.1.2 Coordinate Systems in Simulation

Coordinate systems are used to express the motion of reference frames and

vehicles as scalar values. The vectors of the motion parameters are projected onto the

 13

axes of the measurement frame. The exact scalar values depend upon the coordinate

system used [6], determining the manner in which the projections on the measurement

frame’s axes are interpreted. For example, the position of an object using the Earth

Centered Reference Frame as its definition and measurement frames, as depicted by

Figure 2.2, can be expressed in two different coordinate systems. The choice of

coordinate system depends upon the application and determines the scalar representation

of the motion parameter although the vector representing the motion parameter is

unaffected.

X

Y

Z

Longitude

Geocentric
Latitude

Altitu
de

Earth Centered Reference Frame

Reference Frame

•Cartesian System

•Spherical System

Coordinate Systems

X

Y

Z

X

Y

Z

X

Y

Z

Longitude

Geocentric
Latitude

Altitu
de

Earth Centered Reference Frame

Reference Frame

Earth Centered Reference Frame

Reference Frame

•Cartesian System

•Spherical System

Coordinate Systems

•Cartesian System

•Spherical System

Coordinate Systems

Figure 2.2: Reference Frame With Multiple Coordinate Systems

2.1.3 Kinematics Equations and Rotations of Motion Parameters

Motion parameters are defined and maintained by reference frames with respect

to their definition frames. The default measurement frame used by reference frames for

 14

maintaining their motion parameters during the course of the simulation was listed in

Table 2.1. However, the motion parameters may need to be expressed with respect to

different definition frames or have their scalar components expressed in different

measurement frames during the course of the simulation. This may arise during the

interaction of vehicles and components using different reference frames or if the

calculation of vector derivatives in the dynamic model requires the vehicle’s motion

parameters with respect to different reference frames. Kinematics equations are used

when the definition frame needs to be changed. Similarly, rotations are used when the

measurement frame needs to be changed. These operations transform the motion

parameters so that they are expressed in the appropriate definition and measurement

frames.

The numerical representation of motion parameters as scalar values depends upon

the choice of measurement frame and coordinate system. When a measurement frame is

changed, the rotation or direction cosine matrix representing the orientation of the new

measurement frame’s axes with respect to the current measurement frame’s axes is

generated and applied to the motion parameters through matrix multiplication. If the type

of coordinate system is changed, the exact coordinate transformation depends upon the

specific combination of coordinate systems. While this thesis will only use the Cartesian

coordinate system and only develop the rotations due to the change of measurement

frames, the results of this thesis are not limited to this coordinate system.

When the definition frame is changed to a different reference frame, the object

frame’s motion parameters are updated to reflect the object frame’s motion with respect

to its new definition frame. Therefore, the object frame’s motion parameters require the

 15

use of kinematics equations to account for the motion between the old and new definition

frames. These equations typically require translations, cross products, multiplication of

vectors by scalars and rotations.

In three-dimensional space, these operations can be represented by 3×3 matrix

multiplications and 3×1 addition or by 4×4 homogenous matrix multiplications [5][7][8].

When these operations are represented by a sequence of matrix multiplications on a

vector, the transformation can be assembled and used repeatedly as long as the data used

to assemble the matrix does not change, improving computational efficiency.

2.1.3.1 Operations Using 3×3 and 3×1 Matrices

Translations are typically represented by the addition of a 3×1 column matrices

representing the motion parameter and a translation vector [5][8]. For example, if the

position of an object P expressed in Frame A is (xA, yA, zA)T and requires a translation of

(∆x, ∆y, ∆z) T to be expressed in Frame B (xB, yB, zB)T, assuming both frames have the

same orientation, the transformation is expressed by equation (2.1).

B
B

AA
B

P

A

A

A

B

B

B
B
B

P XX
z
y
x

z
y
x

z
y
x

X +=
















∆
∆
∆

+















=
















= (2.1)

Multiplication of a vector by another vector or by a scalar can be represented by

matrix multiplication. In a cross product, the first vector can be expressed as a skew

symmetric matrix [6], and is multiplied to the 3×1 column matrix representing the second

vector. For example, if the position of an object P with respect to Frame A is constant at

 16

(xA, yA, zA)T and Frame A has an angular velocity of (p, q, r) T, the velocity of P can be

calculated by a cross product of the angular velocity and position as expressed by

equation (2.2). Similarly, when multiplying a vector by a scalar, the scalar can be

expressed as a matrix by multiplying it to an identity matrix. Equation (2.3) illustrates the

multiplication of a vector, (x, y, z)T, by a scalar, a. Instead of using matrix representation,

the equations in this thesis will represent vector multiplication with vector notation unless

otherwise noted.

[] A
A

P
A

AA
A

P
A

A

A

A

A

A

A

A
A
A

P XX
z
y
x

pq
pr

qr

w
v
u

V ×==
































−
−

−
=
















= ωω~

0
0

0
 (2.2)
















=
































=

az
ay
ax

z
y
x

a
a

a
Xa

00
00
00

 (2.3)

Rotation is typically expressed as the matrix multiplication of a 3×3 rotation

matrix and a 3×1 column matrix representing the motion parameter [5][8] in three

dimensional space. For example, the position of object P expressed in Frame A can be

measured in Frame B by using the rotation matrix [BCA] as shown in equation (2.4). This

thesis will use matrix multiplication to represent rotation.

[] A
A

PAB

A

A

A

B

B

B
A
B

P XC
z
y
x

rrr
rrr
rrr

z
y
x

X =































=
















=

333231

232221

131211

 (2.4)

 17

The simplest rotation matrices represent the rotation of the frame about one of the

X, Y or Z-axes and can be termed elementary rotations. Equations (2.5), (2.6) and (2.7)

illustrate the elementary rotations about the X, Y and Z axes respectively. Complex

rotation matrices can be formed from multiple elementary rotations; however, the order

of operations must be maintained, as the rotations are not commutative [5][8]. If the axis of

rotation does not pass through the origin, the origin must be translated to a point on the

rotation axis. The rotation matrix used for changing the measurement frame represents

the orientation of the new measurement frame with respect to the old measurement frame

and can be generated using either Euler angles or Euler parameters.

()[]
















−
=

φφ
φφφ

cossin0
sincos0

001

XC (2.5)

()[]














 −
=

θθ

θθ
θ

cos0sin
010

sin0cos

YC (2.6)

()[]















−=

100
0cossin
0sincos

ψψ
ψψ

ψZC (2.7)

If the orientation of Frame A with respect to Frame B is represented by Euler

angles and ()[]φXC , ()[]θYC and ()[]ψZC represent the elementary rotations about the X,

Y and Z axes respectively, the rotation matrix [ACB], representing the direction cosine

matrix of Frame A with respect to Frame B, can be formed as depicted in equation (2.8).

 18

[] ()[] ()[] ()[]















==

321

321

321

nnn
mmm
lll

CCCC ZYX
BA ψθφ (2.8)

If the orientation of Frame A with respect to Frame B is represented by Euler

parameters, commonly called quaternions, the elements of the direction cosine matrix in

equation (2.8) can be calculated [9] as tabulated in Table 2.2. The quaternions can be

calculated using Euler angles [9] as depicted by equations (2.9) to (2.12) while the Euler

angles can be obtained from elements of the rotation matrix [9] as depicted by equations

(2.13), (2.14) and (2.15).

Table 2.2: Generation of Rotation Matrix from Euler Angles and Quaternions

Matrix Element From Euler Angles From Quaternions

1l () ()ψθ coscos 2
3

2
2

2
1

2
0 qqqq −−+

2l () ()ψθ sincos ()30212 qqqq +

3l ()θsin− ()20312 qqqq −

1m () () () () ()ψφψθφ sincoscossinsin − ()30212 qqqq −

2m () () () () ()ψφψθφ coscossinsinsin + 2
3

2
2

2
1

2
0 qqqq −+−

3m () ()θφ cossin ()10322 qqqq +

1n () () () () ()ψφψθφ sinsincossincos + ()31202 qqqq +

2n () () () () ()ψφψθφ cossinsinsincos − ()10322 qqqq −

3n () ()θφ coscos 2
3

2
2

2
1

2
0 qqqq +−−























+






















=

2
sin

2
sin

2
sin

2
cos

2
cos

2
cos0

φθψφθψ
q (2.9)























−






















=

2
cos

2
sin

2
sin

2
sin

2
cos

2
cos1

φθψφθψ
q (2.10)

 19























+






















=

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos2

φθψφθψ
q (2.11)























+






















−=

2
cos

2
cos

2
sin

2
sin

2
sin

2
cos3

φθψφθψ
q (2.12)

() ()()3120
1

3
1 2sinsin qqqql −=−= −−θ (2.13)

() []2
11 sgncoscos ll ×





−= −

θψ (2.14)

() []3
31 sgncoscos mn ×





= −

θφ (2.15)

2.1.3.2 Operations Using Homogenous Matrices

Expressing the operations for kinematics equations and rotations in 3 dimensional

space using 3×3 matrices and 3×1 column matrices requires the application of matrix

addition and matrix multiplication. If these operations are expressed using homogenous

4×4 matrices [7] and 4×1 column matrices, they can be executed using only matrix

multiplications, allowing a sequence of operations on a vector to be expressed as a single

transformation matrix. Homogenous matrices have been used for transformations in

kinematics of rigid bodies [10] as well as computer graphics [8].

In using homogenous matrices for the following rigid body transformations, the

motion parameters are expressed as 4×1 column vectors where the first 3 elements are

from the motion states and the 4th element is 1. The additional dimension allows the

matrix addition of 3×1 column matrices to be executed using matrix multiplication, as

 20

depicted in equation (2.16), which executes the translation shown in equation (2.1) using

homogenous matrices.

()[] 







=





































∆
∆
∆

=



















=








1
11000

100
010
001

1
1

A
B

P
B
B

A

A

A

A

B

B

B
B
B

P X
XTr

z
y
x

z
y
x

z
y
x

X
 (2.16)

Similarly, matrix multiplication of 3×3 matrices and 3×1 column matrices, used in

the operations depicted by equations (2.2), (2.3) and (2.4), can also be executed by

homogenous matrices and 4×1 column matrices. Equation (2.17) executes the rotation

described in equation (2.4) using homogenous matrices.

()[] 







=





































=



















=








1
11000

0
0
0

1
1 333231

232221

131211
A
A

P
AB

A

A

A

B

B

B
A
B

P X
CR

z
y
x

rrr
rrr
rrr

z
y
x

X
 (2.17)

Homogenous matrices allow a sequence of vector additions and matrix

multiplications to be represented by a single homogenous matrix that can be multiplied to

the 4×1 column matrix representing the motion parameter. Thus, if the position of an

object needs to be transformed from Frame A to Frame C using the rotation expressed by

equation (2.4) followed by the translation depicted by equation (2.1), the resulting

transformation, expressed by equation (2.18), can be expressed as a single homogenous

matrix as expressed by equation (2.19).

 21

[] B
B

AA
A

PABB
B

P XXCX += (2.18)

()[] ()[] [] 







=








=









111

A
A

P
AB

A
A

P
ABB

B
A

B
B

P X
T

X
CRXTr

X
 (2.19)

2.1.3.3 Applying Kinematics Equations and Rotations to Motion Parameters

The operations described above can be used to change the definition and

measurement frames of motion parameters. Kinematics equations will be defined in this

thesis as the equations used to change the definition frame of motion parameters. When

the definition frame is changed, the measurement frame may also be changed. Equations

(2.20) to (2.25) represent the kinematics equations used to change the definition frame for

the motion parameters of Frame P from Frame A to Frame B. To keep the measurement

frame for position as the definition frame, it is also changed to the new definition frame.

[] [] []BAAPBP CCC = (2.20)

[] B
A

AAPA
P

PB
P

P C ωωω += (2.21)

() []() [] ()B
A

A
B

APA
P

PB
A

AAPA
P

PB
P

P
B

dt
d

CC
dt
d

ωωωωω +×+= & (2.22)

[] B
B

AA
A

PABB
B

P PPCP += (2.23)

[] ()B
A

AA
A

PB
A

AAPA
P

PB
P

P VPCVV +×+= ω (2.24)

 22

() []()()

[] () () ()







+××+×+

×++=

B
A

A
B

A
A

PB
A

AB
A

AA
A

PB
A

A
B

AP

A
P

PB
A

AAPA
P

PA
P

PB
P

P
B

V
dt
d

PP
dt
d

C

VCVV
dt
d

ωωω

ωω 2&

 (2.25)

If only the measurement frame is changed, the rotation matrices representing the

orientation of the new measurement frame with respect to the measurement frames used

by the motion parameters are applied to the appropriate motion parameters. A change of

measurement frame is meaningless with regards to representing orientation since the

orientation can be expressed as the rotation matrix for changing measurement frames

from the definition frame to its own reference frame. Equations (2.26) to (2.30) represent

the rotations used to change the measurement frame used by Frame P, which is defined

with respect to Frame A, to Frame B. While these rotations may be viewed as a subset of

kinematics, this thesis will treat the change of measurement frames as unique rotation

operations.

[] A
P

PPBA
B

P C ωω = (2.26)

[] A
P

PPBA
B

P C ωω && = (2.27)

[] A
A

PABA
B

P PCP = (2.28)

[] [] A
A

PABA
P

PPBA
B

P VCVCV == (2.29)

[] [] A

A

PABA

P

PPBA

B

P
VCVCV &&& == (2.30)

 23

2.2 Dynamic Modeling of Aerospace Vehicles

Dynamic models are mathematical representations that describe and predict

vehicle behavior, including both the motion of the vehicle and its subsystems. The time

varying properties of the model that are governed by differential equations are known as

states. Dynamics generate the time derivatives for the state vector as functions of the state

vector X, controls u, and time t as expressed in equation (2.31).

()tuXfX ,,=& (2.31)

The particular subset of the state vector, comprising position, orientation, velocity

and angular velocity, will be referred to as the vector of motion states, Xm, and depicts the

motion of the vehicle with respect to reference frames that represent the spatial

environment and other entities in the simulation. The following subsections will describe

the relation between the vehicle’s motion states with the reference frames commonly

used in aerospace simulation, the contribution of reference frame to the kinetics and

kinematics of dynamic models and a typical software implementation of a six degree of

freedom (6DOF) dynamic model.

2.2.1 Common Reference Frames in 6DOF Dynamic Models

Common reference frames in aerospace simulations include the body fixed frame,

the body carried frame, the navigation frame and the inertial frame [9]. The body fixed

frame has its position and orientation fixed to the vehicle body. It is typically defined

with its origin fixed to a reference point on the vehicle body and is oriented such that the

x-axis points to the nose of the aircraft, the y-axis points to the right or starboard wing

 24

and the z-axis points down. The body carried frame has its position fixed to the vehicle

body, typically to the reference point used by the body fixed frame, but its orientation is

fixed to the navigation frame. In this thesis, the body fixed frame and body carried frame

will be collectively referred to as the body frames. The motion parameters of a dynamic

model’s body frames are defined with respect to a navigation frame. The choice of

navigation frame is arbitrary and depends upon modeling decisions made during the

development of the dynamic model. The inertial frame is the non-accelerating, non-

rotating reference frame used for calculating the Newtonian equations of motion. The

navigation frame may be fixed, rotating, accelerating or translating with respect to the

inertial frame. Figure 2.3 illustrates the relation between the body frames and the

navigation frame.

x

z

y

Body Fixed Frame

z’

x’

y’

Body Carried Frame

x’
y’

z’

Navigation Frame

x

z

y

Body Fixed Frame

x

z

y

x

z

y

Body Fixed Frame

z’

x’

y’

Body Carried Frame

z’

x’

y’

z’

x’

y’

Body Carried Frame

x’
y’

z’

Navigation Framex’
y’

z’

x’
y’

z’

Navigation Frame

Figure 2.3: Body and Navigation Frames of 6DOF Dynamic Models

 25

The motion states of the dynamic model may be treated as the respective motion

parameters of the body frames with respect to the navigation frame. The position of the

vehicle is expressed by the position of the body carried frame with respect to the

navigation frame. Since the body frames share the same origin, the velocity of the vehicle

can be expressed as the velocity of the body fixed frame or the body carried frame with

respect to the navigation frame, depending on the desired measurement frame. The

orientation and angular velocity of the vehicle are expressed by the respective parameters

of the body fixed frame with respect to the body carried frame [9]. Thus, the body fixed

frame uses the body carried frame as its definition frame, which in turn uses the

navigation frame as its definition frame.

Several measurement frames can be used for position, velocity and angular

velocity. Position is typically expressed in the navigation frame while angular velocity is

expressed in the body fixed frame. Velocity can be measured in the body fixed frame [11],

which is useful in kinetics, or in the navigation frame, which is useful in kinematics.

Since the orientation and angular velocity of the body carried frame is identical to the

navigation frame, the orientation and angular velocity of the body fixed frame can also be

expressed with respect to the navigation frame. Common expressions for motion states

and their components in a Cartesian coordinate system are included in Table 2.3.

 26

Table 2.3: Motion States of Dynamic Models as Motion Parameters of Body Frames

Motion State Notation Components

Position n
n

bf P or n
n

bc P zyx ,,

Orientation
bcbf Q or nbf Q ψθφ ,, or 3210 ,,, q q q q or C

Velocity n
bf

bf V or n
n

bcV wvu ,,

Angular Velocity bc
bf

bf ω or n
bf

bf ω rqp ,,

2.2.2 Kinetics and Kinematics in 6DOF Dynamic Models

A typical dynamic model calculates the forces and moments generated by the

physical properties of the vehicle and its environment such as gravity, thrust and

aerodynamic forces. The dynamic model then calculates the time derivatives of motion

states using kinetics and kinematics equations. Kinetics equations relate these forces and

moments to acceleration and angular acceleration of the body frame with respect to the

inertial frame through the application of Newton’s Second Law [5][12]. Equations (2.32)

and (2.33) represent the kinetics equations for dynamic models with a fixed mass and

inertia tensor. Additional terms representing the change in mass and inertia tensor can be

added to these equations as required.

() ()i
bf

bfi
bf

bfi

bf

bf

bf
bf VVmF ×+=∑ ω& (2.32)

() [] []()i
bf

bf
bf

bfi
bf

bfi
bf

bf
bf

bf
bf

bf IIM ωωω ×+=∑ & (2.33)

Kinematics equations in dynamic models relate the velocity, acceleration, angular

velocity and angular acceleration of the body frames to the time derivatives of their

 27

motion parameters, corresponding to the motion states of the vehicle. The

implementation of the kinematics equations in dynamic models, as expressed by

equations (2.34) to (2.37), differs from the kinematics equations used to change the

definition frame of reference frames as expressed by equations (2.20) to (2.25), although

both sets of equations utilize the motion between three reference frames.

[] []()n
bf

bfnbfnbf QfQ ω,=& (2.34)

[] n
bf

bfTnbfn

n

bf
VCP

=& (2.35)

[]() [] ()i
n

n
i

nbfn
bf

bfi
n

nnbfi
bf

bfn
bf

bf

dt
d

CC ωωωωω −×−= && (2.36)

[]() [] ()()
[]() [] () ()








+×−×−

××+×+=

i
n

n
i

n
n

bci
n

n
i

nbfn
bf

bfi
n

nnbf

n
n

bci
n

nnbfn
bf

bfi
n

nnbfi
bf

bfi
bf

bfn
bf

bf

V
dt
d

P
dt
d

CVC

PCVCVV

ωω

ωωω

 &&

 (2.37)

The exact form of equation (2.34), relating the time derivative of orientation to

the angular velocity, depends upon the representation of orientation. The time derivatives

for Euler angles and quaternions representations are expressed by equations (2.38) and

(2.39) respectively.
































−=

















r
q
p

φθφθ
φφ

φθφθ

ψ
θ
φ

cossecsinsec0
sincos0

costansintan1

&

&
&

 (2.38)

 28



















•



















−−
−−

−−
−=



















3

2

1

0

3

2

1

0

0
0

0
0

2
1

q
q
q
q

pqr
prq

qrp
rqp

q
q
q
q

&
&
&
&

 (2.39)

The fidelity of the kinetics equations may be impacted by the choice of reference

frames when applying Newton’s Second Law [5][12]. While a purely inertial may be

defined in theory, in practice it is difficult to define a reference frame that is not

accelerating with respect to inertial space. For example, an Earth-fixed reference frame

may be suitable for some low fidelity situations; conversely, in high fidelity situations the

rotation and translation of the Earth needs to be accounted for. Therefore, different

simulations (or phases of a single simulation) may require different inertial frames for the

fidelity requirements at hand, even when they are using the same dynamic model.

2.2.3 Typical Software Implementation of 6DOF Dynamic Models

The software implementation of 6DOF dynamic models combines elements that

generate time derivatives of the state vector with a numerical integration routine and

handle interactions with other simulation components and the environment. Reference

frame transformations, including the kinematics equations and rotation matrices for

changing the definition and measurement frames of motion parameters to or from

reference frames that the model may interact with, are also implemented in the model.

The following process can represent the calculation of the derivative vector and its

subsequent integration, as illustrated in Figure 2.4.

 29

X

Reference Frame
Transformations

Interaction with
Simulation &
Control Input

X

SX&

mX&

Integration
routine and
time step
chosen to

control
truncation

error

dtX m∫ &

dtX S∫ &u

Kinematics

i
b f

bf

i

b f

bf
V

ω&

&
Kinetics

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments

bf
bf

bf
bf

Im

Im
&& ,

 ,

bf
bf

bf
bf MF ,

Reference Frame
Transformations

#2

#1

#3

#4

#5

X

Reference Frame
Transformations

Interaction with
Simulation &
Control Input

X

SX&

mX&

Integration
routine and
time step
chosen to

control
truncation

error

dtX m∫ &

dtX S∫ &u

Kinematics

i
b f

bf

i

b f

bf
V

ω&

&
Kinetics

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments

bf
bf

bf
bf

Im

Im
&& ,

 ,

bf
bf

bf
bf MF ,

Reference Frame
Transformations

XX

Reference Frame
Transformations
Reference Frame
Transformations

Interaction with
Simulation &
Control Input

XX

SX&

mX&

Integration
routine and
time step
chosen to

control
truncation

error

dtX m∫ &

dtX S∫ &u

KinematicsKinematicsKinematics

i
b f

bf

i

b f

bf
V

ω&

&
KineticsKinetics

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments

bf
bf

bf
bf

Im

Im
&& ,

 ,

bf
bf

bf
bf MF ,

Reference Frame
Transformations
Reference Frame
Transformations
Reference Frame
Transformations

#2

#1

#3

#4

#5

Figure 2.4: Typical Software Representation of 6DOF Dynamic Models

1. The model collects inputs from the simulation environment and other simulation

components of interest, such as other dynamic models. This input may require

reference frame transformations involving kinematics and rotations to be expressed in

and defined relative to the same reference frames used by the dynamic model.

2. Subsystem models use the states and information from the simulation to implement

the internal subsystem dynamics. These dynamic calculations provide the forces and

moments and the derivatives of the internal subsystem states.

3. The forces and moments generated by the subsystem models are then used by the

kinetics equations, as expressed in equations (2.32) and (2.33), to calculate the

acceleration and angular acceleration of the body with respect to the inertial frame.

These calculations also require the inertial properties of the body, including mass,

 30

inertia tensor and their rates, as well as the motion parameters of the body frame with

respect to the inertial frame.

4. These inertial accelerations are used by the kinematics equations, along with the

motion parameters of the body and navigation frames, to calculate the derivatives for

the motion states as expressed in equations (2.34) to (2.37).

5. Once the derivatives are calculated, a numerical integration routine is applied to

calculate the state vector at the end of the time step. Depending upon the integration

routine used, the derivatives may need to be recalculated several times at different

stages in the routine. If the dynamic model requires numerical error to be controlled,

it is often achieved through the use of an integration routine utilizing adaptive time

steps. Common adaptive time step routines include Runge-Kutta-Fehlberg (RKF) [13]

and Runge-Kutta-Cash-Karp (RKCK) [4] methods that modify the time step required

by the dynamic model to control the local truncation error [13], which is the error per

time step due to the use of discrete time steps during numerical integration.

2.3 Numerical Integration and Numerical Error in Simulation

Dynamic models use the numerical integration of time derivatives to propagate

their states during the course of the simulation. Different numerical integration methods

are available and the choice of method affects the numerical accuracy of the dynamic

model. The use of numerical integration in computer-based simulation introduces two

types of numerical error: truncation error and roundoff error. The following subsections

briefly describe the common integration methods in aerospace simulations, the types of

error introduced and some of the methods used to reduce these errors.

 31

2.3.1 Numerical Integration Methods

Numerical integration is used to propagate the states of a dynamic model in

simulation given their time derivatives. In these routines, time is segmented into discrete

time steps, which may or may not be uniform. In general, these routines calculate the

value of X at the (n+1)th time step from the value of the X at the nth time step as follows:

{ } { } { }1,1 +∆+=+ nnXnXnX (2.40)

The incremental term { }1, +∆ nnX represents the change in state estimated over

the interval { }1, +nn . Using simple lower order numerical integration methods, such as

First Order Forward Euler, this incremental term may be an approximation such as the

product of { }nX& and t∆ . The order of an integration routine is a measure of how closely

the method estimates the behavior of the incremental term over the time step. Higher

order methods, such as higher order Runge-Kutta (RK) integration routines [4][13], obtain a

more accurate estimate of the incremental term, improving the accuracy of the dynamic

model for a given time step. Adaptive time step variants, such as the Runge-Kutta-Cash-

Karp method, use additional terms of higher order to evaluate the error in integration and

adjust the time step to keep the error within specified bounds. A typical simulation loop

using numerical integration is illustrated in Figure 2.5.

 32

States at time tn

Repeat for Once for
Each Stage in

Integration Routine

Calculate State Derivatives for Current
Stage in Integration Routine

Update Working State Array for Current
Stage in Integration Routine

Integration Routine

Calculate Vector of Incremental Terms

Update State Vector

States at tn+1

States at time tnStates at time tn

Repeat for Once for
Each Stage in

Integration Routine

Calculate State Derivatives for Current
Stage in Integration Routine

Update Working State Array for Current
Stage in Integration Routine

Repeat for Once for
Each Stage in

Integration Routine

Calculate State Derivatives for Current
Stage in Integration Routine

Update Working State Array for Current
Stage in Integration Routine

Repeat for Once for
Each Stage in

Integration Routine

Repeat for Once for
Each Stage in

Integration Routine

Calculate State Derivatives for Current
Stage in Integration Routine

Calculate State Derivatives for Current
Stage in Integration Routine

Update Working State Array for Current
Stage in Integration Routine

Update Working State Array for Current
Stage in Integration Routine

Integration Routine

Calculate Vector of Incremental TermsCalculate Vector of Incremental Terms

Update State VectorUpdate State Vector

States at tn+1States at tn+1

Figure 2.5: Typical Simulation Loop

2.3.2 Truncation Error in Numerical Integration

Numerical integration methods, by approximating continuously evolving

dynamics to discrete increments of time, can incur a form of numerical error termed

truncation error in this thesis. The magnitude of this truncation error per time step, also

known as local truncation error [13], LTEX∆ , scales with the order of the method and time

step, as seen in equation (2.41).

() 1+∆≈∆ order
LTE tOX (2.41)

 33

There are two standard methods for reducing local truncation error. The first

method is to use higher order numerical integration methods [4]. The other method is to

reduce t∆ so that the derivatives are propagated over smaller intervals; however, this

requires more simulation steps for a given duration of simulated time, and thus provides

more opportunities to accumulate truncation error. Thus, while the second method will

reduce local truncation error, it may not reduce ‘global’ error over the entire simulation

run [13].

2.3.3 Floating-Point Variables and Roundoff Error in Simulation

The binary representation of floating-point numbers by a discrete number of bits

approximates a continuous space with a discrete space, introducing another type of

numerical error termed as roundoff error in this thesis [4]. Floating-point numbers are

represented by a positive integer called a mantissa M, a positive integer e, and a sign bit.

The memory allocation for the mantissa and exponent can vary with the computer

architecture. A 32 bit floating-point number typically contains a sign bit, 23 bits for the

mantissa and 8 bits for the exponent [4], as depicted in Figure 2.6.

s M e

Figure 2.6: Representation of Bits in a 32 Bit Floating-Point Number

The sign bit, s, determines if the number is positive or negative. The mantissa is

stored in a binary form that consists of N bits. A bias E, predefined in the machine

 34

architecture, is subtracted from e so as to create an exponent capable of holding positive

and negative values, eliminating the need for an additional bit to determine the sign of the

exponent. The base value, B, typically 2 or 16, is raised to the power of the exponent.

This value is then multiplied by M to generate a positive floating-point number as shown

in equation (2.42).

EeBMsX −××= (2.42)

The machine roundoff error is determined by the machine accuracy, εm. This

value is essentially the value of the least significant bit that is stored in the mantissa and

is also called the precision of the variable. The machine accuracy is defined as the

smallest value that can be added to 1.0 without being lost [4]. Table 2.4 lists the number of

bits used to represent single precision and double precision floating-point numbers by

IEEE Standard 754 compliant machines and their machine accuracies.

Table 2.4: Number of Bits and Machine Accuracy for Floating-Point Numbers

Property Single Precision Double Precision

Total Bits in Variable 32 64

Bits in Mantissa 23 52

Bits in Exponent 8 11

Machine Accuracy 1.19 × 10-7 2.22 × 10-16

The relative roundoff error, representing the ratio of the roundoff error to the

actual value, is bounded by machine accuracy. The maximum roundoff error RndX∆ can

 35

be estimated by multiplying the number and machine accuracy, as depicted by equation

(2.43). To accurately determine the maximum roundoff error, a bit-wise analysis of the

number is required. The Most Significant Bit (MSB) represents the first bit in the

mantissa and has the largest exponent while the Least Significant Bit (LSB) represents the

last bit in the mantissa and has the smallest exponent. The maximum value represented

by the LSB gives the maximum possible roundoff error. The difference in the exponents

of the MSB and LSB in an N-bit mantissa is N-1 and the maximum value for RndX∆ can

be calculated using equation (2.44).

mRnd XX ε×≈∆ (2.43)

() 1log(int) 22 +−=∆ NX
RndX (2.44)

In addition to the error generated by the bit-wise representation of individual

floating-point numbers, arithmetic operations on values with different exponents also

generate roundoff error. When two floating-point numbers with different exponents are

added and subtracted, some of the data contained in the number with the smaller

exponent may be lost. The exponent of the smaller number is set to the value of the larger

number’s exponent, resulting in a ‘right shifting’ of the bits in the smaller number’s

mantissa. As a result, the LSB of the smaller number has the same exponent as the larger

number’s LSB. Since the size of the mantissa is fixed, data originally contained in the

smaller number’s mantissa whose exponents are less than the exponent of the new LSB

are lost. Therefore, RndX∆ of the larger number forms the upper bound for the roundoff

error generated during each addition or subtraction operation.

 36

To illustrate the effect of roundoff errors, assume that an 8-bit floating-point

number has 4 bits in the mantissa and 3 bits in the exponent, a bias of 4 and a base of 2.

Expressing the number 45.5 in binary as [1011011] requires 7 bits with the LSB having

an exponent of -1. However, the value stored in the 4-bit mantissa is [1011] and the last 3

bits are lost. The LSB has an exponent of 2 and the maximum roundoff error is 4. The

actual value stored is 44 and the actual roundoff error is 1.5, corresponding to the 3 least

significant bits, [011], that were lost. Extending this example to arithmetic operations, if

this number represent a state that is to be propagated and its incremental term for a given

time step is 71 =∆× tX& , the roundoff error can be calculated by evaluating the values of

the bits lost when the incremental term is ‘right shifted’, as illustrated in Figure 2.7.

20 2-1 2-2212223242527

1 0 1 1 0 1 1

1 0 1 1

1 1 1 0

0 0 0 1

1 1 0 0

1 1 0 1 0 0 1

5.45 =XActual

44 =XStored

5.52 1 =∆×+ tXXExpected &

48 1 =∆×+ tXXStored &

4 1 =∆× tXtedRight Shif &

71 =∆× tX&

20 2-1 2-2212223242527 20 2-1 2-2212223242527 20 2-1 2-2212223242527

1 0 1 1 0 1 11 0 1 1 0 1 1

1 0 1 11 0 1 1

1 1 1 01 1 1 0

0 0 0 10 0 0 1

1 1 0 01 1 0 0

1 1 0 1 0 0 11 1 0 1 0 0 1

5.45 =XActual

44 =XStored

5.52 1 =∆×+ tXXExpected &

48 1 =∆×+ tXXStored &

4 1 =∆× tXtedRight Shif &

71 =∆× tX&

Figure 2.7: Roundoff Error in a 4 Bit Mantissa

 37

The result of the addition using a 4-bit mantissa is 48 compared to the correct

result of 52.5. The roundoff error incurred during the addition is 3 while RndX∆ due to

X is the value of its LSB: 22 or 4. The remaining error is due to the loss of the last 3 bits

when representing a number requiring a 7-bit mantissa with a 4-bit mantissa.

Since the limit for relative roundoff error depends upon the machine accuracy,

improving machine accuracy by increasing the number of bits used to represent the

floating-pointer number, especially the mantissa enables greater precision, thereby

reducing relative roundoff error per operation. This is seen in Table 2.4 through the

comparison of 32 bit single precision and 64 bit double precision numbers. Another

method involves the use of higher bases and Fast Fourier Transforms to obtain arithmetic

of arbitrary precision [4]. However, these methods often require specialized expertise on

the part of the developer as new data types need to be developed along with their standard

arithmetic operations, and can create software specific to specific types of problems or

specific computational hardware.

2.3.4 Reduction of Total Numerical Error in Simulation

The local truncation and local roundoff errors added to the motion states at each

time step will accumulate and compound in subsequent time steps. In many dynamic

models the derivative X& is a function of the state vector X . Thus, any error in X will

generate an error in X& , which in turn will introduce additional errors when used to

propagate X . This allows the error to grow rapidly and, since the states are typically

coupled, to propagate into all aspects of the vehicle dynamics.

 38

Numerical error can have two practical impacts on simulation use. First, they may

reduce a simulation’s accuracy in even short runs; while historically an issue, problems

with accuracy in short duration runs are now limited to simulation of very detailed

dynamics. Second, given how accumulation of numerical error is propagated back into

vehicle dynamics, it can limit the duration of simulation runs. For example, it may be

problematic to simulate spacecraft in years-long interplanetary trajectories that end in a

precise docking operation. Reducing numerical error, then, may enable longer duration

simulation runs.

As mentioned earlier, the standard method for reducing truncation error for a

given integration routine is to reduce time step. While this does reduce local truncation

error, reducing the time step requires a larger number of simulation steps for a given

duration of simulated time where both truncation and roundoff error may be accumulated,

potentially increasing global error. In addition to increasing the occurrence of roundoff

error, smaller time steps may have a detrimental effect on roundoff error as they reduce

the size of the incremental term, implying that a larger fraction of the incremental term

can be lost per time step. This fractional error may be expressed as the ratio of the LSB of

the state to the MSB of the incremental term. If this value exceeds 1, the entire

incremental term is lost and the actual dynamics are lost to roundoff error. Therefore it is

not possible to reduce both types of error by changing only the time step. Figure 2.8

illustrates this concept and highlights how total numerical error (the sum of truncation

and roundoff error) can be very large if the time step is made too large or too small.

Instead, another method needs to be developed that will allow the integration method to

control both the truncation error and roundoff error.

 39

Time Step

Error

Roundoff ErrorTruncation ErrorTotal Error

Time Step

Error

Roundoff ErrorTruncation ErrorTotal Error

Time Step

Error

Time Step

Error

Roundoff ErrorTruncation ErrorTotal Error Roundoff ErrorTruncation ErrorTotal Error

Figure 2.8: Schematic of Truncation, Roundoff and Total Error with Time Step

While algorithms using higher bases, Fast Fourier Transforms and larger

mantissas may be used to reduce roundoff error, these methods often require specialized

expertise and may create software specific to certain types of problems and computer

architectures. Ideally, a method that is transparent to the developer of simulation

components would facilitate control of numerical error in a manner that facilitates the use

of those components in a wide variety of simulator configurations and on a range of

computer architectures.

2.4 Parallel and Distributed Simulation

Parallel and distributed simulations (PDS) refer to the execution of simulations

using a computational system of multiple processors connected by a communications

network. In parallel simulation, the processors are often homogenous and have good

 40

communications. Distributed simulations, on the other hand, often involve heterogeneous

systems that may be geographically distant with communications that may involve

significant lag [14]. The benefits of PDS include reduction in execution time by

distributing computational load over several processors, the ability to run a simulation

over geographically distant processors, the ability to integrate different simulators

developed by different manufacturers, and improved fault tolerance [14]. The integration

of different simulators that may be geographically distant is especially useful as it enables

large-scale simulations with multiple human operators, such as military simulations of

large exercises involving tanks and aircraft with their crews, and air traffic control

simulation.

2.4.1 Evolution of Parallel and Distributed Simulations

Early parallel and distributed simulations were developed concurrently by several

communities for different applications. The application of PDS to analytical simulations

was developed for high performance computing at the same time that PDS was also used

to develop Distributed Virtual Environments (DVE) by the military and computer gaming

communities [14]. The development of PDS for military applications will be described, as

it is most relevant to aerospace simulations.

SIMNET, developed for the Department of Defense in the 1980s, was the first

successful implementation of large-scale, human in the loop simulation network for team

training and mission rehearsal in military operations [15]. In SIMNET, each processor was

treated as an autonomous node and data was broadcast to all nodes in the network. Each

node used ‘dead reckoning’ models, described in the Section 2.4.3, to represent vehicles

of interest on other nodes. Each vehicle broadcast its position, orientation and velocity to

 41

update the other nodes’ dead reckoning models. While the standard update rate was set to

15 updates per second, the average update was 1 update per second for ground vehicles

and 3 updates per second for air vehicles, although the rate could increase to 15 updates

per second during periods of rapid maneuvering [15]. SIMNET architecture and protocols

evolved into Distributed Interactive Simulation (DIS) Standard Protocols (IEEE 1278-

1993). Another development originating from SIMNET was the Aggregate Level

Simulation Protocol (ALSP), which treated war games as analytical simulations resulting

in the development of synchronization protocols [14].

The Distributed Interactive Simulation (DIS) evolved from SIMNET in the 1990s

and was used to develop the infrastructure to link simulations of various types to create

realistic, complex virtual worlds for simulating highly interactive activities [16]. The DIS

protocols were used to connect independent computational nodes to create a coherent

synthetic world that had consistent time and space representations. These protocols

included network communications services, data exchange protocols called Protocol Data

Units or PDUs, and common databases and algorithms [16].

The current standard for PDS is the High Level Architecture (HLA).

Development of HLA began in 1995 and by September 1996 HLA was designated as the

standard architecture for the Department of Defense with all its simulations being HLA

compliant by 1999 [14]. HLA represents the integration of the analytical simulation

architecture, represented by ALSP, and the DVE architecture, represented by DIS. Until

the development of HLA, development of analytical simulations and DVE had proceeded

independently of each other [14]. HLA is implemented through the Run Time

Infrastructure (RTI) software and will be described in further detail in the next section.

 42

While the development from SIMNET to HLA dealt primarily with the

connection and data passing protocols between individual processors on a network, the

development of a shared simulation environment was handled by the Synthetic

Environment Data Representation and Interchange Specification (SEDRIS) project. The

need to develop a representation of the shared simulation environment to achieve

interoperability between heterogeneous simulations was identified by 1995 [17]. Without a

shared environment, different representations of environment data may be used in the

network. Interaction between processors involving the different representations would

require expensive and time-consuming conversion operations utilizing software unique to

each set of representations. Each conversion risks data loss or corruption and the number

of these operations increased geometrically with the number of representations involved.

The cost for development and maintenance of the conversion software would also be

prohibitive [17]. Therefore, a common representation of the physical environment is

needed as the level of interoperability depends upon the availability of consistent,

complete and unambiguous definition of the environment data [17].

SEDRIS captures and provides a complete data model representing the physical

environment that can be used by all simulations in the DVE. This data model is available

to individual simulations through a pre-runtime distribution of source data, 3D models

and integrated databases. The interfaces to this model are provided by an Application

Programmer’s Interface (API) software. The reuse of environment databases by different

simulations is encouraged. These databases include terrain databases such as surface and

volumetric data, feature data and 3D models. The simulation environment provided by

 43

SEDRIS includes these databases, 12 standard coordinate systems and standard

interactions to access and interact with the environment [17].

2.4.2 High Level Architecture (HLA) and its Implementation

The High Level Architecture (HLA) is the current standard for PDS and can be

used to develop both analytical simulations as well as DVE simulations. In the HLA

paradigm, each node in the network is referred to as a federate and the entire PDS is

called their federation. While federates are typically distributed simulations, they can also

represent hardware or even actual vehicles in the field [14]. Thus, the synthetic

environment created by HLA enables military exercises that combine computer generated

forces and manned simulators with actual vehicles such as aircraft and tanks. The ability

to integrate such disparate systems into a single environment requires the architecture to

clearly separate the semantics of each federate from the runtime interfaces and

infrastructure of the environment. Therefore, HLA is defined by three concepts that

ensure the separation of semantics and runtime interfaces. The three defining concepts

are the HLA Compliance Rules, the Object Model, including the Object Model Template,

and the Runtime Infrastructure (RTI) [14][18].

The Object Model is the non-runtime component of HLA and describes the

objects used in the federation [14]. This description includes the attributes of each object,

which represent data that each object is willing to share with other federates [18]. The

Object Model is created using the Object Model Template. Each federate has a

Simulation Object Model (SOM) that describes all the objects and their properties that

are present in the federate. A Federation Object Model (FOM), describing all the objects

and interactions in the federation, is then constructed from the SOMs within a particular

 44

federation. The events that can occur in the simulation, called interactions, are also

included in the models [18].

The Runtime Infrastructure (RTI) is the runtime component of HLA and is the

software that provides the common services to each federate [14]. The emphasis in the

implementation of RTI is interoperability between heterogeneous simulations and

portability between platforms and operating systems. Therefore, RTI is independent of

the semantics and provides only the following management services [18]. Federation

management includes the creation or destruction of federations as well as the addition or

removal of federates. Declaration management is used to declare desired objects and

services by publishing and subscribing to attributes and interactions. Object management

includes the creation and destruction of objects as well as the updating of attributes and

delivery of interactions. Ownership management handles the ownership of attributes by

objects in the federation. Time management is used to regulate the execution of the

federation and the synchronization of federates. Time management applies the

synchronization protocols developed in analytical simulations to control the execution of

each federate. Interactions can be delivered in Time Stamp Order (TSO) to enforce

causality, or in Receive Order (RO) where interactions are delivered in order of receipt

by RTI [14][18].

The HLA Compliance Rules define the requirements of federates and federations

to properly use the RTI. In particular, all object representations occur in federates,

allowing the RTI to remain free of semantics [18]. Also, each federate is required to have a

SOM while the federation is required to have a FOM. Additional rules cover the

management of attributes and interactions [14].

 45

As specified by the HLA Compliance Rules, each federate contains a SOM, built

by the Object Model Template and connects to the RTI via the RTI API [19]. This API

defines the interfaces to RTI and is written using the Interface Definition Language (IDL)

of the Common Object Request Broker Architecture (CORBA). This API is compiled

and included with each federate [19].

Objects in one federate are able to exchange data with objects in other federates

using attributes and interactions. When a federate joins a federation, the attributes of all

objects within the federate are published, informing RTI that the data can be accessed by

other federates is necessary. If objects in other federates need to access any of these

attributes, they needs to subscribe to the attributes of interest. These attributes are

updated as required by the objects that publish them. Interactions, on the other hand, are

not tied to specific objects. Interactions comprise of character strings and can be used to

send a large variety of information, ranging from simple data sets to complex commands.

Due to their nature, they often need to be interpreted by their recipient. Interactions can

be sent to a specific federate, multicast to a group of federates or even broadcast to the

entire federation. Typically, attributes are used to represent parameters within objects that

are regularly updated, such as the states of dynamic models, while interactions generally

represent events that may impact objects across several federates. Since the motion states

of dynamic models are expressed with reference frames, their associated reference frames

need to be identified or a single reference frame needs to be enforced on all motion states

that are published. If federates publish the identities of the reference frames, a mechanism

that handles the kinematics and rotations between them is required.

 46

2.4.3 Dynamic Models and Dead Reckoning in PDS

The development of a DVE through a systematic definition of network and data

passing protocols and a common representation of a shared environment enables

distributed dynamic models to interact with one another. While some of these interactions

may be for specific events, such as firing at a target vehicle in a military simulation,

others may involve the sharing of data between dynamic models at every time step for a

significant period of simulation time, such as continuously tracking the motion of an

aircraft. While transmitting the motion states of dynamic models at every time step is

possible, the resulting volume of network traffic can be prohibitive [14]. Furthermore, the

simulations on each processor may be using different time steps, resulting in the

interaction of models with different time stamps. Therefore, an efficient mechanism is

needed that minimizes network traffic required while allowing synchronous interactions

between models that may possess different time stamps. Since the motion states of

dynamic models are governed by the equations of motion, dead reckoning models can be

used to mirror the motion of a dynamic model on other processors. Therefore, frequent

communication between federates is replaced by local computation [14].

Dead reckoning models use kinematics equations to model the motion of vehicles

on other processors. Since a vehicle’s dynamic model determines the variation of its

acceleration with time, dead reckoning models need to assume constant accelerations.

When the motion of the dead reckoning model deviates from the motion of the dynamic

model by a specified error limit, the motion states and acceleration of the dead reckoning

model are updated.

 47

The motion of dead reckoning models can be updated using different methods [14].

The first method simply updates the motion states and accelerations with the new values.

Consequently, the motion states can jump drastically to correct an error. Furthermore, the

dynamic model and dead reckoning model may possess different time stamps,

introducing errors in the dead reckoning model. In the second method, the motion states

of the dynamic model are extrapolated to correct for any difference in time stamps and

network latency. This method is more accurate but requires additional computation. The

final method uses a smoothing function to generate a smooth transition from the

trajectory using the old motion states and accelerations to the trajectory using the updated

motion states and accelerations. It also accounts for differences in time stamp and

network latency. While this method removes any abrupt changes in motion during an

update, it requires significantly more computation than the other two methods.

Dead reckoning models are often implemented as a combination of Remote

Vehicle Approximations (RVA) and Remote Vehicle Monitors (RVM). If a dead

reckoning model represents the motion of a vehicle on another processor, it is called an

RVA. In contrast, the RVM refers to the dead reckoning model of a vehicle that is being

simulated on the same processor. While the use of an RVM implies that a processor

simulating a vehicle needs to maintain a second model of its dynamics, it also enables the

error in its dead reckoning model to be observed, facilitating the update and broadcast of

the dead reckoning model to keep its motions within specified error limits. In SIMNET,

local state updates and error evaluations were carried out at a rate of 15 Hz while the

dead reckoning models were updated at an average of 1 Hz for ground vehicles and 3 Hz

for aircraft [14][15].

 48

2.4.4 Reference Frames and Coordinate Systems in PDS

The choice of reference frames and coordinate systems is critical in PDS as data

pertaining to the motion of objects depends upon the reference frame and coordinate

system used to describe their motion. Furthermore, a standardized Spatial Reference

Model (SRM) is required for a consistent portrayal of the geophysical environment [20]. A

standardized SRM includes reference frames and coordinate systems for expressing the

motion of objects and environmental factors such as terrain. In addition to affecting the

modeling of the geophysical environment, the choice of reference frames and coordinates

systems also impact the kinetics and kinematics of dynamic models, inter-visibility of

objects and the computational cost of integrating simulations and databases using

different reference frames and coordinate systems [20]. The effect on kinetics and

kinematics has already been discussed in section 2.2. The inter-visibility of objects is

often used to filter data from vehicles that are too far away to be of interest, especially in

large-scale simulations where line of sight and range may be important factors [21]. The

ability to filter vehicles based on distance requires their position to be transformed to a

common reference frame and coordinate system. The computational cost of these

transformations also depends upon the choice of reference frames and coordinate systems

used by the vehicles. Therefore, reference frames and coordinate systems need to be

chosen judiciously to ensure interoperability between heterogeneous simulations without

incurring prohibitive computational and development costs [17].

In early SIMNET simulations, reference frames were located on the surface of the

earth in the vicinity of the exercise areas using Cartesian coordinate systems similar to

the Military Grid Reference System (MGRS) or Universal Transverse Mercator (UTM)

 49

projection [21][22]. Unfortunately, the use of Earth Surface Fixed (ESF) frames, while

enabling efficient implementation of vehicle dynamics, assumed a flat earth and restricted

the effective simulation area to a diameter of approximately 100 kilometers due to the

Earth’s curvature [20][21]. Also, integrating simulations using different ESF frames and

coordinate systems posed significant technical challenges [23]. Later implementations of

SIMNET used an Earth Centered Earth Fixed (ECEF) reference frame to define a

Worldwide Coordinate System that could be used to share motion parameters across the

network [21]. While a geodetic coordinate system, such as WGS84, models the earth’s

surface as an ellipsoid, its use of geodetic latitude, longitude and altitude required

computationally expensive transformations if dynamic models and displays use different

ESF frames. A geocentric Cartesian coordinate system, on the other hand, facilitated the

filtering of distant objects without incurring significant computational costs during

transformations [21].

In DIS, motion parameters of objects were expressed using an ECEF frame when

shared with other simulations [22]. However, individual dynamic models and simulation

components used different reference frames and coordinate systems for their internal

calculations. Common reference frames included body frames for evaluating equations of

motion, and earth fixed (ESF and ECEF) frames for evaluating the kinematics of dynamic

models [22]. Cartesian coordinates, such as UTM, were used with the ESF, while

geocentric Cartesian coordinates or geodetic spherical coordinates, consisting of latitude,

longitude and altitude, were used with the ECEF frame. Due to the frequent

transformations required between these reference frames and coordinate systems when

sharing data across the network, a significant amount of research has been devoted to the

 50

development of efficient transformation algorithms between these reference frames and

coordinate systems [22][24].

The development of SEDRIS standardized the reference frames and coordinate

systems available to individual simulations [17][25]. SEDRIS also provides efficient

transformations services between these reference frames and coordinate systems [20][25].

However, these transformations are based on the Geospatial Reference Model within

SEDRIS, restricting the available reference frames and coordinate systems to those

provided by the SEDRIS API. While these may be sufficient for the simulation of Earth-

bound vehicles or spacecraft orbiting the Earth, some simulation scenarios may require

different sets of reference frames and coordinate systems. Also, all the simulations in the

network still need to agree on a predetermined reference frame and coordinate system to

publish motion parameters. However, this predetermined reference frame may not be

suitable to all the scenarios and could introduce additional numerical errors.

2.5 Development and Reusability of Simulation Software

The development of software for a simulation often involves the integration of

various simulation components, including dynamic models, control inputs and displays.

Additional components such as agents may be used to model human elements such as

pilots and air traffic controllers in large-scale agent based simulations. While some of

these components may be unique to specific simulations, others may be applicable to a

wide range of simulations, including distributed simulations. Reusing these components,

or components from other simulations, can greatly reduce their development time and

cost [26][27]. The following subsections will describe the benefits of software reuse along

 51

with its costs and discuss its implications for developing dynamic models and simulation

software.

2.5.1 Benefits, Costs and Metrics for Software Reuse

Software reuse has a significant effect on software development [2] and is one of

the most promising methods for increasing productivity [3][26]. While software reuse also

includes the reuse of specifications and designs used in software development [3][26], code

reuse is often the most significant aspect and is the focus of much research. Software

reuse can eliminate the need to re-implement common software elements [26]. Since some

applications may contain only 15% application specific code, software reuse can provide

significant savings in time and cost of software development [3][26]. In addition to

reducing development time and cost, software reuse can also avoid the downstream cost

of maintaining additional code [26]. The benefit of software reuse can be expressed as the

ratio of reduction in development cost to baseline development cost [26], expressed in

equation (2.45).

Reuseut Cost witho
ReuseCost with - Reuseut Cost witho

Benefit Reuse = (2.45)

However, the development of reusable software incurs additional development

cost that is amortized through its reuse in multiple software applications [3]. The

development cost of reusable components can be 110% to 480% of the development cost

of non-reusable components [2], depending on the type of application. This extra cost

accounts for the higher quality of reusable assets [26]. Furthermore, the reuse of these

 52

components also incurs additional costs, ranging from 10% to 63% of the development

cost of non-reusable components [2], accounting for the identification, retrieval and

integration of reusable software in different applications [3]. Also, documenting the

capabilities of reusable software is essential as developers may be unaware of the full

capabilities of the software and redevelop functionality, especially in large projects,

reducing the effectiveness of software reuse [26].

The extent of reuse in software and its economic effect is often measured through

the use of metrics. These metrics allow the reuse of software to be monitored over time

and its effect on the productivity and quality of software [28]. Metrics can also provide

insight into the development of reusable software and the effect of particular actions of

the amount of reuse [28]. Different types of metrics can provide insights into the various

aspects of software reuse. Metrics dealing with the reuse of code provide insights into the

amount and type of code reused as well as the frequency of reuse [26][27][28], while other

metrics based on economic models measure the effect of reuse on development cost [28].

Since this section primarily deals with the reusability of simulation components, code

reuse is discussed in greater detail.

Both empirical and qualitative methods can be employed to study code reuse in

software. Empirical methods involve the collection of objective data while qualitative

methods often use subjective methods to evaluate how closely software adheres to

specific standards [29]. Metrics for empirical methods studying code reuse typically

involve the lines of code (SLOC) and components reused in the software [26][27]. While the

number of components reused and the frequency of reuse provide a measure of code

reuse in object-oriented programming [27], component based measures do not reflect the

 53

size of the components reused. SLOC based measures, on the other hand, provide a

measure of how much code is reused. This can be used to express the reduction in

development effort through code reuse. A common metric for number of SLOC used is

‘Amount of Reuse’ or AOR [27] and is expressed by equation (2.46).

ReusedNew

Reused

SLOC # SLOC #
SLOC #

 AOR
+

= (2.46)

In this metric, the number of lines of reused code and the number of lines of new

code. Since reusable assets are often more complex and contain more SLOC than non-

reusable assets, this may not always provide an accurate measure of how much code the

developer was saved from writing through code reuse. Instead, comparing the number of

SLOC that need to be written for a software component with and without code reuse

provides a better estimate of the reduction in development effort. However, this requires

the development of non-reusable software for comparison. Therefore, the AOR metric is

a more practical metric for monitoring reuse over the lifecycle of a reusable asset while

the second method provides a more accurate metric of reduction in development effort at

the cost of developing additional non-reusable software.

2.5.2 Software Reuse in Dynamic Models

Dynamic models are used to represent vehicles in a large variety of simulations.

Since each simulation may use dynamic models to represent specific vehicles, a large

number of dynamic models need to be developed to model the various vehicles in

different simulations. Furthermore, some simulations may require dynamic models of the

 54

same vehicle but with different fidelity requirements or different spatial environments,

requiring the use of different reference frames. Hence, several dynamic models may be

needed to represent the same vehicle in different scenarios. Therefore, the development

of new simulations or the modification of existing simulations often requires significant

time and effort for the development of dynamic models. Since software reuse can

significantly reduce the time and effort required for software development, the

identification and reuse of common functionality in dynamic models could facilitate the

rapid development of dynamic models for different simulations. Models for different

vehicles could be developed using a generic dynamic model that encapsulates the

functionality common to all vehicle models.

By observing the functionality required by dynamic models in Figure 2.4, it can

be seen that the numerical integration routine is independent of the dynamics of specific

vehicles. Furthermore, inspection of equations (2.34) to (2.37) reveals that the kinematics

equations depend solely upon the motion parameters of reference frames and the

acceleration of the body frame with respect to the inertial frame. Since this acceleration is

calculated by kinetics equations, the rest of the kinematics equations are based on the

motion parameters of the navigation frame with respect to the inertial frame and the

motion states of the body frame with respect to the navigation frame, as maintained in the

dynamic model’s state vector. If the reference frames can be treated as part of the

simulation environment rather than being implicit to the model, the kinematics equations

can be generalized to 6DOF dynamic models of all vehicles. Similarly, if the mass and

inertia properties specific to the vehicle model and the force and moments generated by

 55

its various subsystems, e.g. aerodynamic surfaces, engines, etc, can be calculated by the

subsystem dynamics, the kinetics equations (2.32) and (2.33) can also be generalized.

While the process described above identifies the functionality common to all

dynamic models, the dependency of this common functionality on reference frames, with

the exception of numerical integration, complicates the development of a generic

dynamic model. Since reference frames, specifically the navigation and inertial frames,

are often implicit to the kinetics and kinematics of the model, rather than being explicitly

defined in the simulation environment, separating kinetics and kinematics from the

unique dynamics of the model is not feasible. Although existing software, such as

AUTOLEV, enable the calculation of kinetics and kinematics to be automated [30], the

reference frames need to be fixed during the development of the model. Furthermore, the

kinematics and rotations between a model’s reference frames and those used by other

components need to be defined during its development, restricting the model’s ability to

interact with components using reference frames not specified during its development.

These operations are duplicated in other dynamic models and simulation components that

interact with these reference frames, causing duplication between components and

incurring unnecessary development costs.

Similarly, while existing simulation software allow numerical integration to be

automated and linked to other modules representing different elements in a dynamic

model, once the model is constructed and compiled into an executable, the state and

derivative vectors are fixed in the software implementation. This is further complicated

by the fact that the dynamics of different subsystems may be coupled, resulting in states

being shared by other subsystems.

 56

The development of a generic dynamic model requires a paradigm that defines

reference frames as part of the simulation environment. The motion parameters of the

reference frames and the rotations and kinematics equations between reference frames

need to be independent of dynamic models, enabling dynamic models to choose and

access the relevant reference frames at runtime. Furthermore, the assembly of the state

vector should be done in a manner that allows the contents of the vector to be identified

and shared with the elements contributing to it.

2.5.3 Reference Frames and Interaction of Simulation Components

The interaction between different components in a simulation is typically carried

out using interfaces. These interfaces may be specific to certain components or can be

standardized to allow interaction with a broad range of components. While these

interfaces enable data to be exchanged between components, the interpretation of data

depends upon the data passing protocols between the components. This is especially true

for standardized interfaces that may be accessed by a large number of components. In

particular, the reference frames used to express motion parameters need to be specified

for interfaces describing motion. If components express their motion parameters in

different reference frames, rotations and kinematics equations are required to transform

motion parameters to and from the reference frames set in the data passing protocols.

In a generalized case, each component may use a unique set of reference frames.

Without an effective mechanism to coordinate these rotations and kinematics, point to

point conversions will be required between each pair of components [17]. Each component

will need to implement rotations and kinematics between its reference frame and the

reference frames used by other components. The resulting development and component

 57

integration effort would be extremely expensive and time consuming [17]. Figure 2.9

illustrates the point-to-point interactions required if all the simulation components use

different reference frames and interact with one another. Therefore, a systematic and

coordinated mechanism that handles the kinematics and rotations between all reference

frames in the simulation is needed.

Model 2

Rotations & Kinematics

Continuous Time
Simulation

ComponentModel 1

Rotations & Kinematics
between pairs of
reference frames

Model 3
Model 2Model 2

Rotations & Kinematics

Continuous Time
Simulation

ComponentModel 1 ComponentComponentModel 1

Rotations & Kinematics
between pairs of
reference frames

Model 3Model 3

Figure 2.9: Point to Point Interactions Between Components

2.6 Summary of Issues with the Representation of Reference Frames in Simulation

Reference frames are essential for the expression of motion in simulation.

However, these reference frames are often represented implicitly in a fixed manner by the

simulation components and dynamic models that utilize them. Interactions between

components may require expensive point-to-point data conversions, as illustrated by

 58

Figure 2.9. Reconfiguring the simulation to include additional components using different

reference frames may require the modification and redevelopment of existing simulation

components. While Figure 2.9 depicts point-to-point conversions within a single

simulation, it is even more relevant in PDS, where the simulation components on each

federate may utilize different reference frames. While the reference frames used for

exchanging motion parameters could be standardized, each component would then be

expected to handle the appropriate kinematics and rotations between their preferred

reference frames and the standardized reference frames. Also, the standardized reference

frames may not be appropriate for all components or applications and may introduce

additional numerical errors to the simulation.

Dynamic models also use reference frames to represent their navigation and

inertial frames. Currently, these reference frames are implicit to and fixed within each

dynamic model, limiting the ease with which these models may be reused or adapted to

other applications using different reference frames or requiring different kinematic

fidelity. Furthermore, using a single fixed navigation frame can lead to additional

roundoff errors.

Therefore, a systematic representation of reference frames in the simulation

environment should be developed that encapsulates the kinematics and rotations between

all reference frames within the simulation environment and allows the addition of new

reference frames without requiring existing components to be modified. Such a

representation will enable simulations and their components to be rapidly reconfigured to

different scenarios while facilitating the development of simulation components and

dynamic models that can be reused and reconfigured for different simulations. Dynamic

 59

models will be able to select reference frames based on the fidelity requirements of the

simulation, reducing modeling error. Reference frames can also be selected to control

total numerical error. Furthermore, allowing the individual components of various

federates in a distributed simulation to use their preferred reference frames with an

external mechanism handling all the kinematics and rotations within the federation would

assist in the interoperability of distributed simulation.

 60

CHAPTER 3

MANAGEMENT OF REFERENCE FRAMES

This chapter describes the development of a mechanism that assembles an

extensible network of reference frames within the simulation environment. Treating

reference frames, as well as their kinematics and rotations, as part of the simulation

environment allows each simulation component to express motion using their preferred

reference frame while allowing dynamic models to select their inertial and navigation

frames as dictated by scenario and fidelity requirements. This mechanism also handles all

the kinematics and rotations between reference frames, allowing simulation components

to express motion parameters with respect to any reference frame in the network. A

standardized representation of reference frames enables this network to be easily

reconfigured to new models and scenarios, and to allow reference frames to be

dynamically added or removed from the network during the simulation.

3.1 Network of Reference Frames

Reference frames in a simulation can be represented through an extensible

network. The desired attributes for this network are:

1. The ability to rapidly expand and reconfigure the network

2. The ability to obtain consistent kinematics and rotations between arbitrary reference

frames

The first attribute allows the network to be configured to meet the needs of

different scenarios. The network is designed such that the addition or removal of

reference frame from the network should not require further modification of other

 61

reference frames in the network. The second attribute ensures that the same rotation

matrix and kinematics equations are generated independent of the network path used to

connect the corresponding pair of reference frames.

In a network, the entities represented by nodes and links depend upon the

particular application. For example, a node may represent a data structure, a physical

entity such as a computer [31], or simply a connection for network elements in the case of

electrical circuits [32]. Similarly, a link in the network may represent mathematical

relationships between nodes, data passing transmission lines, or even the components of

electrical circuits. In a network of reference frames, the nodes represent the reference

frames in the network and the links represent the modeling of relative motion between the

reference frames. These models of relative motion, expressed through motion parameters,

are maintained within the respective reference frames. Table 3.1 tabulates the

representation of network components in a network of reference frames. The following

subsections describe the selection of the network topology, the linking of nodes in the

network, the standard operations required to create an extensible network, and the

standard representation of reference frames within this network.

 62

Table 3.1: Components Within a Network of Reference Frames

Components in a Network Representation in a Network of Reference Frames

Node

(‘Vertex’ in graph theory)

Model of a reference frame:

• Encapsulates its motion with respect to a
definition frame through motion parameters

• Propagates its own motion parameters

• Identifies its definition frame

• Updates the identity of child nodes during
network assembly

Link

(‘Edge’ in graph theory)

Representation of relative motion between object and
definition frame propagated using motion parameters

• Stored in the node representing the object frame

Traversing a path
connecting a pair of nodes

Change in definition frame or measurement frame used
by a set of motion parameters

• Kinematics equations are used to change the
definition frame

• A rotation matrix is used to change the
measurement frame

• The kinematics equations or rotation matrix is
recursively constructed using the motion
parameters of the nodes in the path

3.1.1 Selecting a Network Topology for Reference Frames

The geometry or topology of the network [31] that possesses the desired network

attributes can be identified by observing the connections between nodes in a network.

Following the general definitions used in graph theory [32], an arbitrary pair of vertices in

a graph may be connected by either a single edge or a path defined by a sequence of

edges, where the end vertex of each edge forms the initial vertex of the next edge [33].

Vertices connected by a single edge are called adjacent vertices [33]. In a connected graph,

all vertices are connected through either edges or paths. Common topologies include star,

 63

ring, tree and complete graph topologies [31][33][34], as depicted in Figure 3.1. The choice

of topologies affects the number of edges and paths in a connected graph.

15
6

=
=

L
N

A

B

C

D

E

F

5
6

=
=

L
N

A

B

C

D

E

F

5
6

=
=

L
N

AB

C

D

EF

6
6

=
=

L
N

A

B

C

D

E

F

A) Complete Graph B) Tree

C) Ring D) Star

15
6

=
=

L
N

A

B

C

D

E

F

15
6

=
=

L
N

A

B

C

D

E

F

5
6

=
=

L
N

A

B

C

D

E

F

5
6

=
=

L
N

A

B

C

D

E

F

5
6

=
=

L
N

AB

C

D

EF
5
6

=
=

L
N

AB

C

D

EF

6
6

=
=

L
N

A

B

C

D

E

F

6
6

=
=

L
N

A

B

C

D

E

F

A) Complete Graph B) Tree

C) Ring D) Star

Figure 3.1: Number of Links in Common Network Topologies

The number of edges L in a connected graph of N vertices depends upon the

topology of the graph. The complete graph topology requires the maximum number of

edges, NC2 or (N/2)×(N-1), in a graph of N vertices as each vertex is adjacent to every

other vertex in the graph. In contrast, a tree topology only requires N-1 edges [32][33].

Similarly, in a star topology, where N-1 vertices are connected to a ‘hub’ vertex, N-1

edges are required while a ring topology requires N edges, as depicted in Figure 3.1.

 64

The number of paths connecting any pair of vertices also depends upon the choice

of topology. Paths are defined such that edges are not repeated in the sequence [33]. The

definition of a path shall be further restricted in this thesis such that vertices are not

repeated, eliminating loops or circuits, in order to ensure consistency of kinematics and

rotations between reference frames, which will be described in this section. By definition,

the star and tree topologies have only one path between each pair of vertices while the

ring topology has two paths. The complete graph topology has multiple paths connecting

each pair of vertices.

Representing the propagation of relative motion between reference frames as links

allows the edges and paths to represent the different ways in which the motion parameters

between an arbitrary pair of reference frames can be calculated. If the vertices

representing the reference frames are adjacent, their relative motion is represented by a

single edge and the reference frames propagate the corresponding motion parameters, as

described in Table 3.1. In contrast, if the vertices are connected through a sequence of

edges, the motion parameters describing their relative motion is constructed through

kinematics equations using the motion parameters represented by each edge in the

sequence. Thus, a single edge implies that the reference frames encapsulate their relative

motion whereas a path implies that the relative motion needs to be calculated through

kinematics equations.

Reducing the number of edges not only reduces the number of motion parameters

maintained for a given number of reference frames, but also reduces the need for the

motion of each reference frame to be modeled with respect to multiple reference frames.

In a complete graph, the motion of each reference frame needs to be modeled with

 65

respect to all other reference frames in the network. Such a network would be difficult to

expand, as a new reference frame would need its motion to be modeled with respect to all

the reference frames in the network, requiring the models of all existing reference frames

to be updated. Consequently, selecting a topology with the least number of edges for a

given number of vertices improves the network’s ability to be reconfigured rapidly for

different scenarios, reducing the need to modify reference frames whenever the network

is reconfigured, thus satisfying the first desired attribute.

The second desired attribute, requiring kinematics and rotations to be path

independent, required the elimination of multiple paths between reference frames.

Ensuring that paths between vertices are unique ensures consistent kinematics and

rotations between reference frames. If a connected graph contains N vertices, a topology

that only contains N-1 edges, the minimum number of edges for connectedness,

automatically ensures that all paths are unique while enabling the network to be

reconfigured with minimal modification of reference frames. Based on these

requirements, the complete graph and ring topologies can be eliminated due to the

presence of multiple paths. Both the star and tree topologies only require the minimum

number of edges and guarantee unique paths between pairs of vertices.

Comparing the star and tree topologies, it can be observed that the star topology

uses one vertex as a hub and all other vertices are adjacent only to the hub. The

implication for a network of reference frames is that the motion of all reference frames

would need to be modeled with respect to the ‘hub’ reference frame. Furthermore, if a

new reference frame is added, its motion can only be modeled with respect to the hub.

While this may be acceptable for certain scenarios, in other scenarios the motion of

 66

certain reference frames may need to be modeled with respect to other reference frames.

In contrast, reference frames in a tree are not constrained to have their motions modeled

with respect to a specified reference frame. If a new reference frame is added to a

network using the tree topology, its motion can be modeled with respect to any reference

frame in the network, allowing greater modeling flexibility. Therefore, the tree topology

is the most suitable topology for developing a network of reference frames.

3.1.2 Linking Nodes in the Network

In a network of reference frames, the nodes represent the reference frames while

the links represent the models of relative motion between the reference frames. While the

tree topology provides an extensible network that reduces the dependencies between

nodes, the links between the nodes must be handled judiciously to minimize modeling

dependencies between each pair of reference frames.

While determining the network topology, the links between nodes were treated as

edges between vertices, which did not possess any direction. A closer examination of

these links requires the network to be represented as a directed graph or digraph,

introducing direction to the edges [33]. Thus, the edges in a graph can be represented by

two directed edges in a digraph where each directed edge represents the modeling of the

relative motion with respect to one of the reference frame. If an edge between two

vertices is represented by a single directed edge, the nodes are connected by a

unidirectional link and, in this application, the relative motion between a pair of reference

frames is only modeled with respect to one of them. If the edge is represented by two

directed edges, the nodes are connected by a bi-directional link, and in this application,

the motions of both reference frames are modeled with respect to each other. The link

 67

between nodes A and B in Figure 3.2 is represented by two directed edges, signifying a

bi-directional link whereas the link between nodes C and D is represented by a single

directed edge, signifying a unidirectional link.

AB
BXA

AXB

CD
DXC

AB
BXA

AXB

CD
DXC

Figure 3.2: Unidirectional and Bi-directional Links Between Nodes

In the Figure 3.2, the bi-directional link shared by nodes A and B implies that two

models describe their relative motion and both models must describe the same motion,

albeit from opposite viewpoints. Thus, a modification in one of the models must be

accompanied by an appropriate modification in the other model to ensure that the motion

parameters of both models reflect the same behavior. Equations (3.1) and (3.2) applies

the kinematics equations to the motion parameters of an object P, when its definition

frame is switched from A to B and vice versa. The function f(PXA, AXB) represents

equations (2.20) to (2.25) and is generalized to all reference frames. Discrepancies

between the relative motion of these reference frames, either due to modeling differences

between AXB and BXA, or numerical error in maintaining the motion parameters, produce

differences between the initial and final motion parameters of P when its definition frame

is switched from A to B and then back to A.

 68

()BAAPBP XXfX ,= (3.1)

()ABBPAP XXfX ,= (3.2)

In contrast, nodes C and D in Figure 3.2 are connected by a unidirectional link,

implying that only one model describes the relative motion between the reference frames,

modeling the motion parameters of D with respect to C. If the motion parameters of C are

required with respect to D, the same set of motion parameters are used, although from the

opposite point of view. Since only one set of motion parameters is used to describe the

motion, the kinematics and rotations between the reference frames are always consistent.

Switching the definition frame of an object’s motion parameters from D to C and back to

D, as expressed by equations (3.3) and (3.4), will yield the object’s initial motion

parameters as the same set of motion parameters is used in both operations.

()CDDPCP XXfX ,= (3.3)

()CDCPDP XXfX −= , (3.4)

Comparing the unidirectional and bi-directional links, the use of unidirectional

links eliminates modeling dependency since a single model describes the relative motion

between each pair of reference frames, ensuring consistency of kinematics and rotations

between them. Likewise, the use of unidirectional links leads to the allocation of

responsibility of maintaining the links within the network. The ability to treat trees as

partially ordered structures with hierarchical levels [33] enables the systematic assembly of

 69

the network and allocation of responsibility for maintaining its unidirectional links. The

‘root’ node forms the first level of the tree. New nodes branch out from existing nodes

and are added to the next level. Consequently, a tree can be built up from its root node

through the addition of nodes and links. Since a network using a tree topology has N–1

links, adding a new node also adds a link, connecting the new node to the network. If the

new node maintains this link, the network can be expanded without requiring any of its

existing nodes to be updated. Furthermore, each node only needs to maintain the link that

connects it to the network. Thus, each new reference frame only needs to model its

motion with respect to one reference frame in the network: the definition frame of its

motion parameters. Each new node is considered the child node of the node representing

its definition frame. In Figure 3.3, frame A is the root node of the tree and the parent

node for frame B, which is in turn the parent node for C, D and E in level 2.

AB

C

D

EF

0123 Level

AB

C

D

EF

0123 Level

Figure 3.3: Levels in a Partially Ordered Tree

Each unidirectional link represents the relative motion of the child node with

respect to its parent node. While these links can be viewed as vectors representing motion

 70

parameters of the child node with respect to the parent node as depicted in Figure 3.2,

each link is maintained by the child node and can be treated as an attribute of the child

node. Therefore, the link can represent a ‘defined with respect to’ relationship and can

originate from the child node, upon its addition to the network, as depicted in Figure 3.4.

AB

C

D

EF

Figure 3.4: Links Add Child Nodes to Network

Assembling a tree with unidirectional links maintained by child nodes using

hierarchical levels enables the formation of an extensible network that enforces

consistency of kinematics and rotations. New reference frames can be introduced that use

existing reference frames as their definition frames. If this definition frame is not

available, the reference frame becomes the root node of a new network, implying that

root nodes also have models of their motion parameters with respect to specific definition

frames. If the node representing the definition frame is added to the network, the root

node is linked to the new node. This new node may be added to another tree, allowing

trees to be grafted to form larger networks. Conversely, removing a node that has several

child nodes breaks a tree into several smaller trees. The ability to add and remove nodes

 71

from a tree, as well as graft or prune trees, are standard network operations available to

assemble an extensible network, described in the next section.

3.1.3 Standard Operations in an Extensible Network

An extensible network needs to support standard operations that enable the

network to be modified through the addition and removal of nodes. Additional operations

allow nodes to change their parent nodes, enabling the network to be reconfigured during

the course of the simulation. These network operations include adding and removing

nodes, grafting and pruning trees as well as changing parent nodes:

1. Trees are grafted when the root node of one tree uses a node located within another

tree as its definition frame. The root node is linked to its definition frame and ceases

to be a root node, merging the two trees. This is illustrated in Figure 3.5. If the root

node of tree 2, E, uses D as its definition frame, D becomes the parent node for E and

tree 2 is grafted to tree 1, forming tree 3.

2. When a link is broken, the child node is pruned from its parent’s tree. The child node

becomes a root node and its sub-tree becomes a new tree. This operation is typically

carried out when the parent node is removed from the network or the definition frame

is changed. In Figure 3.5, if the link between nodes D and E in tree 3 is broken, E

becomes a root node of tree 2, and tree 3 is divided into 2 sub-trees, trees 1 and 2.

3. When a new node is added to the network, it may join an existing tree or form the

root node of a new tree. If the node corresponding to the definition frame is available

within the network, it becomes the parent node to the new node and the new node

establishes the link to its parent node. If the node representing the definition frame is

not available, the new node becomes a new root node, which could potentially form a

 72

new tree. If the root node of another tree uses the new node as its definition frame, the

grafting operation is used to graft this root node and its tree to the tree containing the

new node. In Figure 3.6, node H uses D as its definition frame and is added to tree 1.

The root node of tree 2, E, uses H as its definition frame and is grafted to tree 1.

AB

C

D

Tree 1

E

F

G

Tree 2

Tree 3

Figure 3.5: Grafting and Pruning Trees in a Network

4. When a node is removed, the network breaks the link between the node being

removed and its parent node. If the node being removed is linked to child nodes, these

links are also broken and the child nodes are pruned from the tree, becoming root

nodes for their respective trees. In Figure 3.6, node H is removed from tree 3, and its

child node, E, is pruned to form the root node of tree 2.

5. When the definition frame of a node is changed, kinematics and rotations reflecting

the change in definition frames are typically applied to motion parameters. The node

is then pruned from the tree, becoming the root node of a new tree. If the node

 73

representing the new definition frame is available, the pruned node is grafted to its

new definition frame.

H

AB

C

D

Tree 1

E

F

G

Tree 2

Tree 3

Figure 3.6: Adding and Removing Nodes in a Network

As a result of these standard operations, multiple root nodes can exist and may

support multiple trees. While a path can link arbitrary nodes within a tree, nodes located

in different trees cannot be linked. Thus, rotation and kinematics operations can only be

executed between reference frames represented by nodes within the same tree. Ideally,

there should be only one root node and tree in the network, although multiple trees could

still be used if all simulation components in one tree do not need to access the motion

parameters of any simulation components in another tree and vice versa.

Since the network uses a hierarchical tree configuration, it is important to ensure

that closed loops are not formed, as these would create a paradox when determining

levels within the tree. A closed loop will also introduce multiple paths between pairs of

nodes, leading to the consistency problems discussed earlier. A closed loop can be

 74

formed if the definition frame of a root node is located within its own tree as illustrated in

Figure 3.7 where A chooses C as its definition frame.

AB

C

D

Figure 3.7: Closed Loop Within a Tree Network

The issue of closed loops within a network can be handled by either including

mechanisms to enforce consistent kinematics in a closed loop or by preventing the

formation of closed loops through judicious modeling of reference frames in the network.

Mechanisms to handle closed loops would typically check whenever a new reference

frame is added to the tree to see if a root node is using a node within its tree as a

definition frame; if so, it would prevent the corresponding link from being established.

While this method addresses the problem of consistent kinematics, it limits the

extensibility of the network as the root node’s ability to link to its definition frame is

effectively removed, preventing it from being grafted to other networks. The alternate

solution would be to model reference frames in a hierarchical manner mirroring the levels

within the tree. One possible hierarchy could use the relationship between physical

entities represented by the reference frames with inertial space and the scale of the

environment typically expressed using the reference frames. For example, a reference

 75

frame fixed on the Earth’s surface could use the Earth Centered Earth Fixed (ECEF)

frame as its definition frame. The ECEF frame, a rotating frame, in turn would use the

Earth Centered Inertial (ECI) frame as its definition frame. Since the Earth orbits the Sun,

the ECI frame could use the Heliocentric Inertial Frame as its definition frame.

3.1.4 Standard Representation for Reference Frames in a Network

In order for reference frames to be treated as nodes in the network described

above, a standard representation needs to be developed that describes the unique

properties of the reference frames while satisfying network requirements described

above. While a reference frame’s motion may be expressed with respect to any other

reference frame, the network constraint for consistency stipulates that it may model its

motion parameters with respect to only one definition frame, represented by its parent

node. Furthermore, the reference frame should encapsulate the model of its motion

parameters with respect to the definition frame. Thus, a reference frame can be treated as

a unique entity whose motion parameters are modeled with respect to a specific definition

frame. The identity of this definition frame is crucial as it forms the access point through

which each reference frame joins the network. If the definition frame is chosen based on

a physical hierarchy, closed loops within the network can be avoided, ensuring

uniqueness of paths and consistency of kinematics and rotations.

The motion parameters of a reference frame are typically time variant, requiring

propagation in time. The model of the motion parameters with respect to its definition

frame can be generalized as a six degree of freedom (6DOF) model. While the

acceleration and angular acceleration depends upon the specific reference frame’s model

with respect to its definition frame, the time derivatives of its position, orientation,

 76

velocity and angular velocity can be generalized through the kinematics equations (2.34)

to (2.37). Numerical integration is needed to propagate these motion parameters in time.

While the motion parameters of reference frames can be generalized as 6DOF

models, the models of specific reference frames may be simplified, especially if they are

not accelerating with respect to their definition frames. The motion parameters of these

reference frames may be evaluated as algebraic functions of time rather than being

propagated through numerical integration, reducing the roundoff errors introduced to the

motion parameters and enhancing the accuracy of the reference frame’s model.

3.2 Kinematics and Rotations in a Network of Reference Frames

Once a network of reference frames is created, the motion parameters of any

object or reference frame can be expressed in or with respect to any other reference frame

in the network. Since each node in the network is only linked to its parent and child

nodes, an external mechanism is needed to create a path between the nodes. The

mechanism that assembles and maintains the network, called the reference frame

management mechanism, is used to identify the path between an arbitrary pair of the

nodes. When the motion parameters of a reference frame are required with respect to a

different definition frame or need to be expressed in a different measurement frame, a

search algorithm is used to identify the path between the nodes representing these

reference frames. Once the path is identified, the kinematics equations and rotation

matrix is assembled by the reference frame management mechanism and used to change

the motion parameters’ definition frame or measurement frame. The following

subsections describe the identification and assembly of a path using a search algorithm

and the calculation of the kinematics and rotations along a path.

 77

3.2.1 Assembling a Path Using a Search Algorithm

The search algorithm identifies the path connecting the nodes as a sequence of

links from the initial node to the final node in the path. The initial node is the node

corresponding to the reference frame currently used to express the motion parameters.

The final node is the node corresponding to the desired reference frame. For example, if

the motion parameters of reference frame A need to be expressed with respect to

reference frame F, a path from node A to node F has to be identified, as depicted in

Figure 3.8. Node A is the initial node in the path and node F is its final node. Once the

sequence of links is identified, kinematics equations would be used to calculate the

motion parameters of A with respect to F.

Path: A → F

C

B

G

E D

A

H

F

Figure 3.8: Transformation Path in a Network

The search algorithm utilizes the geometry of the tree topology and creates two

search paths to identify the path linking the nodes. One path starts from the initial node

and is called the forward path, while the other starts from the final node and is called the

reverse path. Both paths traverse the tree towards the root node until a shared node is

found. Once the shared node that links both paths is found, the forward and reverse paths

 78

are merged. In Figure 3.9, the forward path links A to C, while the reverse path links F to

C, the shared node.

C

B

G

E

D

A

H

F

Figure 3.9: Forward and Reverse Paths Merge at Shared Node

While it is possible to use a search algorithm starting from the initial node to

explore the tree until the final node is found, using forward and reverse paths is the most

efficient algorithm as only the minimum number of nodes is traversed to identify the

path. This is demonstrated in Figure 3.10, where the search algorithm starts from the

initial node and explores all the branches in the tree, including the paths C to D and C to

H, which are not in the path from A to F.

C

B

G

E

D

A

H

F

Figure 3.10: Exploring Branches in the Tree

 79

Identifying the shared node when using forward and reverse paths is essential for

merging the paths. The levels within a tree can be used to regulate the search algorithm

since a parent node always has a lower level than its child node. When the search

algorithm propagates the forward and reverse path, each path is assigned the level of its

current node. The forward path is initialized with the level of the initial node and the

reverse path is initialized with the level of the final node. The path with the higher level is

propagated until both paths have the same level. If the nodes are the same, the shared

node has been found. If not, both paths are propagated together. This method approaches

the shared node from the initial and final nodes and traverses the minimum number of

links between the nodes.

Once the shared node is identified, the forward and reverse paths are merged to

form the path from the initial node to the final node. The forward, reverse and merged

paths linking node A to node F in the network depicted by Figure 3.8 are as follows:

Forward path: A→B→C

Reverse path: F→E→C

Merged path: A→B→C→E→F

3.2.2 Evaluating Kinematics and Rotations along a Path

Once the path connecting the nodes is identified, kinematics equations and

rotation matrices for changing the definition and measurement frames can be developed.

Since the measurement frame defines the direction vectors used to express a vector as a

set of scalars, changing the measurement frame involves the application of a rotation

matrix, relating the orientation of the new measurement frame with respect to the current

measurement frame, to the vector representing each motion parameter. Equation (3.5)

 80

changes the measurement frame of a motion parameter from frame A to frame F using

the direction cosine matrix (DCM) of F with respect to A as its rotation matrix. If nodes

A and F in the Figure 3.8 represent frames A and F, the DCM of F with respect to A can

be assembled by a sequence of rotations using the DCM corresponding to the orientation

of each node along the path, as expressed by equation (3.6):

[] XCX A
A

PAFA
F

P = (3.5)

[] [] [] [] [] CCCC C ABBCCEEFAF = (3.6)

[] [] [] [] [] CCCC C
TBATCBCEEFAF = (3.7)

Since the standard notation used here dictates that the DCM formed through the

orientation of a reference frame transforms a vector’s scalar components from the

definition frame to itself, the transpose of each DCM formed by nodes in the forward

path is used, as expressed in equation (3.7). The network in Figure 3.8 shows a general

case when both the forward and reverse paths are used. Linear networks or nodes along a

chain require only one of the paths. Figure 3.11 illustrates these simpler paths. The

rotation matrices for these paths are expressed by equations (3.8) and (3.9).

 81

BA DC E

For Path: A →D

Forward Path: A→B → C → D

Reverse Path: <None>

For Path: E→C

Forward Path: <None>

Reverse Path: C →D →E

Figure 3.11: Forward and Reverse Paths Along a Chain

[] [] [] []TBATCBTDCAD CCCC = (3.8)

[] [] []EDDCEC CCC = (3.9)

Changing the measurement frame requires a transformation of direction vectors

and is achieved through a sequence of rotations using the orientation of nodes in the path.

Changing the definition frame, on the other hand, uses kinematics equations to express

the motion parameters with respect to a new definition frame.

The position, orientation and angular velocity of a reference frame with respect to

a new definition frame can be calculated using vector addition and rotations. The

calculation of velocity, acceleration and angular acceleration with respect to a new

definition frame, on the other hand, require the expressions for position, velocity and

angular velocity to be differentiated with respect to time and the new definition frame.

The resulting expressions use the motion parameters of the current definition frame with

respect to the new definition frame to evaluate the motion parameters of the reference

frame with respect to the new definition frame. The kinematics equations used when

 82

changing the definition frame of object A from frame B to frame C are expressed by the

following equations:

[] [] []CBBACA CCC = (3.10)

[] C
B

BBAB
A

AC
A

A C ωωω += (3.11)

() []() [] ()C
B

B
C

BAB
A

AC
B

BBAB
A

AC
A

A
C

dt
d

CC
dt
d

ωωωωω +×+= & (3.12)

[] C
C

BB
B

ATCBC
C

A PPCP += (3.13)

[] ()C
B

BB
B

AC
B

BBAB
A

AC
A

A VPCVV +×+= ω (3.14)

() []()()
[] () () ()








+××+×+

×++=

C
B

B
C

B
B

AC
B

BC
B

BB
B

AC
B

B
C

BA

B
A

AC
B

BBAB
A

AB
A

AC
A

A
C

V
dt
d

PP
dt
d

C

VCVV
dt
d

ωωω

ωω 2&

 (3.15)

If the frame B is not linked to frame C, the motion parameters of B with respect to

C can be obtained recursively along the path connecting them using equation (3.10) to

(3.15). While these equations express the relation between any pair of definition frames,

these equations can only be used recursively within the forward path since the motion

parameters of each node is expressed with respect to its parent node. The parent of a node

within the forward path lies within the path in the direction of the final node, allowing the

equations above to be generalized to any node within the forward path as depicted in

 83

Figure 3.12. However, the parent of the shared frame is not in the path while parent nodes

in the reverse path lead away from the final node.

BA C

Forward Path Reverse Path

S
Shared Node

J
Final NodeInitial Node

Figure 3.12: Generalizing Kinematics for Nodes in the Forward Path

The nodes in the reverse path can be generalized as depicted in Figure 3.13, where

the parent node R, of node Q leads away from the final node. However, Q’s child node,

P, is the next node along the path to C, the final node.

PR C

Forward Path Reverse Path

S
Shared Node

J
Final NodeInitial Node

Q PR C

Forward Path Reverse Path

S
Shared Node

J
Final NodeInitial Node

Q

Figure 3.13: Generalizing Kinematics for Nodes in the Reverse Path

Since the motion parameters being differentiated are expressed in the form

maintained and propagated by their respective reference frames, the equations above can

be modified to calculate the motion parameters of node along the reverse path with

respect to the final node. The motion parameters of node Q in Figure 3.13, representing

 84

an arbitrary node in the reverse path can be expressed with respect to C using the motion

parameters of P with respect to Q as expressed by the following equations:

[] [] []CPTQPCQ CCC = (3.16)

[] ()Q
P

PC
P

PTQPC
Q

Q C ωωω −= (3.17)

() [] () ()







×+−= Q

P
PC

P
PQ

P
PC

P
P

C
TQPC

Q
Q

C

dt
d

C
dt
d

ωωωωω & (3.18)

[] Q
Q

PTCQC
C

PC
C

Q PCPP −= (3.19)

[] () ()Q
Q

PC
Q

QQ
P

PC
P

PTQPC
Q

Q PVVCV ×−−= ω (3.20)

() [] () ()()
() ()








××+×−









×−+−=

Q
Q

PC
Q

QC
Q

QQ
Q

PC
Q

Q
C

Q
P

PQ
P

PC
P

PQ
P

PC
P

P
C

TQPC
Q

Q
C

PP
dt
d

VVV
dt
d

CV
dt
d

ωωω

ωω2&

 (3.21)

The kinematics equations for the forward and reverse paths allow the motion

parameters of a reference frame to be expressed with respect to any other reference frame

in the network. If the motion parameters of a reference frame need to be expressed with

respect to a different definition frame, a path connecting the reference frame to its new

definition frame is assembled using forward and reverse paths. Once the shared node

linking the forward and reverse paths is identified, the first set of kinematics equations,

(3.10 – 3.15), is applied recursively along the forward path until the motion parameters of

the shared node with respect to the final node are required. These are then obtained by

 85

recursively applying the second set of kinematics equations, (3.16 – 3.21), along the

reverse path.

3.3 Effect on Dynamic Modeling

The ability to get motion parameters with respect to any reference frame enables

the dynamic model to choose its navigation and inertial frames as required during

runtime. However, to be able to effectively use the reference frame management

mechanism the dynamic models need to adhere to certain standards.

First of all, each dynamic model has to be 'aware' of the reference frames it uses

as its navigation and inertial frames. The choice of the navigation frame is often

determined by the scenario requirements. The choice of the inertial frame is based upon

the fidelity required in calculating inertial acceleration using Newton’s Second Law and

can vary with the simulation scenario or during different stages of the simulation. Thus,

the dynamic model must be aware of the navigation and inertial frames required, which

may change at different stages of the simulation.

The dynamic model must also be aware of the effect of its navigation and inertial

frames on its dynamics. Specifically, if the dynamic model requires a change in its

navigation or inertial frames, it must be able to update its motion states and account for

the change in reference frames in its kinetics and kinematics. For example, if the

navigation frame needs to be changed, the dynamic model must be able to request a

change in definition frame for its body frame and update its motion states. The force and

moment equations may also need to be updated. Finally, the dynamic model should also

account for the new navigation frame in its kinetics and kinematics equations. These

equations can be generalized to any pair of navigation and inertial frames by obtaining

 86

the motion parameters and time derivatives of the navigation frame with respect to the

inertial frame from the reference frame management mechanism. While the reference

frame management mechanism can calculate the motion parameters of the navigation

frame with respect to the new inertial frame, the dynamic model should nevertheless

ensure that the choice of inertial frames is appropriate for the scenario. If the model needs

to adaptively select an inertial frame, it should evaluate the effect of different inertial

frames on the kinematics and select the appropriate reference frame.

Since many elements of the kinetics and kinematics are independent of the

attributes unique to specific dynamic models and can be automated in conjunction with a

reference frame management mechanism, a generic dynamic model that handles the

common functionality of dynamic models can be developed. The development and

implementation of a generic dynamic model and the encapsulation of attributes unique to

specific vehicles is discussed in the next chapter.

The dynamic model must also be able to access the interfaces provided by the

reference frame management mechanism. Therefore, a standardized interface needs to be

developed for the reference frame management system.

3.4 Interfaces and Implementation of a Reference Frame Management Mechanism

The object oriented analysis and design approach was used to create a reference

frame management system that defines and adds reference frames to the simulation

environment provided by the Reconfigurable Flight Simulator [35] (RFS), which is briefly

described in Appendix A. This system consists primarily of base classes that are used to

define the basic attributes and interface standards for reference frames, and a reference

frame manger that assembles a network of reference frames and calculates the kinematics

 87

equations and rotations between reference frames. These basic interface standards were

compiled into a library that can be accessed by dynamic models and other simulation

components, allowing them to access the network of reference frames and the kinematics

equations and rotations, as depicted in Figure 3.14.

ComponentR.F.M.

Network of
Reference Frames

Model 1

Model 2

Interface to RFM

RFS Environment

Figure 3.14: Reference Frame Manager in the Simulation Environment

The base interface class for the reference frame manager was implemented as a

Reference Frame Manager class. This section describes the structure of the base classes

and some of the core algorithms implemented in the Reference Frame Manager and its

 88

operational responsibilities. The remaining implementation details of the various classes

are provided in Appendix B.

3.4.1 Structure of the Reference Frame Manager

The reference frame management mechanism and the reference frames

instantiated with RFS are located in the Environment Controller and Database (ECAD)

Object. Specifically, the Reference Frame Manager replaces the Axis Definitions Object

within the ECAD Object. All the vehicles within RFS are linked to the ECAD Object and

can utilize the Reference Frame Manager to get the properties of the reference frames.

The primary classes providing the standard interfaces of the reference frame management

system are described below:

1. The Frame Definition Class is used to determine the interface standards and basic

attributes of reference frames. All the reference frame objects used by the Reference

Frame Manager inherit from this class. This base class is used to maintain the motion

parameters and basic kinematics for calculating their time derivatives. Only the

methods to calculate the acceleration and angular acceleration are pure virtual

functions that need to be implemented for each reference frame class. The rest of the

interfaces and functionality are implemented to create a base class that can be rapidly

developed into any reference frame required by the simulation environment. The

standard interfaces provide access to the reference frame’s motion parameters, the

identity of the reference frame and its definition frame, and allow the reference frame

management mechanism to execute standard network operations on the reference

frame. Other functionality within the base class allows the reference frame to be

 89

propagated in time by the simulation environment. The 4th order Runge Kutta

integration routine is also included for integrating the motion parameters.

2. The Frame Management Interface Class is used to provide the standard interfaces of

the reference frame management mechanism to the simulation components such as

vehicles and displays. The standard interfaces include methods that allow reference

frames to be added to the network, methods to access reference frames as well as

methods to calculate the kinematics and rotations between reference frames.

These interface classes are implemented to provide the reference frame

management mechanism to the simulation environment in RFS through the following

classes:

1. The Frame Definition Class can be implemented as Reference Frame Objects. Since

the interface class provides almost all the functionality of reference frames, each

Reference Frame Object only needs to implement the methods that calculate its

acceleration and angular acceleration with respect to a designated inertial frame.

Depending on the nature of the reference frame’s dynamics, a generic Reference

Frame Object that can represent a family of reference frames can be developed,

allowing its identity as well as the identity of its navigation and inertial frames to be

set at runtime. Conversely, the Reference Frame Object may represent a specific

reference frame using specific navigation and inertial frames. In these cases,

functionality of the Frame Definition Class, such as the propagation of motion

parameters, may be overloaded to optimize the behavior of specific reference frames.

2. The Reference Frame Manager (RFM) implements the standard interfaces of the

Frame Management Interface Class as well as the functionality required to create and

 90

manage a network using the standard network operations described in previous

sections. Reference frame objects are loaded and added to the network. Paths between

reference frames are created upon request and stored in a list of Frame Path Objects.

Kinematics equations and rotations are assembled and executed upon request.

3. The Frame Path Object is used to store the forward and reverse paths between two

reference frames. The initial, final and shared frames are used by the RFM to

calculate the kinematics and rotations. Each path object is identified using the initial

and final frames. Thus, there are two path objects for each pair of reference frames:

only the direction of the path differs.

4. The Request Frame Change Object is used to pass relevant data between simulation

components and the Reference Frame Manager when requesting motion parameters

of reference frames with respect to arbitrary definition or measurement frames.

Figure 3.15 depicts the interaction of the RFM and its components with the

ECAD Object in RFS while Figure 3.16 depicts the inheritance of these classes from

standard RFS classes.

 91

ECAD Object

Navigation Database

Terrain Database

Weather Model

Reference Frame Manager
Kinematics Transformations

List of Frame Path Objects

Network and List of Reference Frame Objects

Reference Frame Object

Reference Frame Object

Reference Frame Object

Figure 3.15: Component Interaction Diagram

Axis Definition Object Frame Definition Interface Class

Frame Management Interface Class

Reference Frame Manager

Reference Frame Objects

ECAD Module Interface

Figure 3.16: Object Inheritance Diagram

 92

3.4.2 Operation of the Reference Frame Manager

The tasks of the Reference Frame Manager (RFM) within RFS consist of four

major operations detailed below:

1. The RFM replaces the Axis Definition Object when loaded into RFS. Since the RFM

inherits from the Axis Definition Object, default interfaces are still available to the

vehicle objects. The various Reference Frame Objects are loaded and then registered

with the RFM in a dynamic list. When a Reference Frame Object is registered with

the RFM, it is added to the network.

2. The RFM maintains a network using a tree topology. The standard network

operations described in Chapter 3.1.3 are used. The operations include the addition

and removal of nodes from the network, grafting and pruning of trees and changing

parent nodes. Each node is assigned a level within the tree using a recursive

algorithm. The root node is level zero and the level of a child node is one greater than

its parent node’s level. The algorithm is applied to the root node of each tree within

the network whenever an operation is carried out. The algorithm assigns the level of

the node and applies itself to all the child nodes linked to that node.

3. When a path between a pair of Reference Frame Objects is requested, the RFM

checks if the path exists in the Frame Path List. The RFM compares the pointers of

the current and requested frames with the pointers of the initial and final nodes in

each path stored in the list. If the path has not been generated, a Frame Path Object is

created. Forward and reverse paths are created and the search algorithm described

above is used to identify the shared node. Once the path is created, it is recorded in

the Frame Path Object, which is then stored in the RFM for future use.

 93

4. When a simulation component requires motion parameters to be expressed with

respect to a different definition or measurement frame, it creates a Request Frame

Change Object and passes it to the RFM. The Request Frame Change Object includes

the name of the current and new reference frames. If the motion parameters represent

the motion of an object in the current reference frame, they are copied into the request

object. Otherwise the motion parameters of the current reference frame are expressed

with respect to the new reference frame. If the request is for a change of measurement

frames, the transformation is constructed by executing a sequence of rotations starting

from the initial node to the final node as depicted in equation (3.6). The rotation

matrices generated by nodes in the forward path are the transpose of their DCM,

while the rotation matrices of nodes in the reverse path use their DCM. If the request

requires a change in definition frame, the kinematics equations (3.10) to (3.21) are

applied to nodes along the path.

 94

CHAPTER 4

MANAGEMENT OF ROUNDOFF ERROR

Roundoff error due to the finite precision of floating-point variables and

truncation errors due to numerical integration techniques are major sources of error in

simulation. However, the standard method of reducing truncation error, by reducing the

time step, has a detrimental effect on the roundoff error. Similarly, increasing the time

step may reduce roundoff error at the cost of truncation error. Thus, a method of

overcoming the coupling between the truncation error and roundoff error needs to be

developed. Since the roundoff error is proportional to the magnitude of the state, a

possible solution to reduce the roundoff error without adversely affecting the truncation

error is to control the maximum value of the state during integration.

This chapter will discuss the development of an intermediate frame that can be

used as the definition frame for the motion parameters of a body frame. The intermediate

frame is updated when the states reach certain critical levels. These critical levels bound

the maximum values of the motion states and are chosen such that the global roundoff

error, representing the total roundoff error during the course of the simulation, is reduced.

The magnitude of the critical levels affects both the update rate of the intermediate frame

as well as the local roundoff error. Therefore, a large critical level reduces the number of

updates but increases local roundoff error whereas a low critical level reduces the local

roundoff error but increases the number of updates. Since each update also contributes to

the global roundoff error, the critical levels are carefully chosen to minimize the global

roundoff error.

 95

4.1 Intermediate Frames

The reference frame manager can introduce intermediate frames that act as

surrogates to the navigation frames used by dynamic models. The motion parameters of

the intermediate frames are expressed with respect to the original navigation frames. The

reference frame manager allows the dynamic model to switch the definition frame used

by its motion parameters between the intermediate frame and the original navigation

frame as required. Since the dynamics of the model typically require the motion states to

be expressed in the navigation frame, the kinematics used to change the motion states’

definition frame from the navigation frame to the intermediate frame and vice versa are

called whenever the state derivatives need to be calculated. Therefore, the intermediate

frame needs to be defined such that the computational cost and roundoff error incurred

during the kinematics to and from the navigation frame are minimized.

4.1.1 Definition of Intermediate Frames

The intermediate frame is defined such that the difference in exponents between

motion states of the dynamic model expressed in the intermediate frame and their

incremental terms during numerical integration is bounded, thereby bounding roundoff

error. The intermediate frame is updated when any element j of the model’s motion states

reaches its critical level Crj ; at that point, the corresponding element in the frame’s

motion parameters is shifted towards the vehicle by the value of that critical level. Since

this is a discrete ‘jump’ in the motion parameters of the intermediate frame, the motion

parameters of the vehicle’s body frame are updated with respect to the intermediate frame

and ‘jump’ by the same magnitude in the opposite direction. This ensures that the motion

 96

parameters of the vehicle’s body frame remain constant with respect to the original

navigation frame when the intermediate frame is updated.

The intermediate frame’s critical levels bound the maximum values of the motion

states, thereby bounding the roundoff error during the propagation of these states. Since

the states representing orientation are bounded by definition, this research will focus on

bounding the states representing position and its derivative, velocity. To best reduce

roundoff error in position and velocity, the intermediate frames should have the same

orientation as its definition frame. If the orientations differ, the DCM of the intermediate

frame will introduce additional floating-point operations across all axes. Furthermore, an

angular velocity between these frames will introduce kinematics terms when switching

the definition frame of the body frame’s motion parameter between the intermediate

frame and navigation frame. Both these operations may introduce additional roundoff

error.

4.1.2 Effect of Intermediate Frames on Dynamic Modeling

The use of intermediate frames to reduce roundoff error affects several aspects of

dynamic modeling, including the calculation of time derivatives of its motion states and

any interaction with other simulation components. These aspects may require the model

to be able to express its motion with respect to the navigation frame while maintaining its

motion states with respect to the intermediate frame.

Dynamic models typically use the navigation frame as the definition frame for

their body frames. Thus, the representation of these motion parameters in the navigation

frame represents well-defined physical properties. Since the intermediate frame is

introduced to reduce roundoff error, the motion states in the intermediate frame need to

 97

be converted to the navigation frame to be physically meaningful. Thus, the dynamic

model should be able to express its motion parameters with respect to the navigation

frame at each stage of the simulation.

The motion parameters of the model’s body frame are expressed with respect to

the intermediate frame to control roundoff error during numerical integration. However,

some of their time derivatives, specifically the acceleration and angular acceleration

obtained from the kinetics equations, may be expressed with respect to the navigation

frame, requiring the motion parameters to be expressed in the navigation frame. Since the

acceleration and angular acceleration are expressed in the navigation frame, the

kinematics of the intermediate frame with respect to the navigation frame are required to

express them in the intermediate frame before they can be used in the integration routine.

For example, calculating the force of gravity on a satellite requires its position

from the center of the attracting mass. Therefore, in an earth-centered frame, the position

of the satellite has to be known with respect to the center of the earth, and not with

respect to an intermediate frame that may be in close proximity to the satellite’s body

frame. The resulting acceleration needs to be expressed with respect to the intermediate

frame, not the earth centered frame, when it is used to integrate the motion parameters of

the satellite’s body frame.

Thus, two sets of kinematics may be required to generate the accelerations of the

body frame with respect to the intermediate frame. The first set is used to convert the

motion parameters from the intermediate frame to the navigation frame, allowing the

derivatives to be calculated. The second set is required to convert the derivatives from the

navigation frame to the intermediate frame. If the intermediate frame maintains the

 98

orientation of the navigation frame and does not rotate or accelerate with respect to it, the

kinematics between the intermediate frame and navigation frame reduce to vector

additions for position and velocity. This simplifies the first set of kinematics and

eliminates the need for the second set since the accelerations are identical in the

intermediate frame and navigation frame. Figure 4.1 illustrates the effect of the

intermediate frame on the simulation loop for dynamic modeling.

States expressed in Intermediate Frame at time tn

Repeat for Once for
Each Order in

Integration Routine

Express Motion Parameters in Navigation Frame

Calculate State Derivatives in Navigation Frame

Express State Derivatives in Intermediate Frame

Update State & Derivative Arrays in Routine

Integration Routine

Calculate Derivative Vector for Time Step

Update State Vector

Update Intermediate Frame and Body Frames if
Critical Levels are exceeded

States expressed in Intermediate Frame at tn+1

Figure 4.1: Simulation Loop With Intermediate Frame

 99

Another aspect that needs to be considered is the interaction between multiple

vehicles. Other simulation components may require the motion parameters of the

dynamic model in its navigation frame or another reference frame. While this suggests

that the model should store multiple values of its motion parameters with respect to

different reference frames, the reference frame manager can be used by the other

simulation components to express the model’s motion parameters in their desired

reference frame.

4.2 Critical Levels and the Reduction of Roundoff Error

Intermediate frames restrict the magnitudes of the motion states, thereby

bounding local roundoff error. This section describes the role of critical levels in the

operation of intermediate frames as well as their selection criteria. Estimating the local

and global roundoff error through the use of intermediate frames is also described and

utilized to develop an algorithm that allows critical levels to be selected adaptively during

the course of the simulation.

4.2.1 Definition of Critical Levels

As a motion parameter is propagated, it may grow to the point that its magnitude

is much larger than the incremental term. If the ratio of the incremental term to the

motion state approaches machine accuracy, significant roundoff errors will occur. The

critical level, therefore, is set to bound the magnitude of a subset of motion states relative

to their incremental terms at every time step. Specifically, if the element j in the vehicle’s

motion states expressed with respect to the intermediate frame, IFbf
j X , exceeds its critical

level, Crj , the corresponding element in the motion parameters of the intermediate

 100

frame, nIF
j X , is updated in a discrete jump. The vehicle’s motion state is updated

accordingly as follows:

,CrX If j
IF
IF

bf
j ≥

()IF
IF

bf
jj

n
IF

IF
j

n
IF

IF
j XsignCrXX ×+= (4.1)

()IF
IF

bf
jj

IF
IF

bf
j

IF
IF

bf
j XsignCrXX ×−= (4.2)

In the equations above, the critical levels are measured in the intermediate frame

because they determine the jumps taken by the intermediate frame. Since the intermediate

frame has the same orientation as the navigation frame, the measurement frame used by

the critical levels can be treated as either the intermediate or navigation frame. The

choice of measurement frame by the motion states affects the application of the jumps to

the body frame. While position is measured in the intermediate frame, the velocity of the

body frame may be measured in the body frame itself. Thus, when evaluating critical

levels and applying updates to the motion states, the velocity of the body frame needs to

be measured in the intermediate frame and may require a rotation identical to the

kinematics equation relating the time derivative of position to velocity.

 101

Navigation Frame

Critical Level
– set to error reducing magnitude

Intermediate Frame at t1

t1

Intermediate Frame at t2

t2

Navigation FrameNavigation Frame

Critical Level
– set to error reducing magnitude

Critical Level
– set to error reducing magnitude

Intermediate Frame at t1

t1

Intermediate Frame at t1Intermediate Frame at t1

t1t1t1

Intermediate Frame at t2

t2

Intermediate Frame at t2Intermediate Frame at t2

t2t2

Figure 4.2: Critical Levels Regulate Updates of the Intermediate Frame

The use of critical levels to regulate the update of intermediate frames is

illustrated in Figure 4.2. When a dynamic model is added to a simulation, an intermediate

frame is introduced in the vicinity of the model. In the Figure 4.2, the model, represented

by its body frame, is added to the simulation at t1 and the intermediate frame is

introduced in its vicinity. At time t2, an element of the body frame’s motion parameters

with respect to the intermediate frame exceeds its critical level, prompting the

intermediate frame to ‘jump’ by the critical level and update its position with respect to

the navigation frame. The motion parameters of the body frame are maintained with

respect to the navigation frame during the jump.

 102

Critical levels are not constant; instead they can be selected to fit the numerical

accuracy required in the simulation. The critical level of each element of a motion

parameter determines the maximum local roundoff error allowed during integration.

Thus, the upper limit of the critical level, Cr , is a function of the maximum allowable

roundoff error, RndX∆ , per time step and can be estimated using machine accuracy, mε :

m

RndX
Cr

ε
∆

< (4.3)

The lower limit of the critical level depends upon 2 distinct factors. The first is the

roundoff error due to the motion parameters of the intermediate frame, m
nIF

j X ε× , and

represents the smallest value by which the intermediate frame can be updated without its

update being lost to roundoff error. The other factor is the magnitude of the incremental

term tX
IFbf

j ∆×& ; if the incremental term is term is larger than the critical level, the

intermediate frame will be updated at every time step. Since the error during the update

reflects motion parameters in the vicinity of the body frame with respect to the navigation

frame, the magnitude of the error per update is similar to the local roundoff error

generated if intermediate frames are not used. Thus, updating the intermediate frame at

every time step negates any benefit obtained through the use of the intermediate frames.

The larger of these values is used for the lower limit:






 ×∆×> m

n
IF

IF
j

IF
IF

bf
jj X tXCr ε,max & (4.4)

 103

4.2.2 Estimation of Roundoff Error Using Intermediate Frames

In a conventional simulation, there is a single source of roundoff error, which can

be bounded as given by equations (2.43) and (2.44). The use of intermediate frames

reduces the local roundoff error while introducing two additional sources of error. The

first source is roundoff error per update of the intermediate frame upon reaching a critical

level. The other is the roundoff error due to the propagation of the intermediate frame if it

is moving with respect to the navigation frame. Thus, for the intermediate frame to be

successful, the parameters that govern all these sources of error must be selected

carefully.

The first source of error when using intermediate frames is identical to

conventional local roundoff error due to the propagation of motion states. However, the

roundoff error per time step is proportional to the vehicle’s motion states expressed in the

intermediate frame. Because the critical level bounds the maximum value of the motion

states, their roundoff error per time step is bounded. The maximum local roundoff error,

CrX∆ , is a function of Cr :

() ()
m

NCr
Cr CrX ε×≈=∆ +− 1logint 22 (4.5)

The second source of error is incurred by updating the intermediate frames.

Because the ‘jump’ consists of adding the critical value to the motion parameter of the

intermediate frame, the roundoff error per update, UX∆ , depends upon the magnitude of

the motion parameters of the intermediate frame, nIF X , with respect to the navigation

frame:

 104

() ()
m

n
IF

IFNX

U XX
nIF

ε×≈=∆
+− 1logint 22 (4.6)

The third source of error occurs if the intermediate frame is moving with respect

to the navigation frame, requiring its motion parameters to be propagated and thus

incurring roundoff errors. The accumulation of this error depends upon the specific

implementation of the intermediate frame. If the intermediate frame only tracks the

position and velocity of a vehicle’s body frame, the intermediate frame’s velocity only

changes in discrete ‘jumps’ and is not directly affected by this error term. However, the

position of the intermediate frame accumulates error at each time step if propagated

through numerical integration. On the other hand, if the position of the intermediate

frame is determined algebraically as a function of time and constant velocity, roundoff

error is induced only when its velocity is updated. This error term, PrP∆ , depends upon

nIF P , the position of the intermediate frame with respect to the navigation frame:

() ()
m

n
IF

IFNP

Pr PP
nIF

ε×≈=∆
+− 1logint 22 (4.7)

The maximum upper bound for global roundoff error, incurred during the entire

simulation run, can be estimated by taking the sum of these error terms. However, their

computation requires knowledge of the number of time steps and updates of the

intermediate frame. Also, the vectors representing the first two error terms, CrX∆ and

UX∆ , should be divided into error terms for position (CrP∆ and UP∆) and velocity

 105

(CrV∆ and UV∆) since the estimate for error in velocity only requires the first and

second terms. In contrast, the error estimate for position is also affected by the third term

at every update if the intermediate frame’s position is expressed as a function of time. For

tk∆ time steps and Pj k and Vj k updates for the jth elements of position and velocity of

the intermediate frame respectively, the maximum upper bound of the roundoff error for

the jth element of position, Rndj P∆ , and velocity, Rndj V∆ , can be expressed as:

VjPrjPjUjtCrjRndj kPkPkPP ×∆+×∆+×∆=∆ ∆ (4.8)

VjUjtCrjRndj kVkVV ×∆+×∆=∆ ∆ (4.9)

Examining critical levels, their application in updating intermediate frame and the

error estimates of global error, it can be noted that small critical levels will cause the

intermediate frame to jump frequently, increasing the roundoff error due to updates,

UX∆ , and propagation, PrP∆ , but reducing the error per time step, CrX∆ . Conversely

large critical levels will reduce the number of updates at the expense of increasing local

roundoff error.

4.2.3 Selection of Critical Levels to Reduce Errors

The critical levels should be chosen so as to control the three error terms

contributing to Rndj P∆ and Rndj V∆ in (4.8) and (4.9). The first, CrX∆ , corresponds to

the magnitude of the critical levels as seen in equation (4.5). Reducing the critical level

would reduce this error term.

 106

To minimize the second, UX∆ , a bit-wise analysis of the critical level is required.

If the critical level, expressed in binary, is set to have a single non-zero bit in the

mantissa with an exponent equal to or larger than the exponent of the LSB in the motion

parameters of the intermediate frame, no bits are lost when updating the intermediate

frame. If the motion parameters of the body frame are also measured in the intermediate

frame, the error term UX∆ is eliminated. However, if the motion parameters are not

measured in the intermediate frame, this error may not be eliminated since a rotation

matrix will be applied to the critical level when updating the motion state. Thus, UP∆

can be eliminated since position of the body frame is measured in the intermediate frame

while UV∆ may not be eliminated if the velocity is measured in the body frame. If this

error term is present, reducing critical levels will increase the impact of this error term on

global error.

The occurrence of the third term, PrP∆ , can be limited to the updates of the

intermediate frame by expressing the position of the intermediate frame as an algebraic

function of time and velocity. Thus, the effect of this error term on global error is

proportional to the number of updates of the intermediate frame. Reducing critical levels

increases the number of updates, thereby increasing the impact of PrP∆ on global error.

The elimination of UP∆ allows (4.8) to be simplified such that Rndj P∆ consists

of two error terms as expressed in (4.10). The first, CrP∆ , occurs at every time step while

the second, PrP∆ , occurs at every update. By comparing (4.6) and (4.7), PrP∆ can be

treated as another form of UP∆ since both have the same magnitude and both occur

when the intermediate frame is updated, allowing a common representation for Rndj P∆

 107

and Rndj V∆ , expressed by equation (4.11). It should be noted that Uj k represents the

update of the jth element of velocity when evaluating the effect of error per update, UX∆ ,

for both position and velocity.

VjPrjtCrjRndj kPkPP ×∆+×∆=∆ ∆ (4.10)

UjUjtCrjRndj kXkXX ×∆+×∆=∆ ∆ (4.11)

Increasing or decreasing critical levels will reduce the impact of one error term

while increasing the impact of the other on global error. The selection of critical levels

that can minimize global roundoff error requires a trade off between the impact of local

error and the error per update to global roundoff error. Furthermore, these terms need to

be expressed as functions of the critical levels. While the impact of the local roundoff

error term can be directly expressed as a function of critical level through equation (4.5),

the impact of error per update on global error is through the number of updates, Uj k ,

rather than the error term expressed in (4.6). Thus, it is essential to express Uj k as a

function of critical levels. While it is not possible to directly express the number of

updates as a function of critical levels, an approximate expression may be developed

using the distance, S, traversed by the jth element of a motion parameters as expressed by

equation (4.12). The distance, S, is the sum of the absolute values of the incremental

terms for the element over the entire simulation and provides a measure of the number of

updates required for the intermediate frame to traverse the domain.

 108

Cr
Sk

j
Uj = (4.12)

∑
∆

=

∆×=
tk

i i

IF
IF

bf
j tXS

0

& (4.13)

Equation (4.11) can then be expressed as a function of critical levels. However,

the error term for position is a function of critical levels for both position, Pj Cr , and

velocity, Vj Cr , while the error term for velocity only depends on Vj Cr as shown in

equations (4.14) and (4.15).

Vj
UjmtPjj Cr

SPkCrP ×∆+××≈∆ ∆ εRnd (4.14)

Vj
UjmtVjj Cr

SVkCrV ×∆+××≈∆ ∆ εRnd (4.15)

Inspection of equations (4.14) and (4.15) shows that the critical level for position

only affects the term for local roundoff error for position. Since the reduction of critical

levels reduces the local roundoff error, the critical level for position can be set to its

minimum limit. In contrast, the critical level for velocity affects the global roundoff error

for both position and velocity. Therefore, an expression for global error of both position

and velocity, ∆, as shown in equation (4.16) needs to be minimized to select suitable

critical levels for velocity. The errors in this expression are scaled using the maximum

magnitudes of the intermediate frame’s motion states during the course of the simulation.

 109

nIF
j

Rndj
nIF

j

Rndj
j V

V

P

P

maxmax

+=∆ (4.16)

Equation (4.11) can then be differentiated with respect to Vj Cr as depicted in

equation (4.17) and the value that minimizes the global error can be computed by (4.18).

()
() nIF

j

Vj
Uj

nIF
j

Vj
Ujtm

Vj

j

P

Cr
S

P

V

Cr
S

Vk

Crd
d

max

2

max

2 ×∆

−

×∆−×

≈
∆ ∆ε

 (4.17)

tm

UjUjUjUjnIF
j

nIF
j

Vj k

kVkP
P

V

Cr
∆×

×∆+×∆×
≈

ε
max

max

 (4.18)

Equation (4.18) provides an estimate of the critical level that minimizes global

roundoff error for the simulation run. However, it requires the number of updates and the

number of time steps to be known. Furthermore, the terms UjUj kP ×∆ and UjUj kV ×∆ in

the numerator of (4.18) represents the impact of errors from updating reference frames,

treating the error from each update as a constant value that can be multiplied by the

number of updates. However, (4.6) shows that this error term is proportional to the

magnitude of the intermediate frame’s motion parameters, which vary with time. Since

the impact of the error per update can also be treated as the sum of errors per update, as

expressed in (4.19), the critical level can be estimated as shown in equation (4.20):

 110

()∑
=

∆≈×∆
Uj k

i
iUjUjUj XkX

0

 (4.19)

() ()

tm

k

i
iUj

k

i
iUjnIF

j

nIF
j

Vj k

VP
P

V

Cr

UjUj

∆

==

×

∆+∆×
≈

∑∑
ε

00max

max

 (4.20)

Equation (4.20) allows the critical level to be calculated and updated adaptively

during the course of the simulation using the number of time steps executed and the sum

of the error incurred by updating the intermediate frame at any given stage of the

simulation. The numerator only changes at every update of the intermediate frame while

the denominator changes at every time step. Updating the critical levels at every time step

may require additional computation, but ensures that the critical levels are appropriate for

the motion states of the dynamics of the model.

4.3 Implementation of Intermediate Frames

Intermediate frames were implemented using the Reference Frame Manager

(RFM) described in Chapter 3. The RFM allows intermediate frames to be added to its

network of reference frames and can be used by dynamic models in the Reconfigurable

Flight Simulator (RFS). An interface class was added to the reference frame management

interface library, allowing simulation components to use intermediate frames through

standard interfaces that are independent of their implementation. The implementation of

the Reference Frame Manager was updated to include an Intermediate Frame class as

well as an Intermediate Frame Manager class, responsible for creating and initializing

intermediate frames. The descriptions of these classes as well as the modifications

 111

required in the RFM are described in this section. The remaining implementation details

are provided in Appendix B.

4.3.1 Class Definitions for Intermediate Frames

The object oriented programming paradigm was used to develop an interface class

for intermediate frames. This was implemented into an Intermediate Frame Class within

the Reference Frame Manager. An Intermediate Frame Manager class was also

implemented in the RFM to create, initialize and destroy intermediate frames as required.

1. The Intermediate Frame Interface Class is used to determine the interface standards

for intermediate frames. This interface class inherits from the Frame Definition Class

described in Chapter 3, providing the standard interfaces and functionality of

reference frames to the intermediate frame. The additional interfaces in this class

deals with the initialization and update of the intermediate frame. Both interfaces use

the identity of the body frame to access its motion parameters. The initialization

interface is used to assign the body frame whose motion parameters are tracked by the

intermediate frame. Since the intermediate frame does not accelerate with respect to

the navigation frame, the pure virtual functions of the Frame Definition Class

requiring the calculation of accelerations are implemented and return zero

acceleration. Furthermore, the standard update method of using numerical integration

is disabled, improving computational efficiency and restricting the introduction of

roundoff error to the error per update terms described by equations (4.6) and (4.7).

2. The Intermediate Frame Class implements the Intermediate Frame Interface Class

within the RFM. The standard interfaces of the interface class are implemented to

initialize its motion parameters using the motion parameters of the assigned body

 112

frame and to compare the motion parameters of the body frame with the critical

levels, updating both frames if necessary. In addition to these standard interfaces, the

Intermediate Frame Class also calculates and updates the critical level, adapting to the

dynamics of the body frame. The critical levels are evaluated and updated at every

time step using the adaptive algorithm described in Section 4.2.3.

3. The Intermediate Frame Manager is a component created and added to the RFM

that is responsible for creating and initializing Intermediate Frames when requested

by the RFM. The Intermediate Frame Manager creates Intermediate Frames when

commanded by the RFM and maintains them in an internal list. After initializing the

Intermediate Frame, the Intermediate Frame Manager registers the Intermediate

Frame with the RFM. When the Intermediate Frame needs to be destroyed, either

when its assigned body frame is destroyed or when the simulation terminates, the

Intermediate Frame Manager is responsible for destroying the object and de-

allocating the memory.

The Intermediate Frame and Intermediate Frame Manager classes are instantiated

inside the RFM. Once created, the Intermediate Frames are treated as Reference Frame

Objects and added to the network maintained by the RFM, as depicted in Figure 4.3.

 113

ECAD Object

Navigation Database

Terrain Database

Weather Model

Reference Frame Manager

Kinematics Transformations

List of Frame Path Objects

Network and List of Reference Frame Objects

Reference Frame Object

Reference Frame Object

Reference Frame Object

Intermediate Frame Manager

Intermediate Frame

Intermediate Frame

Figure 4.3: Intermediate Frames Within the RFM

4.3.2 Network Operations for Intermediate Frames

While the introduction of intermediate frames to the network may seem to require

the addition of new network operations, these operations can be executed as a series of

standard network operations. In particular, the introduction of the intermediate frame and

its update of the body frame can be treated as combinations of several operations.

 114

4.3.2.1 Linking Intermediate Frames with Navigation Frames and Body Frames

When an intermediate frame is created and added to the network, it acts as a

surrogate to the navigation frame. Thus, it defines its motion parameters with respect to

the navigation frame and becomes the definition frame of the body frame. This can be

viewed as a sequence of pruning, adding and grafting operations. Once the intermediate

frame is initialized, it is added as a leaf node to the navigation frame. The definition

frame used by the body frame is then changed from the navigation frame to the

intermediate frame. Thus, the node representing the body frame is pruned from the

network and grafted to the node representing the intermediate frame, accompanied by the

appropriate kinematics.

4.3.2.2 Updating Intermediate Frames and Body Frames

When an intermediate frame is updated, its motion parameters execute a discrete

jump with respect to the navigation frame. Since this jump is used to limit the motion

parameters of the body frame and does not reflect any physical motion of the body frame,

the motion parameters of the body frame do not change with respect to the navigation

frame during this update. While the intermediate frame is updated by addition or

subtraction of the critical level, updating the motion parameters of the body frame

requires the application of kinematics since the measurement frame of its motion

parameters may not be the intermediate frame. In particular, the velocity may require a

rotation based on the orientation of the body frame with respect to the intermediate

frame. Instead of developing a new set of methods to handle this transformation, the

standard interfaces of the Frame Definition Class and Reference Frame Manager can be

used.

 115

At the time of the update, two reference frames represent the intermediate frame

before and after the update. When motion parameters of the body frame are subsequently

updated, its definition frame is effectively changed from the intermediate frame before

the update to the intermediate frame after the update. While this operation can be

executed in the RFM by introducing a new reference frame, the kinematics can be carried

out in the body frame by using the Frame Definition’s interface. If IF1 represents the

intermediate frame before the update and IF2 after the update, the motion parameters of

the body frame can be expressed as follows:

[] [] []2112 IFIFIFbfIFbf CCC = (4.21)

[] 2
1

1112 IF
IF

IFIFbfIF
bf

bfIF
bf

bf C ωωω += (4.22)

[] 2
2

11
1

212
2

IF
IF

IFIF
IF

bfTIFIFIF
IF

bf PPCP += (4.23)

[] ()
[] ()2

22
22

1
11

12
1

1112

IF
IF

bfn
IF

IFIFbf

IF
IF

bfn
IF

IFIF
IF

IFIFbfIF
bf

bfIF
bf

bf

PC

PVCVV

×−

×++=

ω

ω
 (4.24)

From the equations above, it can be seen that the body frame can modify its

motion parameters if it is given the motion parameters of IF1 with respect to IF2 and the

angular velocity of IF2 with respect to the navigation frame. If the intermediate frame

maintains the same orientation as the navigation frame and does not rotate, (4.21) and

(4.22) can be ignored and (4.23) and (4.24) simplify to:

 116

2
2

11
1

2
2

IF
IF

IFIF
IF

bfIF
IF

bf PPP += (4.25)

[] 2
1

1112 IF
IF

IFIFbfIF
bf

bfIF
bf

bf VCVV += (4.26)

4.3.3 Standard Operations for Intermediate Frames within the RFM

The introduction and maintenance of intermediate frames within the RFM require

several standard operations to be carried out. These include the creation and initialization

of Intermediate Frame objects, updating the motion parameters of the intermediate frame

objects and body frames, and adaptively calculating the critical levels. Some of these

operations require the standard interface of the reference frame manager to be updated,

allowing dynamic models to request intermediate frames from the RFM.

4.3.3.1 Creation and Initialization of Intermediate Frames

An intermediate frame is created when the RFM receives a request for one from a

dynamic model. The RFM passes the pointer to the dynamic model’s body frame to the

Intermediate Frame Manager. The Intermediate Frame Manager creates an Intermediate

Frame object and initializes it using the motion parameters of the body frame. The

motion parameters of the Intermediate Frame are defined with respect to the body

frame’s definition frame, typically the navigation frame. The Intermediate Frame

Manager returns the Intermediate Frame’s pointer to the RFM, which subsequently

registers the Intermediate Frame with the network, linking it to the nodes representing the

navigation and body frames as described in Section 4.3.2.1.

The Intermediate Frame only tracks the position and velocity of the body frame.

Thus, the Intermediate Frame matches the orientation of the navigation frame and does

 117

not rotate with respect to it, requiring fewer modifications to the numerical integration

routines within the dynamic model as described in Section 4.1.2.

4.3.3.2 Updating Intermediate Frames

At the end of every time step, the dynamic model requests the RFM to update the

Intermediate Frame. Since critical levels are maintained in the Intermediate Frame

objects, the dynamic model is unable to check when its motion parameters have exceeded

their critical levels. Instead, the Intermediate Frame checks the motion parameters when

it receives the update command from the RFM. If any critical levels are exceeded, the

Intermediate Frame and the dynamic model’s body frame are updated as described in

Section 4.3.2.2.

4.3.3.3 Adaptively Selecting Critical Levels

The critical levels of the intermediate frame are selected to minimize the global

roundoff error incurred as the simulation progresses. They can be initialized to error

reducing values between their upper and lower bounds as expressed in (4.3) and (4.4).

Error reducing values are integer powers of 2, represented by a single bit within the

mantissa, as discussed in Section 4.2.3. As the simulation progresses, the critical levels

are updated at every time step using equation (4.20). To ensure that these critical levels

still represent error reducing values, the jth element of Cr can be represented as a

function of the jth element of an integer vector M as depicted in equation (4.27).

Consequently, the equations that adaptively calculate Cr and its upper and lower bounds

can be modified to calculate Mj and its bounds as depicted in equations (4.28), (4.29)

 118

and (4.30). The critical levels for position are calculated using the lower bound,

expressed by (4.29) while the critical level for velocity can use the adaptive algorithm.

M
j

jCr 2= (4.27)

() 






 ∆
<

m

Rnd
j

X
M

ε2logint (4.28)

() () 












 ×






 ∆×> m

n
IF

IF
j

IF
IF

bf
jj XtXM ε22 logint,logintmax & (4.29)

()
() ()





















×

∆+∆×
≈

∆

==
∑∑

tm

k

i
iUj

k

i
iUjnIF

j

nIF
j

j k

VP
P

V

M

UjUj

ε
00max

max

2logint (4.30)

 119

CHAPTER 5

DEVELOPMENT OF A GENERIC DYNAMIC MODEL

 The ability to model reference frames as unique entities in a simulation

environment encourages the development of dynamic models that are able to select their

navigation and inertial frames as required. Furthermore, the ability to express motion

parameters of a reference frame with respect to any other reference frame in the

simulation environment can be used by dynamic models to automate many aspects of

their kinetics and kinematics. Dynamic models that are able to select their navigation and

inertial frames, automatically calculating the kinetics and kinematics corresponding to

these reference frames, can be rapidly reconfigured to models of other vehicles, or higher

fidelity models of the same vehicle, using different reference frames or requiring

different kinematics fidelity.

The software implementation of kinematics, numerical integration, and reference

frame transformations is, in theory, independent of the kinetics and subsystem dynamics

within a model and can be reused by other models. However, these components are often

re-implemented with new dynamic models, leading to additional development time and

cost [27] when creating and modifying simulations. A better paradigm can allow the

common elements, i.e; numerical integration, kinematics and transformation between

reference frames, to be encapsulated within a common framework. The unique properties

of the dynamic model, contained in the kinetics and subsystems, can be encapsulated in

different model components and assembled by the framework to form the dynamic

model. This chapter describes the development of a Generic Dynamic Model (GDM),

 120

which encapsulates the common elements of 6DOF dynamic models and the

identification of interfaces for representing dynamics unique to specific vehicles.

5.1 Conceptual Development of Generic Dynamic Models

Based on the structure of dynamic models described in the section 2.2.3, it is

possible to identify the elements that are common to all dynamic models. These common

elements can be used to form the framework of a generic dynamic model.

• The numerical integration routine is inherently independent of the dynamics as it

deals with any arbitrary state vector and its corresponding derivative vector. Although

the integration routine requires the derivative vector to be calculated during each

stage of the routine, it is not dependent upon the implementation of the dynamics that

calculate the derivative vector.

• The kinematics of the dynamic model depends only upon the motion parameters and

accelerations of the reference frames used by the model. Thus, the kinematics

equations can be generalized to all dynamic models.

• While the kinetics equations require several elements that are unique to specific

vehicles (e.g. forces, moments, mass and inertia tensor), the equations relating these

unique elements to acceleration and angular acceleration can be generalized to all

dynamic models.

• The reference frame manager can also provide the kinematics and rotations between

any pair of reference frames in the simulation environment.

Thus, using a reference frame manager in the simulation environment enables

kinetics, kinematics and rotations to be generalized to all dynamic models. The remaining

 121

elements in dynamic models can be considered unique to specific vehicles. These

elements model the different subsystems as well as the calculation of forces and

moments. The dynamic model can then be represented as a combination of a generic

dynamic model and unique elements as depicted in Figure 5.1, as described in the

following subsections.

Generic Dynamic Model

Unique Elements

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments X

Reference Frame
Transformations

Interaction with
Simulation &
Control Input

X

SX&

mX&

Integration
routine and time
step chosen to

control truncation
error

Round off error
controlled by
Intermediate

Frame

dtX m∫ &

dtX S∫ &u

Kinematics

i
b f

bf

i
bf

bf
V

ω&

&
Kinetics

Reference Frame
Transformations

bf
bf

bf
bf

Im

Im
&& ,

 ,

bf
bf

b f
bf MF ,

Generic Dynamic ModelGeneric Dynamic Model

Unique ElementsUnique Elements

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments

Internal
Subsystem
Dynamics

Subsystem
Models

Forces &
Moments XX

Reference Frame
Transformations
Reference Frame
Transformations

Interaction with
Simulation &
Control Input

XX

SX&

mX&

Integration
routine and time
step chosen to

control truncation
error

Round off error
controlled by
Intermediate

Frame

dtX m∫ &

dtX S∫ &u

KinematicsKinematicsKinematics

i
b f

bf

i
bf

bf
V

ω&

&
KineticsKinetics

Reference Frame
Transformations
Reference Frame
Transformations

bf
bf

bf
bf

Im

Im
&& ,

 ,

bf
bf

b f
bf MF ,

Figure 5.1: The Dynamic Model as a Combination of Unique and Generic Elements

5.1.1 Dynamic Model Elements Unique to a Vehicle

The unique elements of the dynamic model provide the parameters and equations

specific to the vehicle. Each unique element only updates the state and derivative vectors

propagated by the element’s internal subsystem dynamics. This restriction is required to

prevent multiple updates of a state that may be used by another subsystem or by the

kinetics and kinematics equations. Since other elements may require the states of a

 122

unique element in their control or dynamics calculations, each element needs to provide

the identity of its states to the generic model. If an element requires the state from another

element for its derivative function, it can obtain the value of the required state via the

generic model. While an element may use the state of another element, it should not

propagate that state. This interface standard addresses the issue of coupled dynamics

within subsystems.

In addition to the internal subsystem dynamics, the unique elements may also

provide parameters that provide the inputs to the kinetics equations. Foremost among

these are the forces and moments on the vehicle. Each element should specify the

definition and measurement frames associated with its internal body frame.

Consequently, each element will need access to the reference frame manager as it may

require the motion states to be expressed with respect to different definition and

measurement frames. Additional parameters include the mass and inertia tensor and their

rates of change. The inertial frame used in evaluating the kinetics and kinematics should

also be specified at every update, as its identity may change between and during the

course of simulation runs.

5.1.2 Generic Dynamic Model

The generic dynamic model collects the data from all the unique elements that are

added to the model and forms the final dynamic model at runtime. While the state and

derivative vectors for modeling subsystem dynamics are maintained in the unique

elements, the generic model maintains the vectors for the motion states and their

derivatives. The motion states correspond to the motion parameters of the body frame of

the vehicle with respect to a designated navigation frame. The identity of the navigation

 123

frame is also stored in the generic model. The overall state and derivative vectors are

assembled by the generic dynamic model and combine the motion states and their

derivatives with the states and derivatives of all the unique elements used by the dynamic

model. These overall state and derivative vectors will be used in numerical integration.

While the derivatives of the subsystem states are calculated by the unique

elements, the generic dynamic model calculates the derivatives of the motion states

through the kinetics and kinematics equations. The generic model obtains and assembles

the forces, moments, mass and inertia properties contributed by each unique element.

These parameters are applied in the kinetics equations to calculate the acceleration of the

body frame with respect to the inertial frame as expressed in (5.1) and (5.2). As in

equations (2.32) and (2,33), these kinetics equations assume that the mass and inertia

tensor are invariant over time. Additional terms can be introduced in these equations if

the mass or inertia tensor has a time rate of change sufficiently significant to impact the

modeled dynamics.

()i
bf

bfi
bf

bfi
bf

bf
bf

bf VVmF ×+= ω& (5.1)

[]() [] i
bf

bf
bf

bfi
bf

bf
bf

bfi
bf

bf
bf

bf IIM ωωω &+×= (5.2)

The acceleration and angular acceleration obtained by (5.1) and (5.2) are the time

derivatives of the velocity and angular velocity,
i
bf

bf
V& and i

bf
bf ω& , measured in the body

frame. This representation is required for angular acceleration since the moment equation

(5.2) differentiates angular momentum and the derivative of the inertia tensor depends

 124

upon the measurement frame used. However, an alternate representation of acceleration,

depicted by equation (5.3), allows the standard kinematics representation of acceleration

between reference frames, as expressed by (3.15), to be used in calculating the derivative

of velocity as depicted in equation (5.4). In addition to being a more recognizable

representation, it is also more computationally efficient as it requires fewer matrix

operations.

()i
bf

bf
i

bf
bf V

dt
d

mF = (5.3)

() []()()
[] () () ()








+××+×−

×+−=

i
n

n
i

n
n

bfi
n

ni
n

nn
n

bfi
n

n
i

nbf

n
bf

bfi
n

nnbfn
bf

bfi
bf

bf
i

n
bf

bf

V
dt
d

PP
dt
d

C

VCV
dt
d

V

ωωω

ωω 2&

 (5.4)

The kinematics equations of the body frame are then used to generate the

derivatives of the motion states of the model, using the motion parameters of the body

frame and the acceleration obtained from the kinetics equations. The time derivatives for

position and orientation are based entirely upon the motion parameters of the body frame,

as depicted in (5.5) and (5.6). The motion parameters of the navigation frame with

respect to the inertial frame are obtained from the reference frame management

mechanism. These motion parameters are used along with the acceleration calculated by

the kinetics equations to calculate the derivatives for velocity and angular velocity of the

body frame as depicted in (5.7) and (5.8).

 125

[] []()n
bf

bfnbfnbf CfC ω,=& (5.5)

[] n
bf

bfTnbfn
n

bf
VCP

=& (5.6)

[]() [] ()i
n

n
i

nbfn
bf

bfi
n

nnbfi
bf

bfn
bf

bf

dt
d

CC ωωωωω −×−= && (5.7)

[]() [] ()()
[]() [] () ()








+×−×−

××+×+=

i
n

n
i

n
n

bci
n

n
i

nbfn
bf

bfi
n

nnbf

n
n

bci
n

nnbfn
bf

bfi
n

nnbfi
bf

bfi
bf

bfn
bf

bf

V
dt
d

P
dt
d

CVC

PCVCVV

ωω

ωωω

 &&

 (5.8)

Other responsibilities of the generic dynamic model include transformation of

motion parameters between reference frames, and numerical integration. The reference

frame manager’s ability to transform motion parameters to any reference frame in its

network can be utilized by the generic dynamic model and the unique elements in the

model. The generic dynamic model also provides the numerical integration routines that

can be used to propagate the assembled state vector through time, using the assembled

derivative vectors. While the numerical integration routine should be able to request

updates to the derivative vector, it should be independent of the implementation of the

unique elements that provide the derivatives or parameters that lead to the calculation of

derivatives. The integration routine in the generic dynamic model should also be able to

estimate the time step it would require to limit truncation error to an arbitrary value.

While the truncation error can be controlled through the selection of an

appropriate time step, control of roundoff error can be achieved through the use of

intermediate frames, enabling the generic model to control both truncation and numerical

 126

error. Thus, the generic model should be able to request and initialize an intermediate

frame allowing roundoff error to be controlled as described in Chapter 4.

Since the definition frame may be changed from the navigation frame to the

intermediate frame, it is important for unique elements to specify their preferred

definition and measurement frames for expressing motion parameters. Not only does this

ensure that the motion parameters are applied correctly in each unique element, but it also

enables different unique elements to express the motion parameters in reference frames

that are convenient for calculating the forces and moments contributed by each element

rather than the navigation frame used by the dynamic model.

5.2 Implementation of the Generic Dynamic Model

The unique elements and generic dynamic model are implemented as Unique

Dynamics Components (UDC) and a Generic Dynamics Component (GDC) within the

Reconfigurable Flight Simulator (RFS). The simulation environment provided by RFS

also provides the Reference Frame Manager (RFM) described in Chapter 3 to all major

simulation components.

Interface classes encapsulating the standard interfaces and properties of the

generic model and unique elements were developed as described in the previous section.

The Generic Dynamics Interface Class encapsulates the standard interfaces and properties

required by the GDC while the Model Component Interface Class represents the interface

standard for the Unique Dynamics Components. These interface classes were added to

the reference frame management interface library, allowing these components to interact

with each other through standard interfaces. The GDC implements the standard interfaces

and functionality of the Generic Dynamics Interface Class while each UDC represents the

 127

implementation of the Model Component Interface Class for specific vehicles and

subsystems. A brief description of these classes and their implementation is described in

this section. Full implementation details are provided in Appendix B.

5.2.1 Class Definitions for Implementing a Generic Dynamic Model

1. The Generic Dynamics Interface Class encapsulates the standard interfaces and

functionality required for the successful operation of generic dynamic models. These

interfaces include methods to add and remove components modeling unique

elements, set the identity of the navigation and inertial frames, select the appropriate

numerical integration method, and request the use of an intermediate frame to reduce

roundoff error. The functionality required by the generic model described in Section

5.1.2 is implemented. This includes the assembly and initialization of the state and

derivative vectors, generalized implementation of the kinetics and kinematics

equations, two types of integration routines, and the introduction and initialization of

the body frame and intermediate frame. The integration routines are the standard 4th

order Runge Kutta routine and the adaptive 4th order Runge Kutta Cash Karp method

with a 5th order error term to calculate the time step required to control truncation

error. Since the time step is controlled by the simulation architecture, the integration

routine only adjusts the next time step rather than repeating the current step should

the truncation error exceeds the specified limit. These integration routines can be

overridden should the dynamic model require a different method.

2. The Model Component Interface Class encapsulates the interface standards for

representing unique elements as described in Section 5.1.1. These interfaces include

methods to get pointers to the state and derivative vectors of the subsystems, to

 128

vectors representing the forces and moments exerted on the body by the element, and

to the mass and inertia properties that the element contributes to the dynamic model.

Pointers to these vectors and matrices are used since they can vary over time and it is

computationally more efficient to access their addresses rather than execute function

calls for each parameter. A method that updates these parameters is also included in

the standard interface as are methods to provide access to the body frame, the RFM

and the Generic Dynamic Component. The standard interfaces dealing with unique

properties of the model are defined as pure virtual functions that must be

implemented by the Unique Dynamics Component since these parameters are specific

to each component. In contrast, the methods linking the unique component to the

body frame, RFM and Generic Dynamic Component interact with standardized

components in the simulation and are implemented in the interface class.

3. The Generic Dynamic Component (GDC) Class implements the Generic Dynamics

Interface Class into an aircraft class that can be used in RFS. The GDC implements

the standard interface requirements of the Base Airplane Object class in RFS. By

representing the model as an aircraft class, the GDC is able to access the standard

interfaces and attributes of aircraft in RFS. Not only does this enable the GDM to

utilize the timing mechanisms and interactions provided by RFS, but the standard

attributes of aircraft can be used to represent the shared states that may be required by

different components for their calculation.

4. The Unique Dynamics Components (UDC) implement the Model Component

Interface Class for specific subsystems and vehicles. Each UDC has to implement all

the pure virtual functions of the Model Component Interface Class, ensuring that

 129

these methods are implemented in the UDC and can be accessed by the GDC when it

is assembling the dynamic model. If the UDC does not model certain parameters

returned by these methods, it returns a NULL pointer, enabling the GDM to assemble

the appropriate parameters. Additional interfaces can be added to the UDC, enabling

it to be initialized and configured for different subsystems and scenarios.

5.2.2 Standard Operations in Assembling Generic Dynamic Models

Since the Generic Dynamics Component assembles the dynamics of the model

using the properties generated by multiple Unique Dynamics Components, the standard

operations required for generic dynamic models to function properly in simulation need

to be discussed. The operations include the assembly of the dynamic model and the

propagation of its states using numerical integration.

5.2.2.1 Assembling Unique Dynamics Components into a Generic Dynamic Model

The Generic Dynamics Component needs to assemble the state and derivative

vectors for the dynamic model whenever Unique Dynamics Components are added to or

removed from the model. While this typically occurs during initialization, UDCs may be

added or removed during the course of the simulation. When UDCs are added or

registered with a GDC, their pointers are stored by the GDC in a ‘component list’. In

turn, each registered UDC is given read-only access to the GDC, the body frame and the

simulation environment, including the RFM.

During the registration process, the GDC obtains vectors containing the addresses

of the states and derivatives in the UDC. This allows the UDC to use standard data

members of the GDC class for its states, effectively broadcasting its states to other UDCs.

In addition to the state and derivative vectors, the GDC also obtains vectors containing

 130

the addresses of forces, moments and inertia properties that are calculated by each UDC.

UDCs return NULL pointers for any property not calculated by them. These pointers are

stored in the GDC and used to assemble the forces and moments exerted on the dynamic

model, and its total mass and inertia properties.

In this implementation, the GDC creates and registers the body frame with the

RFM during initialization. An intermediate frame can be requested from the RFM, either

during initialization or at any point in the simulation, if the model requires control of

roundoff error. The motion parameters of the body frame are updated by the RFM. The

navigation and inertial frames used by the body frame for expressing its motion

parameters or for evaluating acceleration can also be set during initialization or changed

during the course of the simulation. If they are changed during the simulation, the RFM

carries out the appropriate transformation between the old and new navigation frames.

Changing the inertial frame only affects the evaluation of acceleration and does not

require the motion parameters to be expressed with respect to a different frame. While it

is possible for any UDC to change the inertial frame of the GDC through its standard

interface, care must be taken to ensure that only one UDC is authorized to change the

inertial frame. This constraint is required to ensure that different UDCs do not try to set

different inertial frames, as the identity of the inertial frame will be overridden by the last

UDC to command the change. To enforce this constraint, UDCs that set the inertial frame

are designated as ‘body components’ and the GDC is restricted to registering only one

body component UDC.

 131

5.2.2.2 Propagating States Using a Generic Dynamic Model

Numerical integration propagates the model’s states through time. In the

traditional implementation of dynamic models and integration routines, temporary arrays

of vectors are used to record the states and derivatives that are progressively calculated at

each stage in a multi-stage integration routine. While the number of derivative vectors

corresponds to the number of stages in the routine, only a single copy of the state vector

is required to represent the state at each stage. The original state vector is not modified

during the individual stages but updated once the final incremental term, using the

derivative vector from all stages, is assembled. This is possible because functions that

calculate the derivative vectors use a well-defined state vector, allowing the functions to

access the appropriate data.

However, the assembled state vector in a generic dynamic model can be of

arbitrary length and the location of specific states within the vector depends upon the

order in which the vector was assembled. Thus, it is not possible for the methods in the

UDC to interpret the assembled state vector. If methods in the UDC require states that are

not maintained by its subsystem model, it must access these shared states through the

GDC, making it impractical for a copy of the state vector to be used for representing the

state vector at each stage. Instead, a copy of the initial state vector is made at the start of

the time step and stored until the final incremental term is assembled. Thus, the GDC

uses its actual state vector to represent the states at each stage, enabling the methods in

the UDCs to directly use the shared states in the GDC at each stage.

When the integration routine requests the derivatives to be calculated, the GDC

requests all registered UDCs to calculate the derivatives at the current stage of the

 132

integration. Each UDC calculates the derivatives for its subsystem states as well as the

forces, moments and inertia parameters contributed to the dynamic model. While these

derivatives are calculated in their respective UDCs, the parameters for calculating the

kinetics of the model are assembled from all the UDCs registered with the model. The

resultant forces and moments generated by the UDCs are assembled, as are their mass

and inertia properties. The kinetics equations use these assembled parameters to calculate

the accelerations. The kinematics equations uses these accelerations, the motion

parameters of the body frame, and the motion parameters of the navigation frame with

respect to the inertial frame to calculate the derivatives of the motion states.

When calculating the forces and moments, each UDC may require the motion

parameters of the body frame to be expressed with respect to different reference frames,

which can be achieved through the RFM. It is essential that the forces and moments use

the same measurement frame as the acceleration and angular acceleration in the

kinematics equations. Since forces and moments are typically expressed in the body

frame, as are the acceleration and angular acceleration, additional transformations are

generally not required. This property is also useful as it allows the GDC to replace the

navigation frame with the intermediate frame to reduce roundoff error. The modifications

to the integration routine due to the use of intermediate frame, as depicted in Figure 4.1,

are automatically taken care of since each UDC transforms the motion parameters to its

preferred navigation frame. The transformation of the resulting forces and moments for

the kinetics equations is carried out as described above, and may not be necessary if the

forces, moments and accelerations are all measured in the body frame. Thus, generic

dynamic models do not require additional modifications to use intermediate frames.

 133

CHAPTER 6

REFERENCE FRAME MANAGMENT IN PDS

Parallel and distributed simulations (PDS) often require dynamic models and

other simulation components such as displays that are distributed over a large number of

processors to interact with one another. These components may utilize different reference

frames to express motion parameters, requiring the application of kinematics and

rotations to allow their interaction. The reference frame manager’s ability to generate

kinematics and rotations between arbitrary reference frames in a network of reference

frames can be extended to simulations distributed over multiple processors. Each

processor can maintain its own network of reference frames, which is then linked to

networks in other processors, allowing simulation components on one processor to

interact with components on other processors using different reference frames. This

would be especially useful in large-scale simulation such as air traffic control as it would

allow numerous simulations with different dynamic models and components to be linked.

This chapter develops the network configurations and protocols that enable the

reference frame manager to be used to handle reference frame transformations across a

PDS. These configurations and protocols are developed using several design parameters.

Feasible configurations and their protocols are implemented in the Reconfigurable Flight

Simulator.

6.1 Managing Reference Frames in PDS

Kinematics and rotations between reference frames can only be generated if the

motion parameter relating their relative motion is known. Chapter 3 dealt with the

 134

creation of a network of reference frames in a simulation, linking each node in the

network through the motion parameters of the child node with respect to the parent node.

Similarly, a network comprising of all the reference frames in the PDS needs to be

assembled enabling the kinematics and rotations between any pair of reference frames to

be generated. The following subsections describe some of the factors that influence the

development of a network of reference frames across multiple processors, including the

distribution of reference frames across the network and the control mechanism used to

coordinate the formation of the network and the assembly of kinematics and rotations.

6.1.1 Design Parameters for a Network of Reference Frames in PDS

A number of design parameters influence the design of a network of reference

frame in a PDS. The location of reference frames across the different processors and the

coordination required for identifying, generating and executing the path between the

reference frames when generating the required kinematics and rotations are of particular

interest.

6.1.1.1 Location of Reference Frames in PDS

The first parameter, the location of the reference frames across the different

processors, provide several alternatives that can be considered. First, each processor on

the network may be given all the reference frames used by all the components in the

simulation. This requires a coordinated effort to determine all the reference frames that

may be used and load them into the RFM on each processor. The advantage of this

configuration is that the processor requesting the kinematics and rotations executes all the

operations using its own network, reducing network traffic to the motion states and their

appropriate reference frames. However, it also means that all the reference frames need to

 135

be identified and loaded a priori on to each processor, which may be impractical. It may

also lead to a large number of redundancies if a large number of reference frames are

required in the various simulations. Thus, a large coordination effort is required to set up

the configuration, allowing each processor to handle all network operations on its own,

while eliminating any coordination requirements between processors for path generation

at runtime.

The second option requires each processor to load the minimum number of

reference frames required to assemble a network that contains all the reference frames

used by the components on that processor. The RFM on each processor will only have

access to these ‘local’ reference frames. If a component requires the motion parameters of

a ‘remote’ reference frame that is not within its processor’s RFM to be expressed with

respect to its desired ‘local’ reference frame, the RFMs on the various processors will be

required to assemble the kinematics and rotations. Identifying the path linking reference

frames across multiple processors may be very computationally intensive, requiring

multiple stages. However, designating a common reference frame for all the processors

could greatly simplify this operation, as only the processors containing the ‘local’ and

‘remote’ frames would be involved.

The third option is for the location of the reference frames to be independent of

the components that need them. Each RFM would form a network of reference frames

based on the availability of reference frames rather than the requirements of simulation

components on that processor. While this is the most general case with regards to the

distribution of simulation components and reference frames, it may not be very practical,

as propagation of dynamic models and the interactions between simulation components

 136

on the same processor may require the identification, assembly and execution of

kinematics and rotations along a path distributed over multiple processors.

6.1.1.2 Coordination Between Reference Frame Managers in PDS

The second design parameter is the method used to coordinate reference frame

related operations between the processors. There are two alternatives that may be

considered; a centralized system that coordinates all kinematics and transformation

operations between the processors or a decentralized system where the kinematics and

rotations are assembled only by the processors affected by the operation.

In a centralized system, the RFM on one processor is designated as the

‘controller’ of the other reference frame managers. This controller accesses the reference

frames on all the processors, assembles the overall network and handles all the requests

for kinematics and rotations involving multiple processors. The RFM on each processor

in the simulation is linked to the controller, allowing it to access the RFM on each

processor in the simulation. Figure 6.1 depicts a network comprising of four processors

with processor 1 designated as the controller.

Each RFM is responsible for maintaining the motion parameters of reference

frames in its processor and assembles its own network using these reference frames. The

controller obtains the identity of each reference frame and its definition frame from the

RFM on each processor and constructs a ‘virtual’ network of all the reference frames in

the simulation as depicted in Figure 6.2. Each node in this virtual network records the

identity of the reference frame it represents, the processors implementing it and its parent

and child nodes.

 137

Processor 4

RFMRFMRFM

RFM

Processor 1
(Controller)

Processor 2 Processor 3

Figure 6.1: Centralized Control Links All Other Processors to ‘Controller’ RFM

Processor 3

AB

C

D

E

F

Processor 4

Processor 1

Processor 2

‘Virtual’ Network
Assembled in

Processor 1/Controller

Figure 6.2: ‘Virtual’ Network Created in Controller RFM

When kinematics and rotations between reference frames are required, the RFM

on the processor requiring the operation requests the assistance of the controller if it

requires a reference frame located only on another processor. The controller assembles

the path between the reference frames using its virtual network and executes the

 138

operations requiring reference frames that are not located on the RFM requesting the

operation. The motion parameters for these operations are obtained from the respective

processors. If a reference frame exists on multiple processors, controller attempts to

reduce the number of processors it needs to contact by identifying chains on each

processor corresponding to segments of the path. Reducing the number of processors

involved is important because each interaction between processors is subject to network

lag, adversely affecting the performance of the simulation. The appropriate processor

executes operations along these chains. Data resulting from these operations is passed to

the requesting RFM, which executes the remaining operations using its own network.

In a decentralized system, only the processors implementing reference frames

along the path connecting the initial and final frames systematically build the path and

execute operations along it. Since reference frames are treated as nodes in the RFM, it is

tempting to extend this to PDS by viewing the system as a network of nodes where each

node represents the processor’s RFM as depicted in Figure 6.3.

Processor 3

RFM

RFM

RFM

RFM

Processor 1Processor 2

Processor 4

Figure 6.3: Network of RFM using Decentralized Control

 139

The network described above implies that the links between processors are merely

an extension of the links between reference frames. Thus, a link between processors in

Figure 6.3 represents the link between the root node of one RFM with a node in the RFM

of another processor. Such a representation assumes that the reference frames in each

processor are unique to that processor and that the reference frames in the various

processors can be assembled into a network depicted by Figure 6.4.

Processor 3

AB

C

D

E

F

Processor 4

Processor 1
Processor 2

Figure 6.4: Linking RFM Can Ideally Assemble Larger Networks

In practice, the distribution of reference frames over processors as depicted in

Figure 6.4 is unlikely, as common reference frames may be required by components in

multiple processors or reference frames required to form a single network may not be

loaded on any processor as depicted in Figure 6.5. The latter complication, depicted by

the exclusion of frame C from the processors, also affects the centralized controller.

 140

Processor 3

AB

C

D

E

F

Processor 4

Processor 1

Processor 2

Figure 6.5: Actual Reference Frame Distribution Complicates Network Assembly

The presence of reference frames in multiple processors introduces additional

complexity in assembling paths as the root node of an RFM may encounter multiple

instantiations of its definition frame on different processors. In such cases, the root

node’s RFM will need to contact all the processors containing the root node’s definition

frame and attempt to determine the path that will affect the least number of processors in

order to improve performance. The resulting path is stored by the RFM requesting the

operation and processors affected by the operation store their respective segments. The

kinematics and rotations for each segment are then executed in sequence.

While the decentralized system described above avoids the bottleneck created by

using a central controller, it is an expensive method in terms of interaction between

processors. An alternate approach to decentralized control is similar to the current

practice of defining a common reference frame that is loaded in all processors. While the

traditional approach described in Section 2.4.4 fixes this common reference frame during

the development phase of PDS, reference frame management allows this to be set at

runtime. The common reference frame can be designated the ‘network’ frame and can be

 141

considered as the common node that links the RFMs on all the processors as depicted in

Figure 6.6.

Processor 3

AB

C

D

E

F

Processor 4 Processor 1

Processor 2

Figure 6.6: Network With a Common Reference Frame Shared by All Processors

When the network frame is designated at runtime, it is essential to ensure that any

additional reference frames that may be required to form a single network in each RFM is

added to the processor. The network frame does not have to be the root node in the

reference frame managers. Since each RFM is able to generate a path linking the network

frame to any reference frame in its local network, motion parameters expressed with

respect to the network frame can be readily operated on by any RFM in the simulation.

Expressing shared motion parameters in the network frame allows them to be expressed

with respect to the preferred reference frame of any simulation component through the

RFM on the component’s processor. Since each RFM handles operations from the

network frame to any reference frame in its local network, interactions between

processors due to network operations are eliminated, improving network performance

and scalability.

 142

6.1.2 Population and Evaluation of the Design Space

From the design parameters described above, a total of 6 combinations are

available, as shown in Table 6.1. Some of these combinations may be redundant or may

be very inefficient; for example the combination C4 where each processor has all

reference frames in a centralized system is redundant since a controller is not required if

each processor has all the reference frames used in the simulation. In contrast,

combination C3 is extremely inefficient since the lack of a central controller will imply

that any reference frame operation will require a large number of interactions between

processors.

Table 6.1: Design Parameters and Their Combinations for Distributed RFM

 Decentralized Control Centralized Control

All Reference Frames are
loaded C1 C4

Only required reference
frames are loaded C2 C5

Reference frames loaded
independent of requirement C3 C6

It has been noted in Section 6.1.1.2 that a centralized controller will require

several interactions between the controller and the other processors if any of the reference

frames required to link the initial and final frames are not available on the processor

requesting the operation. While the controller and the affected processors are executing

the operation, the processor requesting the operation will not be able to proceed. Thus,

centralized control incurs significant penalties to network performance, as processors will

have to wait for multiple interactions to be completed before proceeding whenever the

 143

controller is required for resolving kinematics and rotations between reference frames.

This leads to the elimination of centralized control as a design option. This is supported

by fact that current research indicates that bottlenecks are often caused if control is

centralized when dealing with timing issues or time critical events. The implementation

of the remaining design options, C1 and C2 are discussed below.

6.2 Implementation

The design options C1 and C2 as described by Table 6.1 are implemented in the

Reconfigurable Flight Simulator. Both these design option use decentralized control to

handle reference frame operations involving multiple processors, eliminating the need to

extend the RFM implemented in Chapter 3 to include additional interfaces and

functionality for assembling and utilizing the ‘virtual’ network described above.

However, both configurations will use the RFM to manage a network of reference frames

on each processor. Since the implementation of these designs involves the transfer and

interpretation of data between processors, the implementation of the networking

protocols in RFS are briefly described.

6.2.1 Networking in the Reconfigurable Flight Simulator

In RFS, the simulation environment includes a pointer to a networking object that

can be implemented using different networking protocols. The capability in RFS to

represent and execute methods as character strings allows the interface of the networking

object to be expanded when necessary. The current networking object in RFS uses the

HLA protocols discussed in Chapter 2 and is implemented as the HLA Networking

Object. In the HLA paradigm, the instantiation of RFS on each processor is known as a

federate and the entire PDS is known as a federation. The tasks of the HLA Networking

 144

Object include the subscribing and publishing of attributes shared by individual objects,

as well as sending and receiving methods, messages and events through interactions.

Since RFS primarily simulates aerospace vehicles, specific properties of these

vehicles are shared as attributes through the HLA Networking Object. These attributes

include the motion states of the vehicles that may change continuously throughout the

simulation. Since transmitting the state vector of each vehicle to all the other federates

would result in a prohibitive amount of network traffic, ‘dead reckoning’ algorithms are

implemented through Remote Vehicle Approximation (RVA) and Remote Vehicle

Monitoring (RVM) objects. These objects are used to maintain copies of each vehicle that

implement basic 6DOF kinematics. The RVM is maintained by the vehicle’s federate

while the RVA is maintained by the other federates. When an attribute of the vehicle

differs from its equivalent in the RVM by a predefined error tolerance, this attribute is

updated in RVM and all corresponding RVA objects in other federates, reducing the

network traffic required to update the vehicle’s attributes. The representation of time in

the dead reckoning models and federates also affects the accuracy of the simulation. The

networking object in RFS uses the time management services of HLA to ensure that the

simulation time in the different federates are synchronized to within a specified tolerance.

When the RVM updates its RVA objects, the motion states corresponding to the RVM’s

time stamp are used. The current implementation of the network object in RFS does not

account for different time stamps when updating attributes, introducing errors in RVA

objects proportional to the difference in time stamps.

In the standard implementation of RFS, the motion states maintained by the RVM

and RVA objects mirror the motion states of the vehicle, regardless of the reference

 145

frames used by the vehicle. Thus, the reference frames used by the RVA and RVM are

the same as those used by the vehicle, requiring all vehicles and simulation components

to use identical reference frames when sharing motion states. This has been the standard

approach in the development of PDS as mentioned in Chapter 2.

The introduction of the Reference Frame Manager allows the vehicles to use their

preferred reference frames since all kinematics and rotations are handled by the RFM.

When applying the RFM to PDS, manner in which the RFM is used depends upon the

configuration of the design parameters described in this chapter. Since the network object

does not account for differences in time stamps, the errors in representation of the RVA

object’s motion affects the kinematics calculated by the RFM irrespective of its

configuration. The effect of these configurations on the interaction of the RFM with

simulation components is described below.

6.2.2 Implementation of RFM in Configuration C1

Configuration C1 requires all the reference frames used in the simulation to be

loaded into each RFM across all federates. Since the RFM on each federate has access to

all the reference frames in the simulation, all kinematics and rotations can be carried out

locally, eliminating the need for interactions between federates when assembling and

executing the operation. Furthermore, the RVM and RVA objects associated with each

vehicle express their motion states in the reference frames used by the vehicle. However,

each vehicle would also be required to publish the identities of its definition and

measurement frames. Thus, the identities of these frames are added to the attributes of the

RVM and RVA objects generated by the HLA Networking Object. This configuration,

depicted in Figure 6.7, would minimize the path length for kinematics and transformation

 146

operations for any given task at the cost of configuration complexity, as all the reference

frames used by all simulation components would need to be identified and loaded in each

federate.

Data passed in sender’s
reference frame

Transformation carried out
by recipient's RFM

Reference frame used by components
and loaded into all the RFMs

Remote Vehicle Approximations (RVA)RVA

Federate 2
RVA

Federate 1

RVA

Data passed in sender’s
reference frame

Transformation carried out
by recipient's RFM

Reference frame used by components
and loaded into all the RFMs

Remote Vehicle Approximations (RVA)RVA

Federate 2
RVA

Federate 1

RVA

Data passed in sender’s
reference frame

Transformation carried out
by recipient's RFM

Data passed in sender’s
reference frame

Transformation carried out
by recipient's RFM

Reference frame used by components
and loaded into all the RFMs

Remote Vehicle Approximations (RVA)RVA

Reference frame used by components
and loaded into all the RFMs

Remote Vehicle Approximations (RVA)

Reference frame used by components
and loaded into all the RFMs
Reference frame used by components
and loaded into all the RFMs

Remote Vehicle Approximations (RVA)RVA

Federate 2
RVA

Federate 2Federate 2
RVA

Federate 1

RVA

Federate 1

RVARVA

Figure 6.7: All Reference Frames Loaded in Each Federate

6.2.3 Implementation of RFM in Configuration C2

Configuration C2 requires all the reference frames used by the components in a

federate to be loaded into its RFM along with a network frame that is specified and

loaded into each RFM at the start of the simulation. Any additional reference frames

required to link the reference frames in the federate to the network frame are also loaded.

While each vehicle can maintain its motion states in its preferred reference frames, the

corresponding RVM and RVA objects need to express their motion states in the network

 147

frame. Therefore, the RVM in the HLA Networking Object is modified to use the RFM

to express the motion parameters of the vehicle with respect to the network frame. Since

motion states are shared in a reference frame common to all federates, kinematics and

rotations can be carried out locally, eliminating the need for interactions between

federates when assembling and executing the operation. This configuration, depicted in

Figure 6.8, reduces configuration complexity, as the RFM uses the minimum number of

reference frames to support the simulation components in the federate with the network

frame and their desired reference frames. While this is similar to the current standard, a

convenient network frame can be chosen at runtime and all reference frame operations

are handled by the RFM.

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Remote Vehicle Approximations (RVA)

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Federate 2

Federate 1RVA

RVA

RVA

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Remote Vehicle Approximations (RVA)

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Federate 2

Federate 1RVA

RVA

RVA

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Remote Vehicle Approximations (RVA)

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Federate 2

Federate 1

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Remote Vehicle Approximations (RVA)

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Federate 2

Federate 1

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Remote Vehicle Approximations (RVA)

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Reference frames used in Federate 1

Network Reference Frame

Reference frames used in Federate 2

Remote Vehicle Approximations (RVA)

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Federate 2

Federate 1

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Sender’s RFM transforms data
to network frame

Recipient's RFM transforms
data to desired reference frame

Federate 2Federate 2

Federate 1Federate 1RVA

RVA

RVA

Figure 6.8: Network Frame Used to Share Motion Parameters Between Federates

 148

CHAPTER 7

DEMONSTRATION OF REFERENCE FRAME MANAGEMENT

The implementation of the Reference Frame Manager, Intermediate Frames and

Generic Dynamic Models were verified through the series of demonstrations documented

in this chapter. Simulations were configured to demonstrate and verify the capabilities

and benefits of Reference Frame Management and its supporting components. The

reduction in roundoff error using intermediate frames and the relationship between error

reduction, critical levels and time step were also analyzed. The application of the RFM to

Parallel and Distributed Simulation (PDS) was verified with demonstrations of both

configurations of RFM and reference frames as described in Chapter 6. This chapter

describes the scenarios used as well as the costs and benefits of these components

measured during the demonstrations.

7.1 Measures of the Capabilities, Benefits and Costs of RFM and its Applications

The successful demonstration of RFM and its supporting components requires

measuring their capabilities and evaluating their costs and benefits. This section describes

the measures of the capabilities, benefits and costs of RFM, GDM, intermediate frames

and the application of RFM in PDS. The methods used to verify the capabilities and

evaluate the benefits and costs are also tabulated.

In order to handle all reference frames in the simulation environment and express

their motion parameters with respect to any other reference frame, the RFM has to

demonstrate several capabilities. The first is the ability to assemble a network of

reference frames. The second is the identification of paths connecting nodes in the

 149

network and the third is the execution of kinematics and transformation operations along

these paths. These capabilities are critical to the RFM and are verified through the

successful operation of its applications. The benefits of RFM include the ability of

simulation components to utilize their preferred reference frames when interacting with

other simulation components, regardless of the reference frames used by the other

components in expressing motion parameters. Also, the development time, cost and effort

are reduced as the components do not require algorithms to calculate kinematics and

rotations and do require modifications to support the addition of new components and

reference frames to the simulation environment. However, the use of RFM may incur

additional computational costs and numerical errors, as its calculations are generic to all

reference frames rather than being optimized for specific reference frames. The methods

for evaluating the capabilities, benefits and costs of RFM are tabulated in Table 7.1.

Table 7.1: Evaluating the Capabilities, Benefit & Costs of RFM

 Methods for Evaluating RFM

Assembly of Network

Identification of path Capabilities
Generation of kinematics and
rotations along path

• Successful operation of simulation
validates capability of the RFM

Interaction of components
using different reference
frames

• Level of effort in enabling the
interaction of components using
different reference frames Benefits

Ease of developing new
simulation components

• Level of effort in developing
simulation component software

Computational load • Runtime of scenario
Costs

Numerical accuracy • Numerical error

 150

The construction of dynamic models using a GDM and appropriate UDCs

requires the GDM to demonstrate its ability to encapsulate the core services of the

dynamic model and dynamically form the assembled state and derivative vectors through

the addition or removal of UDCs. The GDM must also demonstrate its ability to assemble

kinetics equations using the properties provided by the UDCs. The benefits of using the

GDM include improved reusability of components and code, reduction in development

time, effort and cost of new dynamic models and the ability to reconfigure the fidelity

and dynamics of the models without the extensive modification of the software.

However, the use of GDM may incur additional computational costs as well as numerical

errors as the kinetics and kinematics equations are generalized for arbitrary reference

frames instead of being optimized for specific reference frames. The methods for

evaluating the capabilities, benefits and costs of GDM and UDCs are listed in Table 7.2.

Table 7.2: Evaluating the Capabilities, Benefit & Costs of GDM & UDC

 Methods for Evaluating GDM & UDCs

Encapsulation of core
services

Assembly of model’s state
and derivative vectors Capabilities

Assembly of kinetics
equations from UDCs

• Successful operation of simulation
validates capability of the GDM

Ease of development for new
dynamic model

• Level of effort in developing new
dynamic model

Benefits
Ease of modifying dynamic
models through code reuse

• Level of effort in modifying existing
dynamic models for new scenarios

Computational load • Runtime of scenario
Costs

Numerical accuracy • Numerical error

 151

The successful operation of intermediate frames relies on RFM’s ability to insert

the intermediate frame into the network, and the intermediate frame’s ability to evaluate

critical levels and to update its motion parameters and the motion states of the dynamic

model accordingly. The critical levels for velocity also need to be able to adapt to the

dynamics of the model to minimize the roundoff errors for both position and velocity.

The benefit of intermediate frames is the reduction of roundoff error at the cost of

additional computational load. The methods for evaluating the capabilities, benefits and

costs of intermediate frames are tabulated in Table 7.3.

Table 7.3: Evaluating the Capabilities, Benefit & Costs of Intermediate Frames

 Methods for Evaluating Intermediate
Frames

Insertion of intermediate
frame into the network by the
RFM

Bound vehicle states through
updates of intermediate
frame

Capabilities

Monitoring of critical levels

• Motion of intermediate frame and
critical level bounds viewed in a
graphics display

• Magnitude of motion states in the
navigation frame and intermediate
frame

Benefits Reduction of roundoff error • Comparison of roundoff errors with
and without intermediate frames

Costs Computational load
• Runtime of scenarios with and

without intermediate frames

• Number of path operations

The application of RFM in PDS requires the RFM on each processor to handle all

reference frame operations on its processor while the networking objects need to employ

the appropriate data passing protocols for identifying reference frames. If the network is

configured such that each federate possesses all reference frames required by the

 152

components in the federation, the networking object needs to demonstrate the ability to

publish and subscribe the identity of the reference frames used to express the motion

states of dynamic models. If the network expresses the motion parameters of all RVA and

RVM objects with respect to a network frame, each networking object has to be able to

express the motion states of the dynamic models with respect to the network frame when

updating the RVA and RVM objects. The benefit of applying RFM to PDS is the

elimination of the need to fix a common network frame during the development phase of

the simulation. Therefore, the components in each federate are able to use reference

frames appropriate to the scenario. The relative cost of the two methods of implementing

RFM in PDS can be evaluated by comparing the complexity of their configurations as

well as their computational load.

Table 7.4 Evaluating the Capabilities, Benefit & Costs of RFM in PDS

 Methods for Evaluating RFM in PDS

RVA subscription to the
reference frame published by
the RVM

Capabilities
RVM & RVA expression of
motion in the appropriate
reference frames

• Comparison of the behavior of RVA
with their corresponding dynamic
models

Benefit
Elimination of the need to fix
network frame during
software development

• Successful operation of both
configurations verifies the elimination
of pre-defined network frame

Computational load • Number of path operations per
configuration

Costs
Configuration complexity

• Number of reference frames loaded
on the processors for each
configuration

 153

7.2 Simulation Configurations for the Demonstrations

The demonstrations of RFM and its applications involved the simulation of

satellites in orbit around the Earth. Three different demonstrations were used to verify

and evaluate different aspects of RFM, GDM, their application to PDS and the

effectiveness of intermediate frames. The first demonstration verified the operation of the

RFM and GDM and evaluated their costs and benefits. The second demonstration

verified the operation of RFM in PDS and compared the two methods of distributing

reference frame in PDS described in Chapter 6. The final demonstration was used to

verify and analyze the effectiveness of intermediate frames in reducing roundoff error.

The satellite model and the scenarios for these three demonstrations are described in

detail in the following subsections.

7.2.1 Satellite Dynamic Models and Reference Frames

The satellite model [36] used in all the demonstrations was implemented using the

Generic Dynamic Model described in Chapter 5. The GDM was used in conjunction with

a suitable UDC that modeled gravity exerted on the body by an attracting body M with

mass Mg, expressed in equation (7.1). If the navigation frame is located at the center of

mass of the attracting body, this expression is simplified, as depicted in equation (7.2):

[] ()n
n

Mn
n

bfnbf

n
n

Mn
n

bf

g
bf

bf PPC
PP

mGM
F −

−
−= 3 (7.1)

[] ()M
M

bfMbf

M
M

bf

g
bf

bf PC
P

mGM
F 3−= (7.2)

 154

Since the GDM represents all the common elements in the dynamic model, it did

not require any modification. The UDC was developed to be a generic gravity source.

Thus, the mass of the attracting body was parameterized so that it could be set at runtime

through a configuration file. The model was simplified such that the only force affecting

the kinetics was the force of gravity, allowing the kinetics equation to be expressed as

equation (7.3).

() [] ()M
M

bfMbf

M
M

bf

gi
bf

bf
i

PC
P

GM
V

dt
d

3−= (7.3)

Encapsulating the gravitational forces in a parameterized UDC allowed the final

model to use either two body orbital mechanics or multi-body orbital mechanics by

adding or removing UDCs representing the effect of different gravity sources. If N

attracting bodies are used, where the center of mass of the jth attracting body of mass Mj

is represented by frame nj, the resultant force on the satellite is expressed using equation

(7.4). The UDC representing each attracting body uses the RFM to express the position of

the satellite with respect to center of mass of the attracting body.

() [] ()∑
=

−=
N

j

n
n

bfnbf

n
n

bf

ji
bf

bf
i

j

j

j

j

j

PC
P

GM
V

dt
d

1
3 (7.4)

If the satellite’s navigation frame is not the reference frame at the center of the

attracting body, the UDC is able to obtain the position of the satellite with respect to the

 155

center of the attracting body using the RFM, allowing the satellite’s navigation frame to

be modified without affecting its dynamics. Similarly, if intermediate frames are

introduced to control roundoff error and the position of the satellite is expressed with

respect to the intermediate frame, the RFM enables each UDC to express the motion

states of the satellite in the appropriate reference frame to calculate the forces.

In addition to the implementation of the dynamic model using the GDM, a control

vehicle was also implemented without the GDM. Since the control model did not use

RFM, the models of the reference frames used in the different configurations were

included in the dynamic model. The additional functionality required by the control

model to use different navigation frames were recorded to demonstrate the complexity of

modifying dynamic models without the GDM.

Since the numerical accuracy of the satellites is one measure of the cost of using

RFM and GDM, the local roundoff error and its maximum limit are recorded at every

time step for both models. If intermediate frames are used, the error generated at their

updates is also recorded in the GDM. Finally, the actual model error is evaluated at the

end of the simulation run for both models by comparing the actual states of the dynamic

models and their predicted states based on their orbital parameters.

Several reference frames can be used when simulating satellites in orbit around

the Earth. The reference frames used in the demonstrations as the satellites’ navigation

and inertial frames include the non-rotating Earth Centered Inertial (ECI) frame, the

rotating Earth Centered Earth Fixed (ECEF) frame and a variety of Earth Surface Fixed

(ESF) frames. Since the development of reconfigurable and reusable software is one of

the aspects of this research, a single class capable of representing these types of reference

 156

frames, the Generic Orbiting Reference Frame class, was developed using the reference

frame classes described in Chapter 3. The interfaces of this frame allow it to be initialized

as a rotating or non-rotating frame that can be placed in orbit about another reference

frame. The parameters for its orbit can also be set at runtime. Thus, different

instantiations of the same class can be used as the ECI, ECEF and different ESF frames.

The definition frame and inertial frame for this class are also set at runtime through the

configuration file, allowing a network of reference frames to be rapidly created.

7.2.2 Demonstration 1: Capabilities of the RFM and GDM

The objectives of this demonstration were to demonstrate the capabilities of the

RFM and GDM and evaluate their benefits and costs. In particular, the benefits of RFM

and GDM with respect to software reuse and interoperability of simulation components

and their costs with respect to computational and numerical cost were evaluated using the

methods and measures listed in Table 7.5.

This demonstration involved the simulation of satellites in geo-stationary orbit

around the Earth. Canonical units [37] were used to express the motion parameters as well

as simulation time. The semi-major axis of the orbit was set to 6.6107 DU while the

eccentricity and inclination were set to 0.0 degrees. 10 geo-stationary satellites were

propagated in each simulation run for one orbit. The initial true anomalies of these

satellites were randomized at the start of the simulation, effectively randomizing their

positions and velocities along the orbit. A total of 10 simulation runs, corresponding to

100 satellites, were executed per condition. Twenty-four conditions were created by four

independent variables: the identity of the navigation frame, the use of RFM & GDM, the

use of a display component requiring data from all satellites and the time step. These

 157

independent variables and their different levels are summarized in Table 7.6. A full

factorial of these independent variables produces a total of 36 conditions. However, the

use of the display component did not significantly affect the operation of the RFM and

GDM. Thus, its use was restricted to the larger time step and configurations using only

the control model or the RFM & GDM, resulting in the 24 conditions.

Table 7.5: Methods and Metrics in Demonstration 1

 Verification & Evaluation Method Measures

Capabilities of GDM &
RFM

• Successful operation validates
capability of RFM & GDM

• Compare the trajectories of the
generic and control models

• Motion states of
the GDM &
control models

Interoperability of
simulation components
using different reference
frames

• Compare the level of effort
required to ensure that the
generic model and control
model can interact with
different reference frames

• Description of
functionality
required

Ease of developing new
simulation components
and dynamic models

• Compare the level of effort
required to develop the generic
and control models

Ease of modifying and
reusing existing models
in different scenarios

• Compare the level of effort
required to change the
navigation frame used by the
generic and control models

• Lines of code
(SLOC)

• Description of
functionality
required

• Description of
development
effort

Numerical cost

• Compare the error incurred by
the generic and control models
when using different navigation
frames

• Final error:
Distance between
actual and
predicted position

Computational cost
• Compare the runtimes of

scenarios using generic and
control models

• Runtime

 158

Table 7.6 Independent Variables and Their Levels in Demonstration 1

Independent Variable Levels

Navigation Frame ECI, ECEF, ESF

Use of RFM & GDM Control Model, RFM & Control Model, RFM & GDM

Use of display component Display not used, display used to view satellite motion

Time Step 1.06795 TU, 0.106795 TU

The satellites used the ECI frame as their inertial frame while their navigation

frame was based on the demonstration conditions. The display provided a 3 dimensional

visualization of the trajectory. Figure 7.1 provides a schematic of the satellites and

reference frames in the demonstration scenario.

X

Y

Z

ECI
ECEF

X’

Y’

Z’

V
Satellite

Y’’

X’’

Z’’

ESF

X

Y

Z

ECI
ECEF

X’

Y’

Z’

V
Satellite

Y’’

X’’

Z’’

ESF

Figure 7.1: Schematic of 10 Satellites and the Reference Frames in Demonstration 1

 159

7.2.3 Demonstration 2: RFM in PDS

The objectives of this demonstration were to verify the appropriate use of RFM

by the RVM in PDS and compare the costs of the two configurations described in

Chapter 6 for using RFM in PDS. The methods and measures used to verify the success

of the demonstration and evaluate the two configurations are listed in Table 7.7.

Table 7.7: Methods and Metrics in Demonstration 2

 Verification & Evaluation Method Measures

Appropriate use of RFM
by RVM & RVA in PDS

• Verify behavior of RVA in the
visualization display

• Motion of the
RVA & dynamic
model

Network frame not fixed
during the development
of simulation software

• Successful operation of both
configurations verifies the
elimination of pre-defined
network frame

• None

Configuration
complexity

• Compare the number of
reference frames loaded on each
federate for both configuration

• Number of
reference frames

Computational load
• Compare the number of path

operations required by each
federate for both configurations

• Number of path
operations

As in demonstration 1, the scenario for demonstration 2 involved the simulation

of satellites in geo-stationary orbit around the Earth. In this case, four geo-stationary

satellites were propagated using four processors for ten orbits. The initial true anomalies

of these satellites were set to 0°, 90°, 180° and 270°. Figure 7.2 depicts these satellites

after they have been propagated by approximately an eighth of their orbits from their

initial conditions in a counter clockwise direction.

 160

x’

x

y’

y’’

y

y’’’ z’’’

z’’

ECI

ECEF

ESF 2

ESF 1

Satellite 4 Satellite 2

Satellite 3Satellite 1

x’

x

y’

y’’

y

y’’’ z’’’

z’’

ECI

ECEF

ESF 2

ESF 1

Satellite 4 Satellite 2

Satellite 3Satellite 1

Figure 7.2: Schematic of Satellites and Reference Frames in Demonstration 2

Four different reference frames were used in the simulation environment as

shown in Figure 7.2: an ECI frame, an ECEF frame and two ESF frames. Each satellite

used a different navigation frame. Each processor was responsible for propagating one of

the satellites and operating a display of all the satellites in the simulation. The reference

frame used by each display corresponded to the navigation frame used by the satellite on

its processor. Table 7.8 lists the reference frames used by the satellites and displays on

each federate.

Table 7.8: Reference Frames Used by Satellites & Displays on Each Federate

Processor Satellite Model Navigation Frame Display Frame

Federate 1 Satellite 1 ECI ECI

Federate 2 Satellite 2 ECEF ECEF

Federate 3 Satellite 3 ESF 1 ESF 1

Federate 4 Satellite 4 ESF 2 ESF 2

 161

This demonstration was executed twice with a time step of 1.06795 TU and

synchronized using the time management services of HLA. The two configurations

detailed in Chapter 6 were tested. In the first configuration, the RFM on each federate

was provided with all the reference frames used in the entire federation, allowing the

motion parameters of satellites to be expressed with respect to any other reference frame

in the federation without the need for a common reference frame. In the second

configuration, only the reference frames required to support the dynamic model on that

processor were used within each federate and the ECI frame was set as the common

network frame.

7.2.4 Demonstration 3: Intermediate Frames

The objectives of this demonstration were to verify the operation of intermediate

frames, evaluate their ability to reduce roundoff errors over a range of conditions, and

assess their computational cost. The methods and measures used to verify the operation

of intermediate frames and evaluate their effect on roundoff error are listed in Table 7.9.

As in demonstration 1, this demonstration involved the stochastic simulation of 10

satellites orbiting the Earth. The values for the semi-major axis and inclination were

identical to demonstration 1, at 6.6107 DU and 0.0 degrees respectively. The initial true

anomaly of each satellite was also set to 180°, and the longitude of perigee of each

satellite’s orbit was randomized at the start of the simulation. Therefore each satellite was

initialized at the apogee of its orbit and the orientation of each orbit was randomized with

respect to the ECI frame, as illustrated in Figure 7.3.

 162

Table 7.9: Methods and Metrics in Demonstration 3

 Verification & Evaluation Method Measures

Intermediate frame’s
ability to bound the
vehicle’s motion states
with critical levels

• View motion of intermediate
frame and critical level bounds
in a graphics display

• Compare vehicle’s motion
states in the navigation frame
and intermediate frame

• Motion of the
intermediate
frame and critical
level bounds

• Motion states of
the vehicle

Reduction in roundoff
error for the vehicle’s
motion states

• Compare roundoff error
incurred by models with and
without intermediate frames for
different conditions

• Check for error reduction using
a statistical paired t-test

• Global error

• Limit for global
roundoff error

Computational cost
• Compare the runtimes and

number of path operations with
and without intermediate frames

• Number of path
operations

• Runtime

x

y

ECI
x

y

ECI
x

y

ECI

Figure 7.3: Schematic of 10 Satellites With Randomized Longitudes of Perigee

 163

As in demonstration 1, 10 satellites were simulated per run and a total of 10

simulation runs, corresponding to 100 satellites, were executed per condition. The

independent variables used to determine each condition included the use of intermediate

frames, the values of critical levels, the eccentricity of the orbit and the time step. These

independent variables and their different levels are listed in Table 7.10. While a full

factorial of these independent variables produces a total of 240 conditions, only 68

conditions were used in the demonstration as the primary concern lay in the effectiveness

of the adaptive critical level. A full factorial of the remaining independent variables using

adaptive critical levels provides 48 conditions. The fixed critical levels were only used to

demonstrate the need for critical levels to adapt to time steps and therefore restricted to

fixed time steps and a single eccentricity of 0.00, providing the remaining 20 conditions.

Table 7.10 Independent Variables and Their Levels in Demonstration 3

Independent Variable Levels

Use of Intermediate Frame GDM only, GDM with Intermediate Frame

Critical level for velocity 2-3, 2-7, 2-12, 2-17, Adaptive Critical Level

Eccentricity of orbit, e 0.00, 0.25, 0.60, 0.85

Time Step, ∆t (TU) 1.07, 1.07×10-1, 1.07×10-2, 1.07×10-3, 1.07×10-4, Adaptive

7.3 Results

This section deals with the analysis and observation of the results obtained from

the three demonstrations. In particular, the benefits of RFM and GDM with regards to the

development and interoperability of simulation components, the relative costs and merits

of distributing reference frames in PDS, and the effectiveness of intermediate frames in

 164

reducing numerical error are discussed. The computational and numerical costs of RFM

and GDM are also discussed along with the computational cost of improving numerical

accuracy with intermediate frames. A full tabulation of these results is provided in

Appendix C.

7.3.1 Demonstration 1 Results: Capabilities of the RFM and GDM

The successful operation of demonstration 1 was evaluated by comparing the

behavior of the simulated satellites with their predicted behavior using two body orbital

mechanics. The motion of the control and generic satellites were observed with the

visualization display for all the navigation frames. Since the motion of both the control

and generic models matched the expected trajectories, the demonstration was deemed a

success, verifying the capabilities of the RFM and GDM. In addition, the actual position

and velocity errors of each model were recorded after one orbit. These errors refer to the

magnitudes of the vectors relating the satellite’s initial position and velocity to its

position and velocity after one orbit, expressed by equations (7.5) and (7.6). The errors

for both control and generic models were less than 0.01% in all the conditions.

0PPP n
n

bf −=∆ (7.5)

0VVV n
bf

bf −=∆ (7.6)

The successful operation of this demonstration verified key aspects of the RFM

and GDM. Since the satellites used different navigation and inertial frames, they required

the RFM to provide the kinematics and rotations between the navigation and inertial

 165

frames. This in turn required the successful construction and maintenance of the network

of reference frames, the identification of paths linking reference frames, and generation

of the requested kinematics and rotations. Furthermore, the successful operation of the

RFM was a prerequisite for the successful operation of the generic dynamic models.

The successful operation of generic dynamic models, indicated by comparing the

behavior of the satellite models with their predicted behavior as described above, also

verified several key aspects of the GDM. The first aspect was the GDM’s ability to

assemble the model, obtain forces and moments from a UDC and apply the kinetics and

kinematics for the appropriate navigation and inertial frames, resulting in the assembly of

the final state and derivative vectors. The second aspect was the GDM’s ability to

provide core services such as numerical integration. The final aspect was the GDM’s

ability to interact with the simulation environment and its ability to obtain kinematics and

rotations from the RFM.

In addition to verifying specific capabilities of the RFM and GDM through the

demonstration, the software development benefits were observed by comparing the

development effort required for the control model and the generic model. The reduction

in development effort was noted by comparing the number of lines of code as well as

model components and functionality required in developing the GDM and control

versions of the satellite model, as illustrated in Table 7.11. The number of lines of code

required refers to the specific development of the models and does not include the code

required by the standard RFS infrastructure or the code used record the errors within the

model for evaluating the costs of RFM &GDM or the effectiveness of intermediate

frames. The development effort that would be required to further modify the existing

 166

model or enable it to interact with components using different reference frames is also

listed in Table 7.11.

Table 7.11: Reduction in Development Effort With RFM & GDM

 Using GDM & UDC Control Model

Number of Lines of Code 200 1000

Components and model
functionality needed to
develop the satellite model

1. Satellite initialization
methods in GDM

2. Forces in UDC

1. Satellite initialization
methods

2. Forces in model

3. States & derivatives

4. Integration routine

5. Propagate model of
ECEF frame

6. Kinematics and
rotations between
body frame, ESF
frame, ECEF frame
and ECI frame

Functionality required:

1. To modify the
dynamics of the model

2. To use a different
navigation frame

1. Modify or code new
dynamics in UDC

2. Change navigation
frame through
configuration file

1. Modify or code new
dynamics in model

2. Model new
navigation frame

3. Update the state &
derivative array

4. Kinematics and
rotations of new
navigation frame

Functionality required to
enable interaction with
components using a
different reference frame

1. RFM provides
kinematics and
rotations of new
reference frame

1. Model of the new
reference frame

2. Kinematics and
rotations of the new
reference frame

The numerical cost of RFM & GDM was observed by comparing the actual error

at the end of each orbit for the control and generic models. This was carried out for both

 167

time steps and all three navigation frames. The navigation frame used was of particular

interest as the number of arithmetic operations carried out by the RFM when calculating

the kinematics and rotations for the GDM is directly proportional to the transformation

path length between the satellite’s body frame and its inertial frame. Therefore, the path

length when the navigation frame is set to the ECI, ECEF and ESF frames is 1, 2 and 3

respectively. Figure 7.4 depicts the 90th percentile, median and 10th percentile of actual

errors in position for both the control model and generic model when the time step was

set to 1.06795 TU.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

ECI / 1 ECEF / 2 ESF / 3

Navigation Frame / Path Length

A
ct

u
al

 E
rr

o
r

(D
U

)

90% for Generic Model Median for Generic Model 10% for Generic Model

90% for Control Model Median for Control Model 10% for Control Model

Figure 7.4: Actual Position Error for a Time Step of 1.06795 TU

When the navigation frame is set to the ECI frame, the path length is 1 and the

actual error of the control model and generic model are identical, as seen in Figure 7.4.

As the path length increases due to the use of the ECEF frame or ESF frame as the

 168

navigation frame, the control model and generic model use different implementations of

kinematics between the inertial and navigation frame. Since the kinematics in the control

model is specific to each pair of reference frames, it requires fewer arithmetic operations

and incurs fewer roundoff errors than the generic model, which needs to implement the

complete set of kinematics equations. This numerical cost is further highlighted with the

use of a smaller time step, increasing the effect of roundoff error. Figure 7.5 illustrates

this error when the time step is set to 0.106795 TU.

1.00E-06

1.00E-05

1.00E-04

1.00E-03

ECI / 1 ECEF / 2 ESF / 3

Navigation Frame / Path Length

A
ct

u
al

 E
rr

o
r

(D
U

)

90% for Generic Model Median for Generic Model 10% for Generic Model

90% for Control Model Median for Control Model 10% for Control Model

Figure 7.5: Actual Position Error for a Time Step of 0.106795 TU

At the smaller time step, the generic model has a significantly larger error than the

control model when the path length is greater than 1. However, while the generic model

does incur a larger roundoff error than the control model for longer path lengths, the

 169

relative error incurred by both models is still less than 0.01% of the magnitude of its

position vector.

The computational cost of RFM and GDM was observed by comparing the

runtimes of conditions with control model, control model and RFM, and GDM and RFM.

The runtimes for conditions using only the control model and conditions using the control

model with RFM were almost identical. When the control model was used with the RFM,

the RFM instantiated and propagated the reference frames in the simulation. However,

the control model did not utilize the RFM. Thus, the computational load of modeling and

propagating the ECI, ECEF and ESF frames was not significant compared to the

computational load of simulating 10 satellite models. When generic models were used,

however, the runtimes increased significantly when the visualization display was not

used. This increase is observed in Figure 7.6, which depicts the runtimes of the control

model and GDM, with and without the visualization display, for a time step of 1.0675

TU. The computational load is increased when the GDM is used because the RFM needs

to search the network in addition to assembling the kinematics and rotations. The

significance of the additional computational load depends upon the overall computational

load of the simulation. In the case of simple satellite models, this additional load can be

significant. However, as the computational load increases with the complexity of the

model or other simulation components, the effect of this additional computational load is

less significant, as seen in Figure 7.6 where the runtime is almost identical for the control

and generic models when the visualization display is added to the simulation.

 170

0

5

10

15

20

25

30

35

40

ECI / 1 ECEF / 2 ESF / 3

Navigation Frame / Path Length

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Generic Model with Display Control Model with Display

Generic Model Control Model

Figure 7.6: Computational Cost of RFM & GDM

7.3.2 Demonstration 2 Results: RFM in PDS

The successful operation of demonstration 2 was evaluated by comparing the

behavior of the RVAs with their corresponding dynamic models. The motions of the

generic satellites and RVAs on the four processors were observed with the visualization

displays on all four processors. Since all four satellites were in geo-stationary orbit, their

relative positions were always constant with respect to one another. Furthermore, the

display frames for three federates were earth fixed frames, ensuring that the satellites and

their RVAs would be stationary with respect to these display frames, facilitating the ease

of visually observing and verifying their trajectories through the displays.

The successful operation of this demonstration verified the ability of the RFM to

be utilized effectively in PDS. The HLA Networking Object’s ability to utilize the RFM

 171

in different configurations was also verified. In addition to verifying the operation of

RFM in PDS, this demonstration also allowed the relative costs of using different

configurations of distributing reference frames to be evaluated. Figure 7.7 depicts the

number of path operations executed by each federate for the two configurations while

Figure 7.8 depicts the number of reference frames loaded on each federate for each

configuration, including the body frames.

0

10000

20000

30000

40000

50000

60000

70000

80000

Fed 1 (ECI) Fed 1 (ECEF) Fed 3 (ESF1) Fed 4 (ESF2)

N
u

m
b

er
 o

f P
at

h
 O

p
er

at
io

n
s

All Reference Frames Loaded ECI as Network Frame

Figure 7.7: Number of Path Operations for the Two Configurations

 172

0

1

2

3

4

5

Fed 1 (ECI) Fed 1 (ECEF) Fed 3 (ESF1) Fed 4 (ESF2)

N
u

m
b

er
 o

f R
ef

er
en

ce
 F

ra
m

es

All Reference Frame Loaded ECI as Network Frame

Figure 7.8: Number of Reference Frames on Each Federate

It was observed that the configuration where all reference frames were loaded

required approximately 50% more reference frames in the federation while the

configuration utilizing a network frame required a total of approximately 2% more path

operations over all federates for the scenario used in this demonstration. The effect of

using a network frame on number of path operations for individual federates is described

below in greater detail.

The number of path operations depends upon the reference frames used by the

dynamic model, the RVM and the display in each federate. The number of path

operations required by the satellite model on each federate was independent of the two

configurations and was solely dependent on the path length between the model’s

navigation frame and inertial frame. The number of path operations required by the RVM

was dependent on the configuration. If the network frame was not required, the RVM

 173

would not require any path operations; otherwise the number of operations would depend

upon the path length between the network frame and the navigation frame used by its

dynamic model. Therefore, the use of a network frame would increase the number of path

operations required by each RVM. The number of path operations required by the display

was dependent upon navigation frame of the dynamic model and RVAs as well as its own

display frame. Therefore, the effect of using a network frame on the number of path

operations required by the display depended upon the actual navigation frames of the

RVAs and the display frame. In the case of federate 1, using the ECI frame as the

network frame significantly reduced the number of operations required since the ECI

frame was also the display frame, minimizing the path lengths between the RVAs and the

display frame. In contrast, the number of path operations required by the other federates

was increased. Therefore, the choice of network frame can affect the computational load

on each federate. The operation of each component needs to be examined to determine

the effect of the network frame on its computational load. Consequently, comparing the

computational costs of the two configurations described in Chapter 6 requires a careful

examination of the reference frame used as well as their frequency of use by each

component within the federation.

7.3.3 Demonstration 3 Results: Intermediate Frame

Demonstration 3 was used to verify the operation of the intermediate frame and

its ability to bound the magnitude of a vehicle’s motion states. It was also used to

examine the effectiveness of intermediate frames in reducing roundoff error. The effect

of different values for critical levels on error reduction was also examined, along with the

effect of time step size on the adaptive critical level.

 174

The operation of the intermediate frame was verified by comparing the states of a

satellite in an elliptical orbit with respect to its navigation frame and its intermediate

frame. The magnitude of the satellite’s position vector with respect to both reference

frames is depicted in Figure 7.9. It can be seen that the magnitude of the position vector

with respect to the intermediate frame was several magnitudes smaller than its magnitude

with respect to the navigation frame. The sudden changes are due to the update of the

vehicle’s motion states whenever the critical levels of the intermediate frame are

exceeded. Thus, the ability of the intermediate frame to bound the motion states of the

dynamic model through updates based on critical levels was verified.

0.0001

0.001

0.01

0.1

1

10

0 20 40 60 80 100

Time (TU)

M
ag

n
itu

d
e

o
f P

o
si

tio
n

 V
ec

to
r

(D
U

)

Position with respect to ECI Frame Position with respect to Intermediate Frame

Figure 7.9: Magnitude of Position Vector for Eccentricity of 0.25

The effectiveness of intermediate frames in reducing roundoff error for different

time steps was analyzed by comparing the actual error and the theoretical limit on global

 175

error of satellites using intermediate frames with ‘control’ satellites that did not use

intermediate frames. The theoretical error limits included the truncation error calculated

by the Runge-Kutta-Cash-Karp integration routine and roundoff error, estimated by the

methods described in Chapters 2 and 4. A one-tailed statistical paired t-test was carried

out to check if the use of intermediate frames significantly reduced errors. To ensure a

paired test, the same seed was used to generate the random numbers for each condition.

Since 100 satellites were simulated, the test statistic was 2.369 (α of 0.01). The null

hypothesis, expressed by equation (7.7) states that the error in a model using an

intermediate frame is the same the error in the control model. The alternate hypothesis,

expressed by equation (7.8), states that the error in the model using an intermediate frame

is less than the error in the control model. The dependent variable, d, was the difference

in position error, ∆P, between the models using intermediate frames and the

corresponding control models. The test statistic used is expressed by equation (7.11).

0: 0 =∆−∆ IFNoIF PPH (7.7)

0: 1 <∆−∆ IFNoIF PPH (7.8)

IFNoIF PPd ∆−∆= (7.9)

()2100

1∑ =
−=

i iD ddS (7.10)

100

0
DS

d
t = (7.11)

 176

Since the alternate hypothesis is less than zero, the null hypothesis is rejected if

the test statistic is less than –2.369. The test statistic for actual error and theoretical error

limit was calculated for the conditions with adaptive critical levels. The test statistic for

actual error is tabulated in Table 7.12 while the test statistic for error limit is tabulated in

Table 7.13.

Table 7.12 Test Statistic for Actual Error

 e = 0.00 e = 0.25 e = 0.60 e = 0.85

∆t = 1.07 -4.43 -4.42 1.57 -2.34

∆t = 1.07×10-1 -12.88 -9.90 -11.18 -7.58

∆t = 1.07×10-2 -13.70 -13.24 -12.05 -10.35

∆t = 1.07×10-3 -9.83 -12.04 -10.23 -11.44

∆t = 1.07×10-4 -13.10 -16.25 -13.38 -10.93

Adaptive Step -5.73 -5.12 -6.46 -7.01

Table 7.13 Test Statistic for Theoretical Error Limit

 e = 0.00 e = 0.25 e = 0.60 e = 0.85

∆t = 1.07 -730 -332 -403 -242

∆t = 1.07×10-1 -4922 -329 -430 -468

∆t = 1.07×10-2 -18164 -314 -442 -495

∆t = 1.07×10-3 -112559 -312 -434 -491

∆t = 1.07×10-4 -196006 -310 -431 -491

Adaptive Step -444 -225 -347 -157

From these tables, it can be observed that the null hypothesis is rejected for both

the actual error and theoretical error limit in all conditions except for the actual error

when the eccentricity is 0.6 and 0.85 for the fixed time step of 1.07 TU. The rejection of

 177

the null hypothesis at those eccentricities with the use of adaptive time steps suggests that

this was probably due to size of the time step at perigee, as highly eccentric orbits require

small time steps at perigee. Therefore, the ability of the intermediate frames to reduce

roundoff error for a variety of conditions is verified.

The effectiveness of the intermediate frames in reducing roundoff error was

evaluated by comparing the mean actual error and mean theoretical error limit of

satellites using intermediate frames with control models that did not use intermediate

frames, as illustrated in Figure 7.10. The effectiveness of the intermediate frame

improves at smaller time steps where the roundoff error increases in the control model.

At the smallest time step, the numerical error of the model using an intermediate frame

was two orders of magnitude less than the numerical error in the control model.

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.0001 0.001 0.01 0.1 1

Time Step (TU)

M
ea

n
 E

rr
o

r
(D

U
)

Actual Error with Intermediate Frame Actual Error without Intermediate Frame

Error Limit with Intermediate Frame Error Limit without Intermediate Frame

Figure 7.10: Position Error for Different Time Steps

 178

The importance of selecting an appropriate critical level was demonstrated by

comparing the error reduction achieved using the adaptive critical level described in

Chapter 4 and four fixed critical levels for velocity. The mean actual error using the

adaptive time step was compared with the mean actual errors using these fixed critical

levels as well as the errors from the corresponding control model. The eccentricity of the

orbit was restricted to 0.0 and only fixed time steps were used.

1.0E-05

1.0E-04

1.0E-03

0.0001 0.001 0.01 0.1 1

Time Step (TU)

A
ct

ua
l M

ea
n

E
rr

or
 (

D
U

)

C1: Largest Fixed Critical Level C2: Large Fixed Critical Level

C3:Small Fixed Critical Level C4: Smallest Fixed Critical Level

Adaptive Critical Level Without Intermediate Frame

Figure 7.11: Effect of Different Critical Levels on Error

Figure 7.11 illustrates the need to adapt the critical level to time step, as the larger

critical levels are effective at large time steps but rapidly lose their effectiveness at

smaller time steps. Conversely, small critical levels are effective at small time steps but

ineffective at larger time steps. The adaptive critical level, on the other hand, varies its

 179

magnitude based on the time step used by the simulation scenario, as illustrated in Figure

7.12, enabling it to remain effective over a large range of time steps.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0001 0.001 0.01 0.1 1

Time Step (TU)

C
ri

ti
ca

l L
ev

el
 (

D
U

/T
U

)

C1: Largest Fixed Critical Level C2: Large Fixed Critical Level

C3: Small Fixed Critical Level C4: Smallest Fixed Critical Level
Adaptive Critical Level

Figure 7.12: Effect of Time Step on Adaptive Critical Level

The computational cost of intermediate frames was estimated by examining the

number of path operations and the runtime. It was observed that, while the control model

required 6 path operations per time step, corresponding to the number of derivative calls

in the RKCK integration routine, the model using intermediate frames required 20 path

operations per time step. Use of the intermediate frame increased the path length by 1.

Since the transformations path was called twice per derivative call, the first during the

calculation of forces in the UDS and the second during the calculation of kinematics by

the GDM, an additional 12 path operations were used in the 6 derivative calls required by

the RKCK routine per time step. The dynamic model also published its motion states

 180

with respect to the navigation frame, adding an additional 2 path operations during the

time step. While the number of path operations with the use of intermediate was

approximately 2.3 times larger than the number required by the control model, the

effective computational cost was much smaller and was estimated by comparing the

runtimes of the different conditions, as depicted in Figure 7.13. The runtimes of

configurations using intermediate frames was about 60% longer than the configurations

using the control model.

1

10

100

1000

10000

100000

0.0001 0.001 0.01 0.1 1

Time Step (TU)

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Model with Intermediate Frame Model without Intermediate Frame

Figure 7.13: Computational Cost of Intermediate Frames

 181

CHAPTER 8

CONCLUSION

8.1 Summary

Reference frame definitions are usually considered intrinsic to the dynamic model

in most aerospace simulations due to modeling decisions early during their development.

This thesis has treated reference frames as unique entities that can be defined with respect

to other reference frames. The focus of this thesis was to develop a mechanism that

allows a network of reference frames to be formed, enabling the calculation of the

kinematics and rotations between any pair of reference frames within the network. This

mechanism also enables dynamic models to be viewed as a combination of generic

properties common to all models and unique properties that give dynamic models their

unique behavior. When implemented in a simulation environment, this mechanism allows

a simulation component to express the motion parameters of other components in its

preferred reference frame. Dynamic models are able select their reference frames from

the simulation environment. Furthermore, reference frames can also be created to

facilitate the reduction of roundoff error. Parallel and distributed simulations (PDS) also

benefit from this mechanism, as the individual components within each federate can use

their preferred reference frames.

The first three objectives of this research were met by defining reference frames

using their motion parameters, allowing them to be treated as nodes in a modifiable

network assembled at runtime in the simulation environment by the Reference Frame

Manager. Specifically, reference frames were conceptually treated as entities whose

 182

motion was defined with respect to other reference frames. Each reference frame was

defined with respect to a single definition frame through its motion parameters.

Definition with respect to a single definition frame ensures that a network of reference

frames provides a unique path linking any pair of arbitrary reference frames in network,

ensuring consistent kinematics and rotations. This definition of reference frames allows

them to be treated as nodes in a network of reference frames. These nodes are linked

through their motion parameters. Standard operations were defined for the network to

facilitate the manipulation of nodes, enabling an extensible network of reference frames

to be maintained. When implemented in a simulation environment, the properties of each

node and its operations within the network facilitate the definition of reference frames as

unique entities with standard set of properties and interfaces. The standard interfaces of

the reference frames and the network allow dynamic models to access all the reference

frames in the simulation.

Once a network of reference frames is formed, the paths linking reference frames

are identified. Since the network uses a tree topology, a search algorithm that uses the

levels in the tree identifies the path linking the nodes. The network uses these paths to

assemble the kinematics and rotations between reference frames. When implemented in a

simulation environment, the Reference Frame Manager uses these algorithms to assemble

the kinematics and rotations upon request by dynamic models and other simulation

components. The conceptual development and implementation of these algorithms

satisfied the fourth objective of this research.

The next two objectives of this research, the reduction of roundoff error through

reference frames, were achieved through the development of intermediate frames. These

 183

intermediate frames act as surrogates of the navigation frame and are defined so that the

motion states of the vehicle with respect to the intermediate frame are bounded. If the

vehicle’s motion states exceed specific critical values, the motion parameters of the

intermediate frame and motion states of the vehicle are updated. These critical values for

velocity can adapt to the behavior of the dynamic model to minimize the growth of

roundoff error for both position and velocity.

The next two objectives, dealing with the representation of dynamic models, were

met through the development of generic dynamic models and the identification of

elements unique to specific vehicles. Specifically, the paradigm required by dynamic

models to access reference frames through the network of reference frames encouraged

the development of a generic dynamic component that encapsulates the common

elements within dynamic models. This generic dynamics component provides the

numerical integration routines, a standard representation of kinetics, kinematics and

rotations between reference frames through the network of reference frames. The unique

elements provide the subsystem models as well as the forces, moments and inertia

properties required by the kinetics. These unique elements can be added to the generic

dynamic model to assemble a model of the vehicle.

The final objective was met by developing the data passing protocols required to

use a network of reference frames in PDS. These protocols primarily require dead

reckoning models to either publish the identity of their reference frame or use the

reference frame management mechanism to express their motion parameters in a

common reference frame, which can be set at runtime. The reference frame management

mechanism enabled several configurations to be developed regarding the use of reference

 184

frames in PDS. Two configurations in particular provide a trade off between the number

of reference frames required in each federate and the computational load of handling

kinematics and rotations between reference frames on each federate.

The standard interfaces for the reference frame management system, intermediate

frames and generic dynamic models were implemented as an interface library. This was

then instantiated as the Reference Frame Manager using the object-oriented approach in

the Reconfigurable Flight Simulator, which provides the simulation environment for the

RFM. The RFM is used to create a network of reference frames encouraging the creation

of different reference frame objects in RFS, which can then be added by the RFM to its

network of reference frames.

The architecture of RFS, specifically, the design of the Environment Controller

and Database Object (ECAD) allows the RFM to be added to the simulation environment

and enables any simulation component to access the RFM and its network of reference

frames. The RFM provides a common interface where dynamic models and simulation

components can request the kinematics and rotations between the reference frames in the

network.

The RFM can also create intermediate frames upon request through an

Intermediate Frame Manager, which initializes the intermediate frames and assigns them

to specific vehicles upon request. The RFM updates its network so that the vehicle’s body

frame uses the intermediate frame as its definition frame, which in turn defines its motion

parameters with respect to the vehicle’s original navigation frame.

The generic dynamic model was implemented in RFS as the GDM, which also

instantiated the standard interfaces of the Base Airplane Object. The GDM implements

 185

the functionality common to all 6DOF dynamic models, including integration routines

with adaptive time steps, kinematics, kinetics and rotations that obtain the motion

parameters of reference frames from the RFM. It also maintains a list of UDCs that

provide the forces, moments, inertia properties and subsystem dynamics unique to

specific vehicles.

The HLA Networking Object in RFS was modified to utilize the RFM, allowing it

to express the motion states of RVA and RVM objects with respect to any network frame

set at runtime. It is also able to publish the identity of the navigation frames used by

dynamic models and maintains the motion states of the RVA and RVM objects with

respect to the corresponding navigation frames.

The RFM, GDM, intermediate frames and the modifications to the HLA

Networking Object were verified though a series of demonstrations simulating the

trajectories of satellites through a series of Monte Carlo simulations. The results of these

simulation runs showed that intermediate frames significantly reduce roundoff error and

are especially effective with small time steps. Thus, it is possible to manage total error

without having to sacrifice roundoff error or truncation error.

8.2 Contributions of Work

1. This thesis has shown that a significant portion of kinematics of rigid bodies can be

captured by the simulation environment through a network of reference frames.

Expressing the motion of each reference frame with respect to other reference frames

allows them to be treated as nodes in a network of reference frames and enables the

calculation of kinematics and rotations between any pair of reference frames within

 186

the network. Standard network operations facilitate the growth and modification of

the network through the addition and removal of reference frames.

2. The implementation of this network in the simulation environment ensures that

simulation components can interact with each other regardless the reference frames

used to express motion, encouraging the reconfiguration and reuse of simulation

components in different scenarios and simulation, reducing the time, effort and cost

of developing simulation components for a large variety of applications.

3. This thesis has also shown that a dynamic model may be viewed as a combination of

generic elements and elements unique to specific vehicle models. Elements common

to all dynamic models can be encapsulated in generic model. The generic model is

able to integrate state and derivative vectors of arbitrary size and automate the

kinetics and kinematics of the model using the reference frame management

mechanism, which also handles transformations between arbitrary pairs of reference

frames. The unique elements of the model provide the forces, moments, inertia

properties and subsystem dynamics. The generic model is able to assemble the final

model when given vehicle specific UDCs, encouraging software reuse and reducing

development effort, time and cost.

4. The roundoff error can be reduced without adversely affecting the truncation error or

changing the time step. Intermediate frames can be used to reduce the roundoff error

and help manage the total error in numerical integration. Critical levels control the

behavior of the intermediate frames and can be adapt to the behavior of the dynamic

model to minimize the growth of roundoff error. The development of a method to

control roundoff error independent of time step and the control of truncation error

 187

allows the total numerical error to be controlled, improving the accuracy of long

duration simulations where both sources of numerical error need to be controlled.

Scenarios where time step may be constrained by other factors, leading to

unacceptably large errors, could also benefit from the use of intermediate frames.

5. This thesis has shown how a reference frame management system can be used in

distributed simulation to eliminate the need to force all components to publish their

motion states in a pre-determined a reference frame. Each component is able to use its

preferred reference frame and the reference frame management mechanism and

networking component handle any reference frame transformations that may be

required in publishing the motion parameters of dynamic models. The ability for each

simulation component to express motion in its preferred reference frame without the

need to fix a common reference frame during the software development phase

improves the interoperability of simulations and facilitates their reconfiguration to

include different components and scenarios.

8.3 Future Directions

• This research has assumed that reference frames express their motion using a

Cartesian coordinate system. Consequently, all kinematics and rotations assembled by

the network are expressed in Cartesian coordinates. However, some reference frames

may support multiple coordinate systems. Therefore, the assembly of a network of

reference frames using a variety of coordinate systems and the generation of

kinematics and rotations between reference frames using different coordinate systems

could be examined.

 188

• The intermediate frames in this research were restricted to the reduction of roundoff

error in position and velocity. The effect of orientation and angular velocity on

roundoff error can be studied and may allow the intermediate frames to be expanded

to include orientation and angular velocity for reducing roundoff error. Similarly, the

representation of states in simulation can be examined and methods to reduce

roundoff error in non-motion states could be developed, facilitating the reduction of

numerical error in the dynamic model’s entire state vector, including its subsystems.

• While the development of a generic dynamic model allows the inertial frame to be set

or changed at runtime, the dynamic switching of the inertial frames based on the

fidelity requirements of the dynamic models needs to be fully explored. The

acceleration of the model with respect to different reference frames could be

compared to identify an inertial or Newtonian reference frame providing sufficient

model fidelity for a particular scenario and application[38]. For example, the

acceleration of a vehicle with respect to its inertial frame’s parent and child frames

could be used to regulate the dynamic switching of inertial frames.

• While two configurations for distributing reference frames in a PDS were

demonstrated, methods to measure the benefits of each configuration were not

available. Developing metrics to measure the performance of these configurations

would allow the appropriate configuration to be selected for different scenarios. In

particular, measures of configuration complexity due to the coordination and

identification of reference frames required on each federate need to be developed.

 189

APPENDIX A

THE RECONFIGURABLE FLIGHT SIMULATOR

 190

A.1 The Reconfigurable Flight Simulator Architecture

The Reconfigurable Flight Simulator (RFS) uses the object oriented programming

approach to implement a simulation environment that can be easily expanded and

modified to suit the needs of the user. The object oriented programming approach

facilitates code reuse and encourages a modular design to create greater flexibility and

simplicity in developing components for the simulation. The primary RFS application

sets up the base command line interface and default objects that are used to manage the

simulation. The vehicle modules, controllers and displays are loaded from dynamic link

libraries through the command line interface or script files. Thus, a large variety of

modules and simulation configurations can be loaded as required. Figure A.1 illustrates

the concept of using different aircraft and display modules with RFS to run the required

simulation scenario.

ASI

Available
Display Modules

ADI

EHSI

747

Available
Vehicle Modules

Cessna

MD-11

PFD

Main RFS Application

Figure A.1: Modular Architecture of RFS

 191

The primary components of the simulation are the Simulation Object, the Event

Dispatcher, the Master Simulation Controller, the Environment Controller and Database

(ECAD) Object, the Timer Object, the I/O List, the Vehicle List and the Controller,

Events and Measurement (CEM) Objects List as illustrated in Figure A.2. Additional

objects include the I/O Objects, the Vehicle Objects and the CEM Objects, which are

added to their respective lists. Each of these objects is created through a Library Manager

and the Library/Factory Objects.

Simulator Object

Timer Class Environment Controller And
Database (ECAD) Object

Axis Definition Object

Navaid Database Object

Terrain Database Object

Atmospheric Model Object

Workspace ObjectMaster Simulation
Controller Object

Workspace Object

Network Interface Object

 Controller, Events & Measurement List

I/O List

Vehicle List

Timer Object

ECAD Object

Links To:

Controller, Events
& Measurements List

CEM Object

CEM Object

CEM Object

Network Interface Object

IO Objects List

I/O Object

I/O Object

I/O Object

Vehicle List

Base Vehicle Object

Base Vehicle Object

Base Vehicle Object

Figure A.2: RFS Component Interaction

 192

The Simulation Object and Event Dispatcher are responsible for setting up the

simulation and linking the different modules. The Simulation Object is the main object in

RFS and is responsible for maintaining the various modules in the simulation. The Event

Dispatcher is used as a communications device to pass event messages to all the objects

in the simulation such as the addition and removal of any object from the simulation.

The Master Simulation Controller and the Timer Object are responsible for the

timing issues of the simulation. The Master Simulation Controller is responsible for

passing the time steps to the individual list objects. The Timer Object is responsible for

generating the timing for the simulation. Both the Master Simulation Controller and the

Timer Object can be overridden and replaced if required.

The ECAD object is responsible for setting up the simulation environment. This

object is composed of four objects: the Axis Definition Object, the Terrain Object

Database, the Atmospheric Model and the Navigation Database. Each of these

components can be overridden if necessary.

The Input/Output or I/O Objects provide the interfaces for the development of

displays and controls for user interaction. Thus, common I/O Objects are the cockpit

displays and 'Out the Window' displays for aircraft simulation, virtual control stick

modules and hardware interface modules for flight yokes as well as other visualization

tools such as graphing displays. The I/O Objects are managed using the I/O List Object.

The I/O List adds the I/O Object to the simulation loop and calls the I/O Object at every

time step. The I/O List can be overridden if so desired.

The Vehicle Objects contain the dynamic models for the vehicles being simulated.

These vehicles can include ground vehicles, aircraft or spacecraft. A derived class from

 193

the Base Vehicle class is the Base Airplane class. The Vehicle List is responsible for

adding the Vehicle Objects to the simulation and calling the Vehicle Objects at every

time step.

The CEM is a very powerful class that has access to most of the objects in the

simulation. It is primarily used for controlling vehicle objects, for generating events in a

discrete time simulation and for creating measurement objects. The CEM List is used to

maintain the CEM objects and calls them at every time step.

A.2 Types of Interfaces in RFS

There are 2 major types of interfaces that are available to objects within RFS.

These interfaces are used to facilitate interaction between different objects. The first type

is the standard interface provided by the base classes stored in the Simulation Foundation

Class (SFC) Library. The second type is an extensible interface, called the Object

Data/Method Extension or OD/ME interface that represents methods and data variables

using character strings.

The standard interfaces in the base classes address most of the functionality that is

needed for each class. However, the derived classes may require additional methods that

are not defined in the base class. Furthermore, different classes may need to interact with

each other using these additional methods. If the concept of a standard interface were

used, the header files of the derived classes would need to be included in the header files

of the classes using the interface. This would create a dependency between the classes. A

change in one of the classes would require all dependant classes to be recompiled with

the updated header file of the changed class.

 194

The OD/ME interface reads the methods and data variables as text strings and

passes these strings from the calling object to the called object. These strings are then

reconstructed through the interface and the method is executed or the data is passed back

to the calling object. This interface provides tremendous flexibility in terms of adding

new interfaces and variables. The only drawback is that this interface computationally

more expensive than the standard interface by approximately an order of magnitude.

The SFC Library is built upon the OD/ME interface so that all the classes that use

the SFC Library have the ability to use the OD/ME interface. A command line interpreter

is also built upon the OD/ME interface and acts as the portal for the user to interact with

the simulator. The command line interpreter can be used to load script files, libraries and

even call the OD/ME methods of an object within the simulator.

A.3 The Environment Controller and Database or ECAD

The Environment Controller and Database or ECAD object is responsible for

setting up the simulation environment. This object is composed of four components that

control different aspects of the environment and can be overridden if necessary. This

allows the simulation environment to be tailored to the simulation requirements. The

simulation environment consists of the axis definition used by the vehicles, the weather

model as well as terrain and navigational data.

The Axis Definition Object is responsible for maintaining the reference frames

used by the vehicle objects. This object is better than the typical implementation of

reference frames in simulation in that the object provides the vehicles with a limited

choice of reference frames and their transformations. The default implementation

includes a Cartesian flat earth surface frame and an earth centered earth fixed frame

 195

using latitude, longitude and altitude. Despite the limited frames available, this approach

does provide a certain degree of independence between the vehicle models and reference

frames. This object can be overridden to handle an arbitrary number of reference frames

as well as their kinematics and rotations.

The other components of the ECAD object are the Atmospheric Model, the

Terrain Object Database and the Navigation Database. The Atmospheric Model contains

the method declarations to allow a rudimentary atmospheric model to be implemented.

The current implementation models basic properties such as atmospheric temperature and

density. The Terrain Object Database is currently an empty class that can be overridden

to provide terrain information. The Navigation Database provides information on

navigation aids such as VOR, TACAN and ADF transmitters. It can be overridden as

required to include the navigation aids for different regions.

 196

APPENDIX B

CLASS DESCRIPTIONS OF THE REFERENCE FRAME MANAGER

 197

B.1 Base Classes and Standard Interfaces for Managing Reference Frames

The base classes used to define the basic attributes and interface standards for

reference frames, a reference frame management mechanism, intermediate frames and

generic dynamic models are compiled into a Frame Definition and Management library

that can be accessed by dynamic models and other simulation components. This library

ensures that access to the RFM and its services is independent of its implementation of.

The library defines the following base classes with their associated interfaces:

1. Frame Definition Class

2. Frame Manager Interface Class

3. Intermediate Frame Interface Class

4. Generic Dynamics Interface Class

5. Model Component Interface Class

B.1.1 Frame Definition Class

The Frame Definition class inherits from the ECAD Module Interface class and is

the base class used to determine the interface standards, basic attributes and functionality

of reference frames implemented in RFS. The primary responsibility of the Frame

Definition class is to maintain the motion parameters of the reference frame. The basic

kinematics and integration routine can be generalized to all reference frames and is

implemented in the base class, while the methods to calculate the derivatives of velocity

and angular velocity are unique to specific reference frames and are consequently

represented by pure virtual functions that need to be implemented in the derived class of

each reference frame.

 198

The rest of the interfaces and functionality are implemented to create a base class

that can be rapidly developed into any reference frame required by the simulation

environment. The ECAD Module Interface provides access to the OD/ME interface,

allowing reference frames to customize their interfaces to different simulation

requirements. The standard interfaces and functionality implemented in the Frame

Definition Class are listed in Table B.1.

Table B.1: Standard Interfaces and Functionality for Frame Definition

Standard Interfaces Implemented in the
Derived Class

(Pure Virtual Functions)

− Calculate the derivatives for velocity
and angular velocity

Standard Interfaces Implemented in the
Base Class

− Obtain and set the identity of the
reference frame and its definition frame

− Obtain and set the level of the node in
an enumerated tree

− Add and remove child nodes

− Access or initialize motion parameters

− Access the derivatives for velocity and
angular velocity

− Update motion parameters due to a
discrete change in the definition frame

− Access and override default
propagation of motion parameters

Implementation of Internal Functionality

− Calculate kinematics with respect to the
definition frame

− RK4 integration routine using the
simulation’s time step

All the standard interfaces can be overridden if required. In particular, the default

method of propagating motion parameters is applicable for body frame since the dynamic

 199

model typically handles this functionality. Thus, the dynamic model updates the motion

parameters of the body frame at the end of its time step.

B.1.2 Frame Manager Interface Class

The Frame Manager Interface Class defines the standard interfaces of the

reference frame manager available to simulation components. The Frame Manager

Interface Class inherits from the Axis Definition Object in RFS and has all the standard

methods and variables of the Axis Definition Object, ensuring that the Reference Frame

Manager does not adversely affect simulations components that do not utilize it.

The standard interfaces defined by the Frame Manager Interface Class, listed in

Table B.2, include methods that allow reference frames to be added or removed from the

network, methods to access existing reference frames or request intermediate frames as

well as methods to calculate the kinematics and rotations between reference frames.

Unlike the Frame Definition Class, all the standard interfaces of the Frame Manager

Interface Class are pure virtual functions that need to be implemented to build a

Reference Frame Manager.

 200

Table B.2: Standard Interfaces and Functionality for Frame Manager Interface

Standard Interfaces Implemented in the
Derived Class

(Pure Virtual Functions)

− Register and remove reference frames
from the network

− Check if a specific reference frame is
registered with the network

− Get the number of reference frames
registered with the network

− Access any registered reference frame

− Express motion parameters with respect
to any registered reference frame

− Change the parent node representing a
reference frame’s definition frame

− Create, initialize and update an
intermediate frame upon request

Standard Interfaces Implemented in the
Base Class − NONE

Implementation of Internal Functionality − NONE

B.1.3 Intermediate Frame Interface Class

The Intermediate Frame Interface Class inherits from the Frame Definition Class

described in Chapter 3, providing the standard interfaces and functionality of reference

frames to the intermediate frame. Since the intermediate frame does not accelerate with

respect to the navigation frame, the time derivatives of velocity and angular velocity are

set to zero. Furthermore, the standard update method of using numerical integration is

disabled, improving computational efficiency and restricting the introduction of roundoff

error to errors per update.

The additional interfaces in this class deals with the initialization and update of

the intermediate frame. Both interfaces use the identity of the body frame to access its

motion parameters. Since these interfaces require critical levels to set and update the

 201

motion parameters of the intermediate frame, they are represented by pure virtual

functions, allowing their implementation to be dictated by the requirements of the

simulation. These additional interfaces are listed in Table B.3.

Table B.3: Standard Interfaces and Functionality for Intermediate Frame Interface

Standard Interfaces Implemented in the
Derived Class

(Pure Virtual Functions)

− Initialize intermediate frame using a
specified body frame

− Update the motion parameters and
critical levels of the intermediate
frames if critical levels are exceeded

Standard Interfaces Implemented in the
Base Class

− Set derivatives of velocity and angular
velocity to zero

Implementation of Internal Functionality − Disable default RK4 propagation of
motion parameters

B.1.4 Generic Dynamics Interface Class

The Generic Dynamics Interface Class inherits from the Base Airplane Object in

RFS and defines the standard interfaces and functionality required for the encapsulating

the generic elements of dynamic models. These interfaces include methods to add and

remove components modeling unique elements, set the identity of the navigation and

inertial frames, select the appropriate numerical integration method as well as request the

use of an intermediate frame to reduce roundoff error. Since these interfaces are generic

to all dynamic models, they are implemented in the base class. The only pure virtual

functions present are those inherited from the Base Airplane Object.

The basic functionality of the base class includes the assembly and initialization

of the state and derivative vectors, generalized implementation of the kinetics and

kinematics equations, two types of integration routines as well as the introduction and

 202

initialization of the body frame and intermediate frame. The kinetics equations are

assembled from the force, moment and inertia properties obtained from each UDC. The

integration routines are the standard 4th order Runge Kutta routine and the adaptive 4th

order Runge Kutta Cash Karp method with a 5th order error term to calculate the time

step required to control truncation error. Since the time step is controlled by the

simulation architecture, the integration routine calculates the next time step rather than

repeating the current step when the truncation error exceeds the specified limit

Table B.4: Standard Interfaces and Functionality for Generic Dynamics Interface

Standard Interfaces Implemented in the
Derived Class

(Pure Virtual Functions)

− Pure virtual functions required by the
Base Airplane Object

Standard Interfaces Implemented in the
Base Class

− Add or remove Model Component
Interface objects representing UDCs

− Set the navigation and inertial frames

− Select type of integration routine

− Request an intermediate frame from the
Reference Frame Manager

Implementation of Internal Functionality

− Allocate and initialize the Body Frame

− Link the Body Frame with the
Reference Frame Manager

− Assemble state and derivative vectors

− Assemble kinetics and inertia
parameters from all UDCS

− Calculate kinetics and kinematics

− Propagate state vector using selected
type of numerical integration

 203

B.1.5 Model Component Interface Class

The Model Component Interface Class forms the base class for Unique Dynamics

Components (UDC) and defines the interface standards for representing the subsystem

dynamics, forces, moments and inertia properties of the model. The standard interfaces

include methods to get pointers to the state and derivative vectors of the subsystems,

methods to get the pointers to the force vectors, moment vectors exerted on the body

frame and inertia properties that need to be added to the dynamic model. Pointers to these

vectors and matrices are used since they can vary over time and it is computationally

more efficient to access their addresses rather than execute function calls for each

parameter. Other standard interfaces update these parameters and provide access to the

body frame, the RFM and the Generic Dynamic Component.

The standard interfaces dealing with unique properties of the model are defined as

pure virtual functions that must be implemented by the UDC since these parameters are

specific to each component. In contrast, the methods linking the UDC to the body frame,

RFM and Generic Dynamic Component interact with standardized components in the

simulation and are implemented in the base class.

 204

Table B.5: Standard Interfaces and Functionality for Model Component Interface

Standard Interfaces Implemented in the
Derived Class

(Pure Virtual Functions)

− Generate and return state and derivative
array for subsystem dynamics

− Get pointers to forces and moments

− Get pointers to mass, mass rate and
center of mass

− Get pointers to moments and products
of inertia and their rates

− Update or calculate these parameters at
the current time

Standard Interfaces Implemented in the
Base Class

− Set link to Generic Dynamic Interface

− Set link to Reference Frame Manager

− Set link to Body Frame

Implementation of Internal Functionality − NONE

B.2 Class Description of the Reference Frame Manager

The base classes contained in the Frame Definition and Management Library

defines the base classes and standard interfaces required for creating and managing a

network of reference frame. These base classes and interfaces are implemented in RFS as

the Reference Frame Manager, which is loaded into the ECAD object.

The Frame Manager Interface Class and Intermediate Frame Interface Class are

implemented to form the actual Reference Frame Manager. The Frame Manager Interface

Class defines the standard interface for the RFM. Since the RFM creates and initializes

intermediate frames, it implements the Intermediate Frame Interface Class to create

intermediate frames and manage their critical levels. When implemented, the Reference

Frame Manager implements two new classes that it uses to manage and utilize its

 205

network of reference frames: the Frame Path Class and the Intermediate Frame Manager.

Thus, the RFM consists of the following classes:

1. Reference Frame Manager

2. Frame Path Class

3. Intermediate Frame Class

4. Intermediate Frame Manager

B.2.1 Reference Frame Manager

The Reference Frame Manager (RFM) implements the standard interfaces of the

Frame Management Interface Class as well as the functionality required to create and

manage a network. Since the RFM inherits from the Frame Manager Interface Class, it

replaces the Axis Definition Object in RFS.

The primary operations of the RFM include the management of a network of

reference frames, the identification and generation of paths linking pairs of reference

frames, the evaluation of kinematics and rotations along these paths, and the generation

and maintenance of intermediate frames through an Intermediate Frame Manager. Table

B.6 describes the functionality required for the implementation of each of these

operations in the RFM.

 206

Table B.6: Implementation of Functionality for Reference Frame Manager

Network Operations

− Add and remove nodes

− Graft and prune of trees

− Update list of root nodes (distinct trees)

− Recursively set the level of each node
in all trees starting from the root nodes

− Check if a node is within a specific tree

Path Generation

− Check if a path is available

− Check if a path is feasible

− Assemble forward and reverse paths

− Manage list of paths

Kinematics & rotations

− Assemble kinematics along the forward
and reverse paths

− Assemble rotations along the forward
and reverse paths

Intermediate Frame Management

− Command creation and deletion of
intermediate frames by Intermediate
Frame Manager

− Insert intermediate frame between the
body frame and its navigation frame
using network operations

The RFM creates and manages a network of reference frames using the standard

network operations described in Chapter 3. These operations are typically called when

reference frames are added or removed from the simulation environment or when the

model of a reference frame’s motion parameters is modified and needs to use a new

definition frame.

The reference frames are added to the RFM through their pointers, which are

maintained in a dynamic list. The network topology is represented by a list of root nodes,

indicating the number distinct trees, and each reference frames links to its parent and

 207

child nodes. When a new reference frame is added, the RFM checks if the pointer to the

reference frame’s definition frame is present in its dynamic list. If the pointer is available,

the new reference frame is linked to its definition frame. Otherwise, the new reference

frame is placed in the root nodes list. The RFM then checks if any reference frames in the

root nodes list use the new reference frame is their definition frame. If so, these root

nodes are removed from the root nodes list and linked to the new reference frame,

effectively grafting the root node’s tree to the new reference frame. When linking

reference frames, a pointer to the parent node is set in the child node and the child node’s

pointer is added to a list of child nodes maintained by each parent node. Furthermore, the

level of the child node and the nodes in its sub-tree are reset recursively. The algorithm

for setting the level of a node is illustrated in Figure B.1.

The removal of reference frames from the RFM follows a similar procedure. If the

node to be removed is a root node, its pointer is removed from the root node list.

Otherwise, the link to its parent frame is removed. Thus, the pointer to its parent node is

cleared while its own pointer is removed from the parent node’s list of child nodes. If the

node has any child nodes, the links to the child nodes are removed and the child nodes are

placed in the root nodes list. The levels of the child nodes and their sub-trees are leveled

recursively as described in Figure B1. Similarly, changing the definition frame is

achieved by a series of kinematics, pruning and grafting operations. The motion

parameters are expressed with respect to the new definition frame, the link to the old

definition frame is removed, the reference frame is linked to the node representing the

new definition frame and the levels of the node and it sub-tree are updated recursively.

 208

Figure B.1: Algorithm to Recursively Set Node Levels in the RFM

Once a network is formed, paths linking nodes can be identified and generated

using the search algorithm described in Chapter 3. Since a total of n2-n paths can be

generated, only those paths required for kinematics and rotations are generated upon

request. Once generated, these paths are stored in a list of Frame Path Objects. If a

dynamic model or simulation component requires the kinematics or rotations between a

pair of reference frames, the RFM checks if the path has already been generated and

stored in its list. If the path is not found, the RFM checks if the nodes representing the

// Recursively update the level of the node as well as its child nodes
void FrameManager::f_updateNodeLevel(FrameDefinition* lpFrame)
{
 // Get the definition frame
 lpDefinitionFrame = lpFrame→getLpDefinitionFrame() ;

 // Check if the frame is a root node
 if(lpDefinitionFrame != NULL)

// Enumeration of a frame is greater than its definition frame by 1
 nodeLevel = lpDefinitionFrame→getFrameLevel() + 1 ;
 else
 // Set enumeration of root node to zero
 nodeLevel = 0 ;

 // Assign the enumeration to the frame
 lpFrame→setFrameLevel(nodeEnumeration) ;

 // Check if there are any child nodes
 numberOfChildNodes = lpFrame→getNumberOfChildNodes() ;

 // Recursively update the child nodes
 for(counter = 0; counter < numberOfChildNodes; counter++)
 {
 lpChildNode = lpFrame→getLpChildNode(counter) ;
 f_updateNodeLevel(lpChildNode) ;
 }
}

 209

initial and final reference frames are in the same tree since a path cannot link nodes in

different trees. If the nodes are in the same tree, the RFM executes the search algorithm

to identify the shared node as illustrated in Figure B.2. The shared node links the forward

and reverse paths allowing the path to be assembled, as described in Chapter 3, and

stored in the path list. The kinematics and rotations are assembled recursively along the

path using equations (3.10) to (3.21). Since these paths depend upon the network

topology, when a reference frame is removed or has its definition frame changed, the

RFM checks for and deletes all paths containing this reference frame.

When a dynamic model requests the use of an intermediate frame to control

roundoff error, the RFM commands the Intermediate Frame Manager to generate and

initialize the intermediate frame. The definition frame of the intermediate frame is set to

the navigation frame of the dynamic model. The RFM then adds this intermediate frame

to the network and links it to the model’s navigation frame. The definition frame used by

the body frame is changed using grafting and pruning operations to link the body frame

to the intermediate frame. The motion parameters of the body frame are updated using

kinematics and rotations between the intermediate and navigation frames.

 210

Figure B.2: Algorithm to Identify the Shared Node

B.2.2 Frame Path Class

The Frame Path object stores the sequence of nodes linking the initial node to the

final node. The initial, final and shared nodes are recorded in addition to the forward and

reverse paths. The forward path is the sequence of nodes linking the initial node to the

shared node while the reverse path links the final node to the shared node. Each path

object is identified using the initial and final frames. The shared node, as defined in

Chapter 3, is the node in the path with the lowest level and can be viewed as the root

Propagate Reverse Path:
Set Node_RP to its

parent node
Is #FP > #RP

Yes

No

Is Node_FP = Node_RP

Yes

No

Is #FP = #RP

Yes

No

Start

End

Node_FP : Current node in Forward Path
Node_RP : Current node in Reverse Path

#FP : Level o f current node in Forward Path
#RP : Level of current node in Reverse Path

Propagate Forward Path:
Set Node_FP to its parent

node

Propagate both paths:
Set Node_FP and Node_RP

to their parent nodes

Propagate Reverse Path:
Set Node_RP to its

parent node

Propagate Reverse Path:
Set Node_RP to its

parent node
Is #FP > #RPIs #FP > #RP

Yes

No

Is Node_FP = Node_RPIs Node_FP = Node_RP

Yes

No

Is #FP = #RPIs #FP = #RP

Yes

No

Start

End

Node_FP : Current node in Forward Path
Node_RP : Current node in Reverse Path

#FP : Level o f current node in Forward Path
#RP : Level of current node in Reverse Path

Propagate Forward Path:
Set Node_FP to its parent

node

Propagate Forward Path:
Set Node_FP to its parent

node

Propagate both paths:
Set Node_FP and Node_RP

to their parent nodes

Propagate both paths:
Set Node_FP and Node_RP

to their parent nodes

 211

node of the sub-tree containing the path. Thus, there are two path objects for each pair of

reference frames as each path is unidirectional.

The data stored in the Frame Path class is initialized and maintained by the RFM

during path generation. It should be noted that the forward and reverse paths store the

nodes contributing their motion parameters to the kinematics and transformation

calculations. Thus, the shared node is not included in either path. This implies that either

path may be empty if the initial or final node is the shared node.

In addition to these data members, the Frame Path class also contains interfaces to

manage the paths and assist the RFM in checking for paths. Nodes are added to the

forward and reverse paths through their pointers. Methods to check if a specified node is

the initial or final node enable the RFM to determine if a path exists. Another method

checks if a specified node exists within the path, either within the forward or reverse

paths or as its shared node. This allows the RFM to delete paths containing nodes that are

removed from the simulation.

B.2.3 Intermediate Frame Class

The Intermediate Frame Class implements the Intermediate Frame Interface Class

within the RFM. The standard interfaces of the interface class are implemented to

initialize its motion parameters using the motion parameters of the assigned body frame

and to compare the motion parameters of the body frame with the critical levels, updating

both frames if necessary. In addition to these standard interfaces, the Intermediate Frame

Class also calculates and updates the critical level, adapting to the dynamics of the body

frame. The critical levels are updated at every time step.

 212

The Intermediate Frame is initialized using the body frame of the dynamic model

that requested it. The intermediate frame uses the body frame’s definition frame as its

own definition frame. The motion parameters of the intermediate frame are then

initialized to error reducing magnitudes in the vicinity of the body frame. These

magnitudes are multiples of critical levels for each motion parameter. Initial critical

levels can be estimated using the initial states and derivatives of the body frame. After the

intermediate frame is initialized, it is linked to its definition frame and the body frame in

the network by the RFM. Unlike typical navigation frames, which may support numerous

body frames, the intermediate frame supports only a single body frame, which it uses as

its child node.

The intermediate frame is commanded to evaluate its parameters at very time step

by its child node’s dynamic model. Like the body frame, the motion parameters of the

intermediate frame do not use the default numerical method included in the Frame

Definition class for propagation through time. In this implementation, the intermediate

frame does not rotate with respect to its definition frame and matches its orientation. The

velocity is only updated when its critical level is exceeded and the position per time step

is calculated using the velocity and time of last update. The limits of the critical levels are

also calculated and the critical levels are updated to satisfy these limits.

Once the motion parameters of the intermediate frame are updated, the motion

parameters of the body frame are compared with the critical levels. If they exceed their

critical levels, the motion parameters of both the intermediate frame and the body frame

are updated, as described in Chapter 4. If the intermediate frame is updated or a specified

number of time steps have elapsed without an update, the critical levels are recalculated

 213

to minimize the roundoff error, as described in Chapter 4. The upper limit for roundoff

error due to every update is also estimated.

B.2.4 Intermediate Frame Manager

The Intermediate Frame Manager is responsible for creating and initializing

Intermediate Frames when requested by the RFM. The IFM dynamically allocates the

memory required for the intermediate frame and places the pointer to the intermediate

frame in a list. The intermediate frame is allowed to initialize itself based on the body

frame of the dynamic model.

Since several dynamic models may require intermediate frames, each intermediate

frame is given a unique name, based on the total number of frames generated during run

time. Thus, the first intermediate frame generated would be named “IF0000” while the

100th frame would be named “IF0099”.

The IFM is also responsible for de-allocating and destroying the intermediate

frame when it is no longer in use. When the Intermediate Frame needs to be destroyed,

either when its assigned body frame is destroyed or when the simulation terminates, the

Intermediate Frame Manager is responsible for destroying the object and de-allocating

the memory.

 214

APPENDIX C

DEMONSTRATION RESULTS

 215

C.1 Results From Demonstration 1

Table C.1: Runtime for Scenarios with a Time Step of 1.06795 TU

 Display Not Used Display Used

 Control
Only

Control &
RFM

GDM &
RFM

Control
Only

GDM &
RFM

ECI 1.438 1.453 4.562 34.297 34.500

ECEF 2.047 2.078 6.219 34.328 34.500

ESF 2.454 2.500 7.813 34.328 34.500

Table C.2: Runtime for Scenarios with a Time Step of 0.106795 TU

 Control Only Control & RFM GDM & RFM

ECI 6.125 6.125 35.781

ECEF 12.109 12.125 52.344

ESF 16.469 16.531 68.141

0

5

10

15

20

25

30

35

40

ECI / 1 ECEF / 2 ESF / 3

Navigation Frame / Path Length

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Generic Model with Display Control Model with Display

Generic Model Control Model

Figure C.1: Runtimes of GDM and Control Models for Time Step of 1.06795 TU

 216

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

ECI / 1 ECEF / 2 ESF / 3

Navigation Frame / Path Length

A
ct

u
al

 E
rr

o
r

(D
U

)

90% for Generic Model Median for Generic Model 10% for Generic Model

90% for Control Model Median for Control Model 10% for Control Model

Figure C.2: 90th, Median and 10th Percentile Position Error at 1.06795 TU

1.00E-06

1.00E-05

1.00E-04

1.00E-03

ECI / 1 ECEF / 2 ESF / 3

Navigation Frame / Path Length

A
ct

u
al

 E
rr

o
r

(D
U

)

90% for Generic Model Median for Generic Model 10% for Generic Model

90% for Control Model Median for Control Model 10% for Control Model

Figure C.3: 90th, Median and 10th Percentile Position Error at 0.106795 TU

 217

C.2 Results From Demonstration 2

Table C.3: Reference Frames Loaded on Each Federate (excluding Body Frames)

 Configuration 1:

All Reference Frames Loaded

Configuration 2:

ECI Set As Network Frame

Federate 1 ECI, ECEF, ESF1, ESF2 ECI

Federate 2 ECI, ECEF, ESF1, ESF2 ECI, ECEF

Federate 3 ECI, ECEF, ESF1, ESF2 ECI, ECEF, ESF1

Federate 4 ECI, ECEF, ESF1, ESF2 ECI, ECEF, ESF2

Table C.4: Number of Path Operations for Configuration 1

 Forward Path
Operations

Reverse Path
Operations

Total Path
Operations

Federate 1 30697 0 30697

Federate 2 38415 2560 40975

Federate 3 51227 10220 61447

Federate 4 51233 10220 61453

Total 171572 23000 194572

Table C.5: Number of Path Operations for Configuration 2

 Forward Path
Operations

Reverse Path
Operations

Total Path
Operations

Federate 1 19236 0 19236

Federate 2 35862 7666 43528

Federate 3 52527 15344 67871

Federate 4 52521 15332 67853

Total 160146 38342 198488

Both configurations executed 1283 time steps.

 218

0

1

2

3

4

5

Fed 1 (ECI) Fed 1 (ECEF) Fed 3 (ESF1) Fed 4 (ESF2)

N
u

m
b

er
 o

f R
ef

er
en

ce
 F

ra
m

es

All Reference Frame Loaded ECI as Network Frame

Figure C.4: Number of Reference Frames Loaded (including Body Frame)

0

10000

20000

30000

40000

50000

60000

70000

80000

Fed 1 (ECI) Fed 1 (ECEF) Fed 3 (ESF1) Fed 4 (ESF2)

N
u

m
b

er
 o

f P
at

h
 O

p
er

at
io

n
s

All Reference Frames Loaded ECI as Network Frame

Figure C.5: Total Number of Path Operations

 219

C.3 Results From Demonstration 3

Table C.6: Runtime for Control Model

 Eccentricity

Time Step e = 0.00 e = 0.25 e = 0.60 e = 0.85

1.06795 6.52 6.33 6.33 6.34

1.06795 × 10-1 54.25 53.17 53.17 53.16

1.06795 × 10-2 521.25 520.41 520.66 519.83

1.06795 × 10-3 5190.47 5192.78 5193.75 5185.24

1.06795 × 10-4 51920.70 51915.25 51935.58 51901.42

Adaptive 9.86 10.08 11.48 13.03

Table C.7: Runtime Using Intermediate Frame With Adaptive Critical Levels

 Eccentricity

Time Step e = 0.00 e = 0.25 e = 0.60 e = 0.85

1.06795 10.30 9.88 9.89 9.88

1.06795 × 10-1 88.78 86.72 86.80 86.72

1.06795 × 10-2 853.11 850.39 849.24 847.64

1.06795 × 10-3 8329.36 8326.61 8338.56 8334.30

1.06795 × 10-4 83049.12 83044.23 83069.59 83007.06

Adaptive 11.14 12.59 15.16 17.81

Table C.8: Runtime Using Intermediate Frame With Fixed Critical Levels

 Critical Level for Velocity

Time Step 2-3 2-7 2-12 2-17

1.06795 10.08 9.86 9.88 9.86

1.06795 × 10-1 88.13 85.33 86.75 86.72

1.06795 × 10-2 843.86 829.66 852.91 853.55

1.06795 × 10-3 8293.92 8264.77 8297.69 8519.27

1.06795 × 10-4 82768.84 82647.20 82678.88 83538.14

 220

Table C.9: Number of Time Steps for Adaptive Time Step

Eccentricity Without Intermediate Frames With Intermediate Frames

e = 0.00 790 668

e = 0.25 842 800

e = 0.60 974 980

e = 0.85 1121 1171

Table C.10: Mean Critical Level for Position

 Eccentricity

Time Step e = 0.00 e = 0.25 e = 0.60 e = 0.85

1.06795 5.16E-02 5.45E-02 6.14E-02 8.74E-02

1.06795 × 10-1 1.95E-03 1.96E-03 2.12E-03 2.97E-03

1.06795 × 10-2 7.01E-05 6.90E-05 9.44E-05 1.27E-04

1.06795 × 10-3 4.46E-05 4.60E-05 5.66E-05 6.48E-05

1.06795 × 10-4 4.45E-05 4.59E-05 5.65E-05 6.48E-05

Adaptive 1.05E-01 8.09E-02 6.24E-02 5.97E-02

Table C.11: Mean Critical Level for Velocity

 Eccentricity

Time Step e = 0.00 e = 0.25 e = 0.60 e = 0.85

1.06795 8.00E-02 8.40E-02 9.40E-02 1.13E-01

1.06795 × 10-1 2.73E-02 2.78E-02 2.93E-02 4.02E-02

1.06795 × 10-2 7.80E-03 7.42E-03 9.31E-03 1.30E-02

1.06795 × 10-3 2.48E-03 2.55E-03 2.95E-03 4.17E-03

1.06795 × 10-4 8.21E-04 8.35E-04 9.10E-04 1.31E-03

Adaptive 1.02E-01 9.82E-02 9.82E-02 1.36E-01

 221

Table C.12: Statistic for Paired t-Test for Difference in Actual Error

 Eccentricity

Time Step e = 0.00 e = 0.25 e = 0.60 e = 0.85

1.06795 -4.43 -4.42 1.57 -2.34

1.06795 × 10-1 -12.88 -9.90 -11.18 -7.58

1.06795 × 10-2 -13.70 -13.24 -12.05 -10.35

1.06795 × 10-3 -9.83 -12.04 -10.23 -11.44

1.06795 × 10-4 -13.10 -16.25 -13.38 -10.93

Adaptive -5.73 -5.12 -6.46 -7.01

Table C.13: Statistic for Paired t-test for Difference in Theoretical Error Limit

 Eccentricity

Time Step e = 0.00 e = 0.25 e = 0.60 e = 0.85

1.06795 -730 -332 -403 -242

1.06795 × 10-1 -4922 -329 -430 -468

1.06795 × 10-2 -18164 -314 -442 -495

1.06795 × 10-3 -112559 -312 -434 -491

1.06795 × 10-4 -196006 -310 -431 -491

Adaptive -444 -225 -347 -157

 222

0.0001

0.001

0.01

0.1

1

10

0 20 40 60 80 100

Time (TU)

M
ag

n
itu

d
e

o
f P

o
si

tio
n

 V
ec

to
r

(D
U

)

Position with respect to ECI Frame Position with respect to Intermediate Frame

Figure C.6: Magnitude of Position Vector of a Satellite With e = 0.25

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.0001 0.001 0.01 0.1 1

Time Step (TU)

M
ea

n
 E

rr
o

r
(D

U
)

Actual Error with Intermediate Frame Actual Error without Intermediate Frame

Error Limit with Intermediate Frame Error Limit without Intermediate Frame

Figure C.7: Mean Position Errors for Different Time Steps

 223

1

10

100

1000

0.0001 0.001 0.01 0.1 1

Time Step (TU)

R
at

io
 o

f A
ct

u
al

 M
ea

n
 E

rr
o

r

e: 0.0 e: 0.25 e: 0.60 e: 0.85

Figure C.8: Ratio of Mean Actual Errors for Position at Different Eccentricities

1

10

100

1000

0.0001 0.001 0.01 0.1 1

Time Step (TU)

R
at

io
 o

f L
im

it
o

f M
ea

n
 E

rr
o

r

e: 0.0 e: 0.25 e: 0.60 e: 0.85

Figure C.9: Ratio of Mean Error Limits for Position at Different Eccentricities

 224

1.0E-05

1.0E-04

1.0E-03

0.0001 0.001 0.01 0.1 1

Time Step (TU)

A
ct

ua
l M

ea
n

E
rr

or
 (

D
U

)

C1: Largest Fixed Critical Level C2: Large Fixed Critical Level

C3:Small Fixed Critical Level C4: Smallest Fixed Critical Level

Adaptive Critical Level Without Intermediate Frame

Figure C.10: Mean of Actual Errors for Position With Different Critical Levels

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0001 0.001 0.01 0.1 1

Time Step (TU)

C
ri

ti
ca

l L
ev

el
 (

D
U

/T
U

)

C1: Largest Fixed Critical Level C2: Large Fixed Critical Level

C3: Small Fixed Critical Level C4: Smallest Fixed Critical Level
Adaptive Critical Level

Figure C.11: Variation of Adaptive Critical Level for Velocity With Time Step

 225

1

10

100

1000

10000

100000

0.0001 0.001 0.01 0.1 1

Time Step (TU)

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Model with Intermediate Frame Model without Intermediate Frame

Figure C.12: Mean Runtimes for Scenarios in Demonstration 3

 226

REFERENCES

[1] Foster, L., “Fidelity in Modeling and Simulation”, Proceedings of the 1997 Spring
Simulation Interoperability Workshop, Vol. 1, Inst. for Simulation and Training,
Orlando, 1997, pp 473-481.

[2] Lim, W. C., “Effects of Reuse on Quality, Productivity, and Economics,” IEEE
Software, Vol. 11, No. 5, 1994, pp. 23-30.

[3] Poulin, J. S., Caruso, J. M., Hancock, D. R., “The Business Case for Software
Reuse,” IBM Systems Journal, Vol. 32, No. 4, 1993, pp. 567-594.

[4] Press, W.H., et al., Numerical Recipes in C: The Art of Scientific Computing,
Cambridge University Press, New York, 1997.

[5] Ginsberg, J. H., Advanced Engineering Dynamics, Second Edition, Cambridge
University Press, Cambridge, England, UK, 1998.

[6] Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, American Inst. of Aeronautics and Astronautics, Reston, 2000.

[7] Maxwell, E.A., General Homogenous Coordinates in Space of Three Dimensions,
First Edition, Reprinted, University Press, Cambridge, 1959.

[8] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., “Geometrical
Transformations” Computer Graphics, Principles and Practice, Second Edition in C,
Addison-Wesley Publishing Company Inc, 1999, pp. 201-226.

[9] Rolfe, J. M., Staples, K. J., “Equations of Motion”, Flight Simulation, Cambridge
University Press, Cambridge, England, UK, 1997, pp. 42-51.

[10] Denavit, J., Hartenberg R.S., “A Kinematic Notation for Lower Pair Mechanisms
Based on Matrices,” Transactions of the ASME, Journal of Applied Mechanics, Vol.
22, American Society of Mechanical Engineers, New York, 1955, pp. 215-221.

[11] Stevens, B. L., and Lewis, F. L., Aircraft Control and Simulation, John Wiley &
Sons, Inc, New York, 1992.

 227

[12] Beer, F.P., Johnston Jr., E. R., Vector Mechanics for Engineers: Dynamics, Third SI
Metric Edition, McGraw-Hill Ryerson Limited, Toronto, 1999.

[13] Ascher, U. M., and Petzold, L. R., Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, Society for Industrial and Applied
Mathematics, Philadelphia, 1999.

[14] Fujimoto, R. M., Parallel and Distributed Simulation Systems, John Wiley & Sons,
Inc., New York, 2000.

[15] Miller, D. C., Thorpe, J. A., “SIMNET: The Advent of Simulator Networking,”
Proceedings of the IEEE, Vol. 83, Issue 8, Inst. of Electrical and Electronics
Engineers, New York, 1995, pp. 1114-1123.

[16] Hofer, R. C., Loper, M. L., “DIS Today,” Proceedings of the IEEE, Vol. 83, Issue 8,
Inst. of Electrical and Electronics Engineers, New York, 1995, pp. 1124-1137.

[17] Foley, P. G., Mamaghani, F., Birkel, P. A., “The Synthetic Environment Data
Representation and Interchange Specification (SEDRIS) Development Project”,
www.sedris.org/pap_dlds.htm (Accessed October 30,2005).

[18] Calvin, J. O., Weatherly, R., “An Introduction to the High Level Architecture (HLA)
Runtime Infrastructure (RTI)”, 14th Workshop on Standards for the Interoperability
of Distributed Simulations, Vol. 2, Inst. for Simulation and Training, Orlando, 1996,
pp 705-715.

[19] Stark, T. S., Weatherly, R., Wilson, A., “The High Level Architecture (HLA)
Interface Specification and Application Programmer’s Interface”, 14th Workshop on
Standards for the Interoperability of Distributed Simulations, Vol. 2, Inst. for
Simulation and Training, Orlando, 1996, pp 851-856.

[20] Toms, R. M., Birkel, P. A., “Choosing a Coordinate Framework for Simulations”,
www.sedris.org/pap_dlds.htm (Accessed October 30,2005).

[21] Burchfiel, J., Smythe, S., “Use of Global Coordinates in the SIMNET Protocol,”
White Paper ASD-90-10, Second Workshop on Standards for Interoperability of
Defense Simulations, Vol. 3, Inst. for Simulation and Training, Orlando, 1990.

 228

[22] Lin, K. C., Ng, H., “Coordinate Transformations in Distributed Interactive
Simulation (DIS),” Simulation, Vol. 61, No. 5, Society for Computer Simulation,
San Diego, 1993, pp. 326-331.

[23] Elking, E., McDonald, B., “GCS/Langley Coordinate Conversion”, AIAA Paper
2001-4131, Aug. 2001.

[24] Toms, R. M., “Efficient Transformations from Geodetic to UTM Coordinate
Systems”, 15th Workshop on the Interoperability of Distributed Interactive
Simulations, Vol. 1, Inst. for Simulation and Training, Orlando, 1996, pp 223-228.

[25] Toms, R. M., Smith, K. I., “SEDRIS Coordinate Transformation Services”,
www.sedris.org/pap_dlds.htm (Accessed October 30,2005).

[26] Devanbu, P., Karstu, S., Melo, W., Thomas, W., “Analytical and Empirical
Evaluation of Software Reuse Metrics,” Proceedings of the 18th International
Conference on Software Engineering, 1996, pp. 189-199.

[27] Madden, M. W., “Measuring Reuse in a Simulation Framework,” AIAA Journal of
Aerospace Computing, Information and Communication, Vol. 1, No. 8, 2004, pp.
320-340.

[28] Frakes, W., Terry, C., “Reuse Level Metrics,” Proceedings of the Third International
Conference on Software Reuse: Advances in Software Reusability, 1994, pp. 139-
148.

[29] Poulin, J. S., “Measuring Software Reusability,” Proceedings of the Third
International Conference on Software Reuse: Advances in Software Reusability,
1994, pp. 126-138.

[30] Sayers, M. W., “Symbolic Computer Language for Multibody Systems,” AIAA
Journal of Guidance, Control and Dynamics, Vol. 14, No. 6, 1991, pp. 1153-1163.

[31] Tanenbaum, A. S., Computer Networks, Second Edition, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[32] Vágó, I., Graph Theory Application to the Calculation of Electrical Networks,
Elsevier Science Publishing Company, Inc, Amsterdam, The Netherlands, 1985.

 229

[33] Truss, J., Discrete Mathematics for Computer Scientists, Addison Wesley Longman
Limited, Harlow, England, UK, 1999.

[34] Palmer, M. J., Sinclair, R. B., Advanced Networking Concepts, Course Technology,
Cambridge, MA, 1997.

[35] Ippolito, C. A., Pritchett, A.R., “Software Architecture for a Reconfigurable Flight
Simulator,” AIAA Paper 2000-4501, Aug. 2000.

[36] Hale, F.J., Introduction to Space Flight, Prentice-Hall, New Jersey, 1994, pp. 343.

[37] Bate, R.R., Mueller, D.D., White, R.R., “Canonical Units”, Fundamentals of
Astrodynamics, Dover Publications, Inc., New York, 1971, pp. 40-43.

[38] Kane, T.R., Levinson, D.A., “Secondary Newtonian Reference Frames”, Dynamics:
Theory and Applications, McGraw-Hill, Inc., New York, 1985, pp. 166-169.

