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SUMMARY 

 

Nanopores (1 – 10 nm diameter) constructed in solid-state membranes, have 

shown promise as next-generation biopolymer analysis devices offering both high 

resolution and high throughput. One promising application of nanopores is in the analysis 

of nucleic acids, such as DNA. This involves translocation experiments in which DNA is 

placed in an ionic solution and is forced through a nanopore with the aid of an applied 

electric field. The modulation of ionic current through the pore during DNA translocation 

can then be correlated to various properties of the biopolymer such as the length. This 

method of measuring DNA length is potentially orders of magnitude faster than 

conventional gel electrophoresis, and does not require any staining or labeling of the 

DNA. 

To optimally design and operate nanopore devices, it would be advantageous to 

develop an accurate computer simulation methodology to predict the physics of the 

translocation process.  Hence, I have developed a physically accurate, computationally 

efficient simulation methodology to predict and analyze the physics of biopolymer 

translocation through solid-state (silicon nitride) nanopores. The overall theme of this 

thesis is to use this simulation methodology to thoroughly investigate important issues in 

the physics underlying translocation experiments and thereby determine the effects of key 

structural and operation parameters, such as the nanopore dimensions, applied voltage, 

solvent viscosity, and the polymer chain length.  
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The first chapter in this thesis presents an overview of nanopores and how they 

can be used to analyze biopolymers such as DNA.  I also discuss potential challenges in 

using nanopore devices and why it is important to have an accurate computational 

simulation methodology to predict the underlying physics involved in a translocation 

time experiment. One primary issue that has yet to be completely resolved is the scaling 

law behavior of translocation time versus chain length (τ ~ N
α
) [1]. If the scaling 

exponent α were known, one could easily determine the length of the polymer simply 

from the time required for the polymer to translocate through the pore. As I thoroughly 

discuss in this introduction chapter, there are many hypotheses to what this scaling law 

should be for both forced and unforced (i.e. applied voltage = 0) translocation. In fact, as 

will be shown in later chapters, the scaling exponent is heavily dependent upon many 

parameters such as applied force, pore length and diameter, and initial polymer 

configuration. One of the main objectives in this work is to determine under what 

conditions are the theoretical values for this scaling exponent obtained and what leads to 

deviations from theory. Developing a computational model that agrees with theoretical 

predictions, and comparing those results to experimental findings, can lead to a better 

understanding of which physical mechanisms are important when modeling polymer 

translocation through nanopore devices.   

Chapter 2 discusses the simulation methodology and models used to investigate 

biopolymer translocation through solid-state nanopores. To perform realistic simulations 

much faster than traditional molecular dynamics (MD) calculations, I use either 

Brownian or Langevin Dynamics simulations to model the solute-solvent interactions for 

both Rouse and Zimm polymer models. This allows larger integration time steps, 
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permitting simulations to be performed for larger durations of time and longer polymer 

chains. I also incorporate atomistically detailed nanopore models constructed from the 

crystal structure of β-Si3N4 in my simulation methodology to achieve higher simulation 

accuracy. In order to understand the effects due to the electrolytic ions, nanopore surface 

charge, and a charged polymer, I compute the coupled Poisson-Nernst-Planck equations 

to determine the potential and ionic concentration distribution inside the nanopore for 

both situations of when the polymer is present or absent from the nanopore. In this 

chapter, I thoroughly test my simulation methodology and demonstrate all fundamental 

theoretical laws are obeyed. 

As previously discussed, one of the main objectives is to determine the 

translocation time scaling exponent α. In Chapter 3, I study how this scaling exponent 

varies with applied force, pore length and diameter, and viscosity using Rouse polymers 

(no hydrodynamic interactions). Whereas most polymers behave as Zimm polymers (with 

hydrodynamic interactions) in bulk solution, hydrodynamic interactions can be screened 

for polymers moving near a wall or inside a channel, which indicate the importance of 

Rouse polymer studies when investigating polymer translocation through small structures 

such as nanopores. My first studies involved polymers much longer than the pore length, 

which is often the case in translocation measurements. I found that during forced 

translocation, the polymer “crowds” at the exit of the nanopore, causing the scaling 

exponent to be much smaller than the theoretical value of α = 1 + υ, where υ is the 3 

dimensional Flory exponent (υ = 0.588). This crowding is due to the translocation time 

being much faster than the Rouse polymer relaxation time. When the applied voltage is 

decreased, the translocation time is increased, which permits the polymer to relax longer, 
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resulting in an increase in the scaling exponent. In my next Rouse polymer studies, I 

found that when the polymer length is shorter or on the same order as the length of the 

nanopore, a continuous scaling law does not exist, but the scaling exponent (α) increases 

as the length of the polymer increases, converging to the same value obtained when the 

polymer length is much longer than the pore length. These findings indicate the scaling 

exponent α is dependent not only on the applied voltage, but also the relationship 

between the length of the polymer chain and the pore length. One disadvantage to using 

nanopores in DNA investigations is the high rate at which the translocation takes place, 

often putting very strenuous demands on measurement equipment used to measure the 

modulated ionic current. One method that has been used to slow down the translocation 

process is to increase the solvent viscosity by adding glycerol. Hence, I studied the 

effects of increasing the solvent viscosity and found that, while the translocation time is 

increased as the solvent viscosity is increased, the polymer relaxation time is also 

increased, and thus there was no effect on the scaling exponent α. Finally, I studied the 

relationship between the translocation time and the applied voltage for different polymer 

lengths and obtained the theoretical scaling of τ ~ V
-1

 at low to moderate voltages, which 

has also been observed in experimental results as well. At high applied voltages, once 

again the polymer crowds at the exit of the nanopore resulting in scaling exponents larger 

than -1. These findings indicate the translocation physics are heavily dependent upon 

applied voltage. 

Whereas Rouse polymers that do not include hydrodynamic interactions (HI) 

diffuse as D ~ N
-1

, Zimm polymers that include HI diffuse as D ~ N
-0.6

, which more 

resembles biopolymers such as double stranded DNA (ds-DNA). Because of this, in 



 xxix 

Chapter 4, I study the effects of hydrodynamic interactions on polymer translocation and 

obtain the theoretical scaling exponent of α = 2υ, which is vastly different from the 

theoretical scaling exponent obtained for Rouse polymers (α = 1 + υ). I also observed in 

my simulation studies that due to secondary polymer-solvent interactions, the Zimm 

polymer not only translocates through the nanopore faster, but also has a much shorter 

relaxation time. Interestingly, the Zimm polymer scaling exponent resembles those 

obtained in experiments for nanopores with large diameters (10 nm), whereas the Rouse 

scaling exponent (α = 1.44) is more in agreement with experiments with smaller 

diameters (4 nm). These finding indicate that whereas hydrodynamic interactions are vital 

when modeling biopolymer translocation through large nanopores, polymer translocation 

through smaller nanopores more resemble Rouse polymer behavior, possibly due to 

larger polymer-pore interactions screening out HI affects. Also in this chapter, I continue 

my study for Rouse polymers and find the only way to obtain theoretical scaling 

exponent of α = 1 + υ is if the polymer is in equilibrium throughout the translocation 

process. In other words, the radius of gyration of the polymer must scale as Rg
2
~ N

2υ
, 

both on the cis (at the beginning of the simulation) and on the trans (at the end of the 

simulation) side of the nanopore (Figure 3 (b)), which only occurs with low applied 

voltages. This is an important finding because it indicates at what nanopore operating 

conditions one can obtain the theoretical scaling exponent. Similar to the Rouse polymer 

studies in chapter 3, in chapter 4 I also studied the effects of solvent viscosity and applied 

voltage on the Zimm polymers as well. Once again, I found that while the translocation 

time is increased as the solvent viscosity is increased, the polymer relaxation time is also 

increased, and thus there was no effect on the scaling exponent α. In addition, I obtained 
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the theoretical scaling of τ ~ V
-1

 at low to moderate voltages. At high applied voltages, 

once again the polymer crowds at the exit of the nanopore resulting in scaling exponents 

larger than -1. The importance of this finding is that this scaling relationship of τ ~ V
-1 

does not hold for all voltages, for both Rouse and Zimm polymers, further indicating that 

large applied voltages are responsible for extreme polymer crowding at the nanopore exit 

and deviations from theoretical derivations.  

The final objective of Chapter 4 is the investigation of translocation scaling 

exponents for unforced (i.e. no applied voltage) translocation of both Rouse and Zimm 

polymers. Theoretically, the scaling law for a polymer that translocates through a 

nanopore without the aid of an applied force should be on the same order as the polymer 

relaxation time defined as the time required for a polymer to diffuse its radius of gyration, 

which is τ ~ N
1+2υ

 for the Rouse polymer model and τ ~ N
3υ 

for the Zimm polymer 

models. As will be shown in chapter 4, I obtain the scaling relationship of τ ~ N
1+2υ 

in 

very narrow pores not only for the Rouse polymer model but also for the Zimm polymer 

model as well. This is in part due to the hydrodynamic interactions being screened close 

to the pore wall as well as the strong polymer-pore interactions slowing down the 

polymer translocation and, thus, reducing the hydrodynamic interactions. Thus, as 

discussed before, polymers that behave as Zimm polymers in bulk solution may 

translocate as Rouse polymers in narrow nanopores due to HI effects being screened. In 

other simulations, when the diameter of the pore is increased, the polymer-pore 

interactions are decreased, resulting in an increase in the scaling exponent α and a 

reduction in the translocation time. When the pore is removed from the simulation, the 

scaling exponent of both polymer models converge to their relaxation scaling behavior of 
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τ ~ N
1+2υ 

for Rouse and τ ~ N
3υ 

for Zimm models. These findings emphasize how 

polymer-pore interactions can greatly affect polymer translocation through nanopores. 

The final objective of this work, as discussed in Chapter 5, is to determine the 

potential and ion distribution inside negatively charged silicon nitride nanopores in the 

presence of a 1 M electrolyte and a charged polymer in order to obtain a preliminary 

assessment of the effects of electrostatics on translocation processes. In order to find the 

potential and ion distribution, I solve the coupled Poisson-Nernst-Planck equations for 

nanopores of varying diameter. In these simulation results, due to the high electrolytic 

concentration (1 M) and, as a result very short Debye length (~ 3 Å), I find the potential 

as a result of the surface charge of both the nanopore and polymer is largely screened at 

very short distances. In addition, due to the charge on each monomer, a large buildup of 

ions occurs on the surface of each monomer. One could hypothesize, due to the large ion 

concentrations in close proximity to the polymer, that electro-osmotic forces along the 

backbone of the polymer would greatly affect the translocation dynamics in an 

experiment with a charged biopolymer such as ds-DNA. The importance of these 

findings indicates how important it is to include the electrolytic solution for not only 

electrostatic effects but possible electro-osmotic effects as well. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction to Nanopores 

One of the most significant advances in the single-molecule analysis of polymers 

is with the use of nanopore devices.  Nanopores typically have diameters in the 1-10 nm 

range and have been fabricated using ion channel proteins [2–6] or solid-state materials 

such as silicon oxide [7–10] and silicon nitride [11–20].  Because the diameter of the 

nanopore is similar to the size of a macromolecule of interest[2] and due to the high rate 

at which macromolecules can potentially translocate through the pore, nanopores are seen 

as potential ‘next-generation’ single-molecule  analysis devices possessing both very high 

resolution and throughput[21].  

One potential application of nanopore devices is in the analysis of nucleic acids. 

Because of the significant role genetics play in biological systems and disease findings 

ways cheaper and faster methods of DNA sequencing has become a widely studied area 

of research [2]. The goal of the US National Human Genome Research Institute (NHGRI) 

is to create a system that can sequence an entire mammalian-scale genome for about 

$1,000 by 2014[22] (currently, the cost is around $4000 - $5000 and takes about 2 days 

to complete [23,24]). The use of biological nanopores, such as the α-hemolysin (α-HL) 

pore, and/or solid state nanopores constructed using Silicon Nitride or Silicon Dioxide, 

could possibly provide an even faster, less expensive sequencing method.  

One example of the use of nanopore devices is in the determination of DNA chain 

lengths. Because DNA possesses an inherent negative charge, it can be driven through a 

nanopore with the aid of an applied voltage (Figure 1). When placed in an aqueous 
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electrolyte solution, a current flows through the nanopore. At the beginning of the 

experiment, when the DNA is on the ‘cis’ side of the nanopore (corresponding to the 

electrode with negative voltage) and not blocking the pore, the current is at its maximum 

value. When the DNA chain begins to thread through the nanopore, a large fraction of the 

electrolyte ions will be blocked and hence the current decreases to a minimum value. 

Once the DNA has fully translocated and reaches the ‘trans’ side of the nanopore, the 

ionic current returns to its original maximum value. Based upon the duration of current 

blockage, theoretically, the length of the DNA chain can be determined. This experiment, 

which is orders of magnitude faster than conventional gel electrophoresis [21] and 

doesn’t require any staining or labeling of the DNA[25–27], is referred to as a 

translocation time measurement [4,21,22]. 

 

 
 

Figure 1:  (Left) Simple illustration defining aspects of translocation process. (Right) 

Example ionic current measurement using 30 Å silicon nitride nanopore [11]. 

 

 

Due to the reduction in the number of configurations the DNA chain can take 

when entering the pore, there is an entropic free energy barrier that must be overcome in 

order for the DNA to flow through the nanopore[4]. In addition, an enthalpic barrier may 

also exist depending on the interactions between the nanopore wall and the DNA chain.  
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The free energy barrier that needs to be overcome is therefore dependent upon many 

characteristics of the system such as the length of the DNA chain, properties of the 

nanopore (size, attractive/repulsive forces, etc.), and properties of the solvent (such as 

temperature, pH). The applied potential helps overcome the free energy barrier and 

facilitates the translocation of the DNA through the nanopore device.  

1.2 Types of Nanopores 

1.2.1 Biological Nanopores 

The first types of nanopores used in translocation time experiments were 

composed of biological materials. Not only can biological nanopores be genetically 

modified to meet the requirements for a specific end-user application [27,28], they are 

also created by cells with high reproducibility and precision [27]. One type of biological 

nanopore that has been used in translocation time experiments is made from the α-

hemolysin (α-HL) protein reconstituted in a synthetic lipid bilayer[2,4,21] as shown in 

Figure 2 (a) [2,4]. The pore is comprised of a large opening, called the vestibule, located 

in the cis chamber and a cylinder-like region, called the β-barrel, in the trans chamber. 

Due to its small pore size, the α-HL pore has been primarily used in single-stranded DNA 

(ss-DNA) translocation experiments. Even though there have been promising results 

using α-HL nanopores, there are some major hindrances that could prohibit its use in 

sequencing applications. For instance, the α-HL pore is not very durable and, because 

they are constructed using biological materials, will only stay intact for about 36 

hours[21,29]. Also, due to the large size of the vestibule, DNA chains can assume 

different forms before entering the β-barrel. This results in translocation time histograms 

having several peaks and long tails, indicating that it may be difficult to use this device 
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when trying to determine DNA chain lengths that differ by a small number of 

monomers[21]. Finally, due to the pore being a poor conductor of ionic current, 

experiments have to be performed at unphysiologically high salt concentrations to obtain 

a good signal-to-noise ratio (SNR) [21,29]. Another type of biological nanopore that has 

been used in DNA sequencing experiments is the  Mycobacterium smegmatis porin A 

(MspA) [27,30–32]. As shown in Figure 2 (b), the MspA pore has more of a consistent 

funnel like shape, rather than the irregular shape of the α-HL pore. One of the main 

advantages of the MspA pore over the α-HL pore is at its most narrow point (diameter = 

1.2 nm), it is only 0.6 nm long [31]. This is important because only about 3 nucleotides 

will occupy that space, and thus contribute to the modulating ionic current[27]. This 

makes it more ideal for single nucleotide sequencing rather than the α-HL pore which has 

a β-barrel that is 10 – 12 nucleotides long [27,30]. 
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Figure 2: Cross section and approximate dimensions for a single (a) α-HL[2] and (b) 

MspA pores[31]. 
 

 

1.2.2 Solid State Nanopores 

Due to the limitations of the α-HL pore, solid state nanopores, constructed from 

materials such as silicon oxide [7–10] and silicon nitride [11–20] are now being used in 

translocation experiments. Solid-state nanopores have many advantages over their 

biologically-derived counterparts, such as longer durability, wider range of operation, and 

controllable size[21,29]. A number of experimental studies have reported the fabrication 

and operation of solid-state nanopore devices produced by a variety of techniques such as 

milling or ablation of solid-state membranes by focused ion beams and electron beams 

generated by transmission electron microscopes [33–37]. Recent work has also addressed 

the development of wafer-scale processes for producing arrays of nanopores by 

combining electron-beam lithography and atomic layer deposition techniques[16]. 
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Furthermore, the incorporation of electronic measurement devices (such as tunneling 

detectors) within solid state nanopores has also been recently reported[38]. Such a 

development may allow the direct reading of biopolymer sequence information during 

translocation.  

1.3 The Need for Simulation Models 

In order to realize the technological potential of nanopore devices, a detailed 

theoretical and experimental understanding of polymer translocation dynamics in the 

nanopore is necessary. Computational studies of polymer translocation though nanopore 

devices are expected to provide valuable insight regarding the physics of translocation, as 

well as guidelines for better nanopore device design and operation[39]. Previous studies 

have reported Molecular Dynamics (MD) simulations of events occurring during 

translocation of DNA through a solid-state nanopore[40–44]. Although MD simulations 

provide atomistically detailed information, they typically describe phenomena occurring 

on time scales shorter than ~100 ns. To obtain physical insight into full translocation 

processes occurring on much longer time scales, ‘coarse-grained’ simulation techniques 

are necessary. Such approaches, based upon Brownian or Langevin dynamics 

simulations, can address a number of important questions relating to the translocation 

process.  

1.4 Translocation Time Scaling Exponents 

 Unfortunately, the underlying mechanisms of biopolymer translocation through a 

nanopore are far from well-understood. Several authors, including myself, have studied a 

number of aspects of biopolymer translocation with coarse-grained dynamical simulation 
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techniques [1,45–71]. One primary issue, that has yet to be completely resolved, is the 

relationship between the translocation time τ and the polymer chain length N [1], often 

expressed in the form of an exponential relationship τ ~ N
α
. In fact, finding a universal 

scaling exponent, α, has been the subject of many simulation studies including the ones 

cited above. Knowing this scaling relationship in advance of a nanopore experiment 

would make the task of determining the polymer chain length trivial from a translocation 

time measurement. As I will discuss in this introduction and demonstrate throughout this 

thesis, the scaling exponent is heavily dependent upon many parameters such as applied 

force, pore length and diameter, and initial polymer configuration.  

1.4.1 Unforced Translocation Time Studies 

In the first studies involving unforced polymer translocation, Sung and Park [72] 

and Muthukumar [73], using a derived free energy equation involving polymer 

translocation through a narrow hole, found the translocation time scales as τ ~ N
2
 where 

N is the number of monomers in the chain. Chuang et al. [45] later found an 

inconsistency in this scaling law in relation to self-avoiding polymers, in which the radius 

of gyration scales as Rg ~ N
υ
, where υ (the Flory exponent) is 0.588 in three dimensions 

[74]. By estimating the distance a polymer travels during the translocation process as Rg 

and noting that the center-of-mass diffusivity of a Rouse polymer (i.e., no hydrodynamic 

interactions) is Do/N (where Do is the diffusion coefficient of a single monomer), Chuang 

et al. [45] estimated the unforced translocation time scaling law as τ ~ (Rg)
2
/(Do/N) ~ 

N
1+2υ

, which is the same scaling behavior of the Rouse relaxation time [74], estimated as 

the time required for a polymer to diffuse its radius of gyration [45,53]. Thus, for self-

avoiding polymers, a scaling exponent of τ ~ N
2 

would indicate translocation being much 
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faster than the polymer relaxation time, which is not possible. Hence, τ ~ N
1+2υ 

could be 

seen as a better estimate. Unfortunately, as Chuang et al. [45] points out, one would 

assume that a polymer would diffuse through a pore much slower than in the bulk. As a 

result, this scaling exponent could be seen as a lower bound. Panja et al. [46] modified 

the expression to τ ~ N
υ+2

 to account for memory effects, due to a local change in 

monomer concentration on both sides of the pore during the translocation process, which 

was also observed by Dubbeldam et al. [70] and Gauthier et al.[75]. In addition, de Haan 

and Slater [66] found the scaling exponent is heavily dependent on the pore diameter 

varying from τ ~ N
1+2υ

 ~ N
2.2

 for a diameter of σ up to a value of τ ~ N
2.93

 for a diameter 

of 10σ, where σ is the diameter of each monomer. This increase in scaling exponent is 

due to the fact that for pore diameters larger than 1.5σ, the monomers do not translocate 

in a single-file fashion but rather the polymer folds inside the nanopore during the 

translocation process.  

1.4.2 Forced Translocation (Rouse Polymers) 

When translocation is aided with an applied force, the scaling laws will change. 

For example, Kantor and Kardar [47] derived a scaling law expression for a long polymer 

chain traversing a short pore with an applied force F, viz. τ ~ Rg/(F/N) ~ N
υ+1

/F. A 

limitation of this scaling law is the assumption that the polymer is in equilibrium 

throughout the translocation process. This may not always be correct, especially in the 

presence of high driving forces. Vocks et al. [48] derived a new scaling law, τ ~ 

N
(1+2υ)/(1+υ)

/F, including the memory affects due to local tension in the polymer chain 

when a monomer translocates from one side of the pore to the other. Another factor that 

greatly affects scaling law behavior is the applied force strength. In some previous 
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simulations it was found that the scaling exponent increased with increasing force [49–

51], while in others the scaling exponent decreases with increasing force [52–54,76].  

One proposed explanation for these differing observations is that during forced 

translocation, the polymer is driven out of equilibrium [52,53,55,56]. At first, as was 

demonstrated in previous simulation studies, extreme monomer crowding on the trans 

side of the nanopore [49–54,56], a clear indication that the polymer has not had ample 

time to equilibrate once it has passed through the nanopore, was thought to be responsible 

for scaling laws differing from the value predicted by Kantor and Kardar [47]. However, 

in more recent studies involving tension propagation theory [51,76–85], it has been 

proposed that non-equilibrium effects are solely based on changes to the polymer on the 

cis side of the nanopore rather than any trans side effects. As discussed by Lehtola et al. 

[50], in the presence of a moderate driving force, the translocation time process can be 

thought of as a force balance between the applied driving force and the drag force due to 

the monomers on the cis side moving towards the nanopore. When the force used to drive 

the polymer through the nanopore is applied to monomers inside the nanopore, a tension 

in the chain is created. This tension propagates along the backbone of the chain creating a 

“tension front” or boundary in which monomers influenced by the tension move towards 

the nanopore, and thus contribute to the overall drag force, while the other monomers 

beyond the front do not. This tension in the chain, depending upon the strength of the 

applied force, will alter the initial equilibrium shape of the polymer. Weak forces (N
-υ

 < 

F < 1) will result in a “Trumpet” shape, moderate forces (1 < F <  N
υ
) will result in a 

“Stem-Flower” (or “Stem-Trumpet”) shape, whereas strong forces (F > N
υ
) will result in 
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“Strong stretching” (or “Stem”) shape [51,79].  These changes in polymer shape are 

potential reasons for scaling law deviations.  

One of the goals of tension propagation theory is to predict the movement of the 

tension front as a function of time during the translocation process. Using the 

conservation of mass relating the tension front and the number of monomers experiencing 

the chain backbone tension, Saito and Sakaue [78,79] and Dubbeldam et al. [51], 

predicted that the total translocation time is the sum of three individual time components 

with different scaling laws. The first component, τini, is the time that it takes to create an 

initial blob state before monomer translocation. This term, in both the research of 

Dubbeldam et al. [51] and Saito and Sakaue [79], has been hypothesized to be force, not 

length dependent and, in recent Brownian Dynamics Tension propagation theory [76], 

has been questioned to even exist. Hence, I will omit it from the discussions here.  The 

second component, τ1, is the time required for the tension in the chain (generated by the 

pulling force) to propagate to the end of the polymer. This term dominates for longer 

chains. Once the tension reaches the end of the chain, the polymer then moves with a 

constant velocity for a time period τ2, which is the dominant term in short chains. For 

moderate to strong forces, the range at which most simulations and experiments are 

performed at [79], Dubbeldam et al. [51] concluded the translocation time τ = τ1 + τ2, 

where τ1 ~ N
1+υ

/F and τ2 ~ N
2υ

/F. In addition, they also proposed a scaling law transition 

from τ ~ N
2υ

 to τ ~ N
1+υ 

as the applied force is increased, thereby indicating a lower bound 

exponent of α = 2υ, also proposed by Vocks et al. [48]. Slight differences were obtained 

for these scaling laws in the research of Saito and Sakaue [79]. For example, for 

moderately applied driving forces, the second translocation time component was found to 
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scale as τ1 ~ N
α
/F, where α = ((z-1)(1+υ)-(1-υ))/(z-1). For a Rouse polymer, z = (1+2υ)/υ, 

which results in τ1 ~ N
1.43

/F, which is smaller than the values obtained by Kantor and 

Kardar [47] and Dubbeldam et al. [51]. On the other hand, for strong forces, Saito and 

Sakaue [79] obtained τ1 ~ N
1+υ

/F, agreeing with the previous results. Finally, for both 

moderate and strong forces, Saito and Sakaue [79] obtained the third time component to 

scale as τ2 ~ N
2υ

/F , which agrees with the results obtained from Dubbeldam et al. [51].  

Most recently, using the same mechanisms described in the tension propagation 

theory discussed above, Ikonen and coworkers [76,82,83], beginning with the energy 

balance equations initially derived by Sung and Park [72] and Muthukumar [73], 

developed a method for computing the Brownian Dynamics motion of the translocation 

coordinate (length of the chain that has translocated to the trans side of the nanopore) in 

the high damping limit known as the Brownian Dynamics Tension Propagation (BDTP) 

theory. As shown in previous simulation results [50,62,86,87], the velocity of a polymer 

translocating through a nanopore is not constant, but rather varies with time. Using this 

observation, instead of assuming a constant drag coefficient throughout the translocation 

time simulation, Ikonen and coworkers [76,82,83] instead assumed a drag coefficient that 

varied in time. Interestingly, from their results, not only did they find good agreement 

between their predictions and results from MD simulations, but they also discovered that 

the translocation time scaling exponent is dependent upon length, only converting to the 

value predicted by Kantor and Kardar [47] (α = 1 + υ) in the limit of very long chain 

lengths. This important discovery implies that there is no universal scaling exponent and 

explains why there is such discrepancy in the literature. In addition, Lehtola et al. [50] 

investigated how the initial polymer configuration affects the scaling law behavior, by 



 12 

simulating a polymer chain with an initial configuration of monomers in a straight line. 

They observed a scaling exponent of α = 2, far different than the scaling exponent 

predicted by Kantor and Kardar [47]. These findings indicate that, not only the applied 

force and the length of the chain, but also the initial polymer configuration, affects the 

scaling exponents strongly.  

1.4.3 Forced Translocation (Zimm polymer models)  

As mentioned before, the formulations discussed above all assume polymer 

translocation in the absence of hydrodynamic interactions (HI) as modeled by a Rouse 

polymer. In other words, the diffusion of one monomer does not affect the diffusion of 

another and, as a result, the center-of-mass diffusion coefficient scales as D ~ N
-1 

and the 

polymer relaxation time scales as τR ~ N
1+2υ

 [74]. On the other hand, when hydrodynamic 

interactions are introduced - as modeled by a Zimm polymer - the diffusion of each 

monomer is affected by every other monomer in the chain through solvent interactions, 

resulting in a center-of-mass diffusion coefficient scaling law D ~ Rg ~ N
-υ

 and a Zimm 

polymer relaxation time scaling law of τZ ~ N
3υ

 [74]. The assumption of Rouse behavior 

is likely valid inside a nanopore as long as minimal folding occurs during the 

translocation process or if very little water is present inside the pore as would be the case 

for a very narrow nanopore. However, because many polymers such as double-stranded 

DNA (ds-DNA) behave as Zimm polymers in bulk solution [88–90], it would seem that 

assuming Rouse behavior would underestimate the diffusivity of the polymer, especially 

in the case of studies involving unforced translocation through a nanopore. To complicate 

matters, hydrodynamic interactions are long ranged in bulk solution [91], but have shown 

to be screened for polymers moving near a wall or inside a channel [45,68,91]. Hence, 
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the effect of hydrodynamic interactions in translocation time simulation studies is not 

trivial and should not be omitted in any thorough investigation.  

Under the assumption that, in the presence of hydrodynamic interactions, the 

translocation process is governed by a force balance between a drag force of a polymer 

‘blob’ with size equal to its Rg on the cis side of the nanopore and the driving force to 

facilitate translocation of the polymer through the pore, Storm et al. [9] arrived at a 

translocation scaling law  of τ ~ N
2υ

, which was also obtained by Sakaue [78]. Fyta et al. 

[57] also investigated Zimm polymer translocation by writing an energy balance equation 

for the system equating the kinetic energy to the potential energy of the system where the 

potential energy consisted of the following terms: the change in energy due to the 

increase and/or decrease in size of the polymer ‘blobs’ on both sides of the nanopore, the 

change in energy due to the hydrodynamic drag caused by the fluid, and the energy 

provided by the applied force used to drive the polymer through the nanopore. 

Interestingly, Fyta et al. [57] also derived the same scaling relationship of τ ~ N
2υ 

. Unlike 

the derivation by Storm et al. [9], which only studied at the effects of the polymer on the 

cis side of the nanopore, the derivation by Fyta et al. [57] included effects on both sides 

of the nanopore, which could be viewed as a more accurate model. Just as was done with 

the Rouse polymer model, Vocks et al. [48] derived a new scaling law, which also 

includes memory affects due to local tension in the polymer chain, and found τ ~ N
3υ/(1+υ)

. 

Later, Saito and Sakaue [79] obtained a different scaling law for polymer translocation 

with hydrodynamic interactions using the tension propagation theory discussed above. As 

mentioned earlier, for very long chains, the τ1 time component dominates with a scaling 

relationship given by: τ1  ~ N
α
/F, where α = ((z-1)(1+υ)-(1-υ))/(z-1), for moderate driving 
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forces. For a Zimm polymer, z = 3, which results in τ1 ~ N
1.38

/F, which is different from 

the values given above. However, the scaling law for short chains obtained by Saito and 

Sakaue [79] was found to be  τ2 ~ N
2υ

/F, which agrees very well with the results given 

above. Just as before with Rouse polymers, Ikonen et al.[83], using BDTP theory, also 

found the scaling exponent for Zimm polymers is also dependent upon chain length, and, 

interestingly, converges to approximately the same value of α = 1 + υ [47] in the limit of 

large N, although much slower than for Rouse polymers. Hence, just as for Rouse 

polymers, a universal scaling law for Zimm polymers may not exist.  

1.5 Objectives and Aims of this Thesis 

 The overall objective of this thesis is, to investigate the underlying physics 

involved in biopolymer translocation through solid-state nanopore devices, using the 

detailed simulation tool developed by myself. More specifically, I aim to define what 

factors, such as nanopore size, applied voltage, polymer model, etc. most influence the 

translocation time versus chain length scaling parameter, α. This work includes extensive 

simulation studies using a highly accurate computation tool, developed by myself using 

the Fortran programming language, in an attempt to predict the correct values of α under 

different conditions. The detailed research and objectives of this thesis are as follows: 

 

A. Design and Implement Simulation Methodology 

My first objective is to design and implement a physically accurate, 

computationally efficient, simulation methodology that accurately predicts the 

underlying physics involved in a translocation time experiment. I do this by 

modeling atomistically detailed nanopore models constructed from the crystal 
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structure of β-Si3N4, as opposed to many previous simulation studies that 

assume the nanopore is either a hole in a continuous solid or in a simple 

homogeneous lattice of atoms. Instead of using Molecular Dynamics (MD) 

simulations methods, I employ coarse-graining techniques which include 

Langevin and Brownian Dynamics integration methods to study both Rouse 

and Zimm polymer models. This allows the use of larger integration time 

steps, and, as result, I perform simulations for larger time durations using 

longer polymer chains than possible with MD methods. As will be shown in 

Chapter 2, I thoroughly test the simulation methodology to ensure all 

fundamental theoretical laws are obeyed.  

 

B. Rouse polymer Investigation 

I thoroughly investigate the translocation time versus chain length (N) scaling 

law, α, in the absence of hydrodynamic interactions (Rouse polymer model) 

under different simulation conditions. I perform simulations for different 

applied voltages, viscosity values, and pore length and diameters to determine 

how these quantities influence the scaling exponent α. I also investigate the 

translocation time versus applied voltage scaling behavior and show that, at 

small to intermediate forces, the scaling law agrees with theoretical 

predictions (τ ~ V
-1

). However, at very high applied voltages, extreme 

crowding at the exit of the nanopore exists, which results in deviations from 

this theoretical scaling behavior. I also compare this simulation data to 

measurement results to determine if exclusion of hydrodynamic interactions is 



 16 

appropriate for modeling biopolymers, such as double stranded DNA (ds-

DNA) or single stranded DNA (ss-DNA), used in translocation time 

experiments.  

 

C. Hydrodynamic Interaction (Zimm Polymer) Studies 

Biopolymers, such as ds-DNA and ss-DNA have been shown to behave as 

Zimm polymers rather than Rouse polymers in bulk solution. Hence, in order 

to perform a complete study on biopolymer translocation through nanopore 

devices, it is crucial to include hydrodynamic interactions in the simulation 

model. As a result, I thoroughly investigate the effects of hydrodynamic 

interactions on the scaling exponent α and determine whether or not the use of 

Zimm polymers are important when comparing simulation data to 

experimental results.   

 

D. Forced vs. Unforced Polymer Translocation 

Whereas most experiments involve biopolymer translocation through 

nanopores using the aid of an applied voltage, equally important are 

translocation time studies in the absence of an applied voltage (i.e. unforced).  

 I investigate unforced polymer translocation time studies, for both Rouse and 

Zimm polymer models, using differing pore sizes, to determine the effect of 

polymer-pore interactions on unforced translocation time studies. Hence, I 

sought to answer the question: How does the inclusion of a nanopore alter the 

diffusivity of a polymer from its characteristic behavior in bulk solution? 
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These studies are important because they tell us when diffusion greatly affects 

the translocation process, and when it does not (e.g. in simulations with high 

applied forces).  

 

E. Inclusion of Electrostatics 

In most coarse-grained simulation methodologies, electrostatic effects such as 

the presence of electrolytic ions and pore surface charge have a negligible 

impact on a translocation time experiment.  However, I sought to investigate 

(using the coupled Poisson-Nernst-Planck equations) how the inclusion of 

electrostatic interactions affects the potential distribution inside nanopores of 

varying diameter and monomer charge distribution. The purpose of this study 

is to provide more details on the effects of the electrostatic interactions and 

how they may influence polymer translocation through nanopores. 

1.5 Potential Impact of this Work 

Nanopore devices, because of their ability to possess high resolution and 

throughput very high resolution and throughput[21], are seen as potential ‘next-

generation’ single-molecule  analysis devices. One very important area that nanopores 

could have an immediate impact in is the analysis of nucleic acids, more specifically 

DNA. As mentioned earlier, DNA sequencing has become a widely studied area of 

research with the goal of the US National Human Genome Research Institute (NHGRI) to 

create a system that can sequence an entire mammalian-scale genome for about $1,000 by 

2014[22]. The use of solid state nanopores constructed in silicon nitride, similar to the 
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ones that I model in my simulation methodology, could possibly provide a faster, less 

expensive sequencing method.  

Although the mechanisms of biopolymer translocation through a nanopore are far 

from well-understood, my work accurately predicts the theoretical values of the 

translocation time versus chain length scaling exponent α and provides example scenarios 

of when the simulated exponent deviates from theory. I also investigate biopolymer 

translocation using both Rouse and Zimm polymer models and show that hydrodynamic 

interactions have a large impact on the translocation time scaling exponent. Furthermore, 

I have thoroughly studied the effects of nanopore dimensions and applied voltages and 

their effects on the underlying physics involved in a translocation time experiment. 

Finally, I studied the effects of the electrolytic ions and nanopore surface charge using 

the coupled Poison-Nernst-Planck equation to determine the significance of electrostatic 

interactions. The results from my simulation studies can assist in not only proper 

nanopore design, but also help determine the proper experimental environments and 

operational parameters for nanopore operation.  

 

 



 19 

CHAPTER 2: MODEL IMPLEMENTATION AND 

COMPUTATIONAL METHODS 

2.1 Polymer Model 

I model the polymer as a freely jointed chain [92] with each monomer represented 

by a single bead. Each bead has a mass of 312 atomic mass units (amu)[63] and a 

diameter of 4.3 Å [93], which are the corresponding values for single stranded DNA. 

Because of the phosphate backbone on the DNA, each monomer has an associated 

negative charge[94]. This value can vary greatly from 4e [95] to 0.094e [96] (where e is 

the charge of an electron) depending upon what pH level is used in the experiments. In 

my simulation results, I assigned a value of 1e for the charge on each monomer which 

has been used in other similar simulation studies [97,98]. 

Adjacent beads in the polymer model are connected by spring models using one 

of two different potential types: (1) the Fraenkel model (Equation (2-1))[99] or a 

combination of the (2) Warner model (often referred to as the “finitely extendable 

nonlinear elastic” or FENE model[99] and the (Equation (2-2)) Weeks-Chandler-

Anderson potential (WCA) [100], which prevents the beads from overlapping (Equation 

(2-3)). 
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(2-3) 

 

 

In my preliminary simulations, I used the Fraenkel model with an equilibrium 

bead-to-bead distance of ro = 4.3 Å and an associated spring constant kFran of 171 

kcal/molÅ
2 

as used in similar simulation studies
 
[98]. This spring constant value could be 

considered too high for a coarse-grained DNA model since it is on the same order as 

Carbon-Carbon bonds[101,102]. When I used this value for kFran (or other smaller values 

as well), there was a very sensitive relationship between the simulation time step and the 

model’s ability to keep adjacent DNA beads connected together. If the time step was too 

high, the DNA chain of beads would break apart and the translocation simulation would 

fail. Because of the extreme sensitivity of the time step using the Fraenkel model, all of 

the simulations studies, unless otherwise specified, use the FENE-WCA spring model 

described in Equations (2-2) and (2-3), which models a more loosely connected spring, 

thus allow for a larger time step to be used.  

Using the FENE-WCA bead-spring model, I assign the values for the spring 

constant kFENE = 7 εpoly/σpoly
2
 , the maximum allowed distance between beads Ro = 8.6 Å, 

the Lennard-Jones energy well-depth ε = εpoly = kBT (where kB is Boltzmann’s constant), 

and σ = σpoly = 4.3 Å (where 2
1/6

σ is the distance of the energy well depth). Using these 

values, the potential energy function is a minimum when the distance between beads is ~ 

4.48 Å. The bead-to-bead energy for non-adjacent beads (excluded volume effect) is 

computed using the same Weeks-Chandler-Anderson potential in Equation (2-3) with ε = 
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εpoly and σ = σpoly. I provide more detail, including potential energy plots, about the 

differences between the Fraenkel and FENE-WCA bead-spring models in the Appendix 

section A.1.  

The non-adjacent monomer model described in Equation (2-3) has been used in 

many previous simulation methodologies to mimic a polymer with high excluded volume 

interactions which cause the polymer to swell. However, I was also interested in how the 

polymer would behave in bulk conditions in which the excluded volume interactions 

were decreased (“poor” solvent conditions). To do this, I also implemented a polymer 

model using a full Lennard-Jones potential energy function, which includes both the 

repulsive and attractive terms, as shown in Equation (2-4), where rc is the cutoff distance 

at which the energy is no longer computed. As will be shown later, I compute the radius 

of gyration and diffusion coefficient using both models from Equations (2-3) and (2-4) in 

order to understand the differences of each model.  
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the nanopore is 5 Å. These simulations are intended to model long polymer chains 

translocating through nanopores much shorter in length, which is often seen in 

experimental methods. In addition, due to the repulsive Weeks-Chandler-Anderson 

potential in Equation (2-3) used to compute the bead-to-bead energy for non-adjacent 

beads, the polymer will swell to a large radius of gyration as is the case in good solvent 

conditions. It should be noted, however, that I do perform simulations using longer pores 

of 50 Å and 100 Å. In those simulation studies, I intended to study how the translocation 

time scaling exponents change when the length of the polymer is much shorter or on the 

same order as than the length of the pore.  
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2.2 Nanopore Model 

 

Figure 3: (a) Top view of silicon nitride (β-Si3N4) nanopore with diameter d. Orange: Si, 

Black: N. (b) Polymer chain translocating through nanopore from the cis side to the trans 

side with the aid of a driving force due to an applied voltage. 

 

Unlike many previous coarse-graining simulation studies that assume the 

nanopore is either a hole in a continuous solid or in a simple homogeneous lattice of 

atoms, I employ atomistically detailed nanopore models. The crystal structure of β-Si3N4 

is used to construct membranes of different thicknesses, and approximately circular pores 

of different diameters are constructed by removing atoms from the membrane. An 

example of a nanopore with a diameter of 1.5 nm (denoted by d) and length of 0.5 nm is 

shown in Figure 3(a). As will be discussed later, I perform studies in which I vary both 

the pore diameter and length. Figure 3(b) is an example snapshot of a 50-monomer 

polymer, each monomer represented by a blue sphere, translocating through a 1.5 nm 

nanopore with the aid of applied driving forced. As shown, the drag force is in the 

opposite direction of translocation. Included in the simulation volume is an implicit 

reservoir of water both to the left (cis) and right (trans) of the nanopore as well as inside 
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the nanopore. The length of the simulation box in the direction of translocation (which is 

the z direction) is 60 nm. Finally, periodic boundary conditions were employed in these 

simulations as well.  

The energies and forces due to the interactions between the atoms in the nanopore 

and the monomers are computed using the same Weeks-Chandler-Anderson potential 

energy function given in Equation (2-3), with the exception of different parameters σ and 

ε, thus creating a very repulsive interaction between the polymer and the pore. The 

energy well depth for the interaction between a monomer and a nitrogen atom, εpoly-N, is 

assigned a value of 0.1kBT. This value was determined empirically through extensive trial 

simulations. From previous measurements using silicon nitride[103], a ~ 63% increase 

was found between the van der Waals energy well depth parameter, ε, of silicon and 

nitrogen. Hence, in all of my simulations, I increase εpoly-N by 63% to determine the 

energy well depth for the interaction between a monomer and a silicon atom εpoly-Si. To 

compute σpoly-N and σpoly-Si I use the measured values of σ for silicon and nitrogen[103], 

σpoly = 4.3 Å, and the Lorentz-Berthelot mixing rules[100] given in Equations (2-5.1) and 

(2-5.2). 

 

                                                                               (2-5.1) 
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2.3 Force Due to applied Voltage 

Due to the high dielectric constant of the water that is present on the cis and trans 

side of the nanopore, it was first assumed, as was done in previous studies 

[49,51,52,55,58,59,62–64], that the electric field (and hence the force due to the applied 

voltage) is non-zero only inside the pore. The force due to the applied voltage in the 

direction of translocation is F = qV/d, where q and d are the charge and diameter of each 

monomer respectively and V is the voltage drop across the pore. Although the force due 

to the applied voltage varies as a function of ionic concentration, the force has been 

measured in previous experiments to be in the 10 - 30 pN range for voltages between 50 - 

150 mV[19]. In the work presented here, I varied the applied force from ~ 11 pN to 279 

pN, which corresponds to a voltage range of 30 - 750 mV (assuming a charge of 1e on 

each monomer [97,98]), which are consistent with previous measurements using silicon 

nitride nanopores and ds-DNA [19]. Later, as will be discussed in this chapter, I studied 

the effects of electrostatics in solid state nanopores.  

2.4 Integration Methods 

 In this section, I describe the integration methods used to solve for the underlying 

physics involved in polymer translocation through nanopore devices. As described below, 

I first implemented the Velocity Verlet algorithm to perform NVE simulations to ensure 

energy was being conserved in the translocation time simulations. In addition, I 

implemented a  Langevin Dynamics integrator [104] to study Rouse polymer 

translocation through nanopores. And finally, I implemented a Brownian Dynamics 

integrator [105]  to include hydrodynamic interactions in my model to study Zimm 

polymer translocation through nanopores.  Extensive tests were performed using each of 

these algorithms with the results given in this chapter.  
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2.4.1 Velocity Verlet (NVE) Simulations  

 In order to ensure energy conservation was met I implemented the Velocity Verlet 

integration algorithm [100] to perform molecular dynamic simulations of biopolymer 

translocation through nanopore devices. The Velocity Verlet algorithm consists of two 

equations: 

 

(2-6) 

 

 

(2-7) 

    

where r is the position of each monomer, v is the monomer velocity, F 
→

  is the sum of all 

forces, m is the monomer mass, and Δt is the integration time step.  

To ensure these algorithms were working properly and the forces and energies 

were being computed correctly, several simulations involving different chain lengths, 

applied potentials, integration time steps, and pore sizes were conducted in which the 

total energy was plotted versus time. One example, shown in Figure 4, demonstrates that 

the sum of the kinetic energy and the potential energy is constant for the duration of the 

translocation process for both the Fraenkel and FENE models, each consisting of 10 

monomers, using a linear potential of -1 V through a nanopore of length 50 Å with a 

diameter of  30 Å. The integration time step, Δt, used in the simulation was 0.1 psec. A 

thorough discussion about how the integration time step was chosen for all simulations is 

provided in Appendix section A.3 of this thesis.   
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Figure 4: Energy vs. time for a 10 monomer length chain using the (a) Fraenkel and (b) 

FENE-WCA polymer models. As seen in both cases, the total energy is constant for the 

duration of the translocation process. 

 

2.4.2 Langevin Dynamics Simulations for Rouse polymers 

In order to study Rouse polymer (no hydrodynamic interactions) translocation 

through nanopores, I selected an algorithm that integrates the Langevin equation of 

motion (1) in three dimensions[104]:  

 

                                    (2-8) 

 

where m is the monomer mass, r is the monomer position, ζ is the friction coefficient, F 
→

 

is the sum of the total forces, and R 
→

  is a random thermal force. Unlike molecular 

dynamics (MD) simulations, which directly solve Newton’s equations of motion by 

explicitly modeling the interactions between monomers and solvent molecules, the 

stochastic Langevin equation of motion models the solute-solvent interactions by a 
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→

 , and viscous drag 

RF
dt

rd

dt

rd
m



 
2

2



 28 

force (-ζdr 
→

/dt) . The integration method used to solve Equation (2-8) updates each 

velocity using the following equations: 

 

           (2-9) 

 

   

(2-10) 

 

where kB is the Boltzmann constant, v is the velocity, t is the current time, Δt is the 

integration time step, the collision frequency, β = ζ/m, and B1 is Gaussian random 

number with mean 0 and variance given in Equation (2-10). In addition, the positions of 

each monomer are updated with the following equations: 

 

           (2-11) 

 

 

 

            (2-12) 

 

where B2 is a random Gaussian value with mean 0 and variance given by Equation (2-12).  

The interaction between the polymer and the solvent, or the drag force, is 

determined by the friction coefficient ζ in Equation (2-8). The friction coefficient is 

computed to be ζ = 40(m/tLJ), where m is the mass of each monomer and tLJ = (mσ
2
/ε)

1/2
 is 

the Lennard-Jones time step. Setting ε = kBT and σ = 4.3 Å, I obtain ζ = 4.2 x 10
-12

 kg/sec, 

which is approximately the same value found from Stokes law[106,107] using a sphere 
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with hydrodynamic radius of 2.15 Å[93]. The integration time step in these simulations 

was 0.1 psec.  

In order to test the functionality of the Langevin dynamics (LD) simulations, I 

performed an ensemble of 1000 simulations for 5000 psec using a single bead (diameter 

of 3.4 Å) in the absence of an applied voltage and nanopore, with an initial velocity v0 = 

0, and compared these results to the theoretical average squared velocity (v) (Equation (2-

13))[108] and the theoretical average squared displacement (Equation (2-14))[108]. As 

shown in Figure 5, the simulation results match the values obtained from the equations 

very well. 
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Figure 5: Ensemble of 1000 simulations using a single bead in the absence of an applied 

potential and nanopore for (a) Average squared velocity (Å/s)
2
 and (b) Average squared 

displacement (Å)
2
 vs. time. 

 

 In the next set of simulation tests, I placed the polymer in bulk solution, in the 

absence of a nanopore and applied voltage, and recorded the radius of gyration and the 

diffusion coefficient for polymer models implemented with the FENE-WCA (Equation 

(2-3) and the full Lennard-Jones (Equation (2-4)) potential energy functions in which I 

implemented a cutoff radius (rc) of 9 Å because, using the polymer model parameters 

described in section 2.1, the potential energy is very small beyond this distance. 

As shown in Figure 6(a), the radius of gyration for the polymer described by the 

FENE-WCA potential energy function scales as <Rg
2
> ~ N

1.18
, which agrees with the 

theoretical prediction of <Rg
2
> ~ N

2ν
, where ν = 0.588[74]. In addition, when the 

excluded volume interaction is removed, the radius of gyration decreases significantly as 

indicated by the much smaller slope.  As shown in Figure 6(b), however, the diffusion 

coefficient, which scales as D ~ 1/N, does not change between polymer models. In fact, it 

is seen that both polymers diffuse as a Rouse polymer[74] due to the absence of 
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hydrodynamic interactions between the polymer and the solvent. From previous 

measurements for very long strands, ss-DNA[93] diffuses as D ~ 1/N
0.49

  and ds-

DNA[88–90] diffuses as D ~ 1/N
0.6

  in bulk solution, indicating that hydrodynamic 

interactions are significant when describing the interactions between DNA and the 

solvent. It may be argued that hydrodynamic interactions between DNA monomers inside 

a narrow pore are negligible [52,63,109]. On the other hand, hydrodynamic interactions 

between DNA monomers outside the nanopore  will change the diffusivity of the polymer 

during the translocation process which, in turn, could alter scaling laws such as 

translocation time versus chain length.  In my initial studies as described in Chapter 3, I 

focused on simulations involving Rouse polymers, as was done in previous 

investigations[52,53,62–65,71,86,109]. Later, in Chapter 4, I include hydrodynamic 

interactions into my simulation models as well.  

 

 

Figure 6: (a) Average radius of gyration and (b) center of mass diffusion coefficient 

versus number of monomers for two different polymer models, where m is the slope of 

each line. 
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2.4.3 Brownian Dynamics Simulations with Hydrodynamic Interactions 

The next studies involved investigating the effects of hydrodynamic interactions 

on polymer translocation through nanopores using a recently developed method - referred 

to as a truncated expansion ansatz (TEA)[105] - in three dimensions. The development of 

the TEA algorithm begins with the equation derived by Ermak and McCammon [110] 

used to study Brownian Dynamics (BD) with hydrodynamic interactions: 

 

 

(2-15) 

 

 

where Δri(Δt) is the monomer displacement over coordinate i, Dij are the components of 

the 3N x 3N diffusion tensor, Fj is the sum of all forces acting on each monomer, kB is 

Boltzmann’s constant, T is the system temperature, and Ri(Δt) is the random thermal 

displacement with mean and covariance given by: 

 

(2-16) 

 

The hydrodynamic interactions are described by the Rotne-Prager-Yamakawa (RPY) 

tensor [111]: 
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(2-18) 

 

(2-19) 

 

 

where i and j are the indices of two monomers, a is the hydrodynamic radius of each 

monomer, η is the solvent viscosity and I is the identity matrix. Using the above tensor, 

the second term in Equation (2-15) vanishes. As stated in the fluctuation-dissipation 

theorem [112], there is a relationship between the viscous drag and random thermal 

collisions. The viscous drag force is dictated by the 3N x 3N diffusion tensor D in 

Equations (2-17 – 2-19). The terms in the random thermal displacement Ri(Δt), can be 

expressed as the product of a 3N x 3N tensor, B, and a Gaussian random variable with 

zero mean and variance t [105,113]. To satisfy the fluctuation dissipation theorem, the 

following relationship must hold: 

 

(2-20) 

 

One issue that limits the application of hydrodynamic interactions is the enormous 

computational expense in obtaining B from D. Two widely used methods are Cholesky 

factorization [110] and Chebyshev polynomial approximation [114], which are both 

expensive and scale as Ο(N
3
)and Ο(N

2.25
)
  
respectively. The TEA algorithm, on the other 

hand, scales as Ο(N
2
), has been shown to have high accuracy [113], and is being used in 
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other simulation studies [61,115] as well as included in recently released Brownian 

dynamics simulation packages [116,117].  

The TEA algorithm updates the positions of each monomer by decomposing 

Equation (2-15) into a sum of two terms [105,113,117]. The first term is simply Equation 

(2-15) with the random displacement term, Ri(Δt),  removed and can be written as 

follows: 

 

(2-21) 

 

where: 

 

(2-22) 

 

Intuitively, this first term can be thought of as the displacement of each monomer due to 

the applied force terms, Fj, that are corrected for hydrodynamic interactions resulting in 

Fi
eff

. The second term accounts for the displacements due to the random forces and is 

written as: 

 

(2-23) 

 

where fj is a random force, in the absence of hydrodynamic interactions, with the 
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(2-24) 

 

 

Similar to the first displacement term, fj is also corrected for hydrodynamic interactions 

resulting in fi
eff

: 

 

(2-25) 

 

 

In order to compute this displacement term, two coefficients, Ci and βij, need to be 

determined. The Ci values are normalization constants which ensure that for each 

coordinate i, the diffusion coefficient for no hydrodynamic interactions, Dii (i=j in 

Equation (2-16)), is kept. To understand the purpose of the βij coefficients, recall from 

Equation (2-20) that the random thermal displacements are determined by the contents of 

the B matrix. The βij coefficients are weighting values that effectively assign a diffusion 

tensor of D  in the Δri
Term 2

 displacement value as opposed to the D tensor in the Δri
Term 1 

term. One of the assumptions of the TEA algorithm that allow for efficient computation 

of the Ci and βij coefficients is that the hydrodynamic interactions are weak, i.e. Dij << 

Dii. This assumption is valid for my simulation studies because, as explained in the 

polymer model section in this chapter, it is assumed the polymer is in good solvent and, 

thus, will experience high excluded volume interactions which results in minimal 

overlapping thus decreasing the effect of hydrodynamic interactions.  Based on these 

assumptions and assigning βii = 1 and βij = βʹ is computed by: 
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(2-26) 

 

where ε is computed using the following equation: 

 

(2-27) 

 

The normalization coefficients are computed by: 

 

 

(2-28) 

 

 

In order to perform simulations without hydrodynamic interactions, which directly 

compare to the cases that include hydrodynamic interactions, the β' value is simply 

assigned to 1/2 and the normalization coefficients, Ci , all converge to 1.  

It should be noted that, whereas in these simulations water is included inside the 

nanopore, the model does not include hydrodynamic coupling between the polymer and 

the nanopore. However, as will be shown later, the simulation results agree very well 

with theoretical predictions and experimental results, which could be an indication that 

hydrodynamic coupling effects are negligible for the studies that I am interested in. In 

addition, the hydrodynamic radius and the solvent viscosity are assigned to be 2.15 Å and 

1 centipoise respectively in Equations (2-17), (2-18), and (2-19). The integration time 
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step for these simulations was 0.05 psec. A thorough discussion about the integration 

time step is given in section A.3 in the appendix of this thesis.  

Just as I did in the previous section for the algorithm defined by Equations (2-9 – 

2-12), I first performed simulations in bulk water, i.e. in the absence of a nanopore and 

driving force, for polymer models with and without hydrodynamic interactions. I 

measured the radius of gyration, diffusion coefficient, and time required for the polymer 

to reach its steady-state radius of gyration starting from the minimum energy 

configuration. Theoretically, for a polymer in a good solvent (high excluded volume) one 

should obtain <Rg
2
> ~ N

2υ
 ~ N

1.18
 where the Flory exponent υ = 0.588 in 3-D [74]. As 

shown in Figure 7(a), the calculations give scaling exponents for the steady state radius 

of gyration only slightly higher than this theoretical value for both Rouse (~6.5%) and 

Zimm (~8%) polymers, and are in good agreement with previous work using the TEA 

algorithm and a similar polymer model [113]. In addition, Figure 8 (a) shows how the 

average squared displacement for a single monomer with a diameter of 4.3 Å agrees very 

well with the theoretical result given by Equation (2-14). In addition, the center of mass 

diffusion coefficient scaling exponent obtained for the Rouse model agrees very well 

with the theoretical scaling of D~N
-1

 as shown in Figure 8(b) [74]. A Zimm polymer, 

using the RPY tensor, should have a diffusion coefficient scale as D ~ N
-υ

 ~ N
-0.588

, which 

is in good agreement with my simulation results, other simulation results using the TEA 

algorithm [105] and also measurements of ds-DNA [88–90]. Finally as shown in Figure 7 

(b), the time required for the polymer to reach its steady state radius of gyration was 

measured for both the Rouse polymer (τR ~ N
2.19

) and the Zimm model (τZ ~ N
1.84

) and 

found to agree very well with the theoretical relaxation scaling [74] of τR ~ N
1+2υ

 ~ N
2.18
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and τZ ~ N
3υ

 ~ N
1.76 

and with other simulations using the TEA algorithm for HI 

interactions [105]. 

 

 

 

 

Figure 7: Scaling of the (a) average radius of gyration squared and (b) time required for 

polymer to reach its steady-state radius of gyration with number of monomers (N), for 

two different polymer models where m is the slope of each line. 
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Figure 8: (a) Average squared displacement vs. time for single monomer of 4.3 Å in 

diameter (b) Center of mass diffusion coefficient for both Rouse and Zimm polymer 

models. 

 

2.5 Equilibration Methods 

 As will be discussed in Chapter 4, I sought out to investigate how the initial 

polymer configuration (i.e. radius of gyration on the cis side of the nanopore at time t = 

0) affects the translocation time scaling law. To do this, I began the translocation process 

with the polymer in one of the two different starting configurations.  In configuration (1), 

the first monomer is placed inside pore and the remaining monomers are placed with 

random orientations in the cis reservoir with center-to-center spacing of σpoly (0.43 nm). 

Next, I perform a Metropolis Monte Carlo (MMC) [118] procedure with 50,000 trials to 

place the polymer in its minimum energy configuration.  The translocation timer then 

begins and the monomers are permitted to move through the pore. In configuration (2), 

after the MMC procedure, the monomers in the cis reservoir are allowed to relax to a 

‘steady-state’ radius of gyration for a certain time period (based upon Figure 7 (b)) before 
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translocation is allowed. In either configuration, the translocation time is defined as the 

time required for all monomers to translocate from the cis reservoir to the trans reservoir. 

Interestingly, because of the polymer model defined by the FENE-WCA potentials, the 

‘minimum energy’ configuration of the polymer is not the same as the ‘steady-state’ 

configuration (which is commonly referred to as the ‘equilibrium’ configuration). I 

discuss this difference in more detail in Chapter 4. In this section I discuss the details of 

the MMC procedure. It should be noted that the ‘minimum energy’ configuration of the 

polymer does not involve any interaction with the pore. In other words, during the MMC 

procedure, the computed energy only consists of terms between the polymer and itself 

and no terms between the polymer and pore.  As will be demonstrated later, this leads to  

a much smaller radius of gyration than the ‘steady-state’ configuration (2). 

Essentially, at each trial of the MMC procedure, a monomer is moved to a random 

position and the new energy, µTrial is compared to the energy as if the monomer had not 

moved, µCurrent. If the new energy is smaller than the current energy (µTrial  <  µCurrent ) 

then the move is accepted and the monomer is placed at its new position. If the new 

energy is larger than the current energy, then the move is accepted with probability: 

 

(2-29) 

 

The MMC procedure tests every possible microstate of the system and it is possible for a 

trial move that results in a higher energy be accepted. However, trial moves that result in 

higher energy are accepted with a much lower probability than trials that result in lower 

energy which are always accepted.   
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In order to verify the functionality of the MMC code, from statistical mechanics, 

in a microcanonical ensemble (constant particle number, N, constant volume, V, and 

constant energy, E), the probability of a particular particle being at energy state, r, can be 

found by Equation (2-30) [119,120]:  

 

 

(2-30) 

 

 

 

where ro is the position of lowest potential energy.  

Using a simple two bead simulation, as shown in Figure 9, a MMC trial move that 

results in a distance in which the bead to bead energy is a minimum is always accepted 

(probability = 1). In addition, the statistics obtained from the simulation, shown in blue 

discrete staffs, follow the theoretical equation drawn in red. One can also observe the 

curves are much broader for the FENE spring model than the Fraenkel model indicating 

large displacement distances away from the minimum distance of 4.48 Å still result in 

small energy values and, thus, are accepted with high probability. This is also seen in the 

potential energy curves for the FENE spring model shown in Figure 61 in section A.1 of 

the appendix of this thesis.   
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Figure 9: Two bead simulation results for: (a) Fraenkel and (b) FENE-WCA spring 

models. Blue staffs are probability ratio from left side of equation 2-30, red curve 

represents points obtained from exponential ratio on right side of equation 2-30. 

 

To understand how the overall energy changes as a function of MMC iteration, I 

performed a simulation using two polymer chains, each with 10 monomers, in which the 

distance between each monomer was initially set to a value different from the equilibrium 

distance. For one polymer chain, composed of beads using the Fraenkel spring model, I 

initially set the monomer distance to be 5 Å (equilibrium distance = 4.3 Å). For another 

polymer chain with the same number of monomers, I used the FENE model and changed 

the monomer distance to 3 Å (equilibrium distance = 4.48 Å). As shown in Figure 10, for 

both examples, the energy is minimized as a function of MMC trial.  
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Figure 10: Energy as a function of MMC trial using a 10 bead polymer chain for 

Fraenkel and FENE spring models. 

 

 

Tables 1 and 2 in section A.2 in the appendix of this thesis provide a list of the initial and 

final monomer distances for both simulation results. In addition, further details of the 

MMC procedure as well as a descriptive flow chart are also provided in section A.2. 

 

 In all of the simulation studies presented in this thesis, the first monomer is 

always placed inside the nanopore before the translocation time simulation begins. This 

may not always be the case in experimental findings because the polymer will not always 

overcome the entropic boundary required for translocation nor will the first monomer in 

the chain always enter the pore first (i.e. the polymer could enter the pore in a folded 

fashion). However, because one of the main goals of this research was to compare 

derived theoretical results to successful experimental translocation events in which the 

polymer was not folded, I assumed the first monomer in the chain would be the first 
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monomer to enter the pore. Furthermore, because the time required for the polymer to 

diffuse to the pore was not of interest, each simulation began with the first monomer 

placed inside the pore.  

2.6 Electrostatics 

2.6.1 Simulation Description 

  As mentioned previously, most coarse-grained simulation methodologies assume 

electrostatic effects such as the presence of electrolytic ions and pore surface charge have 

a negligible impact on a translocation time experiment.  However, in this thesis, I sought 

to investigate, using the coupled Poisson-Nernst-Planck equations, how the inclusion of 

electrostatic interactions affects the potential distribution inside nanopores of varying 

diameter and monomer charge distribution. The purpose of this study is to provide more 

details on the effects of the electrostatic interactions and how they may influence polymer 

translocation through nanopores.  

2.6.2 Poisson-Nernst-Planck Equations 

To calculate the potential throughout the simulation volume due to the surface 

charge and ionic electrolyte, I treat the ionic solution as a continuum and solve the 

coupled Poisson-Nernst-Planck (PNP) equations using a finite difference approach 

described in [121]. The coupled PNP equations can be found by first noting the 

relationship between the time dependence of the ion concentration, C, and the total ion 

flux JTotal can be found using Equation (2-31): 

 

(2-31)    tRJ
t

tRC
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The total ion flux in the system JTotal can be found by summing the individual flux terms, 

Jdiffusion and Jdrift, which are a result of concentration and electrical gradients respectively 

[122]. 

 

 (2-32) 

 

 

The first term, Jdiffusion, is found using Fick’s first law for diffusion, whereas the second 

term, Jdrift, is computed using Ohm’s law for ion drift [122], where the sum is given in 

Equation (2-33) [121]: 

 

 

(2-33) 

 

 

where D is the diffusion coefficient and Φ is the potential. Under steady state conditions 

the left side of Equation (2-31) is set to zero resulting in Equation (2-34) which describes 

how to compute the change in ion concentration: 

 

(2-34) 
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In order to solve the Equation (2-34), Poisson’s equation, given by Equation (2-35) is 

used to solve for the potential Φ: 

 

 

(2-35) 

 

where ε is the dielectric constant, εo is the permittivity of free space, ρpore is the charge 

density on the surface of the nanopore, ρpolymer is the charge density associated with the 

individual monomers of the polymer, and Ci is the concentration density of ion i with 

valence zi. Hence, Equations (2-34) and (2-35) are the coupled Poisson-Nernst-Planck 

(PNP) equations used to compute the electrostatic effects due to the electrolytic ions, 

charged biopolymer, and nanopore surface charge.  

In order to solve the coupled PNP equations above, I implement a finite difference 

algorithm, derived in reference [121], using Equations (2-36) and Equations (2-37) 
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(2-37) 

 

 

 

where z is the valence of each ion, h is the grid size in the x, y, and z directions, e is the 

charge on an electron, q is the charge at a particular grid point, and V is the volume of 

each box defined by the spacing given by h.  

 

 My simulations employ a 100 Å x 100 Å x 600 Å simulation box (for x, y, and z 

respectively) divided onto a 1 Å x 1 Å x 1 Å grid. To find the potential and concentration, 

Equations (2-36) and (2-37) are solved in an iterative fashion by the Successive Over-

Relaxation (SOR) method[123,124] using the six point “nearest neighbors” summation at 

each grid point in a checkerboard pattern[125].  The SOR approach consists of solving 

Equations (2-36) and (2-37) at each grid point i in the simulation volume and “adjusting” 

the solution using an over-relaxation parameter, ω, until the assigned number of iterations 

has been reached or the iteration-to-iteration error for both the potential and ion 

concentration at each grid point has dropped below a certain threshold. Equations (2-38) 

and (2-39) describe how the potential and concentration at each grid point i for iteration j 

are solved for.   

 

(2-38) 
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 (2-39) 

 

Although there are many different methods for computing ω [123–125], I performed 

several trial experiments and found the value that results in the smallest error was ω = 

1.35 using 200,000 trials. The final iteration-to-iteration error for each grid point was 

approximately 10
-7 

V for the potential and 10
-10

 1/Å
3
 for the concentration. Finally, I 

employ Dirichlet boundary conditions, both at the top (z = 0) and bottom (z = 600 Å) of 

the simulation volume and periodic boundary conditions in x and y. 

Once the potential has been obtained from the PNP solver, the electric field and 

the resultant force need to be computed. The electric field in the x direction at grid point 

(I,J,K) (the y and z directions are computed identically) is found by using a center-

difference approximation as shown in Equation (2-40)[124]. Since periodic boundary 

conditions only exist in the x and y directions, finding the electric field at both the 

minimum and maximum z values are found using either a forward or backward-biased 

Taylor series difference formula given in Equations (A-8) and (A-9) in section A.5 of the 

appendix [124]. The force then is found as the product of the electric field and the charge 

on the DNA monomer, which was determined to be -1e [97,98], where e is the charge on 

an electron.  

 

(2-40) 
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Since my computational methodology permits monomers to flow anywhere in the 

simulation volume, the potential and electric field are often needed at positions other than 

at grid points. In order to do this, I implement a Trilinear interpolation method [126], 

discussed thoroughly in appendix section A.6, to find the exact value of the electric field 

and force on each monomer anywhere in the simulation volume.  

In each simulation, the nanopore is centered in the simulation volume, with a 

reservoir of water both above and below the pore. Before the PNP calculations begin, the 

simulation tool assigns a dielectric value for each grid point in the simulation volume. If a 

grid point lies in the water portion of the simulation volume, the dielectric constant is 

assigned a value of 80 [121,127–131], whereas if a grid point lies in the solid portion of 

the pore, the dielectric constant is assigned a value of 7, which is the dielectric constant 

of silicon nitride developed by Plasma-enhanced chemical vapor deposition (PECVD) 

methods [132]. Figure 11 (a) provides an example of how the dielectric constant is 

assigned for a pore with diameter of 30 Å and length 50 Å at the Z = 302 Å plane. Each 

green marker represents the location of the silicon nitride membrane, whereas every blue 

marker represents water.  

In addition, the simulation tool also assigns charge values to the nanopore as well. 

In solutions commonly used in translocation time measurements, the pH level ranges 

between pH 7-8 [9–11,13–15,41]. Under these conditions, silicon nitride has a negative 

surface charge density of σSi3N4 = -0.02 C/m
2  

[41]. By using the computed surface area of 

the nanopore structure and σSi3N4, the simulation tool will assign a surface charge value to 

each grid point represented by the surface of the pore. Figure 11 (b)  provides an example 
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of how the charge is assigned for a pore with diameter of 30 Å and length 50 Å. Each red 

marker indicates where the charge is labeled.  

 

 

Figure 11: Charge and Dielectric labels for 30 Å nanopore. (a) Example dielectric 

constant labeling for Z = 302 Å plane. Blue (water) – ε = 80, Green (Si3N4) – ε = 7. (b) 

Example charge assignment. Red labels indicate where charges are located in nanopore. 

 

 

Finally, in all of my simulations, I employ an electrolyte solution with a concentration of 

1 M which is the same amount commonly used in translocation time experiments [9–

11,13–15,18,41]. 

2.6.2 Simulation Testing and Validation 

 To validate my PNP simulation methodology, I first performed tests using simple 

dielectric slabs with length of 5 Å and 50 Å in the z direction, with sheets of charge 

located on top and bottom of each slab. A drawing of these structures is shown in Figure 

12 with the face of slab on the x axis removed for ease of visualization of the bottom 
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sheet of charge. As stated earlier, there is a reservoir of water both above (cis) and below 

(trans) the structures resulting in an overall simulation length of 600 Å in the z direction.  

 

 

Figure 12: Dielectric slabs of length (a) 5 Å and (b) 50 Å with sheets of charge (shown 

in red) on top and bottom of each slab. The green area indicates material with dielectric 

constant of ε = 7. X plane is removed from figure to show bottom sheet of charge. 

 

 

 

In my first simulations using the simplified structures above, I computed the 

potential, in the absence of an electrolyte solution (by setting the ionic concentrations to 

zero), for both the 5 Å and 50 Å slab. In these simulations, I employ Dirichlet Boundary 

conditions, both at the top and bottom of the simulation volume in which the voltage is 

assigned to 0, and, just as stated before, periodic boundary conditions in x and y.  Figure 

13 provides the potential as a function of z, with both x and y set to 50 Å. Since the 

structure in Figure 12 is symmetric, the potential as a function of z will be the same for 

any x and y value.  
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As shown, the potential is linear with a negative slope from the z = 0 Å boundary 

to the beginning of the slab and is linear with a positive slope from the end of the slab to 

the end of the simulation volume (z = 600 Å). Since the electric field is the negative 

gradient of the potential, the z component of the electric field component in the cis 

reservoir points in the positive z direction, whereas in the electric field in the trans 

reservoir points in the negative z direction. The direction of the electric field components 

agree with basic electrostatic theory that states the electric field will point towards an 

infinite negative charged plane.  

 

 

Figure 13: Potential results using dielectric slabs of length (a) 5 Å and (b) 50 Å with 

sheets of charge on top and bottom of each slab. The markers indicate the potential at z = 

100 Å. 

 

 

If it is assumed the charged planes above are infinite, Equation (2-41) can be used 

to obtain an estimate as to what the theoretical result should be for an electric field as a 

result of two infinite negative charged planes[133].  
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(2-41) 

 

 

Setting of σSi3N4 = -0.02 C/m
2 

, εr = 80, and εo = 8.854 x 10
-12

 F/m, I obtain an electric 

field of 2.82 x 10
7
 V/m or 2.82 x 10

-3
 V/Å. Looking at Figure 13 (a), and noting that the 

electric field is the negative of the slope of the potential,  E = 0.2751 V / 100 Å =  

2.751 x 10
-3

 V/Å. Similarly, for the 50 Å slab E = 2.784 x 10
-3

 V/Å. Both of these results 

are within a few percent of the theoretical value computed from Equation (2-41).  

 

 As a next test, I added an electrolytic solution with a 1 M (6.022 x 10
-4

 Å
-3

) 

concentration and performed a PNP simulation on the 50 Å dielectric slab structure given 

in Figure 12(b). Figure 14 provides the concentration as a function of z with x and y both 

= 50 Å (again, because of the structure of the dielectric slab, the solution will be 

symmetric). As would be expected, the positive ion with valence 1 has a very large 

concentration on the surface of the slab, whereas the negative ion, valence -1, has a very 

small concentration on the surface of the slab. As the distance from the slab is increased, 

the concentration for both ions converges to the bulk value.  
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Figure 14: Ionic Concentration vs. z using dielectric slab of length 50 Å for area (a) over 

entire simulation volume and (b) area focused near the dielectric slab. Red curve is ion 

with valence +1, blue curve is ion with valence -1. 

 

 

The potential from the PNP solution is given in Figure 15. As shown, the positive ion that 

builds on the charged surface greatly reduces the surface potential. Also, as the distance 

increases from the surface of the slab, the potential approaches zero.  
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Figure 15: Potential vs. z using dielectric slab of length 50 Å for area (a) Over entire 

simulation volume and (b) area focused near the dielectric slab. Blue curve is simulated 

potential. Red points are potential values computed from Gouy-Chapman model. 

 

To test the consistency of the solutions provided in Figures 14 and 15, because there is no 

applied voltage in these simulations (no ion flow), the ionic concentration should follow a 

Boltzmann distribution given by Equations (2-42) and (2-43) 
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(2-43) 
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NA is the Avogadro constant (6.022 x 10
-23

 mol
-1

), and Co is the concentration at the 

potential given by φ [134]. If I rearrange Equation (2-42) to read: 

 

(2-44) 

 

and solve for the potential with Co = 8.014 x 10
-4

 Å
-3 

, the concentration at the surface of 

the slab given in Figure 14 (b), and C∞ = 6.022 x 10
-4

 Å
-3 

, the bulk concentration, the 

potential is found to be φ = -7.34 x 10
-3

 V, which is approximately equal to the potential 

given in Figure 15(a) as -7.354 x 10
-3

 V. 

 

 To test how the potential curve in Figure 15 compares with theoretical 

predictions, I computed the Gouy-Chapman (GC) equation [135], as a function of 

position, and compared those estimates with the simulation results I obtained.  The GC 

equation is given by: 

 

(2-45) 

 

 

where ψ(z) is the potential as a function of z, ψs = eψ/kT, ψ is the surface potential, zi is 

the ion valence, and κ is the inverse of the Debye length (λD) [135]. With an electrolytic 

concentration of 1 M,  λD = 3 Å [135]. Using the surface potential of -7.354 x 10
-3

 V, I 

plotted the GC equation as a function of z (in Å), given by the discrete red points in 
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Figure 15 (b).  As shown, the points predicted by the GC equation agree very well with 

my PNP simulation results. 

 To further test the PNP code, I performed simulations also on the 5 Å slab given 

in Figure 12(a). And, as shown in Figures 16 and 17, I obtain results similar to the ones 

obtained with the 50 Å slab. Hence, using these tests, it appears that the results from my 

PNP calculations agree with theoretical predictions thus proving that my simulation 

methodology is working properly. Later, in Chapter 5, I will perform PNP simulations on 

nanopores as well.  

 

 

Figure 16: Potential vs. z using dielectric slab of length 5 Å for area (a) Over entire 

simulation volume and (b) area focused near the dielectric slab. Blue curve is simulated 

potential. Red points are potential values computed from Gouy-Chapman model. 
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Figure 17: Ionic Concentration vs. z using dielectric slab of length 5 Å for area (a) over 

entire simulation volume and (b) area focused near the dielectric slab. Red curve is ion 

with valence +1, blue curve is ion with valence -1. 

 

2.7 Conclusion 

The purpose of this chapter was to prove the results obtained from the simulation 

methodology match theoretical predictions and calculations from fundamental principles. 

I have shown through MD, using the Velocity Verlet integration method, that my 

simulation results conserve energy in the NVE ensemble during translocation of 

polymers through nanopores. Furthermore, I have also demonstrated, using both LD and 

BD simulation methods, that both the Rouse and Zimm polymer models mimic those in 

good solvent conditions resulting in proper scaling of radius of gyration, polymer 

relaxation time, and diffusion coefficient. Finally, using the coupled PNP equations, the 

calculations from my electrostatic modeling results in the correct theoretical electric field 

values (in the absence of ions), surface potential, and surface ionic concentration for 

silicon nitride membranes with the experimental measured surface charge and 1 M 
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electrolyte, the typical value used in translocation time measurements [9–11,13–

15,18,41]. Hence, the methods of integration, electrostatic calculations, and polymer 

models, are robust, and agree with theoretical predictions and fundamental principles, and 

are ready to be applied to answer the questions addressed in this thesis. 
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CHAPTER 3: Rouse Polymer Study   

3.1 Introduction 

 As a first study involving polymer translocation through solid-state nanopore 

devices, in this chapter I investigate translocation of a Rouse polymer (in the absence of 

hydrodynamic interactions) through the atomistically detailed silicon nitride nanopores 

shown in Figure 3, applying the 3-dimensional Langevin dynamics simulations described 

in section 2.4.2. In particular, this investigation is targeted at understanding the 

dependence of polymer translocation mechanisms on the chain length, pore geometry 

(diameter and length), as well as the driving voltage and solvent viscosity.  

One main goal of this study is to investigate the translocation time versus chain 

length scaling exponent α in the expression τ ~ N
α 

. As thoroughly described in section 

1.4, finding a universal scaling exponent has not yet been completely resolved [1] and has 

been the subject of many simulation studies [1,45–71]. Knowing this scaling relationship 

in advance of a nanopore experiment would make the task of determining the polymer 

chain length trivial from a translocation time measurement. I also study the effects of the 

solvent viscosity on the translocation of the polymer through the nanopore. Finally, I 

investigate the scaling behavior of translocation time versus applied voltage for different 

polymer and pore lengths. In my analysis, I compare these simulation results to 

measurement results in the literature to determine if at any time a Rouse polymer is 

suitable when modeling laboratory systems. It should be noted that all of the simulation 

studies in this chapter use the minimum energy configuration as the starting point 

(configuration (1)) as described in section 2.5.  
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3.2 Unforced Translocation 

Figure 18(a) shows the translocation time as a function of polymer length, in an 

infinitesimally short (0.5 nm length, 0.96 nm diameter) pore with no applied voltage 

(unforced translocation). To perform these simulations, the polymer was placed with its 

center monomer in the center of the pore with half of its remaining monomers on the cis 

side of the pore and the other half on the trans side of the pore. Each half of the polymer 

was equilibrated using the MMC procedure described earlier. The polymer was then 

permitted to translocate in either direction[62]. A successful trial was obtained once the 

polymer was out of the pore. The translocation time scales as τ ~ N
α
, where α = 2.52, a 

much stronger scaling behavior than predicted by Chuang et al. [45] (α = 1+2υ = 2.18, 

the same scaling exponent as the Rouse relaxation time) and observed in some previous 

simulation results[59,65,71] in which α varies between 2.2 and 2.33, but which is in good 

agreement with that predicted by Panja et al. [46] (α = 2+υ = 2.58) and observed in 

Dubbeldam et al. [70] (α = 2.5). 

3.3 Scaling Behavior for Forced Translocation vs. Pore Diameter  

Figure 18(b) shows the translocation time as a function of polymer length, in the 

same infinitesimally short pore, using an 80 mV applied voltage, for three different pore 

diameters (0.96 nm, 1.5 nm, and 3.0 nm), whereas Figure 18(c) shows an example 

translocation time histogram plot. The translocation time scales as τ ~ N
α
, where α = 1.35 

- 1.40, and changes very little with pore diameter. This behavior is in good agreement 

with the prediction of Vocks et al. [48] for translocation through a nanoscale hole, i.e., τ 
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~ N
(1+2υ)/(1+υ)

 ~ N
(1+2(0.588)/(1+(0.588))

 = N
1.37

. This is also in good agreement with recent 

theoretical predictions by Sakaue [78], other simulation methodologies investigating this 

type of behavior[52,53,55,65] and with measurements from Wanunu et al. [18] who 

observed a crossover behavior with a scaling law exponent of α = 1.4 for ds-DNA 

between 150 - 3500 bp and α = 2.28 for longer chains using a 4 nm diameter SiN pore. 

On the other hand, Storm et al. [9] measured a scaling law exponent of α = 1.27 for 

translocation through a 10 nm diameter SiO2 pore and hypothesized this scaling law was 

due to the hydrodynamic forces acting on the “blob-like” structure of the DNA outside 

the nanopore (Figure 19). Interestingly,  Fyta et al.[57] observed a scaling exponent of α 

= 1.36 in the absence of hydrodynamic interactions, which is in good agreement with my 

findings, and α = 1.28 with hydrodynamic interactions. Because the scaling law in both 

simulation results as well as the cited experimental results are smaller than the value 

predicted by Kantor[47] (α = 1 + υ = 1.588) it is assumed that the polymer is not in a 

state of equilibrium during the entire translocation process. It is also seen that these 

scaling law results are smaller than those predicted from recent MD simulations (α = 

1.47)[51] and previous works that solve the fractional Fokker-Planck equation and 

perform subsequent Monte Carlo simulations (α = 1.5)[136]. However, as described later 

in this chapter, by reducing the applied driving force, the polymer flow through the 

nanopore can be slowed down, allowing the polymer to maintain an equilibrium 

configuration throughout the translocation process, resulting in larger scaling exponents 

which approach the values above. 
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Figure 18: Average translocation time (1000 trials) versus polymer chain length 

simulations for (a) Unforced (applied voltage = 0V) and (b) applied voltage = 80 mV for 

three different pore diameters. (c) Example histogram plot for 0.96 nm pore using chain 

lengths N = 180 and 200.  

 

From my simulations, and previous simulation and measurement results, ds-DNA 

appears to behave like a Zimm polymer (with hydrodynamic interactions) as in the 

experiments of Storm et al. [9] and like a Rouse polymer (without hydrodynamic 

interactions) for certain length ranges as in the experiments of Wanunu et al. [18] A 

possible explanation for the discrepancy in the scaling law behavior could be due to 

electro-osmotic flow inside the nanopore during the translocation process[30]. Recent 

computational studies[137] have hypothesized that drag forces due to electro-osmotic 

flow inside a nanopore are more significant that hydrodynamic forces acting on the DNA 

“blob” outside the nanopore (see Figure 19). If the surface charge of the nanopore has the 

opposite charge of the polymer flowing through it, the electro-osmotic flow is in the same 

direction as translocation[138] and vice versa. The silicon nitride pore used by Wanunu et 

al. [18] has a negative surface charge density at high pH[41] which, because DNA is also 

negatively charged, would result in an electro-osmotic flow in the opposite direction as 

the translocation process. This leads to an apparent decrease in the velocity of DNA in 
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the nanopore and reduces the hydrodynamic force caused by the folded DNA chain 

outside the nanopore. In addition, the pore used by Wanunu et al. [18] is also much 

smaller in diameter than the pore used by Storm et al. [9], thereby increasing the effect of 

the electro-osmotic forces on the translocation process. This behavior is reflected in the 

translocation time measurements, where it was found that the translocation time through 

the narrow (4 nm) SiN pore was longer[18] than the translocation time through the much 

wider (10 nm) SiO2 pores[9], for DNA chains of similar length. 

 

 

 

Figure 19: Two hydrodynamic forces involved in a DNA chain translocation through a 

nanopore. The force due to the “blob like” structure of DNA outside of the nanopore is in 

the opposite direction of the translocation of the DNA. The direction of the electro-

osmotic force is dependent upon the surface charge of the nanopore. If the surface charge 

of the nanopore is opposite of the surface charge of the polymer, the electro-osmotic flow 

will be in the same direction as the translocation process (red arrow). If the surface 

charge of the nanopore is the same as the charge of the polymer, the electro-osmotic flow 

will be in the opposite direction (black arrow). 
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3.4 Effects of applied voltage and viscosity  

As mentioned earlier, the scaling law exponent for translocation time versus 

polymer length may vary depending upon how far the polymer is out of equilibrium 

during the translocation process. In order to verify this, I performed translocation time 

simulations for several different values of applied voltage and monomer drag coefficient 

using the same pore that is 0.5 nm in length and has a diameter 0.96 nm. Lowering the 

voltage and/or increasing the drag coefficient would slow down the translocation process 

providing more time for the polymer to equilibrate during the translocation process, 

which should change the scaling law behavior. As shown in Figure 20, whereas 

increasing the drag coefficient causes a linear increase in the translocation time, the 

scaling exponent is not affected. This is because even though the translation time is 

increased due to the higher viscosity, the polymer still does not reach its equilibrium 

configuration because the relaxation time has also increased. Thus increasing the 

viscosity does not result in a drastic change in the scaling law with an applied voltage of 

80 mV.  

On the other hand, when I decrease the applied voltage to 40 mV the scaling law 

exponent increases from α = 1.35 to α = 1.42 and increases even more when the applied 

voltage drops to 10 mV (α = 1.74). When the applied voltage is increased from 80 mV to 

250 mV, the scaling law remains the same indicating that my simulation results predict a 

lower limit of α = 1.35. This trend of increasing scaling exponent due to lower applied 

forces has also been observed in other simulation methodologies as well[52,53]. 

However, it has also been hypothesized by other simulation methodologies that the 
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scaling law exponent will increase with an increase in driving force[49–51]. The 

differences in the two results will be further investigated and clarified in the next chapter.  

 

 

Figure 20: Average translocation time (over 1000 trials) versus number of monomers (N) 

for different voltages and different multiples of the original drag coefficient using a pore 

of 0.5 nm in length with a diameter 0.96 nm.  

 

 

3.5 Translocation in longer pores 

When the pore length is increased to 5 nm, the scaling law behavior changes 

substantially (Figure 21). For polymer lengths between 1 - 30 monomers, the scaling 

exponent is less than unity, whereas for chain lengths between 40 and 300 monomers the 

scaling exponent is greater than unity but still lower than the values observed in Figure 

18 (b). When the polymer length is increased to N = 320 - 400 monomers the scaling law 
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exponent becomes 1.39, which is similar to the values observed in Figure 18(b).  As 

shown, the scaling laws appear to be independent of pore diameter. This trend of scaling 

law dependence on polymer length has also been observed in other simulation 

methodologies as well [75,86]. A similar scaling law trend is also seen when the diameter 

and the length of the pore are increased to 4 nm and 10 nm respectively (Figure 22).  

 

 

 

Figure 21: Average Translocation time (over 1000 trials) versus number of monomers 

(N) for chain lengths N  = 1, 2, 5, 7, 10 – 200 monomers for 3 different pore diameters 

(0.96 nm, 1.5 nm, and 3.0 nm) each with a length of 5 nm. The chain length was 

increased to N = 220 – 400 monomers for the 0.96 nm pore. The applied voltage for all 

simulations was 80 mV. As shown, the scaling laws appear to be independent of pore 

diameter. 
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Figure 22: Average Translocation time (over 1000 trials) versus number of monomers 

(N) for chain lengths N  = 1, 2, 5, 7, 10 – 300 monomers using a nanopore of diameter 4 

nm and 10 nm length. The applied voltage for all simulations was 80 mV. 

 

 

To understand why the scaling law exponents are fundamentally different in 

Figure 18 (b) and Figures 21-22, I examine the differences in the applied force, 

remembering that the force is only applied to monomers inside the pore. In the situation 

where the polymer length is on the same order as the pore length, the total force applied 

to the chain varies as a function of time. This force has its minimum value when only a 

single monomer is in the pore. The total force increases as more monomers enter the 

pore, reaching a maximum value when the pore is completely filled with monomers. 
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Depending upon the length of the chain, the pore force will remain at this maximum 

value until the last monomer enters the pore. When the polymer has completely exited the 

pore, the total force returns to zero.  This is quite different from the short-pore case in 

which the force experienced by the monomers remains constant throughout the 

translocation process. This force profile was also observed by Luo[109] and 

Gauthier[75]. In the latter work, a scaling behavior of τ ~ N was observed for chains 

much smaller than the pore length, whereas τ ~ N
1+ν

 was observed for chains much 

longer than the pore length. The discrepancy between my data and the work of Gauthier 

is probably due to the state of the polymer during translocation. As mentioned earlier, 

when the polymer is in equilibrium throughout the translocation process, the translocation 

time scales as τ ~ N
1+ν

. However, as predicted by Vocks et al. [48], when the polymer is 

not in equilibrium, the translocation time scales as τ ~ N
(1+2ν)/(1+ν)

, which is the behavior 

seen in my simulations. Because the polymers are farther away from equilibrium during 

the translocation process for both short and long pores, different scaling law exponents 

are observed. Vocks et al. [48] used a conservation of energy approach to predict a lower 

bound on the translocation time scaling law given by the expression τ ~ ηN
2ν

/F, where η 

is the viscosity of the solvent. In three dimensions, this would predict a translocation time 

dependence of τ ~ ηN
1.176

/F whose exponent is substantially larger than that obtained 

from Figure 21 for chain lengths between 1 - 200 monomers. However, as described 

earlier, in these simulations the force is now a function of the chain length N, which 

reduces the scaling exponent to a value lower than 2ν, indicating an even lower bound 

when the chain length is on the order of the pore length.   
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For the situation when the polymer length is much greater than the pore length 

(Figure 18(b)), it was observed from the scaling behavior that the polymer is not in 

equilibrium throughout the translocation process. This observation helps explain why the 

scaling exponent for intermediate chain lengths (5 – 30 monomers) in Figures 21 and 22 

are much less than unity. Due to the longer pore length, the applied force is larger and, as 

a result, the translocation time is much shorter than the Rouse relaxation time. The 

polymer is therefore now farther from equilibrium during the translocation process. This 

phenomenon is also demonstrated by the increase in crowding of monomers at the exit of 

the pore as demonstrated in Figure 23(c). 
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Figure 23: Snapshot of translocation through a nanopore of 0.96 nm diameter and 5 nm 

in length for (a) N = 15, (b) N = 30, and (c) N = 100 monomers using an applied voltage 

of 80 mV. In order to view the polymer inside the nanopore, half of the nanopore has 

been removed in the figures. Because of the repulsive nature of the energy equation that 

describes the interaction between non-adjacent monomers (Equation 2-3), in equilibrium, 

the polymer should have minimum overlap and possess a very large radius of gyration. 

However, as shown in figures (b) and (c), there is crowding of monomers on the trans 

side of the nanopore during the translocation process indicating the polymer is not in 

equilibrium. In addition, as shown in figure (c), a 4 monomer “stem” region has 

developed at the entrance of the pore due to the presence of a large driving force.   

 

 

As described by Sakaue[78] and more recently in Dubbeldam et al. [51], the total 

translocation time can be broken down into two individual time components: an initial 

period, τ1, where the tension caused by the applied force propagates down the polymer 

resulting in a decreasing chain velocity, and a second period, τ2, in which the tension 

propagation has reached the end of the chain and thus the velocity of the polymer remains 

constant throughout the remaining translocation process. Furthermore, Dubbeldam et al. 

[51] described three possible formations (‘trumpet’, ‘stem-trumpet’, and ‘stem’) of the 
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polymer on the cis side of the pore, and two different translocation time versus chain 

length scaling law regions. Both the polymer shape and scaling law are dependent upon 

the strength of the applied force. In the force strengths used in this work (intermediate to 

strong), the scaling laws for the two different time regions are: τ1 ~ N
1+ν

/F ~ N
1.588

/F and 

τ2 ~ N
2ν

/F  ~ N
1.176

/F, which correspond to the ‘stem-trumpet’ or ‘stem’ polymer shapes. 

This can be seen in Figure 23(c), where a “stem” of 4 monomers is seen to exist at the 

pore entrance. In addition, the scaling law behavior - albeit with different scaling 

exponents - is demonstrated in Figures 21-22. When the length of the chain is very short, 

the time required for the tension to reach the end of the chain is very small, and thus the 

velocity during translocation is essentially constant, thereby resulting in small scaling 

exponents with the dominant time period being τ2. When the length of the chain is 

increased, the time required for the tension to reach the end of the chain increases, thus 

causing the chain velocity to decrease and resulting in a larger influence of τ1 and higher 

scaling exponents. Finally, when the length of the chain is long enough, a maximum 

scaling exponent is reached. Even though the scaling exponent in Figure 21 (α = 1.39) is 

smaller than the exponent obtained by Dubbeldam et al. [51] (α = 1.47), the results in 

Figure 20 show that the applied voltage could be varied until the observed scaling law is 

reached, which occurs at ~35 mV. I investigate the scaling exponent versus applied 

voltage further in Chapter 4.  
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3.6 Translocation Time vs. Applied Voltage: Scaling Behavior  

Next, I investigate the scaling behavior of translocation time on the applied 

voltage (60 mV – 750 mV) for several different chain lengths, through both a short (0.5 

nm) and long (5 nm) nanopore. Figure 24 shows the voltage dependence of the 

translocation time for chains of different lengths in a very short pore (0.5 nm). For N = 1, 

the voltage scaling exponent is weak (about -0.3), because the single monomer travels 

very quickly through the pore without being significantly accelerated by the applied 

voltage. As the chain length increases, the time required for the polymer to pass through 

the pore increases. This permits a longer duration to which the electrical force will be 

applied to the polymer chain. Because the force is applied for a longer period of time, the 

velocity of the chain now has ample time to increase during the translocation process. 

This increase in velocity is dependent upon the strength of the applied voltage. If the 

applied voltage is increased, the velocity is increased, which reduces the translocation 

time. Hence, when the length of the polymer is increased, the dependence of translocation 

time on voltage is increased as shown in Figure 24. The theoretical inverse 

proportionality τ ~ V
-1

 [47] sets in after N = 10. At higher voltages (~500 mV), a 

crossover behavior for all chain lengths is observed. For example, in the case of N = 50, 

the scaling exponent changes from -0.96 to -0.72 as the voltage is increased from 400 mV 

to 500 mV. This behavior has also been observed in previous simulations[52,53] and was 

hypothesized to be a manifestation of the polymer being far away from its equilibrium 

state. An example of this phenomenon is given in Figure 25 which shows a snapshot of 

the translocation of a polymer chain with length N = 50 for: (a) V = 80 mV and (b) V = 

750 mV. At (a) V = 80 mV, the chain at the trans side of the pore has a large radius of 
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gyration with minimum folding whereas at (b) V = 750 mV there is a lot of monomer 

crowding indicating the polymer is far from its equilibrium state during the translocation 

process.  

 

 

 

 

Figure 24: Average translocation time (over 1000 trials) versus applied voltage (60 mV – 

750 mV) for different chain lengths (N), using a pore of 0.96 nm diameter and length 0.5 

nm. The scaling exponent reaches -0.96 for 50 monomers. This is in good agreement with 

the theory that predicts τ ~ V
-1

. As the chain length decreases, the scaling exponent 

weakens.  The values in the legend represent the slopes of the curves before the crossover 

region. The crossover scaling exponents occurring at 500 mV are: -0.72 (N = 50), -0.66 

(N = 10), -0.62 (N = 5), -0.34 (N = 2), and -0.01 (N = 1). 
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Figure 25: Snapshot of translocation simulation using a nanopore of 0.96 nm diameter 

and 0.5 nm in length for a polymer length N = 50 and applied voltages of (a) 80 mV and 

(b) 750 mV. As shown, the polymer at the trans side of the nanopore for the small voltage 

of (a) 80 mV is spread far apart with minimal folding whereas the polymer at the trans 

side of the nanopore for the large voltage of (b) 750 mV possesses a lot of monomer 

crowding during the translocation process indicating the polymer is far from its 

equilibrium state. 

 

 

Figure 26 shows the scaling behavior of translocation time versus voltage for 

translocation through a long (5 nm) pore. Unlike the case of the short pore, the scaling 

exponents for all chain lengths are approximately -1 and do not vary significantly with 

chain length. In addition, there are no voltages in which the slope changes from one value 

to another as seen in the short pore simulations. The key differences in voltage scaling 

between the short and long pores can be explained by remembering that the force due to 

the applied voltage is non-zero only inside the pore. For short pores and short polymer 

lengths, the polymer is present inside the pore briefly and therefore will only experience 

the applied force for a small amount of time, thus increasing the applied voltage only 

results in a slight increase in velocity and, as a result, a small change in translocation 
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time. When the polymer length becomes longer, even though each monomer only 

experiences the applied force for a short amount of time, the overall force on the polymer 

will increase because the time required for the polymer to fully translocate through the 

pore will increase. Similarly, when the length of the pore is increased, because more time 

is required for each monomer to translocate through the nanopore, the polymer will also 

experience the applied force for a greater period of time and, consequently, increases in 

the applied voltage result in increases in the polymer velocity and decreases in 

translocation time.  
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Figure 26: Average translocation time (over 1000 trials) versus applied voltage (60 mV – 

750 mV) for different chain lengths (N) using a pore of 0.96 nm diameter and length 5 

nm. Depending upon the chain length, the scaling law α varies slightly between -0.88 and 

-0.92. These values are in good agreement with the theoretical values which predict  

τ ~ V
-1

.    

 

 

3.7 Conclusion  

I have investigated the translocation time scaling laws, for both polymer length 

and applied voltage, for a Rouse polymer in atomistically detailed silicon nitride 

nanopores of varying diameter and length using realistic parameters rather than 

traditional dimensionless quantities. I found that in the case of short nanopores and long 
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polymers, the translocation time versus chain length N scales as τ ~ N
α
, where α = 1.35-

1.40, in good agreement with predictions by Vocks et al. [48] and Sakaue[78], previous 

simulation results[52,53,55,57,65], and measurements of ds-DNA with lengths between 

150 – 3500 bp[18]. My results also clarify the dependence of the scaling exponent upon 

the applied voltage. When the voltage is reduced below 80 mV, the scaling exponent 

increases and approaches the value for the unforced case, α = 2.52, in good agreement 

with Panja et al. [46] When the pore length increases, a continuous scaling law does not 

exist, but the scaling exponent increases as the length of the polymer increases which 

converges to the same value obtained in the short pore simulations for very long 

polymers. In addition, my simulation results mimic the theoretical predictions for 

translocation time dependence on applied voltage (τ ~ V
-1

) for the case of long pore 

lengths. When the pore length is very short, the scaling law is dependent not only on the 

polymer length, but also the applied voltage. The differences in the scaling laws can be 

attributed to the duration of the applied force on the polymer. In the case of the short 

pores, the duration of the applied force on the polymer is much smaller than the situation 

of long pores. This smaller duration, especially for the case of short polymers, results in 

smaller changes in velocity even for increased applied voltages. I found that when the 

polymer length (N = 10) is approximately 10 times the length of the short pore (L = 0.5 

nm), the τ ~ V
-1

 scaling law is recovered. However, I found that in the case of short pores, 

a threshold voltage exists in which larger voltages result in smaller changes in 

translocation time. Finally, I found that using an atomistically detailed nanopore provided 

similar simulation results obtained from other simulation methodologies which modeled 

the nanopore as a simple homogenous lattice of atoms. This is probably due to the 



 79 

repulsive interaction between the polymer and pore (Equation 2-3) used in my and other 

simulation methodologies which guarantees the polymer will flow in a single file fashion 

(no folding) through the nanopore during the translocation process.  
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CHAPTER 4: Zimm Polymer Study  

4.1 Introduction 

 In this chapter I investigate polymer translocation through solid-state nanopore 

devices, using both Rouse (no hydrodynamic interactions) and Zimm (with 

hydrodynamic interactions) polymer models, applying the 3-dimensional Brownian 

dynamics simulation methodology described in section 2.4.3. As described earlier in 

Chapter 3, the diffusion of one monomer of a Rouse polymer does not affect the diffusion 

of another. As a result, the center-of-mass diffusion coefficient scales as D ~ N
-1

 and the 

polymer relaxation time scales as τR ~ N
1+2υ

 [74]. On the other hand, when hydrodynamic 

interactions are introduced - as modeled by a Zimm polymer - the diffusion of each 

monomer is affected by every other monomer in the chain through solvent interactions, 

resulting in a center-of-mass diffusion coefficient scaling law D ~ Rg ~ N
-υ

 and a 

relaxation time scaling law of τZ ~ N
3υ

 [74].  

The assumption of Rouse behavior is likely valid inside a nanopore as long as 

minimal folding occurs during the translocation process or if very little water is present 

inside the pore as would be the case for a very narrow nanopore. However, because many 

polymers such as double-stranded DNA (ds-DNA) behave as Zimm polymers in bulk 

solution [88–90], it would seem that assuming Rouse behavior would underestimate the 

diffusivity of the polymer, especially in the case of studies involving unforced 

translocation through a nanopore. To complicate matters, hydrodynamic interactions are 

long ranged in bulk solution [91], but have shown to be screened for polymers moving 

near a wall or inside a channel [45,68,91]. Hence, the effect of hydrodynamic interactions 
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in translocation time simulation studies is not trivial and should not be omitted in any 

thorough investigation.  

 The main goal of this chapter is to investigate the effect of hydrodynamic 

interactions on the translocation time scaling exponent and compare these results to 

Rouse polymer simulations. More specifically, this chapter is targeted at understanding 

the dependence of polymer translocation mechanisms on the chain length, pore diameter, 

as well as the driving voltage and solvent viscosity for both Rouse and Zimm polymer 

models. In addition, I also investigate the dependence of the translocation time on the 

initial polymer configuration using two different configurations: minimum energy 

configuration (described in section 2.5), and ‘steady-state’ configuration (described in 

section 4.3). Finally, I also investigate the effects of polymer-pore interactions on 

polymer translocation through nanopores without an applied voltage (or unforced). As 

shown in the previous chapter, the pore diameter has little effect on the scaling exponent 

for polymer translocation through nanopores with an applied force. However, as will be 

discovered in section 4.9, the pore diameter greatly affects the scaling exponent in 

unforced translocation time simulations.  

 

 

4.2 Translocation time vs. Chain Length: Minimum Energy Configuration 

Figure 27 shows the scaling of translocation time with N for three different 

applied voltages, with and without HI, for a polymer initially in configuration (1) using a 

pore with diameter 0.96 nm and length of 0.5 nm, which is the length for all nanopores 

used in this chapter. As shown in Figure 27(a) for an applied voltage of 80 mV, in the 
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absence of hydrodynamic interactions, the translocation time scales as τ ~ N
1.35

, which is 

in good agreement with my previous simulation results [54] using the integration 

algorithm by Ermak and Buckholz [104], as well as other previous simulations results 

[52,53,55,57], results using the BDTP theory [82,83], and with the prediction of Vocks et 

al. [48] (τ ~ N
1.37

). All translocation time versus chain length studies presented in this 

thesis resulted in a maximum variation of α = ± 0.01 using the standard error formulation 

[139]. 

Figure 27 also shows that the scaling exponent α increases with decreasing 

voltage. This trend is in good agreement with previous simulation results [52–54] as well 

as predictions with the BDTP model [76,82]. Based upon the findings in references [45–

48], the scaling exponent  is larger for unforced translocation than for forced 

translocation, indicating as the applied force is decreased  α should increase. This trend 

agrees with my simulation results given in Figure 27.  On the other hand, there are other 

simulation methodologies that predict the opposite trend [49–51]. It should be noted that 

nothing was done in these simulations to prevent the polymer from escaping out of the 

pore into the cis reservoir, as was done by Dubbeldam et al. [51] in which the radius of 

the first monomer was given a value larger than the pore diameter. As discussed by 

Ikonen et al. [76] implementing this “reflective boundary condition” could be responsible 

for the discrepancy in trends between scaling exponents and driving force. 
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Figure 27: Average translocation time (500 trials) vs. chain length (N) for simulations (a) 

without HI and (b) with HI, for three voltages: 30 mV, 80 mV, and 500 mV, for initial 

configuration (1) using a pore with diameter 0.96 nm. 

 

A question exists as to why the scaling law for the non-HI simulations does not match the 

value of α = 1.588 derived by Kantor and Kardar [47]. Figure 28 shows <Rg
2
> of the 

polymer as a function of N on the cis side before the translocation process has begun 

(time zero) and on the trans side at the conclusion of the translocation process. As 

mentioned earlier, one of my goals is to investigate how the initial polymer configuration 

affects the translocation time scaling law. Interestingly, because of the abrupt cutoff in 

the WCA potential (Equation (2-3)) when the distance of the non-adjacent monomers is 

greater than 2
1/6

σ, the ‘equilibrium’ (or steady-state) polymer configuration is very 

different than the minimum energy state. For the calculations shown in Figures 27 and 

28, the polymer is placed in its minimum energy state using a MMC procedure [118] for 

50,000 trials before the translocation process begins. As shown in Figure 28, on the cis 

side, the radius of gyration scales as <Rg
2
> ~ N

0.85
 which is much smaller than the scaling 
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for a polymer in a good solvent with high excluded volume interactions [74]: N
2υ 

~N
1.18

. 

In addition, as also shown in Figure 28, on the trans side, the radius of gyration scales as 

<Rg
2
> ~ N

1.03
 after the translocation process has ended, which is also much smaller than 

the theoretical scaling. This is a clear indication of crowding of the polymer at the exit of 

the nanopore after the translocation process has ended, observed during forced 

translocation [49–54,56]. In order to obtain the scaling exponent predicted by Kantor and 

Kardar [47], the polymer must be in equilibrium throughout the entire translocation 

process. This does not occur in these simulations. 

 

 

Figure 28: <Rg
2
> (100 trials) versus N measured at time t = 0 (green), and after 

completion of the translocation process for: No HI at 80 mV (blue), No HI at 30 mV 

(black), and with HI at 80 mV (red). 
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When the applied voltage is decreased to 30 mV, I find that <Rg
2
> ~ N

1.11 
on the 

trans side, indicating less crowding at the exit of the nanopore. As a result, the 

translocation time scaling exponent increases to α = 1.44, a value still different than the 

scaling exponent predicted by Kantor and Kardar [47]. Figure 27 (b) shows simulation 

data using the same polymer configuration with hydrodynamic interactions (HI) included. 

Not only do the HI interactions decrease the translocation time [49,57], but the scaling 

exponent is reduced to α = 1.19 at 80 mV. This value is in good agreement with the 

predictions in references [9,57,78] wherein α = 2υ = 2(0.588) = 1.18 and slightly higher 

than the prediction by Vocks et al. [48] (α = 3υ/(1+υ) = 1.11). My results are also in good 

agreement with results obtained using dissipative particle dynamics (DPD) in reference 

[60] (α = 1.2) and only slightly lower than the results obtained from lattice Boltzmann 

techniques (α = 1.28) [57,58]. Just as in the non-HI polymer model, the scaling exponent 

α increases with decreasing voltage when hydrodynamic interactions are included. 

Finally, as shown in Figure 28, the radius of gyration for the Zimm model after the 

translocation has completed scales as <Rg
2
> ~ N

1.12 
on the trans side for an applied 

voltage of 80 mV, indicating less crowding at the exit of the nanopore than for the Rouse 

polymer with the same applied voltage. As stated earlier, the theoretical Zimm polymer 

relaxation time, which scales as τZ ~ N
3υ

 is much shorter than the Rouse polymer 

relaxation time, which scales as τR ~ N
1+2υ 

[74]. Hence, my simulations show that once 

the Zimm polymer exits the nanopore, due to secondary polymer-solvent interactions, it 

begins to equilibrate to the steady-state configuration much faster than the Rouse 

polymer.    
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4.3 Translocation time vs. Chain Length: ‘Steady-State Configuration’ 

To gain a better understanding of how the initial polymer configuration affects the 

scaling exponents, I performed another set of simulations with configuration (2), i.e., 

after the MMC procedure is performed, the first monomer is kept inside the pore while 

the other monomers are free to move on the cis side of the pore for a time period 

determined by the values in Figure 7(b). This is referred to this as the ‘steady-state’ 

configuration. After the steady-state time expires, the chain is then free to translocate.  

As shown in Figure 29 (a), the scaling exponent α for the non-HI polymer has 

increased from 1.35 to 1.44. This is in good agreement with the predictions of Saito and 

Sakaue [78,79] (1.43), MD simulation results by Dubbeldam et al. [51] (1.47), and MD 

and LD simulations by Luo et al. [65] (1.42 ± 0.01 and 1.41 ± 0.01 respectively). Again, 

the scaling exponent is smaller than the value predicted by Kantor and Kardar [47]. Once 

again, I measured <Rg
2
> on the cis side of the nanopore (after the steady-state time period 

but before the translocation process begins). As shown in Figure 30 (a), <Rg
2
> ~ N

1.20
, 

which agrees very well with the theoretical <Rg
2
> ~ N

2υ 
= N

1.18
 obtained for a polymer in 

a good solvent. However, as shown in Figure 30 (b), at 80 mV I obtain <Rg
2
> ~ N

1.08
 on 

the trans side after translocation, once again indicating crowding at the exit. On the other 

hand, at 30 mV the radius of gyration scales as <Rg
2
> ~ N

1.15
, which is in good agreement 

for a polymer in a good solvent. As a result, the translocation time scaling exponent 

increases to α = 1.52, which is in good agreement with the prediction by Kantor and 

Kardar [47] of α = 1 + υ = 1.588. Hence, my model indicates that in order to obtain the 

prediction by Kantor and Kardar [47], the polymer must be in its steady-state 

configuration throughout the translocation process. In addition, when comparing results 
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from Figure 29 (a) with results from Figure 27 (a), it can be seen that the translocation 

time is larger for the ‘steady-state’ configuration polymer than the minimum energy 

polymer. This is because, as shown in Figure 28, the initial radius of gyration for the 

minimum energy configuration is smaller than the radius of gyration for the ‘steady state’ 

configuration given in Figure 30 (a), thus the polymer must travel a longer distance 

which results in a longer translocation time. 

 

Figure 29: Average translocation time (500 trials) vs. chain length (N) for simulations (a) 

without HI and (b) with HI, for three voltages: 30 mV, 80 mV, and 500 mV, for initial 

configuration (2) using a pore with diameter 0.96 nm. 

 

 

In Figures 27 and 29 it is shown that increasing the voltage from 80 mV to 500 

mV (more than six times) does not change the scaling significantly. Lowering the voltage 

to 30 mV, however, does increase the scaling exponent, agreeing with the earlier 

assessment that α should increase as the applied force decreases. Hence, from these 

results, it appears that the lower bound on the scaling exponent is determined by the 

initial polymer configuration, whereas the upper bound is set by the applied voltage. The 
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role of the initial polymer configuration was investigated by Lehtola et al. [50]. They 

hypothesized that when the applied force is large the translocation process is dictated by a 

force balance between the applied driving force and the drag force felt by the monomers 

in the cis reservoir as they move towards the pore entrance. Lehtola et al. [50] performed 

translocation time simulations using a polymer with an initially linear configuration and 

obtained a scaling law of α = 2, which is very different from any prediction or previous 

simulation results. It was further stated that the diffusive motion of the monomers has no 

impact on the translocation time scaling. This would seem to explain why the scaling law 

changes very little from 80 mV to 500 mV. In other words, a driving force of 80 mV is 

large enough that the effects of diffusion are insignificant and the scaling is dictated by 

the initial polymer configuration.  

 

 

Figure 30: <Rg
2
> (100 trials) versus N on (a) the cis side after the steady-state time has 

expired (but before translocation begins) for non-HI (blue) and HI (red) polymers, and (b) 

on the trans side after complete translocation, for the non-HI case at 80 mV (blue), the 

non-HI case at 30 mV (black), and the HI case at 80 mV (red). 
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Figure 29 (b) shows the effects of including HI using a steady-state initial 

polymer configuration (2). Similar to the findings with the minimum energy 

configuration, when comparing Figure 29 (b) to Figure 29 (a), the Zimm polymer 

translocates faster than the Rouse polymer for configuration (2) as well. Also shown in 

Figure 29 (b) is α = 1.20 at 80 mV, which, interestingly, is not significantly different 

from that obtained in the minimum energy configuration (1) given in Figure 27 (b). In 

fact, the translocation times and scaling laws for all voltages for both configurations are 

approximately the same. This can be explained by noting the time required to equilibrate 

from the minimum energy configuration to the steady-state configuration is much shorter 

for the Zimm polymer than the Rouse polymer, as shown in Figure 7 (b). As a result, due 

to the secondary polymer-solvent interactions, Zimm polymers that begin in the 

minimum energy configuration immediately expand and approach the equilibrium 

steady-state radius of gyration during the translocation process. In addition, it can be seen 

from both Figure 28 and Figure 30 (b) that the radius of gyration at the exit of the 

nanopore for the Zimm polymer is only slightly different than the theoretical value for 

both the minimum energy (~5%) and for the steady-state (~2%) configurations, 

indicating very little crowding at the exit of the nanopore. As stated before, this reduction 

in crowding in the Zimm model as compared to the Rouse is due to the Zimm model 

having a shorter relaxation time as a result of secondary polymer-solvent interactions (i.e. 

hydrodynamic interactions) and, hence it can more quickly reach its steady-state radius of 

gyration after it exits the nanopore. Finally, just as in the case for the minimum energy 

configuration (1), it is also observed for the steady-state configuration (2) that increasing 
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the applied voltage from 80 mV to 500 mV does not change α, whereas reducing the 

voltage increases α significantly. 

4.4 Translocation time vs. Chain Length: Effect of pore diameter (Zimm Polymer) 

To gain a better understanding in how pore dimensions affect the translocation 

process, I next performed translocation time versus chain length simulations and varied 

the pore diameter as shown in Figure 31. In each of these simulations, I used the steady-

state initial polymer configuration (2) and included hydrodynamic interactions as well. 

From Figure 31 it is observed that as the pore diameter increases the translocation time 

decreases as well as the scaling exponent α slightly increases. Both of these same trends 

were also observed in Chapter 3 for Rouse polymers as shown in Figure 18 (b) [54].  One 

explanation for the decrease in translocation time is due to the decrease in polymer-pore 

interactions. In my initial simulations, I used a narrow pore (0.96 nm) with a highly 

repulsive potential energy function to ensure ‘single-file’ translocation of the polymer 

with no folding inside the pore. In wider nanopores, the monomers inside the pore no 

longer experience a strongly repulsive polymer-pore potential and can more easily 

translocate through the pore.  

In addition, in forced translocation time simulations with moderately high applied 

voltages, as mentioned before, the effect of diffusion on the translocation process is 

negligible and hence, the scaling exponent α changes very little with an increase in pore 

diameter. This is very different from unforced simulations in which diffusion is the 

primary mechanism for translocation through a pore. In those simulations a reduction in 

polymer-pore interactions allow for polymers to diffuse more freely inside the pore 

increasing the stochasticity of the process and, as a result, increasing the scaling law 



 91 

exponent α as shown in the work of de Haan and Slater [66]. I investigate unforced 

translocation time simulations in section 4.9 later in this chapter.  

 

 

Figure 31: Average translocation time (500 trials) vs. chain length (N) for varying pore 

diameters for initial configuration (2) with hydrodynamic interactions with an applied 

voltage of 80 mV. 

 

4.5 Waiting Time Simulations 

One way to observe the behavior of the polymer during translocation is by 

measuring the waiting time, defined as the time each monomer remains inside the pore 

during translocation. As shown in Figure 32, I measured waiting times for the Minimum 
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Energy configuration and for the ‘steady-state’ configuration for both Rouse (a) and 

Zimm (b) polymers using a 0.96 nm diameter pore for a chain length No = 100. First, 

observing Figure 32 (a), the waiting time increases to a maximum value about three 

quarters down the chain before reaching a minimum value at the end of the chain. This 

same behavior, observed in previous simulation methodologies [50,62,76,82,86], 

indicates  that the polymer does not translocate with a constant velocity. But rather, as 

described by Ikonen et al. [76,82] as the tension front propagates down the chain, more 

monomers contribute to the overall drag force, thus slowing down the translocation 

process. After the tension reaches the back of the chain, the drag force is now only 

determined by the number of monomers on the cis side of the nanopore. Since this 

number continually decreases during the translocation process (as more monomers move 

from the cis side to the trans side of the nanopore) the drag force continually decreases 

which results in the increase of monomer velocity, thus the waiting times of the 

monomers in the back of the chain go down. Hence, the translocation process speeds up 

until all monomers reach the trans side of the nanopore. The peak in the waiting time 

curve represents when the tension front has reached the back of the chain [76,82]. 

Interestingly, the waiting times are much smaller for the minimum energy configuration 

than the ‘steady-state’ configuration. This could be due to one of two reasons. First, 

because the minimum energy configuration has a much smaller radius of gyration, the 

polymer has to travel a shorter distance than the polymer in the ‘steady-state’ 

configuration, and thus, a shorter translocation time and waiting times are observed. This 

result is also observed when comparing translocation time simulations in Figure 27 (a) 

and Figure 29 (a). A second reason for the two different waiting times could be a result of 
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smaller drag forces in the direction of translocation, observed in the minimum energy 

configuration. As described earlier, at moderate driving forces, the translocation time 

process can be thought of as a force balance between the driving force and the drag force 

of the monomers moving towards the pore. The drag force can be thought of as having 

two components, one parallel to the direction of translocation and one perpendicular. It 

would appear that a polymer with a smaller radius of gyration, like a curled “blob”, 

would have less drag force in the direction parallel to translocation than a polymer with a 

large radius of gyration with a long-drawn out configuration. Hence, the monomers in the 

minimum energy configuration have a larger drag force in the perpendicular direction of 

translocation and less drag force in the parallel direction of translocation than does the 

‘steady state’ polymer configuration. 

Interestingly, as shown in Figure 32 (b), the waiting time curve for the Zimm 

polymer is essentially flat, indicating a constant velocity translocation. This same 

behavior was also predicted by Fyta et al.  [57], whom stated that during translocation, 

due to the size of the polymer on the cis side of the nanopore decreasing, the amount of 

work done by the fluid also decreases, whereas on the trans side of the nanopore the 

amount of work done by the fluid increases because of the increase in size of the 

polymer. Hence, during translocation, the amount of work done by the fluid remains 

constant. Coupled with the fact that the work done by the electric field is also constant, 

Fyta et al.  [57] came to the conclusion that the monomers should translocate through the 

pore with the same velocity, which agrees with my simulation results given in Figure 32 

(b). Finally, the waiting times are almost the same values for both initial configurations 
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for Zimm polymers, also reflected in the translocation time simulations given in Figure 

27 (b) and Figure 29 (b). 

 

 

Figure 32: Average waiting time, for monomer s, for both the minimum energy (ME) 

and the ‘steady-state’ equilibrium (EQ) configurations over 500 trials for (a) Rouse and 

(b) Zimm polymer models using a pore with diameter 0.96 nm for polymer chain No = 

100. 

 

4.6 Simulation Results compared with Measured Values 

I now summarize how my computational results compare to experiments. Before I 

begin these comparisons, I need to address the question whether it is feasible to compare 

my coarse-grained simulation results with those from experiments. Whereas some of the 

simulation model parameters do not exactly match those existing in experiments, I do use 

parameters that realistically depict relationships between polymer and pore dimensions 

used in translocation time experiments with ds-DNA. For example, the measurements 

performed by Storm et al. [9,10] investigate the translocation time of ds-DNA, which has 

an approximate diameter [9] of 2 nm, using a 10 nm-diameter SiO2 nanopore. Hence, the 
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ratio between the diameter of the ds-DNA and nanopore is approximately 5, which is 

approximately the same ratio as the polymer (0.43 nm) to the nanopore of diameter 2.0 

nm used in the simulation results given in Figure 31. In addition, in the translocation time 

versus chain length scaling law studies, Storm et al. [9,10] uses ds-DNA chain lengths, 

the shortest containing approximately 6.6 kbp (length per base ~ 0.34 nm [140], total 

length ~ 2250 nm) much longer than the length of the nanopore used in their experiments 

(approximately 20 nm). Similarly, the polymer chains used in my simulations, the 

smallest being 10 monomers (length per monomer = 0.43nm, total length 4.3 nm) are also 

much longer than the length of the nanopore (0.5 nm). Finally, as given in Figures 7 and 

8, with hydrodynamic interactions implemented, the polymer model behaves as ds-DNA 

in bulk solution.  

 As shown in Figure 31, the translocation time versus chain length scaling law (α) 

is 1.21 which agrees very well with experiments performed by Storm et al. [9,10] (α = 

1.26 – 1.27) using an applied voltage of 120 mV. Hence, because this scaling law is very 

different from the values obtained without HI (α = 1.44) as shown in Figure 29 (a), it can 

be concluded that HI interactions are required to accurately model the physics involved in 

these translocation time measurements. It was shown in previous experimental results ds-

DNA diffuses as D ~ N
-υ

, where υ is between 0.57-0.611 [88–90]. As mentioned earlier, 

the translocation time was predicted to scale as τ ~ N
2υ

 [9,57,78], which would result in a 

translocation time scaling exponent that could vary between α = 1.14 – 1.22. This is in 

good agreement with my simulation results and only slightly lower than the values 

obtained by Storm et al. [9,10]. 
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 In a second example experiment, Wanunu et al. [18] used a 4 nm wide, 10 nm 

thick SiN nanopore to observe α = 1.40 for ds-DNA chain lengths of 0.150–3.5 kbp at 

300 mV. This is vastly different from my simulation results that include HI, but similar to 

my simulation results without HI (α = 1.44) as shown in Figure 29 (a). One hypothesis 

that could be made as to why hydrodynamic interactions are not required for the accurate 

modeling of these experimental results is due to higher polymer-pore interactions due to a 

smaller diameter pore. Due to the smaller diameter of the nanopore used in their 

experiments, polymer-pore interactions heavily influence the dynamics in the 

translocation process. This is also evident from the higher voltage required for 

translocation. In addition, unlike what is demonstrated from my simulation results shown 

in Figures 24, 26, and 34, and experiments using very large nanopores (30 nm 

diameter)[14], both of which agree with predictions [47] of τ ~ V
-1

, Wanunu et al. [18] 

obtained experimentally an exponential relationship for translocation time versus voltage 

a further indicator how polymer-pore interactions greatly influence the translocation 

process. One other possible cause for this exponential relationship between the voltage 

and the translocation time seen for smaller diameter pores, is related to the higher 

entropic barrier that must be overcome in order for the polymer to translocate through the 

pore[30].  

 

4.7 Translocation time vs. Chain Length: Effect of Viscosity 

One drawback of using solid state nanopore devices in translocation 

measurements is the high rate at which the polymers flow through them when using an 

applied voltage. For example, ds-DNA flows through a silicon nitride nanopore at 
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approximately 20 – 30 base pairs per μsec when applying potentials in the 120 mV-200 

mV range[11,12,141]. Unfortunately, this high velocity requires measurement 

instruments to have detector bandwidth values in the MHz range which makes it very 

difficult to measure changes in current on a pico-ampere scale[22].  It was shown in 

previous experiments that it is possible to increase the translocation of DNA through 

silicon nitride nanopores, while keeping a good signal-to-noise ratio (SNR) [13], when 

increasing the viscosity of the solvent by adding glycerol. In order to study the effects on 

solvent viscosity on the translocation physics, I performed translocation time simulations 

for different polymer lengths, with an applied voltage of 80 mV, while varying the 

solvent viscosity using a 0.96 nm diameter pore. In these studies, the initial polymer was 

equilibrated to its ‘steady-state’ configuration.   

As shown on Figure 33, the translocation time simulations increase when 

increasing the solvent viscosity in a linear fashion. In other words, if the viscosity is 

increased by a factor of 4, the translocation time is increased by a factor of 4. This linear 

relationship between the solvent viscosity and the translocation time was also observed in 

measurement results as well [13].  

Interestingly, as shown in Figure 33 (a) there is not a drastic change in the scaling 

law when the solvent viscosity is increased for Rouse polymers. One might hypothesize 

that due to the increase in translocation time, crowding at the exit of the nanopore will be 

reduced because the portion of the polymer on the trans side of the nanopore will have 

more time to relax, and, thus, the resultant scaling exponent will begin to approach the 

theoretical prediction of α = 1 + υ = 1.588[47]. However, by increasing the viscosity of 

the solvent, the relaxation time of the polymer has also increased, thus, crowding at the 
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exit of the nanopore is still present resulting in scaling exponents smaller than α = 1.588, 

as shown in Figure 33 (a). In addition, as shown in Figure 33 (b), there is not a drastic 

change in the scaling law for Zimm polymers either. But, as discussed earlier, because of 

the smaller relaxation time of a Zimm polymer, there is less crowding at the exit of the 

nanopore than for Rouse polymers.  

 

 

Figure 33: Average translocation time (500 trials) vs. chain length (N) for simulations (a) 

without HI and (b) with HI, for four different viscosity values using initial configuration 

(2) with an applied voltage of 80 mV using a pore with diameter 0.96 nm. 

 

 

4.8 Translocation time vs. Applied Voltage 

Another important issue in the physics of translocation is how the translocation 

time scales with applied voltage. I earlier demonstrated (Chapter 3, Figure 24)) results for 

a Rouse polymer in an initial polymer configuration obtained using the MMC procedure. 

In this chapter, in order to investigate this relationship further, I performed translocation 
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time simulations, while varying the voltage from 30 mV to 750 mV, using a polymer 

chain of N = 50 for both Rouse and Zimm polymer models with the polymer initially in 

the ‘steady-state’ configuration using a 0.96 nm diameter pore.  

As shown for both polymer models, the translocation time scales as 

approximately the theoretical scaling behavior of  τ ~ V
-1 

[47] up until an applied voltage 

of 400 mV, which is similar to the results obtained in Figure 24. In addition, this scaling 

behavior has also been observed in experiments using very large nanopores (30 nm 

diameter)[14]. And, just as shown in Figure 24, the scaling exponent is increased from -1 

for both polymer models at voltages 500 mV and higher. As mentioned before, and 

shown in Figure 25, the reduction in scaling exponent is due to extreme crowding at the 

exit of the nanopore [52,53]. Interestingly, the reduction in the scaling exponent for the 

Zimm polymer (m = -0.80) is much less than for the Rouse polymer (m = -0.65). This 

would be in agreement with the findings that there is less crowding at the exit of the 

nanopore for Zimm polymers than for Rouse polymers due to the smaller relaxation time.  
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Figure 34: Average translocation time (500 trials) vs. voltage for simulations (a) without 

HI and (b) with HI, using polymer chain N = 50 using initial configuration (2) using a 

pore with diameter 0.96 nm. 

 

   

 

4.9 Translocation time vs. Chain Length unforced simulations 

Finally, I examine the translocation time scaling behavior in unforced 

translocation, for both HI and non-HI models. To study the effects of polymer-pore 

interactions, I also vary the diameter of the pore from 0.6 nm to 5.0 nm and perform 

simulations with the pore removed. In these unforced simulations, the middle monomer is 

initially placed in the center of the pore and the two halves of the chain are placed in the 

cis and trans reservoirs respectively. To put the polymer in the ‘steady-state’ 

configuration, the chain is allowed to relax, using the values given in Figure 7 (b), and 

then permitted to translocate in either direction. A successful translocation event occurs 

when the chain has exited to either side of the nanopore.  
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As shown in Figure 35, for the 0.96 nm pore, the translocation time for the HI 

case scales with α = 2.30. These results are in good agreement with previous works that 

explicitly include polymer-solvent interactions via molecular dynamics (MD) (α = 2.27–

2.30) [67–69], stochastic rotation dynamics (SRD) (2.30)[59], and dissipative particle 

dynamics DPD (2.24)[60] methods. Interestingly, the scaling law obtained is very similar 

to the scaling prediction for unforced translocation derived by Chuang et al. [45] in the 

absence of hydrodynamic interactions  (τ ~ N
1+2υ 

~ N 
2.176

), a result also obtained by Panja 

et al. [46] who hypothesized that any relationship between the two is pure coincidence.  

On the other hand, as described by Guillouzic and Slater [67], due to the small diameter 

of the pore, the strong polymer-pore interactions heavily influence the translocation 

process whereas the hydrodynamic interactions have a negligible effect. This could be 

because the strong polymer-pore interactions slow down the polymer velocity thus 

significantly reducing the hydrodynamic drag. In addition, as discussed earlier and 

pointed out by Gauthier and Slater [68], hydrodynamic interactions have shown to be 

screened for polymers moving near a wall or inside a channel [91]. Hence, by observing 

the scaling exponents, this screening effect is shown playing a major role in these 

unforced translocation time simulations. 

To further test this hypothesis, I simulated the unforced case for a smaller pore 

diameter of 0.60 nm. As shown in Figure 35, not only is the translocation time 

significantly increased, but the scaling exponent (α = 2.14) resembles even more the 

scaling exponent derived by Chuang et al. [45] for unforced translocation in the absence 

of HI. Hence, for very small pores, polymer-pore interactions become very large and the 

effects of hydrodynamic interactions are greatly reduced.  
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To complete my study on the effects of polymer-pore interactions on the scaling 

exponent, I performed simulations for pore diameters ranging from 0.6 nm to 5.0 nm. As 

shown in Figure 35, as the nanopore size increases, the polymer-pore interactions 

decrease resulting in a decrease in the translocation time.  In addition, the data 

demonstrates that when the size of the nanopore is increased, the scaling exponent first 

begins to increase to a maximum value of α = 2.35 for a pore diameter = 1.5 nm and then 

reduces to a value of α = 1.64 when the pore is removed.  

This scaling exponent, which has been observed in other simulation 

methodologies [68], agrees with theoretical findings and intuition. As first reported by 

Chuang et al. [45] the time required for a polymer to translocate through a nanopore 

without the assistance of an applied force can be estimated as the time required for a 

polymer to diffuse its own radius of gyration. This is also defined as the polymer 

relaxation time [45,53]. As described earlier, when the pore diameter is very small, 

polymer-pore interactions dominate the translocation process, and hence, the Zimm 

polymer translocates through the pore as a Rouse polymer with a scaling exponent of 

approximately τ ~ N
1+2υ 

~ N 
2.176

. Interestingly, this is the same scaling behavior for the 

relaxation time of a Rouse polymer [74]. When the pore is removed, the effects of 

hydrodynamic interactions become dominant, and, theoretically, the time required for the 

polymer to translocate through this “imaginary” pore, should be the same as the Zimm 

polymer relaxation time of τZ ~ N
3υ

 ~ N
1.76 

[74]. As shown in Figure 35, my simulation 

results obtain a scaling exponent only slightly smaller than this theoretical value when the 

pore is removed (α = 1.64). Hence, these are the scaling exponent limits for a Zimm 

polymer translocating through a pore without an applied force. For intermediate pore 
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diameters, the polymer no longer translocates in a single-file fashion, but rather folds 

inside the pore [66]. In addition, when the polymer-pore interactions become weaker 

through the increase in the pore diameter, diffusion forces become greater thus increasing 

stochasticity of the process which results in a larger scaling exponent. As the pore size 

becomes larger (and finally removed) the scaling exponent converges to the same scaling 

exponent as the Zimm polymer relaxation time.  

 

 

 

Figure 35: Average unforced translocation time (over 500 trials) vs. N for different pore 

diameters with HI effects (Zimm polymer). 

 

 

In addition to the simulation results using Zimm polymers, I also performed 

simulations with Rouse polymers, with the results provide in Figure 36. As shown, with 

the 0.96 nm pore, I obtained α = 2.52 for the non-HI case. This is in good agreement with 

my previous simulation results reported in Chapter 3, Figure 18 (a) [54], the predictions 
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by Panja et al. (2.59) [46], and those of Dubbeldam et al. (2.52) [70] and Gauthier et al. 

[75]. However, this scaling law is larger than the prediction of Chuang et al. [45] and 

other previous simulations in which α = 2.22-2.23 [65,71] or 2.33 [59]. In addition to the 

previous simulations with a HI model by Gauthier and Slater [68], de Haan and Slater 

[66] performed unforced translocation simulations using a non-HI polymer model and 

varying the pore diameter. For a pore with diameter of 2σ, which approximately 

corresponds to the 0.96 nm pore used above, they obtained α = 2.5, which is in good 

agreement with the scaling law that I obtained.  

To further investigate the effects of polymer-pore interactions using Rouse 

polymers, I also performed translocation time simulations using the same pore diameters 

as the Zimm polymer studies. When using a very narrow nanopore (0.60 nm diameter) I 

obtained a smaller value of α = 2.23, which is in good agreement with the prediction of 

Chuang et al. [45] (α = 2.176) and simulations by de Haan and Slater [66] (2.19). As is 

the case in the simulations using a Zimm polymer, the scaling law is greatly affected by 

the pore diameter (i.e. polymer-pore interactions). In addition, just as in the case of 

unforced Zimm polymer translocation, there are scaling exponent limits for a Rouse 

polymer translocation as well. Although, for the Rouse polymer, the beginning and 

ending limits are the same, τ ~ N
1+2υ 

~ N
2.176 

, which is its relaxation time [74]. And, as 

shown in Figure 36, I obtain scaling exponents in good agreement with these limits  

(i.e. α = 2.23 for narrow pore and α = 2.02 for no pore). In addition, the same behaviors 

as observed for Zimm polymers given in Figure 35 are also seen for the Rouse polymer in 

Figure 36. In other words, when the pore size is increased, the polymer-pore interactions 
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decrease resulting in not only a decrease in the translocation time but also an increase in 

the scaling exponent.  

As discussed earlier, one of elusive goals of many researchers studying polymer 

translocation through nanopores has been to find a universal translocation time scaling 

exponent. What I have shown in this section is the importance of polymer-pore 

interactions on translocation time simulation results by varying the pore diameter. If a 

universal scaling law is to be obtained, it is important that there must be a consistency of 

polymer-pore interactions between all theoretical and computational studies.  

One final interesting observation is that the unforced translocation scaling law for 

a pore diameter of 0.96 nm (Figure 36) using the ‘steady-state’ configuration is the same 

as found in Figure 18 (a) [54] which considered the polymer to initially be in a minimum 

energy configuration. Both cases result in the same scaling law in unforced translocation 

because, unlike in forced translocation, the translocation time is much longer than the 

relaxation time.  
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Figure 36: Average unforced translocation time (over 500 trials) vs. N for different pore 

diameters without HI effects (Rouse polymer). 

 

 

4.10 Why Minimum Energy Configuration? 

One of the important questions that I sought to answer is the effect of the initial 

polymer configuration on the translocation process, which has been hypothesized by 

some to heavily influence the scaling exponent, α, observed in the literature [50,58]. 

Based upon my findings above, I demonstrated that α does indeed differ depending upon 

which initial polymer configuration (minimum energy or ‘steady-state’) is used in the 

simulation. Of course, one may ask why perform simulations using the minimum energy 

convention as the starting initial polymer configuration, as there may not be a direct 

correlation between this configuration and experimental findings. 

Whereas there may not be a direct relationship to experimental findings and the 

minimum energy convention that I use in these simulations, I feel that this initial polymer 

configuration is a scientifically based theoretical configuration, unlike a chain of 
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monomers in a totally random configuration. In addition, theoretically the minimum 

energy configuration, due to the WCA potential energy function used for non-adjacent 

monomers and the initial placement of monomers being σpoly (0.43 nm) apart, should 

result in the smallest radius of gyration (Rg) possible for this polymer model. Hence, one 

could argue that by comparing the minimum energy configuration with the ‘steady-state’ 

configuration, I am comparing the smallest and largest possible values of Rg using the 

WCA potential energy functions. This can be seen in my simulation results when 

comparing Rg in Figure 28 and Figure 30(a).  

Finally, by comparing the minimum energy to the ‘steady-state’ configuration I 

may have identified a potential source of discrepancy between scaling exponents listed in 

the literature. As described above, the often used polymer model in these coarse grained 

simulation methods is the WCA potential, Equation (2-3). Upon observation of this 

model, one can see that, due to the cutoff in the potential energy function at distances 

greater than 2 
1/6

 σ, the potential energy of the polymer in both the minimum energy 

configuration and the ‘steady-state’ configuration are equal even though the radius of 

gyration of each are very different. This would not be the case if, for example, the 

potential energy function was modeled with a full 6-12 Lennard-Jones potential 

(Equation 2-4) in which the minimum energy configuration would also be the equilibrium 

configuration.  As shown in Figure 27 (a) and Figure 29 (a), I obtain values of α found in 

the previous simulation results using either the minimum energy configuration or the 

‘steady-state’ configuration. It must be made clear that I am not suggesting that other 

findings in previous research are incorrect or proper equilibration procedures were not 
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followed, my purpose is to point out a potential source of discrepancy in the values of α 

could lie in this oddity of the WCA potential energy function.  

Of course, one way to remove this potential discrepancy source would be to 

simply add a bond-angle potential as was done by Kong and Muthukumar [98]. However, 

because of the parabolic nature of this potential energy function and the requirement to 

keep the bond stiff to ensure a polymer with high excluded volume interactions, resulting 

in a large spring constant, a small simulation time step would be required thus limiting 

both the overall simulation time and the number of monomers in the simulation. One way 

to ensure that this discrepancy does not occur is to follow the ‘start-up’ procedures that I 

used to obtain the ‘steady-state’ polymer configuration in which I first assign random 

monomer positions, then place the polymer in its minimum energy configuration, and 

finally equilibrate the polymer to its ‘steady-state’ configuration. I believe this 

initialization procedure could possibly reduce any source of inconsistency related to the 

initial polymer configurations in simulation studies.  

 The ‘steady-state’ polymer configuration (2) is the more realistic polymer 

configuration that would be observed in an experimental result. This is because, in an 

experiment, the time required for the polymer to arrive at the entrance of the nanopore 

(before translocation) would be much larger than the polymer relaxation time.  Hence, the 

polymer on the cis side of the nanopore would scale as <Rg
2
> ~ N

2υ 
(Figure 30 (a)).  

4.11 Conclusion 

I have investigated the translocation time versus polymer chain length scaling 

behavior, for both Rouse and Zimm polymers, using a computationally efficient 

simulation methodology - the TEA algorithm [105] - in both forced and unforced 
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translocation studies. For forced translocation, using Rouse polymers, I obtained different 

scaling exponents depending upon the initial polymer configuration and the strength of 

the applied voltage. I demonstrate that if the radius of gyration of the initial polymer 

configuration deviates from its theoretical value in a good solvent (<Rg
2
> ~ N

2υ
), the 

scaling exponent will also deviate from α = 1 + υ as predicted by Kantor and Kardar [47].  

In addition, if the applied voltage is large enough that it causes the translocation 

time to be much shorter than the polymer relaxation time, the polymer will crowd the 

nanopore exit and also cause the scaling law to differ as well. However, if the radius of 

gyration of the polymer begins and ends at its theoretical value, I find that the scaling 

exponent is in accordance with the value of α = 1 + υ as predicted by Kantor and Kardar 

[47]. Because of the strongly repulsive nature of the WCA potential often used in 

translocation simulations, the radius of gyration is vastly different depending upon how 

long the polymer is permitted to relax. As I show in this chapter, the radius of gyration 

for the minimum energy configuration is different from the ‘steady-state’ radius of 

gyration. Hence, care must be taken in defining the initial polymer configuration before a 

translocation time simulation is performed and also in comparing simulations results 

from different studies.  

Furthermore, I found the scaling law α increases with decreasing voltage, which is 

in good agreement with previous simulation results [52–54] as well as predictions with 

the recently developed Brownian Dynamics Tension Propagation model [76,82]. Based 

upon the findings in references [45–48], the scaling exponent  is larger for unforced 

translocation than for forced translocation, indicating as the applied force is decreased  α 

should increase, which agrees with my findings given in Figures 27 and 29. From these 
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results, I observed the lower bound on the scaling exponent was determined by the initial 

polymer configuration, whereas the upper bound was set by the voltage. 

In the presence of HI, as with Zimm polymers, I obtained scaling laws that agree 

very well with the predictions of α = 2υ [9,57,78] and also with the measurements of 

Storm et al. [9,10]. I also found that, since the relaxation time in the presence of HI is 

much shorter than in the absence of HI, there was less crowding at the exit of the 

nanopore. In addition, just as in my previous studies of forced translocation of Rouse 

polymers through nanopores with increasing diameters [54], translocation of Zimm 

polymers also results in small changes in α and decreases in translocation time due to the 

reduction in polymer-pore interactions. Just as in the case with Rouse polymers, I also 

found the scaling exponent increases with decreasing voltage using Zimm polymers.  

 In addition, I also show that whereas increasing the viscosity will result in longer 

translocation times, it has no effect on the translocation time scaling exponent α. I also 

find that the translocation time versus applied voltage using both Rouse and Zimm 

polymer models results in the theoretical inverse proportionality τ ~ V
-1

 [47] for low to 

intermediate voltages (~ 400 mV). Larger voltages results in an increase in the scaling 

exponent from -1 caused by extreme crowding at the exit of the nanopore. Due to the 

smaller relaxation time of Zimm polymers, this scaling law increase is much less than in 

the Rouse polymer model.  

Finally, I performed unforced translocation simulations with and without HI for 

several different pore diameters. When the pore width is very small, the polymer-pore 

interactions dominate the translocation process, resulting in approximately the scaling 

law for Rouse polymers as predicted by Chuang et al. [45] (α = 1 + 2υ) for both polymer 
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models. When the pore diameter is increased, the polymer-pore interactions are 

decreased, the translocation time is decreased, and, due to the increased stochasticity of 

the process, the scaling exponent also increases.  When the pore is removed from the 

simulation, the scaling exponent for both the Rouse and Zimm both polymers approach 

the same scaling as their relaxation time, α = 1 + 2υ for Rouse polymer and α = 3υ for 

Zimm polymer [74]. These simulation findings are important because they provide the 

scaling law bounds for unforced translocation time simulations for both polymer models.  
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CHAPTER 5: ELECTROSTATICS IN NANOPORE DEVICES 

5.1 Introduction 

 In most previous coarse-grained simulation studies of biomolecule translocation, 

including the studies presented in Chapters 3 and 4, the electrostatic effects due to the 

surface charge on the nanopore and ions in the electrolytic solution were not considered. 

This may lead to significant deviations in the predictions from physical reality. In this 

chapter, I present a preliminary investigation of the electrostatics inside silicon nitride 

nanopores for pore diameters of 25 Å, 30 Å, and 40 Å, using the coupled Poisson-Nernst-

Planck (PNP) equations described in Chapter 2. The goal of this study is to make a 

preliminary assessment (based upon rigorously-obtained computational data) of the 

electrostatic effects inside nanopores with and without a biopolymer present. In each of 

the simulations, I assume the nanopore has a negative surface charge density of σSi3N4 = -

0.02 C/m
2
,
  

the measured value for silicon nitride at pH between 7-8
 
[41], which are 

typical levels for translocation time measurements [9–11,13–15,41]. I also employ 

Dirichlet Boundary conditions, both at the top and bottom of the simulation volume in 

which the voltage is assigned to 0, and periodic boundary conditions in x and y.  To find 

the potential and ion concentration, as described in chapter 2, Equations (2-36) and (2-37) 

are solved in an iterative fashion by the Successive Over-Relaxation (SOR) 

method[123,124] using the six point “nearest neighbors” summation at each grid point in 

a checkerboard pattern[125] for 200,000 trials. The dielectric slab results given in Figures 

14 and 15 serve as the initial condition for the ion concentrations and potential.   



 113 

5.2 PNP Computations with No Monomers 

 To begin investigating the effects of electrostatics inside silicon nitride nanopores, 

I first performed PNP simulations in an open pore (i.e. with no monomers present). 

Figures 37, 39, and 41 provide the results for the potential, whereas Figures 38, 40, and 

42 provide the results for the ionic concentration, for nanopores with diameters of 25 Å, 

30 Å, and 40 Å respectively. As shown, the potential inside the membrane is 

approximately the same value for the membrane when no pore was present as shown in 

Figure 15 (~ -0.04 V). In addition, the potential quickly decays to zero outside the 

nanopore, which is expected due to the short Debye length of 3 Å as a result of the 1 M 

electrolyte solution. Also, as shown in Figures 38, 40, and 42, the ionic concentration for 

the positive valence ion is very high near the surface of the nanopores, due to the 

negative surface charge of the silicon nitride, whereas the negative valence ion is very 

small at the surface. Inside the membrane the concentration is zero, and, at distances far 

away from the pore, the concentration approaches the bulk value of  

C∞ = 6.022 x 10
-4

 Å
-3

. 

The potential inside the nanopore does not decay to zero in the center (x = y = 50 

Å) for the 25 Å pore. This is reflected in the fact that the ionic concentration is not the 

bulk value in the center either. However, as the diameter of the pore is increased, the 

concentration for both ions at the center of the nanopore approaches the bulk 

concentration of C∞ = 6.022 x 10
-4

 Å
-3 

, and, as a result, the potential inside the nanopore  

becomes zero.  

In addition, the surface potential for the 25 Å pore is lower (or more negative) 

than the potential, -7.354 x 10
-3

 V, obtained in Figure 15 (a) for the charged silicon 
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nitride slab.  However, as the pore size is increased, this surface potential increases and at 

40 Å, as shown in Figure 41 (b), the surface potential of -7.75 x 10
-3

 V better agrees with 

the values obtained in Figure 15(b). This same behavior is also observed in the ionic 

concentration at the surface of the pore as well. The surface concentration for the positive 

valence ion for the 25 Å pore is higher than the concentration obtained for the charged 

silicon nitride slab in Figure 14 (b) of Co = 8.014 x 10
-4

 Å
-3

. However, as the pore 

diameter is increased to 40 Å, as shown in Figure 42 (c) the surface concentration 

decreases to a value of Co = 8.144 x 10
-4

 Å
-3

, which agrees very well with the value 

obtained in Figure 14. Hence, it can be seen in these simulations that the pore diameter 

does have an effect on the ionic concentration and, as a result, the potential inside the 

pore.  

 

 

Figure 37: Potential (in Volts) in nanopore with diameter 25 Å and length 50 Å. (a) 

Potential as a function of both x and z with y held constant at 50 Å. (b) Potential in center 

of nanopore with z = 300 Å and y = 50 Å, with surface potential labeled at x = 38 Å, with 

a value of -8.474 x 10
-3

 V. 

 



 115 

 

Figure 38: Concentration (in 1/Å
3
) in nanopore with diameter 25 Å and length 50 Å. (a) 

Concentration of positive valence ion as a function of both x and z with y held constant at 

50 Å. (b) Concentration of negative valence ion as a function of both x and z with y held 

constant at 50 Å. (c) Concentration in nanopore with z = 300 Å and y = 50 Å, with 

concentration at surface of nanopore of Co = 8.373 x 10
-4

 Å
-3 

. 

 

 

 

Figure 39: Potential (in Volts) in nanopore with diameter 30 Å and length 50 Å. (a) 

Potential as a function of both x and z with y held constant at 50 Å. (b) Potential in center 

of nanopore with z = 300 Å and y = 50 Å with surface potential labeled with a value of -

7.921 x 10
-3

 V.  
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Figure 40: Concentration (in 1/Å
3
) in nanopore with diameter 30 Å and length 50 Å. (a) 

Concentration of positive valence ion as a function of both x and z with y held constant at 

50 Å. (b) Concentration of negative valence ion as a function of both x and z with y held 

constant at 50 Å. (c) Concentration in nanopore with z = 300 Å and y = 50 Å with 

concentration at surface of nanopore of Co = 8.194 x 10
-4

 Å
-3 

. 

 

 

 

 

Figure 41: Potential (in Volts) in nanopore with diameter 40 Å and length 50 Å. (a) 

Potential as a function of both x and z with y held constant at 50 Å. (b) Potential in center 

of nanopore with z = 300 Å and y = 50 Å with surface potential labeled with a value of -

7.75 x 10
-3

 V. 
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Figure 42: Concentration (in 1/Å
3
) in nanopore with diameter 40 Å and length 50 Å. (a) 

Concentration of positive valence ion as a function of both x and z with y held constant at 

50 Å. (b) Concentration of negative valence ion as a function of both x and z with y held 

constant at 50 Å. (c) Concentration in nanopore with z = 300 Å and y = 50 with 

concentration at surface of nanopore of Co = 8.144 x 10
-4

 Å
-3 

. 

  
 

5.3 PNP Computations with Uncharged Monomers 

 The next set of simulations sought to investigate the effects of monomers being 

present inside the nanopore. To do this, I performed simulations on the same nanopores 

above, but this time threaded the pore with a 17 monomer chain. Each monomer, which 

was represented by an approximate 5 Å sphere with dielectric constant of 2 [127], did not 

have an associated charge. The chain was placed in the center of the pore and ions were 

not permitted to flow inside the monomers.  

 Figures 43, 45, and 47 show the results for the potential, whereas Figures 44, 46, 

and 48 provide the results for the ionic concentration, for nanopores with diameters of 25 

Å, 30 Å, and 40 Å respectively. The surface potential does not change significantly from 

the simulations without the monomers. Whereas there a very small change in the 

potential in the center of the 25 Å pore, there is no difference in the potential in the 

middle of the pore for the 30 Å and 40 Å pores. Hence, it can be concluded that the 
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presence of the uncharged monomers does not significantly alter the electrostatic 

potential. 

 As shown in Figures 44, 46, and 48, whereas the concentration in the middle of 

the pore is reduced to zero due to the presence of the monomers in the center of the pore, 

the concentration at the surface of the pore walls, just as in the surface potential, did not 

change significantly from earlier results in which monomers were not present inside the 

pore.  The importance of these simulation results demonstrate that the presence of a 

uncharged monomer with a different dielectric constant will not alter the potential inside 

the nanopore and only slightly change the concentration profile.  

  

 

 

Figure 43: Potential (in Volts) in nanopore with diameter 25 Å and length 50 Å with 

polymer chain containing 17 uncharged monomers threading the pore. (a) Potential as a 

function of both x and z with y held constant at 50 Å. (b) Potential in center of nanopore 

with z = 300 Å and y = 50 Å with surface potential labeled with a value of -8.482 x 10
-3

 

V. 
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Figure 44: Concentration (in 1/Å
3
) in nanopore with diameter 25 Å and length 50 Å with 

polymer chain containing 17 uncharged monomers threading the pore. (a) Concentration 

of positive valence ion as a function of both x and z with y held constant at 50 Å. (b) 

Concentration of negative valence ion as a function of both x and z with y held constant 

at 50 Å. (c) Concentration in nanopore with z = 300 Å and y = 50 with concentration at 

surface of nanopore of Co = 8.375 x 10
-4

 Å
-3

 

 

 

 

Figure 45: Potential (in Volts) in nanopore with diameter 30 Å and length 50 Å with 

polymer chain containing 17 uncharged monomers threading the pore. (a) Potential as a 

function of both x and z with y held constant at 50 Å. (b) Potential in center of nanopore 

with z = 300 Å and y = 50 Å with surface potential labeled with a value of -7.942 x 10
-3

 

V. 
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Figure 46: Concentration (in 1/Å
3
) in nanopore with diameter 30 Å and length 50 Å with 

polymer chain containing 17 uncharged monomers threading the pore. (a) Concentration 

of positive valence ion as a function of both x and z with y held constant at 50 Å. (b) 

Concentration of negative valence ion as a function of both x and z with y held constant 

at 50 Å. (c) Concentration in nanopore with z = 300 Å and y = 50 with concentration at 

surface of nanopore of Co = 8.195 x 10
-4

 Å
-3

 

 

 

 

Figure 47: Potential (in Volts) in nanopore with diameter 40 Å and length 50 Å with 

polymer chain containing 17 uncharged monomers threading the pore.(a) Potential as a 

function of both x and z with y held constant at 50 Å. (b) Potential in center of nanopore 

with z = 300 Å and y = 50 Å with surface potential labeled with a value of -7.752 x 10
-3

 

V. 
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Figure 48: Concentration (in 1/Å
3
) in nanopore with diameter 40 Å and length 50 Å with 

polymer chain containing 17 uncharged monomers threading the pore. (a) Concentration 

of positive valence ion as a function of both x and z with y held constant at 50 Å. (b) 

Concentration of negative valence ion as a function of both x and z with y held constant 

at 50 Å. (c) Concentration in nanopore with z = 300 Å and y = 50 with concentration at 

surface of nanopore of Co = 8.144 x 10
-4

 Å
-3

 

 

 

5.4 PNP Computations with Center-Charged monomers 

 In the next set of simulations, the same 17-monomer chain threaded the pore as in 

the previous section, but instead of an uncharged monomer being used, a point charge of 

-1e [97,98] was placed at the center of each monomer. Figures 49, 51, and 53 shows the 

results for the potential, whereas Figures 50, 52, and 54 provide the results for the 

electrolyte ion concentration, for nanopores with diameters of 25 Å, 30 Å, and 40 Å 

respectively. As shown, the electrostatic potential significantly changes from previous 

simulation results, and, as expected theoretically, mimics a delta function in the center of 

each monomer. The negative center charge on each monomer causes a large build-up of 

positive ions on the surface of each monomer, thus significantly reducing the monomer 

surface potential, as shown in Figures 51(b) – 53 (b). As mentioned earlier, the surface 

charge of the silicon nitride nanopore is σSi3N4 = -0.02 C/m
2
, which results in a total 
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charge of -2 x 10
-22

 C for a 1 Å
2
 box. Because each monomer possess a charge of -1e (or 

-1.6 x 10
-19

 C), there is a larger absorbed positive valence ion concentration on the 

monomers than the pore surface. Whereas the pore diameter has no effect on the ionic 

concentration on the surface of each monomer, it results in a slightly higher concentration 

at the surface of the pore for both the 25 Å and 30 Å pores. However, for the 40 Å pore, 

the surface concentration is very similar to the concentrations obtained for both previous 

studies in which there were no monomers or uncharged monomers. The importance of 

these findings indicates that introducing a charge on each monomer greatly affects the ion 

concentration inside the pore, causing a large buildup of ions on the surface of each 

monomer, which, in a translocation time experiment, would result in a large electro-

osmotic force along the backbone of the polymer. In addition, the presence of the large 

concentration of ions also greatly reduces the potential at short distances away from the 

monomer and the nanopore surface. Thus, when using very high electrolytic 

concentrations, such as 1 M used in the present simulations, it would appear that the 

effects of surface charge on the nanopore and the monomer would be largely “screened” 

by the electrolytic solution.   
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Figure 49: Potential (in Volts) in nanopore with diameter 25 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has a negative 

charge of -1e assigned to its center. (a) Potential as a function of both x and z with y held 

constant at 50 Å. (b) Potential nanopore with z = 300 Å and y = 50 Å. Labels on the 

surface of the monomer (at x = 47 Å and x = 53 Å) indicate the potential is “screened” at 

short distances due to the high buildup of positive ions.  

 

 

 

Figure 50: Concentration (in 1/Å
3
) in nanopore with diameter 25 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has a negative 

charge of -1e assigned to its center. (a) Concentration of positive valence ion as a 

function of both x and z with y held constant at 50 Å. (b) Concentration of negative 

valence ion as a function of both x and z with y held constant at 50 Å. (c) Concentration 

in nanopore with z = 300 Å and y = 50 Å. Concentration at surface of nanopore (x = 38 

Å) is C = 8.992 x 10
-4

 Å
-3

, whereas the concentration at the surface of the monomer (x = 

47 Å) is C = 2.993 x 10
-3

 Å
-3

. 
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Figure 51: Potential (in Volts) in nanopore with diameter 30 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has a negative 

charge of -1e assigned to its center. (a) Potential as a function of both x and z with y held 

constant at 50 Å. (b) Potential in nanopore with z = 300 Å and y = 50 Å. Labels on the 

surface of the monomer (at x = 47 Å and x = 53 Å) indicate the potential is “screened” at 

short distances due to the high buildup of positive ions.  

 

 

Figure 52: Concentration (in 1/Å
3
) in nanopore with diameter 30 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has a negative 

charge of -1e assigned to its center. (a) Concentration of positive valence ion as a 

function of both x and z with y held constant at 50 Å. (b) Concentration of negative 

valence ion as a function of both x and z with y held constant at 50 Å. (c) Concentration 

in nanopore with z = 300 Å and y = 50 Å. Concentration at surface of nanopore (x = 36 

Å) is C = 8.47 x 10
-4

 Å
-3

, whereas the concentration at the surface of the monomer (x = 

47 Å) is C = 2.941 x 10
-3

 Å
-3

. 
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Figure 53: Potential (in Volts) in nanopore with diameter 40 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has a negative 

charge of -1e assigned to its center. (a) Potential as a function of both x and z with y held 

constant at 50 Å. (b) Potential in nanopore with z = 300 Å and y = 50 Å. Labels on the 

surface of the monomer (at x = 47 Å and x = 53 Å) indicate the potential is “screened” at 

short distances due to the high buildup of positive ions.  

 

 

Figure 54: Concentration (in 1/Å
3
) in nanopore with diameter 40 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has a negative 

charge of -1e assigned to its center. (a) Concentration of positive valence ion as a 

function of both x and z with y held constant at 50 Å. (b) Concentration of negative 

valence ion as a function of both x and z with y held constant at 50 Å. (c) Concentration 

in nanopore with z = 300 Å and y = 50 Å. Concentration at surface of nanopore (x = 31 

Å) is C = 8.189 x 10
-4

 Å
-3

, whereas the concentration at the surface of the monomer (x = 

47 Å) is C = 2.905 x 10
-3

 Å
-3

. 
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5.5 PNP Computations with Surface-Charged Monomers 

 Finally, as opposed to assigning the center of each monomer a charge of -1e, the 

charge was instead spread evenly over the entire surface of each monomer. Figures 55, 

57, and 59 provide the results for the potential, whereas Figures 56, 58, and 60 provide 

the results for the ionic concentration, for nanopores with diameters of 25 Å, 30 Å, and 

40 Å respectively. As shown, instead of a delta function shape, the potential is now 

spread across the diameter of the monomer. Just as in the center charge monomer 

solution, there is also a high concentration of positive valence ions on the surface of each 

monomer which, again, drastically reduces the potential on the surface of each monomer. 

Again, these simulation results confirm that for biopolymers, such as ds-DNA, that have 

an associated charge, electro-osmotic forces could greatly affect the translocation 

dynamics when the presence of a high concentration electrolyte.  

 

One other observation is that because the charge is spread out over the surface of 

the monomer, the ion concentration is slightly smaller than the previous center charge 

values. In addition, just as in all of the cases above, the surface concentration does not 

approach the values observed in the earlier slab simulations until the diameter of the pore 

is 40 Å. Finally, in reviewing the simulation results from both the center-charged 

monomer model and the surface-charged monomer model, it would appear that the latter 

is more physically reasonable. This can be seen by noting that the large delta potential 

function as shown in Figures 49, 51, and 53, significantly weakens other surface potential 

effects that could possibly be important when modeling translocation time simulations. 

As shown in Figures 55(b), 57(b), and 59 (b), potential effects due to the negative surface 
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charge on the silicon nitride and the resultant positive ion build up, are shown as 

variations in the potential energy. Hence, these effects are not “drowned out” by 

distributing the polymer charge on the surface of each monomer.  

 

 

 

Figure 55: Potential (in Volts) in nanopore with diameter 25 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has an 

equally distributed negative charge on the surface.(a) Potential as a function of both x and 

z with y held constant at 50 Å. (b) Potential in nanopore with z = 300 Å and y = 50 Å. 

Labels on the surface of the monomer (at x = 47 Å and x = 53 Å) indicate the potential is 

“screened” at short distances due to the high buildup of positive ions. 
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Figure 56: Concentration (in 1/Å
3
) in nanopore with diameter 25 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has an 

equally distributed negative charge on the surface. (a) Concentration of positive valence 

ion as a function of both x and z with y held constant at 50 Å. (b) Concentration of 

negative valence ion as a function of both x and z with y held constant at 50 Å. (c) 

Concentration in of nanopore with z = 300 Å and y = 50 Å. Concentration at surface of 

nanopore (x = 38 Å) is C = 8.99 x 10
-4

 Å
-3

, whereas the concentration at the surface of the 

monomer (x = 47 Å) is C = 2.577 x 10
-3

 Å
-3

. 

 

 

 

Figure 57: Potential (in Volts) in nanopore with diameter 30 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has an 

equally distributed negative charge on the surface.(a) Potential as a function of both x and 

z with y held constant at 50 Å. (b) Potential in center of nanopore with z = 300 Å and y = 

50 Å with surface potential labeled. Labels on the surface of the monomer (at x = 47 Å 

and x = 53 Å) indicate the potential is “screened” at short distances due to the high 

buildup of positive ions. 
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Figure 58: Concentration (in 1/Å
3
) in nanopore with diameter 30 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has an 

equally distributed negative charge on the surface.(a) Concentration of positive valence 

ion as a function of both x and z with y held constant at 50 Å. (b) Concentration of 

negative valence ion as a function of both x and z with y held constant at 50 Å. (c) 

Concentration in nanopore with z = 300 Å and y = 50 Å. Concentration at surface of 

nanopore (x = 36 Å) is C = 8.469 x 10
-4

 Å
-3

, whereas the concentration at the surface of 

the monomer (x = 47 Å) is C = 2.532 x 10
-3

 Å
-3

. 
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Figure 59: Potential (in Volts) in nanopore with diameter 40 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has an 

equally distributed negative charge on the surface.(a) Potential as a function of both x and 

z with y held constant at 50 Å. (b) Potential in center of nanopore with z = 300 Å and y = 

50 Å with surface potential labeled. Labels on the surface of the monomer (at x = 47 Å 

and x = 53 Å) indicate the potential is “screened” at short distances due to the high 

buildup of positive ions. 

 

 

 

Figure 60: Concentration (in 1/Å
3
) in nanopore with diameter 40 Å and length 50 Å with 

polymer chain containing 17 monomers threading the pore. Each monomer has an 

equally distributed negative charge on the surface.(a) Concentration of positive valence 

ion as a function of both x and z with y held constant at 50 Å. (b) Concentration of 

negative valence ion as a function of both x and z with y held constant at 50 Å. (c) 

Concentration in nanopore with z = 300 Å and y = 50 Å. Concentration at surface of 

nanopore (x = 31 Å) is C = 8.189 x 10
-4

 Å
-3

, whereas the concentration at the surface of 

the monomer (x = 47 Å) is C = 2.501 x 10
-3

 Å
-3

. 
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5.6 Limitations of the PNP model 

One of the limitations of using the PNP mean field approximation to model the 

electrostatics in a nanopore simulation, is the assumption that each ion has a zero self-

energy. This self-energy term, which has been shown to be important in ion channel 

modeling, arises when a charge induces an image charge at a dielectric boundary 

resulting in a repulsive energy that scales as ~ q
2
 [128]. This repulsive energy term limits 

ion flow into a channel. Because continuum models do not compute discrete ion-ion 

interactions, this self-energy term is zero. However, it has been shown using Brownian 

Dynamics (BD) simulations to model ion flow through channels that the solution to 

continuum methods such as the Poisson-Nernst-Planck and Poisson-Boltzmann 

converges to the BD results when the radius of the ion channel is 2 Debye lengths or 

greater [128–130]. I note that, in these simulations, a 1 M solution is used as the 

electrolyte resulting in an approximate Debye length of 3 Å. The smallest radius in which 

I performed PNP simulations was 12.5 Å (or diameter = 25 Å), which is 4 times the 

Debye length well within the limitations specified in references  [128–130]. 

 

5.7 Conclusions 

In this section, using the coupled Poisson-Nernst-Planck equations, I investigated 

the electrostatic effects inside silicon nitride nanopores using measured quantities for 

both surface charge and electrolytic concentrations used in translocation time studies. I 

also studied how the presence of both uncharged and charged monomers affects the ion 

concentration and potential distribution inside a nanopore. When either monomers are 

absent or uncharged monomers are present, the potential does not change significantly, 
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although the concentration will change due to the prevention of ions from flowing inside 

a monomer.  

On the other hand, when a monomer is charged, a large concentration of 

oppositely charged ions will build on the surface, which reduces the potential at short 

distances away from the monomer. In addition, a large concentration of ions also builds 

on the surface of the nanopore. As a result, when using very high electrolytic 

concentrations, such as 1 M used in these simulation results, it would appear that the 

effects of surface charge on the nanopore and the monomer would be “screened” by the 

electrolytic solution. One could hypothesize, due to the large ion concentrations in close 

proximity to the polymer, that electro-osmotic forces along the backbone of the polymer 

would greatly affect the translocation dynamics in an experiment with a charged 

biopolymer such as ds-DNA. The importance of these findings indicates how important it 

is to include the electrolytic solution for not only electrostatic effects but possible electro-

osmotic effects as well.  
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CHAPTER 6: CONCLUSIONS AND RELATED FUTURE WORK 

6.1 Main Findings 

This thesis has thoroughly investigated polymer translocation through solid-state 

nanopores in order to gain a better understanding of the underlying physics. This present 

work investigated several important issues, including the elusive and important 

translocation time versus chain length scaling exponent (τ ~ N
α
)[1]. If the scaling 

exponent α is known, determining the length of the polymer chain is trivial from the 

measured translocation time. In order to gain a better understanding of how the scaling 

parameter α may change under different conditions, I performed simulations varying key 

physical parameters such as nanopore dimensions, applied voltage strength, solvent 

viscosity, and the configuration of the polymer before the translocation begins. In 

addition, I also studied the potential inside silicon nitride nanopores of varying diameter 

with the inclusion of surface charge and ions due to an applied electrolytic solution used 

in translocation time measurements. The results from my simulation studies can assist in 

not only proper nanopore design, but also help determine the proper experimental 

environments and operational parameters for nanopore operation.  

 As a first objective of this thesis, I developed a computationally efficient, 

physically accurate simulation methodology in order to study the underlying physics 

involved in a translocation time measurement. My simulation methodology, which 

allowed for both the inclusion (Zimm polymer) and the omission (Rouse polymer) of 

hydrodynamic interactions, used highly accurate atomistically detailed silicon nitride 

nanopores of varying diameters and lengths. In addition, I used coarse-grained simulation 
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techniques (i.e. Brownian and Langevin Dynamics) in my studies, permitting the use of 

higher time steps and longer simulation times and polymer chain lengths, which allowed 

for a more thorough and detailed study of polymer translocation. Finally, using the 

coupled Poisson-Nernst-Planck equations, I was able to determine the potential and ionic 

concentration distribution inside the nanopore, as a result of the ions present in the 

electrolytic solution and surface charge of the silicon nitride nanopore, for both situations 

of when a polymer is present or absent from the nanopore.  

 Using my simulation methodology, I first investigated forced Rouse polymer 

translocation through silicon nitride nanopores using two different initial polymer 

configurations for different applied voltages. Whereas most polymers behave as Zimm 

polymers in bulk solution [88–90], hydrodynamic interactions have shown to be screened 

for polymers moving near a wall or inside a channel [45,68,91]. Thus my study of Rouse 

polymers is very applicable in polymer translocation through nanopores especially in 

measurement conditions where the pore diameter is very small. In my first studies, using 

polymer lengths much longer than the length of the pore, which is often the situation in a 

typical translocation time measurement, I found the only way to obtain the theoretical 

scaling exponent derived by Kantor and Kardar [47] (α = 1 + υ = 1.588) was if the radius 

of gyration of the polymer scaled as Rg ~ N
υ
 throughout the translocation process. Any 

deviation from this scaling, either through the initial polymer configuration or polymer 

crowding at the exit of the nanopore (due to the translocation time being much shorter 

than the polymer relaxation time for large applied voltages), resulted in scaling exponents 

smaller than the theoretical prediction. Thus, for nanopore operation, the only way to 

obtain the theoretical value for the scaling exponent (thus making it trivial to determine 
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the polymer chain length from the measured translocation time) would be to use an 

applied voltage that allows the translocation time to be shorter than the polymer 

relaxation time. On the other hand, when the polymer length is on the same order as the 

pore length, a continuous scaling exponent did not exist, but rather increased as the length 

of the polymer increased, converging to the same value obtained in the short pore 

simulations for very long polymers. As discussed earlier, one of the drawbacks of using 

solid state nanopore devices in translocation measurements is the high rate at which the 

polymers flow through them when using an applied voltage [11,12,141] putting very 

demanding requirements on measurement equipment [22]. It was shown in previous 

experiments that it is possible to increase the translocation of DNA through silicon nitride 

nanopores, while keeping a good SNR[13], when increasing the viscosity of the solvent 

by adding glycerol. Hence, I studied the effects of increasing the solvent viscosity using 

my simulation methodology and found, whereas increasing the viscosity of the solvent 

increases the translocation time through the pore, it had no effect on the scaling exponent 

α due to the increase in polymer relaxation time. Thus, my findings indicate that 

decreasing the applied voltage, and not increasing the solvent viscosity, leads to the 

scaling exponent agreeing with the theoretical predictions. Finally, my simulation results 

for Rouse polymers shown in Figure 29 (a) (α = 1.44) are very similar to  the 

measurement values obtained by Wanunu et al. [18] using a 4 nm wide, 10 nm thick SiN 

nanopore with ds-DNA chain lengths of 0.150–3.5 kbp (α = 1.40). These findings 

indicate that Rouse polymers may be appropriate for accurate modeling of polymer 

translocation through narrow nanopores due to polymer-pore interactions heavily 
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influencing the dynamics of the translocation process and weakening the effects of 

hydrodynamic interactions.  

 As a next objective, I investigated how hydrodynamic interactions (HI) affect the 

translocation process by studying Zimm polymer translocation through silicon nitride 

nanopores using the same two initial polymer configurations as in the Rouse polymer 

case. As mentioned before, most polymers behave as Zimm polymers in bulk solution 

[88–90] indicating hydrodynamic interactions are vital for any thorough investigation of 

polymer translocation through nanopores. In my simulation results, I found that not only 

do the secondary polymer-solvent interactions caused by HI decrease the translocation 

time from the Rouse polymer translocation, but also decrease the relaxation time for the 

Zimm polymer. This shorter relaxation time reduces polymer crowding at the exit of the 

nanopore resulting in scaling exponents that agree with theoretical predictions of α = 2υ 

even at high voltages. For smaller voltages, the scaling exponent becomes larger, 

agreeing with intuition since the scaling exponent for unforced translocation is always 

larger than for forced translocation. In addition, as shown in Figure 31, the translocation 

time versus chain length scaling law (α) is 1.21, which agrees very well with experiments 

performed by Storm et al. [9,10] (α = 1.26 – 1.27) using a 10 nm-diameter SiO2 

nanopore. These findings indicate that for larger nanopores, due to weaker polymer-pore 

interactions, hydrodynamic interactions are more prominent than for narrow pores. 

Finally, just as was observed with Rouse polymers, I demonstrated that increasing the 

solvent viscosity will increase the translocation time, but have no effect on the scaling 

exponent α. 
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 Not only did I study the effect of polymer length, but I also studied the scaling 

relationship between the translocation time and the applied voltage. For both Rouse and 

Zimm polymers, I obtained the theoretical scaling relationship of τ ~ V
-1 

[47], which has 

also been observed in experiments using very large nanopores (30 nm diameter)[14], for 

low to intermediate applied voltages. For much higher voltages, beginning at 500 mV, the 

scaling exponent was greater than -1. This change in scaling exponent is due to the 

extreme polymer crowding at the exit of the nanopore when using high applied voltages. 

Not surprising, the deviation from the theoretical scaling exponent was less in the Zimm 

polymer model due to the shorter relaxation time than the Rouse model. The importance 

of this finding is that this scaling relationship of τ ~ V
-1 

does not hold for all voltages 

further indicating that large applied voltages are responsible for extreme polymer 

crowding at the nanopore exit and deviations from theoretical derivations.  

 Whereas most translocation time laboratory experiments involve driving 

biopolymers through nanopores with an applied voltage, I investigated an equally 

important situation in which the applied voltage is absent, or unforced, translocation. In 

these simulations, I studied the effect on the polymer-pore interactions on the 

translocation time by varying the pore diameter. For very narrow pores, I found that for 

both the Rouse and Zimm polymer models, the translocation time scales as the Rouse 

relaxation time defined as the time required for a polymer to diffuse its radius of gyration, 

τ ~ N
1+2υ

. This important result indicates that, even though hydrodynamic interactions are 

long ranged in bulk solution [91], the effects are screened for polymers moving near a 

wall or inside a channel [45,68,91]. And, as demonstrated in my simulation results, if the 

polymer-pore interactions are strong enough, HI affects are removed. Once the pore 
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diameter is increased, the polymer-pore interactions are weakened and the scaling 

exponent increases. When the pore is removed from the simulation results, the scaling 

law for both the Rouse and Zimm models converges to their polymer relaxation times, τ ~ 

N
1+2υ 

and τ ~ N
3υ

 respectively. These studies emphasize the importance of polymer-pore 

interactions on translocation time simulation studies. As stated earlier, if a universal 

scaling law is to be obtained, it is important that there must be a consistency of polymer-

pore interactions between all theoretical and computational studies.  

Finally, I conducted preliminary investigations of the effects of electrostatic 

interactions caused by the ions in the electrolytic solution and the charge on the surface 

of the silicon nitride nanopore, using the coupled Poisson-Nernst-Planck equations. I 

found that, due to the negative surface charge on the silicon nitride nanopore, there is a 

large positive valence ion build up on the pore surface which causes the potential to 

decrease to zero at small distances from the nanopore surfaces. In addition, the ionic 

concentration also decreases further away from the pore surface, and only reaches the 

bulk value for large nanopore diameters. Hence, an important result is that pore diameter 

greatly affects the ion concentration inside the pore. I also showed that, whereas 

uncharged monomers have little impact on the potential inside a nanopore, negatively 

charged monomers attract positive ions to the surface and thus change the ion 

distribution. Just as is the case for the pore surface, the cation buildup on the surface of 

the negatively charged monomers also reduces the potential at very short distances. These 

key findings indicate two important results. First, due to the high electrolytic 

concentration (1 M) and very short Debye length (~ 3 Å), the potential as a result of the 

surface charge of both the nanopore and polymer is largely screened even at very short 
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distances. Second, due to the buildup of ions on the surface of each monomer, which 

would indeed be the case for a charged biopolymer such as DNA, electro-osmotic forces 

could possibly have a large impact on the translocation process. The need for models that 

include electro-osmotic forces is discussed in the future works section of this thesis.  

6.2 Related future works and challenges  

6.2.1 Controlling DNA/Translocation Time Resolution 

One of the current drawbacks to using nanopores in translocation time 

measurements is, due to polymer-pore interactions[18], random thermal forces, and 

interactions between solute and solvent molecules resulting in viscous drag forces, the 

time required for a particular DNA chain to pass through a solid state nanopore can vary 

widely from trial to trial making it difficult to know the exact length of the DNA chain, 

thus decreasing the sensitivity of the measurement [22].  In addition, as discussed earlier, 

another difficulty when using solid state nanopore devices is due to the high rate at which 

the polymers flow through them when using an applied voltage [11,12,141]. This high 

velocity requires measurement instruments to have detector bandwidth values in the MHz 

range which makes it very difficult to measure changes in current on a pico-ampere 

scale[22]. Hence, controlling DNA flow through nanopore devices would seem to be an 

important next step at arriving at a sequencing solution.  

One possible way to reduce the stochasticity of the translocation process, thus 

improving the sensitivity of the DNA chain length measurement, is to control the DNA-

nanopore interactions by changing the nanopore surface composition with either atomic 

layer deposition [16,142] or coating the surface with an organic material [143]. It was 

also shown in previous experiments that it is possible to decrease the translocation time 
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by a factor of 10 while keeping a good SNR[13] by decreasing the temperature of the 

measurement system, increasing the salt concentration, increasing the viscosity of the 

solvent by adding glycerol, and lowering the applied potential. Unfortunately, these steps 

also reduce the ionic current signal[13], which could cause potential problems when 

making more sensitive measurements.  

Another method that could potentially be used to decrease the velocity of the 

DNA in a nanopore device is, instead of using DC applied potentials to facilitate 

translocation, use time varying, or AC, applied potentials. Intuitively, one can imagine 

that by using an AC stimulus, the DNA would remain in the nanopore for longer periods 

of time due to the oscillatory nature of the resultant electric field [39,43]. Finally, 

nanopores fabricated with different topologies such as p-n junctions [144–148] or stacked 

layers of metal and oxide materials [149,150] can be used to vary the electric field inside 

the nanopore thus either slowing down the DNA or trapping it for possible base by base 

measurements. Hence, computational investigations of each of the methods discussed 

above would be extremely helpful in determining if any of these are viable options for 

better controlling of DNA translocating through nanopore devices, before undertaking the 

difficult and costly experimental work required to build and measure these types of 

nanopore devices. 

6.2.2 Polymer model improvement 

Currently, most coarse-grained simulation methodologies, including the ones 

presented in this work, use the combination of the FENE [99] (Equation (2-2)) and the 

WCA [100] (Equation (2-3)) potential energy functions to model a polymer with high 

excluded volume interactions as would be seen in a good solvent conditions. As I stated 
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before, because of the abrupt cutoff in the WCA potential when the distance of the non-

adjacent monomers is greater than 2
1/6

σ, the ‘equilibrium’ (or steady-state) polymer 

configuration is very different than the minimum energy state. And, as I showed in 

Chapter 4, translocation time versus chain length scaling exponents, α, vary differently 

depending upon the configuration of the polymer. One way to remove this potential 

discrepancy source would be to simply add a bond-angle potential to the potential energy 

function [98]. However, because of the parabolic nature of this potential energy function 

and the requirement to keep the bond stiff to ensure a polymer with high excluded 

volume interactions, resulting in a large spring constant, a small simulation time step 

would be required thus limiting both the overall simulation time and the number of 

monomers in the simulation.  

 Another limitation to this FENE-WCA polymer model is the lack of full 

characterization of the different physical effects seen in translocation time measurements. 

For example, in the experiments performed using a 4 nm diameter SiN pore, by Wanunu 

et al [18] observed a crossover behavior with a scaling law exponent of α = 1.4 for ds-

DNA between 150 - 3500 bp and α = 2.28 for longer chains. This larger scaling exponent 

was hypothesized to be due to the polymer interacting with the SiN membrane outside the 

pore, which has not been observed in the literature in any coarse-grained simulation 

studies. One possible reason for this is computational limitations that bead-spring 

polymer models present due to the required small time step needed to keep the 

configuration stable. In addition, unlike what is demonstrated from the simulation results 

shown in Figures 24, 26, and 34, and experiments using very large nanopores (30 nm 

diameter)[14], both of which agree with predictions [47] of τ ~ V
-1

, Wanunu et al. [18] 
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obtained experimentally an exponential relationship for translocation time versus voltage. 

One possible cause for this exponential relationship between the voltage and the 

translocation time that is seen for smaller diameter pores could be related to the higher 

entropic barrier that must be overcome in order for the polymer to translocate through the 

pore[30]. Again, this exponential scaling relationship has also not been observed using 

the FENE-WCA polymer model. One possible reason for this is due to the lack of a 

bond-angle potential term in the potential energy which would limit the number of 

configurations the polymer can achieve thus increasing the entropy barrier. However, as 

stated before, using a bond-angle potential would limit the time step, and thus not only 

the number of monomers used in a simulation study, but also the overall simulation 

duration.  

Hence, whereas the FENE-WCA model does a good job in modeling many of the 

properties of polymers in good solvent conditions, there are some improvements that are 

needed in order to fully model all aspects of translocation through solid-state nanopores. 

This new model must address the issues stated above while also permitting the use of 

high time steps and longer simulation durations and chain lengths which would allow for 

simulations to more accurately model translocation time measurements.  

6.2.3 Electro-osmotic Force Modeling 

 Another improvement that needs to be addressed more thoroughly in translocation 

time simulation studies is the effect of electro-osmotic forces. Recent computational 

studies have hypothesized that drag forces due to electro-osmotic flow inside a nanopore 

are much more significant that hydrodynamic forces acting on the DNA “blob” outside 

the nanopore when driven with an applied voltage [137]. If laminar flow similar to a pipe 
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is assumed in nanopores, then narrow pores should have stronger electro-osmotic forces 

than wider pores. If so, this may explain why the scaling law in the studies of Wanunu et 

al. [18] using 4 nm pores are much more different than those observed by Storm et al. [9] 

in larger (10 nm) pore studies.  

In addition, it has also been hypothesized using computational studies that the 

direction of electro-osmotic forces is dependent on the surface charge of the nanopore 

[138]. If the surface charge of the nanopore has the opposite charge of the polymer 

flowing through it, the electro-osmotic flow is in the same direction as translocation and 

vice versa. Hence, electro-osmotic forces can either hinder or assist in the translocation 

process. In the latter, when the flow is in the same direction as translocation, the electro-

osmotic forces have been hypothesized to stretch the polymer and thus reduce the 

entropic barrier required for translocation [138]. 

Most, if not all, of the current simulation methodologies do not include the effects 

of electro-osmotic forces. Whereas computational studies state electro-osmotic forces do 

contribute to the overall drag involved in a translocation time simulation, there is no 

studies to indicate how electro-osmotic forces may contribute to the scaling exponent α. 

Hence, future simulation methodologies could include electro-osmotic effects in order to 

study their impact on α.  

6.2.4 Electrostatic Interactions   

 In many of the translocation time computational studies including the one 

presented in this thesis[127,131,144–146,151], the electrostatic effects are computed 

assuming the ions are treated as a continuum either through the Poisson-Boltzmann (PB) 

or Poisson-Nernst-Planck (PNP) equations. Whereas the continuum models reduce 
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computational requirements for a solution, there are some approximations made that 

could be improved upon in order to obtain a more accurate model. For example, when 

treating the electrolytic solution as a continuum, there is no associated size with each ion, 

thus steric effects are omitted. This could lead to extremely high, and unrealistic, ion 

concentrations at charged surfaces (although I did not observe this in my simulation 

results shown in Chapters 2 and 5). There have been studies which have modified the PB 

or the PNP equations to include steric effects[152–154]. However, a computationally 

efficient finite-difference algorithm for both the PB and PNP equations that includes 

steric effects has yet to be fully developed and tested. Such an algorithm would be very 

beneficial in studying electrostatic effects in nanopore simulations.  

Another limitation of using a continuum method, such as the PNP mean field 

theory approximation, to model the electrostatics in a nanopore simulation, is the 

assumption that each ion has a zero self-energy. This self-energy term, which has been 

shown to be important in ion channel modeling, arises when a charge induces an image 

charge at a dielectric boundary resulting in a repulsive energy that scales as ~ q
2
 [128]. 

This repulsive energy term limits ion flow into a channel. An approximation to the 

change in self energy when moving from an area of dielectric constant εR1 to an area with 

dielectric constant εR2 can be found from [155]: 
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where a is the ion radius and εo is the permittivity of free space.  Because continuum 

models do not compute discrete ion-ion interactions, this self-energy term is zero. 

However, it has been shown using Brownian Dynamics (BD) simulations to model ion 

flow through channels that the solution to continuum methods such as the Poisson-

Nernst-Planck and Poisson-Boltzmann converges to the BD results when the radius of the 

ion channel is 2 Debye lengths or greater [128–130]. In the simulations reported in thesis 

as well as most translocation time measurements, a 1 M solution is used as the electrolyte 

resulting in an approximate Debye length of 3 Å. In other words, in order to accurately 

omit the self-energy term, the radius of a pore must be at least 6 Å. Hence, another way 

to improve upon the electrostatic modeling would be to include self-energy terms that 

limit the amount of ions that are present in nanopores, especially those with small 

diameters.  
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APPENDIX  

A.1 Fraenkel and FENE-WCA bead-spring models 

 

Figure 61 Potential energy curves for both the Fraenkel (red) and FENE (blue) spring 

models. (a) Expanded Curve (b) Focused at Minimum Energy Distance. 

 

As shown in Figure 61 (b), for the polymer model parameters described in 

Chapter 2, the minimum energy point for the Fraenkel model is 4.3 Å, whereas the 

minimum energy point for the FENE-WCA model is 4.48 Å. The two graphs above 

indicate there are several differences between the Fraenkel and FENE-WCA models. For 

example, the Fraenkel model has a sharper potential energy curve indicating that it 

possesses stronger bead-to-bead forces and higher vibrational frequencies than the FENE-

WCA model. In addition, the Fraenkel model has a continuous potential energy curve and 

is infinitely expandable. The FENE-WCA spring model, on the other hand, has a 

singularity in it its potential energy function at Ro (8.3 Å in Figure 61(a) above) 

indicating a finite bead-to-bead distance that it can reach[156]. It is interesting to note 
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that, upon comparison, the force-extension curve for DNA more resembles the FENE-

WCA spring model than the Fraenkel model[156,157]. In reality, DNA, just like the 

FENE-WCA spring model, has a finite distance to which it can be extended to[157]. 

However, many other research simulation projects choose to use the Fraenkel model as a 

way to model bead-to-bead interactions[98,127,158] and, to increase the flexibility of my 

code, I choose to incorporate this model as well.  
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A.2 Metropolis Monte Carlo (MMC) simulation flow chart 

 

Figure 62: Metropolis Monte Carlo (MMC) simulation flow chart 

 

As was described both in Chapters 4 and 5, in some instances, before a 

translocation time simulation was performed, the Metropolis Monte Carlo (MMC) 

simulation was carried out[118] for 50,000 trials so as to place the polymer in its 

minimum energy state. I describe here the MMC procedure, using the flow chart in 

Figure 62 as a guide for understanding. 
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First, one bead (or monomer) is selected at random from the polymer chain. Next, 

three values (ε1, ε2, and ε3) are randomly selected from a uniform distribution between 0 

and 1. Next, using the random values above, the x coordinate, y coordinate, and z 

coordinate of the randomly selected monomer are changed to: 

 

(A-1) 

 

(A-2) 

 

(A-3) 

 

 where x_current, y_current, and z_current are the current x, y, and z coordinates of the 

monomer and Δ is a fixed parameter that scales how much the trial move will be. 

Through extensive trial testing I arrived at a value of Δ = 0.15.  

 Next, the energy is computed for both the polymer in its original state, µCurrent, and 

the polymer after the trial move, µTrial. If the new energy value is smaller than the current 

energy value (µTrial. < µCurrent ), then the move is always accepted and the bead is moved 

to its new position.  On the other hand, if the new energy is larger than the current energy 

(µTrial. > µCurrent ) then the move is accepted with probability: 
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This is done by first selecting another random value from a uniform distribution between 

0 and 1, ε4. Then, if ε4 is smaller than the result computed from equation A-4, the move 

will be accepted. If not, the move will be rejected and the bead will be placed back to its 

original position.  

During the procedure, the beads are free to move anywhere in the simulation 

volume. However, once the procedure is completed, the first bead must be placed inside 

the nanopore to begin the simulation. Hence, at the conclusion of the MMC procedure, 

the first monomer is moved to its new position inside the nanopore and all other 

monomers are moved relative to the first monomer position keeping the polymer in its 

minimum energy state. 

Table 1 below provides the final bead-to-bead distance for MMC simulation using 

10 beads with initial distance  (5 Å) different than equilibrium value (4.3 Å) using 

Fraenkel spring model. As shown, the final bead-to-bead distance is very similar to the 

equilibrium value. 

 

Table 1: Simulation data from MMC simulation using 10 bead polymer incorporating 

Fraenkel spring model. 

Bead 

Positions

Initial 

Distance 

(Å)

Final 

Distance 

(Å)

Equilibrium

Distance (Å)

Percent 

Difference 

(%)

1-2 5 4.23 4.3 1.72

2-3 5 4.39 4.3 2.11

3-4 5 4.25 4.3 1.26

4-5 5 4.30 4.3 0.09

5-6 5 4.31 4.3 0.28

6-7 5 4.25 4.3 1.18

7-8 5 4.24 4.3 1.30

8-9 5 4.27 4.3 0.75

9-10 5 4.33 4.3 0.61  
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Table 2 below tabulates the final bead-to-bead distance for MMC simulation 

using 10 beads with initial distance (3 Å) different than equilibrium value (4.48 Å) using 

FENE spring model. As shown, the final bead-to-bead distance is very similar to the 

equilibrium value with the exception of distance between beads 4 and 5. In addition, the 

percent differences are higher than those produced by the Fraenkel spring model. This is 

probably due to the fact that, as shown in Figure 61, the potential energy function is much 

more rigid for the Fraenkel model than the FENE model. And, as indicated in Figure 

9(b), the accepted probability graph for the FENE model is much broader than the 

Fraenkel model indicating large displacement distances from the minimum (4.48 Å) will 

still result in small energy values.  

 

Table 2: Simulation data from MMC simulation using 10 bead polymer incorporating 

FENE spring model. 

Bead 

Positions

Initial 

Distance 

(Å)

Final 

Distance 

(Å)

Equilibrium

Distance (Å)

Percent 

Difference 

(%)

1-2 3 4.54 4.48 1.24

2-3 3 4.39 4.48 2.03

3-4 3 4.64 4.48 3.57

4-5 3 5.29 4.48 18.07

5-6 3 4.54 4.48 1.40

6-7 3 4.39 4.48 2.12

7-8 3 4.21 4.48 6.10

8-9 3 4.35 4.48 2.85

9-10 3 4.53 4.48 1.06  
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A.3 Integration Time Step  

As mentioned before the integration time step, Δt, used in my simulations was 

chosen to be 0.1 psec for the Velocity Verlet and Langevin Dynamics integrators and 

0.05 psec for the Brownian Dynamics integrator. To arrive at these times step values, I 

first estimated the frequency of oscillation of each monomer for both the Fraenkel and the 

FENE-WCA models. By first noting the frequency of oscillation of a spring can be found 

using the formula: 

 

 

(A-5) 

 

 

where f is the frequency in Hz, k is the spring constant, and m is the mass of each 

monomer. Using the parameters provided earlier for the Fraenkel model, and estimating 

that, using the Nyquist criterion which states the sampling time (or time step) should be 

twice the highest frequency of interest, I obtain a time step of approximately 0.2 psec.  

Using the Nyquist criteria and Equation (A-5) for the FENE spring model, I 

obtained a time step of approximately 3.7 psec. This higher time step makes the FENE 

model more attractive than the Fraenkel. On the other hand, the spring constant for the 

WCA model also needs to be computed, which I estimated as the second derivative of 

Equation (2-3) and found to be: 
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(A-6) 

 

 

Using the polymer values for the WCA model provided earlier in Chapter 2, and setting r 

= 4.48 Å (which is the minimum distance between monomers) I obtained a time step of 

approximately 0.998 psec. If the Nyquist criterion is used for the combination of the 

FENE-WCA spring model, then the sample rate (or time step) must be at least twice the 

highest frequency of the two, hence the overall time step is estimated to be 0.998 psec.  

 Hence, it appears that the time steps used in these simulations (0.1 psec and 0.05 

psec)  are much smaller than the estimated time steps from the formulas above. However, 

it should be noted that not only is there a time step associated with the polymer-polymer 

interactions, but there also is a time step associated with the polymer-pore interactions as 

well. In fact, more often than not, when I tried to increase the time step above 0.1 psec, 

the polymer chains would break apart inside the nanopore and thus the simulation would 

fail. In addition, increasing the time step above 0.1 psec in simulations using the Velocity 

Verlet algorithm would not meet the conservation of energy requirement.  Finally, as 

shown in the extensive testing that I performed, my simulation results match very well 

with the theoretical values for Rouse polymers.   

 When performing Brownian dynamics simulations using the TEA algorithm, I 

noticed a higher fail rate (i.e. polymer chains breaking apart) for polymer translocation 

through nanopores using a time step of 0.1 psec. When decreasing the time step to 0.05 
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psec, I obtained a higher success rate for translocation process. As a result, this is the 

integration time step used in my simulations. As shown in Table 3, I did a comparison for 

the diffusion coefficient of one monomer with a diameter of 4.3 Å using different time 

steps and obtained approximately the same value which all agreed very well with the 

theoretical value. Finally, just as in the Langevin dynamics integration algorithm, as 

shown in the extensive testing that I performed, the simulation results match very well 

with the theoretical values for both Rouse and Zimm polymers.   

 

Table 3: Diffusion Coefficient vs. Time Step for one monomer with diameter 4.3 Å. 

Time Step (psec) Theoretical D  

(cm
2
/sec) 

Simulation D 

(cm
2
/sec) 

Percent Difference 

0.1 1.015E-5 0.9675E-5 4.79 

0.05 1.015E-5 0.9977E-5 1.72 

0.01 1.015E-5 0.9879E-5 2.71 

 

A.4 PNP Convergence  

 In order to ensure the PNP solutions converged to an accurate solution, the 

simulations were first performed for 300,000 trials using the Successive Over-Relaxation 

(SOR) method[123,124] initially, but then reduced to 200,000 trials because the solution 

had converged at that point. To obtain the final simulation result for the dielectric slabs 

given in Figures 14 - 17, I first performed simulations with a charged dielectric slab with 

no ions present, using an initial condition of 0 volts throughout the simulation volume.  

After this simulation was completed, I used these results (Figure 13) as the initial 

condition of my next simulation which I included the electrolyte solution. In this 
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simulation, I assumed an equal concentration of 1 M throughout the simulation volume. 

Although this was probably not a good initial guess, the solutions did converge to a final 

solution as shown in Figures 64 - 66.  

Figure 63 provides a plot of the RMS error versus the SOR trial for the potential, 

and the ion concentration of both the positive valence and negative valence ions. As 

shown, the simulations are converging with the RMS error reaching a minimum value 

around 200,000 trials. Figure 64 shows the positive valence ionic concentration as a 

function of SOR iteration as a function of z, with both x and y = 50 Å (because of the 

dielectric slab being used, the solution is symmetric and the same for all x and y values) 

using a 50 Å slab. As shown, in Figure 64 (a) the ionic concentration at first oscillates to 

higher and lower values, but later converges to a final value at around 200,000 trials. 

Because this is a dielectric slab, the concentration is zero inside the slab (between z = 275 

and z = 325). Similar results for the negative valence ion are provided in Figure 65.  

 

 

 

Figure 63: RMS Error versus SOR Iteration for 300,000 trials for (a) potential, (b) 

positive valence ion, and (c) negative valence ion. 
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Figure 64: Ionic concentration of positive valence ion versus z for maximum SOR trials 

of: (a) 100,000 and (b) 230,000 trials using 50 Å dielectric slab with both x and y = 50 Å. 

 

 

Figure 65: Ionic concentration of negative valence ion versus z for maximum SOR trials 

of: (a) 100,000 and (b) 230,000 trials using 50 Å dielectric slab with both x and y = 50 Å. 
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 Figure 66 shows the calculated potential as a function of SOR iteration as a 

function of z, with both x and y = 50 Å. Just as in Figures 64 and 65, the potential at first 

oscillates to lower and higher values before reaching a steady-state value around 200,000 

trials. The final slab simulations were then used as the initial conditions for the pore 

simulations given in Chapter 5, each using 200,000 SOR trials to compute the final 

solution.   

 

 

Figure 66: Potential versus z for maximum SOR trials of: (a) 100,000 and (b) 230,000 

trials using 50 Å dielectric slab with both x and y = 50 Å. 

 

 

 

A.5 Electric Field Calculations  

 As described earlier, the electric field is computed using the following difference 

formula: 
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(A-7) 

 

This formula is valid for everywhere except where the Dirichlet boundary conditions are 

applied, which are at z = 0 and z = 600 Å. To compute the field at z = 0, a forward 

numerical difference formula is used given by Equation (A-8)[124], whereas to compute 

the field at z = 600 Å, a backward numerical difference formula is used given by 

Equation (A-9)[124]. 

 

(A-8) 

 

 

 

(A-9) 
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As described earlier, the potential and ionic concentrations are computed using 
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volume. In order to compute the electric field on each monomer between grid points, 

first, the electric field is computed at the eight nearest grid points to the monomer using 

Equations (A-7) – (A-9) above. Then, a trilinear interpolation method, as discussed by 

Kang [126], is used to compute the electric field at the position of the monomer. The 

trilinear interpolation method, given the values of all eight vertices on a cube (Figure 

(67)), computes the value of a quantity p at a point x, y, and z, using equations  

(A-10 – A-21 )[126]: 

 

 

Figure 67: Trilinear interpolation method, as discussed by Kang [126], used to compute 

the electric field at the center of each monomer. The electric field is first found at all 

eight vertices on a cube that contains the monomer. Then, equations (A-10 – A-21) are 

used to find the electric field at the desired x, y, and z point.  
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(A-19) 

 

 

(A-20) 

 

 

(A-21) 
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