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SUMMARY 

 The rapid growth in the aviation industry means increasing consumption of jet fuels, 

which is leading to greater interest in alternate and sustainable fuel sources. The overall 

properties of these alternative fuels can be designed to meet existing standards. 

Nevertheless, the compositional differences between alternative and conventional fuels can 

lead to important variations in chemical and physical properties that impact engine 

performance. For example, ignition is of paramount importance to ensure reliable 

operation, especially in extreme conditions like cold starts and high altitude relights. For 

aircraft engines, ignition is the process of creating self-sustaining flames starting with a 

high-temperature source located near a combustor liner. This thesis is devoted to studying 

the differences in ignition behavior due to the variations in fuel composition.  

 Fuel variations in ignition are studied in a well-characterized test facility that is readily 

amenable to modeling and simulation. The experiments employ a sunken-fire ignitor, like 

those typically employed in aircraft engines, operating at 15 Hz with ~1.25J spark energy. 

Performance differences among fuels are characterized through their ignition probabilities. 

To understand both the chemical and physical fuel effects on ignition, both prevaporized 

fuels and liquid fuel sprays are examined. The purpose of prevaporizing the fuel is to 

remove the process of liquid to gas transition and to focus on combustion chemistry alone. 

In the forced ignition of liquid fuel sprays, which mimics the situation encountered in 

aviation gas turbine engines, both physical and chemical properties of the fuel are relevant. 

Statistically significant differences between fuel ignition probabilities are observed. The 

droplet heating time is shown to correlate well with ignition probability. A particle Doppler 



 xviii 

phase analyzer (PDPA) is used to study droplet size distribution near the ignitor. These 

droplet distribution measurements can be useful for future CFD modeling.  

 In addition to differentiating fuel performances through ignition probability, advanced 

diagnostic techniques are employed to understand the evolution of a spark kernels as it 

interacts with combustible mixtures. These techniques include high speed OH planar laser 

induced fluorescence, OH* chemiluminescence, and schlieren imaging. The results reveal 

the entrainment of ambient fluid into the convecting spark kernel, the decomposition of 

vaporized jet fuel in the high temperature kernel, and the transition from local “hot spots” 

within the spark kernel to a self-sustaining flame.  

 In addition to the experiments, reduced order modeling is used to better understand the 

physics and chemistry of ignition for both prevaporized and liquid fuels. Chemical 

differences are found to depend on the relative distribution between intermediate 

breakdown products (e.g., ethylene, propene and isobutene) from the parent fuels, as these 

intermediates have drastically different chemical rates as a function of temperature. The 

energy transfer mechanisms important in the ignition of liquid fuel sprays are also 

identified. The chemical heat release and the dilution cooling rates are orders of magnitudes 

larger than the heat required for the droplets’ heating and vaporization. However, the 

droplet heating time is shown to have the largest impact on ignition performance. 
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CHAPTER 1: 

INTRODUCTION AND LITERATURE REVIEW 

 Combustion is the process of converting chemical energy into thermal energy[1]. The 

thermal energy can then be converted into useful works through machines such as internal 

combustion (IC) engine and turbine engines. Liquid-fueled turbines are widely used in 

aviation industry. The successful operation of the gas turbine engines depends on many 

combustion processes. These combustion processes include ignition and flame 

stabilization. In recent years, the introduction of non-petroleum based alternative jet fuels 

into the existing turbine engine infrastructures has introduced the issue of uncertainties on 

the reliable operation of the engines. These next generation alternative jet fuels need to be 

properly researched and certified prior to wide usage. This thesis focuses on studying the 

ignition performances of alternative jet fuels, with the goal of identifying the key fuel 

differences that contribute to successful ignition.  

1.1 Motivation  

As jet fuel production methods through non-fossil fuel sources are maturing, the 

replacement of fossil fuel-based jet fuel by alternative sources is becoming a reality. These 

alternative fuel production approaches include the Fisher-Tropsch process, hydrotreating 

organic compounds, and direct fermentation of sugars. The fuel produced through these 

processes are termed “synthetic paraffinic kerosene” (SPK) and “hydrotreated renewable 

jet” (HRJ) fuels. In contrast to petroleum-based jet fuels, these alternative jet fuels contain 

less variety of chemical compound groups. These fuels are commonly used as mix-ins with 
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conventional jet fuels, and the mix-ins are referred to as “drop-in” fuels. Reliable operation 

is of paramount importance to aircraft. Mixing alternative hydrocarbon fuels with 

conventional kerosene fuel introduces uncertainties to the aircraft engines’ operations, such 

as ignition. From the standpoint of ignition, these new fuel blends need to perform like the 

conventional jet fuels to be acceptable.  To ensure consistent aircraft performance after 

introduction of synthetic fuel, ASTM (American Society for Testing and Materials) 

established standards in 2016 and 2017 to certify engine performance and specify 

acceptable fuel properties after synthetic fuel introduction. In ASME D4054-16[2], 

standard procedures were established for testing and approving new jet fuel blends. ASME 

D4054-16 further specifies that only the original equipment manufacturers (OEM) of gas 

turbine combustors can approve a fuel blend. In ASME D7566-17a [3], the acceptable 

range of physical properties and chemical compositions was specified. Costs for OEM fuel 

certification can be high due to expensive engine operation and costs of fuel production. 

Initial screening through laboratory testing can be a reasonable choice. Not only is the cost 

of laboratory testing less expensive, but also laboratory testing can give more insight into 

the fuels’ performance in a controlled environment. The National Jet Fuel Combustion 

Program (NJFCP)[4] was established to study effect of blending nonconventional fuel 

sources into current jet fuels. The fuels tested in this study are provided by NJFCP. This 

study uses laboratory testing to understand the effect of jet fuel composition on forced 

ignition in a well-controlled, easy-to-model test facility. More specifically, this research 

focuses on the transition of a spark kernel into a growing self-sustained flame.  
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1.2 How ignition occurs in gas turbine combustors 

Before proceeding with a literature review of forced ignition in gas turbine engines, it 

is helpful to have a proper understanding of the ignition process in a gas turbine engine. 

Figure 1.2-1 illustrates the ignition process in a liquid spray-fueled combustor.  

 

Figure 1.2-1. Modified schematic of a combustion chamber from [5]. Cloud 1 represents 

the initial high temperature plasma generated from the ignitor. Cloud 2 represents cooled 

ignition kernel after interacting with an air layer with little/no fuel present. Cloud 3 

represents ignition kernel transitioning into a self-sustaining flame after interaction with 

fuel/air mixtures. 

In conventional gas turbine engines, the very first step in forced ignition is to create a 

spark1 through an electrical discharge (cloud 1 in Figure 1.2-1). This spark kernel is ejected 

into a region with little to no fuel, because to ensure long life ignitors are typically placed 

away from the combustion zone where the gas temperature is high. During this initial 

period, the ignition kernel entrains the surrounding air with little to no fuel. As the kernel 

entrains surrounding fluids, the size of the kernel will grow, and its temperature will 

decrease, as illustrated by cloud 2 in Figure 1.2-1. After a short transition time through this 

                                                 
1In this thesis, the term “spark” means the very high energy density plasma generated by electrical discharge; 

the term “spark kernel” or “kernel” will refer to the high-temperature gas after the plasma cools down due to 

interaction with cold surrounding fluids. 
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air layer, the spark kernel starts to interact with flammable fuel/air mixtures, and if ignition 

is successful, it generates a self-sustaining flame (cloud 3 in Figure 1.2-1). This succession 

of events describes the first phase of successful ignition in an aeroengine combustor.  

The second phase of the ignition process concerns the ability of the flame to propagate 

upstream and grow in the non-uniform, turbulent combustor flowfield. Strong turbulence 

can severely stretch and quench the self-sustained flame kernel. Furthermore, the flame 

kernel must propagate upstream to a location where flame-stabilization can occur. In 

typical gas turbines, one or two igniters are used to initiate combustion in a dozen or more 

burners (Figure 1.2-2). Thus during the third phase of successful ignition, the flame must 

propagate and stabilize all the combustor cups (this is called light around). A successful 

engine lightoff requires each of these three phases of the ignition process to be successful.  

The focus of this research is the first phase of the ignition process, namely generation 

of self-sustaining flame kernel from a spark kernel. The generation of a self-sustaining 

flame can most clearly demonstrate the differences among the fuel blends in initiating a 

flame. The success of the second and third phase will depend on the success of the first 

phase, and the specific geometry of a combustor. 
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Figure 1.2-2. A CAD drawing of the VESTA manufactured by Turbomeca. Two igniters 

are used to ignite 18 burners. 14 burners are shown. Adapted from [6]. 

Although a successful ignition event is shown in Figure 1.2-1, the outcome of any one 

ignition event is stochastic, meaning that an electrical discharge may or may not lead to a 

self-sustaining flame kernel [7, 8]. There are multiple sources of stochasticity for ignition. 

First, there is the breakdown and discharge process in the igniter, where the duration and 

location of the current path depends on the instantaneous conditions between the 

electrodes. Second, when spark kernel expands away from the ignitor, strong shear layers 

are induced by the high velocity gas, and thus the turbulence in the ignition kernel is strong. 

Strong turbulence can affect the entrainment rate of surrounding fluids and thus introduce 

variations in the spark kernel development. The droplet distribution in space is also 

stochastic in time. Different spark kernels will not experience the same droplets as the 

kernels develop. Turbulence in the flow can also quench a flame. Given the probabilistic 

nature of ignition, one or even a few ignition event measurements of a fuel are insufficient 

to characterize its ignition performance; thousands of ignition events are necessary.   
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1.3 Literature Review 

1.3.1 Fuel effect on ignition in gas turbine engines 

 In a paper published by A.H. Lefebvre [9] in 1985, the ignition performance of fuels 

of various composition was analyzed based on experimental data from various studies in 

actual gas turbine combustors [10-15].  In that paper, expressions were developed that 

correlate the minimum fuel/air ratio for successful engine lightoff to: combustor design, 

combustor operating parameters, average droplet sizes, and the fuel’s heating value. The 

minimum fuel/air ratio for lean lightoff  𝑓𝐿𝐿𝑂 was given as  

 𝑓𝐿𝐿𝑂 ∝
�̇�𝐴, 𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑉𝑐𝑃3
1.5𝑒𝑇3/300

×
𝐷2

𝜆 × 𝐿𝐻𝑉
 (1) 

where  �̇�𝐴, 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is the mass air flow rate in the primary zone, 𝑉𝑐 is the volume of the 

primary combustion zone, 𝐷 represents the Sauter Mean Diameter (SMD) of the overall 

srpay, and LHV is the lower heating value of the fuel. 𝜆  is an effective vaporization 

constant, and its definition can be found in Equation 22 in [9]. It should be noted that this 

correlation for lean lightoff has the exact same form as that developed for lean blow out 

(LBO) in the same paper (Eqn 27 in[16]).  In some cases, the LLO correlations show good 

matching between the predicted fuel/air ratio and the measured fuel/air ratio, such as shown 

in Figure 1.3-1. In other cases, however, this equation produces a poor correlation with 

measurements, such as that in Figure 1.3-2. 
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Figure 1.3-1. Comparison of measured and predicted values of qLLO for J79-17C 

combustor, adapted from [16]. Compositions of fuels (1A – 6A) is provided in [16]. 

 

 

Figure 1.3-2. Comparison of measured and predicted values of qLLO for a TF41 

combustor for various fuel blends, adapted from [16]. 

The partial success of Lefebvre’s expression in correlating ignition results suggests 

that it captures some key physical process that control ignition, such as the impact of 

droplet size. However, the poor results in some cases also indicate other important physical 

processes or fuel properties may be overlooked. Contrary to the significant difference 



 8 

among fuels in their ignition performances, in a later study [17], the ignition performances 

of various fuel blends are shown to have little differences.  

  To pinpoint the relevant parameters during ignition, Lefebvre referred to a standard 

model for the minimum energy required to ignite a premixed fuel-air mixture based on the 

ability of a laminar spherical flame to propagate in a self-sustained manner [18]. More 

precisely it is when the heat release from the spherical flame is greater than conduction 

cooling to the surrounding gas. The minimum supplied ignition energy, 𝐸𝑚𝑖𝑛, is given by 

the following equation 

 𝐸𝑚𝑖𝑛 = 𝑐𝑝𝐴𝜌𝐴Δ𝑇𝑠𝑡(𝜋/6)𝑑𝑞
3
 (2) 

where 𝑐𝑝𝐴  is the heat capacity of air, 𝜌𝐴  is the density of air, Δ𝑇𝑠𝑡  is the temperature 

between the initial air temperature and the stoichiometric burning temperature, and 𝑑𝑞 is 

the quenching distance. For a monodispersed spray in a quiescent environment [19], the 

quenching distance can be expressed as  

 𝑑𝑞 = [
𝜌𝐹𝐷0

2

𝜌𝐴𝜙ln (1 + 𝐵𝑠𝑡)
]

0.5

 (3) 

where 𝜌𝐹 is the density of the fuel, 𝐷0  is the droplet size of the monodisperse spray, 𝜌𝐴 is 

the density of the air, 𝜙 is the equivalence ratio, and 𝐵𝑠𝑡  is the Spalding mass transfer 

number. This minimum ignition energy accounts for the effect of droplet size and fuel 

vaporization process. A smaller quenching distance will give a smaller minimum ignition 

energy, meaning that ignition can be achieved easier. High 𝜙, large 𝐵𝑠𝑡 (fast vaporization 
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rate), and small droplet sizes will all give a smaller quenching distance. When the droplets 

sizes are small or significant, the flame speeds (laminar or turbulent) are used in the 

calculation of 𝑑𝑞 account for the chemical reaction rates [18]. Later literature reviews will 

show why this ignition model may not be appropriate and descriptive for modern gas 

turbine combustors.  

 Before droplets can vaporize quickly, they first need to approach a boiling temperature. 

When the combustor is already burning and temperatures are high, droplets can quickly 

reach this fast vaporization condition, and droplet heat-up may not be important. However, 

during start-up of gas turbine engines, the temperature of surrounding gas is usually much 

lower than 1000 K, as can be seen in Figure 1.3-3. For cold start and high-altitude ignition, 

the fuel temperature is ~100-200 K below the initial boiling point for most jet fuels. The 

rate of droplet heating can be a significant process that is not accounted for in Lefebvre’s 

correlation.  

 

Figure 1.3-3. The range of combustor inlet conditions for primary figure of merits (FOM) 

that include lean blowout, cold start, and high-altitude ignition, adapted from [4].  
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1.3.2 Forced ignition  

 The jet engine ignition studies described in the previous section relied primarily on 

measurements of lean light off limits in jet engines or combustor rigs. Only a few studies 

have explored the details of the forced ignition process in conditions like those found in 

turbine engine combustor. Most forced ignition studies that have utilized advanced 

techniques such as optical diagnostics or computational modelling to explore the physics 

of forced ignition have focused on premixed and/or quiescent conditions.  

As discussed in §1.2, the spark kernel in a gas turbine combustor will need to travel 

through a region with little to no fuel before interacting with a flammable mixture. The 

requirement for the spark kernel to interact with air prior to flammable mixture makes the 

ignition process in a gas turbine engine different from other configurations, such as the 

ignition process in a spark ignition (SI) engine, in which the spark kernel is generated 

within the flammable mixture as shown in Figure 1.3-4.  
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Figure 1.3-4. Combine PLIF and emission signal of an ignition sequence in an SI direct 

injection (DI) engine [20]. TDC stands for top-dead-center. A and B stands for after and 

before. A spark is generated at 34o BTDC. The angles are the crank angles.  

  The reason that the spark kernel can be ejected from the igniter is due to the special 

configuration of the igniter. In an electrode gap type spark plug, the sparks are generated 

in between the electrode gap. The sparks will expand in all directions due to high pressure 

induced by high temperature. However, the spark will not be travelling with a bulk velocity 

(unless in a convecting flow). Figure 1.3-5 [21] shows a CFD simulation of a spark 

generated from two electrodes. The spark is expanding and traveling downstream in a 

convecting flow.  
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Figure 1.3-5. CFD simulation of a spark discharge from two electrodes in a convecting 

air flow [21]. 

 Jet engine combustors generally employ surface discharge igniters [22]. There are two 

types of surface discharge igniters: one is the flush fire igniter and the other is the sunken 

fire igniter. The primary difference between the two types of igniter is whether the central 

electrode and the grounded electrode is separated by an air gap or not. The insulator is 

coated with semiconductor materials to facilitate breakdown [5]. For the sunken fire igniter 

used in the current research, the grounded electrode is made to be taller than the central 

electrode, such that the expanding hot gas will be directed away from the igniter. The 

igniter on a gas turbine engine will operate repeatedly for a fixed duration; generally 

lightoff should occur within this time period. The energy and repetition rate of the sparks 

are controlled by an external circuit (the exciter) that supplies electricity to the igniter. 
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Figure 1.3-6. Cross-sections of the two types of surface discharge igniters [22]. Left: 

Sunken fire igniter with recessed gap; Right: Flush fire igniter with flush gap.  

 This spark kernel ejection process gives the kernel a structure like a pulsed jet. More 

discussion on the pulsed jet like structure is given in§2.1.. In Sforzo’s dissertation [23], an 

optically accessible facility was developed to understand the ignition of methane/air 

mixtures with a gas turbine type ignitor in a two-dimensional mixing flowfield. This 

ignition rig used a splitter plate to separate the combustible flow from an air flow with little 

to no fuel. The spark kernel had to first travel through the air gap before reaching the 

combustible flow. The width of the air gap was adjusted by repositioning the splitter plate. 

The parameters that were controlled include the splitter plate height, the average velocity 

of the cross flow, the temperature of the crossflow, and the equivalence ratios of the 

combustible flow and the near-kernel flow. This study compiled a large number of ignition 

probabilities at different conditions, and a linear regression analysis was used to understand 

the relative importance of each parameter. A tornado chart of the t-ratio of the various 

terms used to correlate the data is shown in Figure 1.3-7. The width of the splitter plate 
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(hsplitter) turns out to affect the outcome of ignition most, followed by the temperature of the 

flow.  

 

Figure 1.3-7. t-ratio from a multivariable linear regression model for predicting ignition 

probability [23].  

Based on the turbulent entraining kernel structure, Sforzo used a perfectly-stirred 

reactor model to understand the effect of entrainment and chemical reactions on ignition. 

The author then used a support vector machine (SVM) to analyze a large number of 

simulations and classify conditions for which ignition would occur. The success in using 

the model to predict the experimental results shows the validity of using the PSR to 

simulate the forced ignition process.  

1.4 Thesis objectives and organization 

 The general objective of this dissertation is to understand the initial ignition process of 

forced ignition for liquid fuels. The general objective can be divided into two more specific 
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sub-objectives. The first sub-objective is to understand the effect of fuel chemistry on 

forced ignition. Autoignition studies of jet fuels typically employ initial temperatures of 

800-1300 K. The instantaneous temperature of the ignition kernel when interacting with 

the fuel can be well above 2000 K. At such high temperatures, chemical reactions can 

deviate from those at lower temperatures. The second sub-objective is to understand the 

effect of liquid fuel sprays on the forced ignition process. In many combustion studies 

involving droplets, the heating phase of the droplets is often assumed negligible, and the 

combustion processes are controlled by the vaporization rate. This is a reasonable 

assumption when the combustor temperature is high. However, for forced ignition in 

turbine engines, where ambient temperatures are often insufficient to vaporize the fuel, 

ignoring the droplet heating can mean neglecting an important piece of physics.  

 The remaining portions of this thesis are divided into six chapters. Chapter 2 provides 

additional background information on the structure of a pulsed jet, which in many ways 

resembles the flow created in the post-breakdown conditions of a jet engine ignitor. It also 

provides basics on one of the diagnostic methods employed in the thesis, planar laser 

induced fluorescence. Next, Chapter 3 introduce the approaches, both experimental and 

modelling, taken in studying forced ignition of alternative jet fuels. The results of the thesis 

are presented in the next three chapters. Chapter 4 describes the experimental findings from 

high-speed, imaging diagnostics employed to understand the initial kernel development 

using various fuel under prevaporized conditions. Chapter 5 covers experiments and 

analysis of ignition of prevaporized fuels that identifies the effect of chemical differences 

among fuels. Chapter 6 extends the work to experiments on forced of ignition of liqud fuel 

sprays and reduced order modeling of the interactions between a hot spark kernel and 
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droplets that lead to successful forced ignition. Finally, Chapter 7 summarizes the 

contributions and impacts of this thesis work, and provides recommendation for future 

works.  
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CHAPTER 2: 

BACKGROUND 

 The two sections in this chapter introduces the structure of a pulsed jet and the planar 

laser induced fluorescence (PLIF). The spark kernels ejected from the sunken fire igniter 

are pulsed jets of high temperature air. An understanding of the pulsed jet structure is 

helpful in analysing the forced ignition process. PLIF is a commonly used technique in 

combustion diagnostics.  

2.1 Vorticial structure of a pulsed jet 

As indicated previously, the spark kernels generated by a sunken fire igniter exit the 

igniter cup like a pulsed jet. Therefore, it is helpful to have a basic idea of the physics 

related to a pulsed jet.The goal here is to highlight the entrainment nature of a pulsed jet 

and the trajectory of a pulsed jet in a cross-flow. As the pulsed jet is ejected, the strong 

shear between the ejected fluid and the surrounding fluid will induce a “roll-up” structure 

[24]. A direct consequence of this roll-up structure is the entrainment of the surrounding 

fluids. The experiments performed by Oclay and Krueger [25] showed clearly this roll-up 

structure and the entrainment. In their experiments, the velocity of a pocket of dyed fluid 

in the nozzle is controlled such that the pressure used for pushing the fluid increase and 

then decrease. They defined a normalized time t* by dividing by the time during which 

pressure is applied to push the fluid out of the nozzle. The rise and decay times of the 

pressure pulse were also controlled. 
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 Figure 2.1-1 shows the fluorescence of the pulsed jets through the jets’ center plane 

for two different jet velocity profiles. The jets are marked by white colors. The entrainment 

of the surround fluid (dark) by the two vortex pairs are clearly shown. The differences in 

the top and bottom rows show that the differences in the velocity profile can induce 

different entrainment behaviors.  

 

Figure 2.1-1. The fluorescence image through the pulsed jets’ center planes. The top row 

shows a fast rise in the pressure driving the pulse and then a slow decay in the pressure. 

The bottom row shows the opposite case, in which the pressure rises slowly and decays 

quickly. Adapted from [25].  

 The kernels created in a combustor are ejected into the combustor and convected 

downstream through the cross-flow. The trajectories of the ejected kernels determine when 

they will interact with the flammable mixtures. Johari [26] studied pulsed jet trajectories 

in cross-flows based on the momentum ratios between the jet and the cross flow. The jet 

trajectories were given as  
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where 𝜌𝑗 is the density of the jet, 𝜌𝑐𝑓 is the velocity of the cross flow, Uj is the velocity of the flow, 

d is the diameter of the nozzle, and Ucf is the velocity of the cross-flow. From this equation we can 

see that for a spark, the temperature of the fluid in the spark is high, and the density is therefore 

low. For a lower density, the same change in x will give a smaller change in y. This equation can 

also be used to estimate the jet velocity.  

2.2 Planar Laser Induced Fluorescence (PLIF) 

PLIF [27, 28] is a laser-based technique that uses a laser sheet at a wavelength chosen 

to excite specific species to an upper energy level which can then decay through 

spontaneous emission. Figure 2.1-1 is an example of using PLIF where a specific dye is 

used as the target species. For combustion diagnostics, certain species of interest can be 

excited to fluoresce. One of the species of special interest in combustion is the OH radicals, 

and the OH radicals are targeted for this research (OH PLIF). A microscopic description 

of the laser induced fluorescence (LIF) in shown in Figure 2.2-1. 
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Figure 2.2-1. Energy level diagram of LIF [29]. 

The fluorescence equation can be used to quantitively relate the recorded fluorescence 

signals to the physical fluorescence process. The fluorescence equation is  

 
𝑆𝑓 =

𝐸𝑝

𝐴𝑙𝑎𝑠
× 𝑔𝐵 × 𝑁𝑎𝑏𝑠𝑓𝑣′′𝐽′′ ×

𝐴

𝐴 + 𝑄

× 𝜂𝑐 

(5) 

where Sf is the recorded fluorescence signal per volume, Ep is the laser pulse energy, Alas 

is the cross-sectional area of the laser sheet, g overlap integral of the absorption and laser 

line shapes, B is the Einstein coefficient for absorption, Nabs is the number density of the 

target species, 𝑓𝑣′′𝐽′′ is the population fraction of the absorbing rotational-vibrational levels, A is 

the spontaneous emission rate, Q is the electronic quenching rate, and 𝜂𝑐 is the efficiency of the 

optics. Through using the fluorescence equation, the species concentrations [30], temperature [31, 

32] can be measured.  
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CHAPTER 3: 

APPROACH 

 This chapter describes the methods employed in this thesis for studying forced 

ignition of alternative jet fuels. First, the ignition facility is described, which employs a 

readily modellable, optically accessible test section. Next, the chapter describes the fuels 

provided by National Jet Fuel Combustion Program (NJFCP). These fuels include 

conventional jet fuels, alternative jet fuels, and surrogate fuels. Then, the measurement 

approaches used to characterize the ignition process and flow conditions are presented. 

Finally, a modelling approach used to analyze and interpret the ignition results is described. 

For gaseous fuel, a constant-pressure, ideal-gas perfectly stirred reactor (PSR) is used in 

two stages to simulate the two stages of ignition. This PSR model will be referred to as the 

ignition kernel model. A droplet heating and vaporization model is then coupled to the PSR 

model to study the role of droplet heating and vaporization on ignition kernel dilution and 

heat release.  

3.1 Ignition facility 

The ignition facility used for this dissertation is inherited from a previous research, 

studying forced ignition of methane/air mixture. This facility is designed to test forced 

ignition in turbine engine-like environment. In gas turbine combustors, igniters are 

generally placed near the walls of the combustors, so that the generated spark kernels need 

to traverse through a region of flowing air with little to no fuel before reaching combustible 

mixtures. The rest of this section will describe the modified experimental facility designed 

for prevaporized and liquid jet fuel testing, respectively.  
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3.1.1 Prevaporized fuel ignition facility 

Figure 3.1-1 show the ignition facility for prevaporized fuels. The facility was used to 

recreate important flowfield conditions near igniters in actual gas turbine combustors.   

 

Figure 3.1-1. Schematic of test facility for prevaporized fuels, adapted from [23]. 

The dashed square box highlights the test section where ignition events were observed. 

The height, width, and length of the test section are 54.0, 85.7, and 215.9 mm, respectively. 

The walls of the test section are equipped with quartz windows, allowing full optical access 

to the test section. Inflow air was preheated to 478 K and regulated to target a 12 m/s mean 

flow velocity in the test section. A perforated plate after the inlet is used to produce a 

uniform flow velocity. Downstream of the perforated plate, a 0.635 mm thick steel plate 

separates the heated air flow into an upper main flow and a lower kernel flow. The main 

flow is fed a prevaporized fuel and carrier air gas mixture through three fuel-injection bars 

spanning across the main flow path. The fuel injection bars are placed ~70 cm upstream of 

the ignitor, allowing thorough mixing between air in main flow and vaporized fuel/air 

mixture. The kernel flow is pure air flow. The test section features full quartz windows on 

the sides and small windows on the top and bottom for optical access. The height of the 
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splitter plate is adjustable between 6.35 and 12.7 mm above the floor of the test section. 

The splitter is fixed into the side walls. The height of the splitter plate is adjusted by 

adjusting the height of the side walls. In this study, the splitter plate is set at 6.35 mm.  

A commercial sunken-fire igniter studied previously [9,13], produced sparks with a 

nominal deposition energy of 1.25 J/spark at a frequency of 15 Hz. After each electrical 

discharge, the resulting high temperature, high pressure air in the cavity ejects into the 

cross-flow. The time between discharges is sufficiently large such that all remnants of the 

high temperature kernels or ignited flames are swept from the test section before the next 

discharge (and there is no flameholding in the test section). The top surface of the igniter 

is raised 3.18 mm above the test section floor to improve ignition probability.  

To test gaseous fuels, the liquid fuel first needs to be prevaporized prior to entering the 

test facility. In addition, it is important to prevent recondensation of the vaporized fuel. To 

achieve fuel vaporization, a Bronkhorst controlled evaporator mixer (CEM) is used. A 

stream of liquid fuel and a stream of air are sent into the CEM. To avoid fuel condensation, 

the temperature of the flowing air that carries the vaporized fuel is set to be 477.6 K. The 

air flow temperature cannot be too high, or it might lead to fuel pyrolysis and chemistry 

occurring prior to encountering the high-temperature spark kernel. The tubing schematic 

of the fuel delivery system is shown in Figure 3.1-2. Liquid fuels are filled into a cylinder. 

The cylinder is then pressurized with industrial grade nitrogen at ~13.8 bar. Temperatures 

of the fuel and air when entering the test section are monitored. The test conditions are 

listed in Table 1. The nominal velocity of air flow is calculated based on the volumetric air 

flow rate and the area of the test section.  
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Figure 3.1-2. Schematic of fuel and air delivery system. 

 

Table 1. Test conditions for prevaporized fuels. 

Nominal air velocity 12 m/s 

Air temperature 477.7 K 

Fuel Temperature 470 K  

𝛟 0.5-0.7 
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3.1.2 Liquid Fuel Spray Ignition Facility 

To test liquid fuel sprays, the facility is modified to allow the inclusion of a spray 

nozzle. Schematic of the modified rig for spray ignition is shown in Figure 3.1-3.  

 

Figure 3.1-3. Schematic of test facility modified for liquid fuel spray, adapted from [23]. 

Compared to the facility in Figure 3.1-1, the modified facility replaces the gaseous fuel 

injection system with a liquid fuel injection system; no changes were made to the test 

section or the perforated plate used to laminarize the flow. The liquid fuel supply system 

is shown in Figure 3.1-4. It is a modification of the gaseous fuel supply system shown in 

Figure 3.1-2. Since the liquid fuels do not need to be vaporized, the fuel vaporizer is 

removed, and liquid fuels are directly fed into the test section.  

A Hago M1 nozzle is used to create the spray. While the Hago M1 nozzle is advertised 

as a solid cone atomizer, it is in fact a pressure-swirl atomizer. However, unlike a classical 

pressure-swirl atomizer, it does not produce a hollow cone spray [33]. The Hago atomizer 

has an orifice diameter of 0.254 mm. The atomizer tip is positioned 15 mm above and 5.0 

mm upstream of the igniter, which is located along the bottom wall of the test section. Both 

the atomizer and igniter are placed in the midplane of the rig. The relative positioning of 
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the atomizer and igniter is chosen to make sure little or no fuel is present right above the 

igniter to mimic the expected conditions in an engine combustor. In fact, it was noted that 

significant impingement of fuel at the igniter will cause unrepeatable ignition probabilities. 

The absence of droplets close to the igniter is verified using the absence of visible scattering 

from a HeNe laser beam passing 10 mm above the igniter. Later PDPA measurement also 

confirmed the absence of Liquid fuel droplets above the ignitor.  

 

Figure 3.1-4. Liquid fuel supply for spray testing.  

 To understand the effect of fuel chilling on ignition, a fuel chiller is incorporated into 

the fuel supply system after the tests for the room temperature fuels are complete. The 

chiller is made with stainless steel coils immersed in polyglycol/water mixture. The fuel 

lines are insulated to reduce fuel warming prior to injecting into the test section. The chiller 

can chill the fuel down to -27 C when entering test section. The test conditions for fuel 

spray ignition are given in Table 2.  
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Table 2. Test conditions for liquid fuel spray ignition. 

Nominal air velocity 10 m/s 

Air temperature 300 K 

Fuel Temperature 297 K /246 K 

𝛟 0.55 

3.2 Description of Jet Fuels 

The fuels tested in this work were provided by the National Jet Fuel Combustion 

Program (NJFCP). The fuels are grouped into three categories. Category A fuels contain 

three conventional jet fuels. A1 is JP-8, which is a widely used, versatile fuels for military 

vehicles. JP-8 can also serve as a diesel fuel replacement. A2 is jet-A, which is used for 

commercial airlines. A3 is JP-5, which is a jet fuel commonly by aircrafts on an aircraft 

carrier. Due to the fuel is stored on aircraft carriers, JP-5 has higher flash point than the 

other two A fuels.  

The second category is the category C fuels. These fuels were designed to have 

properties at the limits of the requirements for current jet fuels, or to examine the impact 

of fuels with properties unlike typical distillate fuels, e.g., narrow boiling point ranges and 

less fuel complexity. This category also includes some current alternative jet fuels or 

alternative fuels blended with conventional jet fuels. The C1 fuel is composed primarily of 

C-12 and C-16 highly branched isoalkane (99%), and it has a low cetane number. C2 is a 

mix of iso-paraffin and trimethylbenzene, and this composition gives C2 a bimodal 
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distillation curve. C3 is designed to have high viscosity at jet fuel specification limit. C4 is 

C1 blended with C-9 to C-12 isoalkanes so that the boiling characteristics of C4 is like that 

of jet fuels. C5 is a fully formulated fuel with narrow boiling range, i.e., C5 boils at a single 

temperature like a pure fuel. C7 is designed to have high cycloparaffin content. C8 contains 

high aromatic content. C9 is composed of 100% hydro-processed esters and fatty acids 

(HEFA) fuel, and it has the highest cetane number that is achievable by any 100% HEFA 

fuel.  

The third category are the surrogate fuels. These fuels are composed of a limited 

number of components that simulates real fuel behaviors. Three surrogate fuels are tested. 

Surrogate 1 (S1) is composed of 59.3% of n-dodecane, 18.4% of iso-octane, and 22.2% of 

1,3,5 trimethylbenzene. Surrogate 2 (S2) is composed of 52.6% of n-hexadecane, 25.1% 

of iso-octane, and 22.2% of 1,3,5 trimethylbenzene. Technical grade n-dodecane (nD) is 

composed of 95% of n-dodecane and 5% of other straight-chain alkanes. Table 3 gives a 

summary of the fuel descriptions. More information fuel properties and compositions are 

given in Appendix A.   
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Table 3. Brief description of tested fuels. 

 

3.3 Ignition probability measurement 

To characterize the fuel composition effects on ignition, single-event probabilities 

are measured. Many factors can influence the outcome of ignition, including chemical 

reaction rates, variation in the spark kernel creation and ejection process, the turbulent 

behavior of the kernel interaction with the cross-flow, and variations in the spray 

distribution due to differences in fuel physical properties. Assuming systematic variation 

Fuel Name Fuel Description 

A1 JP-8 

A2 Jet-A 

A3 JP-5 

C1 
94.5% of C12 and C16 iso-paraffin, 

low cetane number 

C2 
Primarily iso-paraffin + 
trimethylbenzene,  

bimodal distillation curve 

C3 
JP-5 blended with farnesene, high 

viscosity fuel 

C4 
C1 blended with C9 to C12 

isoparaffin,  
simulates Jet-A boiling characteristics 

C5 
Fully formulated fuel, narrow boiling 

temperature range 

C7 
Blended, maximum achievable 
cycloparaffin (~62%vol) 

C8 Fuel with high aromatic content  

C9 
Fully synthetic fuel with highest 

Cetane number 

S1 
59.3% of n-dodecane, 18.4% of iso-

octane, and 22.2% of 1,3,5 
trimethylbenzene 

S2 
52.6% of n-hexadecane, 25.1% of 
iso-octane, and 22.2% of 1,3,5 

trimethylbenzene 

nDodecane (nD) 
95% of n-dodecane, 5% of other n-

alkanes 
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in temperature and aerodynamic effects are consistent for all fuels, large enough statistics 

will reveal differences in ignition due to the fuels’ chemical and physical properties.  

3.3.1 Diagnostic Approach 

A commercially available sunken fire igniter operating at 15 Hz, powered by a 

Unison ignition exciter, is used to generate the sparks needed for ignition. Each spark 

releases approximately 1.25 J. The ignition events are captured by a Photron SA3 camera 

with 8-bit digitization. The camera’s field of view captures a portion of the test section 

from the igniter to 15 cm downstream of the igniter. The unfiltered camera records 

broadband emission. The camera is synchronized to spark events via external TTL signals 

generated by an SRS DG 535 digital delay generator. A timing diagram for a spark event 

and its recording is depicted in Figure 3.3-1. The reference signal, T0, is triggered by a 

photodiode signal of the spark emission. A 2 ms delay is set on the delay generator to 

prevent the camera from recording the emission from the spark plasma. Each camera 

exposure lasts for 5 ms. Therefore, a successful ignition is defined as the presence of 

chemiluminescence after 2 ms past the spark discharge. A sample image of a captured 

ignition event is shown in Figure 3.3-2.  
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Figure 3.3-1. Timing diagram for measurement of ignition probability. 

 

 

Figure 3.3-2. A sample image of a successful ignition event with room temperature fuel 

spray, with the camera exposure synchronized according to timing signals in Figure 

3.1-1. 

3.3.2 Probability and uncertainty calculation  

 Thousands of ignition events are acquired for each fuel. An ignition event is defined 

as the process of a spark discharge interacting with a flammable mixture. Sparks will lead 

to self-sustaining flames in successful ignition events, whereas no self-sustaining flame is 
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present for a failed ignition event. The exciter controls the ignition to generate sparks at 

15 Hz for 8 s. This repetition rate combined with the cross-flow velocity ensures that 

subsequent ignition kernels, nor any flames produced by them, can not interact with each 

other; thus each ignition event can be treated as independent. A run is defined as all the 

spark events in an 8 s operation of the ignitor. After the 8 second run, the repetition rate 

decrease from 15 Hz to 1 Hz. For each run, ~110-114 ignition events are captured. The 

success/failure nature of independent ignition events means the ignition statistics can be 

characterized through binomial statistics. The ignition probability is calculated as 

 𝑃 =  
𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑁𝑡𝑜𝑡𝑎𝑙
 (6) 

where P is the successful ignition probability, Nsuccess  is the number of successful ignitions, 

and Ntotal is the total number of attempts.  The 68% uncertainty bound for a binomial 

distribution is calculated as  

 𝜀𝑝 = √
𝑃(1 − 𝑃)

𝑁𝑡𝑜𝑡𝑎𝑙
 (7) 

The ignition probabilities acquired at different conditions can have largely different 

absolute ignition probabilities. For easy comparison between different test conditions, 

ignition probabilities of different fuels are scaled with respect to that of fuel A2, which is 

the standard Jet-A fuel. The relative probability Pr  is  
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 𝑃𝑟 =
𝑃 −  𝑃𝐴−2

𝑃𝐴−2
 (8) 

The uncertainty of the normalized probability can be calculated through uncertainty 

propagation as  

𝜖𝑃𝑟
= √(

𝜖𝑃

𝑃𝐴−2
)

2

+ (𝑃 ∗
𝜖𝑃𝐴−2

𝑃𝐴−2
)

2

 (9) 

 

3.3.3 Repeatability 

Statistically significant data is based on hundreds to thousands of sparks tested for each 

of the 14 fuels. Producing such a large data set required conducting experiments in a 

number of different trials on different days. To ensure data acquired on different days were 

repeatable, some of the fuels were retested on multiple days. Figure 3.3-3 shows 

repeatability results with fuel A2 and C1 on two days. For both C1 and A2, data taken on 

day 1 is within the uncertainty of data taken on day 2.  
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Figure 3.3-3. Absolute probabilities for fuels A2 and C1 of room temperature ignition 

acquired on two different days. 

3.4 High speed diagnostics 

 To better understand how spark kernel interacts with flammable mixtures, high speed 

diagnostics are employed. The evolution of the ignition kernels was characterized by high 

speed images acquired nearly simultaneously from three imaging systems: a schlieren 

setup, a planar laser-induced fluorescence (PLIF) system tuned to excite and detect the OH 

radical, and a ultraviolet (UV) emission system designed to capture chemiluminescence 

from electronically excited OH, denoted as OH*. A small time delay between the OH PLIF 

and chemiluminescence systems was used to prevent interferences from the PLIF signal on 

the chemiluminescence image. The light sources used for the OH and schlieren setups are 

described first, followed by the imaging systems used to collect the three signals. 

3.4.1 Schlieren Imaging 

 Schlieren imaging is a commonly used technique in diagnosing compressible and 

reacting flows. The most common version of this technique works by first passing 
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(nominally) parallel light through the region of interest. This light is then focused to a point 

or a line and blocked by an opaque object before entering the viewing device. The variation 

in density gradient experienced by the light causes refraction. The refracted light is 

captured by the viewing device. The hot ignition kernel was imaged with a point-blocked 

schlieren system to detect the density gradient between the hot kernel and lower 

temperature surrounding flow, as utilized in a previous work [8]. The system consisted of 

a point light source (a 50 watt halogen lamp passing through a 0.4 mm diameter hole), two 

off-axis parabolic condensing mirrors (0.5 m diameter and 1 m focal length), and an 

opaque point spatial filter to block unrefracted light as depicted in Figure 3.4-1. 

 

Figure 3.4-1. Profile schematic of schlieren illumination and imaging configuration (not 

to scale); C2 is the schlieren imaging camera. 

3.4.2 OH* Chemiluminescence 

 OH* chemiluminescence provides a line-of-sight indicator of important chemical 

reactions occurring within the ignition kernel. OH* is generally a good indicator of 
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chemical reaction zones for hydrocarbon fuels. A filter is applied to target emission from 

OH*. As the filter will significantly reduce the light intensity, a light intensifier is used to 

enhance the image quality.  

 

 

 

 

Table 4. Summary of the imaging components. 

 

Camera Intensifier 
Lens 

f, f/# 

Filter 

center, FWHM  

(nm) 

PLIF 
Photron 

SA5 

Lambert 

HiCATT 

Cerco  

45 mm, 1.8 
315, 15 

Emission 
Photron 

SA5 

LaVision 

IRO 

Cerco 

45 mm,1.8 
320, 40 

Schlieren 
Photron 

SA1 
None 

Nikon 

270 mm, 5.6 
None 

Timing 
Photron 

SA3 
None 

Nikon 

20 mm, 4 
None 

 

  

3.4.3 OH Planar Laser Induced Fluorescence (PLIF) 

 An Edgewave Nd:YAG laser operating at 10 kHz, emitting approximately 50W at 

532nm was used to pump a tunable wavelength Sirah Credo dye laser, which was then 

frequency doubled, resulting in an output of 2W of ~283 nm emission with a pulse duration 
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of roughly 10 ns. The laser was tuned to excite the Q1(7) transition in the 

2(v=1)X2(v=0) band (also designated laser as the (1,0) band) of the OH molecule. 

The excitation wavelength was optimized for OH fluorescence by tuning the dye laser and 

observing LIF from a propane-air Bunsen flame. Fused silica lenses were used to form and 

direct a laser sheet approximately with 30 mm  70 mm into the test section, illuminating 

the region of expected early kernel development. 

3.4.4 Imaging system and synchornization 

 Three 8-bit high-speed cameras captured the individual PLIF, chemiluminescence, and 

schlieren signals. As the 10 kHz detection systems could not be synchronized to the 15 Hz 

exciter that controlled the igniter discharge, a fourth camera operating at a higher framing 

rate was used to determine the delay between the high-speed images and the discharge 

pulse. Table 4 provides a summary of the imaging components. A top view of the relative 

position of the four cameras with respect to the test section is shown in Figure 3.4-3. A 

10 kHz TTL signal from a gate and delay generator was used to trigger the three image 

system cameras and the Edgewave Nd:YAG pump laser. Thus, the pump laser, PLIF 

camera, chemiluminescence, and schlieren cameras were synchronized.  

A Photron SA5 camera (C4) equipped with a Lambert HiCATT intensifier (I2) was 

used to capture fluorescence from OH radicals. The PLIF camera operated in externally 

synchronized mode, with the intensifier synchronized to the camera frame rate. The gates 

of the intensifiers were set such that only the PLIF camera could capture emission from 

laser-induced fluorescence. The relations between the two intensifiers and the laser pulse 

is shown in the timing diagram of Figure 3.4-2. A bandpass filter centered at 315 nm with 
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15 nm FWHM was placed in front of the lens to pass red-shifted OH fluorescence in the 

(1,1) and (0,0) vibrational bands. During data acquisition, approximately 1 s of video was 

recorded at a resolution of 896848 pixels. 

 

Figure 3.4-2. Timing relations of the beginning of TTL signal (To), laser signal, gate 

opening of intensifier for chemiluminescence camera (I1), gate opening of intensifier for 

the PLIF camera (I2), and gate opening of the schlieren camera (C2). 

 A second Photron SA5 camera equipped with a LaVision high speed IRO intensifier 

was used to capture emission from the kernel. The bandpass filter (centered at 320 nm) 

installed on the lens was used to detect primarily OH* chemiluminescence, though any UV 

emission in this wavelength range is also captured. The camera and the intensifier were 

synchronized to the same 10 kHz signal used by the Nd:YAG pump laser and the OH PLIF 

system. The size of the recorded images (in pixel dimensions) was identical to the PLIF 

camera.  
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Figure 3.4-3. Top view schematic of test section with relative position of the (C1) timing 

camera, (C2) schlieren camera, (C3) chemiluminescence camera, and (C4) PLIF camera. 

intensifiers on the (I1) chemiluminescence camera and (I2) PLIF camera are also 

depicted. 

 A Photron SA1 camera, also externally synchronized to the 10 kHz triggering signal, 

was used to capture schlieren images, with a pixel resolution of 704704. Finally, the 

fourth camera (Photron SA3), without spectral filtering, was used to image the emission 

from the plasma discharge. The resolution of this camera was 512104 pixels, focusing on 

a small field of view directly above the igniter. It was operated at 60 kHz but synchronized 

to the 10 kHz external TTL signal, and thus also synchronized to all the other camera 

systems. With its higher framing rate, the uncertainty in the time delay between the 

diagnostic images and the discharge event was reduced from 0.1 ms to 0.016 ms.  
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3.4.5 Image processing 

3.4.5.1 Kernel Velocity 

The trajectory path and velocity of the hot air kernel were obtained from the high speed 

schlieren images. The images were first background subtracted based on an image taken 

before the kernel was created (i.e., before the discharge), as illustrated in Figure 3.4-4. A 

Sobel edge tracking algorithm was then used to track the edge of the kernel’s boundary. A 

constant threshold value was used to ensure consistency in edge tracking. The coordinates 

of the kernel edge closest to the x-axis were obtained and transformed into distances from 

the igniter based on a calibration plate image taken prior to testing. Velocities were 

calculated from the differences in distances between frames.  

 

Figure 3.4-4. Depiction of edge-tracking algorithm used to obtain kernel velocities. 

3.4.5.2 Image Registration and Alignment 

The PLIF, schlieren and chemiluminescence cameras were positioned at different 

angles with respect to the test section. For the images in the three cameras to be properly 

compared, their different fields of view and orientation need to be corrected to match. In 



 41 

the beginning of each day’s experiments, images of a transparent plate with equally spaced 

dots (2 mm spacing, 0.5 mm diameter) were acquired (Figure 3.4-5). These dots were used 

to dewarp the images so that images in each camera were aligned with same field of view. 

Since the field of view of the schlieren camera (C2, Figure 3.3-3) was positioned 

perpendicular to the test section, calibration images from the schlieren camera were used 

as the reference image for the other two cameras.  

 

Figure 3.4-5. Calibration images acquired before experiments for registration. Schlieren 

camera (C2) was used as reference for chemiluminescence (C3) and PLIF (C4) cameras. 

The pixel positions of the dots on each camera were determined manually. The 

corresponding dots in the schlieren camera and the non-schlieren camera formed matching 

pairs. These pairs were then used to obtain transformation matrices (using standard Matlab 

image processing functions), and the transformation matrices were applied to the images 

using a built-in dewarping function. As the positions of the dots were selected manually 

and the pixel areas of the dots are not negligible, uncertainties exists when aligning the dots 

in different images. In addition, the camera matching is based on data from the image plane 

defined by the registration plate. The schlieren and the chemiluminescence images, 

however, are line-of-sight measurements; thus the registration process should not be 

expected to provide excellent alignment of the images.  
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3.4.5.3 Contrast Enhancement and Gray Scale Inversion 

To enhance the ability to observe spark kernel development in the PLIF and schlieren 

images, the contrasts of the gray scale images are linearly adjusted with constant 

multipliers. The constant multipliers are chosen through trial and error, such that the 

brightness of the kernel is enhanced without saturation. The contrast adjustment algorithm 

can be expressed as new image = constant multiplier  raw image. The constants used for 

PLIF and schlieren are 3.0 and 2.0 respectively. The Matlab code for the image registration 

is provided in the Appendix B. 

In addition, because human perception is better at detecting dark details on white 

background than detecting bright details on dark background, the images presented in the 

results section are inverted. The inversion is achieved through first creating a matrix with 

the same size as the aligned and registered images. The values in each pixel of this matrix 

are set to be 255, representing the maximum of the dynamic range. This matrix can be 

pictured as a pure white image. The original image is then subtracted from the pure white 

image and an inverted image is obtained.  

3.5 Droplet distribution measurement 

 For combustion phenomena involving droplets, the physical transition from liquid to 

gas prior to fast heat-releasing chemical reactions can have profound influence. For 

example, during forced ignition, the droplets will first need to be heated to its vaporization 

temperature. Subsequently, energy is required for vaporization. As the droplets are heated 

and vaporized, the ignition kernel will be quenched due to entrainment of surrounding 

fluids. The droplet size largely determines the heat-up time, and thus the extent of kernel 
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cooling. Therefore, measurement of droplet sizes can help understand the effect of physical 

properties on forced ignition.  

 The PDPA system consists of a Coherent Innova 90C Argon/Krypton laser, a TSI Flow 

and Size Analyzer (FSA) Model 3500, a TSI bragg cell, a TSI TM 50 series transmitter, 

and a TSI RV 70 series receiver. The Innova 90C laser generates a continuous wave laser 

beam at ~1.2 W with two wavelengths at 514.5 nm (argon) and 647.1 (krypton). A beam 

splitter then separates each of the two wavelengths into two coherent beams at the same 

wavelength. The Bragg cell is used to create moving fringes in one of the split beams by 

slightly changing the frequency, so the directions of velocities can be distinguished. The 

transmitter emits the four beams with a focal length of 363 mm from the transmitter lens. 

The measurement volume created by the intersecting beams is in the shape of 

approximately a cylinder with 80 m diameter by 150 m length. The angle between the 

line of sight of the receiver and the laser beam is ~135°, and the working distance of the 

receiver from the focal position is ~300 mm. The top-down view of the relative positions 

of the components in the PDPA system and the data acquisition system is shown in Figure 

3.5-2. The laser Doppler signal acquired by the receiver is passed to the photo detector 

module (PDM), which essentially samples photonic signals and transforms them into 

electrical signals. The flow and size analyzer (FSA) acquires these electrical signals and 

converts them into information about droplet sizes and velocities based on Doppler shifts. 

The FlowSizer software the presents these analyzed results. In addition to data 

presentation, the FlowSizer can also set the downmix frequency in the Bragg cell (an 

acousto-optic modulator), the burst threshold of the PDM, the photomulplication of the 

PDM, and the signal to noise (SNR) level on the FSA. The settings of these parameters 
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control the range of velocities and droplet sizes, and they also help reduce noise. A listing 

of these parameters is given in Figure 3.5-1. 

.  

Figure 3.5-1. Select PDPA parameters. 

 

 

Figure 3.5-2. Top-down view of the schematic of the PDPA system setup. T is the 

transmitter that emits laser beams. R is the receiver that acquires laser Doppler signals. 
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 The droplet size measurements are taken of fuel sprays at conditions in Table 2, for the 

fuel temperature at 294.3 K. Measurements are taken for fuels A2, C1, C3, C5, C9, and n-

dodecane. The PDPA system is mounted on a three-axis Parker linear positioner controller 

by a Newport M3000 motion controller. Measurements are taken at three locations along 

the centerline of the nozzle exit, at 10 mm, 20 mm, and 30.4 mm respectively. At each 

centerline location, the measurements start at the centerline and move towards the bottom 

wall in 1 mm increments. For C3, a spanwise measurement is taken at the nozzle centerline 

location (10 mm). This spanwise measurement is helpful to check the symmetry of the 

spray and the measurements.  

 

Figure 3.5-3. Location of PDPA measurements. Left: 3 centerline locations where 

measurements are taken. Right: Measurements are taken radially downward at each 

location: r is the transverse direction, and r is the span-wise direction. 

 The Sauter Mean Diameter (SMD) is often used in combustion studies as a 

representative droplet size of a spray, as the SMD (also denoted D32) represents the ratio 

of the overall volume to the overall surface area. For a pressure-swirl atomizer, the 

empirical correlation given for SMD by Lefebreve [22] for a pressure swirl atomizer is  



 46 

 𝐷32 = 2.25𝜎0.25𝜇𝐿
0.25�̇�𝐿

0.25𝛥𝑃𝐿
−0.5𝜌𝐴

−0.25 (10)  

where  is the surface tension, L is the kinematic viscosity, �̇�𝐿  is the mass flow rate 

through the nozzle, 𝛥𝑃𝐿  is the pressure drop across the nozzle, and 𝜌𝐴  is the density of 

the surrounding air.  

3.6 Reduced-order forced ignition modeling approach 

3.6.1 Two-stage perfectly stirred reactor model 

In order to simulate the behavior of an entraining spark kernel, and following a 

previous study [8], a perfectly stirred reactor (PSR) is used to model the post discharge 

kernel development. In the first stage of kernel development, the kernel travels through an 

air layer with little or no fuel present. To model this first stage, a PSR is initialized with 

1.25 J, the energy delivered to the ignitor. The volume of the PSR is set to be the volume 

of the cup of the sunken fire ignitor. The initial mole fraction is set to be 21% O2 and 79% 

N2. The ambient pressure of the surrounding air is set at 1 atm, and its temperature set 

according to test conditions. The pressure of the PSR kernel is then allowed to expand to 

equilibrate with the ambient pressure. A mass flow controller is used to transport ambient 

fluid into the kernel, simulating the kernel growth and mass entrainment process of the 

kernel. The mass entrainment rate is determined from schlieren imaging of the kernel 

obtained experimentally. A free source chemical kinetics software, Cantera [34] (version 

2.3.0), is used in the simulation. The species equation [35] solved by the PSR is 
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 𝑚
𝑑𝑌𝑘

𝑑𝑡
= ∑ �̇�𝑖𝑛(𝑌𝑘,𝑖𝑛 − 𝑌𝑘)

𝑖𝑛

+ �̇�𝑘,𝑔𝑒𝑛 (11) 

where m is mass of the PSR kernel, Yk is the mass fraction of the kth species, Yk,in is the 

mass fraction of kth species entering the PSR kernel, and �̇�𝑘,𝑔𝑒𝑛 is the mass generation of 

the kth species. The energy equation solved in a constant pressure PSR is 

 

𝑚
𝑑𝑇

𝑑𝑡
= ∑ �̇�𝑖𝑛(ℎ𝑖𝑛 − ∑ ℎ𝑘𝑌𝑘,𝑖𝑛

𝑘

)

𝑖𝑛

− ∑ ℎ𝑘

𝑖𝑛

�̇�𝑘,𝑔𝑒𝑛 

(12) 

where Cp is the heat capacity of the kernel, hin is the total enthalpy (enthalpy of formation 

+ sensible enthalpy) of gas entering the kernel, hk is the enthalpy of the kth species in the 

PSR, 𝑌𝑘,𝑖𝑛 is the mass fraction of the kth species in the PSR, �̇�𝑖𝑛 is the mass flow rate into 

the kernel, and �̇�𝑘,𝑔𝑒𝑛 is mass generation rate (creation/destruction) of the kth species.  

 In this model, the effect of diffusive heat transfer between the kernel and the ambient 

air is ignored. This simplification assumes that mass entrainment and heat release have the 

dominant impact on the temperature of the kernel. This approximation is justifiable if one 

performs an order of magnitude analysis on the effect on temperature due to the heat loss 

rate from diffusion, the dilution from entraining cold ambient fluid, and the chemical heat 

release rate. Heat transfer due to diffusion is of 𝒪(10-3 J/s), whereas the dilution and 

chemical heat release rate are of 𝒪(100 J/s). The heat transfer due to diffusion can be 

approximate with Fourier’s law, where 
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𝑄

∆𝑡
= −𝑘𝐴

Δ𝑇

Δ𝑥
 (13) 

where k is the thermal conductivity, A is the area of the kernel, Δ𝑇 is the temperature 

gradient, and  Δ𝑥  is the thickness of the thermal boundary layer. For typical kernel 

conditions, k~𝒪(10-3 J/m-k), A~ 𝒪(10-5 m2), Δ𝑇~ 𝒪(103 K), and Δ𝑥~𝒪(10-3 J/s). This 

gives a diffusive heat transfer rate of 𝒪(10-3 J/s). The order of magnitude of the 

dilution cooling and the chemical heat release noted above will be justified in later 

simulation results.   

The first stage of the kernel PSR ends when the kernel starts interacting with the 

fuel/air mixture - a time that can be determined from the schlieren data. At this point, the 

ambient fluid entraining into the second stage PSR is a fuel/air mixture with an equivalence 

ratio that can be set to be the same as the equivalence ratio used in testing. The equivalence 

ratio can be calculated using the C/H ratio and molecular weight of the fuel. A conceptual 

model is shown in Figure 3.6-1. The Hybrid Chemistry (HyChem) fuel mechanisms [36], 

which were developed for the NJFCP fuel, are used. The HyChem model is a lump fuel 

pyrolysis model. Although all jet fuels contain a wide variety of large chain hydrocarbons, 

the HyChem mechanisms (Figure 3.6-2) utilize the rate limiting effect of the intermediate 

species after the original fuel breakdown in combustion reactions. The initial products of 

original fuel breakdown are limited to an important few (ethylene, propene, iso-butane, 1-

butane, benzene, and toluene). USC II mechanism [37] is then used to further oxidize these 

intermediate products into final combustion products. The HyChem model assumes that 

the thermal decomposition of the fuel molecules occurs before oxidation of the 
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decomposition product. The original fuel breakdowns mechanisms are categorized into 

self-pyrolysis (C-C fission) and energetic particles attack (radical scission). The detailed 

fuel breakdown mechanism is shown in the reaction steps below.  

 

CmHn → ed(C2H4 + λ3C3H6 + λ4C4H8) + 

bd[χC6H6 + (1 − χ)C7H8] + αH + (2 − 

α)CH3 

(14) 

 

CmHn + R → RH + γCH4 + ea(C2H4 + 

λ3C3H6 + λ4C4H8) + ba[ χC6H6 + ( 1 − 

χ)C7H8] + βH + ( 1 − β) CH3 

(15) 

where α, β, χ, λi and γ are independent variables whose values depend on experimental 

values. The dependent variables ed, ea, bd and ba can be calculated from conservation of 

species.  

 

Figure 3.6-1. Setup of two stage perfectly stirred model. Adapted from [38]. 
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Figure 3.6-2. Schematic for hybrid chemistry approach in breaking down large fuel 

molecules. 

 

 

3.6.2 Reduced-order liquid spray ignition model. 

3.6.2.1 Overall model construction 

 To incorporate droplet heating and vaporization, physical models for droplet heating 

and vaporization are used. The module that handles droplet heating and vaporization is 

built upon the existing perfectly stirred reactor model. The solver for the stirred reactor 

model is implemented in Cantera. As for droplet heating, the lump analysis model is used 

by assuming the droplet sizes are small. This assumption is valid as majority of the 

measured droplet sizes are generally less than 20 m and the calculated Biot numbers are 

less than 0.3. A conceptual model of the coupling between the PSR and the fuel heating 

and vaporization module is shown in Figure 3.6-3. 
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Figure 3.6-3. Conceptual model PSR modeling with droplet vaporization. 

 From a programming perspective, a more detailed construction of the reactor model is 

presented in Figure 3.6-4. The entire program is written in Python. Modular and object-

oriented programming techniques are widely used in this program. Overall, the program is 

divided into two parts, as shown by the two dashed boxes in Figure 3.6-4. Inside the upper 

dashed box, this module describes the gas phase reactions solved in a constant-pressure 

PSR, by Cantera. The constant pressure PSR is used to model the expanding kernel, as 

explained in section 3.6.1. In addition to the PSR, two species reservoirs are used to contain 

the ambient air and the vapor fuel. The interaction between the PSR and the two reservoirs 

is realized through two mass flow controllers (MFC). The MFCs set the mass flow rate of 

substances transporting from the reservoirs to the PSR. The mass flow rate from the air 

reservoir to the kernel is chosen to be a constant based on kernel expansion rate data from 

the schlieren images. For the mass flow controller that controls gaseous fuel flow rate 

between the fuel reservoir and the PSR, the mass flow rate is set based on the vaporization 

rate calculated by the function vaporizer in the lower dashed box.  
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Figure 3.6-4. Descriptions of the modules used to achieve liquid droplet vaprization and 

chemical reaction in gas phase. 

 The primary objectives of this second module are to: 

1. Create a class “Droplet” that stores important droplet properties, such as diameter, 

density, molecular weight, and so on. Each instance of the Droplet class will 

represent a single droplet. See droplet.py in Appendix E for a list of properties. 

2. Create a function “entrainer” that generates droplets at each time step. 

3. Create a function “vaporizer” that heat up the liquid droplet to their wet-bulb 

temperatures and vaporize the liquid droplets. 

The following subsections describe the droplet entrainment module and the vaporizer in 

greater details.  
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3.6.2.2 Droplet Entrainment 

Two vectors will need to be provided for the droplet entrainment. One vector is d_arr, 

which stores the diameters of the droplet. The other vector is Y_arr, which stores the mass 

fraction of each droplet diameter. The d_arr and Y_arr can be assigned values arbitrarily. 

However, a Rosin-Rammler distribution is commonly used to describe the cumulative 

volumetric size distribution [33]. The distribution is given by  

 1 − 𝑄(𝐷) = exp (−(
𝐷

𝑋
)𝑞) (16) 

where Q(D) is the cumulative volumetric distribution (CDF), D is the droplet size, X is the 

characteristic size for which 63.2% of the droplets are contained in droplets with sizes less 

than X, and q characterizes the “spread” of droplet sizes. A large q indicates small variation 

in droplet size distribution, whereas as a smaller q indicates a wider spread in droplet sizes. 

The probability density function (PDF) of Q(D) can be obtained by taking the derivative 

of Q with respective to D; the result is  

 
𝑑𝑄(𝐷)

𝐷
=

𝑞

𝐷
exp (− (

𝐷

𝑋
)

𝑞

)(
𝐷

𝑋
)𝑞 (17) 

Given some liquid mass of m, the fraction of mass within each diameter is m*dQ/dD. 

Now knowing the amount of mass in each size D, one can then simply distribute the 

fractional mass into droplets of diameter D.  
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Figure 3.6-5. Example of droplet distribution based on a Rosin-Rammler distribution, 

X=10, q=3.8. A total mass of 1 mg is used to obtain the number of droplets in each 

diameter. 

3.6.2.3 Vaporizer 

The purpose of the vaporizer is to heat up and vaporize the droplet. The temperature of 

the vaporizer (which is not the same as the droplet temperature) is set to be the temperature 

of the ignition kernel. The vaporizer function is called on each of the droplets. During a 

time step t, the droplet’s temperature will first be checked. If the droplet’s temperature is 

lower than the current wet-bulb temperature, the droplet will be heated towards its wet-

bulb temperature. The wetbulb temperature is the steady-state temperature reached by the 

droplet at fast vaporization. The droplet will not reach the boiling temperature due to 

vaporization cooling. Due to small droplet size and hence small Biot number, the heat 

transfer rate inside the droplets are assumed infinite. In other words, the droplets will have 

uniform temperature, and the surface temperature is same as the internal droplet 

temperature. While the droplet is heating, vaporization will also occur as there exists a 

mass gradient in fuel species. The vaporization rate can be calculated by finding the 
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Spalding number based on the surface mass fraction, and the surface mass fraction can be 

calculated from the Clausius-Clayperon relation and Raoult’s law [1]. The governing 

energy equation is  

 𝑚 × 𝑐 ×
𝑑𝑇

𝑑𝑡
= �̇� − �̇� × ℒ𝑣 (18) 

where m is mass of the droplet, c is the heat capacity of the liquid fuel, T is the temperature 

of the droplet, t is time, �̇� is the convective heat transfer, �̇� is the mass evaporation rate, 

and ℒ𝑣 is the latent heat of vaporization. The convective heat transfer, �̇�, is calculated as  

 �̇� = ℎ × 𝜋 × 𝑑2 × (�̃� − 𝑇) (19) 

where h is the convective heat transfer coefficient and �̃� is the ambient temperature. The 

convective heat transfer coefficient is defined as  

 ℎ =
𝑁𝑢 × 𝑘

𝐿
 (20) 

where Nu is the Nusselt number, k is the thermal conductivity of the liquid, and L is a 

characteristic length that is set to the ratio of volume to surface area for a spherical droplet. 

The Nusselt number, Nu, is based on a model developed by Abramzon and Sirignano [39]. 

The expression for the Nusselt number is given in Appendix D. The mass vaporization rate 

is expressed as  
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 �̇� = 2𝜋𝜚𝑔̅̅ ̅𝐷𝐹𝑎𝑅𝐷𝑆ℎ𝑂ln (1 + 𝐵𝑀) (21) 

where 𝜚𝑔̅̅ ̅  is the average density of the gaseous mixture, 𝐷𝐹𝑎 is the binary diffusion 

coefficient, 𝑅𝑑  is the radius of the droplet, 𝑆ℎ𝑂 is the Sherwood number, and 𝐵𝑀 is the 

mass-based Spalding number, defined as  

 𝐵𝑀 =
𝑌𝑠 − 𝑌∞

1 − 𝑌𝑠
  (22) 

where 𝑌𝑠 is the fuel mass fraction on the droplet surface, and 𝑌∞is the fuel mass fraction 

far from the droplet. 𝑌∞ is assumed to be 0. The binary diffusion coefficient of n-dodecane  

and air is used, because average molecular fuels of these jet fuels is closest to that of the n-

dodecane. The calculation of the binary diffusion coefficient can be found in [40]. The 

droplet Reynolds number 𝑅𝐷 can be calculated as  

 𝑅𝑒𝐷 =
𝑈𝑟𝑒𝑙𝐷

𝜐
 (23) 

where the 𝑈𝑟𝑒𝑙  is the velocity of the droplet relative to the surrounding fluid, D is the 

diameter of the droplet, and 𝜐 is the dynamic viscosity of the surround fluid. For a single 

10 m radius, n-dodecane droplet in 880 K air with 10 m/s relative velocity and 300 K 

initial temperature, the temperature and radius profile as a function of time is shown in 

Figure 3.6-6. The corresponding vaporization rate and the heat transferred to the droplet 

are shown in Figure 3.6-7. The results from [40] under the same conditions is presented in  
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Figure 3.6-6. Radius (red) and Temperature (green) profile for a 10 m, n-dodecane 

droplet heating and vaporizing in 880 K ambient air with a relative velocity of 10 m/s. 

 

 

Figure 3.6-7. The vaporization rate m_dot (red) and the heat transferred to the droplet 

q_dot (green) profile for a 10 m, n-dodecane droplet heating and vaporizing in 880 K 

ambient air with a relative velocity of 10 m/s. 
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Figure 3.6-8. Results for a 10 m radius n-dodecane droplet in 880 K environment at 

10 m/s relative velocity from [40]. Model 4 is from Abramzon and Sirignano[39]. 
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 CHAPTER 4:  

SPARK KERNEL STRUCTURE 

 For the sunken fire igniter, the spark kernel ejects vertically from the igniter into a 

horizontal crossflow. This chapter reports on a set of high-speed imaging diagnostic 

experiments used to reveal the structure of the spark kernel and its evolution at early times 

as the kernel moves into the crossflow. Prevaporized fuel is used in the experiments as the 

liquid droplets (including their impact on the test section windows) would interfere with 

the imaging diagnostics. Like a pulsed jet, the spark kernel is expected to entrain 

surrounding fluids, as introduced in §2.1. Schlieren imaging is used to confirm the 

entrainment structure and obtain the rate of entrainment. Chemiluminescence and PLIF 

imaging are used to examine presence of fuel chemistry during early times in the forced 

ignition process.  

4.1 Ignition process revelation via high speed diagnostics 

4.1.1 Spark kernel characterization 

For all the ignition studies presented here, the inflow velocity, and air and fuel 

temperatures were controlled and held nearly constant during experimental runs, so as to 

isolate fuel composition effects. Of course, another important influence on successful 

ignition is the strength of the spark kernel generated by the igniter. As the number of igniter 

pulses characterized during the high-speed imaging experiments was limited to a 

statistically insignificant set, it is important to determine whether the shot-to-shot behavior 

of the igniter could be a controlling influence in the experimental results. To this end, the 
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schlieren images were used to characterize the repeatability of the early spark kernel 

behavior.  

During early times, before significant heat release, the behavior of the kernel should 

be controlled by the initial plasma discharge conditions that create the kernel. Specifically, 

the ejection velocity of the kernel from the cavity will be controlled by the pressure impulse 

created by the discharge, which in turn is a function of the energy deposited during the 

discharge. Thus, the vertical velocity of the kernel can be used as a good indicator of the 

spark kernel energy. The vertical velocity is calculated by using the translation of the top 

edge of the kernel in between frames.  

Figure 4.1-1 provides time-histories of the kernel velocities for A2 runs, conditionally 

averaged over multiple igniter pulses, with successful events separated from failed cases. 

As expected, the kernels decelerate as they interact with the crossflow. More importantly, 

the velocity difference between the two cases is generally much less than 10%. 

Furthermore, the difference is less than 2% at the first measurement time after the kernel 

discharge. The one time where there is a measured difference above 10%, at ~0.1 ms, is 

likely due to limitations in the image processing algorithm’s ability to reliably identify the 

kernel edge as it emerges from the mixing layer. Figure 4.1-2 provides similar results for 

successful ignition events for the three different fuels. Again, the initial velocities after the 

discharge are nearly the same for all three fuel cases. The velocities at later times are also 

similar, with no systematic differences observed.  

Thus, it is reasonable to conclude that the deposited spark energy is not varying enough 

between successful and unsuccessful cases to be the controlling factor for ignition. In 



 61 

addition, the deposited spark energies are similar for all three fuel tests - so any fuel 

differences observed are unlikely to be a result of igniter non-repeatability. Therefore, any 

shot-to-shot variations in the ignition events are probably attributable to changes in mixing 

between the kernel and the crossflow.  

 

Figure 4.1-1. Vertical velocity histories of the spark kernel, determined from the high-speed 

schlieren images, averaged over three successful and unsuccessful ignition events. For the 

A2 fuel. The horizotal bars show the uncertainty in time after the spark discharge due to 

triggering of the camera. 

 

 

Figure 4.1-2. Vertical velocity history of the spark kernels for each of the fuels tested, each 

averaged over three successful events. 
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 The schlieren imaging results can also be used to estimate the volumetric growth rate 

of the kernel by assuming symmetry about an axis passing through the centroid of the 2-

dimensional schlieren kernel. The volumetric growth based on 40 schlieren movies is given 

in Figure 4.1-3. Assuming an air density of the spark at 2000 K and 1 atm, the mass 

entrainment rate is 60 mg/s. 

 

Figure 4.1-3. Volumetric growth of the spark kernel following discharge, obtained from 

high-speed schlieren data. 

 

4.1.2 Ignition characterization – fuel A2 

One way to characterize the ignition behavior of a spark kernel is to compare the 

evolution of a successful kernel with that of a kernel that fails to produce a sustained flame. 

As a growing flame will have a corresponding increase in heat release, and thus 

chemiluminescence, we would expect the spatially integrated signal captured by the 

emission camera to increase in time for successful ignition. To examine this, the signal 

from each emission image was background corrected and spatially integrated over the field 
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of view, then normalized by the number of pixels in the integration region. Figure 4.1-4 

shows the resulting values as a function of time for two spark pulses from an A2 

experimental run: a successful ignition event and a failure.  

 

 

Figure 4.1-4. Intensity per pixel versus time for a successful ignition event and an 

unsuccessful event for fuel A2. 

At early times (below 0.5 ms), both events show a decreasing signal. At least in part, 

this is due to broadband emission from the decaying spark plasma that passes through the 

320 nm bandpass filter on the camera. Thus the captured emission signal at early times can 

be a combination of plasma emission and chemiluminescence. For the unsuccessful event, 

the emission signal reaches the camera background level between 0.3-0.4 ms. For the 

successful event, the signal decreases until ~0.6 ms, at which point it rises continuously. 

Moreover, it never drops as low as the unsuccessful event. Thus, we can conclude that the 

emission signal after 0.5-0.6 ms is solely due to flame emission (primarily OH* based on 

the optical filter employed) and that “ignition” has occurred by this time (if not much 

earlier). Furthermore, the time required to reach a minimum intensity can be used to 
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characterize successful ignition. This time can be defined (arbitrarily) as the ignition delay 

time.  

What is unclear from this spatially integrated analysis is what happens before this time, 

as one might expect chemical reactions could occur as soon as the hot kernel reaches the 

fuel-air mixture in the region above the splitter plate. To examine the early time behavior 

of the kernel, we now turn to the simultaneous information from the three high speed 

imaging systems: emission, PLIF and schlieren. Example images from three successful 

ignition events using the A2 fuel are shown in Figure 4.1-5, Figure 4.1-6, and Figure 4.1-7. 

Similar images for a failed event from the same experimental run are shown in Figure 

4.1-9. Recall as described in Chapter 3, a process using a registration image was used to 

match the different cameras. As noted there, the matching was only partially successful, as 

can be seen by the vertical mismatch between the top of the emission region and the top of 

the schlieren region in the first image.  

 

Figure 4.1-5. Sequence of simultaneously acquired emission (top), PLIF (middle) and 

schlieren (bottom) images for early times from a successful ignition event with the A2 

fuel; the event is the same used in Figure 4.1-4. The crossflow direction is left to right in 

the images. 
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Figure 4.1-6. Successful ignition with A2, case 2. 

 

Figure 4.1-7. Successful ignition with A2, case 3. 

As expected from the results of Figure 4.1-4, the overall UV emission captured by the 

chemiluminescence camera decays during these early times after the kernel is created. In 

addition to the peak intensities dropping, the size of the emitting region of the kernel also 

shrinks. On the other hand, the schlieren images show an increasing kernel size, with the 

kernel resembling a pulsed jet. Since the schlieren demarks large density gradients (i.e., 

between the cold crossflow and hot kernel) while the plasma emission from the kernel 

should be a strong function of its temperature, the logical interpretation of these results is 

the kernel is mixing with the crossflow. Thus the overall size of the hot gas region is 
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increasing, but the kernel’s (average) temperatures is decreasing. Furthermore, the 

emission comes primarily from the upper portion of the kernel; the long trailing tails from 

the kernel seen in the schlieren images likely represent only “warm” gas. 

The mixing of the hot kernel with the fuel air mixture has already occurred before the 

first image shown (0.133 ms), as evidenced in the schlieren image, where the top of the 

kernel is located above the splitter plate (seen as the rectangular dark shadow in the lower 

left edge of the image). Based on the velocity measurements presented above, the top edge 

of the kernel should reach the mixing layer within 60 s after the spark discharge. 

The PLIF images in Figure 4.1-5 (middle row) display two notable features. First, the 

fluorescence is nearly uniform in distribution within the region illuminated by the sheet. 

This results from components of the A2 fuel that fluoresce. The relative uniformity in the 

fluorescence in the upper regions indicates the evenness of the fuel seeding in the upper 

flow, while the lack of signal in the lower portion of the images verifies the absence of fuel 

in the flow beneath the splitter plate.  

The second notable feature is the behavior of the PLIF signal in the region of the kernel 

(as demarked by the schlieren signal). Much of the kernel does not produce a PLIF signal, 

presumably because there is much less fuel within the kernel compared to the crossflow. 

There is, however, a region of quite strong signal within a narrow portion of the kernel. 

This is most evident in the PLIF image at 0.233 ms, coming from a highly convoluted 

structure within the kernel region marked by the schlieren, but nearer the kernel’s edges. 

Moreover, the region containing PLIF signal overlaps a portion of the emission region. 

This increased fluorescence occurs in all the PLIF images of Figure 4.1-5, but it peaks in 
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the 0.233 ms image, with the region of bright fluorescence rapidly decreasing with time. 

Furthermore, this signal comes only from the region of the kernel that has passed into the 

upper (fuel-air containing) region. Thus, we can conclude that the source of the signal is 

associated with the high temperature kernel air interacting with entrained fuel (and air). By 

the 0.533 ms image, the kernel’s PLIF signal is limited to a few small regions. 

The specific species that give rise to this early time PLIF signal is unclear. While the 

laser and camera bandpass filter were set to excite and detect OH fluorescence, a number 

of hydrocarbons are broadband absorbers in the UV and can produce fluorescence (as 

evidenced by the signal coming from the A2 fuel components). For example, possible fuel 

pyrolysis includes benzene and toluene, both of which exhibit UV excited fluorescence 

that might be detected by the 320 nm bandpass filter employed here. So, the kernel’s PLIF 

signal may be produced by species associated with either fuel pyrolysis or oxidation (and 

heat release). 

At later times, ~0.6-2.1 ms (Figure 4.1-8), we see that the region of PLIF signal begins 

to grow, eventually becoming a self-sustained flame. At these times, the signal is likely 

due primarily to OH PLIF. It is also interesting to note that by 1.1 ms, it is difficult to 

identify a region without fuel in the upper portion of the flow. Presumably, the mixing of 

the fuel-air mixture with the kernel has preceded to such an extent that there is little high 

temperature, unmixed “pure” kernel fluid left. 
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Figure 4.1-8. Sequence of PLIF images for later times for the successful A2 ignition event 

depicted in Figure 4.1-5. 

To help interpret the early time results from the successful ignition event, we again 

compare them to a case of failed ignition (Figure 4.1-9). As before, both emission and PLIF 

signals occur after the spark discharge. In contrast to the successful ignition event, however, 

the signals decrease more quickly, essentially disappearing by ~0.5 ms. If the PLIF signal 

from the kernel is associated with chemical reactions involving fuel, as suggested above, 

the similar temporal behavior for the PLIF and emission signals also suggests that at least 

part of the emission is due to chemical reactions, i.e., chemiluminescence, especially after 

the first 0.1-0.2 ms.  

 

 

Figure 4.1-9. Sequence of simultaneously acquired emission (top), PLIF (middle) and 

schlieren (bottom) images for early times from a failed ignition event with the A2 fuel; 

the event is the same used in Figure 4.1-4. 
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It is reasonable to conclude that at least partial oxidation of the fuel, with some heat 

release, is occurring within the first few hundred microseconds for both failed and 

successful ignition events. In addition, the rate and extent of these reactions is greatest in 

the first 0.1-0.2 ms after the igniter discharge (or shortly after the kernel begins entraining 

the fuel-air mixture). The decrease in reactions after this time may be due to the decrease 

in kernel temperature resulting from the mixing of the hot kernel with cold reactants. Of 

course, this would also suggest that any heat release from fuel oxidation is more than offset 

by cooling due to entrainment and mixing. Given the small spatial extent of the PLIF and 

chemiluminescence signals at 0.533 ms, whether ignition is successful depends on the 

relative amount of heat release and dilution in a quite small region of the kernel. If the heat 

release is inadequate or the mixing too rapid, the temperature will rapidly decrease, 

extinguishing the reactions. 

4.1.3 Ignition characterization – fuel comparison 

Similar high-speed imaging results were also acquired for two other fuels, C5 (Figure 

4.1-10, Figure 4.1-11, and Figure 4.1-12) and C1 (Figure 4.1-13 and Figure 4.1-14). The 

most noticeable difference between these results and the A2 images is the lack of PLIF 

signal from the unreacted fuel. Neither of the C fuels contain cyclo-paraffins, while they 

are a significant component of A2 (see Appendix A). Thus, they are a possible source of 

the fuel PLIF seen in A2. On the other hand, both the C5 and C1 fuel PLIF images do 

exhibit the same kernel PLIF signals recorded for the A2 fuel. Since the parent fuel 

produces no fluorescence, this provides further support that the source of the fluorescence 

is a species produced by chemical reactions between the high temperature kernel and the 

entrained fuel-air mixture.  
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As with the A2 results, the emission and PLIF signals decay after the first few hundred 

microseconds for both fuels. There is a notable difference between the C5 and C1 data; 

both the emission and PLIF are more pronounced and cover a greater portion of the kernel 

for the C5 fuel compared to C1.  

  

Figure 4.1-10. Sequence of simultaneously acquired emission (top), PLIF (middle) and 

schlieren (bottom) images for early times from a successful ignition event with the C5 

fuel. 

 

Figure 4.1-11. Successful ignition with C5, case 2.  
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Figure 4.1-12. Successful ignition with C5, case 3. 

 

 

Figure 4.1-13. Sequence of simultaneously acquired emission (top), PLIF (middle) and 

schlieren (bottom) images for early times from a successful ignition event with the C1 fuel. 
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Figure 4.1-14. Successful ignition with C1, case 2. 

The C5 data (Figure 4.1-10) also exhibit another feature not shown in the A2 and C1 

images sequences, a bifurcated ignition kernel. This is most visible in the PLIF image 

sequence, where a structure appears to break from the main kernel and stays closer to the 

lower wall. Not only does this structure lack a vertical (upward) velocity, it also does not 

decay in size or intensity like the upward moving kernel. A corresponding structure of 

roughly the same size is evident in the chemiluminescence image. At later times, this 

second structure leads to a self-propagating flame that is independent of the flame produced 

by the upward moving kernel. The lack of decay observed in this structure suggests that it 

does not undergo the same amount of mixing with cold fluid compared to the main kernel. 

This behavior occurs in some sequences for all three fuels. 

Finally, we can compare the ignition performance for the three fuels. The spatially 

integrated emission/chemiluminescence data for the A2, C1, and C5 fuels are shown in 

Figure 4.1-15, averaged over three successful ignition events for each fuel. As expected 

from the images shown previously, the emission initially decays for all the fuels before 

eventually rising as the self-sustained flame grows.  
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Ignition delay times based on the minimum values in these profiles are listed in Table 

5.  The ignition delays for C5 and A2 are the same (~0.5 ms), but about 0.3 ms faster than 

for C1. In addition to the much longer delay, the C1 fuel also has the slowest rate of increase 

in chemiluminescence/emission signal. This may correlate to the lack of aromatics in the 

C1 fuel. 

 

Figure 4.1-15. Spatially integrated and background corrected emission camera intensities 

for three fuels. Each data point represents the average over three successful ignition 

events. 

Table 5. Ignition delay time based on minimum values obtained in Figure 4.1-15. 

Fuel A2 C1 C5 

Turnaround 

Time (ms) 

0.53 

 0.034 

0.84 

 0.05 

0.53 

 0.034 

4.2 Chapter summary 

 In this chapter, high speed (10 kHz) imaging is used to monitor the ignition kernel 

development in prevaporized fuel (A2, C1 and C5) and air mixtures. The ejection velocities 
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of the kernels, found from the schlieren imaging are essentially the same for successful and 

unsuccessful cases. The schlieren results also provide a measure of, the volumetric growth 

rate of the kernel.  

 The PLIF results show that chemical reactions occurr within tens of microseconds after 

the kernel starts interacting with the fuel. This early strong fluorescence signal weakens 

over time for both the successful and the unsuccessful ignitions. After ~0.6 ms in the 

kernel’s existence, the fluorescence signal for the successful case becomes more intense at 

a few (“hot”) spots, which then grow into a self-sustained flame. For the unsuccessful case, 

the fluorescence signal disappears. The simultaneous emission imaging results confirm 

these important time scales. The evolution of the spatially integrated chemiluminescence 

signals are used to define ignition delay times for each successful event. Different delay 

times are seen for the different fuels; A2 and C5 have similar delay times, whereas C1 takes 

longer to ignite.  
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CHAPTER 5: 

FORCED IGNITION OF PREVAPORIZED FUEL/AIR MIXTURE 

 In the previous chapter, high speed diagnostics are used to observe the early physical 

and chemical evolution of a spark kernel and differences in this behavior for three 

prevaporized jet fuels. This chapter examines a more direct measure of differences in 

ignition due to fuel chemistry, specifically the ignition probabilities of hundreds of ignition 

events for each of eleven fuels. The properties that lead to a more favorable fuel chemistry 

are explored using both the experimental results and simulations using the two-stage, 

reduced order model for forced ignition presented in Chapter 3.  

5.1 Effect of equivalence ratio and fuel performance ranking 

The ignition probabilities with prevaporized conditions were measured for three 

category A fuels (A1, A2, A3), five category C fuels (C1, C2, C3, C4, and C5), and three 

surrogate fuels (S1, S2, and n-dodecane). The descriptions of these fuels can be found in 

§3.2.  

For the eight category A and C fuels, ignition probabilities were acquired for 

equivalence ratios (of the main flow) ranging from 0.6 to 0.8. The dependence of the 

(binned) ignition probabilities on equivalence ratio is presented in Figure 5.1-1 for each 

fuel.  The binning is achieved by averaging the probabilities within a bin of ϕ=0.04. Each 

data point represents the average probability for hundreds of spark events. For all the fuels, 

when the equivalence ratio decreases, the ignition probability also decreases. As the 

equivalence ratio drops, the flammability limits of these hydrocarbon fuels are also 
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approached; so this trend is not surprising, though the reason for the decrease in probability 

is not necessarily a function of the relative flammability of the fuel. Moreover as the 

equivalence ratio increases, the probabilities increase at different rates for each of the fuels.  

A previous study [8] has shown that the absolute ignition probability depends on 

several factors including the height of the splitter plate and the temperature of the cross-

flow fluid; both were fixed in the current study. Thus, the relative differences in the 

absolute ignition probability is a good indicator for comparing fuel performances in 

transitioning into a self-sustaining flame. As the ignition probabilities changes appear 

rather linear with different slopes and same starting position, the ranking of ignition 

probabilities at one equivalence can represent the overall performance. The equivalence 

ratio chosen for comparison is 0.675, because there are data taken at this equivalence ratio 

and the ignition probabilities are high enough for all the fuels that the relative uncertainties 

are reasonable.2  

The results of ignition for prevaporized fuel/air mixture at and equivalence ratio of 

0.675 is shown in Figure 5.1-2. The rankings are based on the relative ignition probabilities 

with respect to that of A-2, as defined in Chapter 3. Among the A fuels, A1 has the highest 

probability, followed by A3 and then A2. Among the C fuels, C5 has the highest ignition 

probability, and C1 has the lowest ignition probability. For the two surrogate fuels tested, 

S1 has a higher ignition probability than that of S2. The fuel ranking provides the relative 

fuel performances in forced ignition. However, it is more important to understand the 

                                                 
2It should be pointed out that low single-event ignition probabilities are not unreasonable for aeroengine 

combustors. For example if the ignition probability for each spark event is just 4%, then within 150 shots the 

probability of at least one ignition spark transitioning into a flame is 99.8%, which is rather high. 
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underlying factors that control the differences in forced ignition. In prevaporized ignition, 

only differences in the fuel’s chemical properties should significantly impact ignition 

performance. To understand the potential effects that fuel composition has on forced 

ignition, we can see how the ignition performances correlate to specific fuel (chemical) 

properties.  

 

Figure 5.1-1. Binned Ignition probability data. Each data point contains ~300 ignition 

events.   
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Figure 5.1-2. Ranking of relative ignition probability with respect to that of A2 for 

prevaporized fuel/air mixtures. The equivalence ratio of the main flow is at 0.675. 

 One such property often used for rating jet fuels is the derived cetane number (DCN); 

it is based on a fuel’s ability to autoignite at specific conditions. DCN is calculated based 

on the cetane number [41], which is determined experimentally with an ignition quality 

tester. The DCN is considered a good indicator of the fuel’s chemical reactivity, with DCN 

of 100 representing the most chemically reactive and 0 the least. The correlation of the 

relative ignition probabilities to the DCN is illustrated in Figure 5.1-3; no clear overall 

trend is observed. The fuel C1, which has the lowest DCN, also has a low ignition 

probability. Excluding C1, however, the data suggest the ignition probability increases with 

a decrease in DCN - a trend that is counter-intuitive based on the definition of DCN. 
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Furthermore, for fuels with DCN very close to that of A2, there are significant differences 

in ignition probability. For S2, which contains ~50% of n-hexadecane (cetane), the ignition 

probability comes out to be the lowest.  

According to the ASTM standard [41], DCN is determined with an air temperature 

near 800 K. In forced ignition, the temperature of the hot air within the spark kernel can 

reach a few thousand degrees. Fuel chemistry can be significantly different at very high 

temperature as compared to the DCN test temperature. In conclusion, variations in the DCN, 

which is thought to be an indicator of fuels’ chemical reactivity, do not appear to have a 

meaningful correlation to the variation in probability of forced ignition in the mixing layer 

flow facility.  

 Though DCN does not show good correlation, other measures of chemical composition 

may. The major groups of chemical compounds in these fuels include iso-paraffins, n-

paraffins, aromatics, and cyclo-paraffins. The correlations to the fractional composition of 

these compounds are shown in Figure 5.1-4 through Figure 5.1-7. These simple (single) 

parameter correlations do not reveal any clear dependence on the amount of any of the 

major chemical groups in the fuel’s composition. The next section explores the use of the 

reduced-order PSR model coupled to the HyChem mechanisms to provide more insight 

into the chemical reaction pathways that control forced ignition. 
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Figure 5.1-3. Relative ignition probability (vaporized fuel) compared to the fuel’s DCN. 

 

 

Figure 5.1-4. Relative ignition probability (vaporized fuel) compared to volumetric 

percentage of iso-paraffins. 

 



 81 

 

Figure 5.1-5. Relative ignition probability (vaporized fuel) compared to volumetric 

percentage of n-paraffins. 

 

Figure 5.1-6. Relative ignition probability (vaporized fuel) compared to volumetric 

percentage of aromatics. 
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Figure 5.1-7. Relative ignition probability (vaporized fuel) compared to volumetric 

percentage of cycloparaffins.  

 

5.2 Reduced order simulation results 

5.2.1  Successful vs. unsuccessful ignition 

 The HyChem mechanisms [36] are available for the A1, A2, C1, C3, and C5 fuels. As 

described in §3.6.1, a two stage PSR model is used to simulate the kernel ignition process. 

The fuel mechanisms are calibrated based on species concentration data from autoignition 

experiments conducted in a shock tube and flow reactor measurements. The post-shock 

(autoignition) temperatures are varied between 800 K and 1300 K.  

The reduced-order, entraining PSR model cannot predict ignition probabilities for a 

fixed (certain) set of flow conditions; fuel performance in the PSR can, however, be 

characterized by finding the lean ignition limit (LIL). This is also consistent with empirical 

approach used in [9] to characterize ignition performance of different fuel blends. To 
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simulate ignition at the test conditions in the current experiments, the transit time of the 

first stage is set at 80 s, the mass entrainment rate of the kernel is set at 60 g/s, and the 

ambient fluid temperature is 477 K. In the reduced order simulations, a successful ignition 

is defined when the temperature of the kernel can maintain a high value and does not 

approach the ambient temperature after ~500 s; this is what would occur in the absence 

of significant heat release due to continuous entrainment of ambient fluid. Example results 

of the kernel’s temperature evolution for successful ignition and failed ignition cases are 

shown in Figure 5.2-1.  

 

Figure 5.2-1. A successful ignition at =0.50 (blue solid line) and an unsuccessful 

ignition at =0.48 (blue dashed line). The solid black line represents the kernel 

temperature if no fuel is entrained. The second stage fuel entrainment starts at 0.09 ms. A 

spark is formed at t=0. 

For fuel A2, the lean ignition limit occurs between =0.48 and 0.50. The solid black 

line indicates the kernel temperature if the kernel continues to entrain pure air with no fuel. 

If no fuel is present, the kernel temperature will decrease rapidly and reach ~1200 K by 

0.17 ms after the simulated spark event because the kernel must heat the entrained fluid. 
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The dilution cooling effect comes from the term ∑ �̇�𝑖𝑛(ℎ𝑖𝑛 − ∑ ℎ𝑘𝑌𝑘,𝑖𝑛𝑘 )𝑖𝑛  in Equation 

12.  

At =0.48, although the kernel temperature continues to drop, the rate of decrease is 

slower than when the kernel is entraining only air. This slower rate of decrease in 

temperature indicates that the fuel is causing heat release that helps sustain the kernel 

temperature, as given by the term ∑ ℎ𝑘𝑖𝑛 �̇�𝑘,𝑔𝑒𝑛 in Equation 12. The slope of the two cases 

entraining fuel and the case not entraining fuel deviate at around t=0.11 ms. This suggests 

that there is no more than a 30 s chemical delay after the start of the second stage (when 

the kernel begins entraining a fuel/air mixture). To see more clearly the effect of dilution 

cooling and chemical heat release on the kernel’s temperature, we can extract these two 

terms from the energy equation. The calculation of the heat release rate and the dilution 

cooling rate can be seen in Appendix B.  The results for the chemical heat release rate and 

the dilution cooling are shown in Figure 5.2-2.  

 

Figure 5.2-2. Chemical heat release rate and dilution cooling rate for the successful (solid 

blue) and the unsuccessful (dashed blue) as in Figure 5.1-1. The vertical dotted lines 

indicate the time when a flammable mixture starts being entrained.  
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In the two plots in Figure 5.2-2, the solid line indicates the successful case in Figure 

5.2-1 when =0.50, and the dashed line indicates the failed case when =0.48. From the 

plot for the chemical heat release rate, we can see that in the first 8 s after the flammable 

mixture entrainment begins, the chemical heat release rate is negative. During this period, 

chemical reactions are taking energy from the kernel to dissociate the original fuel into 

intermediate products. Later, the heat release rate becomes positive for both =0.50 and 

=0.48. As can be seen in the temperature profile (Figure 5.2-1) for =0.48, the temperature 

for this unsuccessful ignition will drop slower than the temperature for the case where only 

air is entrained. This heat release rate shows that even through ignition is unsuccessful, 

chemical reactions are occurring that release heat. For the successful case, the heat release 

continues to rise and eventually reach a steady-state value. For the unsuccessful case, on 

the other hand, the heat release rate eventually decreases to zero, as the temperature of the 

kernel drops so much that the chemical reaction rates become too slow. In this example, 

this occurs at ~0.36 ms corresponding to a kernel temperature of ~1400 K.  

 The chemical heat release is the mechanism that sustains the chemical reactions, so 

that further heat releasing chemical reactions, i.e., combustion, is possible. If the 

temperature of the kernel is only controlled by the chemical heat release, the temperature 

will rise to the adiabatic reaction temperature (for the kernel’s fuel-air ratio), and ignition 

will never fail no matter how lean is the fuel/air mixture. Therefore, a cooling mechanism 

is necessary. The fast entrainment structure of the kernel as observed in §4.1 indicates that 

cooling due to mixing with the cooler entrained fluid is the primary cooling mechanism.3 

                                                 
3Furthermore, diffusion between the kernel and ambient fluid was shown to be negligible in §3.6.1. 
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This mixing cooling will be referred to as dilution, as the hot kernel fluid is diluted by the 

colder ambient fluid.  

The right graph in Figure 5.2-2 shows the dilution cooling rate. The negative values of 

the dilution cooling indicate a tendency to decrease the kernel temperature. Dilution effect 

are stronger when the temperature differences between the kernel and the entrained fluid 

are larger, since the kernel will need to heat the entrained fluid to a higher temperature. At 

early times after entrainment of the fuel/air mixture starts, the dilution cooling rates are 

similar for =0.50 and =0.48. The slight change in composition does not affect the dilution 

rate. Later the dilution rate magnitude for the unsuccessful case (=0.48) decreases and 

approaches zero as the kernel temperature approaches that of the ambient fluid temperature. 

The dilution rate magnitude for the =0.50 first decrease and then increases to a steady 

state, as the chemical heat release can increase the temperature of the kernel so that the 

kernel will need to heat the entrained fluid to a higher temperature.  

 In summary, the temperature of the kernel is controlled by the chemical reactions and 

the dilution cooling. The chemical reaction will in general increase the kernel temperature, 

except that at early time, endothermic (heat absorbing) reactions associated with parent 

fuel decomposition require energy from the kernel. Dilution cooling always decrease the 

temperature of the kernel. A successful ignition is defined as that the chemical heat release 

can sustain the kernel at a high temperature. If the chemical heat release drops to zero, then 

the kernel ignition failed. The success of an ignition kernel is determined by two competing 

mechanisms: heat releasing chemical reactions and dilution cooling. If the kernel 

temperature drops below a certain threshold temperature (~1400 K), chemical reactions are 
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not sufficiently fast to overcome the dilution cooling. The main impact of equivalence ratio 

is to determine how much energy release can occur per unit mass of entrained fluid. 

5.2.2 Fuel comparison: A2 vs. C1 

As shown in Figure 5.1-2, the C1 fuel has the lowest ignition probability and therefore 

the worst ignition performance. As a reminder, ignition performance can also be 

characterized by the lean ignition limit. To check if the reduced order model can predict 

relative ignition performance, the lean ignition limit for A2 and C1 were simulated for 

conditions estimated to be similar to the test conditions. The results for the lean ignition 

limits of A2 and C1 are presented in Figure 5.2-3.  

 

Figure 5.2-3. The bifurcation for the lean ignition limits for A2 and C1. The red curves 

show result for C1, and the blue curve show results for A2. The solid lines are for 

successful cases, and the dashed lines are for unsuccessful cases. The dark solid line 

shows the kernel temperature without fuel entrainment. The vertical dotted line indicates 

when fuel entrainment starts (at 0.09 ms). 

 From Figure 5.2-3, we can see that the lean ignition limit occurs for A2 in between an 

equivalence ratio of 0.48 and 0.50, whereas for C1 it occurs in between -0.60 and =0.62. 
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A higher lean ignition limit means the fuel is harder to ignite, as more fuel is required to 

generate sufficient heat release. The heat release and dilution cooling rates for the four 

cases are shown in Figure 5.2-4. The left plot in Figure 5.2-4 shows the heat release after 

the kernel entrains fuel/air mixture. The four curves correspond to the four cases in Figure 

5.2-3. As before, the chemical heat release rate is negative within the first 8 s after 

entraining the fuel/air mixture due to endothermic fuel decomposition. The A2 and C1 

cases have approximately the same duration of negative heat release, thus the time required 

for the original fuel breakdown is approximately the same for both fuels according to the 

HyChem mechanisms. This will become clearer when we examine the species histories. 

Regardless of fuel, a richer flammable mixture will give more heat release, as evidenced 

by C1 at =0.60 and A2 at =0.48 and =0.50.  If the rates of parent fuel breakdown are 

fast, then the intermediate species will determine the rest of the heat release profile. At a 

time of ~0.22 ms, the temperature for C1 at =0.60 starts to drop faster than for A2 at 

=0.48. The heat release rate of C1 appears more sensitive to the change in temperature. 

The dilution cooling rate is a strong function of the kernel temperature. Higher kernel 

temperatures will give higher dilution cooling rates, and vice versa.  

 

Figure 5.2-4. Chemical heat release rate and dilution cooling rate for the successful (solid 

blue) and the unsuccessful (dashed blue) as in Figure 5.2-3.  



 89 

 To discover why C1 is predicted to require more fuel to ignite than A2, we can look at 

cases where A2 succeeds and C1 fails at the same equivalence ratio. Based on the results 

in Figure 5.2-3, if =0.60 is chosen, A2 will ignite, but C1 will not. The temperature 

profiles of the ignition kernel for A2 and C1 at =0.6 is shown in Figure 5.2-5. As 

predicted, the case for A2 at =0.6 produces successful ignition. From the previous 

analysis, we know the kernel temperature is controlled by the heat release rate. Given that 

the heating values of A2 and C1 are similar and the heat and time required for the early 

endothermic fuel breakdown reactions are similar, we can hypothesize the reason for fast 

or slow exothermic reactions is that the concentration and reaction rates for the 

intermediate species are different.  

 

Figure 5.2-5. Ignition kernel simulation for A2 and C1 at =0.6.  

One of the assumptions for the HyChem mechanism [36] is that the exact chemical 

path for the decomposition of the original fuel is not important, rather the relative 

composition of the intermediate fuel products. In addition, the parent fuel decomposition 

rate is much faster than the rate at which the intermediate products react.  Thus, the 
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intermediate product chemistry might be expected to control the ignition process when 

comparing different fuels. As outlined in §3.6.1, the primary intermediate products 

generated include H and CH3 radicals, methane (CH4), ethylene (C2H4), propene (C3H6), 

isobutene (i-C4H8) and 1-butene (1-C4H8), benzene (C6H6), and toluene (C7H8).   

As an example, the species mole fraction for the parent fuel and the intermediate 

products are shown for A2 in Figure 5.2-6 for the first 0.2 ms after fuel enters the kernel. 

The parent fuel decomposes as soon as it starts entering at 0.09 ms. The intermediate 

product concentrations peak at about the same time (within 10 s after fuel is entrained) 

when the overall reactions becomes exothermic, and then these intermediate products are 

more rapidly converted on the path to the final products. To better observe the early time 

species concentration, the species profiles from 0.091  to 0.095 ms are plotted in Figure 

5.2-7. Except for the radicals H and CH3, the relative concentration ranking of the more 

stable intermediate species is: ethylene > propene > benzene > toluene > 1-butene > 

isobutene > methane. Moreover, ethylene and propene account for most of the fuel 

products. The third species, benzene, has a concentration an order of magnitude below 

ethylene’s. 

For the failed C1 case at early times, the stable intermediate concentration (see Figure 

5.2-8) rank as: isobutene > propene > ethylene > methane> 1-butene > benzene > toluene, 

with ethylene’s concentration an order of magnitude below that of isobutene. The relative 

ranking of the C1 intermediate products at early times is consistent for a successful ignition, 

as seen in Figure 5.2-9 for =0.62. Thus comparing A2 and C1 at times shortly after the 

fuel enters the kernel when it begins to decompose, we can see that the relative 
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concentrations of the fuel intermediates are largely different, and this may be related to the 

differences in the ignition performance. 

 

 

Figure 5.2-6. The mole fraction of the intermediate breakdown products in the kernel as a 

function of time after the kernel initiation for A2 at =0.60. The fuel is introduced at 

0.09 ms.  

 

Figure 5.2-7. Intermediate A2 products for early times at conditions of Figure 5.2-6. 
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Figure 5.2-8. Intermediate fuel breakdown products for unsuccessful ignition kernel of 

C1 for =0.60 and early times after fuel introduction. 

 

Figure 5.2-9. Intermediate fuel breakdown products for successful ignition kernel of C1 

for =0.62 and early times after fuel introduction.  
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Autoignition of the intermediate species in air can give a preliminary understanding of 

the intermediates’ reactivity. Autoignition simulations in a constant pressure reactor for the 

seven stable intermediate products were performed at initial temperatures of 1100-1800 K 

with =1. The pressure of the reactor is set at one atmosphere, and the fuel mechanism 

used is USC II [37], which is also the backbone for the HyChem mechanisms. As an 

example of the autoignition histories, results are shown for benzene and isobutene, at 

1400  and 1800 K in Figure 5.2-10. It is interesting to note that at 1800 K the autoignition 

delays of isobutene and benzene are almost identical. Whereas at 1400 K, the autoignition 

delay time of isobutene becomes almost five times longer than that for benzene. This shows 

that the fuel chemistry of some the intermediates should be much more sensitive to the 

temperature decay of the ignition kernel as it is diluted by entrainment. For example, the 

simulations presented above suggest the ignition kernel temperatures drops from values 

above 1800 K to levels approaching 1400 K in cases of successful ignition. 

 

Figure 5.2-10. Autoignition of isobutene and benzene at 1800 K and 1400 K at one 

atmosphere and =1.  
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 A full comparison of the autoignition delays for the seven intermediates from 18000 

to 1100 K is presented in Figure 5.2-11. At a low temperature like 1250 K, some 

intermediates (ethylene, benzene, and 1-butene) have relatively short delays, below 1 ms, 

while others (methane, isobutene, and toluene) have delays above 5 ms. Propene’s 

reactivity is in between these two groups. Furthermore, ethylene has the fastest reactions 

over the whole temperature range. At high temperatures, such as 1800 K, all the 

intermediates except methane have autoignition delays below 20 s. So changes in the 

composition of the intermediates between fuels should have significant impact on the early 

time chemistry of an entraining kernel, and therefore its ignition success. For example, a 

fuel like C1 that forms primarily isobutene rather than ethylene (like A2) is less likely to 

ignite at lower kernel temperatures. 

 

Figure 5.2-11. Autoignition delay time as a function of 1000/T for intermediate species of 

the products from the original fuel break down 
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5.2.3 Fuel comparison for five fuels: A1, A2, A3, C1, C5 

In the previous section, the forced ignition performance of the A2 and C1 fuels were 

investigated with the reduced order model. In addition to A2 and C1, [36] also provides 

chemical mechanisms for A1, A3, and C5. Thus the lean ignition limit of the five fuels can 

be simulated, and the LIL rankings compared to the intermediate product composition. The 

predicted LIL rankings are shown in Figure 5.2-12, at the conditions indicated in the figure. 

As lower LIL corresponds to easier ignition, based on the LIL results, the ranking for 

ignition performance from best to worst goes as: A1 > A2 > A3 > C5> C1.  

 

Figure 5.2-12. The lean ignition limit (LIL) for five fuels at conditions like the test 

conditions, with 90 s transit time and 60 g/s mass entrainment rate. 

 The autoignition study in the previous section showed that ethylene has the fastest 

chemistry of all the intermediates. Thus, it is possible that the relative amount of ethylene 

in the intermediates may be used as an indicator of the ignition performance. The early 

time ethylene concentrations for the five fuels at =0.6 are shown in Figure 5.2-13, for the 
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same conditions used in Figure 5.2-12. The relative amount of ethylene is consistent with 

the predicted lean ignition limits, e.g., A1 produces the most ethylene and has the lowest 

LIL, while the reverse is true for C1. It should be noted that for all these fuels except C1, 

ethylene is the most abundant of the fuel intermediates produced. Therefore, the ethylene 

level during early times can be a good indicator of the overall ignition performance. Clearly 

if two fuels produce similar amounts of ethylene, but it is not the major product, differences 

in the relative amount of the other intermediates would be important. For example, benzene 

would be more advantageous than propene. 

 

Figure 5.2-13. Ethylene concentration during early times after fuel entrainment for =0.6.  

The simulation results can be compared to the experimental ignition probability 

rankings shown previously in Figure 5.1-2; there the ranking from best to worst is: C5 > 

A1 > A3 > A2 > C1. This is similar to the simulations, except A3 was slightly harder to 

ignite in the simulations. However, the biggest difference is the C5 ranking, which was the 

easiest to ignite in the experiments, but predicted to be worse than all the A fuels in the 

modelling.  
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The conditions used in the above simulations likely do not correspond exactly to the 

test conditions. Some conditions were carefully measured in the experiments, such as the 

air and fuel temperatures, and air and fuel flow rates. However, some conditions can only 

be approximated, such as the time when the kernel starts entraining the fuel/air mixture 

(transit), and the rate at which the kernel entrains the surrounding fluid. These two uncertain 

values, transit and the mass entrainment rate, can have a large impact on the early kernel 

temperature, which we have already shown strongly impacts the fuel chemistry. By varying 

transit and the entrainment rate, we can analyze the sensitivity of the lean ignition limit to 

these two parameters. Such a sensitivity analysis was performed, with one parameter varied 

at a time. The original simulation entrainment rate was 60 g/s, and the original transit time 

was 90 s. For the sensitivity analysis, the entrainment rate is tested at 30 and 120 g/s at 

transit=90 s; and the transit time is changed from 80 s to 100 s at the 30 g/s entrainment 

rate. The results are shown in Figure 5.2-14. 

 

Figure 5.2-14. The left graph shows the sensitivity analysis on the transit time while 

keeping the mass flow rate fixed. The right graph shows the effect of changing the 

entrainment while keeping transit fixed. 

As the kernel transit time (left of Figure 5.2-14) is increased to 100 s, only A1, A2, 

and A3 were able to ignite as the initial temperature is dropped by ~100K. At 100 s, A1 
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and A2 have the same LIL, while A3’s is higher. If the transit time is decreased to 80 s, 

the differences in LIL also becomes small. This is reasonable as the chemical reaction rates 

of the intermediates are shown to be similar at high temperature. The sensitivity of C1 to 

the initial temperature can be attributed to the sensitivity of isobutene to temperature. At 

high kernel temperature (short transit time), C1 has fast chemistry. At low kernel 

temperature (long transit time), C1 has slow chemistry. 

 The effect of varying the entrainment rate is shown in the right graph of Figure 5.2-14. 

As the entrainment rate is decreased, the dilution cooling rate is also decreased, thus 

allowing the kernel to stay at higher temperature longer. As the entrainment rate is doubled 

to 120 g/s, none of the runs can produce a successful ignition. If the entrainment rate is 

too high, the dilution cooing effect on the kernel will be very strong. Even if a rich mixture 

is provided, the chemical heat release will never overcome the dilution cooling. C1 is very 

sensitive to the changes in the entrainment rate. This can again be attributed to the variation 

in the kernel temperature and the sensitivity to the temperature variations of isobutene, a 

primary intermediate of C1 decomposition. 

The ranking of A1, A2, A3, and C1 matches the experimental results when the 

entrainment rate is between ~33 g/s and ~37 g/s. However, in the modeling for C5, its 

ignition performance is always worse than the A fuels, whereas in the experiments, its 

ignition performance was always better than all the other fuels. Thus we can conclude the 

simulations provide reasonable agreement with the experiment for all the fuels except C5. 

A possible reason is that the C5 fuel decomposition reactions or intermediate product 

distribution that were determined from shock tube experiments do not extrapolate well to 
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the higher temperatures existing in the forced ignition kernels. It is recommended to further 

investigate C5 decomposition at high temperature. 

 

5.3 Chapter summary 

 The forced ignition probabilities of 11 prevaporized fuels were measured. The goal of 

vaporizing the fuel prior interacting with the spark kernel is to eliminate the effect of liquid 

fuel vaporization, so that the differences in ignition are purely caused by the differences in 

the fuel chemistry. Hundreds of ignition events were tested for each fuel at equivalence 

ratios ranging from 0.6-0.8. The ignition probabilities are shown to increase as the 

equivalence ratio increases. The fuels are ranked based on the ignition probabilities at 

=0.675. Statistically significance differences are observed among fuels, meaning that the 

fuel chemistry indeed will influence ignition. Fuel C5 has the best ignition probability, and 

C1 has the lowest ignition probabilities. N-dodecane has similar ignition probability to that 

of A2. As for the two surrogates, S1 performs better than S2. This result hints that with 

other compositions being the same, n-deodecane may be more beneficial than n-

hexadecane in forced ignition. Although the fuel chemistry is shown to have definite effects 

on the forced ignition process, the correlations to the major groups of chemical compounds 

and the derived cetane numbers reveal no clear trend. The reduced order model with the 

HyChem fuel chemistry is used to simulate the ignition process for the fuels A1, A2, A3, 

C1, and C5, to understand more of the fuel chemistry effect on the ignition process.  

 For nominal inputs conditions for the ignition simulation, the fuel A2 is shown to have 

a lower LIL than the fuel C1. The intermediate species from the parent fuel decomposition 
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is shown to different largely for A2 and C1 fuel mechanism. The autoignition delay times 

of the intermediate species in neat air show that 1-butene, benzene, and ethylene have fast 

fuel chemistry as the temperature decreases, whereas isobutene, toluene, methane have 

slow chemistry as the temperature decreases. The LILs for five fuels A1,A2 A3, C1 and 

C5 are also obtained and the relative ethylene concentration is shown to correlate well to 

the ignition performance. Through adjusting the entrainment rate, it is possible to match 

the experimental rankings for all the fuels except C5. Thus, it is also recommended to have 

C5’s fuel decomposition mechanism at high temperature reexamined.  
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CHAPTER 6: 

FORCED IGNITION OF LIQUID JET FUEL 

 In the previous chapter, the ignition performance of prevaporized fuels was examined 

through experiments and reduced order modeling. The differences in relative amounts of 

the intermediate products produced from the parent fuels were shown to have a strong 

effect on the chemical kinetics and the heat release rate. The prevaporized ignition work 

demonstrated the impact of fuel chemistry on forced ignition. However, for aviation turbine 

engines, the fuels are injected into the combustor in the form of liquid sprays. The jet fuel 

needs to atomize and vaporize before the chemical reactions can produce heat release at 

offset the dilution cooling of the kernel. This phase transition adds complexity to the forced 

ignition process. In this chapter, the ignition performances of various fuels are first 

investigated by measurements of ignition probabilities. The droplet distribution 

measurements are presented. The detailed size distribution can help future CFD modeler 

when implementing detailed CFD simulations. A reduced order model that incorporates 

the droplet heating and vaporization is the used to study the effect of droplets on the ignition 

process. The effect of droplet distributions is investigated through the Rosin-Rammler 

relation.  

6.1 Ignition probability ranking 

As in the prevaporized study, average ignition probabilities were obtained based on 

more than 1000 spark events per fuel, and each fuel’s ignition probability is scaled relative 

to the probability of A2. The methods for obtaining the uncertainty bars and probability 
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scaling are describe in §3.3, and the absolute ignition probabilities for each fuel are given 

in Appendix G. 

 

 

Figure 6.1-1. Probability ranking with probabilities scaled to the probability of A-2, with 

probabilities acquired under test conditions in Table 2 for room temperature fuels. 

The results for ten room temperature fuels are shown in Figure 6.1-1, with uncertainty 

bars indicating the 68% confidence (1) level.  For comparison, ignition probability results 

for uniformly distributed, prevaporized fuels are shown in Figure 5.1-2. In the case of 

prevaporized mixtures, physical effects relating to vaporization and fuel distribution are 

removed, so chemistry differences between fuels should dominate.  
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Several differences can be noticed when comparing probabilities from the liquid and 

gaseous ignition tests. For the liquid sprays, fuels C2 and C3 have lower ignition 

probabilities than C1, whereas in the gaseous case, C2 and C3 have higher probabilities 

than C1. The prevaporized modeling suggested the low ignition probability of C1 could be 

caused by high concentration of isobutene as an intermediate breakdown product. In the 

case of liquid spray, however, C1 is easier to ignite than C2 and C3. Another fuel with 

significant change in ignition performance is S2. The major difference between S1 and S2 

is that S1 is blended with ~50% of n-dodecane, while S-2 is blended with ~50% of n-

hexadecane. The other 50% of the compositions are the same for S1 and S2. This suggests 

the physical fuel properties associated with the change in the straight chain alkane are the 

source of the significant difference in liquid spray versus prevaporized ignition. Finally, 

A3 has a higher ignition probability than A2 when prevaporized, but A3’s ignition 

probability is lower for the liquid fuel spray. 

 To simulate cold startup conditions, the liquid fuels were also chilled to 246 K, and the 

resulting relative ignition probability rankings for the chilled fuel spray are shown in Figure 

6.1-2. The chilled results include less fuels than the room temperature data. The reason for 

not testing some fuels at chilled conditions is that the freezing temperatures for the untested 

fuels are too high; these fuels will freeze at the bath temperature of the fuel chilling system.4 

For the fuels tested, the range of the relative ignition probabilities for the chilled fuels (-1.5 

to 4.5) is larger than the range of the room temperature ignition probabilities (-1 to 1.5); 

still the relative rankings of the chilled fuel probabilities are generally consistent with the 

                                                 
4Using a higher bath temperature would not allow these fuels to be chilled to the required temperature at the 

point of fuel injection. 
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room temperature rankings. The C3 and C7 fuels rank slightly higher (close to A3) in the 

chilled fuel case, though this may result in part from the inability of the experiment to 

differentiate between the very low ignition probabilities that occur for these fuels under the 

chilled conditions, as evidenced by the increased relative uncertainties compared to the 

spread of ignition probabilities.  

 

Figure 6.1-2. Probability ranking with probabilities scaled to the probability of A2, with 

probabilities acquired under test conditions listed in Table 2 for the chilled fuels. 

 As a start, we can analyze the impact of fuel temperature on ignition probability by 

considering the behavior of the fuel viscosity. Chilling the fuels should increase their 

viscosities. According to Equation 10, increasing the fuel viscosity will tend to increase 

the droplet size, and this in turn might be expected to hinder ignition (as per Equation 1). 
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The viscosities of different fuels respond differently to temperature changes. Given two 

viscosities at two temperatures, ASTM D341 [42] can help predict viscosities at other 

temperatures. A python code that uses ASTM D341 to predict viscosity as a function of 

temperature is provided in Appendix F. 

The calculated viscosities as a function of temperatures for a selection of the fuels is 

shown in Figure 6.1-3. The viscosity of fuel C3 is the most sensitive to temperature, while 

C5 has the least sensitive viscosity. For a fuel temperature around 294 K, according the 

SMD equations (Equation 10), viscosities will contribute to a (5/2)0.25=1.25 times bigger 

droplet diameter for the high viscosity fuel (C3) than the low viscosity fuel (C5). When the 

temperature is lower, the high viscosity fuel will have a (12/3)0.25=1.41 times bigger droplet 

diameter than the low viscosity fuel. Thus the larger spread in ignition probability for the 

chilled data compared to the room temperature case can be a result of the larger differences 

in droplet sizes as the fuel temperature is decreased. 

In most cases, the relative ranking of the fuel viscosities does not change as the 

temperature is decreased. This is also consistent with the experiments, where the ignition 

probability rankings were essentially the same for both fuel temperatures. For C1, however, 

the viscosity increases more as the temperature is decreased, compared to the other fuels. 

This should increase droplet size and would be predicted to make ignition more difficult; 

compared to the room temperature data, however, C1’s relative ignition ranking when 

chilled improves slightly. It should be noted that changes in fuel viscosity can also impact 

the spatial distribution of the fuel produced by the nozzle; this could also influence ignition 

probability by changing the amount of fuel in the region near the igniter.  
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Surface tension can also have a strong effect on the spray and droplet atomization 

process. However, the differences in surface tension among fuels are small (see Appendix 

A). Therefore, the variation in the surface tension is not expected to vary the droplet size 

much.  

 

Figure 6.1-3. Viscosities versus temperature for a few fuels studied in this program. ASTM 

D341 is used to predict viscosities at different temperatures. Tcold is the temperature of the 

tested chilled fuels, and TRT is the temperature of the tested room temperature fuels. 

 In summary, we see that the relative ignition probability rankings for some fuels are 

significantly different in fuel sprays than in prevaporized conditions. For example, C1 had 

the lowest ignition probability when prevaporized, but its probability ranks higher when 

C1 is ignited as a spray. As for liquid fuel sprays at different temperatures, fuel viscosities 

are shown to be influenced by temperature significantly. Droplet sizes are affected by the 

change in viscosity, with an increase in viscosity tend to increase the droplet sizes. A 

comparison of the ignition probabilities between those for the room temperature sprays and 

those for the chilled fuel sprays shows that the range of ignition probabilities is wider for 

the chilled fuel spray than for the room temperature fuel. The increased variation in fuel 
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properties at a low temperature is likely the cause of the increased variation in ignition 

probabilities.  

6.2 Droplet distribution measurement 

 The comparison presented above were for the same global conditions, e.g., fuel 

temperature and equivalence ratio. However, local conditions where the spark kernel 

interacts with the fuel are likely important to the success of ignition. For example, 

differences in local fuel concentration and droplet size would likely cause differences in 

ignition behavior. This likely motivated Lefebvre [9] suggestion, “It is strongly advised 

that in future experimental studies on fuel effects every effort should be made to determine 

mean drop size and drop-size distribution for all fuels over wide ranges of combustor 

operating conditions.”  

Therefore, to answer Lefebvre’s call to better understand local conditions, the particle 

size and velocity distributions for the room temperature fuel tests were measured with a 

Phase Doppler Analyzer (PDPA). The PDPA records the size and velocity at a single point 

location. A translational stage is used to move the PDPA system so that different points in 

space can be scanned. For this research, the primary goal of measuring droplet statistics is 

to provide more detailed droplet information for future CFD modeling. In addition, the 

PDPA measurement gives the relative droplet distribution with respect to the kernel 

trajectory. Also, the measured sizes can help the validity of the empirical SMD equation 

(Equation 10).  

The locations of measurements are shown in Figure 3.5-3. The measurements are taken 

for fuels A2, C1, C3, C5 and C9. The objectives of this section are to show the symmetry 
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of the spray and to show the correlation between the measured droplet sizes and the 

empirical SMDs. Also, not all measured data are included in this thesis as tens of thousands 

of droplets are captured for hundreds of locations. But the raw data are available upon 

request to the author or the author’s advisor – Dr. Jerry Seitzman. The PDPA measurements 

for fuel C3 are taken in the transverse and span-wise directions (r and r’ directions) at 10 

mm downstream.  

The spanwise and transverse profiles of SMD (D32) at an axial location 10 mm 

downstream of the nozzle are shown in Figure 6.2-1 for fuel C3. The edge of the spray is 

defined when less than 50 droplets are captured within an 8 second measurement span. The 

origin is defined at the point where the centerline of the nozzle intersects the cross-section. 

The SMD values in the transverse direction show better symmetry than in the spanwise 

direction. Traversing the PDPA system in the spanwise direction will change the laser 

beam quality. The droplets at the center are smaller than the droplets at the outer edge of 



 109 

the spray. The radius of the spray at the 10 mm plane is approximately 10 mm. Therefore, 

the spray cone angle is approximately 90o.  

 

Figure 6.2-1. Sauter Mean Diameter (SMD) profiles in the spanwise and transverse 

directions at the plane 10 mm downstream of the nozzle for fuel C3. The origin is defined 

at the point at which the center line intersects the cross-section.   

 The center of the igniter is in a plane 30.4 mm downstream of the fuel nozzle. 

Transverse SMD profiles for all five fuels tested are shown in Figure 6.2-2. The variations 

in droplet sizes among fuels are strongest near the center and edge of the spray. The spray 

cone angles are also slightly different. Fuels that produce larger droplets have slightly 

larger cones, as the larger droplets are harder to slow down.  
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Figure 6.2-2. Transverse SMD (D32) profiles at the plane 30.4 mm downstream of the 

nozzle. The origin is defined at the point at which the center line intersects the cross-

section. The red line indicates the position of the igniter.  

 

Figure 6.2-3. The measured D32 versus the predicted D32 at 5.8 mm above the igniter in 

the 30.4 mm plane. 

The SMD data at 5.8 mm above the igniter in the 30.4 mm plane are compared to the 

values predicted by Equation 10 in Figure 6.2 3. The droplets close to the igniter will 

interact with the spark kernel when the spark kernel is at high temperature. The measured 

droplet SMD values are larger than the predicted sizes; this is due, at least in part, to the 

small droplets near the center of the spray not being included in the experimental value. 

Except for A2, the trend of the measured droplets match that of the predicted droplets. The 
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cause for A2 to be a significant outlier is unclear. Potential source of error can be the 

randomness in the spray formation, inconsistent laser quality, or contaminated window. In 

future studies, capturing multiple, repeatable data for each fuel is necessary. 

In addition to average droplet sizes, the PDPA provides size distribution results. 

Example number distributions for the five fuels at 5.8 mm above the igniter in the 30.4 mm 

plane downstream of the nozzle are shown in Figure 6.2-4. All distributions can be modeled 

by the Rosin-Rammler relation as in Equation 16 for easier application in modeling. An 

example Rosin-Rammler regression check for A2 in Figure 6.2-4 is presented in Figure 

6.2-5, and good fitting is obtained.  

 

Figure 6.2-4. Droplet size number density distribution at 5.8 mm above the igniter center 

in the 30.4 mm plane downstream of the nozzle. Normalized by the total number of 

droplets captured.  
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Figure 6.2-5. Rosin-Rammer fitting for A2 in Figure 6.2-4. 

 

6.3 Probability correlations 

 The preceding analysis noted the possible importance of viscosity on ignition of fuel 

sprays, based on its influence on droplet size. As noted in Chapter 1, droplet heating and 

vaporization can be expected to be important for ignition, thus any physical properties that 

influence droplet atomization and vaporization will likely affect ignition. In addition, the 

fuel chemistry can also be important. Thus, this section investigates the correlation of 

ignition probability to various fuel properties.  

6.3.1 Correlations to single properties 

 The correlation between the ignition probabilities of the room temperature sprays and 

DCN is shown in Figure 6.3-1. No clear relation between the ignition probabilities and 

DCN can be seen, despite the large range of DCN values represented by the fuels. Figure 

6.3-2 shows the correlation between ignition probability and fuel density. Again, no clear 
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correlation is evident. It may appear that fuels with higher densities seem to give lower 

probabilities, which is consistent with Equation 10, since larger densities are expected to 

produce larger droplets. However, without C3 and C7 included in the analysis, the ignition 

probability shows little dependence on density; for example the full range of probability is 

observed for two fuels with the same density (C5 and C9). Still, it is important to point out 

the relative variation in density among the fuels is small; thus the effect of density may not 

be observable.  

 

Figure 6.3-1. The relative ignition probabilities versus DCNs for ignition of room 

temperature fuel sprays.  
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Figure 6.3-2. The relative ignition probability versus fuels’ density at 15 C for ignition of 

room temperature fuel sprays.  

 

 Nonetheless, some fuel properties do show strong, and quasi-linear, trends when 

plotted against ignition probability. The linear correlation indexes for select properties are 

shown in Figure 6.3-3. Of the fuel properties whose values are available from the data 

provided by the NJFCP, those that have the strongest influence include the 10% recovery 

temperature (Figure 6.3-4) and the viscosity (Figure 6.3-5). The viscosity dependence 

relates to the previously suggested relationship to atomization and droplet size. A lower 

viscosity tends to produce smaller droplets, which can reach the vaporization temperature 

sooner during the heat up process. In addition, viscosity and droplet size can impact the 

spatial distribution of fuel downstream of the atomizer. Recovery temperature (or vapor 

pressure) will also influence the vaporization rate of the fuel. For example, a lower value 

for the 10% recovery temperature or a higher vapor pressure indicates the fuel will be easier 

to vaporize when interacting with the hot kernel, which is required to initiate chemical 
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reactions. The effect of choosing the recovery temperature is later explored with the 

reduced order model.  

 

Figure 6.3-3. The linear correlation indexes between the ignition probability and the 

properties. 

 

 

Figure 6.3-4. Relative ignition probabilities versus the 10% recovery temperature. 
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Figure 6.3-5. Relative ignition probabilities versus the kinematic viscosities.  

6.3.2 Correlation to physical models 

These strong correlations of ignition probability to properties that relate to droplet size 

give confidence to our earlier hypothesis that forced ignition of liquid fuel sprays can be 

controlled by droplet heating and vaporization. Having this confidence in the effect of 

droplets on ignition, we can explore more advanced correlations, including the correlation 

to droplet sizes, the correlation to the empirical lean light off (LLO) limit as in [9], and the 

correlation to the minimum ignition energy in a single size, uniformly distributed droplet 

array.  

The correlation of the ignition probabilities to the droplet sizes predicted by Equation 

10 is shown in Figure 6.3-6. A clear trend can be observed between the ignition 

probabilities and the SMDs calculated with Equation 10. As the droplet size increases, the 

ignition probability decreases. The increase in droplet size means the time required to heat 

the droplet to a temperature where vaporization is rapid will be longer, as the initial liquid 

temperature is lower than the recovery temperatures. However, the rate of mass loss will 

be faster for larger droplets once they reach these vaporization temperatures. C9 is an 
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outlier in the droplet size dependence. In addition to the physical process that is strongly 

affected by the droplet sizes, fuel chemistry may also impact the ignition process for liquid 

fuel sprays.  The correlation between ignition probability and droplet size becomes stronger 

for the chilled data, where the predicted droplet sizes (and range) are also larger.   

The droplet heating time and vaporization rate can both influence the ignition process. 

Therefore, the correlations to the heating times and the vaporization rates should also be 

investigated.  

 

Figure 6.3-6. Relative ignition probabilities versus 10% recovery temperature. Left: fuel 

spray at 294 K; Right: fuel spray at 246 K. 

To get a preliminary understanding of the effects of the droplet heating time and the 

rate of vaporization, we can first use simple heating and vaporization models and observe 

how the ignition probabilities correlate to heating and vaporization. For heating, as the 

droplets sizes are small, the infinite diffusivity heat transfer model [43]can be used . To 

simply investigate the effect of heating times on ignition, we can ignore the vaporization 

during the heat up period. The vaporization during the heating up period will make the heat 

up time longer as part of the heat transferred to the droplet is used for vaporization. With 

the assumption of no vaporization during heating and treating the liquid droplet as a solid 
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sphere, an analytical solution of the heat up time can be calculated using the lump analysis 

[cite a heat transfer book] as  

 

𝑡ℎ𝑒𝑎𝑡 𝑢𝑝 = −9 × 𝑙𝑛 (
𝑇𝑏𝑜𝑖𝑙 − 𝑇𝑘𝑒𝑟𝑛𝑒𝑙

𝑇𝑖 − 𝑇𝑘𝑒𝑟𝑛𝑒𝑙
)

×
𝑁𝑢𝑘𝑎𝑖𝑟

𝜌𝑐𝑝,𝑙
× (

𝐷

2
)2 

(24) 

where Tboil is the boiling temperature, Tkernel is the temperature of the spark kernel, Ti is the 

initial temperature of the droplet, kair is the thermal conductivity of the air, 𝜌 is the density 

of the liquid, 𝑐𝑝,𝑙 is the heat capacity of the liquid, and D is the droplet diameter.  

In the following analysis, D is based on the calculated SMD (as in Figure 6.3-6). The 

kernel temperature is assumed to be at 1600 K, with the initial fuel temperature at 294 K 

and 246 K. For a non-vaporizing droplet, the layer of mixture near the droplet, commonly 

referred to as the “film,” will consist of air only. For a pure air film, the Nusselt number 

can be approximated using T. Yuge’s [44] heat transfer model for a solid sphere, which is  

 𝑁𝑢 = 2 + 0.43𝑅𝑎𝐷
1/4

 (25) 

where RaD is the Rayleigh number and its calculation can be found in [44].  

The results of the correlation between the ignition probability and heating time are 

shown in Figure 6.3-7. In Equation 24, the heating time is proportional to D2. Thus, larger 

droplets will have longer heating times, though the final boiling temperature will also have 

an effect. The longer heating time will lead to lowered ignition probabilities, as evidenced 
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in both the room temperature and chilled fuel cases (Figure 6.3-7). The heating times of 

the room temperature droplets are longer than the heating times of the cold droplets. The 

low initial temperature of the droplets will tend to increase the heating time of the droplets. 

As the heating time of the droplets are longer, the droplets will not vaporize quickly until 

later times. During this droplet heat up period, the spark kernel will continue to be cooled 

and diluted by entrainment. Fuel C9 is an outlier as in the left graph in Figure 6.3-7. The 

C9 fuel has a lower ignition probability while its heating time is shorter. In this calculation, 

the 10% recovery temperature is used as the boiling temperature. However, as these jet 

fuels consists of a large variety of chemical compositions, different fuel components will 

vaporize at different temperatures. Thus, a different recovery temperature may make the 

C9 fit better.  

 

Figure 6.3-7.The heating time to the 10% recovery temperature. The droplets is placed in 

1600 K quiescent air, and the initial temperatures of the droplets are 294 K (left) and 

246 K (right). The droplet sizes for each fuel are predicted by Equation 10. 

The correlation to the heating time to the 20% and 50% recovery temperatures are 

shown in Figure 6.3-8 and Figure 6.3-9. If the percentage recovered is higher, then the 

recovery temperature will also be higher. Longer times are required for the droplets to heat 

to a higher recovery temperature. For the 20% recovery temperatures in Figure 6.3-8, both 
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the 294 K and the 246 K droplets still shows good correlation between the ignition 

probabilities and the heating times. However, for the 50% recovery temperatures in Figure 

6.3-9, the correlations are becoming less obvious, manifested through the shifts in C1 and 

n-dodecane. This result indicates that the lower recovery temperature will have a more 

dominant effect on ignition than the higher recovery temperatures have.   

 

Figure 6.3-8. The heating time to the 20% recovery temperature. The droplets is placed in 

1600 K quiescent air, and the initial temperatures of the droplets are 294 K (left) and 

246 K (right). The droplet sizes for each fuel are predicted by Equation 10. 

 

 

Figure 6.3-9. The heating time to the 50% recovery temperature. The droplets is placed in 

1600 K quiescent air, and the initial temperatures of the droplets are 294 K (left) and 

246 K (right). The droplet sizes for each fuel are predicted by Equation 10. 
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In addition to droplet heating, droplet vaporization can also influence ignition. The 

effect of the droplet vaporization can be seen from the effective vaporization rate. The 

effective vaporization rate in Lefebvre’s work [9] is defined as  

 

𝜆𝑒𝑓𝑓

=
8𝑘/𝑐𝑝ln (1 + 𝐵)(1 + 0.22𝑅𝑒0.5)

𝜌𝐹
 

(26) 

where k and cp are the thermal conductivity and the specific heat at constant pressure for 

the gaseous mixture, Re is the Reynolds number of the droplet, 𝜌𝐹 is the density of the fuel 

in liquid form, and B is the Spalding transfer number. The Spalding transfer number can 

be calculated as  

 𝐵 =
𝑐𝑝(𝑇𝑒𝑛𝑣 − 𝑇𝑏𝑜𝑖𝑙)

ℎ𝑓𝑔
 (27) 

where Tenv is the ambient temperature, Tboil is the boiling temperature, and hfg is the heat of 

vaporization. Since the vaporization rates of various fuels are investigated, 𝜆𝑒𝑓𝑓 can be 

scaled to that of A2 to simplify calculation. The scaled effective vaporization rate will be 

termed 𝜆𝑟, and 𝜆𝑟 is calculated as  

 

𝜆𝑟 =
𝜆𝑒𝑓𝑓

𝜆𝑒𝑓𝑓,𝐴2

=
ln(1 + 𝐵)𝜌𝐹,𝐴2 (1 + 0.22𝑅𝑒0.5)

ln(1 + 𝐵𝐴2)𝜌𝐹 (1 + 0.22𝑅𝑒𝐴2
0.5)

 

(28) 
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where BA2 and 𝜌𝐹,𝐴2 are the Spalding number and density of fuel A2. If we further assume 

the relative velocity between the droplet and the free stream is small, the Reynolds numbers 

are negligible. The expression for 𝜆𝑟 can then be simplified to be  

 𝜆𝑟 =
ln(1 + 𝐵)𝜌𝐹,𝐴2

ln(1 + 𝐵𝐴2)𝜌𝐹
 (29) 

The results for the correlation between 𝜆𝑟 and ignition probability are shown in Figure 

6.3-10 for an ambient temperature of 1600 K. The 10% recovery temperatures of the fuels 

are used as the boiling temperatures for calculating the B values. While the variations in r 

are small, there is some evidence of an increase in ignition probability with higher relative 

effective evaporation constant (A1 and C9 the biggest outliers).  

The relative effective vaporization defined in Equation 29 accounts for the physical 

properties such as the boiling temperatures and the densities of the fuel. In addition, the 

droplet size will also play an important role in vaporization. As noted previously, larger 

droplets have higher mass vaporization rates than smaller droplets, because they have more 

surface area. To account for the effects of droplet sizes and chemistry, we can turn our 
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attention to Lefebvre’s empirical expression (Equation 1), which includes terms for droplet 

size and chemistry.  

 

Figure 6.3-10. The relative ignition probabilities versus the relative effective 

vaporizations calculated with Equation 29. The ambient temperature is 1600 K. 

To simplify calculation, we will look at the relative lean ignition limits with respect to 

that of A2. With the same approach used in obtaining 𝜆𝑟, the relative lean ignition limit 

can be calculated by finding the ratio with respect to the lean ignition limit of A2, and the 

result is  

 𝑓𝐿𝐿𝑂,𝑟 =
𝐷2𝜆𝑟,𝐴2𝐿𝐻𝑉𝐴2

𝐷𝐴2
2 𝜆𝑟𝐿𝐻𝑉

 (30) 

where D is a representative droplet size, 𝜆𝑟 is the relative vaporization as in Equation 29, 

and LHV is the lower heating value. The correlations between the relative ignition 

probabilities and the relative LLO limit is shown in Figure 6.3-11. The ignition 

probabilities correlate well with the LLOs for both the room temperature fuels and the 
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chilled fuels; higher LLOs correspond to lower ignition probabilities. The vaporization 

constants and the heating values of the fuels vary slightly among the fuels. The trend shown 

in Figure 6.3-11 for LLOs resembles the trend shown in Figure 6.3-6 for the droplet sizes. 

In fact, the differences in the LLOs are mainly controlled by the differences in the droplet 

sizes.  

 

Figure 6.3-11. Relative ignition probability versus relative lean ignition limits calculated 

with Equation 30.  

6.3.3 Summary  

In this section, the correlation of forced ignition probability to single properties of 

liquid fuels and to various physical models was explored. It is found that DCN is not a 

good indicator for forced ignition performance in liquid jet fuels. Fuel density also show 

poor (or weak) correlation to ignition probability, at least based on the small range of 

densities seen in jet fuels. Strong correlations to viscosity and recovery temperatures are 

observed, which follows from their impact on droplet heating and vaporization. Based on 

their strong correlation to the measured forced ignition probabilities, the droplet sizes, 
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heating times, and vaporization rates seem to be the controlling processes impacted by the 

fuel properties.  

The SMDs shows good correlation to the ignition probabilities. Larger SMDs will have 

lower ignition probabilities. Larger droplets will be more difficult to heat up. The heating 

time to various recovery temperatures are investigated assuming no vaporization during 

heating. The ignition probabilities show good correlations to the heating times 

corresponding to the 10% and 20% recovery temperatures, while the correlations are 

weaker for the heating times to the 50% recovery temperatures. The heating time to the 

lower recovery temperatures seems to have a stronger impact than the heating time to the 

higher recovery temperatures.  

The vaporization rates of the droplets are investigated through the effective 

vaporization constant,  𝜆𝑒𝑓𝑓. The variations in 𝜆𝑒𝑓𝑓 are small, and no strong correlation 

between the ignition probabilities and 𝜆𝑒𝑓𝑓 is observed. The correlation to the lean ignition 

limit, fLLO, is also investigated. The fLLO expression includes the droplet sizes and the 𝜆𝑒𝑓𝑓. 

The correlation to the fLLO resembles the correlation to the droplet sizes. The droplet sizes 

have dominant effect on fLLO and the ignition outcome.    

6.4 Reduced order simulation 

In the previous section, the factors that may affect the forced ignition process are 

correlated to the experimental values of the ignition probabilities for various fuels. The 

calculated droplet diameter is found to have a strong correlation to the measured ignition 

probability. With the reduced order model presented in §3.6.2, this section investigates the 

effect of the droplet sizes, the effect of the fuel temperature and the air temperature, the 
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effect of different fuels, the effect of fuel/air ratio, and the effect of droplet distribution. 

The python code used in this study is given in Appendix D. 

6.4.1 Model validation 

Before examining any model predictions, it is important to ascertain if the model 

captures basic trends found in experimental results. As introduced in §3.6, the droplet 

ignition model consists of two parts: 1) the two-stage PSR model that simulates the spark 

kernel entrainment and chemistry, and 2) the droplet heating and vaporization model. The 

two-stage PSR model was previously validated by successfully predicting experimental 

data in [8]. The droplet heating and vaporization model for a single droplet is also validated 

by comparing results in §3.6.2.1 to results in [40]. To further validate the model, we can 

compare the model result to the fLLO  in Equation 1. For a single fuel, fLLO is a function of 

the droplet size and the vaporization constant. For a constant fLLO, the change in droplet 

size due to the variation in the boiling temperature can be expressed as  

 

𝐷1
2

ln (1 +
𝑐𝑝(𝑇𝑒𝑛𝑣 − 𝑇𝑏𝑜𝑖𝑙,1)

ℎ𝑓𝑔
)

=
𝐷2

2

ln (1 +
𝑐𝑝(𝑇𝑒𝑛𝑣 − 𝑇𝑏𝑜𝑖𝑙,2)

ℎ𝑓𝑔
)

 

(31) 

 Assuming the environment temperature of 1600 K and choosing the boiling 

temperature to be 433 K, 453 K, and 493 K, we can compare the scaling in fLLO to the 

scaling from the model results as in §6.4.5. If 453 K is matched to 12.5 m diameter, 433 K 

is matched to 12.54 m, and 493 K is matched to 12.41 m. Compared to Figure 6.4-13, 
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the model is able to predict the correct trend: higher boiling temperature will require 

smaller droplets. However, the model predicts a much strong sensitivity of the droplet size 

to the boiling temperature compared to that predicted by the fLLO. To find the reason for the 

mismatch, we will investigate the droplet ignition process with the model in the following 

sections. 

6.4.2 Energy transfer mechanisms 

 To see the effect of the energy transfer mechanisms, we can start with analyzing the 

ignition of a single size droplet. The mass flow rate of the total fuel is calculated based on 

the air mass entrainment rate and the equivalence ratio. The fuel mass flow rate determines 

the amount of fuel supplied per time step. For these simulations, the ambient fluid is set to 

have a stoichiometric fuel-air composition. The temperature of both fuel and air are 300 K. 

These temperatures are chosen to simulate the engine startup environment. Cases are 

examined for 10 and 20 m droplets, as these sizes are commonly encountered in sprays. 

The fuel mechanism of A2 is used. A single fuel boiling temperature is used, and this 

temperature is chosen to be the 10% recovery temperature of A2. The transit time of the 

kernel through pure air is set at 20 s. The air entrainment rate is 30 g/s. 

The results of the kernel temperatures as a function of time after the formation of high 

energy spark are shown in Figure 6.4-1. The black line indicates the temperature of the 

kernel if no fuel droplets are introduced. For the two cases where droplets are introduced, 

the amount of fuel introduced per time is the same (since the equivalence ratio is fixed). 

Thus the 10 m diameter case will have more droplets than the 20 m case. The simulation 

with 10 m droplets produces successful ignition, whereas the case with 20 m does not.  
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Figure 6.4-1. Temperature history for an entrained fluid mixture with an equivalence ratio 

of 1. The red line is for 10 m droplets, and the orange line is for 20 m droplets. The 

black line indicates temperature of the profile if no fuel droplets are introduced. The 

dashed vertical line indicates the time (20 s) when fuel droplets are introduced.  

 To understand why the 20 m droplets are not able to produce a successful ignition, 

we can look at the primary energy transfer mechanisms that control the kernel temperature, 

which are the chemical heat release, the dilution cooling, and the droplet heating and 

vaporization. The total chemical heat release rate, the dilution cooling rate, and the droplet 

heating and vaporization rate for the two different droplet sizes are plotted in Figure 6.4-2, 

Figure 6.4-3, and Figure 6.4-4. 
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Figure 6.4-2. The chemical heat release rates for ignition of the 10 m droplets (red) and 

the 20 m droplets.  

 

 

Figure 6.4-3. The dilution cooling rates for ignition of the 10 m droplets (red) and the 

20 m droplets.  
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Figure 6.4-4. The energy supplied to the droplets for heating and vaporization for ignition 

of the 10 m droplets (red) and the 20 m droplets.  

 From the total chemical heat release rate (Figure 6.4-2), we see both droplet cases have 

heat release at early times when the kernel entrains the droplet/air mixture. For the 10 m 

case, the heat release continues, whereas the 20 m case produces heat only within the first 

0.4 ms of the kernel development. Moreover, the total amount of heat produced in the 

20 m case is much smaller. For both fueled cases, there is an initial delay before 

significant heat release is observed once the fuel is first entrained. The delay for the 10 m 

droplets is around 0.02 ms, while the delay is longer (~0.08 ms) for the 20 m droplets.  

This initial delay is due to the time required for droplets to heat to a temperature close 

to the boiling point, when the droplets can vaporize quickly. In other words, little vapor 

fuel is supplied during this initial heat up time. The total vaporization rates are shown in 

Figure 6.4-5. The delays in the vaporization rate corresponds to the delays in chemical heat 

release. This indicates the delay in heat release is primarily controlled by the time required 

for the droplets to heat up. Thus any chemical delays (e.g., before endothermic reactions 
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are surpassed by exothermic reactions) are insignificant compared to the droplet heating 

time. 

 

 

Figure 6.4-5. The total vaporization rate for ignition of the 10 m droplets (red) and the 

20 m droplets.  

 During the droplet heat up period, when little fuel vapor is available for chemical 

reactions, the kernel will continue to entrain the surrounding fluids. The mixing between 

the hot kernel and the cold surrounding fluid leads to a drop in kernel temperature. The 

dilution cooling rate is shown in Figure 6.4-3.5 The dilution cooling rate depends on the 

current kernel temperature. When the temperature of the kernel is higher, the entrained 

fluid needs to be heated to a higher temperature, and thus more thermal energy from the 

existing kernel fluid is transferred. Vice versa, if the kernel temperature is lower, less heat 

is required to heat the entrained fluid, and the dilution cooling rate will be lower. For the 

10 m droplets, the dilution cooling rate decreases initially. As the chemical heat release 

                                                 
5The negative values of the dilution cooling rate mean the dilution cooling will decrease the temperature of 

the kernel. 
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starts raising the temperature of the kernel, the dilution cooling rate increases. For the 

20 m droplets, the dilution cooling rate continues to decrease as the heat release rate is 

not able to overcome the cooling rate, and the temperature of the kernel decreases. 

In addition to dilution cooling, another mechanism that can reduce the kernel 

temperature is transfer of thermal energy to heat and vaporize the fuel droplets. The thermal 

energies supplied to the droplets are shown in Figure 6.4-4. Although the amount of fuel 

supplied at each time step is the same, the 10 m droplets have a higher heat transfer rate 

than the 20 m droplets; the total surface area is higher for the larger number of smaller 

droplets, and a larger total surface area enhances the heat transfer rate. The heat transfer 

rate to the droplets also depends on the kernel temperature. With more heat release, the 

10 m case has a hotter kernel and therefore faster droplet heating and vaporization. 

Comparing the magnitude of the cooling due to dilution to that associated with heat transfer 

to the droplets, the droplet cooling effect, 𝒪(1 J/s), is much smaller than the dilution 

cooling, 𝒪(10 J/s). Thus, the primary reason for any drop in kernel temperature is dilution 

by entrained air.  

6.4.3 Effect of droplet temperature and air temperatures 

In cold start and high altitude relight conditions, the temperatures of the air and the 

liquid fuel are lower than for regular start up conditions. The reduced order model can be 

used to help understand the effect of cold fuel and air on the ignition process. For this 

analysis, a base case is defined using most of the same conditions as in the previous section 

(300 K fuel and air, etc.), but now with 13 m droplets. Two additional cases where the 

fuel and air temperatures are separately set to 250 K, with the other temperature remaining 
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at 300 K, are used to investigate the effects of cold fuel and air. The temperatures as a 

function of time for the three cases are shown in Figure 6.4-6.  

 

Figure 6.4-6. Kernel temperature history. The red line indicates the case where both the 

air and the fuel are at 300 K. The blue line indicates the case where the case where the air 

temperature is set at 250 K. The orange line indicates the case where the fuel temperature 

is set at 250 K case.  

 As shown in Figure 6.4-6, both cases with 300 K fuel ignite successfully, based on the 

rise in the kernel temperature. For the cold fuel case, ignition is not achieved as the 

temperature of the kernel continues to decrease. Although the air temperature and the fuel 

temperature are decreased by the same amount, the change in fuel temperature has a more 

significant impact on the outcome of ignition. As above, additional insight is provided by 

examining:  the chemical heat release rate, dilution cooling rate, and heat transferred to the 

droplets.  
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Figure 6.4-7. Total chemical heat release rate history. The red line indicates the case 

where both the air and the fuel are at 300 K. The blue line indicates the case where the 

case where the air temperature is set at 250 K. The orange line indicates the case where 

the fuel temperature is set at 250 K case. The purple, dashed, vertical line indicates time 

when fuel droplets are introduced into the kernel. 

  

To start, the chemical heat release rates are shown in Figure 6.4-7. The cold fuel case 

has a longer delay in the initial heat release compared to the base and cold air cases. As 

discussed previously, this chemical heat release delay is due to the time required to heat 

the droplet to a temperature where rapid vaporization occurs. Thus the increased time 

required to heat the cold fuel appears to be more important than the enhanced dilution 

cooling caused by reducing the air temperature. Moreover, the lower kernel temperature 

caused by dilution cooling will reduce the heat transfer rate to the droplets and also increase 

the droplet heat up time. For the cold air case, the delay in the chemical heat release rate is 

almost the same as that for the base case; this indicates that cooling the air by 50 K does 

not have a significant impact on the kernel temperature at early times.  
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This is verified by comparing the dilution cooling rates (Figure 6.4-8). Though the 

dilution cooling for the 250 K air case is faster at early times than for the 300 K air case, 

the difference in the dilution cooling rates are indeed small. The reason for the small 

difference is that the sensible enthalpy required to heat the entrained air scales as 

(Tkernel-Tair); with a kernel temperature near 2000 K, a change in air temperature by 50 K is 

a small effect when Tkernel>>Tair.  Even if the kernel does ignite, the lower air temperature 

will eventually lead to a lower flame temperature, which can impact flame propagation and 

stability at later times. 

 The heat transfer rates from the kernel to the droplets are shown in Figure 6.4-9. In 

early times (within the first 0.1 ms), the heat transfer rate to the 250 K droplets are slightly 

larger than the heat transfer rates to the 300 K droplets as the temperature differences 

between the kernel and the droplets are larger. Although the heat transfer rate is higher for 

the 250 K droplets, the heat up time is still longer than those of the 300 K droplets. For the 

250 K droplets, the heat transfer rate decreases in later time as the temperature of the kernel 

starts to drop rapidly as the kernel temperature is too low to sustain heat releasing reactions.   
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Figure 6.4-8. Kernel dilution cooling rate history. The red line indicates the case where 

both the air and the fuel are at 300 K. The blue line indicates the case where the case 

where the air temperature is set at 250 K. The orange line indicates the case where the 

fuel temperature is set at 250 K case.  

 

Figure 6.4-9. Temporal profile of heat transfer rate to droplets. The red line indicates the 

case where both the air and the fuel are at 300 K. The blue line indicates the case where 

the case where the air temperature is set at 250 K. The orange line indicates the case 

where the fuel temperature is set at 250 K case. 

6.4.4 Effect of droplet relative velocity (Reynolds Number) 

To study the effect of Reynolds numbers on the ignition process, the droplet diameter 

is set at 15 m, and the air and fuel temperatures are 300 K. The other conditions are 
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consistent with those used previously. The droplet Reynolds numbers are chosen to be 0, 

5, and 10. For an air viscosity at 1600 K, these Reynolds number represent droplet relative 

velocities at 0, 40 and 100 m/s.  

The kernel temperature histories for the three relative velocity cases are shown in 

Figure 6.4-10. Only for ReD=10 does the kernel produce a successful ignition. Increasing 

ReD and the relative velocity raises the heat transfer rate to the droplets. The impact of this 

is seen in the chemical heat release rate (Figure 6.4-11). The ReD=0 case has the longest 

time delay before chemical heat release occurs, while the ReD=5 and 10 cases have 

approximately the same delays. Though the delays are the same, the higher relative velocity 

case gives a slightly higher heat release rate; this is due to the higher vaporization rate.  

 

Figure 6.4-10. Kernel temperature histories. The red line indicates the case where ReD=0. 

The blue line indicates the case where the case where ReD=5. The orange line indicates 

the case where ReD=10.  
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Figure 6.4-11. Chemical heat release rate histories. The red line indicates the case where 

ReD=0. The blue line indicates the case where the case where ReD=5. The orange line 

indicates the case where ReD=10.  

 The increased heat transfer rate with Reynolds number could have a significant impact 

on the kernel cooling rate. This question can be answered by looking at the heat transferred 

to the droplets (Figure 6.4-12). Increasing ReD indeed increases the heat transfer rate to the 

droplets; however, the heat transfer rate is still much smaller than the magnitudes of the 

chemical heat release and dilution cooling rates. Therefore, increasing relative velocity or 

Reynolds number will lead to earlier and faster vaporization that is beneficial to ignition, 

but doing so will not significantly increase the kernel cooling rate.  
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Figure 6.4-12. Temporal evolution of heat transfer rates to the droplets. The red line 

indicates the case where ReD=0. The blue line indicates the case where the case where the 

ReD=5. The orange line indicates the case where ReD=10.  

 

6.4.5 Effect of fuel chemistry and recovery temperatures on ignition 

In the previous simulations, the recovery temperature of the fuel is set at a constant 

value of 433 K, the 10% recovery temperature for A2. The fuels are composed of many 

different components, and the conditions required to produce rapid fuel vaporization are 

not completely described by a single temperature. From the analysis in §6.3.2, the ignition 

probabilities were seen to correlate well to the heating times when either 10% or 20% 

recovery temperature were chosen. In §6.4.3, varying the droplet’s initial temperature 

proved to have a strong effect on ignition by increasing the droplet heating time. The 

variation of the recovery temperature should also introduce variation in the heating time. 

The goal of this section is to investigate the effect of the fuel chemistry, the recovery 

temperature, and the initial droplet temperature on the minimum or critical droplet size for 
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ignition to occur. The recovery temperature and the initial droplet temperature will both 

affect heating times, which are shown to be important in previous sections. The relative 

effects of fuel chemistry, viscosity, recovery temperature, and initial fuel temperature are 

investigated.   

The relative effects are studied using two fuel chemistries, three recovery temperatures, 

and two initial droplet temperatures. The droplet sizes are varied such that successful and 

unsuccessful ignition cases are achieved. A larger critical droplet size for a given set of 

fuel and flow conditions indicates easier ignition. The fuel chemistries for A2 and C1 are 

chosen as they showed large differences in the prevaporized study (Chapter 5). The initial 

fuel temperatures are varied so that the heating times are longer. Longer heating time means 

lower kernel temperature, and the fuel chemistry effect may be more significant. The 

equivalence ratios are set at 1. Three boiling temperatures are chosen from the range of the 

10% recovery temperature to the 40% recovery temperatures of all fuels. The parameter 

matrix is shown in Table 6. A total of 16 cases are studied. The results of the minimum 

droplet sizes for ignition of the 300 K fuel is presented in Figure 6.4-13. From this figure, 

we can see the relative influence of the boiling temperatures and the fuel types on ignition. 

The variation in droplet size caused by different fuel boiling temperature is indicated by 

the red vertical double-sided arrow. The results of fuel A2 is represented by a green line 

and green points, and that of C1 is represented by a yellow line and yellow points. Different 

fuel mechanisms do influence the maximum droplet size. At each boiling temperature, C1 

requires smaller droplets than A2 does. This means C1 is harder to ignite than A2. Previous 

study on C1 fuel mechanism shows high concentration of isobutene as an intermediate 

product of fuel breakdown. Isobutene’s reaction rate is sensitive to the temperature 
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variation, and its rate is slower than other intermediate products as the temperature 

decreases. Thus, C1 should be harder to ignite than A2. However, the change in the boiling 

temperature by 60 K will introduce a much larger effect on the maximum droplet size for 

ignition. The blue dashed vertical line indicates the range of droplet sizes due to the 

variation in viscosities. Therefore, viscosity will have a more dominant effect than boiling 

temperature or fuel type.  

 

Table 6. Parametric study to characterize the effect of the fuel type and the boiling 

temperatures on ignition. 

Fuel 

Chemistry 

Boiling 

Temperature 

Fuel Initial 

Temperature 

Dynamic 

Viscosity 

A2 433 K 300 K 1.0 cSt 

C1 453 K 220 K 3.0 cSt 

 493 K  5.0 cSt 
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Figure 6.4-13. Dependence of critical droplet size on boiling temperatures representing 

the range of the 10%-40% recovery temperatures. The blue dashed vertical line indicates 

the variation in droplet sizes due to the differences in viscosity for the droplet size at the 

boiling temperature of 493 K.  

 

 For the fuel temperature starting at 220 K, the maximum droplet size of ignition is also 

obtained. The results compared to the 300 K fuel is presented in Figure 6.4-14. As the fuel 

temperature is decreased, smaller droplets are required to achieve ignition. The effect of 

boiling temperatures on the maximum droplet size decreases as the temperature differences 

increase between the boiling temperature and the initial droplet temperature.  
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Figure 6.4-14. The maximum droplet sizes in between the successful/unsuccessful 

ignition cases versus the boiling temperatures representing the range of the 10%-40% 

recovery temperatures. The initial fuel temperatures are at 220 K and 300 K. The blue 

dashed vertical line indicates the variation in droplet sizes due to the differences in 

viscosity for the droplet size at the boiling temperature of 493 K.  

 

6.4.6 Effect of droplet distribution 

For single size droplets, all droplets entering the kernel will have the same history in 

terms of heating and vaporization. If the droplets entering have a distribution of sizes, the 

The Rosin-Rammler droplet size distribution (Q) described in Equation 16 is commonly 

used to describe the volumetric distribution of droplets. For X=20 m, the results of dQ/dD 

for q=3, q=5, and q=10 as a function of D are shown in Figure 6.4-15. As the value of q 

increases, the distribution becomes narrow, with the fuel mass stored in droplets with 

diameters near X. For smaller q, more masses are stored in the smaller droplets and the 

larger droplets. The effect of these three distributions on the ignition is tested at 300 K fuel 

and air temperature. The equivalence ratio is 1 with 30 mg/s entrainment rate. The fuel 
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boiling temperature is set at 433 K. The results or the kernel temperatures are shown in 

Figure 6.4-16.  

For the three cases, only q=3 produces a successful ignition. This shows that having 

more mass in the smaller droplet sizes benefits ignition. This agrees with the monodisperse 

droplet simulations in the previous sections; the smaller droplets begin to vaporize earlier, 

allowing heat release to start before the kernel temperature drops too much. This is verified 

by the chemical heat release rates shown in Figure 6.4-17, and the fuel vaporization rates 

shown in Figure 6.4-18.  

 

 

Figure 6.4-15. dQ/dD derived from the Rosin-Rammler distribution (Equation 17) for 

X=20 and q=3 (blue), 5 (orange), and 10 (green). 
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Figure 6.4-16. The temperature profiles as a function of time since the spark is introduced 

for three droplet size distribution based on the Rosin-Rammler distribution.  

 

 

Figure 6.4-17. The chemical heat release rates as a function of time since the spark is 

introduced for three droplet size distribution based on the Rosin-Rammler distribution.  
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Figure 6.4-18. The liquid fuel vaporization rates as a function of time since the spark is 

introduced for three droplet size distribution based on the Rosin-Rammler distribution.  

6.5 Chapter summary 

 The ignition probabilities for a large number of fuels were acquired at the same global 

equivalence ratio, and for room temperature and chilled fuel conditions. The relative 

ignitability of the fuels shows significant differences from the prevaporized results of 

Chapter 5. This result indicates factors other than the fuel chemistry will affect ignition of 

the liquid fuel spray. The ignition probabilities of the liquid fuel sprays show good 

correlations to the viscosity and the recovery temperature and bad correlations to the 

derived cetane numbers and the densities. Good correlation of the ignition probabilities to 

the predicted droplet sizes is observed, and the viscosities have strong effect on the droplet 

sizes. The ignition probabilities correlate well to the heating times as well, calculated based 

on the droplet sizes. The LLO model is also correlated to the ignition probability. The 

variation in the effective vaporization constant is small, and the effective vaporization 

constant don’t show good correlation to the ignition probabilities. The good correlation 
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between the LLO and the probabilities is mainly due to the strong influence of the droplet 

sizes.  

 Through the droplet ignition modeling, three energy transfer mechanisms are 

identified, and they are chemical heat release, dilution cooling, and heat transferred to the 

droplets. The droplet heating time is shown to have a strong effect on the ignition outcome. 

If the heating time is too long, the kernel will be diluted to a lower temperature through 

entrainment, thus making the chemical heat release and ignition harder. Cooling the fuel 

have a much stronger effect than cooling the air. From the minimum droplet size required 

for ignition, cooling the fuel have stronger influence on the droplet sizes than the fuel 

recovery temperatures, and the fuel recovery temperature have a stronger influence than 

the fuel chemistry. The changes in fuel viscosity have the strongest influence on the droplet 

sizes. Lastly, having more droplets distributed in the small droplet class is beneficial for 

ignition as the smaller droplets will lead to heat release more quickly.  

 The droplet size and velocity distribution are measured with PDPA at certain locations. 

The PDPA measurements can be used for future CFD modeling. The PDPA measurement 

also confirms that using Equation 10 to predict the Sauter Mean Diameter (SMD) is a valid 

approximation. 
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CHAPTER 7: 

CONCLUSIONS AND RECOMMENDATIONS  

7.1  Summary and conclusions 

The introduction of alternative jet fuels from sources different than the conventional 

petroleum distillates creates uncertainties in the required properties to provide robust 

ignition performance in existing jet engines. This thesis explores the effect of jet fuel 

composition on forced ignition in conditions relevant to the early evolution of the spark 

kernel in liquid-fueled turbine engines. This research is the first study on the detailed 

measurement and modeling of the ignition process with liquid fuel sprays.  

To characterize the effect of fuel composition on forced ignition, ignition probabilities 

of 14 fuels were acquired in a well-controlled, easy-to-model rig using a conventional 

aircraft engine, sunken-fire igniter. The fuels included standard distillates (Jet-A, JP-5, and 

JP-8), ten non-distillates, and n-dodecane, Ignition probabilities were measured for 

prevaporized fuels and fuel sprays. In addition to the ignition probabilities, high speed 

diagnostics, specifically simultaneous, emission, schlieren and OH PLIF imaging were 

applied to study the kernel development for the prevaporized fuels. Spray ignition data 

were obtained at two fuel temperatures (300 and 247 K) for a fixed air temperature of 300 

K. Droplet size distributions and velocities were measured at multiple locations upstream 

of the region where the kernel interacts with the spray for five fuels. A reduced-order model 

was also developed that incorporates kernel entrainment, fuel chemistry, droplet heating 

and vaporization, all the processes expected to be important in ignition. 
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7.1.1 Paradigm for forced ignition 

Previous work for gaseous fuels had established a paradigm of the forced ignition 

process, wherein the ejected spark kernel entrains surrounding fluids, initially composed 

primarily of air. Ignition success was found to be a competition between the chemical heat 

release and the dilution cooling. The high speed imaging of the kernel development for the 

prevaporized liquid fuels confirmed the entrainment structure, and showed that successful 

ignition depends on the chemical reactions occurring at very early times in the regions 

where fuel is entrained into the hot kernel. The early development the ejected spark kernel 

is not like the spherically expanding kernel typically described for conventional SI engine 

forced ignition. 

 

Figure 7.1-1. Schematic of the proposed paradigm for forced ignition of liquid fuel/air 

mixture in gas turbine combustors 

This thesis has extended this understanding for forced ignition of liquid fuel sprays. 

The schematic for the paradigm of spray ignition is shown in Figure 7.1-1. At typical 

startup or relight conditions, there is little or no prevaporization of the fuel. Thus successful 
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ignition requires that the droplets entrained by the kernel need to be heated to a temperature 

where rapid vaporization can occur (and thus heat can be released by chemical reactions) 

before the kernel temperature drops too low due to entrainment of cold air.  Through 

reduced order modeling, cooling due to entrainment greatly outweighs the heat transfer 

required to heat and vaporize the droplets. 

7.1.2 Droplet heating 

The major factors that influence the droplet heating process are the droplet size, fuel 

vaporization temperature(s), initial fuel temperature, kernel temperature. For successful 

ignition, the reduced order modeling revealed that the most sensitive parameters (for a 

fixed kernel temperature) are, in decreasing order, droplet size, initial fuel temperature, and 

vaporization temperature. This agreed with the experimental results, which showed a 

strong correlation between ignition probability and droplet size. Given the large difference 

between kernel and air temperature, the latter generally has a smaller effect. Similarly, 

variations in fuel chemistry were also found to be small. As an example, at conditions 

similar to the experiments, it was found that the changing the vaporization temperature 

from 433 to 493 K only changed the critical droplet size for ignition by ~2 m (i.e., 13 to 

11 m). Whereas the fuel chemistry difference between two fuels with noticeably different 

chemical rates (A2 and C1) only had an equivalent size effect of ~0.1 m.  

Depending on the type of fuel atomizers, the fuel properties that most influence droplet 

size are the viscosity, the surface tension, and the density. The fuel temperature can 

influence both the droplet sizes (e.g., through the viscosity) and the amount of heat required 

to raise the droplet temperature to a point where vaporization is rapid.  
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Having a atomization that produces mostly very small droplets may seem beneficial to 

ignition. However, only droplets that can interact with the spark kernel at early times will 

influence the ignition outcome. In turbine engines, where swirling flows are present, 

droplets that are too small may not be able to reach a region close to the igniter. Thus there 

is likely to be an optimum droplet size range for successful ignition. 

7.1.3 Fuel chemistry 

The prevaporized studies were used to separate the effect of fuel chemistry from the 

physical effect of droplet vaporization. Traditional fuel characteristics such as DCN did 

not show a strong correlation to the experimental measured ignition probabilities. An 

analysis of the intermediate species produced in the parent fuel breakdown process as 

predicted by the HyChem model revealed a strong correlation between ignitability and the 

relative production of species like ethylene, which was shown to have the most rapid 

autoignition behavior of all the stable fuel intermediates. Some fuels, such as C1, showed 

a more sensitive dependence on the kernel temperature due to the high amount of isobutene 

produced by that fuel. The autoignition delay for isobutene is close to that of ethylene at 

high temperatures (e.g., 1800 K), but is quite slow at lower temperatures (e.g., 1400 K). Of 

the five fuels for which HyChem mechanisms were available, the predicted ignitiability 

rankings agreed reasonably well with the experiments, except for C5. This suggests that 

the C5 mechanism is inaccurate.  
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7.2 Recommendation for future work 

 Despite the findings on the fuel effect forced ignition already obtained in this thesis, 

there are many more questions yet to be answered. First, it will be beneficial to use high 

speed diagnostics to record the development of a spark kernel in a fuel spray. From the 

images, we may be able to find the fuel vaporization rate (fuel PLIF) and the trajectory of 

the droplets so we can confirm whether the droplets will stay in the kernel or will they have 

the momentum to pass through the spark kernel.  

 For ignition of prevaporized jet fuel, although the importance of the intermediate fuel 

species is identified, the autoignition study that determines the chemical reactivity of the 

intermediates is conducted in neat air. In actual ignition, these fuel species are likely to 

have influence on each other as their reaction pathway can be interdependent. More study 

is required to understand the effect of these intermediates when interacting with each other. 

Also, as mentioned previously, the C5 fuel mechanism at high temperature will need 

further study.  

 For ignition in fuel spray, the fuel C9 will required further investigation as its ignition 

behavior deviates from the trends of good correlations significantly. More testing should 

be performed on C9. The droplet ignition model can have great potential in engineering 

practices, such as investigating the effect of low air pressure on fuel chemistry and 

vaporization. Treating the vapor as a single fuel species can be problematic, as the fuel 

vaporizing at different fuel temperature can be very different. A better model will account 

for the different recovery temperatures and the vaporizing species at different temperatures. 

The rig used in this research has a low turbulence level in the crossflow. In actual 
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combustors, the flow can be highly turbulent. High turbulence can affect the spark kernel 

in early time by increasing the dilution cooling rate. In later time, high turbulence can 

severely stretch a self-sustaining flame and cause the flame to extinguish. Therefore, the 

forced ignition of an ejected spark kernel in turbulent flow requires more study.  
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APPENDIX A. ADDITIONAL FUEL PROPERTIES 

 



 155 

APPENDIX B. IMAGING PROCESSING CODE (MATLAB) 

Edging tracking of Schlieren Images: 

clear all 

SchlierenvidReader = VideoReader('C5_fail.avi'); 

nFrame = SchlierenvidReader.Duration*SchlierenvidReader.FrameRate; 

Schlierenvid = zeros(SchlierenvidReader.Height, 

SchlierenvidReader.Width, nFrame); 

framerate = 10000; 

delay =33e-6; 

n = 1; 

while hasFrame(SchlierenvidReader) 

    Schlierenvid(:,:,n) = readFrame(SchlierenvidReader); 

    n = n + 1; 

     

end 

 

background = Schlierenvid(:,:,1); 

 

SchlierenvidNoBG = zeros(SchlierenvidReader.Height, 

SchlierenvidReader.Width, nFrame); 

%background subtraction 

for i = 1:nFrame 

    SchlierenvidNoBG(:,:,i) = Schlierenvid(:,:,i) - background; 

    medfilt2(SchlierenvidNoBG(:,:,i)); 

end 

 

 

%%obtain data 

%generate processed videos 

 

 

%tracking the edge of the boundary 

 

time = zeros(nFrame, 1); 

area = zeros(nFrame, 1); 

ymin = zeros(nFrame, 1); 

 

ignitorpos = 683; 

 

for i = 1:nFrame 

    SchlierenvidNoBG(:,:,i) = 

medfilt2(SchlierenvidNoBG(:,:,i)./255); %imshow can only show 

between 0 and 1; 

    bwSchlieren = medfilt2(im2bw(SchlierenvidNoBG(:,:,i), 0.1)); 

         

    [B, L] = bwboundaries(bwSchlieren,'noholes',4); 

    s = regionprops(bwSchlieren, 'Area'); 

    area(i) = sum(cat(1,s.Area)); 
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    extma = regionprops(bwSchlieren, 'Extrema'); 

    yval = []; 

        

     for index = 1:length(extma) 

         yval = [yval, extma(index).Extrema(:,2)]; 

          

     end 

 if isempty(yval) == 1 

     ymin(i) = 0; 

 else 

     ymin(i) = abs(ignitorpos - min(min(yval))); 

 end 

     

%     imshow(Schlierenvid(:,:,i)./255); 

%     hold on; 

%     for k = 1:length(B) 

%         boundary = B{k}; 

%         plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2, 

'Color', 'g') 

% %     end 

%     pause(0.01); 

%      

%     frame = getframe; 

%     writeVideo(VidWriter, frame); 

     

    time(i) = (i-1)*1/framerate + delay; 

end 

% close(VidWriter); 

 

header = {'time', 'pixels', 'abs pos from ignitor'}; 

xlswrite('C5_fail.xlsx', header, 'Schlieren', 'A1'); 

xlswrite('C5_fail.xlsx', time, 'Schlieren', 'A2'); 

xlswrite('C5_fail.xlsx', area, 'Schlieren', 'B2'); 

xlswrite('C5_fail.xlsx', ymin, 'Schlieren', 'C2'); 

 

 

plot(time, area) 

plot(time, ymin) 

 

 

Image De-warping based on registered coordinates: 

SCHcali = histeq(imread('SCHcali.tif')); 

PLIFcali = histeq(imread('PLIFcali.tif')); 

CHEMcali = histeq(imread('CHEMcali.tif')); 

 

schcrop = xlsread('crop.xlsx', 'sch'); 

chemcrop = xlsread('crop.xlsx', 'chem'); 

plifcrop = xlsread('crop.xlsx', 'plif'); 

 

chemcalicrop = cropthis(CHEMcali, chemcrop); 

schcalicrop = cropthis(SCHcali, schcrop); 
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plifcalicrop = cropthis(PLIFcali, plifcrop); 

 

movingPoints_c2s = xlsread('regpoints.xlsx', 'chemmove'); 

fixedPoints_c2s = xlsread('regpoints.xlsx', 'chemfix'); 

movingPoints_p2s = xlsread('regpoints.xlsx', 'plifmove'); 

fixedPoints_p2s = xlsread('regpoints.xlsx', 'pliffix'); 

 

 

tform_p2s = fitgeotrans(movingPoints_p2s, fixedPoints_p2s, 

'affine'); 

Cali_PLIF_Registered = 

imwarp(plifcalicrop,tform_p2s,'OutputView',imref2d(size(schcalicrop)

)); 

 

tform_p2s = fitgeotrans(movingPoints_c2s, fixedPoints_c2s, 

'affine'); 

Cali_Chem_Registered = 

imwarp(chemcalicrop,tform_p2s,'OutputView',imref2d(size(schcalicrop)

)); 

 

 

 

Gray Scale Inversion with OpenCV: 
 

 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

import os 

 

print("processing program running...") 

 

fnames = os.listdir(os.getcwd()) 

snum = 1; 

pnum = 1; 

cnum = 1; 

for fname in fnames: 

    if fname.find('sprocess_newreg') != -1: 

        imgname = 'sprocess' 

        filename = fname 

        img = cv2.imread(filename ,0) 

        scale = float(255)/float(img.max()); 

        img = cv2.multiply(img, 2) 

        img = cv2.medianBlur(img, 7) 

        bright_mask = 255*np.ones(img.shape)  

        bright_pop = bright_mask - img; 

        #plt.imshow(bright_pop, cmap = 'gray') 

        #plt.show(); 

        savefilename = imgname + '_invert' + str(snum) + '.tif'; 

        cv2.imwrite(savefilename, bright_pop); 

        snum += 1; 

 

    if fname.find('pprocess_newreg') != -1: 

        imgname = 'pprocess' 
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        filename = fname 

        img = cv2.imread(filename ,0) 

        scale = float(255)/float(img.max()); 

        img = cv2.multiply(img, 3) 

        bright_mask = 255*np.ones(img.shape)  

        bright_pop = bright_mask - img; 

        #plt.imshow(bright_pop, cmap = 'gray') 

        #plt.show(); 

        savefilename = imgname + '_invert' + str(pnum) + '.tif'; 

        cv2.imwrite(savefilename, bright_pop); 

        pnum += 1; 

 

         

    if fname.find('cprocess_newreg') != -1: 

        imgname = 'cprocess' 

        filename = fname 

        img = cv2.imread(filename ,0) 

        scale = float(255)/float(img.max()); 

        bright_mask = 255*np.ones(img.shape)  

        bright_pop = bright_mask - img; 

        #plt.imshow(bright_pop, cmap = 'gray') 

        #plt.show(); 

        savefilename = imgname + '_invert' + str(cnum) + '.tif'; 

        cv2.imwrite(savefilename, bright_pop); 

        cnum += 1; 

 

print{"check folder, done, bye bye"i 
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APPENDIX C. PSR TWO-STAGE IGNITION CODE (PYTHON) 

First stage with the air plasma mechanism: 

import cantera as ct 

import numpy as np 

import matplotlib.pyplot as plt 

 

def plasmareactor(dt, endtime, mentrain, Tin, Pin, Xin): 

    E_spark = 1.25; #energy from spark 

    V_spark = 10e-3*(np.pi/4)*(5e-3**2); #initial volume of the 

spark(or reactor) 

 

    #---------------import solution in cantera--------------# 

    gas = ct.Solution('SforzoairNASA9.xml'); 

    gas.TPX = Tin, ct.one_atm, Xin; 

    NSpecies = gas.n_species; #number of species 

    m_init = gas.density*V_spark; #initial mass 

    gas.X = Xin; 

    e_spark = E_spark/m_init + gas.int_energy_mass; 

    gas.UVX = e_spark, 1/gas.density, Xin; 

    gas.TP = gas.T, ct.one_atm     

    gas.equilibrate('SP'); 

    print(gas.T) 

    

     

    #----------------create the reactor network-------------# 

    kernel = ct.IdealGasReactor(gas); 

    kernel.volume = 1.9e-8;#determined by Schlieren, m3 

    air = ct.Solution('SforzoairNASA9.xml'); 

    air.TPX = Tin, Pin, Xin; 

    env = ct.Reservoir(air); 

    w = ct.Wall(kernel,env); 

    w.area = 1.0; 

    w.expansion_rate_coeff = 1.0e6; 

    mfc = ct.MassFlowController(env, kernel);#mass flow controller 

    mfc.set_mass_flow_rate(mentrain); 

    net = ct.ReactorNet({kernel}); 

    filename = 'plasma_'+ str(np.int(endtime*1e6))+ 

'_microsec_477K.csv' 

    print(filename) 

    f = open(filename, 'w+') 

    snames = ''; 

    for i in np.linspace(0,NSpecies-1,NSpecies): 

        snames = snames + ',' + gas.species_name(i) 

    f.write('time,temperature,pressure,volume' + snames + '\n') 

     

    #--------------container for data storage---------------# 

    for i in np.linspace(1, np.int(endtime/dt),np.int(endtime/dt)): 

        net.advance(i*dt); 
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        if i%10 == 0: 

            molefrac = ''; 

            print('running') 

            for j in np.linspace(0,NSpecies-1,NSpecies): 

                molefrac = molefrac + ',' + str(gas.X[int(j)]); 

            f.write(str(net.time)+ ',' + str(kernel.T) + ','\ 

                    + str(gas.P) + ',' + str(kernel.volume) + \ 

                    molefrac+ '\n'); 

    f.close(); 

    return 

plasmareactor(1e-8, 250e-6,6e-5, 477, ct.one_atm, 'O2:21, N2:79') 

 

 

Second stage with the hybrid chemistry (HyChem) mechanisms: 

import cantera as ct 

import numpy as np 

import sys 

 

     

def fuelreactor(dt, endtime, mentrain, A2Conc, EQ, properties, Tin, 

Pin, folder): 

    #------------------define fuel properties required later--------

---------------# 

    MW_A2 = 158.6; 

    MW_C1 = 178; 

    rho_A2 = 837.5; 

    rho_C1 = 761.0; 

     

    gas = ct.Solution('a2c1blend.cti'); 

     

    #---------------conversion of species from plasma to fuelX mech-

----------------# 

    N2 = properties[3] + 0.5*properties[5] + 0.5*properties[6]; 

    O2 = properties[4] + 0.5*properties[5]; 

    O = properties[7]; 

    plasma_comp = 'N2:' + str(N2) + ',O2:' + str(O2) + ',O:' + 

str(O); 

    gas.X = plasma_comp; 

    NSpecies = gas.n_species; 

    gas.TPX = properties[0], properties[1], plasma_comp; 

 

    #------set environment gas based on the mixture ratio and 

equivalence ratio-----# 

    envgas = ct.Solution('a2c1blend.cti'); 

    A2C = gas.n_atoms('POSF10325', 'C'); 

    A2H = gas.n_atoms('POSF10325', 'H'); 

    C1C = gas.n_atoms('POSF11498', 'C'); 

    C1H = gas.n_atoms('POSF11498', 'H'); 

    if A2Conc == 0: 

        nC1 = 1; 

        stoich_coeff = nC1*C1C + 0.25*nC1*C1H; 
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        nO2 = stoich_coeff*1; 

        nN2 = stoich_coeff*3.76; 

        env_comp = 'POSF11498:' + str(EQ*nC1) + ',O2:' + str(nO2) + 

',N2:' + str(nN2); 

 

    else: 

        moleA2 = A2Conc*rho_A2/MW_A2; 

        moleC1 = (100 - A2Conc)*rho_C1/MW_C1; 

        nA2 = 1 

        nC1 = nA2*moleC1/moleA2; 

        stoich_coeff = (nA2*A2C + nC1*C1C) + 0.25*(nA2*A2H + 

nC1*C1H); 

        nO2 = stoich_coeff*1; 

        nN2 = stoich_coeff*3.76; 

        nA2 = EQ*nA2; 

        nC1 = EQ*nC1; 

        env_comp = 'POSF10325:' + str(nA2) + ',POSF11498:' + 

str(nC1) + ',O2:' + str(nO2) + ',N2:' + str(nN2); 

 

    print(stoich_coeff) 

    print(env_comp) 

    envgas.TPX = Tin, Pin, env_comp 

     

    envgas_temp = ct.Solution('a2c1blend.cti') 

    envgas_temp.TPX = Tin, Pin, env_comp 

     

    #--------------set the reactor and reactor network-----------# 

    kernel = ct.IdealGasReactor(gas); 

    kernel.volume = properties[2]; 

    env = ct.Reservoir(envgas); 

    w = ct.Wall(kernel, env); 

    w.area = 1.0; 

    w.expansion_rate_coeff = 1.0e5; # this expansion rate can 

significantly affect the convergence rate 

    mfc = ct.MassFlowController(env, kernel);#mass flow controller 

    mfc.set_mass_flow_rate(mentrain); 

    net = ct.ReactorNet({kernel}); 

 

    #set up file director for saving files 

    filename = folder + '/'+'A2Conc_' + str(A2Conc) + '_EQ_' + 

str(EQ) + '_envtemp_' + str(Tin) + '.csv'; 

    filename_kinetic = folder + '/'+'A2Conc_' + str(A2Conc) + '_EQ_' 

+ str(EQ) + '_envtemp_' + str(Tin) + '_kinetic.csv' 

    print(filename) 

    print(filename_kinetic) 

    f = open(filename, 'w+') 

    f2 = open(filename_kinetic, 'w+') 

    snames = ''; #name of the species 

    enames = ''; #name of the reaction equations 

    for i in np.linspace(0,NSpecies-1,NSpecies): 

        snames = snames + gas.species_name(i); 

    f.write('time,temperature,pressure,volume,heat 

release,dilution,' + snames + '\n'); 
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    for i in range(0,14): 

        enames = enames + ',' + gas.reaction_equation(i); 

      

    f2.write(enames + '\n'); 

     

    print(gas.T) 

    

 

     

    for i in np.linspace(1, np.int(endtime/dt),np.int(endtime/dt)): 

        net.advance(i*dt); 

 

        molefrac = '';             

        frate = ''; 

        heat_release = -np.dot(gas.net_rates_of_progress, 

gas.delta_enthalpy)*kernel.volume 

        envgas_temp.TP = gas.T, ct.one_atm 

        dilution = mentrain*(envgas.h-envgas_temp.h) 

        for j in np.linspace(0,NSpecies-1,NSpecies): 

            molefrac = molefrac + ',' + str(gas.X[int(j)]) 

        f.write(str(net.time)+ ',' + str(kernel.T) + ','\ 

                + str(gas.P) + ',' + str(kernel.volume) + ','\ 

                +str(heat_release) + ',' + str(dilution) + ','\ 

               + molefrac+ '\n'); 

        for j in range(0,14): 

            frate = frate + ',' + 

str(gas.forward_rate_constants[int(j)]);   

        f2.write(frate + '\n'); 

         

 

        print(str(int(endtime/dt)-i) + ' iterations left'); 

                         

 

    f.close(); 

    f2.close(); 

    return 

 

Example execution code (the main file): 

    #interate different cases in main.py 

import csv 

import cantera as ct 

import fuelair as fa 

import os 

ct.suppress_thermo_warnings() 

 

#--------------------read in data and fill in data for the nitrogen 

and oxygen species----#  

f = open('plasma_90_microsec_477K.csv', 'r+'); 

spamreader = csv.reader(f, delimiter=','); 

for row in spamreader: 
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    if spamreader.line_num == 901: 

        plasma_temp = float(row[1]); 

        plasma_pressure = float(row[2]); 

        plasma_volume = float(row[3]); 

        #------capture the mole fractions-------# 

        plasma_N2 = float(row[4]); 

        plasma_O2 = float(row[5]); 

        plasma_NO = float(row[6]); 

        plasma_N = float(row[7]); 

        plasma_O = float(row[8]); 

f.close(); 

print(plasma_temp) 

properties = [plasma_temp, plasma_pressure, plasma_volume, 

plasma_N2\ 

              , plasma_O2, plasma_NO, plasma_N, plasma_O] 

 

#------------check for file directory, create if not exist--# 

file_directory = '110318' 

if not os.path.exists(file_directory): 

    os.makedirs(file_directory) 

 

 

#-------------iterate through all the cases---------------# 

phi = [0.50, 0.48] 

A2_concentration = [100] 

env_temp = [477] 

 

for A2Conc in A2_concentration: 

    for EQ in phi: 

        for envtemp in env_temp: 

            fa.fuelreactor(1e-6, 500e-6, 6e-5, A2Conc, EQ, 

properties, envtemp, ct.one_atm, file_directory); 
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APPENDIX D. ABRAZOM AND SIRIGNANO VAPORIZATION 

MODEL  

In the Abramzon and Sirignano droplet vaporization model, the Sh0 in Equation 21 and 

the Nu in Equation 20 are defined as  

 

 

(32) 

 

 

 

(33) 

The F(BM,T) is defined as  

 

 

(34) 
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APPENDIX E. PSR DROPLET IGNITION CODE (PYTHON) 

Droplet class 

import numpy as np 

class droplet(object): 

    ''' 

    droplet class contains the essential properties for droplets of 

each fuel type, such as density, boiling temperature, 

    enthalpy of vaporization... 

    ''' 

    #temperature is in K, SI units are used, droplet only can 

consist one kind of fuel 

    #will use average properties if fuel blends are used 

    def __init__(self, radius=50e-6, m=1, temp=300, fuel_name='A2'): 

        self.r = radius 

        self.fuel = fuel_name 

        self.T = temp #in kelvin 

 

        #definition of fuel properties 

        if self.fuel == 'A2': 

            self.IBP = 159.2 + 273 

            self.FBP = 270.5 + 273 

            self.ABP = (self.IBP + self.FBP)/2 

            self.sigma = 23.3*1e-3 #surface tension, J/m^2 

            self.rho = 1018.1 - 0.7*self.T  

            self.m_fake = 4.0/3.0*self.rho*np.pi*(self.r)**3.0 

            self.m_real = m  

            self.hfg = 0.428e6 #J/kg 

            self.k = 0.08 #W/m-K 

            self.cp = 2.6e3 #J/kg-K 

            self.MW = 158.6 

            self.boiled = False 

            

            #on measurement data 

             

        if self.fuel == 'C1': 

            self.IBP = 174.3 + 273 #initial BP 

            self.FBP = 263.5 + 273 

            self.ABP = (self.IBP + self.FBP)/2 #XXX 

            self.sigma = 23.3*1e-3 #surface tension, J/m^2 from 

linearly interpolated graph of the 3 values given 

            self.rho = -0.72*self.T + 966.9 #linear interpolation, 

kg/m^3                     

            self.m_fake = 4.0/3.0*self.rho*np.pi*(self.r)**3.0 

            self.m_real = m  

            self.hfg = 0.428e6 #J/kg #heat vap 

            self.k = 0.08 #W/m-K ##thermal conductivity use same if 

cant find 

            self.cp = 2.6e3 #J/kg-K was unavailable         
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            self.MW = 178 #g/mol 

            self.boiled = False 

            

 

        if self.fuel == 'C5': 

            self.IBP = 156.6 + 273 #initial BP 

            self.FBP = 170.6 + 273 

            self.ABP = (self.IBP + self.FBP)/2        

            self.sigma =(-7*(e-5))*self.T+0.0437  

            self.rho = -0.0001*self.T + 0.0617   

            self.m_fake = 4.0/3.0*self.rho*np.pi*(self.r)**3.0 

            self.m_real = m      

            self.hfg = 0.428e6 #J/kg #heat vap 

            self.k = 0.08 #W/m-K  

            self.cp = 2.6e3 #J/kg-K was unavailable           

            self.MW = 178 #g/mol 

            self.boiled = False 

Droplet entrainer 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Oct 26 16:31:36 2018 

 

This will be a entrainer that takes in multiple sizes of drpolets.  

 

@author: Sheng Wei 

""" 

 

 

 

from droplet import * 

import numpy as np 

import copy 

import sys 

#T is used to set temperature of the droplets, mdot is used to 

#calculate mean droplet diameter 

#D is the droplet diameter 

 

def entrainer(T, mdot, dt, D_arr, Y, fuel='A2'): 

    ''' 

    T-initial droplet temperature 

    mdot-droplet entrainment rate 

    dt-time step of iteration, will give dm per time step 

    X-in microns 

    ''' 

    #assume everytime the kernel entrains 10 droplets, based on the 

fuel mass flow rate 

    m_total = mdot*dt #amount of mass per time step 

    m_left = copy.copy(m_total) 
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    drop_tempo = droplet(1, 1, temp=T) #a "useless" droplet to get 

fuel info 

    d_arr = [] 

     

    #check if D and Y have the same length. if not, exit 

    if (len(D_arr) != len(Y) ): 

        sys.exit('D_arr and Y_arr need to have same dimension') 

     

    #re-normalize Y array, such that the sum of all values in Y is 1 

    Y = Y/np.sum(Y) 

    m_frac = Y*m_total 

     

    for i in range(0, len(Y)): 

        dm_at_D = m_frac[i] 

        D = D_arr[i] 

        m_droplet= (4.0/3.0)*np.pi*(D*1e-6/2.0)**3*drop_tempo.rho 

        while ((dm_at_D - m_droplet) > 0): 

            d_arr.append(droplet(D*1e-6/2.0, m = m_droplet, temp=T, 

fuel_name=fuel)) 

            dm_at_D -= m_droplet 

        if (dm_at_D > 0): 

            d_arr.append(droplet(D*1e-6/2.0, m = dm_at_D, temp=T, 

fuel_name=fuel))             

    return d_arr 

 

#derivative as a function of D for the rosin rammler fit 

#the diameters need to be in termes of microns 

def dQdD_RR(X, q, D): 

    ''' 

    Returns the volumetric fraction of the given droplet size 

    X - 63% volume less representative droplet size 

    q - spread 

    D - droplet size 

    ''' 

    dQdD = np.power(np.exp(-

(  np.power((float(D)/float(X)),float(q))  )*((float(D)/float(X)))), 

float(q))  *float(q)/float(D) 

    return dQdD 

 

def dQdD_RRmodified(X, q, D): 

    ''' 

    X - 63% volume less representative droplet size 

    q - spread 

    D - droplet size 

    ''' 

    dQdD = q*((np.log(D))**(q-1))/(D*np.log(X)**q)*np.exp(-

(np.log(D)/np.log(X))**q) 

    return dQdD 

 

Heating and vaporization based on Abramzon and Sirignano model 

""" 



 168 

Created on Sun Apr 1 10:24:05 2018 

 

@author: Sheng Wei 

""" 

 

 

import numpy as np 

from scipy.integrate import odeint 

from droplet import * 

import matplotlib.pyplot as plt 

 

def dT_dt(T,t,droplet, Tenv, boilingTemp , re=0):#heat transfer to 

droplet, droplet heating and vaporization     

    Xsurf = np.exp(-droplet.hfg/8315.0*droplet.MW*(1.0/T - 

1.0/boilingTemp)) 

    Ysurf = Xsurf*droplet.MW/(droplet.MW + 28.85) 

    if Ysurf > 1: 

        Ysurf = 0.9999999 

    B = Ysurf/(1 - Ysurf) 

    rho_air = 101325.0/8315.0/Tenv*28.85 

    Tr = Tenv + (Tenv + droplet.T)/3.0 

    mdot = 2.0*np.pi*rho_air*Dfa(Tr, droplet)*Sh0(B, Re = 

re)*droplet.r*np.log(1.0+B) 

     

    h = h_coeff(droplet, Tenv, Re = re) 

    #print(h) 

     

    #establish the ordinary differential equation 

    A = 4.0*np.pi*droplet.r**2.0 

    V = 4.0/3.0*np.pi*droplet.r**3.0 

     

    dTdt = (h*A*(Tenv - droplet.T) - 

mdot*droplet.hfg)/(droplet.rho*V*droplet.cp) 

    return dTdt 

 

 

def vaporize(T_kernel, d_array, dt, boilingTemp, re = 0): 

     

    qdot = 0 

    mdot = 0 

     

    rho_air = 101325.0/8315.0/T_kernel*28.85 

    for droplet in d_array: 

        #calculate the wetbulb temperature 

        T_wetbulb = TwetBulb(T_kernel, droplet, boilingTemp) 

         

        A = 4.0*np.pi*droplet.r**2.0 

        h = h_coeff(droplet, T_kernel, Re = re) 

         

        qdot += h*A*(T_kernel-droplet.T) 

         

        if droplet.T > T_wetbulb: 

            droplet.T = T_wetbulb; 

            droplet.boiled = True 
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        if droplet.m_real < 0 or np.absolute(droplet.m_real) < 1e-

15: 

            d_array.remove(droplet) 

            pass 

         

        if (droplet.T < T_wetbulb and droplet.boiled): 

            droplet.T = T_wetbulb; 

 

        if (droplet.T < T_wetbulb and not(droplet.boiled)): 

#            print("droplet heating...") 

            ts = np.linspace(0,dt,2)  

            Ts = odeint(dT_dt,droplet.T,ts,args=(droplet, T_kernel, 

boilingTemp, re)) 

            Tavg = (droplet.T + Ts[1])/2 

            Xsurf = np.exp(-droplet.hfg/8315.0*droplet.MW*(1.0/Tavg 

- 1.0/boilingTemp)) 

            Ysurf = Xsurf*droplet.MW/(droplet.MW + 28.85) 

            if Ysurf > 1: 

                Ysurf = 0.99          

            B = Ysurf/(1 - Ysurf) 

#            if 

(4.0*np.pi*droplet.k*droplet.r/droplet.cp*np.log(1.0+B)>0): 

#                mdot += 

4.0*np.pi*droplet.k*droplet.r/droplet.cp*np.log(1.0+B) 

            Tr = T_kernel + (T_kernel + droplet.T)/3.0 

            droplet.T = Ts[1] 

            droplet.m_fake = droplet.m_fake - 

2.0*np.pi*rho_air*Dfa(Tr, droplet)*Sh0(B, Re = 

re)*droplet.r*np.log(1.0+B)*dt 

            droplet.m_real = droplet.m_real - 

2.0*np.pi*rho_air*Dfa(Tr, droplet)*Sh0(B, Re = 

re)*droplet.r*np.log(1.0+B)*dt 

            if droplet.m_real < 0: 

                pass 

            else: 

                mdot += 2.0*np.pi*rho_air*Dfa(Tr, droplet)*Sh0(B, Re 

= re)*droplet.r*np.log(1.0+B) 

                droplet.r = 

(droplet.m_fake*3.0/4.0/np.pi/droplet.rho)**(1.0/3.0)     

            pass 

         

 

   

         

        if droplet.T >= T_wetbulb: 

            #B = droplet.cp*(T_kernel-boilingTemp)/droplet.hfg         

            Ysurf = 0.9999999 

            B = Ysurf/(1 - Ysurf) 

            Tr = T_kernel + (T_kernel + droplet.T)/3.0 

            droplet.m_fake = droplet.m_fake - h*A*(T_kernel-

droplet.T)/droplet.hfg*dt 

            droplet.m_real = droplet.m_real - h*A*(T_kernel-

droplet.T)/droplet.hfg*dt 
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            if droplet.m_real < 0: 

                pass 

            else: 

                mdot += h*A*(T_kernel-droplet.T)/droplet.hfg 

                #print(Dfa(T_kernel, droplet)) 

                #qdot += mdot*droplet.hfg 

                droplet.r = 

(droplet.m_fake*3.0/4.0/np.pi/droplet.rho)**(1.0/3.0)     

            pass 

                

 

    return mdot, qdot 

 

 

#=================================================================== 

# calculate heat transfer coefficient 

#=================================================================== 

     

def h_coeff(droplet, T_kernel,  Re = 0.25): 

#   Optional way of finding nusselt number, used at beginning of 

study, will use a more appropriate model.  

    #calculate the nusselt number based on T. Yuge's method, which 

does not seem accurate based on his experiemntal approach on solid 

spheres 

#    Pr = 0.7 

#    #calculate Grashof # 

#    beta = 0.003695 #thermal expansion coefficient, 1/K ??of air or 

fuel droplet?? 

    L = 2*droplet.r #droplet diameter, m 

#    g = 9.81 #gravitational acceleration, m/s^2 

#    rho = 0.25 #density of air, approx., kg/m^3 

#    del_T = T_kernel - droplet.T 

#    nu = 530e-7 #air viscosity?E 

#    Gr = L**3*rho**2*g*del_T*beta/nu**2 

# 

#    #Rayleigh # based on Grashof and Prandtl #'s 

#    Ra = Gr*Pr     

    #Nusselt #, based on Abramzon and Sirignano's method 

    #Reynold's number and Prandtl's number are used as place holder.  

    Pr = 0.7; 

    BT = droplet.cp*(T_kernel-droplet.T)/droplet.hfg 

    FT = (1+BT)**0.7*np.log(1+BT)/BT 

    Nu = 2*np.log(1.0 + BT)/BT*(1+\ 

                 ((1.0+Re*Pr)**0.333*np.max([1, Re**0.077])-

1)/2.0/FT) 

    #convective heat transfer coefficient 

    #print(Nu) 

    k = 0.08e-3*T_kernel-0.021  #thermal conductivity for air 

at ?1600K? 

    h = Nu*k/L 

    return h 

     

 

#=================================================================== 
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#   calculate the wetbulb temperature 

#=================================================================== 

def TwetBulb(T_kernel, droplet, boilingTemp): 

    BT = droplet.cp*(T_kernel-boilingTemp)/droplet.hfg 

    YS = BT/(1+BT) 

    XS = YS*28.85/(droplet.MW - YS*(droplet.MW - 28.85)) 

    T_wetbulb = 1/(1.0/boilingTemp - 

8314/droplet.MW/droplet.hfg*np.log(XS)) 

    return T_wetbulb 

         

#=================================================================== 

# calculate the binary diffusion coefficient, use the binary 

diffusion coefficient of n-Dodecane 

#=================================================================== 

def Dfa(T_kernel, droplet, P = 1): #unit of P is atm 

    Mf = droplet.MW #kg/mol 

    Ma = 28.97#kg/mol 

    sigmaFA = 0.5*(6.60  + 3.617) #average cross section between 

fuel and air 

    Tref = T_kernel/np.sqrt(454.7*97) #the reference temperature 

based on fuel and air's Lenard-jones energy 

    omegaFA = 1.06036/np.power(Tref, 0.15610) + 

0.193/np.exp(0.47635*Tref) \ 

                + 1.03587/np.exp(1.52996*Tref) + 

1.76474/np.exp(3.89411*Tref) 

    Dfa = 1.8583e-7*np.sqrt(np.power(T_kernel, 3.0)* (1.0/Mf + 

1.0/Ma))*1.0/(P*sigmaFA*omegaFA) 

    #print(Dfa) 

    return Dfa 

     

# 

==================================================================== 

# calculate the sherwood number 

#===================================================================

= 

def Sh0(BM, Re= 0.25, Sc=1): 

    FM = np.power((1 + BM), 0.7)*np.log(1+BM)/BM 

    sh0 = 2.0*(1+(np.power((1+Re*Sc), 1.0/3.0)*np.max([1, 

Re**0.077])-1)/(2.0*FM)) 

    #print(sh0) 

    return sh0 

Example execution code (the main file) 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Oct 3 14:04:51 2018 

 

@author: Sheng Wei 

""" 

 

''' 

Read data from air plasma kernel evolution histroy, first stage 
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''' 

import os 

import datetime 

 

 

from DropletIgnitionKernel_multiple_sizes import *    

#from tabulate import tabulate 

#include the parameters that need to be varied into execute, 

parameters include air temperature,  

#reading in the information, for air plasma in 300K cross flow air, 

plasma at 30 microsecond 

#May need to rerunk the first stage reactor 

f = open('plasma_200_microsec_300K.csv', 'r+'); 

spamreader = csv.reader(f, delimiter=','); 

for row in spamreader: 

    if spamreader.line_num == 3: 

        plasma_temp = float(row[1]); 

        plasma_pressure = float(row[2]); 

        plasma_volume = float(row[3]); 

        #------capture the mole fractions-------# 

        plasma_N2 = float(row[4]); 

        plasma_O2 = float(row[5]); 

        plasma_NO = float(row[6]); 

        plasma_N = float(row[7]); 

        plasma_O = float(row[8]); 

f.close(); 

 

properties = [plasma_temp, plasma_pressure, plasma_volume, 

plasma_N2\ 

              , plasma_O2, plasma_NO, plasma_N, plasma_O] 

 

 

 

''' 

The droplet introduced, second stage 

 

''' 

 

''' 

Make a folder that stores results from today's simulation 

''' 

now = datetime.datetime.now() 

folder = str(now.year) + '_' + str(now.month) + '_' + str(now.day) 

 

if not os.path.exists(folder): 

    os.makedirs(folder) 

 

##Change the properties here that you are interested in varying 

BP = 433 #boiling temperature 

AirTemp = 400#air temperature 

FuelTemp = 300 #fuel temperature 

fuelType = 'A2' #fuel type 

EndTime = 500e-6 #total time to run,s 

del_t = 1e-6 #time step,s 
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phi = 1  #equivalenc ratio 

Re = 0 

 

 

#the lengths of D array and the Y array need to be the same, D_arr 

is the droplet size array 

#Y_arr is the mass fraction array 

 

#================================================================ 

# generate D and Y vectors based on rosin rammler distribution  

#================================================================ 

def dQdD_RR(X, q, D): 

    ''' 

    Returns the volumetric fraction of the given droplet size 

    X - 63% volume less representative droplet size 

    q - spread 

    D - droplet size 

    ''' 

    dQdD = np.exp(-( np.power((float(D)/float(X)),float(q)))) * 

np.power((float(D)/float(X)), float(q)) *float(q)/float(D) 

    return dQdD 

 

Y_arr = [] 

D_arr = np.linspace(5, 30, 10) 

for D in D_arr: 

    Y_arr.append(dQdD_RR(20, 10, D)) 

Ynorm = Y_arr/np.sum(Y_arr) 

plt.ylim([0,0.3]) 

plt.scatter(D_arr, Y_arr) 

 

plt.show() 

 

 

#Y_arr = [1] 

#D_arr = [20] 

 

 

 

 

  

#print a table of the important parameters 

#print(tabulate([["Fuel","D(micron)", "BP", "AirTemp", 

"DropletTemp"],[fuelType, D*1e6, BP, AirTemp, FuelTemp]]))  

#filename = folder + '/' +'BP' + str(BP) + 'AirTemp' + str(AirTemp) 

+ \ 

#            'FuelTemp' + str(FuelTemp) + fuelType + '.csv' 

filename = 'X20q_10micron_Re0UniformDropletDisstribution.csv' 

''' 

In execute, the parameters are: 

    1. properties - properties of the air plasma kernel at the end 

of the transit time 

    2. D - Droplet size 

    3. BP - boiling point (use recovery temperatures) 

    4. AirTemp - Temperature of the ambient fluid 
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    5. FuelTemp - Temperature of the fuel 

    6. filename - file name for saving the current run 

    7. dt - time step 

    8. endtime - how long the kernel should run 

    9. EQ - equivalence ratio 

    10. mdot_air - mass entrainment rate of air 

    11. Fuel type - A2, C1 

''' 

 

execute(properties, BP, AirTemp, FuelTemp, D_arr, Y_arr, filename, 

dt=del_t, \ 

        endtime=EndTime, EQ=phi, mdot_air = 3e-5, fueltype=fuelType, 

re=Re) 
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APPENDIX F. ASME D341 – PYTHON CODE FOR VISCOSITY 

APPROXIMATION 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Sep 11 13:57:59 2017 

This program computes the relation between temperature and 

viscosity, using asme method D341 

loglogZ = A - BlogT 

@author: Sheng Wei 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

log = np.log10 

 

#define all parameters that depens on viscosity 

def C(nu): 

    return np.exp(-1.14833 - 2.65868*nu) 

def D(nu): 

    return np.exp(-0.0038138 - 12.5646*nu) 

def E(nu): 

    return np.exp(5.46491 - 37.6289*nu) 

def F(nu): 

    return np.exp(13.0645 - 74.6851*nu) 

def G(nu): 

    return np.exp(37.4619 - 192.643*nu) 

def H(nu): 

    return np.exp(80.4945 - 400.468*nu) 

def Z(nu): 

    return nu + 0.7 + C(nu) - D(nu) + E(nu) - F(nu) + G(nu) - H(nu) 

 

if __name__ == '__main__': 

    #calculate coefficients A and B 

    T0 = float(input("Enter first temperature in K:")) 

    nu0 = float(input("Enter first nu in mm^2/s:")) 

    T1 = float(input("Enter second temperature in K:")) 

    nu1 = float(input("Enter second nu:")) 

     

    fuel = input("Enter fuel name, e.g, A2 :") 

     

    B = (log(log(Z(nu0))) - log(log(nu1)))/(log(T1) - log(T0)) 

    A = log(log(Z(nu0))) + B*log(T0) 

     

    nu = np.linspace(0.21, 20, 1000) 

     

    T = [] 

     

    for v in nu: 

        try: 
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            T.append(np.power(10,((A - log(log(Z(v))))/B))) 

        except: 

            print((A - log(log(Z(v))))/B) 

     

    plt.plot(T, nu) 

     

    filename = fuel + '_D341Viscosity.csv' 

    f = open(filename, 'w+') 

    f.write('temperature(K), viscosty(cst)\n') 

     

    for i in np.arange(nu.size): 

        f.write(str(T[i]) + ',' + str(nu[i]) + '\n') 

     

    f.close() 
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APPENDIX G. ABSOLUTE IGNITION PROBABILITY RANKING 

 

Table 7. Absolute ignition probability for room temperature fuel spray.6 

 p 65% uncertainty 

A1 0.047 0.006 

A2 0.035 0.005 

A2-2018 0.124 0.008 

A3-2018 0.079 0.006 

C1 0.030 0.005 

C2 0.016 0.005 

C3 0.016 0.005 

C4 0.050 0.005 

C5 0.050 0.006 

C7-2018 0.039 0.006 

C8-2018 0.093 0.008 

C9-2018 0.036 0.006 

S1 0.043 0.005 

S2 0.046 0.005 

n-dodecane 0.036 0.006 

   

  

                                                 
6 The data are taken in two campaigns. The data labeled with 2018 were taken in 2018, while the rest were 

taken in 2017. A2 is taken in both 2017 and 2018 for comparable ranking. The rig was modified in 2018 so 

the absolute probability changed.  
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Table 8. Absolute ignition probability for chilled fuel spray. 

Fuel P 65% uncertainty 

A1 0.0447 0.0048 

A2 0.0151 0.0028 

A3 0.0017 0.0012 

C1 0.0251 0.0030 

C3 0.0032 0.0013 

C4 0.0517 0.0051 

C5 0.0612 0.0050 

C7 0.0032 0.0019 

C8 0.0036 0.0016 
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