PROJECT INITIATION
Date: $11 / 30 / 71$

Project Title:
Project No.:
Project Director:
Sponsor:
Effective

Type Agreement:
Contract 20. $1433-28148$
Amount:
48,964
Reports Requived Nonthly Progresi Report:
Tinal Techaical Report
Contact Persens: Administrative NattersH. R. J. WintecoibCXR Resident RepresentrativeRocm 276 - New mess builaingGeorgia Tastitute of TechnologyAtlanta, Ceorgia 30332
Pechmeor NatteraComtructirg Oracer's Representative(to be appointed by 1etter)
Assigned to Whectronics (Comennicatlons) Division
COPIES TO:
Project DirectorDirectorAssociate DirectorAssistant Director(s)
\square Division ChiefsBranch HeadGeneral Office ServicesEngineering Design Services
\square Photographic LaboratoryResearch Security Officer
\square Accounting
\square Purchasing
\square Report Section
L Library
\square Rich Electronic Computer Center

$$
\begin{aligned}
& \text { TA7 } \\
& \cdot G 4 x \\
& W 22 \\
& A-13>9
\end{aligned}
$$

GTA

$$
\begin{gathered}
\text { pub } \\
\text { dep. } \\
10-593
\end{gathered}
$$

GEORGIA INSTITUTE OF TECHNOLOGY Engineering Experiment Station

PROJECT TERMMNATION

Date Fincuary 6, 1973
PROJECT TITLE: Study of dahematical rodeling of Commications Systems Transponders and Receivers
PROJECT NO: A-1379
PROJECT DIRECTOR: Mr. J. R. Walsh
SPONSOR: MASA - Marshall Space Flight Center
TERMNATION EFFECTIVE: Novemider 18, 1972 (Contract Expiration)
CHARGES SHOULD CLEAR. ACCOUNTING BY: Novemioer 30, 1972
Contract Closeout Items Remaining: Final Invoice \& Closing Eocmments
Final Report of Inventions
Covermment Property Inventory à Cartificate

COHMDAICATIONS

COPIES TO:

Project Disector
Director

- Associate Director

Assistant Directors
Division Chief
Beench Head
Acermanting
Engintering Design Services

General Office Services
Photographic Laboratory
Purchasing
Report Section

Security
Hich Electronic Computer Center

National Aeronautics \& Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report No. 1, Covering period 19 November 1971 to 31 December 1971, Project A-1379, Contract NAS8-28148, "Study of Mathematical Modeling of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035(IF).

Gentlemen:
Contract NAS8-28148 was undertaken on 19 November 1971 and is for the purpose of developing two sets of mathematical models suitable for the analysis of communication systems. The first set of mathematical models is to be established for the evaluation of communication system transponders and receivers at a block diagram level. The second set of models is for the evaluation of these transponders and receivers at a circuit detail leve1. Earlier work on Contract NAS8-20054 considered portions of transmitters on the same basis.

A visit was made to Marshall Space Flight Center on 23 November 1971 during which the course of work on the contract was discussed. It was agreed at that time to extend to transponders that portion of the work started on Contract NAS8-20054 which included both the block and circuit detail approaches to communication transmitter modeling. This previous work was concerned specifically with the analysis, on a block level, of an automatic frequency control system of an FM transmitter and, on a circuit detail level, the circuitry of the Airlock Module Transmitter. Also discussed during the visit was the investigation of existing communication system models and circuit analysis programs which may be useful in the development of the models. The circuit analysis program CIRCUS is presently in use on the contract for circuit detail modeling. It was agreed to investigate these other models for the purpose of determining which is best for a specific task and for the purpose of possibly adapting desirable characteristics to a communication system model.

Applicable computer files originally established for the work on contract NAS8-20054 have been reestablished for the present investigation. The files are cataloged on the Fastrand mass storage media of the Georgia Tech Univac 1108 computer. The original files have been screened and only those files and file elements applicable to the present investigation were reestablished.

A model of the first $I F$ amplifier of the CCS transponder receiver was created and added to the files. This model was successfully analyzed using CIRCUS. The run not only provided information on the characteristics of the amplifier, but also served to validate the new CIRCUS files.

A review of the program listing of certain subroutines in CIRCUS has been started. Particular areas being examined are input, output, and monitoring operations. The main objective of examining these details is to find ways of improving the user-model interface by modifying the diagnostic procedures and messages.

During the next period work will continue on the review of the program details of CIRCUS with the goal of providing better 'diagnostic capabilities and an improvement in the program user interface. Additional receiver circuits will be analyzed at the circuit detail level and formulation of the details of the block approach to transponder analysis will begin. Also during the period an investigation into the availability of other models applicable to communication systems will be started.

The following constitutes a statement of the funding status as of 31 December 1971:

Expenditures to Date

Actual expenditures 19 November 1971 to 31 December $1971 \quad \$ 3420$
Unexpended Funds to Date
Unexpended funds 31 December 1971
\$ 45544

The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

Respectfully submitted:

Approved:
D. W. Robertson, Head

9 February 1972

National Aeronautics \& Space Administration George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report No. 2, Covering period 1 January 1972 to 31 January 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Modeling of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035(IF).

Gent lemen:

During this period work has continued on the development of mathematical models for communication system transponders and receivers. The review of program details of CIRCUS aimed at improving its diagnostic capabilities was continued. One of the major improvements being sought was some method of identifying components that were contributing to excessive time requirements. Detecting the need for an excessive amount of computer time to run a circuit would not be too difficult, but reliable methods for identifying the components causing the problem have not yet been established. The actual program review was reduced to a relatively low level while some of the factors contributing to excess time requirements were further studied.

The fast time constants associated with small capacitors discharging through small resistors have previously been recognized as contributing to the time problem. The problem can easily arise in transistor circuits due to the small inter-electrode capacitance of many transistors. The cause of transistor related time problems is not easy to recognize since the capacitances associated with the transistor are not readily apparent from the library data.

As an aid to identifying the cause and analyzing transistor related problems, a digital program was constructed to calculate both $C_{b e}$ and $C_{b c}$ from the charge control model parameters for any expected base-emitter or base-collector voltage. Tables of both capacitances as a function of the terminal voltages have been calculated for all transistors in the present library. These tables have provided better insight into this class of problems; they should also be valuable in troubleshooting difficulties with computer analysis in the future.

Work on the modeling of receiver circuits was directed toward modeling a mixer and this effort is still underway. The mixer circuit being modeled contains transformers with center tapped windings, and the best method for modeling these for CIRCUS analysis is not clear. A number of experimental runs with models of simple circuits containing center tapped transformers have shown that the choice of coupling coefficients is critical. The circuit can become unstable for some choices; for some others, satisfactory performance was obtained but the computer time required to run the circuit was excessive. A simple procedure for selecting these coefficients is needed and is being sought.

An inquiry was made of the Computer Software Management and Information Center (COSMIC) at the University of Georgia about the availability of programs pertinent to the present investigation. As a result of this inquiry abstracts of eleven related programs were obtained. These abstracts are presently being reviewed to determine the usefulness of a particular program in the present modeling studies.

During the next period work will continue on the study of other computer aided design programs to determine their usefulness for the modeling investigation and on the establishment of techniques for providing better diagnostic capabilities for models presently in use. The circuit detail modeling of selected receiver circuits will also continue.

The following constitutes a statement of the funding status as of 31 January 1972:

Expenditures to Date

Actual expenditures 19 November 1971 to 31 January 1972 \$ 6,880

Unexpended Funds to Date

Unexpended funds 31 January 1972

$$
\$ \quad 42,084
$$

The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

Approved: \cap, ,

D. W. Robertson, Head
Communications Branch

10 March 1972

National Aeronautics \& Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report No. 3, Covering period 1 February 1972 to 29 February 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Modeling of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035 (IF).

Gent1emen:
During this period work continued on the modeling of receiver circuits on a circuit detail basis. Among the circuits investigated were two mixer circuits. These circuits consisted of a transistor switching mixer and a balanced diode mixer. The switching mixer was analyzed in a CIRCUS run. The resulting time waveform of the mixer output exhibited the carrier signal switched on and off at the local oscillator rate. From this waveform the spectral content of the mixer output can be obtained using fast Fourier transform (FFT) techniques.

Some difficulties were encountered with the diode mixer circuit because of the lack of device parameters for typical high frequency mixer diodes. To establish a capability for obtaining these characteristics, the details of the required parameter measurements were investigated. As a part of this effort, an outline was prepared of the measurements required to provide the device parameters for the charge control model of a diode.

Formulation of the modeling of communication receivers on a block basis has also been considered during this period. Block models are envisioned as providing a quick look at selected arrangements of receiver circuits. Such models can provide an insight into the expected performance of a system. The circuit detail models on the other hand provide a detailed analysis of the circuits response characteristics using actual component values. There exists a need for both types of models to provide a flexible analysis capability.

Many receiver circuits can be considered linear because of their small operating voltages. These would include radio frequency and intermediate frequency amplifiers as well as the amplifier following the final detector. Linear circuit analysis techniques operating in either the time domain or the frequency domain could be applied to these circuits.

$$
-2-
$$

For other circuits (such as mixers and limiters) which are nonlinear, analysis must be carried out primarily in the time domain. For example, a mixer may be modeled as a product device which generates the product of the time functions representing the received signal and the local oscillator output. After the time function representing the mixer output is obtained, the signal can be transformed to the frequency domain using FFT techniques. Such a transformation enables use of straightforward methods of applying filter functions and gains to the signal.

Work will continue in these two areas of modeling during the next period. Techniques for interfacing plot routines and FFT routines with the circuit detail models will be studied. Block models of various receiver circuits will begin to be assembled, and capabilities of other models will continue to be investigated.

The following constitutes a statement of the funding status as of 29 February 1972:

Expenditures to Date

Actual Expenditures 19 November 1971 to 29 February 1972 \$ 11,439
Unexpended Funds to Date
Unexpended funds 29 February 1972
\$ 37,525
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

Respectfully submitted:

$$
\underset{\text { Project Director }}{\text { (J. Wralsh, Jr. }}
$$

Approved:
D. W. Robertson, Head Communications Branch

National Aeronautics \& Space Administration George C. Marshall Space F1ight Center Marshall Space Flight Center, Alabama 35812

Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report No. 4, Covering period 1 March 1972 to 31 March 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Modeling of Communications Systems Transponders and Receivers,"
 Control No. DCN 1-2-40-23035(IF).

Gent1emen:

Primary emphasis during this period of work has been in the area of circuit detail modeling. Interfacing the fast Fourier transform. (FFT) program with the circuit analysis program, CIRCUS, has been accomplished for the case of signals of known periodicity. This interfacing permits calculation of the frequency spectra present at selected nodes in a circuit. To use this capability a CIRCUS analysis of a circuit is first run until all transients decay and a steady state response is obtained. At this time the solution time increments are selected such that a number of solution values suitable for input to the FFT routine will exactly span one complete period of the time waveform. Accomplishing this required the use of the save and restart capabilities of CIRCUS, locating the storage locations of the data computed by CIRCUS, and placing these data in a computer file which could later be called to provide the input data to the FFT program. As presently implemented, the time function may be evaluated by CIRCUS over an interval larger than that required as input to the FFT. Also, the interfacing program provides the capability of selecting any desired portion of this data file for input to the FFT.

The frequency spectrum produced at the output of a balanced mixer (one selected from the CCS circuitry) was obtained using the combination of the CIRCUS program, the interfacing program, and the FFT program.

During this period several plot routines have been generated or adapted for use with the time and frequency domain programs. Plot routines for generating displays of frequency spectra on either a teletype terminal or a CALCOMP plotter are now available.

The circuit analysis program, ECAP, was obtained during this period. This program is a combination of three programs which provide for (1) dc analysis, (2) ac analysis, and (3) transient analysis. Of most interest presently is the ac analysis program which provides the capability of obtaining the frequency response of a linear circuit. This program will
be very useful for the verification of input data to analysis programs such as CIRCUS. It also enables an automated technique for computing transfer function of linear circuits which can be used with frequency domain analysis. Several modifications need to be provided in ECAP to interface it with the other programs. At present the effort required to make these modifications cannot be estimated.

The ac analysis portion of ECAP was tested by evaluating the transfer function of the CCS telemetry bandpass filter. This filter was used since it represents a fairly complex circuit and its transfer function is well known from previous studies. The transfer function obtained with ECAP compared favorably, both theoretically and experimentally, with those previously obtained.

During the next period the major portion of the project effort will be devoted to the block approach to system modeling. This modeling technique will provide a quick look at a proposed receiver or transponder for initial evaluation. Details of the interfacing of the circuit analysis programs will continue to be studied.

The following constitutes a statement of the funding status as of 31 March 1972:

Expenditures to Date
Actual expenditures 19 November 1971 to 31 March 1972 \$ 14,699
Unexpended Funds to Date
Unexpended funds 31 March 1972 \$ 34,265
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.
n Respectfully submitted:

Approved:
D. W. Robertson, Chief

Communications Division

11 May 1972

Nationa1 Aeronautics \& Space Administration George C. Marshall Space F1ight Center
Marshall Space Flight Center, Alabama 35812

Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report No. 5, Covering period 1 April to 30 April 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Modeling of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035 (IF).

Gentlemen:
During this period the major portion of the project effort has been directed toward modeling of transponders and receivers on a block basis. Modeling on a block basis differs from the detailed element-by-element simulation (such as that obtained using the analysis program CIRCUS) in that each stage of a communication system is assigned a simplified model or transfer function. When the blocks are linear the powerful techniques available for linear system analysis can be used. The fast Fourier transform (FFT) is one of these techniques and provides the mechanism for switching from the time to frequency domain. Nonlinear blocks are handled by simulation in the time domain.

The block model of a communication system is presently envisioned as the assembly of a standard set of model blocks in any desired order and with a specified set of parameters applicable to each block. To start the construction of such a model the initial effort has been directed toward the construction of a model which consisted of a set of blocks called in sequence. This initial model does not presently allow for parallel signal paths or feedback paths. The assembly of the desired system model is accomplished by a program which reads the type of block desired between specifie modes and then stores the parameters associated with the specific block for future reference during the calculation of the system response. The model operates in both the time and frequency domains. Automatic domain switching, if necessary, is accomplished in the model for each block. A routine which calculates the common period of up to six frequencies is provided for interfacing with the FFT. Establishing this common period assures that all frequency components in a transform will fall on frequencies calculated by the transform and not between these frequencies.

Several model blocks have been constructed and have received varying degrees of checkout during this period. Among these are (1) a signal generator which provides for the generation of AM, PM, or FM signa1s, (2) a filter which consists of " n " isolated synchronously tuned resonant circuits, (3) an ideal multiplier which forms the product of two signals, (4) an amplifier which simply multiplies the signal of interest by a fixed
gain, (5) a frequency multiplier which passes the input signal waveform above a fixed level, and (6) a low-pass filter.

Early in the next period the block model program will be used to assemble a simple communication system test configuration. The model will provide the capability of obtaining output at user specified points in the system being modeled. Either time or frequency responses will be available by a simple call for the output desired at a given point in the system.

During the next period, work will continue largely in the area of block modeling. Additional blocks will be generated and checked out. A visit to MSFC is planned early in the next period during which work on the program will be reviewed.

The following constitutes a statement of the funding status as of 30 Apri1 1972:

Expenditures to Date

Actual expenditures 19 November 1971 to 30 Apri1 1972
$\$ 19,134$
Unexpended Funds to Date

Unexpended funds, 30 April 1972
\$ 29,829
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

Respectfully submitted:

Joseph R. Walsh, Jr. Project Director

Approved:
D. W. Robertson, Chief Communications Division

8 June 1972

National Aeronautics \& Space Administration George C. Marshall Space F1ight Center Marshall Space Flight Center, Alabama 35812

Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report 非6, Covering períod 1 May to 31 May 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Mode1ing of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035(IF).

Gentlemen:
A visit was made to Marshall Space Flight Center on 11 and 12 May 1972, during which work on the contract was reviewed. During the visit progress in the area of communications system modeling and the direction of the project effort for the remainder of the program were the principal topics of discussion. The status of the circuit detail approach, which uses the elaborate computer aided design programs CIRCUS and ECAP, and the block modeling approach, which uses a simplified model for various system functions; was discussed.

During the visit it was agreed that most of the project effort for the remainder of the program should be in the area of block modeling of communication systems. It was also agreed that the effort in the circuit detail modeling should be limited to a summary review of the CIRC-DC, CIRC-AC, and CIRC-TR analysis programs for the Sigma 5 computers, one of which is available at MSFC. Some familiarity with these programs has been obtained during this period by reviewing the program reference manuals.

The majority of the recent project effort has been directed toward the block approach to communication system modeling. A number of model blocks have been developed and several auxiliary subroutines have been generated for block modeling. A control program which allows the calling of the model blocks in any sequential order is also being developed. As an initial test of the model blocks and the control program, a simple amplitude modulated receiver was successfully simulated using the block modeling approach. The program provides the capability of sequential observation of the time waveform or frequency spectrum at any block interface during execution of the program.

In order to develop a more versatile control program, a survey of previously developed digital computer simulation prograns for modeling continuous systems has been undertaken. Simulation languages such as DSL/90, CSMP, and MIMIC have been reviewed to determine thei.r applicability to the development of a block-diagram simulator for communication systems.

$$
-2-
$$

Preliminary results indicate that each member of this class of programs requires the input of either differential equations or an analog-computertype detailed block diagram (integrators, summers, etc.) to describe the system being simulated. This is a more complex input procedure than is desired for the block simulator being developed.

Work will continue in these areas during the next period. Review of the Sigma 5 analysis programs will continue at a low level. This review will allow the experience gained with the use of CIRCUS and ECAP to be applied to circuit analysis with the CIRC series programs when they become available. Additional models will be added to those already available for the block models. Among these are additional filter models and models required for the evaluation of frequency and phase modulated receivers.

The following constitutes a statement of the funding status as of 31 May 1972:

Expenditures to Date

Actual expenditures 19 November 1971 to 31 May $1972 \ldots \ldots$.... 22,108
Unexpended Funds to Date
Unexpended funds, 31 May 1972 \$ 26,856
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

> Respectfully submitted:
> Joseph UR. Walsh,Jr.
> Project Director

Approved:
 V.

D. W. Robertson, Chief Communications Division

JRW: irn

National Aeronautics \＆Space Administration
George C．Marshall Space Flight Center
Marsha11 Space F1ight Center，Alabama 35812
Attn：S\＆E－ASTR－IA
Subj：Monthly Letter Report No．7，Covering period 1 June to 30 June 1972，Project A－1379， Contract NAS8－28148，＂Study of Mathematical Model－ ing of Communications Systems Transponders and Receivers，＂Control No．DCN 1－2－40－23035（IF）．

Gentlemen：

During this period the development of block models of communication systems has continued．The major portion of the effort has been directed toward an investigation of techniques for the simulation of those parts of a communication systems containing feedback．Typical examples of these portions are phase－lock loops and automatic gain or frequency control net－ works．Such feedback systems involve several blocks in the model．The simulation of such devices，which usually contain some nonlinearity，re－ quires that all involved blocks be simulated simultaneously in the time domain．This is in contrast tc thc bloこに modにl Lこiñ develuped for cas－ caded blocks without feedback．The latter model determines the response of each block sequentially and independently in the frequency or time domain，whichever is appropriate．

Simulation languages such as MIMIC are well suited for feedback appli－ cations．Using MIMIC as a basis and developing MIMIC subprograms（equi－ valent to model blocks）for typical communication subsystem blocks such as modulators，filters，mixers，etc．，a time domain simulation with simple input／output procedures and efficient（variable time step size）numerical integration will be developed for feedback block diagrams．While the MIMIC system will be applicable to cascaded as well as feedback systems，the block model specifically designed for the simulation of cascaded blocks is more efficient and should be used for non－feedback systems．

The MIMIC language has been adapted to the Univac－1108 computer and techniques have been developed for the use of dynamic subprograms．Such subprograms have been developed for AM modulators，single－tuned filters， mixers，demodulators，and low－pass filters．The subprograms have been de－ bugged and verified by application to a cascaded block diagram system pre－ viously simulated by the frequency／time simulator．At present，the use of two block modeling programs，frequency／time for cascaded blocks and MIMIC for feedback systems，seems to be the best approach．

An analysis of stagger-tuned filter design directed toward creating block models for such filters was undertaken. The analysis and modeling of such filters is being pursued in some depth since the quality of the filter models will be a major factor in determining the quality of the overall circuit analysis model. The immediate objective is to create a model block that accurately models a flat staggered n-tuple filter from simple input parameters (center frequency,bandwidth, and number of stages).

Work will continue on the development of block models during the next period. Additional model blocks such as those for various filters should be completed during the coming period. The time domain program for the simulation of feedback systems will be applied to a simulation problem such as a receiver automatic gain control system.

The following constitutes a statement of the funding status as of 30 June 1972:

Expenditures to Date

Actual expenditures 19 November to 30 June 1972

\$ 25,735
Inexpended Funds to Date
Unexpended funds, 30 June 1972
\$ 23,229
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

Respectfully submitted:
$\underset{\text { Troject Director }}{\substack{\text { Jgseph R. Wa1sh, Jr. } \\ \text { Pro }}}$

Approved:

VN..
D. W. Robertson, Chief
Communications Division

Engineering Experiment Station Systems \& Techniques Department Communications Division

Monthly Progress Report No. 8

1 July to 31 July 1972
by
Joseph R. Walsh, Jr.

$$
{ }^{F_{E Q} \tau_{q} q_{973}}
$$

Contract No. NAS8-28148

BIPERIAEIT STITIO 225 North Avenue, Northwest. Atlanta, Georgia 30332
10 August 1972

National Aeronautics \& Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
Attn: S\&E-ASTR-IA
Subject: Monthly Letter Report No. 8, Covering period 1 July to 31 July, 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Modeling of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035 (IF).

Gentlemen:
During this period the major portion of the project effort has been devoted to the generation and refinement of model blocks for the communication system block model. This model is being constructed to provide the capability for evaluating the performance of a communication system by the assembly of sequential blocks representing the system functions such as filters, mixers,
 system functions without having to specify circuit detail parameters. Such parameters as filter center frequency, filter type, and number of sections (or roll-off rate) are the parameters to be specified for a filter instead of the component values which would be specified for a circuit detail model.

Butterwort and Chebyshev bandpass filter blocks have been added to the collection of model blocks during this period. These filter functions are evaluated by first calculating the roots of the denominator of the transfer function, and then evaluating the transfer function at each desired frequency by generating the reciprocal of the product of these roots. Provision has been made for filters of order of 20 or less to be evaluated. Both of these model blocks have been checked and have performed satisfactorily. These band pass representations have been used as low-pass filters by specification of a zero center frequency and specification of the proper low-pass bandwidth in the call of the filter. A separate model block will be generated which will automatically adjust the input low-pass data for calculation of the low-pass response using the filter bandpass
 construction of the filter models. The response of a 10 section filter applied to a 4096 element data array can be calculated in less than one second on a Univac-1108 computer.

As new model blocks are generated, appropriate modifications are made to the main control program and to the subroutine which reads and stores

Monthly Letter Report No. 8
Project A-1379
page 2
the data specifying the parameters needed for a particular model block.
Work is presently underway on the modeling of a frequency modulated receiver. Most of the necessary model blocks have been constructed and checked out. Present emphasis is on the frequency discriminator block. Work will continue on the block model of communication systems during the next period and additional model blocks will be generated. Also the control program will be refined to provide a more useable interface with the user for the conversational mode of operation.

The following constitutes a statement of the funding status as of 31 July 1972:

Expenditures to Date

Actual expenditures 19 November 1971 to 31 July 1972 \$29,580
Unexpencied Funds to Date
Unexpended funds, 31 July 1972
\$19,363
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

$$
\begin{aligned}
& \text { Respectfully submitted: } \\
& \substack{\text { Joseph R. Walsh, Jr. } \\
\text { Project Director }}
\end{aligned}
$$

Approved:

```
    mere.connerm. -
D, W, Robertson, Chief
Communications Division
```

jrw/jfb

11 September 1972

National Aeronautics \& Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
ATTN: S\&E-ASTR-IA
Subject: Monthly Letter Report No. 9, Covering period 1 August to 31 August, 1972, Project A-1379, Contract NAS8-28148, "Study of Mathematical Mode1ing of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035 (IF).

Gentlemen:
A visit was made to Marshal1 Space F1ight Center on 17-18 August 1972 during which work on the contract was reviewed. The major topic of discussion was the communication system block model which is being created. This model provides the capability for evaluating certain aspects of communication systems such as the effects of bandwidth, tuning, voltage levels, etc. These systems must be describable by a sequential connection of model blocks. Recent additions to the modeling capabilities have been model blocks which allow simulation of angle modulated systems. The addition of a discriminator block early in this period completed the set of blocks necessary to model a frequency modulation receiver. During the visit, calculated and experimental data obtained for a simulated frequency modulation receiver were discussed and preliminary calculations were presented showing the effects, at baseband, of various filter functions (Butterworth and Chebyshev) inserted in the path of the frequency modulated signal. The time domain simulation of systems containing feedback, such as AFC or AGC systems, using the simulation program MIMIC was also reviewed during the visit.

It was agreed during the visit that a card deck of the block model program would be generated and used to execute the model program on the Sigma 5 computer at MSFC. A tentative date for accomplishing this was agreed to be around 1 October 1972. Any differences between operation on the Georgia Tech Univac 1108 computer, using Fortran V, and the MSFC Sigma 5 computer, which uses extended Fortran IV, can hopefully be resolved during this future visit. These differences are believed to be small since reference to the Fortran IV reference manual is made when programming questions arise.

The time domain block diagram simulator recommended for feedback system simulation utilizes the simulation language MIMIC as described in progress report No. 7. The program has previously been applied to the

Monthly Letter Report No. 9
Project A-1379
page 2
simulation of a typical AM receiver and is being applied to the simulation of a feedback automatic gain control system. The feedback simulation has been hampered by a large time-constant spread and the system is being temporarily time-scaled for efficient simulation development.

Work during the next period will be largely devoted to refining the model blocks which presently exist and to rewriting portions of the main control program to provide more useable conversational capabilities. " The control program presently contains coded input data (for instance, entry of the number " 2 " is a request for printed output). During the next period an effort will be made to change the user input from coded information to alphanumeric data. Such a change will eliminate the need for the code and provide a more useable program-user interface.

The following constitutes a statement of the funding status as of 31 August 1972.

Expenditures to Date
Actual expenditures 19 November 1971 to 31 August 1972 \$34,196
Unexpended Funds to Date
Unexpended funds, 31 August 1972 \$14,768
The total unexpended funds are considered adequate for satisfactory completion of the project requirements.

Respectfully submitted: \cap
(J ' '
Joseph R. Walsh, Jr. Project Director

Approved:
D. W. Robertson, Chief

Communications Division
jrw/m1w

National Aeronautics \& Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, A1abama 35812

Attn: S\&E-ASTR-IA
Subj: Monthly Letter Report No. 10, covering period 1 September to 30 September 1972, Project A-1379 Contract NAS8-28148, "Study of Mathematical Mode1ing of Communications Systems Transponders and Receivers," Control No. DCN 1-2-40-23035(IF).

Gentlemen:
During this period the effort on the project has been directed toward modeling of communications systems on a block basis. Such a model will allow evaluation of certain characteristics of a communication system at a block diagram level so that major system parameters may be determined before circuit details are considered. The technical activity during this period has been divided among three areas associated with the block model. These are (1) refinement and checkout of model blocks, (2) refinement and checkout of the control program, and (3) deve lopment of simulation techniques applicable to communication system components containing feedback.

Many of the individual model blocks used in the communication system block model have been refined during this period. Among these are models of filters and demodulators. The filter models have been designed to use one basic routine for the calculation of the filter response for a specified filter type and a calling routine to obtain the specified filter configuration. For example, a basic Butterworth response for a set of input data would be tailored for the specified configuration of either low-pass, high-pass, bandpass, or bandstop, and the filter response would then be calculated by a routine unique to the filter type called. This procedure is followed for Butterworth, Chebyshev, and synchronously tuned filters. These filter types constitute those presently available in the model. Model blocks for AM, PM, and FM demodulators have also been improved during this period. Checkout of the filter and demodulator models to date indicate that the desired performance is being obtained. Additional checks of the model blocks are in progress.

The control program for the block model has been rewritten to provide a more conversational mode of operation and to provide more flexibility of operation. The numeric codes used in the earlier control program have been replaced by alphabetic abbreviations for model blocks and control functions. The program also provides the capability of entering model blocks one at a time so that a decision on the characteristics of a block to be entered can be based on the results of the calculations up to its input.

An investigation into the use of the simulation program MIMIC for the simulation of communication system components containing feedback is continuing. Time scaling has been applied to an AGC system being simulated to avoid excessive computer time caused by the large time constant spread encountered in such systems. Typical values of the parameters in an AGC system have been selected, and simulation runs are being made using these values and the time scaling.

Work will continue on the control program and the checkout of individual model blocks during the next period. Development of techniques for the simulation of feedback systems will also continue. At present the block model program is operational on the Georgia Tech Univac 1108 computer. No difficulty is anticipated in getting the program operational on the MSFC Univac 1108 computer. It presently appears that some assembly language routines will be required to operate the program on the MSFC Sigma 5 computer. Verification of the translation problems and an investigation of the difficulties involved will be undertaken during the next period.

The following constitutes a statement of the funding status as of 30 September 1972:

Expenditures to Date
Actual expenditures 19 November 1971 to 30 September 1972 \$ 37,524
Unexpended Funds to Date
Unexpended funds 30 September 1972
\$ 11,440
The total unexpended funds are considered adequate for satisafatory completion of project requirements.
_Respectfully submitted: \bigcap

Approved:

D. W. Robertson, Chief

Communications Division

JRW:iln

FINAL REPORT

Project A-1379

SIUDY OF MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS TRANSPONDERS AND RECEIVERS

J. R. Walsh, R. D. Wetherington and L. D. Holland

Contract NAS8-28148

19 November 1972

Prepared for
National Aeronautics \& Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

Engineering Experiment Station
GEORGIA INSTITUTE OF TECHNOLOGY
Atlanta, Georgia

STUDY OF MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS TRANSPONDERS AND RECEIVERS

J. R. Walsh, R. D. Wetherington and L. D. Holland

CONTRACT NAS8-28148

19 November 1972

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA

This report presents the results of work on the modeling of communication receivers at both the circuit detail level and at the block level. The largest effort was devoted to developing new models at the block modeling level. The available effort did not permit full development of all of the block modeling concepts envisioned, but idealized blocks were developed for signal sources, a variety of filters, limiters, amplifiers, mixers, and demodulators. These blocks were organized into an operational computer simulation of communications receiver circuits identified as the Frequency And Time Circuit Analysis Technique (FATCAT). The simulation operates in both the time and frequency domains, and permits output plots or listings of either frequency spectra or time waveforms from any model block. Transfer between domains is handled with a fast Fourier transform algorithm.

A separate block model effort was devoted to developing block models for use with the circuit simulation MIMIC.

Two efforts in modeling at the circuit detail level were also carried out. One of these demonstrated the feasibility of interfacing the time-domain analysis program CIRCUS with a frequency-domain analysis program to provide a more powerful mode1. The other effort demonstrated the use of ECAP to determine input parameters for CIRCUS which are otherwise difficult to determine.

Computer listings of the software developed and examples of use of the programs are included.

FOREWORD

This report was prepared at the Engineering Experiment Station at the Georgia Institute of Technology for the Astrionics Laboratory of Marshall Space Flight Center under Contract NAS8-28148. The work was carried out under the direct supervision of Mr. J. R. Walsh, Project Director, and under the general supervision of Mr. D. W. Robertson, Chief of the Communications Division. The report describes the results of a one-year effort on the modeling of communications systems.
I. INTRODUCTION 1
II. MATHEMATICAL MODELING OF COMMUNICATIONS CIRCUITS ON A CIRCUIT DETAIL BASIS 5
A. Interfacing CIRCUS and the FFT 5

1. Time Domain vs Frequency Domain Analysis 5
2. Description of Interface and Software 6
3. Example of Using the CIRCUS-Frequency Domain Interface Program 8
B. Use of ECAP for Transfer Function Evaluation 19
C. Conclusions and Recommendations 25
III. MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS ON A BLOCK BASIS 29
A. General Description 29
B. Program Contro1 30
4. Block Input Commands 30
a. Sources 31
b. Filters 32
c. Demodulators 33
d. Other Blocks 33
5. Contro1 Commands 34
6. Special Commands 37
C. Simulation Examples using FATCAT 39
7. AM Receiver 39
8. FM Receiver 52
D. Conclusions 57
IV. TIME DOMAIN SIMULATION 71
A. Introduction 71
B. MIMIC: A Continuous System Simulation Language 72
C. TIMSIM: A User-Oriented Communications System Block Diagram Simulation Program 79
9. Subprogram Derivation 79
10. TIMSIM Subprogram Library 81
11. Applications 81
D. Conclusions 95

TABLE OF CONTENTS (Continued)

PAGE
V. REFERENCES . 96

APPENDICES:
APPENDIX A: . 97
APPENDIX B: . 101
APPENDIX C: . 117
APPENDIX D: . 179
PAGE

1. Test Circuit for the CIRCUS Frequency Domain Interface Program 9
2. Execution of CIRCUS for Test Circuit 10
3. Execution of Interface Program 13
4. Spectrum of Data Set 3 18
5. Time Waveform of Data Set 3 20
6. Request for Calcomp Plot 21
7. Calcomp Plot of the Frequency Spectrum of the Time Waveform Shown in Figure 5 22
8. Circuit Diagram of CCS Telemetry Filter 24
9. Circuit Description in ECAP Format 26
10. Comparison of Response Calculation for CCS Telemetry Filter 27
11. Sample of ECAP Output 28
12. Block Diagram of Amplitude Modulation Receiver and FATCAT Model of Receiver 40
13. Start of FATCAT Run for AM Receiver, Showing Spectrum at the Output of the Signal Generator 41
14. Listing of the Frequency Function at the Output of the Signal Generator 43
15. Listing of Frequency Function at the Output of the First Bandpass Filter 44
16. Spectrum at the Output of the First Bandpass Filter 46
17. Spectrum at the Output of the Ideal Multiplier 47
18. Spectrum at the Output of the Second Bandpass Filter 48
19. Spectrum at the Output of the Amp1ifier 49
20. Spectrum at the Output of the AM Demodulator 50
21. Time Waveform at the Output of the AM Demodulator 51
22. Listing of Time Function at the Output of the AM Demodulator 53
23. Spectrum at the Output of the AM Demodulator 54
24. Spectrum at the Output of the Low Pass Filter 55
25. Block Diagram for FATCAT Analysis of an FM Receiver 56

LIST OF FIGURES (Continued)

PAGE

26. Start of FATCAT Run for FM Receiver, Showing Spectrum at the Output of the Signal Generator 58
27. Spectrum at the Output of the First Bandpass Filter 59
28. Spectrum at the Output of the Ideal Multiplier 60
29. Spectrum at the Output of the Second Bandpass Filter 61
30. Spectrum at the Output of the Amplifier 62
31. Spectrum at the Output of the FM Demodulator 63
32. Time Waveform at the Output of the FM Demodulator 64
33. Listing of the Frequency Function at the Output of the FM Demodulator 65
34. Spectrum at the Output of the Low Pass Filter 66
35. Time Waveform at the Output of the Low Pass Filter 67
36. Listing of the Frequency Function at the Output of the Low Pass Filter 68
37. Detailed MIMIC Block Diagram for a System Described by $\ddot{x}+\dot{x}+x=0$ 74
38. MIMIC Instructions for Simulation of the System of Figure 37 74
39. Block Diagram of Feedback Example 76
40. MIMIC Simulation of System of Figure 39 76
41. Subprogram Example 78
42. Single-Tuned Filter Flow Diagram 80
43. Hypothetical AM Communication System 84
44. TIMSIM Listing, Hypothetical Communication System 85
45. TIMSIM Results, Hypothetical AM Communication System 88
46. Plot of TIMSIM Results for AM System 90
47. Hypothetical Automatic Gain Control System 91
48. TIMSIM Listing, Automatic Gain Control System 92
49. TIMSIM Results, AGC System 94

I. INTRODUCTION

This report discusses the results of a one-year effort directed toward the modeling of communications receivers. This effort followed a program carried out during the previous year under contract NAS8-20054 in which transmitter modeling was considered. Most of the modeling work carried out on the former program was directed toward modeling at the circuit detail leve1, and the simulation program CIRCUS was used as the primary analysis tool. Accomplishments under that program have been documented in previous reports [1,2].

On the current program, modeling of communications receiver circuits has been carried out on both the circuit detail level and the block modeling level, with emphasis on the latter. Several existing circuit simulation programs have been investigated and three of these (CIRCUS, ECAP, and MIMIC) were used in the modeling efforts reported herein. In addition, using a block modeling approach, work on a new circuit simulation program was undertaken and the program was developed to an operational state that provides a highly useful circuit analysis tool. However, the present form of the program is far from realizing the potential that the approach offers.

Two lines of effort were pursued in circuit detail modeling. One of these was an investigation of the feasibility of interfacing CIRCUS with some other circuit analysis program which operates in the frequency domain, thereby creating a more powerful analysis tool. The other effort was concerned with using ECAP as a basic tool for providing certain input parameters for CIRCUS which are difficult to determine otherwise. The results of both investigations were promising.

The need for interfacing CIRCUS with some other program arises from the fact that CIRCUS operates entirely in the time domain. Processing of signals requires step-by-step integration of the time function. Such a procedure is necessary when dealing with nonlinear portions of a circuit; when linear circuits with known transfer functions are involved, the effect of the circuit is much more readily computed in the frequency domain. Thus a model with the capability of processing nonlinear circuits
in the time domain, and linear portions in the frequency domain would be very attractive. Since CIRCUS is a very powerful time domain simulation, it would provide a good starting point for creating a two-domain model if it could be successfully interfaced with a frequency domain model.

The investigations conducted were really in the nature of feasibility investigations. Methods were developed for extracting the computed time functions from CIRCUS, converting them to the frequency domain, and displaying either time or frequency functions. This work is discussed in Section II and all software developed in this effort is listed in Appendices A and B.

The work with ECAP was directed toward using the a-c analysis capabilities of ECAP to investigate circuit parameter effects on the transfer functions of certain circuits, and thereby determine suitable parameter values for entry into CIRCUS. There are certain parameters required in specifying circuits to CIRCUS which are not easily estimated. One example is the values of coupling coefficients in coupled circuits. Unless reasonably good values for these parameters can be determined prior to entry into CIRCUS, interpreting the program's output may be very nearly impossible if it runs; sometimes the program will not even operate if the values are unrealistic.

The investigations reported herein show that ECAP is a useful tool for determining parameter values in many cases. Details of the investigation are also discussed in Section II.

The major effort in this program was devoted to circuit models based on a block modeling (as opposed to circuit detail modeling) approach. The block modeling work can also be divided into two lines of effort. The primary effort was devoted to developing models for circuit blocks and combining them to create an entirely new simulation program. The other effort consisted of investigating the use of the simulation program MIMIC in modeling circuits with feedback loops on a block modeling basis.

Development of the new simulation program was directed toward modeling each subsystem (mixers, filters, amplifiers, etc.) as a single block in order to obtain an efficient program for rapid analysis of communications receivers. The simulation was planned from the beginning to operate
in both the time and frequency domains. A representation of the signal is stored in a complex data array, and all processing blocks operate on this array. The array contents at any given time may be either a discrete spectrum representing the frequency function, or data points representing samples of a time waveform. The array contents are transformed from one domain to another as needed by a fast Fourier transform (FFT) a1gorithm.

The block model for each subsystem can be modeled in either the time domain or the frequency domain. Blocks have been created for signal sources, a variety of filters, mixers, limiters, amplifiers, and demodulators. Other needed software was developed to create an operational simulation identified as the Frequency and Time Circuit Analysis Technique (FATCAT). Control software was designed for conversational operation from a real time computer terminal; it is readily adaptable to batch processing, however.

The program was developed and completely implemented on a Univac1108 computer at Georgia Tech. Required modifications were then made to adapt the program to a SIGMA-5 computer at Marshall Space Flight Center. The program is discussed in Section III and descriptions and listings of all software for the Univac-1108 version are given in Appendix C. Listings of the SIGMA-5 versions of those routines requiring modification are given in Appendix D.

A1though the version of FATCAT presented here was brought to an operational state and has proved to be a highly useful simulation, it is by no means the ultimate simulation of its type. Many ideas exist for improving the program which could not be investigated during the time available. Ideas for improvement include changes to upgrade some of the existing model blocks, creation of new model blocks, and additional features that could be added to the control software which would make the simulation even easier to use. Some specific examples of improvements that should be developed are pointed out in Section IIID.

The other block modeling effort carried out under this program made use of the simulation program MIMIC, a dynamic system simulation program. MIMIC accepts user inserted "models" in the form of equations, and this feature was investigated as a method of modeling circuit blocks. The investigation is discussed in Section IV.

A. Interfacing CIRCUS and the FFT

1. Time Domain vs Frequency Domain Analysis

One of the major efforts related to circuit detail modeling was devoted to interfacing CIRCUS with other programs so that frequency domain representations of signals could be obtained. CIRCUS itself operates entirely in the time domain. Processing the signal requires step-by-step integration, often with very small steps. Although the process can be time consuming, it is a good method for performing analyses that must be performed in the time domain, such as analyzing nonlinear circuits or calculating the transient response of any circuit.

If only the steady state solution is desired for linear circuits, frequency domain analysis can be applied. Since frequency domain analysis is generally much less time consuming, and also since the steady state response is of prime interest in most circuit investigations, it would be preferable to analyze linear circuits in the frequency domain. However, entire equipments (such as a communications receiver) cannot usually be analyzed entirely in the frequency domain since they usually contain nonlinearities. The ideal solution would be to have an analysis program that operates in both domains and to have the ability to transfer from one domain to another.

The investigation reported here was directed toward investigating the possibility of combining circuit detail models which operate in the two domains, and thus create a single more powerful model with more efficient operation. The job of actually creating such a model was beyond the scope of this investigation, and only a feasibility study has been conducted.

Specifically, the task undertaken was to develop an interface with CIRCUS which would permit extraction of computed time waveforms. These signals could then be operated on with a fast Fourier transform (FFT) to obtain frequency domain representations of the signals. Such an interface has been constructed, along with some supporting software that
permits recovery of the CIRCUS-generated signals, transforming between domains, and output of results. Details of the interface and software are described below, followed by sample runs.

2. Description of Interface and Software

For purposes of this feasibility study, the modifications made internally in CIRCUS were kept to a minimum. The immediate objective was to gain access to the computed time waveform data points, and to write these into a file external to CIRCUS so that the data would be stored when the run terminated. Other software was then constructed to access the stored data file and process it.

After examining several of the CIRCUS subroutines, it appeared that the desired data could be obtained easily by constructing a subroutine to be called by the PLOT statement. As a working procedure, subroutine PLOTER was disabled (by commenting out its call in subroutine LINK6A), and a new subroutine, PLTDTA, was constructed to extract the data. PLTDTA writes the data out on one of the FORTRAN output units (currently set at 19) and then terminates. This form of modification permitted testing without the necessity of revising the CIRCUS command structure. The PLOT statement could be used to specify the outputs wanted, and outputs from as many nodes as desired could be obtained. Thus the changes in CIRCUS were limited to construction of PLTDTA plus minor modifications to LINK6A. The modifications made in LINK6A were (1) deleting the calls to PLOTER by inserting comments on line, and (2) inserting calls to PLTDTA at the appropriate point. Listings of PLTDTA and the modified version of LINK6A are given in Appendix A.

The output generated by PLTDTA consists of two parameters and three arrays. In order these are: (1) the parameter NPNT specifying the number of points per data set; (2) the parameter NPLOTS specifying the number of data sets to be outputed; (3) the array TIME containing NPNT entries of the times corresponding to output data points; (4) the array PLOT containing NPLOTS sets of output data, each consisting of NPNT values of a node voltage, an element current, or whatever variable was
called for in the PLOT statement;* and (5) the array TITLE containing the title of the run (not used by the current version of the interface program).

In using the program, the modified version of CIRCUS is run with a PLOT statement included that has a list of the variables to be written out. When the computations are finished the CIRCUS run is terminated. The interface program can then be activated to call the data file and operate on it; the call is non-destructive and the same data file can be processed many times by the interface program.

There is one specific requirement that the user must be aware of and provide for. The FFT is designed to work only with data sets of N points where N is a power of two $\left(N=2^{\text {IGAM }}\right.$, where IGAM is an integer). Since the theory underlying the FFT requires that it be applied only to periodic signals, the user must pre-determine the period of the output waveform to be generated by CIRCUS. The period must then be divided by the chosen value of N (with $\mathrm{N}=2^{\text {IGAM }}$) to determine the time step at which outputs will be generated. This procedure insures that exactly N consecutive outputs will represent exactly one period of the output wave form.

While the time step size must be carefully determined, the overall time interval for which outputs are generated is not critical. More than N points can be outputed so long as exactly N consecutive points represent one period. In general it will be desirable to output more than N points so that if the first few contain transient effects they can be discarded.

The interface program, PLT, is used to access the data file and display the data in either the time domain or the frequency domain. Display capabilities include printed listings and plotted time waveforms or frequency spectra. Two types of plot routines are available, printer type plots (scaled not to exceed 72 columns so that they can be displayed by a teletype terminal), and Calcomp plots (frequency spectra only).

[^0]In the next section a specific example of using the program is shown, and the overall operation is further exaplined. A listing of all software used in the program is given in Appendix B.

3. Example of Using the CIRCUS-Frequency Domain Interface Program

Consider the simple transistor feedback amplifier shown in Figure 1. This amplifier, when operating in its linear region, would have a gain approximately equal to the ratio of the collector to emitter resistances. The drive has been set to a level such that the amplifier operates in a nonlinear region, theyby producing distortion in the output signal. A sample execution of the CIRCUS-frequency domain interface program for this circuit is presented to demonstrate the capabilities of the program.

Before executing CIRCUS, the file to accept the time waveform data from CIRCUS must be declared and linked to logical unit 19. The setup on the Univac-1108 is as follows:
@ASG, A PFILE.
@USE 19, PFILE

PFILE could be either a tape file or a mass storage file; as used here it is a Fastrand (mass storage) file. Execution of CIRCUS with a plot statement containing the data to be plotted will write these data on PFILE. An execution of CIRCUS for the simple circuit shown in Figure 1 is shown in Figure 2.

To use the transform and plotting program PLT, the file containing the CIRCUS data must be assigned to the run by the statements:
@ASG,A PFILE.
(dUSE 19, PFILE
The command to execute the plotting program produces several messages relative to the number and size of the data sets generated in CIRCUS and to the number of points in a transform. Figure 3 shows a sample execution of the transform and plotting program. The first messages received

Figure 1. Test Circuit for the CIRCUS Frequency Domain Interface Program.

```
@CAT PFILE.,F2
READY
@ASG,A PFILE.
HEADY
@USE 19,PFILE
READY
@ XQT CAA3.
    START
@ADD CD1.DATA17
    'SINGLE STAGE TEST CIRCUIT'
    K1, 1, 2, 100.
    R2, 3, 7, 8.2E3
    R3, 0, 3, 2.2E3
    R4, 4, 7, 1.E3
    R5, 5, 6, 68.
    R6, 0, 6, 270.
    C1, 2, 3, 1.E-8
    C2, 0, 6, 1.E-6
    US1, 0, 7, 12.
    T1, 3, 4, 5, <N697
    SV1, 0, 1, 0., 0.5, 0., 2.E-6
    DEUICE PARAMETERS
    TRANSISTOR, 2N697, NPN,
    RB, 70., KC, 1.5, RE, .001, A1, 54.E-12,
    PHI1, .9, N1, .37, A2, 30.3E-12, PHI2, .9,
    N2, -36, IES, 4.47E-14, ICS, 2.24E-13, THETAN, 38.8,
    THETAI, 35.5
        BN, 0., 1.E-5, 1., 68.
        BI, 0., 1.E-5, 1., 4.7
    TCN,.001, 9.93E-10
    TCI,.001,.91E-7
    END
    INTERVALS, .125E-6, 8.E-6
    PRINT, UN1, UN2, UN4, IBT1, ICT1
    PLOT, UN1, VN2, UN4, IBT1, ICT1
    HOLD FINAL CONDITIONS
EXECUTE
    EXECUTE
    LINKS 50
```

 Figure 2. Execution of CIRCUS for Test Circuit.
 | TIME | UN1 | UN2 | UN4 | IBT 1 | ICT 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (NSEC) | | | | | |
| . 0 | 0.000 | 1.676-08 | 6.91 | 7-491-05 | 5.094-03 |
| 125.0 | . 191 | . 148 | 5.59 | 4.245-04 | 6.407-03 |
| 250.0 | . 354 | . 296 | 3.74 | 4.858-04 | 8.264-03 |
| 375.0 | . 462 | . 399 | 2.38 | 4.811-04 | 9.618-03 |
| $500 \cdot 0$ | . 500 | . 430 | 2.19 | 5.375-04 | 9.806-03 |
| 625.0 | . 462 | . 414 | 2.17 | 3.399-04 | 9.833-03 |
| 750.0 | . 354 | . 354 | 2.15 | -1.160-04 | 9.853-03 |
| 875.0 | . 191 | . 241 | 2.84 | -5.401-04 | 9.156-03 |
| (USEC) | | | | | |
| 1.000 | 1.589-08 | 4.633-02 | 5.76 | -3.996-04 | 6.241-03 |
| 1.125 | -. 191 | -. 144 | 8.46 | -2.984-04 | 3.538-03 |
| 1.250 | -. 354 | -. 306 | 10.6 | -2.144-04 | 1.443-03 |
| 1.375 | -. 462 | -. 420 | 11.7 | -1.022-04 | 2.884-04 |
| 1.500 | -. 500 | -. 466 | 11.9 | 3.461-06 | 5.021-05 |
| 1.625 | -. 462 | -. 436 | 11.9 | 6.266-05 | 9.485-05 |
| 1.750 | -. 354 | -. 343 | 11.4 | 1.624-04 | 6.221-04 |
| 1.875 | -. 191 | -. 201 | 9.95 | 2.823-04 | 2.054-03 |
| 2.000 | -3.179-08 | -2.918-02 | 7.91 | 3-838-04 | 4.088-03 |
| 2.125 | . 191 | . 145 | 5.72 | 4.551-04 | 6.282-03 |
| 2.250 | . 354 | . 296 | 3.77 | 4.886-04 | 8.228-03 |
| 2.375 | . 462 | . 400 | $2 \cdot 40$ | 4.794-04 | 9.598-03 |
| 2.500 | . 500 | . 431 | $2 \cdot 19$ | 5.303-04 | 9.806-03 |
| c.62 | . 468 | -4 414 | 2.17 | 3.332-04 | 9.832-03 |
| 2.750 | . 354 | . 355 | $2 \cdot 15$ | -1.222-04 | 9.852-03 |
| 2.875 | . 191 | . 240 | 2.90 | -5.305-04 | 9.102-03 |
| 3.000 | 2.265-07 | 4.604-02 | 5.79 | -3.955-04 | 6.206-03 |
| 3.125 | -. 191 | -. 144 | 8.49 | -2.976-04 | 3.514-03 |
| 3.250 | -.354 | -. 306 | $10 \cdot 6$ | -2.141-04 | 1.424-03 |
| 3.375 | -. 462 | -. 419 | 11.7 | -1.013-04 | 2.773-04 |
| 3.500 | -. 500 | -. 466 | 12.0 | 2.678-06 | 4.784-05 |
| 3.625 | -. 462 | -. 435 | 11.9 | 6.238-05 | 8.995-05 |
| 3.750 | -. 354 | -. 342 | 11.4 | 1.616-04 | 6.091-04 |
| 3.875 | -. 191 | -. 200 | 9.96 | 2.817-04 | 2.036-03 |
| 4.000 | -4.212-07 | -2.903-02 | 7.93 | 3.832-04 | 4.070-03 |
| 4.125 | . 191 | . 145 | 5.74 | 4.544-04 | 6.263-03 |
| 4.250 | . 354 | . 296 | 3.79 | 4.876-04 | 8.211-03 |
| 4.375 | . 462 | . 400 | 2.42 | 4.774-04 | 9.584-03 |
| 4.500 | . 500 | . 432 | $2 \cdot 19$ | 5.247-04 | 9.805-03 |
| 4.625 | . 462 | . 415 | 2.17 | 3.278-04 | 9.832-03 |
| 4.750 | . 354 | -356 | 2.15 | -1.271-04 | 9.852-03 |
| 4.875 | . 191 | . 239 | 2.94 | -5.232-04 | 9.061-03 |
| 5.000 | 5.563-07 | 4.583-02 | 5.82 | -3.925-04 | 6.178-03 |
| 5.125 | -. 191 | -. 144 | 8.50 | -2.970-04 | 3.495-03 |
| 5.250 | -. 354 | -. 306 | 10.6 | -2.139-04 | 1.409-03 |
| 5.375 | -. 462 | -. 419 | 11.7 | -1.007-04 | 2.683-04 |
| 5.500 | -. 500 | -. 465 | 12.0 | 2.095-06 | 4.604-05 |
| 5.625 | -. 462 | -. 435 | 11.9 | 6.217-05 | 8.619-05 |
| 5.750 | -. 354 | -. 342 | 11.4 | 1.609-04 | 5.989-04 |
| 5.875 | -. 191 | -. 200 | 9.98 | 2.812-04 | 2.022-03 |
| 6.000 | -8.106-07 | -2.892-02 | 7.95 | 3.827-04 | 4.055-03 |
| 6.125 | . 191 | . 146 | 5.75 | 4.538-04 | 6.249-03 |
| | | Fig | 2. (Co | ued). | |

TIME	UN1	VN2	UN4	IBT1	ICTI
(USEC)					
6.250	.354	.296	3.80	$4.867-04$	$8.197-03$
6.375	.462	.400	2.43	$4.759-04$	$9.573-03$
6.500	.500	.432	2.19	$5.202-04$	$9.805-03$
6.625	.462	.415	2.17	$3.235-04$	$9.832-03$
6.750	.354	.356	2.15	$-1.310-04$	$9.851-03$
6.875	.191	.239	2.97	$-5.176-04$	$9.028-03$
7.000	$1.005-06$	$4.567-02$	5.84	$-3.901-04$	$6.157-03$
7.125	-.191	-.144	8.52	$-2.965-04$	$3.481-03$
7.250	-.354	-.306	10.6	$-2.137-04$	$1.397-03$
7.375	-.462	-.419	11.7	$-1.002-04$	$2.611-04$
7.500	-.500	-.465	12.0	$1.661-06$	$4.468-05$
7.625	-.462	-.435	11.9	$6.201-05$	$8.331-05$
7.750	-.354	-.342	11.4	$1.604-04$	$5.908-04$
7.875	-.191	-.200	9.99	$2.808-04$	$2.011-03$
8.000	$-1.319-06$	$-2.882-02$	7.96	$3.823-04$	$4.043-03$

```
END OF JOB
    END OF JOB
    ENDJOB 43
END 8049 MLSEC
```

```
AX@T PLT.
    THE NUMRER OF POINTS PER DATA SET = 65
    THE NIMRER OF DOINTS USEI IN A TRANSFOFM =
    THE NUMRER OF DATA SETS = 5
    FNTEF A FOP PRINT OF DATA SET FROM CIRCUS
    ENTEF PLUS DATA SET NUMFER FOP FREA FCN
    FNTER MINLIS DATA SET NIMRER FOF TIME FCN
\emptyset
    ENTER Q FOR TIME LISTING OR DATA SET NIMPER
0
```

TIME

－	－ar－a7	号号－ar	－	－	6．25aa－0．7
7．5aのaーa7	8．75月の－97	1．aのaの－a6	1．125a－06	1．25an－a6	5a－a6
1．5aのa－a6	1．625a－a6	1．75aの－96	1．875a－06	2．anaa－ab	2．125a－a6
2．25an－a6	2．375a－a6	2．5ana－ 26 $^{\text {c }}$	2．625a－a6		2．8750－96
3．anab－a6	3．125a－a6	3．25an－a6	3．375a－a6	3．5のaの－a6	3．625a－a6
3．75a日－9．6	3．875a－ 16	4．aの日a－a6	4．125a－06	4．25aの－a6	4．375a－ 16
4．5のaの－a6	4．625a－a6	4．75a日－96	4．875a－a6	5．日のดの－の6	－125a－a
5．25an－a6	5．375a－0．6	5．5aaa－a6	5．625a－a6	5．75aの－96	5．875a－a6
6．aのaの－06	6．125可－46	6．25aa－a6	6． $275 a-06$	6．5aaa－a6	6．625a－a6
6．75勾－の6	6．875a－06	7－9ดのดーか6	7．125a－a6	7．25日a－96	7．375a－a6
7．5日のaーの	－625a－0	50ロー	750	8．ロッロローか6	

ENTER \cap FOR PPINT OF DATA SET FROM CIRCLS
ENTER PLUS DATA SET NUMREP FOF FRER FCN ENTER MINUS DATA SET NIMRER FOR TIME FCN a
ENTER a FOR TIME LISTINE OR DATA SET NLMFEP 3

LATA SET NIMPEP 3

$6 a+a n$	$5.5934+a$,	$3.7362+a$,	2． $3416+a n$	2． $1936+9 a$	2．1672＋aด
2．1467＋a过	2．9444＋aa	5．7588＋aの	8．462a＋an	1．a557＋ 0_{1}	1
1．195a＋a	1．19の5＋の1	1．1378＋の1	$9.9465+a n$	7．9117＋aa	5．7183＋ab
$3.7717+a a$	2．4a17＋aの	2． $1941+09$	2．1675＋an	2．1475＋aa	
5．7943＋a，	$8 \cdot 4859+a a$	1．a576＋al	$1 \cdot 1723+Q_{1}$	$1 \cdot 1952+01$	$1.1910+a$
$1 \cdot 1391+01$	$9.9642+00$	7．93a4＋an	5．7368＋an	3．789a＋aa	$2.4150+a$
2． $1945+a$,	2．1677＋ の $^{\text {a }}$	2．1481＋ 0 兵	？．9394＋aa	5．8？19＋a可	$8 \cdot 5047+a$
$1.0591+01$	1－1732＋a1	$1 \cdot 1954+a 1$	$1.1914+a 1$	1－14 $0_{1}+\square_{1}$	9．9782＋ 0
$7.9452+a \square$	$5.7514+9 a$	3． 2028 ＋の何	$2.4272+a a$	2．1948＋aの	2．1679＋aa
2． $1486+00$	$2.9717+a$,	$5.8435+a a$	$8.5195+a$,	1－a6a3＋a1	1．1739＋

ENTER \emptyset FOR PRINT OF DATA SET FFOM CIPCUS
ENTER PLUS DATA SET NUMRER FOR FREA FCN
ENTER MINUS DATA SET NUMPER FOR TIME FCN

Figure 3．Execution of Interface Program．

ENTER lă FOR PRINT，ala FOR CALCOMP PLOT，OR a日l FOR TTV PLOT 100

LINE
REAL
IMAE
DF

1	－2．7697－92	a．anan	$-31 \cdot 15$
$?$	－4．9144－0．94	6．6766－94	－61．63
3	2．an91－02	7．9110－03	－33．31
4	－9．1365－95	－6．3436－04	－63．86
5	－2．3a6a－a2	9．5255－03	－32．96
6	－6．6337－04	2．3214－04	－63．96
7	2．9155－a2	－4．5856－a？	－25．3a
8	－1．93a4－a4	－1．1629－03	－ 58.57
9	－7．8478－92	－1．643a－ 13	－22．1年
10	－5．3355－94	3．9614－a4	－63．55
11	2．3の91－の1	1． 2146 － 12	－12．72
$1 ?$	1．0943－03	－1．6229－03	－54．17
13	－1．3a7a－a！	3．1161－92	－17．43
14	－1．7313－93	－8．6959－05	－55．22
15	1．4738＋	－2．2625＋6a	8.63
16	－8．8963－94	－3．4519－ด3	－48．96
17	6．9555＋日a	の．anan	16.85
18	－8．8963－04	3．4519－a3	－48．96
19	1．4738＋a0	2．2625＋aa	8.63
20	－1．7313－03	8．6959－05	－55．22
$? 1$	－1．3a7a－a1	－3．1161－a2	－17．43
22	1．a943－a3	1．6229－a3	－54．17
23	2．3091－n1	－1．2146－a2	－12．72
24	－5．3355－ด4	－3．9614－94	－63．55
25	－7．8478－92		－22．10
26	－1．93年－94	1．1629－a3	－ 58.57
27	2．9155－a2	4．5856－a2	－25．3n
28	－6．6337－a4	－2．3214－94	－63．06
29	－2．3a6a－a2	－9．5255－03	－ $32 \cdot 96$
30	－9．1365－05	6．3436－04	－63．96
31	2．ดด91－ด？	－7．911日－ 03	－33．31
32	－4．9144－ 月 $^{\text {4 }}$	－6．6766－04	－61．63
ER	の FOR PPINT OF LATA SET FROM CIFCUS		
ER	PLUS DATA SET NUMREF FOR FREO FCN		
ER	MINUS DATA SET NUMPEP FOR TIME FCN		

Figure 3．（Continued）．

ENTER I START
32
ENTER 1 बの FOR PRINT，ala FOR CALCOMP PLOT，OR aal FOF TTY PLOT 100

LINE	REAL	IMAE	L＇R
1	$9.9642+a k$	a．anaa	19.97
2	7．93年4＋an	a．anaの	17.99
3	5．7368＋an	a．aのaの	15．17
4	$3.789 a+a a$	a．anaa	11.57
5	$2.4159+a n$	の－Иana	7.66
6	2．1945＋an	a．anaa	6.83
7	2．1677＋aa	の．のดの日	6.72
8	2．1481＋aの	a．aのaの	6.64
9	$2.9394+a a$	の．のดaの	9．37
10	$5.8219+a a$	a．anaa	$15.3 n$
11	$8 \cdot 5047+a n$	Q．anab	18.59
12	1．a591＋a1	の－aの日a	20．5月
13	$1.1732+a 1$	a．anan	21．39
14	$1.1954+a 1$	a．anan	21.55
15	$1 \cdot 1914+01$	の．Иのロの	21.52
16	1．1401＋ 0_{1}	a．anaa	21．14
17	9．978？＋aの	Q．aの日a	19.98
18	7．9452＋aa	a．anaa	18．an
19	5．7514＋aの	の．ăaの	15．2a
20	3．8a28＋aa	a．anaa	$11.6 a$
21	2．4272＋ 0 a	a．anan	7－70
22	2．1948＋aの	a．a日a	6.83
23	2．1679＋aの	a．anan	6.72
24	$2.1486+a n$	b．baga	6.64
25		a．anata	9.46
26	$5.8435+a$,	の．ดのดの	15.33
27	8．5195＋aa	の．の日の日	18.61
28	1．06a3＋a1	a．anan	20．51
20	1．1739＋a1	の．ดのaの	21．39
3a	$1 \cdot 1955+01$	a．anan	21．55
31	$1 \cdot 1917+61$	a．anan	21.52
32	$1 \cdot 1409+01$	ด．ดの可	21．15
ENTER	PRINT OF	SET FROM	
ENTER PLUS DATA SET NUMRER FOR FREA FCN			
ENTER	DATA SET	R FOR TIM	

3

Figure 3．（Continued）．
after execution begins indicate a data set size of 65 , the number of points in a transform to be 32 , and the number of data sets to be 5 (these correspond to the 5 variables in the PLOT statement, see Figure 2). A message set then follows which requests the entry of an integer, a zero for print of a data set, a positive data set number for output of the frequency function, or a negative data set number for output of the time function.

The example shows the entry of a zero followed by another zero in answer to the next question, thus indicating data set number 0 (the time listing). This is followed by the 65 entries from CIRCUS making up data set 0 . After the printing of these data is complete, the original questions pertaining to the data desired are repeated as shown in the example of Figure 3. This time a print of data set 3, the node 4 output voltage, from CIRCUS was requested.

The next response was $a+3$ requesting the frequency domain representation of data set number 3. The program then requests the value of ISTART, an integer specifying the starting index for the 32 values to be used in the transform. Care should be exercised to insure that ISTART is never greater than the number of points in the data set minus the number of points required for a transform; otherwise, the transform data will be taken from two adjacent data sets (or partially from an adjacent storage area) and the transform will be meaningless.

After entry of the value of ISTART, the period of the time function is displayed. This display occurs only on the first call for either a time function or a frequency function.

Next a statement relative to the type output desired is displayed. The code for response to this statement is 100 for print, 010 for Calcomp plot, and 001 for teletype plot. The example shows a request for print, followed by a printing of the 32 values of the frequency function obtained from the original data set number 3 starting at array element number 32. The three output types may be called individually, in pairs, or all at one time. For example, responding with 111 would generate printed output, a Calcomp plot, and a teletype plot of the specified data set. The response 101 would produce printed output and a teletype plot.

After execution of the print command in the example of Figure 3, the program cycles back to the first set of questions and asks again for the entry of a 0 , or plus or minus a data set number. The response in the example of -3 indicates a request for the time waveform of data set number 3. Next, in response to the questions generated by the program, ISTART is specified as 32 , and an output type of 100 (printed output) is entered by entry of the number 100. This is followed by a print of the 32 data points which would be input to the FFT had a frequency function been called. These 32 points are from data set 3, starting at element number 32 and ending at element number 63. This provision for selecting any 32 consecutive points desired from a 65 point data set allows the first part of the data to be skipped when it contains a transient response.

After execution of the given command the program again responds with a request for output data type desired. The example of Figure 3 shows a request for the frequency function of data set 3 starting with data set element number 32 and for a teletype plot of these data by entry of 001 to the request for output type. The program next asks for entry of $F L O$, the lowest frequency desired in the plot. This can be any frequency compatible with the size of the stored frequency function. Entry of this frequency is followed by a request for entry of $F H I$, the highest frequency desired in the teletype plot. Entry of these two frequencies satisfies the requirements of the program and a plot is produced on the teletype as shown in the example of Figure 4. The ordinate of the plot is displayed horizontally and is calibrated in decibels with automatic scaling. The abscissa of the plot appears vertically (along the teletype paper) and can be any length. This axis along the paper is the frequency axis extending from the FLO to FHI specified.

Completion of the teletype plot again generates the request for the output data desired which in the example is answered by a -3 , a request for the time function of data set number 3. Again the request for ISTART is responded to with a 32 and a teletype plot is requested by entry of 001. Since a time plot has been specified, the program requests that the starting and stopping value of the index of the data array be entered.

ENTER IAQ FOR PRINT，ala FOF CALCOMP PLOT，OP AOI FOF TTY PLOT
Qal
ENTER FLO
－3． 75 E 6
ENTER FHI
3． 75 E 6

NSIZE $=31$
FREQUENCY（MHZ）DECIRELS

-30	－ 20	-10	ด	10	20
	I－	I	－	I－	

$-3.75 a$ I
－3．5aの I
$-3.25 a$ I

- 3．日のa I
- 2．75和
－2．5ดの I－－－－
-2.250 I
－2．ดดด I－－－－－－－
－1．75 I
－1．5月の I－－－－－－－－－－－－－－－－－－－－－－
－1．25a I
－1．のดの I－－－－－－－－－－－－－
－． 75 I

－．25a I

－25

－75月 I
1．のดด I－－－－－－－－－－－－－
1.250 I

1．5ดด I－－－－－－－－－－－－－－－－－－－－－
1.750 I

2．аดด I－－－－－－－
2．250 I
2．5an I－－－－
2．75月 I
3．aかa I
3．25a I
3．5日a I
3．75の I
FRER
ENTEP a FOR PRINT OF DATA SET FROM CIPCUS ENTER PLUS DATA SET NUMBER FOR FPEA FCN ENTER MINUS DATA SET NUMEER FOR TIME FCN － 3

Figure 4．Spectrum of Data Set 3.

The data array available for the time plot is contained in an array having the length of the transform array specified (in this case 32). Any stopping value up to the maximum length of the array may be specified (in this case 32). The entry shown is 32 . The next request by the program is that for NJUMP which specifies the number of points skipped in the array between points plotted. This allows skipping points between plotted points and is a very useful feature when large data arrays are processed. In the example shown the transform data array size is small and the value of NJUMP is entered as 1 . The output is shown in Figure 5 which displays the time waveform of the amplifier output.

The last request illustrated is that for a Calcomp plot. The Calcomp plotting routines and methods used for setting up the plot files are probably unique with the Georgia Tech 1108 computer. Similar routines and specific control directives should allow the use of the plotting routines with a minimum of changes at other installations. The Calcomp frequency plot routine contains as its last instruction a write statement to write a message "Plot Complete" indicating that the program has processed the plot routine. The command to generate a Ca1comp plot of the frequency function is a plus data set number (3 in this case) followed by ISTART (32) followed by 010. These instructions are shown in Figure 6, and the resulting plot in Figure 7.

To exit the program, the command @EOF is given. The remaining information relative to the Calcomp plot and the time to execute the run is generated by the computer.

B. Use of ECAP for Transfer Function Evaluation

One of the difficulties frequently encountered in the use of CIRCUS was that of obtaining an accurate representation of a circuit for analysis. If the circuit description presented to CIRCUS is not an accurate representation of the actual circuit, then the results produced by CIRCUS will not accurately represent the circuit response. An example of this type of difficulty is that of entering an interstage bandpass filter which contains mutual inductance and is situated between two active

```
    ENTER ISTART
32
    ENTER 1Aด FOR PRINT, ØID FOR CALCOMP PLOT, OR AQI FOR TTY PLOT
OQ1
    ARRAY SIZE = 32 NSTOP MUST RE EQUAL TO UR LESS THAN THIS VALUE
    ENTER NSTART
1
    ENTER NSTOP
32
    ENTER NJUMP
```

1

Figure 5. Time Waveform of Data Set 3.

```
    ENTER I START
32
    THE PERIOD OF THE TIME FUNCTION = 4.a@ดด-a6 SEC;
    ENTER 1,a\ FOR PRINT, ala FOR CALCOMP PLOT, OR GQ1 FOR TTY PLOT
010
    FNTER THE HIGHEST DESIRED FREQ IN THE SPECTPUM, FMAX
3.75E6
    PLOT COMPLETED
    ENTER }\cap\mathrm{ FOR PRINT OF LATA SET FROM CIRCUS
    ENTER PLLIS DATA SET NLMEER FOR FRER FCN
    ENTER MINUS DATA SET NUMBER FOR TIME FCN
OEOF
PLOT 2.7 MIN \(1.3 \mathrm{FT} \quad a \angle F \quad 112 ด 72191104\)
END 1348 MLSEC
```

Figure 6. Request for Calcomp Plot.

Figure 7. Calcomp Plot of the Frequency Spectrum of the Time Waveform Shown in Figure 5.
devices. Such filters usually have bandwidths wide enough to pass the significant sidebands of a signal of interest after allowing for such factors as frequency instability and temperature effects. For CIRCUS to provide an accurate representation of the circuit response, the transfer function of the filter must meet these bandwidth requirements. Since CIRCUS determines the circuit response by solving for its time response (which yields only a time waveform), the transfer characteristics of the bandpass filter cannot be readily determined from CIRCUS calculations.

In a search for better methods of coping with such problems, other analysis programs were investigated. Those having an a-c analysis capability in the frequency domain were of particular interest since the circuit description could be entered in a manner similar to that used in CIRCUS. If the computed circuit response was not as desired, adjustments in circuit parameters could be made and the transfer function evaluated again. Thus the variation of the transfer function with variation in the value of circuit parameters could be obtained.

With such an a-c analysis capability, much of the guesswork of entering a circuit into CIRCUS could be removed. This is not to say that the response of a filter, for example, is independent of the devices preceding and following it, but that values of circuit parameters could be determined to yield the desired filter response. These could then be adjusted for drive and load impedances, possibly by using CIRCUS to calculate the impedances presented by the circuit external to the filter.

The analysis program ECAP was selected to be used for the a-c analysis calculations. This selection was based largely on the availability of ECAP on the Georgia Tech Univac-1108 computer.

To illustrate the use of ECAP, a fairly complex circuit with a known response was selected. This circuit was the CCS telemetry bandpass filter for which calculated and experimentally determined responses have been previously obtained [1]. A circuit diagram of this filter is shown in Figure 8 with the input transformer replaced by its "T" equivalent circuit. The underlined numbers in the figure show the node numbers used for entry of the circuit into ECAP. The branches are shown in the

Figure 8. Circuit Diagram of CCS Telemetry Filter.
figure as numbers preceded by a "B" and are from left to right and from top to bottom. The circuit description in the format required by ECAP is shown in Figure 9. The circuit response calculated by ECAP agreed very closely with that obtained earlier, and is shown in Figure 10 by the "x" points superimposed on the response calculated previously [1].

A sample of the output produced by ECAP is shown in Figure 11. The output of ECAP is not easily interpreted. ECAP essentially re-executes for each new frequency and therefore produces an excessive amount of superfluous output information. A much easier to interpret output format would result if the output data were displayed in tabular form.

The ability of ECAP to solve for a transfer function of a circuit has been demonstrated and a familiarity with the user program interface was obtained.

C. Conclusions and Recommendations

An interface with the time domain program CIRCUS has been constructed which allows the frequency domain representation of time waveforms generated with CIRCUS to be produced. These frequency domain representations of signals are generated by use of the FFT algorithm. In addition, the capability has been provided for easily obtaining listings of the data sets obtained from CIRCUS, or for generating Calcomp or teletype, time or frequency plots of portions of these data sets.

The a-c analysis capabilities of ECAP have been investigated and found to be a useful tool for accurate preparation of data for input to programs such as CIRCUS. This a-c analysis capability is particularly useful in the evaluation of transfer functions.

It is recommended that the capabilities of the two programs, CIRCUS and ECAP (preferably the latest versions of these programs) be interfaced such that nonlinear circuits could be handled with CIRCUS and linear circuits with ECAP. The link between the frequency and time domains would be the fast Fourier transform algorithm. Part of this interface has already been established with techniques discussed in this section. There remains a need to interface the a-c analysis capabilities of ECAP with the frequency domain data obtained from CIRCUS. A study should be undertaken to determine an efficient method of providing this interface.

```
C
                                    CCS TELEMETRY BANDPASS FILTER TRANSFER FUNCTION
C
AC ANALYSIS
C
B1 N(0,1), R=50., E=1./0.
B2 N(1,2), L = -5.358E-6
B3 N(0,2), L = 6.06E-6
B4 N(2,3), L = 51.94E-6
B5 N(3,4), R=7.78
B6 N(0,4), C=20.7E-12
B7 N(0,4), R=5.1E3
B8 N(4,5), C=480.E-12
B9 N(5,6), }R=1.
B10 N(6,7), L = 10.8E-6
B11 N(0,7), C = 1368.E-12
B12 N(5,8), C=510.E-12
B13 N(8,9), R = 8.01
B14 N(9,10), L = 51.E-6
B15 N(8,10), C = 16.1E-12
B16 N(10,11), R = 2.51
E17 N(11,12), L = 16.E-6
B18 N(0,12), C=2200.E-12
B19 N(10,12), C = 344.E-12
B20 N(10,13), R=8.01
B21 N(13,14), L = 51.E-6
B22 N(10,14), C = 16.9E-12
B23 N(0,14), R=4.7E3
B24 N(14,15), C = 570.E-12
B25 N(0,15), C = 1800.E-12
B26 N(0,15), R=620.
FREQUENCY = 1024.E3
PRINT, VOLTAGES
MODIFY
FREQUENCY = .5E6(+25)3.E6
EXECUTE
END
```

Figure 9. Circuit Description in ECAP Format.

Figure 10. Comparison of Response Calculation for CCS Telemetry.

Figure 11. Sample of ECAP Output.
III. MATHEMATICAL MODELING OF COMMUNICATION SYSTEMS ON A BLOCK BASIS

A. General Description

The Frequency and Time Circuit Analysis Technique (FATCAT) is a computer implemented program for analyzing communications circuits and is designed on a block modeling approach. Circuits are represented as a linear collection of sub-assemblies and FATCAT provides a model block for a variety of sub-assemblies including signal sources, filters, demodulators, amplifiers, limiters, mixers, etc. The program is designed for use with either remote terminal or batch processing mode. For remote terminal operation the program is conversational in nature and provides considerable flexibility to the user. Input statements to specify the circuit configuration, to direct processing, and to direct output are given in alphanumeric codes along with numeric specification of parameters. The input formats were designed to be relatively simple and easy to use.

FATCAT is designed for steady-state analysis of circuits in which the signal flow is sequential; no provision is presently included for feedback loops. The model is designed to operate in both the time domain and the frequency domain. The signal being processed is stored in a complex array as either a frequency domain representation of the signal or one complete period of a time wave form. Transition from one state to another is made using a subroutine which performs a fast Fourier transform. Each model block was developed in whichever domain was most convenient for modeling that block. When calling for signal processing through any block, the domain representation of the signal which currently exists is checked and, if necessary, the conversion is automatically made. The same automatic conversion is available on output calls; this permits examining either the time waveform or the frequency spectrum at the output of any block. Outputs include both printed and plotted values of the time waveform or the frequency spectrum.

The entire program was developed and implemented on a Univac-1108 at Georgia Tech. Operation and command structure of the program along with
examples of using the program are given in the following sections. A brief description of each software unit along with a program listing is given in Appendix C.

After development of the program was completed to its present form, suitable modifications were made to implement it on a SIGMA-5 computer at Marshall Space Flight Center. Appendix D gives program listings of those routines that were changed for use on the SIGMA-5.

B. Program Control

Operation of the program is accomplished by giving a sequence of defined commands, each command being given basically with an alphanumeric string of 6 or less characters. In most cases other data, usually numeric will follow the basic command.

The set of commands can be broken into several categories (1) input (block specification) commands, (2) control commands, and (3) special commands.

After starting execution of the program, the first input command will either be specification of the first block of the circuit, or one of two special commands. These two special commands are (1) the ability to list the command structure of the program, and (2) the ability to list the input formats for all input commands. These two commands are provided as a convenience to the remote terminal user and are described in detail in Section IIIB3.

1. Block Input Commands

Each circuit block is specified with a line entry composed of the alphanumeric code for that block, followed by the parameters of the block. The entry items on a line are separated by commas; no comma is used after the last item. Each block has a specific entry format and these are described below.

The blocks of a circuit are entered sequentially in the order that they occur in the circuit. Thereafter they are identified by number, i.e., the first block entered is block number 1 , the second is block
number 2, etc. The block numbers are important in directing processing and outputs.

Flexibility is provided for the remote terminal user in entering the blocks. A11 blocks comprising a circuit may be entered before any processing takes place, or only part of the blocks may be entered and processed through before the remaining blocks are entered. The user has the option of adding new blocks to the end of the input string at any time (provided the block count does not exceed the maximum allowable number of blocks, currently set at 20). One additional restriction is that if a block containing a source frequency (a mixer with a local oscillator, for example) is to be added after processing has begun, the source frequency must be chosen to be periodic in the time interval represented by the time function stored in the data array. This time interval (PERIOD) is printed out at the beginning of processing so that the choice of a suitable source frequency should be relatively easy.

a. Sources

Two signal source blocks are provided. The first simulates a signal generator and is called with

> SIGGEN, FO, FMOD, AM, PM, FM, A
where

$$
\begin{aligned}
\mathrm{FO} & =\text { carrier frequency }(\mathrm{Hz}), \\
\mathrm{FMOD} & =\text { modulation frequency }(\mathrm{Hz}), \\
\mathrm{AM} & =\text { percent } \mathrm{AM} \text { modulation }, \\
\mathrm{PM} & =\text { peak phase deviation (radians), } \\
\mathrm{FM} & =\text { peak frequency deviation (Hz), and } \\
\mathrm{A} & =\text { peak amplitude (volts). }
\end{aligned}
$$

The signal generator block provides only sine wave modulation. Combinations of AM-PM or AM-FM modulation may be specified, but not PM-FM (either PM or FM must be zero). As an example, a signal generator with a carrier frequency of 1.0 MHz , a modulation frequency of $10.0 \mathrm{kHz}, 50 \%$ AM modulation plus FM modulation with $\beta=2$, and a peak amplitude of one volt would be entered as SIGGEN, 1.E6, 1.E4, 50., 0., 2.E4, 1.

A call for processing this block will generate the appropriate time waveform and store it in the data array.

The second signal source is a flat spectrum (impulse time function) generator specified by
FLATSP, AMP, DELF, N
where

$$
\begin{aligned}
\text { AMP } & =\text { amplitude of spectrum lines, } \\
\text { DELF } & =\text { frequency separation of spectral lines }(\mathrm{Hz}) \text {, and } \\
\mathrm{N} & =\text { array size } .
\end{aligned}
$$

The user specified values of $D E L F$ and N determine the overall frequency spread of the spectrum being produced and hence determines the period of the impulse function being represented. When using FLATSP, the usual computation of the array size and period is not used. The actual value of N that is used will be a power of 2 ; if the input N is not a power of 2, it will be automatically raised to meet this requirement. (Example: if $N=500$ is specified, $N=512$ will be used.)

b. Filters

Eleven different filter blocks are included which simulate the action of Butterworth, Tchebysheff, and synchronously tuned filters in low pass, high pass, bandpass, and (except for sync tuned) band stop configurations. Since the input statements are similar, the commands will be grouped by types and the inputs for Butterworth, Tchebysheff, and synchronously tuned filters of each type given in that order. The commands for low pass filters are:

BWLOWP, FC, NR
CHLOWP, FC, NR, EPSDB
SYNLP, FC, NR
where

$$
\begin{aligned}
\mathrm{FC} & =\text { corner frequency }(\mathrm{Hz}), \\
\mathrm{NR} & =\text { number of filter sections, and } \\
\text { EPSDB } & =\text { Tchebysheff ripple factor in decibels. }
\end{aligned}
$$

The inputs for high pass filters are:
BWHIP, FC, NR
CHHIP, FC, NR, EPSDB
SYNHP, FC, NR
where the parameters are identical to those defined for low pass filters.
The inputs for bandpass filters are:
BWBNDP, FO, BW, NR
CHBNDP, FO, BW, NR, EPSDB
SYNBP, FO, BW, NR
where
FO $=$ center frequency (Hz),
$B W=$ total bandwidth (Hz), (3 dB bandwidth for synchronous and Butterworth filters and ripple amplitude bandwidth for Tchebyscheff filters) ,
$N R=$ number of filter sections, and EPSDB $=$ Tchebysheff ripple factor in decibels.
The inputs for band stop filters are:
BWBSTP, FO, BW, NR
CHBSTP, FO, BW, NR, EPSDB
and the parameters are identical to those for band pass filters.

c. Demodulators

Demodulators for $A M, F M$, and $P M$ are specified, respectively
with
AMDEMO, FO
FMDEMO, FO

PHDEMO, FO
where

$$
\mathrm{FO}=\text { center frequency }(\mathrm{Hz})
$$

d. Other Blocks

In addition to the blocks categorized above, several other
blocks are provided. An amplifier is specified with AMP, Gain
where
Gain = amplifier gain in dB.
A limiter is specified with
LIM, CL, CH, GL
where
$C L=$ low clipping level (volts),
$\mathrm{CH}=$ high clipping leve1 (volts), and
GL = limiter gain (volts/volt).
A frequency multiplier (a wide band harmonic generator) is specified with

FRQMUL
(no parameters necessary).
An ideal multiplier can be specified with
IDLMUL, ALO, FLO
where
ALO $=$ amplitude of the LO signal (vo1ts), and FLO $=$ frequency of LO signal (Hz).
2. Contro1 Commands

A number of control commands are used to direct processing and to generate output. Processing of the signal to the output of any block is initiated with the command

BLOCK, N
where N is the number of the block. Note that processing occurs only when this command is given; entry of a block specification does not cause processing through that block.

Signal processing is non-reversible; if processing to the output of a given block has been completed, the outputs of earlier blocks are no longer available. Error detecting features are included in the program so that a BLOCK call with an N that is wrong will not upset the computations.

The command*

PRIME FACTORS

will list the prime factors of all source frequencies. These can be helpful when it is necessary to adjust one or more frequencies slightly so that all source frequencies will be periodic on an interval of reasonable size. A periodic interval that is too long will require an array of excessive size.

The command

END OF JOB
will terminate a run.
Other control commands are used to generate output. Outputs include printed listing, printer type plots, and plotting equipment outputs of both the time function and the frequency function. When any of the output commands are given, the output data is from the block output where processing currently stands. For example, in a six-block circuit, if processing through block 3 has been effected by the command BLOCK 3, then any output generated will be for the output of block 3. To examine the signal at the output of block 5, it will first be necessary to process the signal with BLOCK, 5, and then call for the output.

For a printed 1isting of the time function, the command is

PRINTT, NSTART, NSTOP
where

$$
\begin{aligned}
\text { NSTART }= & \text { the starting array index, and } \\
\text { NSTOP }= & \text { the final array index (not to exceed the array size } \\
& \text { being used). }
\end{aligned}
$$

In conversational mode, an alternative command is

PRINTT
following which the machine will ask for the starting and stopping indices.

[^1]For a printed 1isting of the frequency function the command is PRINTF, FLO, FHI
where
FLO = low frequency limit (Hz), and
FHI = high frequency limit (Hz).
Alternatively, the command
PRINTF
will produce questions asking for FLO and FHI, following which the same output will be generated. The use of these parameters permits only the portion of the spectrum of interest to be printed.

The commands for plotted output utilize the same parameter forms described above, and when operating from a remote terminal the commands can be given with or without the parameters. When the parameters are omitted from the command, the computer will ask for them.

Printer plots (line printer for batch processing, teletype plots for operation from a remote teletype terminal) of the time function are obtained with

TPLOTT, NSTART, NSTOP, NJUMP
where
NJMP = interval between plotted points and the other parameters are the same as for PRINTT.

Printer plots of the frequency spectrum are generated by
TPLOTF, FLO, FHI
where FLO and FHI are the same as for PRINTF.
Plotter outputs are similarly generated with
CPLOTT, NSTART, NSTOP
for the time function, and
CPLOTF, FLO, FHI
for the frequency function.

3. Special Commands

Three special commands are included for use in connection with establishing the size of the data array. Initial processing of any circuit containing source frequencies (such as those originating in a signal generator or the local oscillator of a mixer) will start with a determination of the smallest time increment on which all of the source frequencies are periodic, and a calculation of an array (sample) size that meets the Nyquist criterion for all frequencies. The calculated period and array size will then be printed out and the user asked if the size is satisfactory. At this point the program is positioned at a special input position, at which only four commands will be recognized:

YES
NO
N, NSIZE
END OF JOB
where NSIZE is an integer which specifies the size of the array. If the answer is NO, the program will ask for input of an integer for NSIZE. For either method of entering NSIZE, the input integer will be adjusted to a power of 2 by increasing it if necessary, and the new values of N, IGAM, and DELTA-T will be printed out. The question of whether these values are satisfactory will then be repeated. Thus this section of the program is a loop and will be exited only when a YES response (or an END OF JOB) is given. Processing of the signal to the block output designated will continue after a YES is entered provided N 1ies within acceptable limits. To be acceptable, N must be at least as large as the value initially computed in order to meet the Nyquist criterion; at the same time, it must be no larger than the size of the main data array declared in the main program. Since cases can occur where both these conditions cannot be met, recognition of END $O F J O B$ has been included at this point to permit a normal termination of the run. Any attempt to continue a run with N outside the required limits will cause an error termination.

Two other special commands are included as an aid to the remote
terminal user. The command*
LIST COMMANDS
followed by a comma and one of several second words will produce a listing of part or all of the FATCAT commands. Permissible second words, and their effect are:

LIST COMMANDS - print instructions for using list commands, ALL - list a11 operating commands, SOURCES - 1ist commands for inserting source blocks, FILTERS - 1ist commands for inserting filters, DEMODULATORS - list commands for inserting demodulators, MISC - list other block input commands, and CONTROL COMMANDS - 1ist control commands.

The above instruction will only list the command word for each instruction along with identifying information. Input data formats will not be listed. If the user wants information on the input data format for any block specification command, the command

INPUT FORMAT
followed by a comma and the name of any block specification command will produce a listing of the complete command with the required parameters, and will identify the meaning of each parameter. For example, the command

INPUT FORMAT, BWBNDP
will list the complete input instructions for a Butterworth band pass filter.

The command

INPUT FORMAT, ALL
will list the formats for all of the block specification commands.

[^2]
C. Simulation Examples using FATCAT

As examples of the use of the FATCAT program, two sample problems will be presented. Both examples represent receiving systems, the first being an amplitude modulation receiver and the second a frequency modulated receiver.

1. AM Receiver

A block diagram of an amplitude modulated superheterodyne receiver is shown in Figure 12. Figure 12a shows the actual configuration of the receiver, while Figure 12 b shows the way that the receiver would presently be modeled using FATCAT. The signal source is presently represented by a signal generator which produces single tone modulated radio frequency signals. In the final version of FATCAT as envisioned, this signal source could be modeled as an actual transmitter with modulators, frequency multipliers and amplifiers. FATCAT does not presently include a propagation model or antenna models. Therefore the output of the signal generator represents the input signal to the receiver. The control program is structured so that additional model blocks such as those for transmitters, propagation, antennas, and many more, can be easily added to the model blocks already included in the program.

The first step in the analysis of the amplitude modulated receiver is a command for the execution of the FATCAT program. Figure 13 shows the command for execution of the program contained in file "R" as absolute element " U ". Following this command the program responds with the word "START", which indicates that the program is ready for input commands. Following the sequence of blocks shown in Figure 12 b the first input instruction given is that for an AM signal generator with a carrier frequency of 10 MHz , a modulation frequency of 10 kHz , 50 percent amplitude modulation, no phase or frequency modulation, and a carrier peak amplitude of 1 microvolt. This is the "SIGGEN" command shown in Figure 13. Next the command, "BLOCK, 1 " is given which requests the program to process the submitted instruction and arrive at the output of block 1 . After the first command to process to the output of a block for which

(a) Block Diagram of a Typical AM Receiver.

(b) Sequence of Blocks called in FATCAT to Model AM Receiver.

Figure 12. Block Diagram of Amplitude Modulation Receiver and FATCAT Model of Receiver.

```
@XAT F.U
    START
SIGEEN, 1.E7,1.E4,50., 的,暗, 1.E-6
    SIGEEN,1.E7, 1.E4, 50., a., ด., 1.E-6
BLOCK, 1
    RLOCK,1
    PERIOL=1.ดดด-ด4 SECONDS,DELTA-F= 1.aดด+ด4
    N=2048, IGAM=11, DELTA-T = 4.883-98
    IS THIS SATISFACTORY
YFS
    YES
    PROCESSING COMPLETE THRU RLOCK 1
TPLO TF
    TPLOTF
    FNTER LOW, HIEH FREQUENCIES
O.9E6,10.1E6
NSIZE= 21
FRERUENCY (MHZ) DECIPELS
-170 -160 -150 -140 -130
                I----+----I----+---- I----+----I----+--------------------- I
    9.9ดด I
    9.910 I
    9.920 I
        9.930 1
        9.940 I
        9.950 I
        9.96ด I
        9.97ด I
        9.98ด I
        9.99自 I---------------------------------------
1月.ดดด I------------------------------------------------------
1月.ด1の I--------------------------------------
10.a2a I
10.030 I
10.040 I
10.050 I
10.060 I
10.070 I
10.080 I
10.090 I
10.1a@ I
            FREO
```

Figure 13．Start of FATCAT Run for AM Receiver， Showing Spectrum at the Output of the Signal Generator．
input data has been submitted (which can be a single block or multiple blocks) the output information shown in Figure 13 is given. This information contains PERIOD which gives the period of the time function, DELTA-F, which is the spacing of possible spectral component in the frequency domain, N which is the array size needed to meet the minimum Nyquist requirements, IGAM the exponent to which 2 is raised to give N, and DELTA-T the sampling interval in the time domain. After the quantities have been printed the program asks if these values are satisfactory. Response to this question can be "YES" or "NO". If a "YES" is given processing proceeds to the output of the block specified. In the example of Figure 2 processing is completed through block 1. If "NO" had been given in response to the above question the program would have responded with "ENTER N, VALUE" which allows a new value of N to be inserted. This provision allows the number of samples per cycle of the highest frequency in the input signals to be increased. This is especially useful for plotting since just over two samples per cycle, which meets the Nyquist criterion, is not adequate for detailed plotting of the time function.

Next it is desirable to observe the output of the signal generator, and an observation of the frequency spectrum was selected. This is produced by the command "TPLOTF" (teletype plot of the frequency function) which is followed by a request for the low and high frequency limits of the spectrum to be observed. These were specified to be 9.9 MHz to 10.1 MHz as shown in Figure 13 and the program produced the spectrum plot shown in that figure. Note that the ordinate of the plot is automatically scaled. The spectrum of the AM signal is displayed with a carrier amplitude of 0.5 microvolts or -126 dB (one side of a two-sided spectrum); the amplitudes of each sideband component is 0.125 microvolt or -138 dB . A print of the frequency function is shown in Figure 14 which shows the amplitude and phase of these spectral components.

The next b lock in the diagram of Figure $12 b$ is that of a single section Butterworth bandpass filter with a total 3 dB bandwidth of 20 kHz . This block command along with the command to process to the output of block 2 is shown at the top of Figure 15. The 3 dB point of the filter was placed at the sideband frequencies of the AM signal so that the effect of the filter could be observed. The print of Figure 15 when compared

PRINTF						
PRINTF						
ENTER LOW，HIEH FREOUENCIES						
9．9E6，10．1E6						
LINE	FREA	REAL	IMAG	MAE	DE	PHASE
2015	9．9aのa＋a6	－aba	－ana	－ana	－236．18	87.4
2 216		－baa	－のロの	－ana	－234．92	92．1
2a17	9．92ab＋ 06	－Qaの	－ana	－ana	－234．62	84.1
2018	9．93ab＋a6	－aba	－aのa	－ara	－233．22	82.6
2019	$9.94 a b+a 6$	－ana	－の日a	－ana	－ $232 \cdot 73$	96．の
2の2の	9．95ana a6	－aのa	－ana	－ana	－ 23 月． 36	88．？
2の21	9．96aa＋a6	－ana	－ana	－ban	－228．22	89.0
2ด2？	9．97aa＋a6	－日大の	－ana	－apa	－227．58	92．a
2023	9．98aa＋a6	－ana	－のaの	－band	－221．96	82．1
2 224		－－－	－の同	－ana	－138．06	－90．a
pą 5	1－aのaの＋a7	－ana	－ana	－ana	－126．a2	－9a．a
2026	1－aの10＋a7	－aba	－－－	－ana	－138．06	－9a．a
2 Q27	1－aの2a＋a7	－aan	－ana	－QRa	－222．49	－81．4
2028	1－an $3 a+a 7$	－ana	－ana	－ana	－ 228.82	－92．？
2929	1．aの4a＋a7	－ana	－ana	－apa	－229．39	－88．6
2の3の	1－aの5a＋a7	－ana	－ana	－ana	－231．95	－88．3
2031	1．aの6a＋a7	－ana	－aba	－ana	－235．10	－98．4
2032		－ana	－ana	－bata	－235．84	－78．3
2の33	1．aの8a＋a7	－ana	－ana	－aaa	－237．5？	－80．1
2034	1． $9090+97$	－－ana	－－ana	－ana	－238．36	－96．6
2035	1．010日＋の7	－めQa	－－ana	－aba	－239．76	－86．4

Figure 14．Listing of the Frequency Function at the Output of the Signal Generator．

PWRNLP，1•E7，2•F4， 1 RWPN DP，1•E7，2•E4， 1
PLOCK， 2
RLOCK，？
PPOCESSING COMPLETE THRU RLOCK 2
PRINTF
PRINTF
ENTEP LOW，HIGH FREOUENCIES
9．9E5－6，10．1E6

LINE	FREA	REAL	IMAE	MAE	LB	PHASE
2015	9．9aのata6	－ana	－ana	－ana	－256．22	171.7
2016	9．91aa＋a6	－ana	－ana	－aのa	－254．06	175．8
2017	9．92aa＋a6	－ana	－aのa	－aのa	－252．75	167．a
2018	9．93aa＋a6	－ana	－ana	－ama	－250．21	164.5
2019	9．940日＋06	－ana	－ana	－ana	－248．41	176.5
2の2ด	$9.95 a n+06$	－ana	－ana	－ana	－244．51	166.9
2a21	9．96ab＋a6	－ana	－ana	－ana	－240．53	164.9
2ด22	9．97a日＋a6	－ana	－aaa	－ana	－ 237.58	163.6
2の？3	9．98aa＋a6	－ana	－aのa	－ana	－228．95	145.6
2い24	9．99ab＋a6	－ana	－ana	－ana	－141．07	－45．a
2ด25	1．аaのata7	－ana	－ana	－ana	－126．a2	－9a．a
2 206	1－のด1日＋の7	－－ang	－ana	－ana	－141．07	－135．®
2 a欠7	1．aの2a＋a7	－ana	－ana	－ana	－2？9．48	－144．9
2×28	1．aの3a＋a7	－ana	－ana	－ana	－ 238.82	－163．7
2ด29	1．aの4a＋a7	－ana	－ana	－aのa	－ 241.69	－164．6
2の30	1．aの5a＋a7	－ana	－ana	－ana	－246．10	－167．a
2031	1． $906 a+a 7$	－arar	－－－	－ara	－250．78	－178．0
2032	1．907a＋ 07	－－－	－ana	－ara	－252．83	－ 16×2
2933	1． $\operatorname{aac} a+a 7$	－ana	－ana	－aan	－255．64	－16？．9
20.34	1．an9 a＋a7	－ana	－aba	－ana	－257．49	179．8
2035	1－a1a ${ }^{\text {a }}$－${ }^{\text {a }}$	－ana	－ana	－aのa	－259．81	－170．7

Figure 15．Listing of Frequency Function at the Output of the First Bandpass Filter．
with Figure 14 verifies this. The sidebands at 9.99 MHz and at 10.01 MHz have an amplitude of -141.07 dB out of the filter and had an amplitude of -138.06 at the input to the filter -- a difference of 3.01 dB . Note that the carrier amplitude is unchanged. A plot of the spectrum at the output of the filter is shown in Figure 16.

Next in the block diagram of the receiver is a mixer. This is modeled in FATCAT as an ideal mixer which produces sum and difference frequencies only. Another useful feature of FATCAT is the input format request command, shown at the top of Figure 17 , which can be used when the input format of a block is not known. The request "INPUT FORMAT", followed by a comma, and then followed by the name of $a b l o c k$ in the model library, yields the input parameters and their definition as shown in Figure 17 (use of this command has no effect on the circuit being processed). The ideal multiplier IDLMUL requires the peak amplitude of the local oscillator be entered as well as the frequency of the local oscillator. This amplitude in the example was given as 1 volt and the frequency as 9 MHz . This should result in the spectrum of the AM signal being shifted to 1 MHz and 19 MHz . The spectrum around the difference frequency is shown in Figure 17.

The next two blocks of the receiver are made up of a four section Butterworth bandpass filter with a center frequency of 1 MHz and a bandwidth of 20 kHz followed by an amplifier having a gain of 120 dB . The input commands for these blocks and the spectrum at the output of each block are shown in Figures 18 and 19, respectively.

Proceeding along the block diagram of Figure $12 b$, the next block is an amplitude demodulator. The input commands for this block and the output spectrum are shown in Figure 20. Note that the on1y two components in the spectrum displayed are the $d-c$ component and the demodulated signal at 10 kHz .

Figure 21 shows the result of a call on the teletype time plot routine. This routine was called to plot the time function at the output of the demodulator. The request for the entry of NSTART, NSTOP, and NJUMP allows the starting point in the array containing the time function to be specified, the stopping point to be specified, and the number of points

```
TPLOTF
    TPLO TF
    ENTER LOW, HIEH FREOUENCIES
9.9E6,10.1E6
NSIZE=21
FRERUENCY (MHZ)
DECIEELS
\(-170-160-150-140 \quad-130 \quad-120\)
I----+---- I----+----II----+-----I----+----------------------
9.9かの I
9.910 I
9.92a I
9.930 I
9.940 I
9.950 I
9.960 I
9.970 I
9.980 I
9.990 I
1の.aのด
1@.ด1の I----------------------------------
10.ด20 I
1の.ด3ด I
1の.04の I
10.050 I
10.060 I
10.070 I
10.080 I
10.aga I
1の.1ดด I
FREA
```

Figure 16．Spectrum at the Output of the First Bandpass Filter．

```
INPUT FORMAT, I DLMUL
    INPUT FORMAT, I LLMUL
    I ILMLL, ALO, FLO
    ALO = PEAK AMPLITUDE OF LO SIENAL, VOLTS
    FLO = FREO OF LO, HZ
I LLMUL, 1.,9.E6
    I ILMUL, 1.,9.E6
RLO CL-K,3
    RLOCK,3
    PROCESSING COMPLETE THRU ELOCK 3
TPLOTF
    TPLOTF
    FNTEP LOW, HIEH FFEALIENCIES
    .9E6,1.1E6
        NSIZE = 21
FREQUENCY (MHZ)
                            DECIRELS
```


Figure 17. Spectrum at the Output of the Ideal Multiplier.

```
FWENLP, 1.E6,20.E3,4
    RWBN DP, 1.E6, 2Q.E3,4
RLOCK,4
    BLOCK,4
    PROCESSING COMPLETE THRU BLOCK 4
TPLOTF
    TPLOTF
    ENTER LOW, HIGH FREQUENCIES
    .9E6, 1.1E6
            NSIZE = 21
                FREOUENCY (MHZ.)
                DECIBELS
                    -180 -170 -160 -150 -140 -130
                    I----+-----I----+----I----+----I----+---------------------
            .900 I
            .910 I
            .920 I
            .930 I
            .940 I
            .950 I
            .960 I
            .970 I
            .98a I
            .990 I-----------------------------------
                1.ดดด I
                1.010
                1.020 I
                1.a30 I
                1.a4a I
                1.a50 I
                1.06a I
                1.07ด I
                1.080 I
                1.090 I
                1.1ดด I
                    FREO
```

Figure 18. Spectrum at the Output of the Second Bandpass Filter.

```
AMP,120.
    AMP,12的
RLOCK,5
    RLOCK, 5
    PROCESSINE COMPLETE THRU BLOCK 5
TPLOTF
    TPLO TF
    ENTER LOW, HIEH FRERUENCIES
-9E6, 1.1E6
    NSIZE= 21
FREAUENCY (MHZ)
DECIBELS
```


Figure 19. Spectrum at the Output of the Amplifier.

```
AM DEMO
    AM DEMO
RLO CK, }
    BLOCK,}
    PROCESSING COMPLETE THRU BLOCK 6
TPLOTF
    TPLO TF
    ENTER LOW, HIGH FREOUENCIES
0.,200.E3
    NSIZE=21
    FREGUENCY (KHZ) DECIBELS
```



```
            I----+-----I----+---- I----+----- I-------------------------- I
            -QQa
        1の.aのa
    20.ดดด I
```



```
    4の.aの手 I
    50.a@a I
    6a.のดa I
    7a.aのa I
    80.0の日 I
    90.のดด I
1のด.aดの I
11の.0の品 I
120. 月の@ I
130.0日の I
140.0月の I
150.0日0 I
160.a日月 I
17ด.の日の I
180.の日の I
19の.aのa I
2のด.のดด I
    FRER
```

Figure 20．Spectrum at the Output of the AM Demodulator．

```
TPLOTT
    TPLOTT
    ENTER NSTART, NSTOP, N.JUMP
1,2048,64
    +
                    AMPLITUDE: MIN •1875+a日, MAX • 3125+aด VOLTS
                    a .1 •2 . 3 .4 . 5 . 6 . 7 . 8 .9 1.a
                I----I----I----I-----I----I----I----I----I----I------I
            I *
    65 I *
    129 I *
    193 *
257 *
321 *
385 I *
449 I *
513 I *
```



```
75 I *
76 I *
833 I
897 I
961 I
1025 I
1089 I
1153 I
1217
1281 I *
1345 1 *
1409 I
1473
1537 I
1601 I
1665 I
1729 I
1 7 9 3
1857
1921 I
1985 I
N
```

to be skipped between plotted points to be specified. For the plot of Figure 21 the starting value was 1 , the stopping value was 2048 , and 64 points were skipped between points plotted.

Figure 22 illustrates the capability of printing the time function by use of the command "PRINTT". Following this command a request for the entry of the low and high array indices is printed. Figure 22 shows a print of the time function from array index 1 to index 30.

A plot of the baseband spectrum at the output of the demodulator is shown in Figure 23 to demonstrate the flexibility of the plotting program. The spectrum can be seen to contain a positive and a negative frequency component as well as a d-c term.

Input of the final block in the AM receiver is shown in Figure 24. This is a five section Tchebysheff lowpass filter with a corner frequency of 10 kHz and an inband ripple of 1 dB . Observation of the 10 kHz component in Figures 23 and 24 indicates that it has been reduced on the order of 1 dB as it should since this component lies at the filter corner frequency.

Exit from the program is effected by entering the command END OF JOB, which is followed in Figure 24 by the time required to simulate the receiver.

2. FM Receiver

The second example is that of the analysis of a proposed frequency modulated receiver. The block diagram used for the FATCAT analysis of the receiver is shown in Figure 25.

The characteristics of the blocks making up the FM receiver are:
(1) A signal generator with a carrier frequency of 10 MHz , a modulation frequency of 10 kHz , no AM or PM modulation, FM modulation producing a peak frequency deviation of 30 kHz , and a carrier peak amplitude of 1 microvolt.
(2) A single section Butterworth bandpass filter with a bandwidth of 80 kHz .
(3) An ideal mixer with a local oscillator amplitude of 1 volt peak and a frequency of 9 MHz .

```
PRINTT
    PRINTT
    ENTEP LOW, HIEH INDICES
1,30
```

LINE REAL IMAE

1	2．a58－01	a．aab
$?$	？．a57－a1	3．341－09
3	2．a55－a1	3．147－ 19
4	2．a54－a1	2．488－099
5	2．053－01	1．673－99
6	2－a51－a1	2．161－09
7	2．a5a－a1	2．205－09
8	2．049－01	2．001－09
9		1．950－n9
10	2．a46－01	2．896－09
11	2．a45－の1	2．416－099
12	？－n43－01	1．193－09
13	2．ด42－の1	1．673－09
14	2・の41－の1	2．139－ 19
15	2－ 239－a1 $^{\text {a }}$	1．892－09
16	2．a38－a1	2．765－099
17	2．a37－ด1	1．455－09
18	2．036－01	2．474－09
19	2．a34－a1	2．387－09
20	2．a33－a1	2．241－09
21	？．a32－a1	1．426－09
22	2－a31－a1	2．212－09
23	2－a29－a1	1．892－09
24	？．a28－a1	1．688－89
25	2．の27－01	c）－aว？－1a
26	2．a25－a1	11．979－a9
27	2． $024-01$	$11.310-00$
P8	2．a23－01	11．63a－a9
29	2－a22－a1	1．513－99
30	2．a21－a1	と．561－99

Figure 22．Listing of Time Function at the Output of the AM Demodulator．

```
TPLO TF
    TPLOTF
    ENTER LOW, HIEH FREQUENCIES
-1ดดด゙ー.E3,1明.E3
    NSIZE = 21
    FREQUENCY (KHZ) DECIRELS
```



```
        I----+----I----+---- I----+----- I----+--------------------
******* I
-9ด.ดดด I
-8ด.のดの I
-7ด.の日の I
-60.0日の自
-5の.0日の I
-40.0日の I
- 3a. ааव I
-2ด.0ดด I
-10.ดดด I-----------------------------------
    •ดดด I----------------------------------------------------------
    10.のดの
    2ด. ดดด I
    3ด.の日の I
    40.0@の I
    50.aのด I
    6a.aのa I
    70.のดの I
    8ด.ดの日 I
    9の•のดの I
1のด•のดの I
    FREA
```

Figure 23．Spectrum at the Output of the AM Demodulator．

```
BLO CK, }
    RLOCK,7
    PFOCESSING COMPLETE THRU FLOCK 7
TPLO TF
    TPLOTF
    ENTER LOW, HIGH FRFOUENCIES
の.,2ดa.E3
    NSIZE= 21
    FREOUENCY (KHZ) DECIRELS
```



```
            I----+----I----+---- I -----+-----I----+-------------------- I
            -aดa
        10.aの品
        2a.aのด I
        3ด.aดの I
        40.の程 I
        50.aのa I
        6a.aan I
        70.0のの I
        8ด.ana I
        9の.のดด I
    1のの.の吕 I
    110.0ดa I
    1?ด.0日の I
    130.ดดの I
    140.aดด I
    150.aのa I
    160.aดの I
    17の•明生
    18ด.胉 I
    190.0ดの I
    2ดด.ดаด I
        FREO
```

END OF JOR
END OF JOR
END 16622 MLSEC
Figure 24. Spectrum at the Output of the Low Pass Filter.

Figure 25. Block Diagram for FATCAT Analysis of an FM Receiver.
(4) A six-section intermediate frequency Butterworth bandpass filter with a center frequency of 1 MHz and a bandwidth of 80 kHz .
(5) An amplifier with a voltage gain of 140 dB .
(6) A frequency demodulator with a center frequency of 1 MHz .
(7) A ten-section Butterworth low-pass filter with a cutoff frequency of 15 kHz .

The frequency spectrum at the out:put of each block of the receiver, from block 1 (the output of the signal generator) to block 6 (the output of the frequency demodulator), is shown in Figures 26 through 31. Figure 26 shows the output from the signal generator for a modulating frequency of 10 kHz and a peak frequency deviation of 30 kHz which gives a modulation index of 3 .

The output spectrum of the demodulator (Figure 31) shows distortion products produced by the bandpass filters in the receiver. Figure 32 is a time plot of the output of the frequency demodulator. A print of the frequency function at the frequency demodulator output is shown in Figure 33. This print shows the amplitudes and phases of the distortion products over a greater frequency range than the plot because of the 1imited 50 dB range of the plot.

Figure 34 shows the baseband spectrum at the output of a 10 section Butterworth low-pass filter with a cutoff frequency of 15 kHz . Figure 35 shows a plot of the time waveform at the output of this filter, and Figure 36 is a print of the frequency function at the filter output. It can be seen from Figure 36 that the ten-section Butterworth filter eliminates virtually all distortion products except the 20 kHz component, and it reduces this component's amplitude approximately 60 dB .

The command END OF JOB terminates the program and is followed by the time required to analyze the FM receiver.

D. Conclusions

A new circuit simulation program, FATCAT, for analyzing communications receiver circuits has been developed to an operational state,

```
ax@T R.U
    START
SIGGEN,1.E7,1.E4, a.,的, 3ด.E3,1.E-6
```



```
BLOCK,1
    BLOCK, 1
```



```
    N = 2048, IGAM = 11, DELTA-T = 4.883-08
    IS THIS SATI SFACTORY
YFS
    YES
    PROCESSING COMPLETE THRU BLOCK 1
TPLOTF
    TPLO TF
    ENTER LOW, HIEH FREOUENCIES
9.9E6,10.1E6
    NSIZE= 21
FRERUENCY (MHZ) DECIBELS
```



```
9.9ดด I
9.91ด I
9.920 I
9.930 I--
9.940 I------------------
9.950 I--------------------------------
9.96@ I--------------------------------------------
9.97@ I------------------------------------------------------
9.980I--------------------------------------------------------------
9.99@ I-------------------------------------------------------
10. ดด⿻⿻一㇂㇒丶⿱一口
1月.01| I-------------------------------------------------------
10.020
I---------------------------------------------------------
10.030
I----------------------------------------------------
10.040
I-------------------------------------------
1月.05臬1--------------------------------
1の.060 I-----------------
10.070 I--
10.080 I
10.090 I
10.100 I
    FREO
```

Figure 26．Start of FATCAT Run for FM Receiver，Showing Spectrum at the Output of the Signal Generator．

BWRNDP，1，E7，80．E3，1
BWEN DP，1•E7，8Q．E3，1
PLOCK， 2
RLO CK，？
PROCESSINE COMPLETE THRU ELOCK 2
TPLOTF，9．9E6，1月．1E6
TPLOTF，9．9E6，10．1E6

NSIZE $=21$
FRERUENCY（MHZ）LECI BELS

9．9ดด I
9.91 A
9.920 I
9.930 I

9．94の I－－－－－－－－

1月．06の I－－－－－－．．．．
10．07の1
10.080 I
10.0901

10．10の I
FRER

Figure 27．Spectrum at the Output of the First Bandpass Filter．

I DLMUL, 1•, 9.E6
I CLMUL, 1•, 9.E6
BLOCK, 3
BLOCK, 3
PROCESSINE COMPLETE THRU BLOCK 3
TPLOTF, . $9 E 6,1 \cdot 1 E 6$
TPLOTF, -9E6, 1•1E6

NSIZE = 21
FREAUENCY (MHZ)
DECIRELS

$$
\begin{aligned}
& -180-170 \quad-16 a \quad-15 a \quad-14 a \quad 13 a
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } 900 \text { I } \\
& .910 \text { I } \\
& .920 \text { I } \\
& .930 \text { I } \\
& \text {-940 I--- } \\
& \text {-95 I------------------- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } 130 \\
& \text { 1. } 04 \text { I } \\
& \text { 1. } 050 \text { I-------------------- } \\
& \text { 1.060 I--- } \\
& 1.070 \text { I } \\
& 1.080 \text { I } \\
& 1.0901 \\
& \text { 1.10日 I } \\
& \text { FRE6 }
\end{aligned}
$$

Figure 28. Spectrum at the Output of the Ideal Multiplier.

PWRNDP, 1.E6, 8.E4, 6 BWEN DP, 1.E6, 8.E4, 6
RLOV-CK, 4
BLOCK, 4
PROCESSING COMPLETE THRU RLOCK 4
TPLOTF, .9E6, 1.1E6
TPLOTF, .9E6, 1. 1E6

NSIZF = 21

Figure 29. Spectrum at the Output of the Second Bandpass Filter.

```
AMP, 140.
    AMP, 140.
BLO CK,5
    BLOCK,5
    PROCESSING COMPLETE THRU BLOCK 5
TPL0TF,.9E6,1.1E6
    TPLOTF,.9E6, 1.1E6
    NSIZE = 21
FRERUENCY (MHZ) DECIBELS
```


Figure 30. Spectrum at the Output of the Amplifier.

```
FMDEMO,1.E6
    FMDENO,1 •E6
BLOCK,6
    BLOCK,6
    PHOCESSING COMPLETE THKU BLOCK }
TPLOTF,0 •,200 •E3
    TPLOTF,0.,200 •E3
        NSI%E = 21
        FREQUENCY (KHZ) DECIBELS
                -40 -30 -40 -10 10
                    I----+-----I----+----I----+----I----+---------------------
        .000 I
        10.000
        20.000 I
        30.000 I ---.---
        40.000 I
        50.000 I --
        60.000 I
        70.000 I
        80.000 I
        90.000 I
    100.000 I
    110.000 I
    120.000 I
    130.000 I
    140.000 I
    150.000 I
    160.000 I
    170.000 I
    180.000 I
    190.000 I
    200.000 I
            FKEQ
```

Figure 31. Spectrum at the Output of the FM Demodulator.

```
TPLOTT
    TPLOTT
    ENTER NSTART, NSTOP, NJUMP
1,2048,64
            \(+\)
            AMPLITUDE: MIN -.2951+01, MAX . 2951 +01 VOLTS
            \(+\)
        1
            \(\begin{array}{llllllllllll}0 & \cdot 1 & \cdot 2 & \cdot 3 & \cdot 4 & \cdot 5 & \cdot 6 & \cdot 7 & \cdot 8 & \cdot 9 & 1 & 0\end{array}\)
        1 I
        65 I *
        129 I
        193 I *
        257 I *
        321 I *
        385 I *
        449 I
        513 I
        577 I
        641 I
        705 I
        769 I
        833 I
        897 I
        961 I
        1025 I
        1089 I
        1153 I
        1217 I
        1281 I
        1345
        1409
        1473 I
        1537 I
        1601 I *
        1665 I *
        1729 I *
        1793 I *
        1857 I*
        1921 *
        1985 *
            N
```

Figure 32. Time Waveform at the Output of the FM Demodulator.

```
PKINTF
    PKINTF
    ENTEK LOW, HIGH FREQUENCIES
0.,200.E3
```

LINE	FREQ	REAL	I MAG	MAG	DB	PHASE
1025	0.0000	-. 000	. 000	. 000	$-164 \cdot 10$	180.0
1026	$1.0000+04$	-1.384	-. 448	1.454	3.25	$-162 \cdot 1$
1027	$2 \cdot 0000+04$.000	. 000	.000	-108.66	28.8
1028	$3.0000+04$	-. 000	-. 020	.020	-33.92	-90.0
1029	$4.0000+04$. 000	-. 000	. 000	-110.85	-44.1
1030	$5.0000+04$	-. 001	-.014	.014	-37.08	-92.3
1031	$6.0000+04$	-. 000	. 000	. 000	-117.33	130.8
1032	$7.0000+04$	-. 007	-. 001	. 007	-43.44	$-168 \cdot 6$
1033	$8.0000+04$. 000	-. 000	. 000	-124.88	-17.6
1034	$9.0000+04$. 000	. 001	. 001	-62.81	$82 \cdot 4$
1035	$1.0000+05$	-. 000	-. 000	. 000	-138.68	-122.5
1036	$1 \cdot 1000+05$	-. 000	-. 000	.000	-72.29	$-132 \cdot 0$
1037	$1 \cdot 2000+05$	-. 000	. 000	. 000	-150.36	107.8
1038	$1 \cdot 3000+05$	-. 000	. 000	. 000	-78.32	145.4
1039	$1 \cdot 4000+05$.000	-. 000	. 000	$-154 \cdot 60$	-40.4
1040	$1 \cdot 5000+05$. 000	. 000	. 000	-91.80	53.2
1041	$1 \cdot 6000+05$	-. 000	-. 000	. 000	-164.34	-160.7
1042	$1.7000+05$	-. 000	-. 000	. 000	-107.43	$-140 \cdot 9$
1043	$1 \cdot 8000+05$. 000	. 000	. 000	-174.48	47.2
1044	$1 \cdot 9000+05$	-. 000	. 000	. 000	-110.12	$104 \cdot 0$
1045	$2.0000+05$	-. 000	. 000	. 000	-192.12	100.0

Figure 33. Listing of the Frequency Function at the Output of the FM Demodulator.

```
BWLOWP,15•E3,10.
    BWLOWP,15.E3,10.
BLOCK,7
    BLOCK,7
    PKOCESSING COMPLETE THRU BLOCK 7
TPLOTF
    TPLOTF
    ENTEH LOW, HIGH FREQUENCIES
0.,200.E3
    NSIZE = 21
    FREQUENCY (KHZ) DECIBELS
```


Figure 34. Spectrum at the Output of the Low Pass Filter.

```
TPLOTT
    TPLOTT
    ENTER NSTABT, NSTOP, NJUMP
1,2048,64
            \(+\)
                AMPLITUDE: MIN -.2895+01, MAX .2895+01 VOLTS
```



```
            1 I
            65 I
            129 I
            193 I
            257 I
                                    *
                                    321
                                    *
                                    385
                                    *
                                    449 I
                                    *
            513 I
                                    *
                                    577 I
                                    *
                                641 I *
                            705 I *
                            769 I *
                            833 J *
            897 I *
            961 I *
                1025 I *
                1089 I *
                1153 I *
                1217 . *
                1281 I*
                1345 *
                1409 "
                1473 I*
                1537 I *
                1601 I *
                1665 I *
                1729 I *
                1793 I *
                1857 I
                1921 I
                1985 I
                N
```

Figure 35. Time Waveform at the Output of the Low Pass Filter.

PRINTF						
Phintf						
ENTEK LOW, HIGH FREQUENCIES						
0.,200.E3						
LINE	FRES	REAL	IMAG	NAG	DB	PHASE
1025	0.01000	-. 01913	-. 000	. 000	-163.69	-180.0
1026	$1.0000+(1) 4$. 691	-1.280	1.454	3.25	-61.6
1027	$2.0000+04$	-. 000	. 000	. 000	-133.95	147.3
1028	$3.0000+0 L_{i}$. 000	-. 000	. 000	-94.1s	-81.1
1029	$4.0000+04$	-. 000	-. 000	. 000	-170.51	-160.3
1030	$5.0000+04$	-. 0001	-. 0000	. 000	-140.61	-160.1
1031	$6.0000+04$. 000	. 0000	. 0000	-175.73	79.9
1032	$7.0000+04$. 000	-. 000	. 000	-161.78	-34.8
1033	$8.0000+04$. 000	-. 000	. 000	-182.63	-14.2
1034	$9.0000+04$	-.000	-. 000	. 000	-169.67	-153.3
1035	$1 \cdot 0000+05$	-. 000	-. 000	. 000	-181.84	-170.3
1036	$1 \cdot 1000+05$. 000	. 000	. 000	-168.75	51.7
1037	$1 \cdot 2000+05$. 000	. 000	. 000	-176.93	54.6
1038	$1 \cdot 3000+05$	-. 000	. 000	. 000	-167.36	159.3
1039	$1 \cdot 4000+05$. 000	-. 000	. 000	-182.79	-46.1
1040	$1 \cdot 5000+05$. 000	-. 000	. 000	-168.67	-27.5
1041	$1.6000+05$	-. 000	-. 000	. 000	-187.43	-116.5
1042	$1 \cdot 7000+05$	-. 000	-. 000	. 000	-160.39	-150.5
1043	$1.8000+05$. 000	. 000	. 000	-183.37	49.8
1044	$1 \cdot 9000+05$. 000	. 000	. 000	-182.41	72.0
1045	$2 \cdot 0000+05$	-. 000	-. 000	. 000	-180.54	-98.5
END OF JOB						
END OF JOB						
END	9203 MLSEC					

although there are many ways in which the system can be improved. The simulation consists of block models of signal sources, filters, amplifiers, mixers, demodulators, etc., along with an operating framework. The program has been fully implemented on both Univac-1108 and SIGMA-5 computers. Use of the present form of the program has shown it to be a useful tool for rapid analysis of communications circuits.

The time and effort available for this work did not permit investigation of numerous ideas for improvement. Additional development work could produce a far more powerful and flexible program. Some of the areas in which additional work should be undertaken are:
(1) The present signal generator block permits simulation of only simple modulation frequencies. Development of a modulator block in which an arbitrary modulating signal could be stored in a data array is needed.
(2) Models for coupled circuits are needed.
(3) Present form of the FM and FM demodulators operate satisfactorily only when the demodulator frequency is perfectly aligned with the carrier frequency, hence no d-c level is generated. Better demodulat:ion models would be desirable.
(4) Control software could be modified to permit insertion, deletion, or replacement of a given block.
(5) A restart capability without: the necessity of re-entering the circuit blocks would be helpful.
(6) A routine to print out the circuit description is needed.

A. Introduction

Digital simulation of a system governed by differential equations can be based upon either a time domain or a frequency domain description of the system. For time domain simulation, the describing differential equations are usually expressed in state variable form and the system response is obtained by numerical integration of the state equations. The time domain simulation method is applicable to both linear and nonlinear systems. For frequency domain simulation, the describing differential equations are expressed in transfer function form, and simulation is accomplished by application of a fast Fourier transform (FFT) algorithm. Frequency domain simulation normally requires less computer time than does time domain simulation, but the transform theory upon which the frequency domain approach is based is limited to linear systems. Accordingly, the simulation of linear systems is usually based upon the frequency domain while that of non1inear systems is based upon the time domain.

Cascade systems whose only nonlinearities are algebraic are exceptions to the above classification and can be effectively simulated using the FFT algorithm. Since such systems have no feedback, the complete response (for the time range of interest) of the first block or subsystem can be obtained before considering the response of the following blocks. Similarly, the response of the second block can be found after the first block's response has been found. The output of a block represented by an algebraic nonlinearity (e.g., multiplication, saturation, polynomial nonlinearities, etc.) depends only upon the instantaneous input to the block and can be readily determined from the algebraic description of the nonlinearity without recourse to differential equations or frequency domain transfer functions. A cascade system composed of linear dynamic blocks and nonlinear algebraic blocks can be simulated in a serial fashion using the FFT algorithm to transform back and forth between the time and frequency domains as required. This concept has been utilized at the Engineering Experiment Station in the development of the FATCAT simu1ation described in Section III of this report.

The digital simulation of communication systems with feedback and with nonlinear subsystems requires the use of the complete time domain formulation. The remainder of this section describes the development of a user-oriented communication system block diagram simulation program applicable to cascade or feedback, linear or nonlinear systems. Although the resulting time domain program has general applicability, its use is recommended only for those systems for which the more efficient FFT simulation program (FATCAT) is not applicable.

A number of computer languages have been developed for digital simulation of dynamic systems in recent years. These programming languages, such as MIMIC, DSL-90, CSMP, and CSSL [4], are intended to make it easy for an engineer experienced in analog computer simulation to use a digital computer. The languages have simple input/output instructions and generally have efficient numerical integration algorithms. They can be considered block diagram simulators only in the limiting case where each block is no more complex than a single integration or addition; i.e., only when the block diagram is in reality an analog computer flow diagram. However, at least one of these languages, MIMIC, has a subprogram capability which allows one to construct elementary blocks better suited to communication systems simulation than simple integrators and summers. With these block subprograms the communications system engineer can easily prepare the necessary simulation input data directly from his block diagram. Using the MIMIC simulation language as a basis, a modular time domain simulation program, TIMSIM, has been developed for communication system block diagram simulation. In the following, the basic language MIMIC will be described briefly and its use with TIMSIM will be developed. Application of TIMSIM to the simulation of an AM receiver and an automatic gain control system will also be given.

B. MIMIC: A Continuous System Simulation Language

The simulation language MIMIC was developed at Wright-Patterson AFB in the mid-1960's for the digital simulation of dynamic systems. Detailed instructions for its use are given in the original MIMIC report [5]
and in the previously referenced textbook by Stephenson [4]. Reference should be made to these sources for a more complete description of MIMIC than appears in the following.

The MIMIC language provides a set of functions (including integration) specifically chosen to perform the operations necessary to solve systems of ordinary differential equations. A function is used by listing the name of the output (beginning in column 10) and the name and arguments of the function (beginning in column 19) on standard computer cards. For example, the equation $x=\log (y)$ would be programmed by punching "X" in column 10 and "LOG(Y)" in columns 19-24. A block-oriented program for simulating a dynamic system is obtained by first drawing a detailed block diagram of the system and then listing the interconnections of the blocks. The block diagram and MIMIC program for a system described by $\ddot{x}+\dot{x}+x=0$ for zero initial conditions is given in Figures 37 and 38. The first four lines in Figure 38 correspond directly to the connections at the four blocks in Figure 37. The name NEG2DX was arbitrarily selected to represent the negative of the second derivative of x. The first box follows from $-\ddot{x}=x+\dot{x}$, and the second box and instruction reverse the sign of the variable to give \ddot{x}. The third box and instruction correspond to the integration of \ddot{x} to give \dot{x} while the fourth ones further integrate \dot{x} to obtain the variable of interest, x. In the integration instructions, the " 0 " corresponds to the initial conditions. The detailed block diagram and resulting MIMIC instructions closely follow analog computer programming techniques, but do not require the amplitude scaling and time scaling required for analog computation. The last four MIMIC instructions in Figure 38 are bookkeeping instructions. The FIN(T,10) instruction causes the simulation to stop when time, T, reaches ten seconds. The HDR(TIME,X) instruction establishes the headings on the computer output as TIME and X. The OUT(T,X) instruction means that the variables T and X are to be tabulated as simulation output. The last instruction, END, simply indicates the end of instructions.

The CON and PAR instructions in MIMIC are used to load numerical values for constants and parameters (constants which change from run to

Figure 37. Detailed MIMIC Block Diagram for a System Described by $\ddot{\mathrm{x}}+\dot{\mathrm{x}}+\mathrm{x}=0$.

10	19
NEG2DX	ADD (X, 1DX)
2DX	NEG (NEG2DX)
1DX	INT (2DX, 0.)
X	INT(1DX,0.)
	FIN (T, 10.)
	HDR (TIME , X)
	OUT (T, X)
	END

Figure 38. MIMIC Instructions for Simulation of the System of Figure 37.
run). For example, if the system of F'igure 37 had involved a constant, K2, in the differential equation, the instruction "CON (K2)", beginning in column 19, would precede the instructions in Figure 38 and the "END" instruction would be followed by a dat:a card with the value of $K 2$ entered in columns 1-12.

As another MIMIC example, consider unity negative feedback around a lowpass filter as shown in Figure 39. The closed loop transfer function is

$$
\begin{equation*}
\frac{X}{U}=\frac{K /(s+A)}{1+K /(s+A)}=\frac{K}{s+(K+A)} \tag{1}
\end{equation*}
$$

and the associated differential equation is

$$
\begin{equation*}
\dot{\mathrm{x}}=-(\mathrm{K}+\mathrm{A}) \mathrm{X}+\mathrm{Ku} \tag{2}
\end{equation*}
$$

The corresponding MIMIC program and simulation results for $u(t)=1$, $K=1$, and $A=0.1$ are given in Figure 40.

An alternate method for MIMIC simulation of systems containing frequently occurring subsystems utilizes the subprogram feature of MIMIC. Rather than repeatedly deriving and programming descriptive differential equations for these subsystems, a library of subprograms can be estab1ished so that simulation of total systems is essentially reduced to describing the interconnection of the subsystems. Consider the development of a subprogram for the low pass filter previously considered. For subprogram purposes, rename the filter input and output variables as u_{1} and x_{1}, respectively. The describing differential equation can be shown to be $\dot{x}_{1}=K \cdot u_{1}-A \cdot x_{1}$, so that the describing MIMIC equation is

$$
\begin{equation*}
\text { X1 } \operatorname{INT}(K * U 1-A * X 1,0 .) . \tag{3}
\end{equation*}
$$

The associated subprogram is constructed by adding opening and closing instructions which name the subprogram and provide for arbitrary naming of the variables and constants within the subprogram. The resulting subprogram (named FIRST) for the current example is as follows:

Figure 39. Block Diagram of Feedback Example.
@GT*LIB.MIMIC,IS TEST
MIMIC-03.2-06/09/72-10:32:17
@ADD LARRY. 1

1*	X	INT (-1.1*X+1.0,0.)
2*		FIN (T,5.)
3*		HDR (TIME , X)
4*		OUT (T, X)
5*		END

**FURTHER DIA TIME	$\begin{aligned} & \text { GNOSTICS AND } \\ & \mathrm{X} \end{aligned}$	OLLOW	
0.00000	0.00000	2.6000	. 85703
1.00000-01	9.46962-02	2.7000	. 86245
. 20000	. 17953	2.8000	. 86731
. 30000	. 25552	2.9000	. 87166
. 40000	. 32360	3.0000	. 87556
. 50000	. 38459	3.1000	. 87905
. 60000	. 43923	3.2000	. 88218
. 70000	. 48817	3.3000	. 88499
. 80000	. 53202	3.4000	. 88750
. 90000	. 57129	3.5000	. 88975
1.00000	. 60648	3.6000	. 89176
1.1000	. 63800	3.7000	. 89357
1.2000	. 66624	3.8000	. 89518
1.3000	. 69154	3.9000	. 89663
1.4000	. 71420	4.0000	. 89793
1.5000	. 73450	4.1000	. 89909
1.6000	. 75269	4.2000	. 90013
1.7000	. 76898	4.3000	. 90107
1.8000	. 78357	4.4000	. 90190
1.9000	. 79665	4.5000	. 90265
2.0000	. 80836	4.6000	. 90332
2.1000	. 81885	4.7000	. 90392
2.2000	. 82825	4.8000	. 90446
2.3000	. 83667	4.9000	. 90494
2.4000	. 84422	5.0000	. 90538
2.5000	. 85097	5.1000	. 90576

Figure 40. MIMIC Simulation of System of Figure 39.

10	19
FIRST	BSP (U1, K, A)
X1	INT $(K * U 1-A * X 1,0)$.
FIRST	ESP $(\mathrm{X} 1)$

The letters BSP and ESP are abbreviations for 'begin subprogram" and "end subprogram," respectively, and the arguments of BSP name the input variables and constants while that of ESP names the output variable. In cal1ing such a subprogram from the main MIMIC program, the variable names need not be the same as those used in the subprogram but must be in the same order in the calling statement.

A MIMIC program using the low pass filter subprogram in the simulation of the system of Figure 39 is given in Figure 41. Note that lines 2,3 , and 4 are a listing of the subprogram which has been obtained from a 1ibrary as a package. Instruction 5 describes the feedback connection for $u(t)=1$, while instructions 6 and 7 are the instructions required to "ca11" the desired subprogram. The letters CSP and ESP represent "ca11 subprogram" and "end subprogram", respectively. Comparison of the arguments of CSP and BSP shows that the input to the low pass filter is called "E" in the main program and "U1" within the subprogram, and that the constants " K " and " A " are to have the values 1.0 and 0.1 , respectively. Note that the name of the subprogram being called is included on the CSP card. Instructions 7, 8, and 9 are not affected by the use of subprograms. Instruction 1 is a parameter statement which must be used to initialize the subprogram output variable for feedback system simulations; the initial value, 0. , is entered in columns $1-12$ of a data card.

The use of library subprograms to represent subsystems allows the design engineer to digitally simulate his system without a detailed knowledge of programming or of state variable techniques. In the following, a set of library subprograms for communication subsystems will be developed and presented. The composite system is entitled TIMSIM, for time domain simulation.
@GT*LIB.MIMIC,IS TEST
MIMIC-03.2-06/13/72-08:33:42

@ADD LARRY. 4

$1 *$		$\operatorname{PAR}(\mathrm{X})$
$2 *$	FIRST	$\operatorname{BSP}(\mathrm{U} 1, \mathrm{~K}, \mathrm{~A})$
$3 *$	XI	$\operatorname{INT}(\mathrm{K} * \mathrm{U} 1-\mathrm{A} * \mathrm{X} 1,0)$.
$4 *$	FIRST	$\operatorname{ESP}(\mathrm{X} 1)$
$5 *$	FIRST	$1 .-\mathrm{X}$
$6 *$		$\operatorname{CSP}(\mathrm{E}, 1 ., .1)$
$7 *$		$\operatorname{RSP}(\mathrm{X})$
$8 *$		$\operatorname{FIN}(\mathrm{~T}, 5)$.
$9 *$		$\operatorname{HDR}(\mathrm{TIME}, \mathrm{E}, \mathrm{X})$
$10 *$		OUT (T, E, X)
$11 *$		END

FURTHER DIAGNOSTICS AND EXECUTION FOLLOW*

ENTER DATA NOW

X

0.00000

Figure $41 . \quad$ Subprogram Example.

C. TIMSIM: A User-Oriented Communications System Block Diagram

 Simulation ProgramTIMSIM is not a new digital simulation language to compete with MIMIC, nor is it really a computer program. Rather, it is an operating philosphy and an expandable library of subprograms in the MIMIC language which represent the dynamics of communication subsystems. The communication subsystems modeled for TIMSIM herein by no means exhaust the possibilities but do provide a representative group of subsystems. Included are subprograms which model AM signal generators, bandpass single-tuned filters, bandpass RC filters, mixers, and lowpass RC filters. The mixer subprogram can also be used as a product detector. The method of development of subprograms is described in sufficient detail to allow users to expand the subprogram library to meet their changing needs.

1. Subprogram Derivation

The single-tuned, bandpass filter subprogram STFIL is based upon the transfer function

$$
\begin{equation*}
H(s)=\frac{K}{1+\frac{f_{o}}{B}\left(\frac{s}{\omega_{o}}+\frac{\omega_{0}}{s}\right)}=\frac{X}{U} \tag{5}
\end{equation*}
$$

as given in Pettit and McWhorter [6], where B is the filter 3 dB bandwidth (Hz), f_{O} is the filter center frequency (Hz), K is the center frequency gain, and $\omega_{0}=2 \pi f_{0}$. The transfer function can be rewritten as

$$
\begin{equation*}
\frac{X}{U}=\frac{s K}{s^{2}\left(f_{0} / \omega_{0} B\right)+s+\left(\omega_{0} f_{0} / B\right)} \tag{6}
\end{equation*}
$$

from which the corresponding differential equation could be obtained by inspection after cross multiplication with the interpretation of s^{n} factors as $n^{\text {th }}$ derivatives. The resulting differential equation, however, would involve an undesirable derivative of the input, U. This undesirable input signal differentiation can be avoided in the same manner as
with analog computer programming [7] by re-expressing the transfer function as

$$
\begin{equation*}
\mathrm{X}=\frac{1}{\mathrm{~s}}\left[2 \pi \mathrm{~B}(K U-\mathrm{X})-\frac{1}{\mathrm{~s}}\left(\omega_{\mathrm{O}}{ }^{2} \mathrm{X}\right)\right] \tag{7}
\end{equation*}
$$

where the complex variables appear only in nested multiplications by $1 / \mathrm{s}$. The desired form of the describing differential equation is obtained by drawing an elementary block diagram for this last expression, selecting the integrator outputs as the state variables, and writing the associated state equations (simultaneous first order differential equations). From Figure 42 the state equations are written as

$$
\begin{align*}
& \dot{x}=2 \pi B(K u-x)+y \\
& \dot{y}=-\omega_{0}^{2} x . \tag{8}
\end{align*}
$$

Figure 42. Single-Tuned Filter Flow Diagram.

Prior to writing the associated NIIMIM subprogram, program names must be chosen for the variables. One of the requirements of MIMIC is that variable names not be repeated in other subprograms unless they represent exactly the same quantity. Accordingly, the TIMSIM subprograms are written with variable and constant names which end in a three digit number unique to that subprogram. Further, if a subprogram is repeated in a simulation (e.g., two single-tuned filters in one receiver system), the third digit is increased by one in each additional copy of the subprogram. The variable names selected for the single-tuned filter subprogram STFIL and their relationships to the algebraic variables are as follows: $\mathrm{x} \rightarrow$ OUT110; $\mathrm{y} \rightarrow \mathrm{Y} 110 ; \mathrm{u} \rightarrow \mathrm{XIN110;} \mathrm{~K} \rightarrow \mathrm{~K} 110 ; \mathrm{B} \rightarrow \mathrm{B} 110$; $\mathrm{f}_{\mathrm{o}} \rightarrow \mathrm{FRQ} 110$.
2. TIMSIM Subprogram Library.

Table I contains the subprograms used to model AM signal generators (AMSIG, AMSIG5), single-tuned bandpass filters (STFIL), RC bandpass filters (BPFIL), mixers (MIXER), and RC low-pass filters (LPFIL). Included in the table are the definitions of the subprogram input and output variables.

3. Applications

The operation of TIMSIM is best described by examples. The block diagram of Figure 43 describes a hypothetical communication system consisting of an ideal AM signal generator, single-tuned rf filter, mixer (frequency converter), single-tuned i-f filter, product detector, and low pass filter. The corresponding TIMSIM simulation program is given in Figure 44. The first five instructions establish the names and sequence of appearance of constants whose numerical values are to be entered on the data cards. Instructions 6 through 38 present the library subprograms which model the communication subsystem. Note that both the single-tuned filter and the nixer subsystems appear twice in the AM system diagram so that the corresponding subprograms must also appear in duplicate. As mentioned earlier, the repeated use of a

TABLE I
TIMSIM SUBPROGRAM LIBRARY

****BEGIN SUBPROGRAM FOR AMPLITUDE MODULATED SIGNAL GENERATOR.***
AMSIG BSP(XIN100,FRQ100,M100,K100)
THT100 6.2831*FRQ100*T
OUT100 K100* (1.+M100*XIN100)*COS (THT100)
AMSIG ESP(OUT100)
****END OF SUBPROGRAM****
Definitions
XIN100 = Modulating Voltage
FRQ100 = Carrier Frequency
M100 = Modulation Index
K100 = Gain
****BEGIN SUBPROGRAM FOR SIN AMPLITUDE MODULATED SIGNAL GENERATOR.
AMSIG5 BSP (XIN105, FRQ105,M105,K105)
THT105 6.2831*FRQ105*T
OUT105 K105* (1.+M105*XIN105)*SIN (THT105)
AMSIG5 ESP(OUT105)
****END OF SUBPROGRAM****
Definitions
Variables defined similarly to AMSIG above.
****BEGIN SUBPROGRAM FOR SINGLE-TUNED FILTER****
STFIL BSP(XIN110, B110,FRQ110,K110)
OUT110 INT $(\mathrm{Y} 110+(6.2831 * B 110) *(\mathrm{~K} 110 * \mathrm{XIN110-OUT110),0)}$.
Y110 INT (- (6.2831*FRQ110)* (6.2831*FRQ110)*OUT110,0.)
STFIL ESP(OUT110)
炏 $* *$ OND OF SUBPROGRAM $* * * *$
Definitions
XIN110 = Input Voltage
B110 = Filter Bandwidth, Hz
FRQ110 = Filter Center Frequency, Hz
K110 = Center Frequency Gain
OUT110 = Output Voltage

(Continued)

TABLE I (Continued)

```
****BEGIN SUBPROGRAM FOR MIXER******
    MIXER BSP(XIN120,FRQ120,K120)
    OUT120 XIN120*K120*SIN (6.2831*FRQ120*T)
    MIXER ESP(OUT120)
*****END OF SUBPROGRAM****
Definitions
    XIN120 = Input Voltage
    FRQ120 = Mixer Product Frequency
    K120 = Gain
    OUT120 = Output Voltage
****BEGIN SUBPROGRAM FOR LOW-PASS FILCER*****
    LPFIL BSP(XIN130, FCN130,K130)
    OUT130 INT(6.2831*FCN130*(XIN130-OUT130),0.)
    LPFIL ESP(OUT130)
****END OF SUBPROGRAM****
Definitions
    XIN130 = Input Voltage
    FCN130 = Corner Frequency, Hz
    K130 = DC Gain
    OUT130 = Output Voltage
****BEGIN SUBPROGRAM FOR RC BANDPASS FILTER*****
    BPFIL BSP(XIN140,FL140,FH140,K140)
    WL140 6.2831*FL140
    WH140 6.2831*FH140
    Y140 INT(WL140*WH140*OU'T140,0.)
    OUT140 INT(K140*WH140*XIN140-(WL140+WH140)*OUT140-Y140,0.)
    BPFIL ESP(OUT140)
*****END OF SUBPROGRAM****
Definitions
    XIN140 = Input Voltage
    FL140 = Lower Corner Frequency, Hz
    FH140 = Higher Corner Frequency, Hz
    K140 = Center Frequency Gain
    OUT140 = Output Voltage
```


Figure 43. Hypothetical AM Communication System.

Figure 44. TIMSIM Listing, Hypothetical Communication System. (Continued)

```
52* DT1 1./(50.*FM)
54*
55*
56*
57*
58*
59* TLOGIC
60* NTLOG
61*
62*
63*
64*
**FURTHER DIAGNOSTICS AND EXECUTION FOLLOW***
```


53*

ENTER DATA NOW

FM	FC	M	K	FO	B
10000.	$1.00000+06$.50000	$1.00000-03$	$1.00000+06$	20000.

ENTER DATA NOW
FMIX KMIX
$5.45000+05$ 10.000
ENTER DATA NOW
FO1 B01 K01
$4.55000+05$ 20000. 10.000
ENTER DATA NOW
FMIX1 KMIX1
4.55000+05 100.00
ENTER DATA NOW
FLP KLP
10000. 1.0000
subprogram within a TIMSIM simulation requires renumbering the variable names within each repetition. According1y, the second single-tuned filter subprogram is named STFIL1 and the internal variable names terminate in 111 rather than in 110. Instructions 39 through 51 constitute the heart of the TIMSIM input; these are the instructions which describe the system block diagram and specify the subsystem parameters through their calling of the subprograms. For instance, instructions 42 and 43 specify that the subsystem is a single-tuned filter whose input is named y (the output of the AM signal generator) and that the filter bandwidth is the input quantity B, the center frequency is the input quantity $F 0$, and the center frequency gain is unity. Instruction 43 states that the output of the filter is designated Z. Instructions 52-60 result in two separate time spacings between lines of printout; spacing DT1 is used for $T<T 1$ while DT2 is used thereafter. This feature is used only when the simulation results of interest are preceded by a transient of no interest. Instructions 61-64 are as in the MIMIC example described earlier. Figures 45 and 46 present the simulation results in tabular and graphical form.

The block diagram of Figure 47 describes a hypothetical Automatic Gain Control (AGC) system used to demonstrate the application of TIMSIM to feedback systems. The corresponding TIMSIM simulation program is given in Figure 48. The first three instructions describe the constants of the simulation; repeated simulations for new values of the constants in the $P A R$ statements can be made without repeating the program listing. Following the library subprograms (instructions 4-28), the interconnection of the AGC system blocks is described by a series of subprogram call statements. Within this group, instruction 35 gives the effect of the feedback signal upon the forward gain, and instruction 44 demonstrates the use of the internal MIMIC function for a limiter. The remainder of the simulation is analogous to that of the AM system discussed earlier. The simulation results are tabulated in Figure 49.

TIME	X	V
0.00000	0.00000	0.00000
2.00000-06	. 12533	-9.69228-04
4.00000-06	. 24869	-6.16795-03
6.00000-06	. 36812	-1.71452-02
8.00000-06	. 48175	-3.61954-02
1.00000-05	. 58778	-6.83026-02
1.20000-05	. 68454	-. 11594
1.40000-05	. 77051	-. 17394
1.60000-05	. 84432	-. 23469
1.80000-05	. 90482	-. 29958
2.00000-05	. 95105	-. 38015
2.20000-05	. 98228	-. 48357
2.40000-05	. 99803	-. 59961
2.60000-05	. 99803	-. 70867
2.80000-05	. 98229	-. 80481
3.00000-05	. 95106	-. 90508
3.20000-05	. 90484	-1.0299
3.40000-05	. 84434	-1.1756
3.60000-05	. 77053	-1.3140
3.80000-05	. 68457	-1.4232
4.00000-05	. 58781	-1.5143
4.20000-05	. 48179	-1.6194
4.40000-05	. 36816	-1.7525
4.60000-05	. 24873	-1.8900
4.80000-05	. 12537	-1.9960
5.00000-05	4.29471-05	-2.0634
5.20000-05	-. 12529	-2.1229
5.40000-05	-. 24864	-2.2064
5.60000-05	-. 36808	-2.3090
5.80000-05	-. 48171	-2.3936
6.00000-05	-. 58774	-2.4340
6.20000-05	-. 68451	-2.4449
6.40000-05	-. 77048	-2.4639
6.60000-05	-. 84430	-2.5082
6.80000-05	-. 90480	-2.5549
7.00000-05	-. 95104	-2.5694
7.20000-05	-. 98228	-2.5453
7.40000-05	-. 99802	-2.5109
7.60000-05	-. 99803	-2.4963
7.80000-05	-. 98230	-2.4999
8.00000-05	-. 95108	-2.4928
8.20000-05	-. 90486	-2.4537
8.40000-05	-. 84437	-2.3932
8.60000-05	-. 77056	-2.3409
8.80000-05	-. 68460	-2.3125
9.00000-05	-. 58785	-2.2943
9.20000-05	-. 48182	-2.2608
9.40000-05	-. 36820	-2.2047
9.60000-05	-. 24877	-2.1453
9.80000-05	-. 12542	-2.1069
1.00000-04	-8.59539-05	-2.0929

Figure 45. TIMSIM Results, Hypothetical AM Communication System. (Continued)

$1.02000-04$.12525	-2.0830
$1.04000-04$.24860	-2.0566
$1.06000-04$.36804	-2.0173
$1.08000-04$.48167	-1.9894
$1.10000-04$.58771	-1.9916
$1.12000-04$.68448	-2.0153
$1.14000-04$.77045	-2.0339
$1.16000-04$.84427	-2.0326
$1.18000-04$.90478	-2.0267
$1.20000-04$.95102	-2.0456
$1.22000-04$.98227	-2.0982
$1.24000-04$.99802	-2.1612
$1.26000-04$.99803	-2.2036
$1.28000-04$.98231	-2.2228
$1.30000-04$.95109	-2.2486
$1.32000-04$.90488	-2.3094
$1.34000-04$.84439	-2.3969
$1.36000-04$.77059	-2.4735
$1.38000-04$.68463	-2.5141
$1.40000-04$.58788	-2.5358
$1.42000-04$.48186	-2.5782
$1.44000-04$.36824	-2.6564
$1.46000-04$.24881	-2.7415
$1.48000-04$.12546	-2.7927
$1.50000-04$	$1.29795-04$	-2.8040
$1.52000-04$	-.12520	-2.8107
$1.54000-04$	-.24856	-2.8478
$1.56000-04$	-.36800	-2.9085
$1.58000-04$	-.48163	-2.9521
$1.60000-04$	-.58767	-2.9509
$1.62000-04$	-.68444	-2.9216
$1.64000-04$	-.77042	-2.9045
$1.66000-04$	-.84425	-2.969
$1.68000-04$	-.90476	-2.9340
$1.70000-04$	-.95101	-2.9193
$1.72000-04$	-.98226	-2.8665
$1.74000-04$	-.99802	-2.8058
$1.76000-04$	-.99804	-2.7679
$1.78000-04$	-.98232	-2.7506
$1.80000-04$	-.95110	-2.7236
$1.82000-04$	-.90489	-2.6652
$1.84000-04$	-.84441	-2.5864
$1.86000-04$	-.77062	-2.5188
$1.88000-04$	-.68467	-2.4750
$1.90000-04$	-.58792	-2.4436
$1.92000-04$	-.48190	-2.3973
$1.94000-04$	-.36828	-2.3291
$1.96000-04$	-.24886	-2.2585
$1.98000-04$	-.12550	-2.2105
$2.00000-04$	$-1.74173-04$	-2.1878
$2.02000-04$.12516	-2.1 .696
END 39256	$M L S E C$	

Figure 45. End.

Figure 46. Plot of TIMSIM Results for AM System.

Figure 47. Hypothetical Automatic Gain Control System.

Figure 48. TIMSIM Listing, Automatic Gain Control System. (Continued).

45*	DT1	0.05/FCR
46*	DT2	. $50 / \mathrm{FC}$
47*	T1	TPOINT - DT2
48*	TTEST	T-T1
49*	TLOGIC	FSW (TTEST, TRUE , FALSE, FALSE)
50*	NTLOG	COM (TLOGIC)
51* TLOGIC	DT	EQL(DT1)
52* NTLOG	DT	EQL (DT2)
53*		FIN (T, TF)
54*		HDR (TIME , X3, X4, VF, X5)
55*		OUT (T, X3, X4, VF, X5)
56*		END

* $\%$ FURTHER DIAGNOSTICS AND EXECUTION FOLLOW**

ENTER DATA NOW

FC	KP	BW	K1	VSET
10000.	$2.00000-03$	5000.0	$1.00000-01$	1.0000

ENTER DATA NOW

0.	100	3.	4.E-3		$6 . \mathrm{E}-3$	$1 . \mathrm{E} 4$
X4	FCR	KF	TPOINT	TF	KFORWD	
0.00000	100.00	3.0000	$4.00000-03$	$6.00000-03$	10000.	
ENTER DATA NOW						

Figure 48. End.

TIME	X3	X4	VF	X5
0.00000	0.00000	0.00000	-3.0000	0.00000
5.00000-04	-4.07690-05	2.8968	5.6903	-3.42534-02
1.00000-03	1.02872-04	2.6581	4.9742	-1.5398
1.50000-03	-6.78247-05	3.4256	7.2767	-. 38317
2.00000-03	1.84120-04	2.9041	5.7124	-. 63602
2.50000-03	-9.51716-05	3.4685	7.4054	-1.71602-02
3.00000-03	2.84755-04	2.9241	5.7723	-. 47952
3.50000-03	-1.15230-04	3.4720	7.4159	3.04278-02
4.00000-03	3.95770-04	2.9258	5.7773	-. 46301
4.05000-03	3.01825-04	2.9397	5.8191	. 34545
4.10000-03	1.84063-04	2.9858	5.9573	1.1311
4.15000-03	6.21273-05	3.0570	6.1709	1.7666
4.20000-03	-4.57693-05	3.1427	6.4279	2.1556
4.25000-03	-1.27702-04	3.2317	6.6947	2.2567
4.30000-03	-1.79128-04	3.3140	6.9417	2.0872
4.35000-03	-2.00990-04	3.3825	7.1474	1.7065
4.40000-03	-1.97042-04	3.4329	7.2985	1.1917
4.45000-03	-1.71074-04	3.4630	7.3889	. 61588
4.50000-03	-1.25771-04	3.4723	7.4168	3.57353-02
4.55000-03	-6.23912-05	3.4610	7.3829	-. 51181
4.60000-03	1.81439-05	3.4298	7.2894	-1.0048
4.65000-03	1.14925-04	3.3801	7.1404	-1.4290
4.70000-03	2.24564-04	3.3142	6.9426	-1.7688
4.75000-03	3.39990-04	3.2358	6.7074	-2.0009
4.80000-03	4.49451-04	3.1508	6.4525	-2.0913
4.85000-03	5.37047-04	3.0675	6.2026	-2.0006
4.90000-03	5.85543-04	2.9958	5.9874	-1.6962
4.95000-03	5.81355-04	2.9459	5.8376	-1.1710
5.00000-03	5.20045-04	2.9259	5.7778	-. 46135
5.05000-03	4 09642-04	2.9399	5.8195	. 34709
5.10000-03	2.68857-04	2.9859	5.9577	1.1327
5.15000-03	1.21864-04	3.0571	6.1712	1.7682
5.20000-03	-9.49593-06	3.1428	6.4282	2.1572
5.25000-03	-1.10613-04	3.2317	6.6950	2.2584
5.30000-03	-1.75682-04	3.3140	6.9419	2.0888
5.35000-03	-2.05506-04	3.3826	7.1476	1.7080
5.40000-03	-2.04383-04	3.4329	7.2987	1.1931
5.45000-03	-1.76745-04	3.4630	7.3891	. 61719
5.50000-03	-1.25781-04	3.4723	7.4170	3.69046-02
5.55000-03	-5.30914-05	3.4610	7.3830	-. 51079
5.60000-03	4.04190-05	3.4299	7.2896	-1.0039
5.65000-03	1.53555-04	3.3802	7.1405	-1.4282
5.70000-03	2.82489-04	3.3142	6.9427	-1.7683
5.75000-03	4.19098-04	3.2358	6.7075	-2.0004
5.80000-03	5.49811-04	3.1509	6.4527	-2.0910
5.85000-03	6.56145-04	3.0676	6.2027	-2.0004
5.90000-03	7.17897-04	2.9958	5.9875	-1.6960
5.95000-03	7.18865-04	2.9459	5.8377	-1.1707
6.00000-03	6.53252-04	2.9260	5.7779	-. 46095
6.05000-03	5.29630-04	2.9399	5.8196	. 34764

Figure 49. TIMSIM Results, AGC System.
D. Conclusions

As stated earlier, TIMSIM is basically a simulation philosophy rather than a program or language; it has been presented here within the framework of the simulation language MIMIC. Several subprograms representative of communication system building blocks have been presented and the method of generation of subprograms has been demonstrated so that additional subprograms can be generated as desired by the user. It is worth noting that the TIMSIM concept is also applicable to non-communication systems. Appropriate subprograms can be developed for mechanical systems, and control systems, etc.

V. REFERENCES

1. Holland, L. D., J. R. Walsh and R. D. Wetherington, Communication System Modeling, Technical Report No. 9, Contract No. NAS8-20054, Georgia Institute of Technology, Engineering Experiment Station, 19 November 1971.
2. Walsh, J. R., R. D. Wetherington and L. D. Holland, Circuit Detail Modeling of the Airlock Module Transmitter, Technical Report No. 10 , Contract No. NAS8-20054, Georgia Institute of Technology, Engineering Experiment Station, 19 November 1971.
3. Milliman, L. D., W. A. Massena and R. H. Dickhaut, A Digital Computer Program for Transient Analysis of Electronic Circuits Users Guide, Report 346-1, Contract No. DA-49-186-AMC-346(X), The Boeing Company, Seattle, Washington, January 1967.
4. Stephenson, R. E., Computer Simulation for Engineers, Harcourt, Brace, Jovanovich, Inc., New York, N. Y., 1971, pp 163-165.
5. Peterson, H. E., F. J. Sanson and L. M. Warshawsky, MIMIC - A Digital Simulation Program, SESCA Internal Memo 65-12, Directorate for Computation, Deputy for Studies and Analysis, Systems Engineering Group, Wright-Patterson AFB, Ohio, May 1965.
6. Pettit, J. M , and M. M. McWhorter, Electronic Amplifier Circuits, McGraw-Hill, New York, N. Y., 1961, p 168.
7. Ogata, K., State Space Analysis of Control Systems, Prentice-Ha11, Inc., Englewood Cliffs, N. J., 1967, p 182.

APPENDIX A

Listing of Software Modification to CIRCUS to Write Output Data into External File.

```
            SUEROUTINE LINKGA(PLOT,NPNT,TIME,DUNY2,LFLAG, OUMY3,NWP,
            1 DELT,NREAD )
            INTEGER HOUR(2), DAY(2)
            OIMENSION WORD(1), PLCT(NPNT,1), TIME(1)
            DIMENSICN NWORD(1)
            COMNON WORD,N1,N5,N6,LPDS,LDS,JTIILE(1`2)
            COMWON INDPLT,IPLOTI,NPLOTS,KPRNT,DUNYI,DTCIR
            COMMON /SCRTCH/ TITLE(IUU),AMAX,AMIN,DAY,HOUR,IBAD,IMAX,
    1 IMIN,KK,LA,NGO,NN,J,NWIPE,P|1,11,12,13,14,
    2 XPLCTS, A
        EQUIVALENCE (WORD(126),N7 ), (WORD(38),N2)
    FQUIVALFNCE (NORD(33),LINTVL )
    EQUIVALFNCE ( WORD,NW\capRD )
    EQUIVALENCE ( UORD(1:\Omega),LYMAX )
    EQUIVALENCE (WORD(11%),LYMIN)
    FOUIVALENCF ( WORD(111),NPCELL )
    EQUIVALENCE ( wORD(112),LPLT )
    NR=51
    NC=21
    IF (LFLAG-1, 39J,385,39U
    355 CONTINUE
    LFLAG = 2
    NRITF (N7) ( PLOT(I,1), I=1,NNIPE )
    NREAD = NWIPE
    REWIND N7
    READ (N2) XPLOTS, (TITLE(I),I=1,NPLOTS)
    3`% CONTINUE
    WRITE (NG,3O)
C**** READ TIME AND PLOT VARIAELES FOR NPNI vALUES OF TIME.
    N:VL = NNP
    NPL = NPCELL/60
    DO 21: JX=1,NPL
    NNK = NWL + (60* (NPLOTS +1 ) ) - 1
    READ (N2) (PLOT(I,I), I =NWL,NWK)
    NWL = NWK+1
210 CONTINUE
    NPL = NPLOTS+1
    NWL = NWP
    DO 230 JX=1,NPNT
    TIME(JX) = PLOT(NWL,1)
    DO 220 I =1,NPLOTS
    Ni'L = N:!L+1
    PLOT(JX,I) = PLOT(N:NL,I)
22U CONTINUE
    NWL=NWL+1
230 CONTINUE
    CALL CLOCK (GHRSTIME,IDUM)
    DO 21 J=1, NPLOTS
    REF = PLOT (1, J)
    AMAX = REF
    AMIN = REF
```

```
C**** FIND MAXIMUM. AND MINIMUM OF EACH VARIABLE
    DO 41 I=1, NPNT
    IF (AMAX.GT.PLOT(I,J)) GO TO 40
    AMAX = PLOT(I,J)
    IMAX = I
    40 IF (AMIN.LT.PLOT(I,J)) GO TO 41
    AMIN = PLOT(I,J)
    IMIN = I
    41 CONTINUE
    IF (ABS(AMAX-REF).GT.ABS(AMIN-REF)) GO TO 42
C**** USE *FINDER* TO DETERMINE 1O - 90 PERCENT RISE AND FALL
C**** TIMES FOR PREDOMINATELY POSITIVE VARIABLE〕.
    PTI=.1*(AMIN-REF)+REF
    CALL FINDER ( IMIN,NPNT,I,IVIN,T4,T1,PLOT(I,J),TIME )
    PT1 = .9*(AMIN-REF)+REF
    CALL FINDER ( IMIN,NPNT,1,IMIN,T3,T2,PLOT(1,J),TIME )
    GO TO 43
    42 CONTINUE
C**** USE *FINDER* TO DETERMINE 10 - 90 PERCENT RISE AND FALL
C**** TIMES FOR PREDOMIVATELY POSITIVE VARIABLES.
    PT1 = -1*(AMAX-REF)+REF
    CALL FINDER ( 1,IMAX,IMAX,NPNT,T1,T4,PLOT(1,J),TIME )
    PT1 = .9*(AMAX-REF) +REF
    CALL FINDER ( 1,IMAX,IMAX,NPNT,T2,13,PLOT(1,J),TIME )
    43 CONTINUE
C**** WRITE OUT RISE AND FALL TIMES.
C * * COMVENT BELCW SUPPRESSES PRINI OF RI\E AND FALL TIMES.
C WRITE (N6,50) TITLE(J),T1,T2,T3,T4
C * * *
    21 CONTINUE
C**** IF ONLY RESPONSE TIMES DESIRED, RETURN.
    IF (IPLOTI.EQ.4) GO TO 80
C INSERT PLOTTING ROUTINES HERE.
        CALL PLTDTA(PLOT(NWP,1),NR,NC,TIVE,PLOT,NHNT,NPLOTS,
        1 TITLE,DELT,NPNT,
C
        CALL CLOCK (6H*PLOT*,IDUM)
C * * NEXT TWO COMMENTS SUPPRESS LINE PRINTER PLOTS.
C CALL PLOTER ( PLOT(NWP,1),NR,NC,TIME,PLUT,NPNT,NPLOTS,
C 1 TITLE,DELT,NPNT)
C 1 NPNT )
C * * *
            CALL CLOCK (6HR-PLOT,IDUM)
        8: CONTINUE
        RETURN
        30 FORMAT(////52\times15HRESPONSE TIMES//31\times9HPARAMETER4X
            1 8H1O RISE 4X8H90 RISE4X8H10 FALL4X8H90 FALI./)
        50 FORMAT(33XA6,1X1P4E12.4)
            END
```

SUBROUTINE PLTDTAINSCR,NR,NC,TIME,PLOT,NPNT, NPLOTS, 1 TITLE, DELT, NDIM)

DIMENSION PLOT (MOI \because,NPLOTS), TITLE(NPLCTS)
DIVENSICN NSCP(NR,NC), TIME (NHNT)
$\because R I T E(19)$ NPNT
ARITF (19) NPLOTS
WRITE(19) TIME
WRITE(19) PLCT
WPITF(19) TITLE
RETURN
CND

APPENDIX B

Listing of Software for Displaying Data Extracted from CIRCUS.

NOTE: Many of the Hollerith strings in format statements were delimited with quote marks. The printer used to make the following listing did not have the quote character; a minus sign appears where each quote should have been.

MAIN PROGRAM

```
    PARAMETER N = 32
    DIMENSION TIME(5000), PLAT(5000)
    COMPLEX A(N)
    DIMENSION IBUF(10000)
    LOGICAL CPLT, PDPRT, DOMFLG
    CPLT = \bulletFALSE.
    PDPRT = •FALSE.
    DOMFLG = -TRUE.
    READ(19) NPNT
    WRITE(6,200) NPNT
    NP=N
    WRITE(6,202) NP
    READ(19) NPLOTS
    WRITE(6,201) NPLOTS
    CALL RDTF(NPNT,NPLOTS,TIME,PLAT)
    IGAM = ALOG(N) / ALOG(2\bullet) + •1
1 WRITE(6,101)
    WRITE(6,1001)
    WRITE(6,20U1)
    READ(5,100,ERR=1,END=999) ISWTCH
    IF(ISWTCH \bulletGT• O) GO TO 2
    IF(ISWTCH •LT• U) GO TO 3
    CALL WRTDTA(NPNT,NPLOTS,TIME,PLAT)
    GO TO 1
2 ~ I F ( I S W T C H ~ \cdot G T . ~ N P L O T S ) ~ G O ~ T O ~ 5 0 ~
    WRITE(6,102)
    READ(5,100) ISTART
    DO 10 I = 1,N
    ITQ = I + ISTART - 1 + (ISWTCH - 1) * NPNT
10 A(I) = CMPLX(PLAT(ITQ), 0.)
    TP = ((TIME(ISTART + N - 1) - TIME(ISTART)) / (N -1)) * N
    IF(.NOT• PDPRT) WRITE(6,203) TP
    PDPRT = •TRUE.
    CALL FFT(A,IGAM,-1)
    CALL LFOLD(A,N)
    WRITE(6,103)
    READ(5,100) JSWTCH
    IF(JSWTCH •LT. 100) GO TO 20
    CALL PRNT(A,N)
    JSWTCH = JSWTCH - 100
```

```
    20 IF(JSWTCH .EQ. O) GO TO 1
    DELF = 1. / TP
    IF(JSWTCH •LT. 10) GO TO 30
    IF(.NOT. CPLT) CALL PLOTS(IBUF(1),10000,2)
    CPLT = •TRUE.
    WRITE(6,108)
    READ(5,100) FMAX
    CALL CPLOTF(A,N,DELF,FMAX)
    JSWTCH = JSWTCH - 10
    IF(JSWTCH •EQ. ©) GO TO 1
    30 CONTINUE
    WRITE(6,104)
    READ(5,100) FLO
    WRITE(6,105)
    READ(5,100) FHI
    CALL TTFP(A,N,DELF,FLO,FHI)
    GO TO 1
    3 ISWTCH = ABS(ISWTCH)
    IF(ISWTCH •GT• NPLOTS) GO TO 50
    WRITE(6,102)
    READ(5,100) ISTART
    DO 11 I = 1,N
    ITQ = I + ISTART - 1 + (ISWTCH - 1) * NPNT
    11 A(I) = CMPLX(PLAT(ITQ), O.)
    TP = ((TIME(1) - TIME(N)) / (N -1)) * N
    IF(.NOT. PDPRT) WRITE(6,203) TP
    PDPRT = •TRUE.
    WRITE(6,103)
    READ(5,100) JSWTCH
    IF(JSWTCH •LT. lUU) GO TO 2l
    CALL PRNT(A,N)
    JSWTCH = JSWTCH - 100
    z1 IF(JSWTCH •EQ. 0) GO TO 1
    IF(JSWTCH \bulletLT• 10) GO TO 31
    IF(.NOT. CPLT) CALL PLOTS(IBUF(1),10000,2)
    CPLT = •TRUE.
C * *
C Place calcomp time plots here
    WRITE(6,90U)
C * *
```

```
    JSWTCH = JSWTCH - 10
    IF(JSWTCH.EQ. U) GO TO I
    31 CONTINUE
    WRITE(6,304) NP
    WRITE (6,303)
    READ(5,100) NSTART
    NST = NSTART
    WRITE (6,3C5)
    READ(5,100) NSTOP
    NSP = NSTOP
    WRITE(6,306)
    READ(5,1U0) NJUMP
    CALL TTTP(A,NST,NSP,NJIJMP)
    GO TO l
        50 WRITE(6,107) NPLOTS
        GO TO 1
    100 FORMAT( )
    1 0 1 ~ F O R M A T ( - ~ E N T E R ~ O ~ F O R ~ P R I N T ~ O F ~ D A T A ~ S E T ~ F R O M ~ C I R C U S - ) ~
1001 FORMAT(- ENTER PLUS DATA SET NUMBER FOR FREQ F(N-)
ZOO1 FORMAT(- ENTER MINUS DATA SET NUMBER FOR TIME FCN-)
    102 FORMAT(- ENTER ISTART-)
    103 FORMATI- ENTER 1OU FOR PRINT, O10 FOR CALCOMP PLOT,-,
    A - OR UU1 FOR TTY PLOT-I
    104 FORMAT(- ENTER FLO-)
    105 FORMAT(- ENTER FHI-)
    107 FORMAT(//- ERROR--LARGEST DATA SET NUMBER IS -,I2/)
    108 FORMAT( - ENTER THE HIGHEST DESIRED FREQ IN THE SPECTRUM, FMAX-/)
    200 FORMAT(- THE NUMEER OF POINTS PER DATA SET = -,I5)
    201 FORMAT(- THE NUMBER OF DATA SETS = -,I2/)
    202 FORMAT(- THE NUMBER OF POINTS USED IN A TRANSFORM = - I5)
    203 FORMAT(- THE PERIOD OF THE TIME FUNCTION = -,1PE11.4,- SEC-1)
    303 FORMAT(- ENTER NSTART -)
    304 FORMAT(- ARRAY SIZE = -,I5,- NSTOP MUST BE EQUAL TO-
        A - OR LESS THAN THIS VALUE-/)
305 FORMAT(- ENTER NSTOP-)
306 FORMAT (- ENTER NJUMP-)
9 0 0 ~ F O R M A T ( - ~ C A L C O M P ~ T I M E ~ P L O T ~ N O T ~ O P E R A T I O N A L - / ) ~
999 IF(CPLT) CALL PLOT(U..0.,999)
        STOP
        END
```

```
C * *
    SURROUTINE (PLOTF(A,N,DELF,FMAX)
COMMENT- THE FOLLONING CONTROL STATEMFNT NUST HKECEED THE
C EXECUTE STATEMENT FOR RUNS USING CALCONF PLOTS.
C
C @USE UNIT 非, TPFS
C**
    COMPLFX ^(1)
    IR = FMAX / OELF + © OUI
    FMAX = IR * DELF
    FLO = - FVAX
    FHI = FMAX
    1799 FORVAT()
    XTEST = ARS(FHI-FL'心)
    IF(XTEST.LT.I.E-3%) OU TU 9990
    XTEST = XTEST/(ABS(FLU) + ABS(FHI))
        IF(XTEST•LT•1•F-3:) 万O TO 9999
        YSPRED = 70.
        N2=N/2
        NST = N2 - IR + 1
        NSP=N2+IR + I
        T1 = 1.E-35
        DO 400O I = N:ST,NSP
        T2 = CABS(A(I))
    40uv IF(T2.GT•TI) T1 = T2
    DBMAX = 20.*ALOGI:(T1)
    CALL SCALE(\OmegaQYAX,MAXSCL)
    XVXSCL = WAXSCL
    XKSCAL = 1.0**(-x!xSCL/20.)
    CALL FACTOR(0.4)
    CALL PLOT(i., -20.,3)
    CALL PLOT(12.,00.,-3)
    CALL PLOT(-1, - -14.,3)
    DO 3 I = 1,2
    CALL PLOT(-1\therefore., (.,2)
    CALL PLOT(10.,0心\bullet,2)
    CALL PLOT(10.,-14.,2)
    CALL PLOT(-1%.O1,-14.,2)
    CALL PLCT(-1%•Ul,0.l,2)
    CALL PLOT(1%.01,0.01,2)
    CALL PLOT(10.01,-14.01,2)
        3 CALL PLOT(-1O.,-14.01,2)
C DO 3000 IAGAIN = 1,2
C * *
C DO LOOP IU CALIGRATES THE LEFT ROROER
C * *
    DO 10 I = J,70
    Y = -14. + 0.2*I
    IF (MOD(I,5) \bulletEQ. '') GO TO G
```

```
            CALL PLOT(-10.1,Y,3)
            GO TO 8
        6 \text { IF (MOD(I,IO) •FQ. O) GO TO } 7
            CALL PLOT(-10.16,Y,3)
            GO TC 8
        7 CALL PLOT(-1`.2,Y,3)
    3 CALL PLOT(-1こ.,Y,2)
    1: CONTINUE
        Y = 2.
        DO 15 I = 1,8
        J = I - 1
        Y = Y-2.
        YY = XMXSCL - 10.*J*YSPRED/70.
    15 CALL NUM3ER(-11.09,Y-.1U5,.21,YY,O.,-1)
        CALL SYMBOL(-11.24,-8.4,.21,14HAMPLITUDE (D3),90.0,14)
        FCENTR = (FLO + FHI)/2.
        FUPPER = FHI - FCENTR
        IF(FUPPER.GT•1.`) GO TO 2100
        IEXP = ALOGIC(FUPPER) - 1
        GO TO 2101
21C: CONTINUE
    XIEXP= ALOGIO(FUPPER)
    IEXP = XIEXP
    RIEXP = IEXP
        IF((ASS(XIEXP-RIEXP).LT•1•E-2O).AND.(XIEXP.GE\bulletRIEXP))
    1 IEXP = IEXP - 1
2101 CONTINUE
    FULSCL = FUPPER*(10.**(-IEXP))
    IFLSCL = FULSCL
    ITEMP = 10.*FULSCL
    RITEMP = ITENP
    SCALEI = IFLSCL
    SCALE1 = 1U.*SCALE1/FLLSCL
    TENIFS = 10.*IFLSCL
    SCALE1 = SCALEI/TENIFS
C * *
            DO LOOP 40̂ CALIBRATES THE BOTTOM POSITIVE قORDER
            DO 40 I = O,ITEMP
            X = I*SCALEI
            IF (MOD(I,5) .EQ. O) GO TO 32
            CALL PLOT(X,-14.1,3)
            GO TO 36
    32 IF (MOD(I,10) \bulletEQ. O) GO TO 34
            CALL PLOT(X,-14.16,3)
            GO TO 36
    34 CALL PLOT(X,-14.2,3)
    36 CALL PLOT(X,-14.,2)
    40 CONTINUE
```


CPLOTF (Continued)

```
C * *
C**
        DC LOOP I4O CALIBRATES THE BOTTOM NEGATIVE BORDER
        DO 140 I = I,ITEMP
        X = -I*SCALEI
        IF(MOD(I,5).EQ.U)GO TO 132
        CALL PLOT(X,-14.1,3)
        GO TO 136
        132 IF(MOD(I,1O),FQ.0)GOTO 134
        CALL PLDT(X,-14.16,3)
        GO TO 136
    134 CALL PLOT(X,-14.2,3)
    136 CALL PLOT(X,-14.,2)
    140 CONTINJE
C - -
C DO LOOP 240 CALIBRATES THE TOP POSITIVE BORDER
C * *
    DO 240 1 = O,ITEMP
    x = I*SCALEI
        IF(MOD(I,5).EQ.O) GO TO 232
        CALL PLOT(X,.1,3)
        GO TO 236
    232 IF(MOD(I,IO) •EQ. )) GO TO 234
        CALL PLOT(X,.16,3)
        GO TO 236
    234 CALL PLOT(X,.2,3)
    236 CALL PLOT(X,0.,2)
    240 CONTINUE
C * *
C DO LOOP 340 CALIBRATES THE TOP NEGATIVE BORDER
C * *
    DO 340 I = 1,ITEMP
    X = -I*SCALEI
    IF(MOD(I,5),EQ.O) GO TO 332
    CALL PLOT(X,.1,3)
    GO TO 336
    332 IF(MOD(I,10).FQ.O) GO TO 334
        CALL PLOT(X,.16,3)
        GO TO 336
    334 CALL PLOT(X,.2,3)
    336 CALL PLOT (X,O.,2)
    340 CONTINUE
C - -
C DO LOOP 20 CALIGRATES THE RIGHT HAND BORDER
C * *
    DO 20 I = 0,70
    Y = -14. + 0. 2*I
    IF:(MOD(I,5) \bulletEQ. 3) GO TO 16
    CALL PLOT( 1O•1,Y,3)
    GO TO 18
```


CPLOTF（Continued）

```
    16 IF (NOD(I,IC) •EQ\bullet U) GO TO 17
        CALL PLOT( lU.16,Y,3)
        GO TO 18
    17 CALL PLOT( 1U゙.2,Y,3)
    18 CALL PLOT( 10.,Y,2)
    2O CONTINUE
        AK1 = 10./FULSCL
        CALL NUMAER(- 0.06,-14.5,.21, O.,0.,-1)
        DO 200 I = 1,IFLSCL
        XPOS = -.06 + I*AKI
        XNEG = -. 12 - I*AKI
        CALL NUMEER(XPOS,-14.5,.21,1.*I,0.,-1)
    2Uひ̈ CALL NUMEER(XNEG,-14.5,.21,-1.*I,O.,-1)
    CALL SYMBOL(-4.5,-14.9,.21,
    1 46H(FREQUENCY - FCENTER) DIVIDED BY FSCALE, (1:Z),0.,46)
    CALL SYMBOL(-4.5,-15.3,.21,1OHFCENTER = ,リ.,10)
    CALL NUMEFR(-2.0,-15.3,.21,FCENTR,0.,0)
    CALL SYMBCL(U.,-15.3,.21,9HFSCALE = ,0.,9)
    CALL NUMBER(2.4,-15.3,.21,10.**IEXP,0.,0)
C300) CONTINUF
    ISTOP = NSP - NST + 1
    DENCM = NSP - NST
    DELX = 20./DENON
    XS = - (N2 + 1 - NST) * DELX
    DO 30 I = 1,ISTOP
    II = I - I
    Tl=(CABS(A(I+NST-1)))*XKSCAL
    IF(Tl •LT• l•E-7) GO TO 30
    Yl = (70./YSPRED) * 4. * ALCG1O(Tl)
    IF(Y1 \bulletLE. -14.0) GO TO 3U
    XI = II * DELX + X.5
    IF(Xl •LT. -1C.) GO TC 30
    IF(XI •GT. 1O.1 GO TO 30
    IF(Y1.LE.O.) GO TO 25:
    CALL SYMBOL(X1,.16,.21,1H*,0.,1)
    GO TO 30
    250 CONTINUE
    CALL PLOT(X1,-14.,3)
    CALL PLOT(X1,Y1,2)
    CALL PLOT(X1,-14.,2)
    3u CONTINUE
    CALL PLOT(13.,-20.,-3)
    35 FORMAT(1HI,2X,14HPLOT COMPLFTED)
    WRITE (6,35)
9999 CONTINUE
    RETURN
    END
```

```
    SUBROUTINE FFT(A,IGAM,ISN)
    COMPLEX A(1),T1,T2,TEMP
    DOUBLE PRECISION PI2,SO,CO,SI,CI,SN,CS
    PI2 = 6.28318530717958648DO
    N = 2 ** IGAM
    NBIT = 36 - IGAM
    Nl = N - 2
    DO 30 I = 1,N1
    IFLIP = 0
    IX = I
    DO 10 J = 1,IGAM
    IOLD = IX
    IX = IX / 2
    IBIT = IOLD - 2 * IX
10 IFLIP = 2 * IFLIP + IBIT
    IF (I •LE. IFLIP) GO TO 30
    Il = I + 1
    I2 = IFLIP + 1
    TEMP = A(I2)
    A(I2) = A(I1)
    A(II) = TEMP
3u CONTINUE
    DO 80 I = 1,IGAM
    NEL = 2** I
    NEL2 = NEL / 2
    NSET = N / NEL
    SI = DSIN(PI2/NEL)
    CI = DCOS(PI2/NEL)
    DO 80 J = 1,NSET
    INCR = ( J - 1 ) * NEL
    SO = 0.ODO
    CO = 1.ODO
    DO 80 II = 1,NEL2
    Jl = II + INCR
    J2 = J1 + NEL2
    Tl = A(Jl)
    T2 = A(J2) * CMPLX(CO, ISN * SO)
    A(J1) = T1 + T2
    A(J2) = T1 - T2
    SN = SO * CI + CO * SI
    CS = CO * CI - SO * SI
    CO = CS
80 SO = SN
    IF (ISN.GT. O) GO TO 12O
    DO 110 I = 1,N
110 A(I) = A(I)/N
120 CONTINUE
    RETURN
    END
```

```
    SUBROUTINE LFOLD (A,N)
    COMPLEX A (1),T1
    N2=N/2
    DO 10 I =1,N2
    I I = I +N 2
    T1=A (I)
    A (I)=A (II)
10 A (II) =T1
RETURN
END
```

```
        SUBROUTINE PRNT(A,N)
        COMPLEX A(1)
        WRITE(6,101)
        DO 1U I = l,N
        DE = 1.E30
        T = CABS(A(I))
        IF(T •GT•U.) DG = 20. * ALOGIO(T)
        1U WRITE(6,100) I,A(I),DE
    1UO FORMAT(1X,I5,1P2E15.4,5X,OPF8.2)
    101 FORMAT(//,- LINE-,7X,-REAL-,11X,-IMAG-,12X,-DB-/)
        RETURN
        END
```

 SUBROUTINE RDTF(NPNT,NPLOTS,TIME,PLOT)
 DIMENSION TIME (NPNT), PLOT (NPNT,NPLOTS)
 READ(19) TIME
 READ(19) PLOT
 RETURN
 END
 SUBROUTINE SCALE(DBMAX,MAXSCL)
 C * * * THIS SUBROUTINE ESTABLISHES ORUINATE SCALING FOR
THE REMOTE SPECTRUM PLOTTER.
IF(DBMAX•LE•U.) GO TO IU
MAXSCL $=0$
1 MAXSCL $=$ MAXSCL +10
DIFF = DBMAX - MAXSCL
IF(DIFF.GT•O•) GO TO 1
GO TO 999
$10 \mathrm{MAXSCL}=0$
11 MAXSCL $=$ MAXSCL - 10
$D I F F=(D B M A X-M A X S C L)$
IF(DIFF•LE•O•) GO TO 11
MAXSCL $=$ MAXSCL $+1 U$
999 RETURN
END

SUBROUTINE TTFP(A,N,DELF,FLO,FHI)
C * * this subroutine provides a telytype plot of the frequency
C SPECTRUM FROM FLO TO FHI
COMPLEX A(1)
DIMENSION IA(50), MM(6)
C * * * *
NST = (N/2) + INT(FLO/DELF + SIGN(.5,FLO))
NST $=$ NST +1
NSP $=(N / 2)+\operatorname{INT}(F H I / D E L F+\operatorname{SIGN}(\cdot 5, F H I))$
NSP $=$ NSP +1
C * * * *
DBMAX $=-1 . E 30$
IEND = NSP - NST + 1
DO 1 I = 1,IEND
DECTMP $=$ CABS(A(NST $+1-1))$
IF(DECTMP.LT•1•E-3U) DECTMP $=1 \cdot E-30$
$B=20$. * ALOGIO(DECTMP)
IF(B.GT•DBMAX) DBMAX $=B$
1 continue
C * * * *
c * * * *
WRITE(6,2) IEND
2 FORMAT(/5X,8HNSIZE $=, 15 /)$
C * * * *
CALL SCALE(DBMAX,MAXSCL)
C * * * *
C THE ORDINATE WILL VARY FROM(MAXSCL-50) DB UP
C TO MAXSCL DB.
DO $33 \mathrm{I}=1,50$
33 IA(I) $=1 H$
DO 5 I = 1,6
5 MNi(I) $=\operatorname{MAXSCL}-1 \cup *(6-1)$
MAXF $=A B S(F L O)$
$\operatorname{IF}(A B S(F H I) \cdot G T \cdot M A X F) \quad M A X F=A B S(F H I)$
NAMEF $=0$
IF (MAXF•GT•1•E3) NAMEF $=3$
IF (MAXF•GT•1•E6) NAMEF $=6$
IF (MAXF•GT•1•E9) NAMEF $=9$
IF (NAMEF.EQ.0) WRITE $(6,20 \cup)$
IF(NAMEF•EQ.3) WRITE(6,203)
IF(NAMEF.EQ.6) WRITE(6,206)
IF(NAMEF•EQ.9) WRITE(6,209)

```
    200 FORMAT ( 2X,14HFREQUENCY (HZ),9X,8HOECIBELS)
    203 FORMAT ( 2X, 15HFREQUENCY (KHZ),8X,8HDECIBELS)
    206 FORMAT ( }2X,15HFREQUENCY (MHZ),8X,8HDECIBELS
209 FORMAT ( 2X,15HFREQUENCY (GHZ), 8X,8HDECIBELS)
        WRITE(6,7) (MM(I),I = 1,6)
    7 FORMAT (/7X,I4,4(6X,I4),5X,I4)
        WRITE (6,8)
    8 FORMAT(9X,1HI,5(10H----+----I))
        FFACT = 1.
        IF(NAMEF.EQ.3) FFACT = 1.E-3
        IF(NAMEF.EQ.6) FFACT = 1.E-6
        IF(NAMEF\bulletEQ.9) FFACT = 1.E-9
        FLO = FLO * FFACT
        FHI = FHI * FFACT
        DELFI = DELF * FFACT
        FLOPRT = DELFI*(NST -1 -N/2)
        DO 1O I = 1,IEND
        DECTMP = CABS(A(NST + I - 1))
        IF(DECTMP.LT.I.E-30) DECTMP = 1.E-30
        B = 20. * ALOG10(DECTMP)
        M = 50 + B - MAXSCL
        J = I - I
        XJ = J
        FREQ = FLOPRT + XJ * DEL.Fl
        IF(M.LT.O) GO TO 50
        IF(M•EQ•O) GO TO 34
        DO 1515 II = 1,M
$515 IA(II) = 1H-
        WRITE(6,35) FREQ,IA
        DO 1616 II = 1,M
$616 IA(II) = 1H
    35 FORMAT(F8.3,2H I,5ÚAI)
        GO TO 36
    34 WRITE(6,37) FREQ
    37 FORMAT (IX,F7.3,2H-)
        GO TO 36
    50 WRITE(6,51) FREQ
    5 1 ~ F O R M A T ( 1 X , F 7 . 3 , 2 H ~ I ) ~
$000 FORMAT( )
    36 CONTINUE
    10 CONTINUE
        WRITE(6,11)
    11 FORMAT(6X,4HFREQ)
        RETURN
        END
```

```
        SUBROUTINE TTTP(A,NST,NSP,NJUMP)
        COMPLEX A(1)
        DIMENSION IA(50)
        OMAX = U.
        BMIN = BMAX
        DO 1 I = NST,NSP,NJUMP
        B = REAL(A(I))
        IF(b.LT.BMIN) BMIN = B
    1 IF(B.GT.BMAX) BMAX = B
        IF((BMAX-BMIN).LT•I•E-30) GO TO 999
        00 33 I = 1,50
    33 IA(I) = 1H
100 WRITE(6,4)
    4 FORMAT (5X,1H+)
        WRITE(6,3) BMIN,DMAX
    3 FORMAT(12X,-AMPLITUDE- MIN -,E\ni.4,-, MAX -,E9.4,- VOLTS-)
        WRITE(6,4)
        WRITE(6,6)
    6 FORMAT(8X,2H U,3X,2H.1,3X,2H.2,3X,2H.3,3X,2H.4,3X,2H.5,
        l 3X,2H.6,3X,2H.7,3X,2H.8,3X,2H.9,2X,3H1.01
        WRITE(6,7)
    7 FORMAT(1H,8X,1HI,lU(5H----I))
        DO 10 I = NST,NSP,NJUMP
        B = REAL(A(I))
        B = (B-BMIN)/(BMAX-BIAIN)
        M= INT(B*50.0+0.5)
        IF(M.EQ.O) GO TO }3
        IA(M) = 1H*
        WRITE(6,35) I,IA
        IA(M) = 1H
    35 FORMAT(2X,I5,3H I,5UA1)
    GO TO 36
    34 WRITE(6,37) I
    37 FORMAT(2X,I5,3H *)
    36 CONTINUE
    10 CONTINUE
    WRITE(6,11)
    11 FORMAT(6X,1HN)
    GO TO 900
999 WRITE (6,9)
    9 ~ F O R M A T ( 1 X , 1 2 H E R R O R ~ F I N I S H )
900 RETURN
    END
```

```
    SUBROUTINE WRTDTA(NPNT,NPLOTS,TIME,PLOT)
    DIMENSION TIME (NPNT), PLOT (NPNT,NPLOTS)
    WRITE(6,110)
    READ(5,102) ISW
    IF(ISW .GT . U) GO TO IU
    WRITE(6,101)
    WRITE(6,111)
    WRITE(6,100) TIME
    WRITE(6,100) TIME
    GO TO 9%9
10 IF(ISW •GT•NPLOTS) GO TO 20
    WRITE(6,101)
    WRITE(6,112) ISW
    WRITE(6,100) (PLOT(I,ISW), I = 1,NPNT)
    GO TO 9%9
2U WRITE(6,113) NPLOTS
1.OU FORMAT(1X,1P6E11.4)
IU1 FORMAT(///)
102 FORMAT( )
11U FORMAT(- ENTER U FOR TIME LISTING OR DATA SET NUMOER-)
111 FORMAT(3UX,-TIME-/)
112 FORMAT(25X,-DATA SET NUMEER -,I2/)
113 FORMAT(//- ERROR--LARGEST DATA SET NUMUER IS -,I2/)
999 WRITE(6,102)
    RETURN
    END
```

FATCAT PROGRAM DESCRIPTION AND LISTING

1. General Description

The program is coded in FORTRAN IV and the Univac-1108 version consists of a main program and 31 subroutines; in addition one of the subroutines (CPLOTF) which generates plots of frequency spectra on a CALCOMP plotter requires calls to 5 other: subroutines contained in a plotter control package. This plotting routine and associated plotter control subroutines are not used in the SIGMA-5 version.

Several of the subroutines contain multiple entry points; the total number of subroutine and function entry names in the Univac-1108 version is 47. These names are listed in alphabetical order in Table C 1 and those which are not subroutine names are identified.

In the following sections, the main program and all subroutines are briefly described, and each descr:Lption is followed by a listing of the routine as used on the Univac-1108. For listings of the SIGMA-5 versions of those routines that were modified for that machine, see Appendix D.

NOTE: Many of the Hollerith strings in format statements were delimited with quote marks. The printer used to make the following listing did not have the quote character; a minus sign appears where each quote should have been.

1. ADJN
2. AMD EMO
3. AMP
4. BCDFPT
5. BWBNDP
6. BWBSTP* (BWBNDP)
7. BWHIP* (BWBNDP)
8. BWLOWP* (BWBNDP)
9. CHBNDP
10. CHBSTP* (CHBNDP)
11. CHHIP* (CHBNDP)
12. CHLOWP* (CHBNDP
13. CPLOTF**
14. ELFIND
15. FACTOR^{+}
16. FETCH
17. FFT
18. FILTER
19. FLATSP
20. FMD EMO
21. FRQFCN* (TIMFCN)
22. FRQMUL
23. IDLMUL
24. INPFOR
25. LFOLD
26. LIM
27. LSTCOM
28. NUMBER ${ }^{+}$
29. PDCHK
30. PERIOD
31. PHDEMO
32. PLOT^{+}
33. PLOTS ${ }^{+}$
34. PROCES
35. PRTFAC* (PERIOD)
36. SCALE
37. SIGGEN
38. STRDTA
39. SYMBOL +
40. SYNBP
41. SYNHP* (SYNRP)
42. SYNLP* (SYNBP)
43. TELPLT
44. TIMFCN
45. TTFP
46. WRFF* (WRTF)
47. WRTF
[^3]
2. MAIN PROGRAM

Calls: PLOTS*, FETCH, ELFIND, WRTF, WRFF, TELPLT, TTFP, CPLOTF, PRTFAC, STRDTA, PROCES, LSTCOM, INPFOR, PDCHK.
Commons: blank, CFREQ, CDOM, CDATA, CCIRKT, CWORD, CFLGS.
Description: MAIN is the overall controlling program which directs the operations of command and data input, interpretation of input, data storage, and command execution. Most of the detailed work in all operations is carried out by subroutines.
Program Listing:

```
    PARAMETER NMAX = 2048
    COMPLEX A(NMAX)
    COMMON N,IGAM,DELF,DELT,PD,CARRFQ
    COMMON /CFREQ/ NFK,FR(6)
    COMMON /CDUM/ DOMMFLG
    COMMON /CDATA/ JCTK,DATA(2UU)
    COMMON /CCIRKT/ NBLK,ITYP(3U,2)
    COMMON/CWORD/ WORD(1O)
    COMMON/CFLGS/ PDFLG,ARFLG
    LOGICAL PDFLG, ARFLG
C DIMENSION IBUF(5000)
C CALL PLOTS(IBUF(1),5UUU,2)
    JCTR = 1
    ITYP(1,2) = JCTR
    NFR = 0
    Nひ̈LK = 0
    IBLK = O
    PDFLG = .FALSE.
    ARFLG = .FALSE.
    WRITE(6,7006)
1 DO 2 I = 1,10
2 WORD(I) = 6H
    CALL FETCH(WORD, L, NBAD)
    IF(NBAD •EQ. O) GO TO 1
    CALL ELFIND(WORD, LTYP)
    GO TO\ 10, 20, 30, 20, 50, 60, 70, 80, 90, 100,
1 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
2 210, 220, 23u, 240, 250, 260, 270, 280, 290, 300,
3 310, 320, 33v, 34v, 35v, 360, 37v, 38U, 390, 4uv,
4 410, 420, 430),LTYP
```

[^4]
MAIN (Continued)

```
    10 IF (WORD(3) •EQ. 1H ) GO TO 12
    N1 = WORD(2)
    N2 = WORD(3)
    GO TO 15
    12 WRITE(6,70U4)
    READ(5,7UOU) N1,N2
    15 CALL WRTF(A,N1,N2)
    GO TO 1
    2U IF (WORD(3) •EQ. 1H ) GO TU 22
    FRLO = WORD(2)
    FRHI = WORD(3)
    GO TO 25
    22 WRITE(6,7005)
    READ(5,7000) FRLO,FRHI
    25 IF (LTYP •EQ. 4) GO TO 40
    CALL WRFF(A,FRLO,FRHI)
    GO TO I
C * * TTY TIME PLOT
    3U IF (WORD(3) •EQ. 1H ) GO TC 32
    NST = WORD(2)
    NSP = WORD(3)
    NJUMP = WORD(4)
    IF (NJUMP •EQ. 1H ) NJUMP = 1
    GO TO 35
    32 WRITE(6,7007)
    READ(5,7000) NST,NSP,NJUMP
    35 IF (NJUMP \bulletLT. 1) NJUMP = 1
    CALL TELPLT(A,NST,NSP,NJUMP)
    GO TO l
C * * TTY FREQUENCY PLOT
    40 CALL TTFP(A,FRLO,FRHI)
    GO TO 1
C * * CALCOMP TIME Plot
    50 WRITE(6,7101) ((ITYP(I,J), J = 1,2), I = 1,5)
    7101 FORMAT(1X,2(I3,3X))
    GO TO 650
C * * CALCOMP FREQUENCY PLOT
    60 CALL CPLOTF(A)
    GO TO 1
C * * PRINT PRIME FACTORS
    70 CALL PRTFAC
    GO TO 1
C * * END OF JOB
    80 GO TO 999
```

```
C * * BUTTERWORTH BANDPASS
    90 CALL STRDTA(3,0,0)
        NTYP = 3
        GO TO 600
C * * BUTTERWORTH LOWPASS
    100 CALL STRDTA(2,0,0)
        NTYP = 4
        GO TO 600
C * * BUTTERWORTH HIGHPASS
    110 CALL STRDTA(2,0,0)
        NTYP = 5
        GO TO 600
C * * bUTTERWORTH BANDSTOP
    120 CALL STRDTA(3,0,0)
        NTYP = 6
        GO TO 600
C * * CHEBYSHEV BANDPASS
    130 CALL STRDTA(4,0,0)
        NTYP = 7
        Go TO Gu0
C * * CHEBYSHEV LOWPASS
    140 CALL STRDTA(3,0,0)
        NTYP = 8
        GO TO 600
C * * CHEBYSHEV HIGHPASS
    150 CALL STRDTA(3,0,0)
        NTYP = 9
        GO TO 600
C * * CHEBYSHEV BANDSTOP
    160 CALL STRUTA(4,0,0)
        NTYP = 10
        GO TO 600
    C * * SYNCHRONOUS DANDPASS FILTER
    170 CALL STRDTA(3,0,0)
        NTYP = 11
        GO TO 600
    C * * SYNCHRONOUS LOWPASS FILTER
    180 CALL STRDTA(2,0,0)
        NTYP = 12
        GO TO 600
    C * * SYNCHRONOUS HIGHPASS FIlter
    190 CALL STRDTA(2,0,0)
        NTYP = 13
        GO TO GU0
```

```
C * * SIGNAL GENERATOR
    200 CALL STRDTA(6,2,1)
        CARRFQ = WORD(2)
        NTYP = 1
        GO TO 600
C * * FREQUENCY MULTIPLIER
    210 NTYP = 4
        GO TO 600
    220 GO TO 430
C * * IDEAL MULTIPLIER
    230 CALL STRDTA(2,1,2)
        NTYP = 16
        GO TO 6U0
    240 GO TO 430
C * * FM DEMODULATOR
    250 CALL STRDTA(1,0,0)
        NTYP = 19
        GO TO 600
C * * PHASE DEMODULATOR
    260 CALL STRDTA(1,0,0)
        NTYP = 20
        GO TO GUO
    C * * AMPLIFIER
    270 CALL STRDTA(1,0,0)
        NTYP = 2
        GO TO 600
C * * LIMITER
    280 CALL STRDTA(3,0,0)
        NTYP = 17
        GO TO 600
    290 NOUT = WORD(2)
        IF(NOUT •LE. NBLK) GO TO 291
        WRITE(6,7001) NBLK
        GO TO 1
    291 IF(NOUT - IBLK) 295,295,293
    293 IF(PDFLG) CALL PDCHK
        ITMP = IBLK + 1
        DO 292 IBLK = ITMP, NOUT
        IBTYP = ITYP(IBLK,I)
        JCTR = ITYP(IBLK,2)
        CALL PROCES(IBTYP,A)
    292 CONTINUE
        IBLK = NOUT
    295 WRITE(6,7002) IBLK
        GO TO 1
```

```
    300 CONT INUE
    310 CONTINUE
    320 GO TO 370
    330 GO TO 430
C * * AM DEMODULATOR
    340 CALL STRDTA(1,0,0)
        NTYP = 22
        GO TO 600
C * * FLAT SPECTRUM GENERATOR
    350 CALL STRDTA(3,0,0)
        CARRFQ = 0.
        NTYP = 23
        GO TO 600
    360 CALL LSTCOM
        GO TO l
    370 GO TO 650
    380 CALL INPFOR
        GO TO 1
    390 GO TO 650
    400 GO TO 650
    410 GO TO 650
    420 GO TO 650
    430 WRITE(6,7003)
        GO TO 1
    600 NBLK = NBLK + 1
        ITYP(NBLK,1) = NTYP
        ITYP(NOLK + 1,2) = JCTR
        GO TO 1
    650 WRITE(6,7100) WORD(1)
        GO TO 1
    7000 FORMAT()
    7 0 0 1 ~ F O R M A T ~ ( - ~ * ~ * ~ E R R O R ~ * ~ * ~ L A R G E S T ~ B L O C K ~ N O ~ I S ~ - , I 2 , - ~ * ~ * - ) ,
    7002 FORMAT ( - PROCESSING COMPLETE THRU BLOCK -,I2)
    7 0 0 3 ~ F O R M A T ~ ( ~ - ~ * ~ * ~ U N D E F I N E D ~ S T A T E M E N T ~ * ~ * - ) ~
    7 0 0 4 \text { FORMAT(- ENTER LOW, HIGH INDICES-)}
    7005 FORMAT ( - ENTER LOW, HIGH FREQUENCIES-)
    7006 FORMAT (- START-)
    7007 FORMAT(- ENTER NSTART, NSTOP, NJUMP-)
    7100 FORMAT(- COMMAND -,AG,- IS NOT YET OPERATIONAL-)
    999 CONTINUE
C CALL PLOTS(0.,0.,999)
    STOP
    END
```


3. Subroutine ADJN

Called by: PDCHK, PERIOD, FLATSP
Calls: none
Commons: blank
Entries: none
Description: ADJN adjusts N (number of data samples) to be a power of 2 . If the current value of N (either that computed to meet the Nyquist criterion or that entered by the user) is already a power of 2 it is not changed; otherwise it is adjusted upward to the next power of 2 .
Program Listing:

```
SUBROUTINE ADJN
COMMON N,IGAN,DELF,DELT,PD
IGAM = ALOG(N)/ALÓ́(2.) + .999
N=2**IGAN
DELT = PD / N
RETURN
END
```


Called by: PROCES

Ca11s: FRQFCN, TIMFCN
Commons: blank, CDATA
Entries: none
Description: AMDEMO simulates an ideal amplitude demodulator. Operating on the frequency spectrum, the negative frequency components are all set to zero to give a spectrum characteristic of a complex time function. The positive frequency components are then shifted down in the data array by an amount corresponding to the center frequency of the demodulator, thus positioning the spectrum at baseband. Transforming to the time domain produces a complex time wave form; conversion to a real time wave form is effected by replacing each time sample with one whose real part is the absolute value of the complex sample, and whose imaginary part is set to zero.

Program Listing:

```
            SUBROUTINE AMDEMO(A)
            COMMON N,IGAM,DELF,DELT,PD,CAKKFQ
                COMMON/CDATA/ JCTR,DATA(2UU)
                COMPLEX A(1)
                PI2 = 6.2831853
                N2 = N/2
                FO = WORD(JCTR)
                CALL FRQFCN(A)
C * * REMOVE THE NEGATIVE FREQUENCY Cumifuinents
            DO 10 I = 1,N2
            10 A(I) = (0., O.)
C * * MOVE THE mODULATED CARRIEk TU ZEkU FkEwuEinCy
                IFO = FO / DELF + .5
                NSTART = N2 + 1
                NSTOP1=N-IFU + 1
                DO 11 I = NSTART,N
            11 A(I - IFU) = A(I)
            DO 12 I = NSTOPI,N
            12 A(I) = (0., U.)
C * * RECOVER THE AMPLITUDE INFORIMATION
            CALL TIMFCN(A)
            DO 20 I = 1,N
            TEMP = CABS(A(I))
            2U A(I) = CMPLX(TEMP, U.)
                    RETURN
                    END
```

5. Subroutine AMP
Called by: PROCES
Cal1s: none
Commons: blank, CDATA
Entries: noneDescription: AMP simulates an amplifier. Its action is simply to mul-tiply each data sample by a constant. Since the multiplication is thesame in both time and frequency domains, AMP accepts the data array ineither domain.
Program Listing:
SUBROUTINE AMP(A)
COMPLEX A(1)
COMMON N,IGAM
$X P=D A T A(J C T R), 2 U$.
$G=10 . * * \times P$
DO $100 \mathrm{I}=1, \mathrm{~N}$
$100 \mathrm{~A}(\mathrm{I})=\mathrm{G} * \mathrm{~A}(\mathrm{I})$
RETURN
END

6. Function BCDFPT

Called by: FETCH

Calls: none
Commons: none
Entries: none
Description: BCDFPT accepts binary coded characters representing numerical quantities and converts them to a real number which is returned through the function name. This routine was adapted from CIRCUS with a few minor changes.

Program Listing:

```
    FIJNCTION SCOFPT(GCD,N )
        GCDFPT CCNVGRTS DATA FROM RCI TO FLCATING POINT.
        3CD IS AN ARRAY CONTAINING THE N FCD CHARACTERS
        WHICH ARE TO OZ CONVERTED.
            I = INDEX OF THF CHARACTFR BEING CONVERTEO.
            J = INDEX CORRESPONDING TO THE DIGIT J-1.
            K = 1 NHEN LSCODING :HHOLE NUNBER PORTICN•
                2 WHEN DFCOCING FRACTIONAL PCRTION.
                        3 WHEN OFCOOING EXPONENT.
    INTEGER DIGIT, E, RLUS, DECPT, OCD
    LOGICAL EXPFLE, DIGFLG, DFGFLG, EXSIGN
    DIVENSION ECN(1),<SIGN(3),INTEGR(3),RESULT(3),DIGIT(9)
    DATA DIGIT / IHO,1H],IH?,1H?,1H&,]H5,IHS,1H7,]HR,1HG/
    CATA PLUS, MINUS, E, DECPT / IH+, 1H-, IHE, 1H. /
    EXPFLG = .FALSF.
    OIGFLG=.FiLSS.
    DFCFLG = .FALSE.
    EXSIGN=.FALSE.
    DO 11 K=1,3
    KSIGN(<) = 1
    INTEGR(K)=0
11 CONTINUE
    NPLART = ?
    K = 1
    DO 31 I=1,N
    ICHAR = BCO(I)
```

```
C*
C TEST FOR SIGN, DIGIT, DECIMAL POINT, OR E
C*
    IF ( ICHAR-PLUS ) 13,23,13
    13 IF ( ICHAR-MINUS ) 14,24,14
    14 DO 15 J=1,10
    IF ( ICHAR-DIGIT(J) ) 15,25,15
    15 CONTINUE
    IF ( ICHAR-DECPT ) 16,26,16
    16 IF ( ICHAR-E ) 21,29,21
C*
C*
C*
    23 IF ( DIGFLG ) GO TO 28
    GO TO 31
C*
C**
    24 IF ( DIGFLG ) GO TO 27
        KSIGN(1) = -1
        GO TO 31
C*
C* DIGIT FROM O TO 9
C*
    25 INTEGR(K) = 10*INTEGR(K)+J-1
        NPLART = NPLART+K-1
        DIGFLG = .TRUE.
        GO TO 31
C*
C*
C*
C*
C*
26 IF ( DECFLG ) GO TO 21
    IF ( EXPFLG ) GO TO 21
    DECFLG = .TRUE.
    K = 2
    GO TO 31
```

```
C*
C* *E* FOR EXPONENT
C* BLANK TIMES TEN ** EXPONENT NOT ALLOWED.
C*
    27 KSIGN(3)= -1
    28 IF ( EXSIGN ) GO TO 21
        EXSIGN = .TRUE.
        GO TO 30
    29 IF ( EXPFLG ) GO TO 21
        IF (.NOT. DIGFLS ) GO TO 21
    3U EXPFLG = .TRUE.
        K = 3
        NDLASV = NPLART
    31 CONTINIE
C*
C. THE NUMEER HAS BEEN SEPARATED INTC INTFGER, FRACTION,
        AND EXPONENT PARTS. CONEINE THEM TO FORM THE
        NUMSER IN FLOATING POINT.
        IF ( EXPFLG ) GO TO 32
        EXPON = 1.
        60 T0 35
C*
C CALCULATE EXPONENT. AN EXPONENT MAY BE ONLY TWO
            DIGITS LONG AND LESS THAN 38 IN MAGNITIJDE.
    32 IF ( NPLART-NPLASV-4 ) 33,33,21
    33 IEXPON = INTEGR(3)*KSIGN(3)
        IF ( IASS( IEXPON) - 37, 34,34,21
    34 EXPCN = 10.**IEXPON
        NPLART = NPLASV
C*
C**
    35 RTSHFT = 10***NPLART
        RESULT(1) = FLOAT( INTEGR(1)*KSIGN(1) )
        RESULT(2) = FLOAT( INTEGR(2)*KSIGN(1) ) / RTSHFT
        BCDFPT = ( RESULT(1)+RESULT(2) )*EXPON
    41 RETURN
C*
c IllEGAL CHARACTER or EAD SyNTAX.
C*
    21N=-1
        GO TO 41
        END
```

7. Subroutine BWBNDP

Called by: PROCES

Calls: FILTER

Commons: CDATA, CFILT
Entries: BWBSTP, BWLOWP, BWHID
Description: BWBNDP simulates a Butterworth bandpass filter; auxiliary entries produce simulations of Butterworth band stop, high pass, and low pass filters.

The Butterworth filter produces a maximmally flat response defined by the function

$$
\begin{equation*}
\left|H\left(\omega_{p}\right)\right|=\frac{1}{\sqrt{1+\left(\omega_{p}^{2}\right)^{n}}} \tag{1}
\end{equation*}
$$

where n is the filter order and ω_{p} is a normalized frequency. The poles of Equation (1) are given by

$$
\begin{equation*}
S_{k}=e^{j \theta} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\left(\frac{2 \mathrm{k}+\mathrm{n}-1}{\mathrm{n}}\right)\left(\frac{\pi}{2}\right), \mathrm{k}=1,2, \ldots 2 \mathrm{n} \tag{3}
\end{equation*}
$$

With the poles known, the transfer function can be written in terms of the n poles lying in the left half-plane as

$$
\begin{equation*}
H(S)=\frac{1}{\left(S-S_{1}\right)\left(S-S_{2}\right)\left(S-S_{3}\right) \cdots\left(S-S_{n}\right)} \tag{4}
\end{equation*}
$$

The Butterworth filter models are implemented with Equations (2), (3), and (4). The computation of the transfer function, Equation (4), is carried out in subroutine FILTER. Subroutine BWBNDP computes the values of S_{k}, and sets up variables from which the normalized frequency, ω_{p}, can be determined to satisfy the definitions

$$
\begin{aligned}
& \omega_{p}=\omega_{c} \text { for low pass, } \\
& \omega_{p}=\frac{\omega-\omega_{o}}{\left(\frac{B \omega}{2}\right)} \text { for band pass, }
\end{aligned}
$$

$\omega_{p}=\omega_{c} / \omega$ for high pass,

$$
\omega_{p}=\frac{\frac{B \omega}{2}}{\omega-\omega_{0}} \text { for band stop }
$$

where
$\omega_{c}=3 \mathrm{~dB}$ corner frequency, and
$B \omega=f u 113 d B$ bandwidth.
All Butterworth filters calculated with this model will exhibit 3 dB attenuation at the corner frequency (low pass and high pass), or at onehalf the bandwidth away from the center frequency (band pass and band stop). The computed transfer function of the latter two are symmetrical. Program Listing:

```
    SUBROUTINE BWBNDP(A)
    COMPLEX A(1),S(20)
    COMMON/CDATA/ JCTR,DATA(2UU)
    COMMON/CFILT/ FU,FCOFF,NR, AMP,FFLG,S
    LOGICAL FFLG
    FFLG = .TRUE.
    GO TO 2
    ENTRY BWGSTP(A)
    FFLG = •FALSE.
2 FO = DATA(JCTR)
    FCOFF= DATA(JCTR+1) / 2.
    NR = DATA(JCTR+2)
    GO TO 6
    ENTRY BWLOWP(A)
    FFLG = .TRUE.
    GO TO 4
    ENTRY BWHIP(A)
    FFLG = .FALSE.
4 FO = O.
    FCOFF= DATA(JCTR)
    NR = DATA(JCTR+1)
6 AMP = 1.
    DO 10 K = 1,NR
    THETA = 1.5707963 * ((2.*K + NR-1)/NR)
10 S(K) = CMPLX(COS(THETA), SIN(THETA))
    CALL FILTER(A)
    RETURN
END
```


8. Subroutine CHBNDP

Called by: PROCES
Ca11s: FILTER
Commons: CDATA, CFILT
Entries: CHBSTP, CHLOWP, CHHIP
Description: CHBNDP simulates a Tchebysheff bandpass filter; auxiliary entries produce simulations of Tchebysheff bandstop, high pass, and low pass filters.

The implementation of the Tchebysheff (equal ripple) filter model is identical to that used for Butterworth filters except for the computation of the poles. The poles for the Tchebysheff filter are given by

$$
\begin{equation*}
S_{k}=\sigma_{k}+j \omega_{k} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{k} & = \pm \tanh a \sin \theta \\
\omega_{k} & =\cos \theta \\
a & =\frac{1}{n} \sinh ^{-1} \frac{1}{\epsilon} \\
\theta & =\left(\frac{2 k-1}{n}\right)\left(\frac{\pi}{2}\right), k=1,2,3, \ldots 2 n \\
\epsilon & =\text { ripple width, } 0<\epsilon<1
\end{aligned}
$$

CHBNDP computes the poles and then calls subroutine FILTER which actually computes the transfer function and applies it to the frequency function.

```
    SUBROUTINE CHENDP(A)
    COMPLEX A(1),S(20)
    COMMON/CDATA/ JCTR,DATA(200)
    COMMON/CFILT/ FO,FCOFF,NR,AMP,FFLG,S
    LOGICAL FFLG
    FFLG = .TRUE.
    GO TO 2
    ENTRY CHBSTP(A)
    FFLG = .FALSE.
2 FO = DATA(JCTR)
    FCOFF = DATA(JCTR+1) / 2.
    NR = DATA(JCTR+2)
    EPSDB = DATA(JCTR+3)
    GO TO 6
    ENTRY CHLOWP(A)
    FFLG = .TRUE.
    GO TO 4
    ENTRY CHHIP(A)
    FFLG = .FALSE.
    4 FO = 0.
    FCOFF = DATA(JCTR)
    NR = DATA(JCTR+1)
    EPSDB = DATA(JCTR+2)
6 x = 1. / SQRT(EXP(.23U25851 * EPSDB) - 1.)
    ARG = X + SQRT(X ** 2 + 1)
    AE = ALOG(ARG) / NR
    CALL FRQFCN(A)
    DO 10 K = 1,NR
    THETA = 1.5707963 * ((2.*(K + NR)-1)/NR)
    SIGK = TANH(AE) * SIN(THETA)
    OMEGK = COS(THETA)
10 S(K) = CMPLX(SIGK, OMEGK)
    FFAC = COSH(AE)
    IF (.NOT. FFLG) FFAC = 1./FFAC
    FCOFF = FFAC * FCOFF
    AMP = 1.
    DO 15 K = 1,NR
15 AMP = AMP * CABS(S(K))
    IF (MOD(NR,2) •EQ - U) AMP = AMP / EXP(.11512925*EPSDB)
    CALL FILTER(A)
    RETURN
    END
```

9. Subroutine CPLOTF

Called by: MAIN

Ca11s: FRQFCN, SCALE, FACTOR*, PLOT*, NUMBER*, SYMBOL*
Commons: blank
Entries: none
Description: CPLOTF is used to produce high quality plots of frequency spectra. The routine actually generates a data file suitable for driving an off-line CALCOMP plotter. Since the routine embodys both equipment and procedural considerations, its use is probably limited to the Univac-1108 and CALCOMP plotter at Georgia Tech. It is included here for completeness.

Program Listing:
C $* *$
SUBROUTINE CPLOTF (A)
SOMMENT- THE FCLLOWING CONTROL STATEMENT VUST PRECEED THE
C EXECUTE ETATEMENT FOR RUNS USING CALCONP PLOTS.
C
C QUSE UNIT 非, TPFD
C * *
COMMON N,IGAM, DELF
COMPLEX A(1)
CALL FROFCN(A)
1799 FORMAT()
WRITE (6,1716)
1716 FORMAT (ENTER FLO ANE FHI FOR CALCOMP SPECTRUM PLOT.-)
REA! (5,1799) FLC,FHI
$X T E S T=A E S(F H I-F L O)$
IF(XTEST•LT.I•E-30) 厅O TC 9999
$X T E S T=X T E S T /(A B S(F L O)+A B S(F H I))$
IF(XTEST•LT•I•E-30) GO TO 9999
YSPRED $=7 \cup$.
$N 2=N / 2$
$N S T=N 2+I N T(F L O / D E L F)+1$
$N S P=N 2+I N T(F H I / D E L F)-1$
$T 1=1 \cdot E-35$
DO 4000 I = NST, NSP
$T 2=C A B S(A(I))$
$4000 \mathrm{IF}(T 2 \cdot G T \cdot T 1) T 1=T 2$
DBMAX $=20$ **ALOG1)(T1)
CALL SCALE(DBMAX,MAXSCL)
XMXSCL $=$ MAXSCL
XKSCAL $=10 \cdot * *(-X V X S C L / 20 \cdot)$
*CALCOMP plotter routines

CPLOTF (Continued)

```
    CALL FACTOR(0.4)
    CALL PLOT(U., -20.,3)
    CALL PLOT(12.,0.,-3)
    CALL PLOT(-1U.,-14.,3)
    DO 3 I = 1,2
    CALL PLOT(-10.,0.,2)
    CALL PLOT(10.,0.,2)
    CALL PLOT(12., -14.,2)
    CALL PLOT(-1O.O1,-14.,2)
    CALL PLOT(-10.01,0.01,2)
    CALL PLOT(1O. 1,O.1,2)
    CALL PLCT(10.01,-14.)1,2)
    3 CALL PLOT(-1C.,-14.01,2)
    00 300) IAGAIN=1,2
    DO 1% I = ,970
    Y = -14. + C.2*I
    IF (MOD(I,5) •SQ ©) GC TO 6
    CALL PLOT(-1C\bullet1,V,3)
    GC TO 8
    6 IF (VOO(I,IO) .EO. j) GO TO 7
    CALL PLCT(-1:.16,Y,3)
    GO TO &
    7 CALL PLOT(-1N.2,Y,3)
    8 CALL PLOT(-1C.,Y,2)
    1\therefore CONTINUE
    Y = 2.
    20 15 I = 1,8
    J = I - 1
    Y = Y-2.
    YY = XMXSCL - 10.*J*YSPREO/70.
    15 CALL NUMEER(-11.09,Y-. 1'55,.21,YY,U., -1)
    CALL SYMBOL(-11.24,-8.4,.21,14HAVPLITUDE (DS),90.0,14)
    FCENTR = (FLC + FHI)/2.
    FUPPER = FHI - FCSNTR
    IF(FUPPER.GT.1.O) EO TO 2100
    IEXP = ALOGIこ(FUPPER) - 1
    GO TC 2101
\angle1ÚU CONTINUE
    XIEXP = ALOG1O(FUPPER)
    IEXP = XIEXP
    RIEXP = IEXP
    IF((ABS(XIEXP-RIEXP),LT•I•E-2))•AND.(XIFXP.GF.RIFXP))
    I IEXD = IEXP - 1
2101 CONTINUE
    FULSCL = FUPPEP*(1***(-IEXP))
    IFLSCL = FULSCCL
    ITEMP = 10.*FULSCL
    RITEMP = ITENP
    SCALEI = IFLSCL
```

```
    SCALE1 = 1`.*SCALE1/FULSCL
    TENIFS = 10.*IFLUCL
    SCALFI = SCALFI/TENIFS
    CO 40 I = O,ITEMP
    X = I*SCALEI
    IF (VOD(I,5) •EQ. ) GO TO 32
    CALL PLOT(X,-14.1,3)
    GO TO 36
32 IF (MOD(I,10) .EQ. j) GO TO 34
    CALL PLOT(X,-14.15,3)
    GO TO 36
34 CALL PLOT(X,-14.2,3)
36 CALL PLOT(X,-14.,2)
4; CONTINUE
    DO 140 I = 1,ITEMP
    X = -I*SCALFI
    IF(MOD(I,5).EQ.0)GO TO 132
    CALL PLOT(X,-14.1,3)
    GO TO 136
132 IF(MOD(I,IZ).FO.)) GO TC 134
    CALL PLOT(X,-14.16,3)
    GO TO 136
134 CALL PLOT(X,-14.2,3)
136 CALL PLOT(X,-14.,2)
140́ CONTINUE
    DO 240 I = O,ITEMP
    X = I*SCALEI
    IF(MOD(I,5).EQ.Cj) GO TO 232
    CALL PLOT(X,.1,3)
    GO TO 236
232 IF(MOD(I,1D) •EQ. N GO TO 234
    CALL PLOT(X,.16,3)
    GO TO 236
234 CALL PLOT(X,.2,3)
236 CALL PLOT(X,し.,2)
24U CONTINUE
    DO 340 I = 1,ITEMP
    X = -I*SCALEI
    IF(MOD(I,5),FQ.0) GO TO 332
    CALL PLOT(X,.1,3)
    GO TO 336
332 IF(MOD(I,10), EQ.0) SO TO 334
    CALL PLOT(X,.16,3)
    GO TO 336
334 CALL PLOT (X,.2,3)
336 CALL PLOT(X,C.,2)
340 CONTINUE
```

```
            DO 2%I=,0,70
            Y = - l4. + 0. 2* I
            IF (vO)(I,5) EO\bullet O) OO TO 16
            CALL PLOT( 1: •1,Y,2)
            G0 TO 15
```



```
            CNLL PLOT( 1: . 16,Y,3)
            GOTO 18
    17 CALL PLOT(1C.2,Y,3)
    18 (ALL PLOT( 1..,Y,2)
    2. ConTINUE
        AKI = 1U/FULSCL
        CALL NU゙BFR(- ごくご6,-14.5,.21, (., (., -1)
        \O2%I=1,IFLSCL
        XPOS = -.C0 + I*AKI
        XNFG = -. 12 - T*AK1
        CALL NUNAER(XPNS,-14.5,.21,1.*I,O.,-1)
    2, CALL NUMSFR(XNE6,-14. 5, .21,-1.*I,U.,-1)
        CALL SYソ3OL(-4.5,-14.9,.?1,
        1 46H(FREQUFNCY - FCENTER) 「IVID=S FY FSCALE, (HZ), 0,46)
            CALL SYHSCL(-4.5,-15.3,.21,1OHFCENTER = ,0.,10)
            CALL NUMEER(-2.3,-15.3,.21,FCENTR,O•00)
            CALL SYMBCL(..,-15.3,.21,9HFSCALE = 0.,9)
            CALL NU:ABER(2.4,-15.3,.21,10.**IEXP,*,*)
3HU. CONTINUE
            ISTOP = NSP - NST + 1
            LENOQ = NSF - VST + 2
            DFLX=20./DFNCM
            OO 30I = 1,ISTOP
            Tl=(CAHS(A(I +NST)))}KXKSCAL
            IF(Tl •LT, 1.E-7) (勺) TO 3)
            YL = (7%•/YSPRED) * 4. * ALOUl(T1)
            IF(Y1 •LF. -14.0) GO TO 30
            X1=1 * DELX - 10.
            IF(X1 •LT• -10.) GO TO 30
            IF(X1 © (ST 1%\bullet) gO TO 3:
            IF(YI.LF.C) GO TO 25:
            CFLL SYMBOL(X1,.16,.21,1H*,0.,1)
            GO TO 3%
    250 CONTINUE
            CALL PLOT(X1,-14.,3)
            CALL PLOT(X1,Y1,2)
            CALL PLOT(X1,-14.,2)
    3* CONTINUE
    CALL PLOT(13., -20., -3)
    35 FORNAT(1H1,2X,14HPLOT CCVPLETED)
    \becauseRITE(6,35)
S.GG CONTINUE
    RETURN
    EVD
```


10. Subroutine ELFIND

Called by: INPFOR, MAIN, PDCHK
Calls: none
Commons: none
Entries: none
Description: ELFIND compares a Hollerith string of up to six characters to a number of pre-stored character strings. When a match is found, an integer is set to a unique value which indicates the matched string. This is the basic operation of identifying the input commands; the integer is returned to the calling program and used to direct program flow to properly execute the command. This subroutine was patterned after a similar subroutine in CIRCUS, but is essentially a complete rewritten version.

Program Listing:

```
    SUBROUTINE ELFIND (NAME,L)
    PARAMETER NMAX = 42
        ELFIND TRIES TO MATCH THE KFY WORD FROM AN INPUT DATA
        STRING (NAME) AGAINST ONF OF THE ALLOWABLE INPUT FORMS.
        L IS SET TO THE INDEX WHICH CORRESPONDS TO THE MATCHED
        INDUT TYFE.
    DIMENSION MATCH(NMAX)
    DATA (MATCH(I), I=1,NMAX)
    A / GHPRINTT,GHPKINTF,GHTPLOTT,GHTPLOTF,GHCPLOTT,GHCPLOTF,
    B GHPRIMEF,GHENDOFJ,6HI3NBNDP,6H3NLONP,5HBMHIP, 6H3NBSTP,
    C 6HCHENDP,6HCHLOWP,5HCHHIP, 6HCHBSTP,5HSYNBP, 5HSYNLP,
    D 5HSYNHP, 6HSIGGEN,6HFRQMUL,6H ,6HIDLMUL,6H,
    E GHFMDEMO,GHPHDEMO,3HAMP, 3HLIM, 5HBLOCK, 3HYEC,
    F 2HNO, 1HN, 6H ,6HAMDEMO,GHFLATSP,6HLICTCO,
    G GHCIRCUI,6HINPUTF,GHDFLETE,GHINSERT,6HREPLAC,GHRFPEAT/
    DO 11 I = 1, NMAX
    IF ( NAME - MATCH(I) ) 11,21,11
11 CONTINUE
    I = NMAX + 1
21 L = I
    RETURN
        END
```


11. Subroutine FETCH

Called by: MAIN, PDCHK
Calls: BCDFPT
Commons: CFETCH
Entries: none
Description: FETCH is the main input routine, it reads in commands as a string of $B C D$ characters, decodes the various elements in the input stream and stores them in array WORD. All blank characters are discarded; different elements are delimited by commas. Hollerith strings are truncated to the first six characters and stored in WORD. Numeric characters representing data are converted to real numbers by BCDPFT prior to storage. FETCH was also adapted from CIRCUS, but several changes were made. In particular, the program was modified to eliminate two calls to assembly language subroutines.

```
    SUEROUTINE F-TCH(NOR),LL,NBAD)
    INTFGER APOST,ZLANK,CONMA,DFCDT,FOUAL,PLUS,RPAREN,YECT
    INTEGER EUFF1,RUFF2, 彐U=F3,ZCDFPT,TITLE,WORD,E
    DIMFNSION TITLE(12)
    COMMON/CFET(H) {JFF2(6),EUFFI(80)
    DIMENSION :VCRD(1)
    DATA APCST,FLANK,COMMA,DFGPT,ESUAL,NINUS,NINE,NZ,DLUG
    l / 1H-,1Hi ,1H,,1H.,1H=,1H- ,1H9,1HO,1H+/
    DATA LPAREN, PPAREV
    1 / lH( , lH) /
    DATA E / 1HE /
    L=,
    NCCLS = 80
    NBAD = 1
            FHTCH IS A FREE-FIELR INPUT SUZPROGRAM !HICH RETUONS
            THE INPUT CATA IV LL CONSFCUTIVE CELLS CF THF
            ARRAY U'ORO. HOLLERITH IS TRUNCATED TO 6 CHAR:.0
    1. CONTINUE
    READ (5,1U21,END = 1:7) ( EUFF1(I),I=1,80)
    \becauseRITE (6,1005) ( 3UFFI\I),I=1,a0)
2;}n=
    2k=0
    N=
    NCOWMA = O
```

c
$厄$

```
        DO 3 I = 1,6
    3 BUFF2(I) = BLANK
C
    4 \mp@code { I F ~ ( ~ M - N C O L S ~ ) ~ 4 0 , 1 心 0 , 1 0 0 }
C * EXAMINE EACH COLUMN, REMOVE BLANKS, AND TEST FOR
C SEPARATORS.
        40 M = M+1
        TEST = BUFF1(M)
        IF ( TEST - 3LANK ) 41,4,41
        41 IF ( TEST - COMMA ) 42,6,42
        42 IF ( TEST - EQUAL ) 43,6,43
        43 IF ( TEST - LPAREN ) 44,6,44
        44 IF ( TEST - RPAREN ) 45,4,45
        45 N = N+1
        BUFF2(N) = TEST
        IF (K ) 5,5,4
        IF TYPE HAS NOT DEEN SET (K=0), TEST CHARACTER TO
        DETERMINE IF IT IS A DIGIT OR SIGN (NO DECISION),
        A 4-8 PUNCH (TITLE CARD), A DECIMAL POINT (FLOATING
        POINT NUMEERI, OR NONE OF THESE. IN WHICH CASE A
        HOLLERITH WORD IS ASSUMED. IF K IS SET, IT WILL BE
            0 WHEN AN INTEGER
            l WHEN A FLOATING POINT NUMBER
            2 :WHEN A HOLLERITH WORD.
    5 NCOMMA = 1
    IF ( TEST - NZ ) 52,51,51
    51 IF ( TEST - NINE ) 4,4,52
    52 IF ( TEST - PLUS ) 53,4,53
    53 IF ( TEST - MINUS ) 54,4,54
    54 IF ( TEST - APOST ) 55,3C,55
    55 IF ( TEST - DECPT ) 56,57,56
    56 IF ( TEST - E ) 561,560,561
    560 IF (N-1 ) 561,561,4
    561 K = 2
    GO TO 4
    57 K = 1
    GO TO 4
```

```
C * SELECT NODF DF CONVFRSION, BASEN UPON K.
        G IF (K-1 ) 7,7,9
        7 OUFF3 = @CDFPT( 3UFF2,N )
            IF (N ) 1U6,1C6,3
        @ जORD(L+1) = SUFF3
            00 T0 91
        7 ENCODE(6,1%22,UORD(L+1)) (BUFF2(I),I=1,6)
        31L=L+I
C * IF NOT FINISHEO &ITH THE CAPO IMACE, RFINITIALIZE
                AND CNNTINUE. IF THE NCOLS COLUON CONTAINED A
                OOHMA, PRCCESS THF NFXT CARC. OTHERWISF, SFT THE
                WUMBER OF WORDS COHVERTED IV LL ANO RETU?N.
            IF ( ,-NCCLS ) 2,1., 1:
        1U IF ( TEST - COMMA ) 11,1,11
        11 LL = L
            RETURN
C * MOVE A TITLE CARD INTO THE TITLE ARRAY.
        3. ENCODF(72,10:1,TITLE) (BLFF1(I),I = 1,72)
        GO TO l
C * A CARD IMAGF HAS AFEN PROCESSFI. IF THE LAST
C NON-BLANK SYWBOL UAS A CONM (NCOMMA=3), RFAD
C THE NEXT CARD. DTHERWISE THERE IS INFORMATICN
C IN * UUFF?* TO GE CONVERTED, AFTVR NHICH, FETCH
C WILL RETURN TO THE CALLING PFOQRAN.
    1OU IF (NCOMNAA ) 6,1,6
C F FETCH FJUND CONGOYITAHT SEPARATORS OR A NUMFER NITH
C VORE THAN 15 DIGITS AND COULP NDT CONTINUE.
    lu6 जRITE (5,2~OL) (S!FFF2(I),I=1,E)
        NDAD = \ddot{~}
        RETURN
    107 STOP
    1OO1 FORMAT (8OA1)
    1002 FORMAT(GA1)
    1005 FORMAT(1X8CA1)
    2000 FOR!MAT(25HO** FETCH CANNOT CECORE 6A1,4H **/1)
        END
```

12. Subroutine FFT
Called by: TIMFCN
Ca11s: none
Commons: none
Entries: none
Description: FFT performs the direct and inverse fast Fourier transform.This program is substantially the same FFT routine developed under Con-tract NASA8-20054 and previously reported*. It has been modified, how-ever, to remove the FLD function, available in FORTRAN V, which appearedin the original version. These changes appear in the DO 10 loop, andthe version listed here contains only standard FORTRAN-IV statements.
[^5]Program Listing:

```
    SUBROUTINE FFT(A,IGAM,ISN:
    COMPLEX A(1),T1,T2,TEMP
    DOUGLE PRECISION PI2,SO,CO,SI,CI,SN,CS
    PI2 = 6.283185307179586480U
    N=2 ** IGAM
    NBIT = 36 - IGAM
    N1 = N - 2
    DO 30 I = 1,N1
    IFLIP = 0
    IX = I
    DO 10 J = l,IGAM
    IOLD = IX
    IX = IX / 2
    IBIT = IOLD - 2 * IX
10 IFLIP = 2 * IFLIP + IbIT
    IF (I •LE. IFLIP) GO TO 30
    II = I + I
    I2 = IFLIP + I
    TEMP = A(I2)
    A(I2) = A(I1)
    A(Il) = TEMP
30 CONTINUE
    DO 80 I = 1,IGAM
    NEL = 2** I
    NEL2 = NEL / 2
    NSET = N / NEL
    SI = DSIN(PI2/NEL)
    CI = DCOS(PI2/NEL)
    DO 80 J = 1,NSET
    INCR = ( J - l ) * NEL
    SO = O.UDO
    CO = 1.0DO
    DO 80 II = 1,NEL2
    Jl = II + INCR
    J2 = J1 + NEL2
    Tl = A(Jl)
    T2 = A(J2) * CMPLX(CO, ISN * SO)
    A(J1) = T1 + T2
    A(J2) = T1 - T2
    SN = SO * CI + CO * SI
    CS = CO * CI - SO * SI
    CO = CS
    80 SO = SN
    IF (ISN .GT. O) GO TO 120
    DO 110 I = l,N
110 A(I) = A(I)/N
120 CONTINUE
    RETURN
    END
```


13. Subroutine FILTER

Called by: BWBNDP, CHBNDP
Calls: FRQFCN
Commons: blank, CFILT
Entries: none
Description: FILTER operates on the components in the frequency array to complete the computations for any type of Butterworth or Tchebysheff filter. Given the poles, S_{k}, determined by BWBNDP or CHBNDP, FILTER calculates the transfer function

$$
H\left(f_{p}\right)=\frac{1}{\left(f_{p}-S_{1}\right)\left(f_{p}-S_{2}\right) \ldots\left(f_{p}-S_{n}\right)}
$$

where n is the filter order (number of poles) and f_{p} is a normalized complex frequency defined by

$$
f_{p}=\left\{\begin{array}{l}
j \frac{f-f_{o}}{f_{\text {cutoff }}}, \text { low pass band pass filters } \\
j \frac{f_{\text {cutoff }}}{f-f_{o}}, \text { high pass or band stop filters. }
\end{array}\right.
$$

All spectral lines subject to more than 300 dB rejection are set to zero.
Program Listing:

```
    SUdROUTINE FILTER(A)
    COMPLEX A(1),S(20),HD,Z
    COMMON N,IGAM,DELF,DELT
    COMMON/CFILT/ FU,FCOFF,NR,AMP,FFLG,S
    LOGICAL FFLG
    TEST = EXP(35. / NR)
    CALL FRQFCN(A)
    DO 30 I = 1,N
    II = I - 1 - N/2
    F = II * DELF
    FP = SIGN(1.,F) * (ABS(F) - FO) / FCUFF
    IF (FFLG) GO TO 15
    IF (ABS(FP) •LT. l.E-16) GO TO 25
    FP = -1./FP
15 IF (ABS(FP) •GT. TEST) GO TO 2b
    Z = CMPLX(U.,FP)
    HD = CMPLX(1.,0.)
    DO 20 K = 1,NR
20HD = HD * (Z - S(K))
A(I) = AMP * A(I) / HD
GO TO 30
25 A(I) = CMPLX(0.,0.)
30 continue
RETURN
END
```


14. Subroutine FLATSP

Called by: PROCES
Ca11s: ADJN
Commons: blank, CDATA, CDOM
Entries: none
Description: FLATSP loads the frequency array with components of uniform amplitude thus simulating the spectrun of an impulse function. It is useful in examing the transfer functions of filters in detail.

Program Listing:

```
    SUBROUTINE FLATSP(A)
    COMPLEX A(1)
    COMMON N,IGAM,DELF,DELT,FD
    COMMON /CDATA/ JCTR,DATA(2UO)
    COMMON /CDOM/ DOMFLG
    LOGICAL DOMFLG
    AMP = DATA(JCTR)
    DELF = DATA(JCTR+1)
    PD = 1./DELF
    N= DATA(JCTR+2)
    CALL ADJN
    DO 10 I = 1,N
10 A(I) = CMPLX(AMP,O.)
    DOMFLG = .FALSE.
    RETURN
    END
```


15. Subroutine FMDEMO

Called by: PROCES
Ca11s: FRQFCN, TIMFCN
Commons: blank, CDATA, CDOM
Entries: none
Description: FMDEMO simulates the action of an FM demodulator. Operating on the frequency spectrum, the negative frequency components are all set to zero to give a spectrum characteristic of a complex time function. The positive frequency components are then shifted down in the data array by an amount corresponding to the center frequency of the demodulator, thus positioning the spectrum at baseband. Transforming to the time domain and taking the complex logarithm of each time sample produces an imaginary part equal to the phase angle (modulo 2π). A tracking loop corrects for excursions beyond the $\pm \pi$ range thus reconstructing the phase deviation due to the angle modulation.

```
    SUGROUTINE FMDEMO(A)
    COMMON N,IGAM,DELF,DELT,PD,CARRFQ
    COMMON/CDATA/ JCTR,DATA(2UU)
    COMPLEX A(1)
    PI2 = 6.2831853
    J = 0.
    N2 = N /2
    FO = WORD(JCTR)
    CALL FRQFCN(A)
C * * Remove the negative frequency components
    DO 10 I = 1,N2
    10 A(I) = (U., 0.)
C * * mOVE THE mODULATE゙D CARfiER to Zero frequency
    IFO = FU / DELF + .5
    NSTART = N2 + 1
    NSTOPI = N - IFO + I
    DO 11 I = NSTART,N
    11A(I - IFO) = A(I)
        DO 12 I = NSTOPI,N
    12 A(I) = (0., U.)
C * * RECOVER THE ANGLE information
    CALL TIMFCN(A)
    A(1) = CLOG(A(1))
    THETA2 = AIMAG(A(1))
    DO 2U I = 2,N
    A(I) = CLOG(A(I))
    THETAI = AIMAG(A(I))
    THETAT = THETAl * THETAZ
    IF(THETAT •LE. O.) SO TO 21
    GO TO 29
    21 IF(ADS(THETA1) .LE. 1.57) GO TO 29
    IF(THETA2 •GE. O.) GO TO 22
    J = J - 1
    GO TO 29
    22 J = J + 1
    29 THETA2 = THETA1
    TEMP = THETA1 + PI2 * J
    20 A(I) = CMPLX(TEMP, U.)
    A(1) = CMPLX(AIMAG(A(1)), U.)
C * * zero the d-c component
    CALL FRQFCN(A)
    A(N2 + 1) = CMPLX(U., 0.)
    RETURN
    END
```

16. Subroutine FRQMUL
Called by: PROCES
Calls: TIMFCN
Commons: blank
Entries: nonebe a problem.
Program Listing:
SUBROUTINE FRQMUL(A)
DIMENSION A(I)
COMMON N, IGAM
CALL TIMFCN(A)
THRES $=.5$
NDBL $=2 * N-1$
DO 100 I = 1, NDGL, 2
$A(I)=A(I)-T H R E S$
$A(I+l)=0$.
IF (A(I) •LT•O•) A(I) = O.
100 CONTINUE
RETURN
ENDDescription: FRQMUL provides the action of a biased half-wave rectifier;operating on the time function, it passes only those time samples whoseamplitude exceed a fixed threshold (currently set at 0.5 volts). Theresulting signal is rich in harmonics of the carrier frequency. Particu-lar multiples can be isolated by filtering. Note that the output ofFRQMUL is not bandlimited and the user should be aware that aliasing may
17. Subroutine IDLMUL

Called by: PROCES
Calls: TIMFCN
Commons: blank, CDATA, CFREQ
Entries: none
Description: IDLMUL is an ideal multiplier which operates in the time domain and generates the product of the signal being processed and a local oscillator signal.

Program Listing:

```
    SUBROUTINE IDLIVUL(A)
    COMMON N,IGAM,DELF,DELT
    COMMON/CDATA/ JCTR,DATA(2U心)
    COMMON/CFREQ/ NFR,FR(6)
    COMPLEX A(1)
    AMPLO = DATA(JCTR)
    FLO = DATA(JCTR + 1)
    CALL TIMFCN(A)
    PI2 = 6.2831853
    WLO = PI2 * FLO
    DO 1 I = 1,N
    II = I - I
    T = II * DELT
1 A(I) = A(I) * AMPLO * SIN(WLO * T)
    RETURN
    END
```

```
18. Subroutine INPFOR
Called by: MAIN
Ca11s: ELFIND
Commons: CWORD
Entries: none
Description: INPFOR is a service routine that will list the input format
and define the parameters of any block input command. It is added as a
convenience to the remote terminal user; it has no affect on the circuit
or signal being processed.
Program Listing:
```

```
    SUDROUTINE INPFOR
```

 SUDROUTINE INPFOR
 COMMON /CWURD/ WORD(IU)
 COMMON /CWURD/ WORD(IU)
 LOGICAL FLG
 LOGICAL FLG
 FLG = •TRUE.
 FLG = •TRUE.
 CALL ELFINO(WORD(2),L)
 CALL ELFINO(WORD(2),L)
 GO TO 1 1, 1, 1, 1, 1, 1, 1, 1, 9, 1U,
 GO TO 1 1, 1, 1, 1, 1, 1, 1, 1, 9, 1U,
 A 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 A 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 B 21, 1, 23, 1, 2b, 26, 27, 28, 1, 1,
 B 21, 1, 23, 1, 2b, 26, 27, 28, 1, 1,
 C 1, 1, 1, 34, 35, 1, 1, 1, 1, 1,
 C 1, 1, 1, 34, 35, 1, 1, 1, 1, 1,
 D 1, 1, 5uU), L
 D 1, 1, 5uU), L
 1 WRITE(6,7001) WORU(2)
 1 WRITE(6,7001) WORU(2)
 GO TO 999
 GO TO 999
 2U WRITE(6,7020)
2U WRITE(6,7020)
WRITE(6,71v4)
WRITE(6,71v4)
IF (FLG) GO TO 999
IF (FLG) GO TO 999
35 WRITE(6,7035)
35 WRITE(6,7035)
WRITE(6,7111)
WRITE(6,7111)
IF (FLG) GO TO 999
IF (FLG) GO TO 999
9 WRITE(6,7009)
9 WRITE(6,7009)
WRITE(6,7101)
WRITE(6,7101)
IF (FLG) GO TO 99%
IF (FLG) GO TO 99%
10 WRITE(6,7010)
10 WRITE(6,7010)
WRITE(6,71U2)
WRITE(6,71U2)
IF (FLG) GO TO 99y
IF (FLG) GO TO 99y
11 WRITE(6,7011)
11 WRITE(6,7011)
WRITE(6,71U2)
WRITE(6,71U2)
IF (FLG) GO TO 999
IF (FLG) GO TO 999
12 WRITE(6,7012)
12 WRITE(6,7012)
WRITE(6,71C1)
WRITE(6,71C1)
IF (FLG) GO TO 9وy
IF (FLG) GO TO 9وy
13WRITE(6,7013)
13WRITE(6,7013)
WRITE(6,7101)
WRITE(6,7101)
WRITE(6,71U3)
WRITE(6,71U3)
IF (FLG) GO TO 99%

```
    IF (FLG) GO TO 99%
```

```
    14 NRITF(6,7)14)
    URITE(6,7102)
    WRITF(6,7163)
    IF (FLG) GO TO 999
    15 जRITF(5,7015)
    wRITE(6,71\cup2)
    WRITE (6,71:3)
    IF (FLG) GO TO 999
    15 WRITE(5,7616)
    WRITE(6,71:1)
    NRITE(6,71*3)
    IF (FLG) OO TO 9\ni9
    17 #RITF(6,7\cap17)
    WRITF(6,7161)
    IF (FLG) ©O TO 399
    18 URIT=(5,7018)
    WRITE(6,71O2)
    IF (FLG) 6O TO 999
    13 *RITE(6,7019)
        WRITE(5,71:2)
    IF (FLG) ©O TO 99%
    2j WRITE(5,7025)
    URITE(6,71%7)
    IF (FLG) GO TO 990
    34 WRITE (6,7034)
    NRITE(6,7107)
    IF (FLG) 60 TO 099
    26 WRITE(6,?^2も)
    WRITE(6,7107)
    IF (FLG) 60 TO 999
21 NRITF(5,7021)
    NRITE(6,7105)
    IF (FLG) GO TO 999
    23 औRITE(6,7023)
    !RITE(6,7106)
    IF (FLG) EO TO 999
27 \becauseRITF(6,7こ27)
    IF (FLG) ©O TO 99G
28 URITE(5,702?)
    NRITE(6,711%)
    GO TO 999
5ゴ IF (NORD(2) •EQ. 3HiLLL) GOT0 510
    #RITE(6,7112) NORJ(2)
    GO TO 999
51\cupFLG = .FALSE.
    GO TO 20
```


INPFOR (Continued)

```
7000 FORMAT()
7001 FORMAT(1X,AG,- IS NOT AN INPUT COMMAND-)
7009 FORMAT(/- BInBNDP, FC, GW, NR-)
7010 FORMAT(/- BWLOWP, FC,NR-)
7011 FORMAT(/- BWHIP, FC, NR-)
7 0 1 2 ~ F O R M A T ( / - ~ B W B S T P , ~ F O , ~ B W , ~ N R - ) ~
7013 FORMAT (/ - CHBNDP, FO, EW, NR, EPSDB-1
7014 FORMAT(/- CHLOWP, FC, NR, EPSD3-)
7015 FORMAT(/- CHHIP, FC, NR, EPSDE-)
7 0 1 6 ~ F O R M A T ( / - ~ C H S S T P , ~ F U , ~ B W , ~ N R , ~ E P S D B - ) ~
701.7 FORMAT(/- SYNEP, FO, BN, NR-)
7018 FORMAT(/- SYNLP, FC, NR-)
7019 FORMAT(/- SYNHP, FC, NR-)
7020 FORMAT(/- SIGGEN, F:`, FNOD, AM, DM, FN, A-)
7021 FORMAT(/- FRQMUL-)
7023 FORMAT(/- IDL,VUL, AIO, FLO-)
7025 FORMAT(/- FMDEMO, FO-)
7026 FORMAT(/- PHDEMO, FU-)
7027 FORMAT(/- AMP, GAIN-/- GAIN = VOLTAGE GAIN, DB-
    A - (6 DB = FACTOR OF 2)-)
7028 FORMAT(/- LIM, CL, (H, GL-)
7034 FORMAT(/- AMDEMO, FU-)
7035 FORMAT(/- FLATSP, AMP, DELF, N-)
71CI FORMATI-FO = CENTER FREQ, HZ-/- BW = BANDWIDTH, HZ-/
    A - NR = NUMSER OF SECTIONS-1
7 1 0 2 ~ F O R M A T I - ~ F C ~ = ~ C O R N E R ~ F R E Q , ~ H Z - / - ~ N R ~ = ~ N U M B F R ~ O F ~ S E C T I O N S - 1 )
7103 FORMAT(- EPSDB = CHEBYSHEV RIPPLE FACTOR, DE-)
7 1 0 4 ~ F O R M A T ( - F C ~ = ~ C A R R I E R ~ F R E Q , ~ H Z - / ~
    A - FMOD = MODULATION FREQ, HZ-1
    B - AM = PERCENTAGE \triangleMPLITUDE MODULATION-/
    C - PM = PEAK PHASE DEVIATION, RADIANS-/
    D - FM = PEAK FREGUENCY DEVIATION, HZ-1
    E - A = PEAK AMPLITUDE, VOLTS-1
7105 FORMAT(- (NC PARAMETERS)-)
7 1 0 6 ~ F O R M A T ( - ~ A L O ~ = ~ P E A K ~ A M P L I T U D E ~ O F ~ L O ~ S I G N A L , ~ V O L T S - / ' )
    A - FLO = FREQ OF LO, HZ-)
7107 FORMAT(- FO = CENTER FREQ, HZ-)
7 1 1 0 ~ F O R M A T ( - ~ C L ~ = ~ L O W ~ C L I P P I N G ~ L E V E L , ~ V O L T S - / ' /
    A - CH = HIGH CLIPPING LEVEL, VOLTS-/
    B - GL = LTMITER GAIN, VOLTS/VOLTS-)
7111 FORMAT1- AMP = AMPLITUDE OF SPECTRAL LINES-/
    A - DELF = FREQ SEPARATION OF LINES, HZ-I
    B - N = ARRAY SIZE-I
7112 FORMAT(/- INPFOR CANNOT DECODE -,A6/)
    999 WRITE(6,7000)
        RETURN
        END
```


19. Subroutine LFOLD

Called by: TIMFCN
Ca11s: none
Commons: none
Entries: none
Description: LFOLD provides the action of folding and unfolding the frequency spectrum to meet the requirements of the FFT. The frequency domain representation is always ordered by frequency except when entering or leaving the FFT.

Program Listing:

```
    SUBROUTINE LFOLD (A,N)
    COMPLEX A (1),Tl
    N2=N/2
    DO 10 I =1,N2
    I I = I +N2
    Tl=A (I)
    A (I)=A (II)
10 A (II)=T1
RETURN
END
```

20. Subroutine LIM

Called by: PROCES
Cal1s: TIMFCN
Commons: blank, CDATA
Entries: none
Description: LIM operates on the time function to produce ideal limiting. Signal excursions are clipped to specified upper and lower limit levels. Note that the output of LIM is not bandlimited and the user should be aware that aliasing may be a problem.

Program Listing:

```
    SUBROUTINE LIM(A)
COMMON N
COMMON/CDATA/ JCTR,DATA(200)
CLEVL = DATA(JCTR)
CLEVH = DATA(JCTR+1)
GL = DATA(JCTR+2)
COMPLEX A(1)
CALL TIMFCN(A)
DO 1 I = 1,N
A(I) = GL*A(I)
IF (REAL(A(I)) •LE. CLEVL) A(I) = CMPLX(CLEVL,O.)
1 IF (REAL(A(I)) •GE. CLEVH) A(I) = CMPLX(CLEVH,O.)
RETURN
END
```


21．Subroutine LSTCOM

Called by：MAIN

Calls：none
Commons：CWORD
Entries：none
Description：LSTCOM is a service routine that will list all of the valid commands that are recognized by FATCAT．It is included as an aid to the remote terminal user；calling LSTCOM has no affect on the circuit or sig－ nal being processed．

Program Listing：

```
    SUBROUTINE LSTCON
    COMMON /KNORD/ WORD(12)
    \becauseRITE(5,70.)1)
    I = l
    IF (wOR)(2) •OO. 3HALL) OO TO 2%
    I = 喽
    IF (WORD(2) •EN• SHSOURCE) GO TO 20
    IF (NORO(2) •EN . 6HEILTER) 60 TO 30
    IF (WORD(2) EOQ GHDEVODU1) GN TO 40
    IF (WORD(2) •-Q. 4HMISC) GO TO 50
    IF (WORD(2) .ED. GHCONTRO) G2 TO 60
    IF (\becauseORD(2) •EQ. 5HNSITF) GO TO 70
    IF (WORI(2) .FQ GHLISTCO) GO TO 80
    WRITF(6,7O20) VORD(2)
    GO TO 909
    20 NRITE(6,7N:2)
    IF (I •EQ. ) GO TO 999
    3.) WRITE(6,7003)
    IF (I •EQ. O) GO TO 9SQ
4う 次RITE(6,70.4)
    IF (I •EQ. O) GO TO 999
5: WRITE(6,7%5)
    IF (I - EQ. () GO TO 999
65 WRITE(5,7006)
    IF (I .EQ. O) OO TC 990
    7) WRITE(6,7007)
    GO TO 999
    80 WRITE(6,7n^8)
    9夕9 RETURN
7OU1 FORMAT(/15X,-FATCAT COMNAND SUNMMARY-)
7JO2 FORMAT(/1UX,-SOURCES-//- SIGEEN-,5X,-SIGNAL GENERATCR-/
A - FLATSP-,5X,-FLAT SPECTRUN GENFRATOR-1
```

```
7003 FORNAT(/,lUX,-FILTERS-//- BUTTERNORTH--/
    A - 3'NENDP-,5X,-BAND PASS-1
    B - BWLOWP-,5X,-LOW PASS-1
    C - BWHIP-,6X,-HIGH PASS-1
    D - BWBSTP-,5X,-BAND STOP-1
    E /- TCHEBYSHEFF--/
    F - CHBNDP-,5X,-BAND PASS-/
    G - CHLONP-,5X,-LON PASS-1
    H - CHHIP-,6X,-HIGH PASS-/
    I - CHOSTP-,5X,-BAND STOP-1
    J /- SYNCHRONOUSLY TUNED--/
    K - SYNBP-,6X,-BAND PASS-/
    L - SYNLP-,6X,-LON PASS-1
    M - SYNHP-,6X,-HIGH PASS-1
7004 FORMAT(/,10X,-DEMODULATORS--//
    A - FMDEMO-,5X,-FM DFMODULATOR-/
    B - AMDEMO-,5X,-AM DENODULATOR-1
    C - PHDEMO-,5x,-PHASE DEMODULATOR-1
7005 FORMAT(/,1OX,- MISCELLANEOUS -//,
    A - FRQMUL-,5X,-FREQUENCY MULTIPLIER-/,
    C - IDLMUL-,5X,-IDEAL MULTIPLIER-/
    D - AMP-,8X,-AMPLIFIER-/
    E - LIM-,8X,-LIMITER-)
7006 FORMAT(/,10X,-CONTROL COMMANDS-/I
    A - PRINTT-,5X,-PRINT TIME FUNCTION-/
    B - PRINTF-,5x,-PRINT FREQUENCY FUNCTION-/
    C - TPLOTT-,5X,-PRINTER PLOT OF TIME FUNCTION-/
    D - TPLOTF-,5X,-PRINTER PLOT OF FREQUENCY FUNCTION-/
    E - CPLOTT-,5X,-REMOTE PLOT OF TIME FUNCTION-/
    F - CPLOTF-,5X,-REMOTE PLOT OF FREQUENCY FUNCTION-/
    G - BLOCK-,6X,-PROCESS SIGNAL TO OUTPUT OF BLOCK SPECIFIED-/
    H - PRIMEF-5X,-LIST PRIME FACTORS OF ALL SOURCE FREQUENCIES-/
    I - END OF JOB-,IX,-TERMINATES RUN-/
    J - INPUT FORMATS,BLOCKNAME LIST INPUTS FOR NAMED BLOCK-/)
7007 FORMAT(/,4X,-SPECIAL COMMANDS TO SPECIFY ARRAY SIZE-//
    A - YES-,8X,-LISTED ARRAY SIZE ACCEPTABLE-/
    B - NO-,9X,-LISTED ARRAY SIZE NOT ACCEPTABLE-/
    C - N-,lOX,-SET ARRAY SIZE TO SPECIFIER VALUE-/I
7 0 0 8 ~ F O R M A T I / , - ~ L I S T ~ C O M M A N D S - ~ C O M M A N D S ~ A R E ~ L I S T E D ~ B Y ~ G I V I N G - , ~
    A - TWO ALPHANUMERIC-/- WORD SETS SEPARATED BY A COMMA. -,
    B -THE FIRST IS -,IH-,-LIST COMMAND,-,IH-/,- POSSIBLE-,
    C - SECOND WORDS AND THE RESULTING OUTPUTS ARE--I
    D - ALL-,12X,-LIST ENTIRE COMMAND SET-/
    E - SOURCES-,8X,-LIST COMMANDS FOR SOURCE BLOCKS-/
    F - FILTERS-,8X,-LIST COMMANDS FOR FILTERS-/
    G - DEMODULATORS-,3X,-LIST COMMANDS FOR DEMODULATORS-/
    H - MISC-,1IX,-LIST OTHER BLOCK COMMANDS (AMP,LIN,ETC)-/
    I - CONTROL-,8X,-LIST CONTROL COMMANDS-/
    J - NSIZE-,IOX,-LIST COMMANDS CONTRCLLING ARRAY SIZE-/
    K - LIST COMMANDS-,2X,-LIST THE ABOVE INFORNATION-/I
7020 FORMAT(/- LSTCOM CANNOT DECODE -,A6/)
        END
```


22．Subroutine PDCHK

Called by：MAIN
Calls：PERIOD，FETCH，ELFIND，ADJN，PRTFAC
Commons：blank，CWORD，CFLGS
Entries：none
Description：PDCHK is used in checking the period of the data set and ascertaining that the Nyquist criterion is met．This subroutine is largely executive in nature；the major calculations are carred out by subroutine PERIOD．PDCHK is called when processing is called for，pro－ vided a new source frequency has been added since the last processing call．On its initial call，it determines the period of the data set， and the associated $\Delta f, \Delta t$ ，and array size．On any subsequent calls （which happen only if a new source frequency has been introduced），it checks to see if all frequencies are still periodic on the established period．If they are，processing continues；if not，an error message is written and the run terminated．

Program Listing：

```
SUGROUTINE PYCHK
COMMON N,TGAF,DELF,DFLT,PD
COMMON /CWORD/ WORO(lU)
COMMON /CFLGS/ POFLG,ARFLG
LOGICAL PDFLE,ARFLG
NFLG = ?
NSET = N
CALL PERIOD
IF(ARFLG) GO TO 5u
NSET = N
WRITE(6,70いこ) PD,DELF
lU 'NRITE(6,7Cl) N,IGAN,OELT
2% CALL FETCH(%ORO,L,NSAR)
CALL ELFIND(NORD,LTYP)
IF(LTYP •EG• 3こ) GO TO OOO
IFILTYP .EQ. 31) GO TC 3
IF(LTYP •EQ. 32) 5O TO 40
IF(LTYP •FQ. 8) STOP
WRITE(6,701,2)
GO TO 20
```

```
    30 WRITE(6,7003)
    GO TO 20
    40N=WORD(2)
    NFLG=0
    CALL ADJN
    IF(N •GE•NSFT) GC TO 10
    NFLG=1
    GO TO 900
    5U IF(NSET •GE•N) GO TC 990
    NRITE(6,70C5) N
    CALL PRTFAC
    WRITE(6,70U6)
    - STOP
900 IF(NFLG •EW. ?) GO TO 999
    WRITE(6,7004) N,NSET
    NRITE(6,7303)
    GO TO 20
990 N = NSET
999 PDFLG = •FALSF.
    ARFLG = •TRUE.
    RETURN
70OU FORMAT1/,- PERIOD = -,IPE1O.3,- SECONDS,-,-DELTA-F = - ,
    A ElO.3)
7001 FORMAT1-N=-,I6,-, IGAM=-,I2,- DELTA-T=-
    1 ,IPE10.3/- IS THIS SATISFACTORY-)
7 0 0 2 ~ F O R M A T 1 - ~ I N P U T ~ M E A N I N G L E S S ~ * ~ E N T E R ~ Y E S , ~ N O , ~ O R ~ M , V A L ! I E - I ~
7003 FORMATI - ENTER N, VALUE-)
7 0 0 4 ~ F O R M A T 1 - ~ N ~ = ~ - , I 6 , - ~ U N A C C F P T A E L E ~ * * ~ i v ~ V U S T - ~
    1 - BE-,I6,- TO NEET NYQUIST CRITFRION-1
7005 FORMAT(- SOURCE FREQUENCIES REQUIRE THE ARRAY SIZE -
    1 -TO BE -,I9//- PRIME FACTORS ARE-/)
7006 FORMAT(//- RUN IS BEING TERMINATED-)
    END
```


23. Subroutine PERIOD

Called by: PDCHK
Calls: ADJN
Commons: blank, CFREQ
Entries: PRTFAC
Description: PERIOD factors each source frequency into prime factors and constructs the highest common factor to determine Δf and the associated smallest period on which all of the frequencies are periodic. From the period and the highest frequency present, the number of samples to meet the Nyquist criterion is computed; this number is adjusted upward (if necessary) to a power of 2 by ADJN.

Entry PRTFAC will produce a listing of the prime factors of the source frequencies.

Program Listing:

```
    SUEROUTINE FFRIOO
C * * PERIOJ EXANINFS NFR FFEGUENCIES (YAX 6) IN ARDAY FR,
C* * FACTORG EACH INTO DRIN FACTORS,CONGTRUCTS DELF AS TUE
C * * ORFATEST COWNON FACTORI CCMOUTES ARRAY SIZS NU ANO IGAM
C * * TO SATISFY THF NYUUIST CRITERION AMN FFT FFGUIRFMENTG
C * COMPUTES THE TOTAL PEFIOD PD AN` SANPLING PERIOD OFLT.
    COMMON N,IGA\because,OELF,NELT,PD
    COMNON/CFREC/ NFR,FR(6)
    DIMENSIONIA(30,6), IOUT(3v), ICT(6)
    LOGICAL FLAG
    FLAG = .TRUF.
    OO TC 5
    ENTRY PRTFAC.
    FLAG = .FALS.
```


PERIOD (Continued)

```
        5 MAXFAC = 0
        OO 100 I = 1,NFR
C * * CONVERT ITH FREQ TO INTEGER.
    IFR = FR(I)
C * * CLEAR ITH COL OF FACTOR ARRAY IA.
    DO 10 J = 1,30
    10 IA(J,I) = %
    J = 1
    ITEST = 2
    IDEL = 1
C * * factor ith freg into prime factors.
    GO TO 40
    30 ITEST = ITEST + IDEL
    IDEL = 2
    4U IF(IFR •EQ. 1) GO TO gu
        ALIM = SQRT(IFR)
        IF(ITEST .GT. ALIM) GO TO 60
    50 IF(MOD(IFR,ITEST) •NE. U) GO TO 30
        IA(J,I) = ITEST
        J = J + 1
        IF(J •GE. 30) 50 TO 990
        IFR = IFR / ITEST
        GO TO 50
        60 IA(J,I) = IFR
        90 IF (J •GT. MAXFAC) MAXFAC= J
    100 cONTINUE
        IF (FLAG) GO TO lu2
        LIM = NAXFAC + 1
        DO 101 I = 1,LIM
    1Ul WRITE(6,711) I,(IA(I,J),J=1,NFR)
    GO TO 999
C * * ALL FREOS FACTORED. PRIME FACTCRS IN FIRSI NFR rOLS
C * * OF IA. FIND COMMON FACTORS AND PLACE IN IOUT.
    102 IOCT = 1
        DO 1.10 I = 1,NFR
    110 ICT(I) = 1
    120 IMAX = 0
        DO 130 I = 1,NFR
    130 IF(IA(1,I) .GT. IMAX) IMAX = IA(1,I)
C * * ADVANCE ALL ARRAY POINTERS TO A FACTOR •GE. ImAX.
    135 DO 200 I = 1,NFR
    140 J = ICT(I)
            IF(IA(J,I) .EQ. 0) GO TO 400
            IF(IA(J,I) .GE. IMAX) GO TO 200
            ICT(I) = J + I
            GO TO 140
    20: CONTINUE
```


PERIOD (Continued)

```
C* * IF ALL POINTER FACTORS ARE NOT INAX, ADVANCE IMAX.
    210 00 220 I = 1,NFR
        J = ICT(I)
    IF(IA(J,I) •NE•I:1AX) EO TO 3UO
    22: CONTINUE
C * ALL FACTORS AR# I`AX. TPANGFFR TO IOUT, ADVANCE ALL
C * POINTERS ONT STFP, AND RETEST FOR COMNONG FACTOR.
    IOUT(IOCT) = INAX
    IOCT = IOCT + 1
    DO 23n I = 1,NFR
    2.3 ICT(I) = ICT(I) + I
    (0) TO 210
    3.,:IMAX = IA(J,I)
    GOTO 135
    4O~ IOCT = IOCT - 1
    DELF=1.
** * IF NO FACTORS IV IOUT, DFLF = ]. OTHERYISE DELF =
C * PROOUCT OF ALL PRINES IN IOUT.
    IF(IOCT - EQ () GO TO 415
    0.) 41) I = 1,IOCT
    410DELF= OFLF*IOUT(I)
    415PD=1./DELF
        FM\DeltaX = O:
        DO 420 I = 1,NFR
    420 IF(FR(I) •CT • FMAX) FMAX := FR(I)
C * SAMPLING PERIOD TO 'AEET NYQUISI CRIIERION.
    N = 2. * PD * FMAX + .5
C * * ARRAY SIZS ANT SA:MP PERIOD (DELT) TO SATISFY FFT.
    CALL ADJN
    GO TC 999
    990 NRITE(6,700) I
        STOP
    7O% FORVAT(//IH, -FREOUENCY -,I2,-HAS MORE THAN 29 FACTORS-/)
    711 FORVAT(1H ,6(1X,I6))
    999 RETURN
        FND
```


Called by: PROCES

Calls: FRQFCN, TIMFCN
Commons: blank, CDATA
Entries: none
Description: PHDEMO simulates the action of an ideal phase demodulator. Operating on the frequency spectrum, the negative frequency components are all set to zero to give a spectrum characteristic of a complex time function. The positive frequency components are then shifted down in the data array by an amount corresponding to the center frequency of the demodulator, thus positioning the spectrum at baseband. Transforming to the time domain and taking the complex logarithm of each time sample produces an imaginary part equal to the phase angle (modulo 2π). A tracking loop corrects for excursions beyong the $\pm \pi$ range thus reconstructing the phase deviation due to the angle modulation.

```
    SUBROUTINE PHDEMO(A)
    COMMON N,IGAN,DELF,DELT,PU,CARRFQ
    COMMON/CDATA/ JCTR,DATA(2OU)
    COMPLEX A(1)
    PI2 = 6.2831853
    J = 0.
    N2 = N/2
    FO =WORD(JCTR)
    CALL FRQFCN(A)
C * * REmove the negative frequency components
    DO 10 I = = ,N2
    1U A(I) = (U., U.)
C * * move the modulated carrier to zero frequency
    IFU = FU / DELF + .5
    NSTART = N2 + 1
    NSTOP1 = N - IFO + I
    DO ll I = NSTART,N
    11 A(I - IFO) = A(I)
    DO 12I = NSTOPI,N
    12 A(I) = (U., O.)
C * * RECOVER THE ANGLE INFORMATION
    CALL TIMFCN(A)
    A(1) = CLOG(A(1))
    THETA2 = AIMAG(Á(1))
    DO 20 I = 2,N
    A(I) = CLOG(A(I))
    THETA1 = AIMAG(A(I))
    THETAT = THETA1 * THETA2
    IF(THETAT \bulletLE. O.) GO TO 21
    GO TO 29
    21 IF(ABS(THETA1) •LE. 1.57)GO TO 29
    IF(THETA2 •GE• O•) GO TO }2
    J = J - 1
    GO TO 29
    22 J = J + 1
    29 THETA2 = THETA1
    TEMP = THETA1 + PI2 * J
    2U A(I) = CMPLX(TEMP, U.)
    A(l) = CMPLX(AIMAG(A(1)), U.)
C * * ZERO THE D-C COMPONENT
    CALL FRQFCN(A)
    A(N2 + 1) = (0., O.)
    RETURN
    END
```


25. Subroutine PROCES

Called by: MAIN
Ca11s: SIGGEN, AMP, BWBNDP, BWLOWP, BWHIP, BWBSTP, CHBNDP, CHLOWP, CHHIP, CHBSTP, SYNBP, SYNLP, SYNHP, FRQMUL, IDLMUL, LIM, FMDEMO, PHDEMO, AMDEMO, FLATSP.
Commons: none
Entries: none
Description: PROCES is simply a switching routine that calls the proper block model for processing the signal.

Program Listing:

```
        SUBROUTINE PROCES(I,A)
        COMPLEX A(1)
        GO TO ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    1 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
    2 21, 22, <3),I
    1 CALL SIGGEN(A)
        RETURN
    2 CALL AMP(A)
        RETURN
    3 CALL BWONDP(A)
        RETURN
    4 CALL BWLOWP(A)
        RETURN
    5 \text { CALL BWHIP(A)}
        RETURN
    6 ~ C A L L ~ B W B S T P ( A )
        RETURN
    7 \text { CALL CHBNDP(A)}
        RETURN
    8 \text { CALL CHLOWP(A)}
        RETURN
    9 ~ C A L L ~ C H H I P ( A )
        RETURN
    IU CALL CHBSTP(A)
        RETURN
        11 CALL SYNBP(A)
        RETURN
        12 CALL SYNLP(A)
        RETURN
        13 CALL SYNHP(A)
        RETURN
    14 CALL FRQMUL(A)
    15 RETURN
    16 CALL IDLMUL(A)
        RETURN
    17 CALL LIM(A)
    ¥8 RETURN
    19 CALL FMDEMO(A)
        RETURN
    20 CALL PHDEMO(A)
    21 RETURN
    22 CALL AMDEMO(A)
        RETURN
    23 CALL FLATSP(A)
        RETURN
        END
```

```
26. Subroutine SCALE
    Called by: CPLOTF, TTFP
    Ca11s: none
    Commons: none
    Entries: none
    Description: SCALE establishes the (floating) ordinate scaling for spec-
    trum plotter routines.
    Program Listing:
```

```
            SUBROUTINE SCALE(UBMAX,MAXSCL)
```

 SUBROUTINE SCALE(UBMAX,MAXSCL)
 C * * * THIS SUORCUTINE ESTADLISHES ORDINATE SCALING FOR
C * * * THIS SUORCUTINE ESTADLISHES ORDINATE SCALING FOR
C THE REMOTE SPECTRUM PLOTTER.
C THE REMOTE SPECTRUM PLOTTER.
IF(JOMAX•LË.U.) GO TO 10
IF(JOMAX•LË.U.) GO TO 10
MAXSCL = O
MAXSCL = O
1 MAXSCL = MAXSCL + 10
1 MAXSCL = MAXSCL + 10
DIFF = DBMAX - MAXSCL
DIFF = DBMAX - MAXSCL
IF(DIFF.GT.O.) GO TO l
IF(DIFF.GT.O.) GO TO l
GO TO 999
GO TO 999
10 MAXSCL = 0
10 MAXSCL = 0
11 MAXSCL = MAXSCL - 1U
11 MAXSCL = MAXSCL - 1U
DIFF = (UBMAX - MAXSCL)
DIFF = (UBMAX - MAXSCL)
IF(DIFF.LE.C.) GO TO 1l
IF(DIFF.LE.C.) GO TO 1l
MAXSCL = MAXSCL + lU
MAXSCL = MAXSCL + lU
999 RETURN
999 RETURN
END

```
    END
```


27．Subroutine SIGGEN

Called by：PROCES
Calls：none
Commons：blank，CDATA，CDOM
Entries：none
Description：SIGGEN generates and stores in the data array samples of the time function for the specified carrier frequency，modulation fre－ quency，modulation types，and modulation indices．Modulation types in－ clude AM，FM，and PM；AM can be used in combination with either of the other two．At least one of the indices for FM and PM must be zero． SIGGEN flags the data array as containing a time function．

Program Listing：

```
    SUGROUTINE SIGGi*V(A)
    COMMON/CDATA/ JCTR,DATA(2OS)
    COMMON/CDOM/ DCNFLF
    COMMON N,TGAV,DELF,DFLT
    COVPLEX A(l)
    LOGICAL DONFL(,
    OOVFLG = .TRUF.
    FC= DATA(JCTF)
    FYO) = DATA(JCTR + 1)
    PCTAN = D\triangleTA(JCTR + 2)
    PKPHDV = DNT4(JCTR + 3)
    PKFRDV = DATA(JCTR + 4)
    AMPS = DATA(JCTR + 5)
    PI2 = 6.283185?
    WC = PIL * FC
    WM=PI2 * F`OD
    BETAAM = PCTAM / 1% .
    IF(PKDHOV •OT. .O1 . MND. PKFRDV .GT. .U1) 6O TO 900
    IF(PKFRDV OGT • .OI) SO TC 5O
    DO 1 I = 1,N
    II = I - I
    T = II * DELT
    COFF = AMPS * (1. + EFTAAM * COS(G* * T))
    ANG =NC * T + PKPHOV * COS(%A * T)
    1 A(I) = CMPLX((COSF * SIN(ANG)), 0\bullet)
    GO TO ЭタЭ
\Xiט. EETAFM = PKFRNV/ FWOI
    00 2 I = 1,N
    II = I - I
    T = II * DELT
    COEF = AMPS * (1. + EFTAAM * COS(MM * 1))
    ANG = WC * T + HETAFM * SINONM * T)
    2A(I) = CMPLX((COEF * SIN(ANG)),O\bullet)
        GO TO 999
夕山0 WRITE(6,101)
IU1 FORMAT(IH, -TIME FCN ERROR -- SOTH FR ヲ PH NOD INOICE=-,
    A - SPECIFIEN-)
99. RETURN
    END
```


28. Subroutine STRDTA

Called by: MAIN

Calls: none
Commons: CDATA, CFREQ, CFLGS, CCIRKT, CWORD
Description: STRDTA stores the input parameters of all circuit blocks in permanent storage. The incoming data is removed from array WORD (placed there by FETCH) and stored in the basic data storage array DATA. Storage is dynamic, with the data location specified by JCTR. The type of block and the associated value of JCTR is stored external to this routine in the two column array ITYP.

Program Listing:

```
    SUBROUTINE STRDTA(K1,K2,K3)
    COMMON/CDATA/ JCTR,DATA(2OU)
    COMMON/CFREQ/ NFR,FR(6)
    COMMON /CFLGS/ PDFLG,ARFLG
    COMMON /CCIRKT/ NGLK,ITYP(30,2)
    COMMON /CWORD/ WORD(1C)
    LOGICAL PDFLG
    JCTR = ITYP(NBLK + 1,2)
    DO 10 I = 1,K1
    10 DATA(JCTR + I -1) = WORD(I + 1)
    JCTR = JCTR + Kl
    IF(K2 .EQ. O) GO TO 999
    PDFLG = .TRUE.
    DO 20 I = 1,K2
    TEMP = WORD(K3 + I)
    IF (TEMP •LT. 1.) GO TO 20
    NFR = NFR + 1
    IF(NFR .GT. 6) GO TO 50
    FR(NFR) = TEMP
20 CONTINUE
    GO TO 999
50 WRITE(6,7000)
    STOP
7000 FORMAT(/- INPUT FREQUENCIES EXCEED SIX-/)
    999 RETURN
    END
```

29. Subroutine SYNBP

Called by: PROCES
Calls: FRQFCN
Commons: blank, CDATA
Entries: SYNLP, SYNHP
Description: SYNBP provides a model of a synchromously tuned bandpass filter. Entries SYNLP and SYNHP provide low pass and high pass models. The filter transfer function is computed to be

$$
H(f)=\left(\frac{1}{1+j f_{p}}\right)^{n}
$$

where

$$
\begin{aligned}
n & =\text { number of sections, } \\
f_{p} & =\left\{\begin{array}{l}
f / f_{c o}^{\prime} \text { for low pass, } \\
-f_{c o}^{\prime} / f \text { for high pass, } \\
\left(f-f_{o}\right) / f_{c o}^{\prime} \text { for band pass },
\end{array}\right. \\
f_{c o}^{\prime} & =f_{c o} / \Phi(n) \\
\Phi(n) & =\sqrt{2^{1 / n}-1}
\end{aligned}
$$

and $f_{c o}$ is the nominal corner frequency in $H z$. For this idealized filter, the insertion loss at the center of the pass band is zero, and the attenuation at the corner frequency is 3 dB . The computed transfer function for the bandpass filter is symmetrical about center frequency.

Program Listing:

```
    SUBROUTINE SYNBP(A)
    COMPLEX A(I),D,DI
    COMMON N,IGAM,DELF,DELT
    COMMON /CDATA/ JCTR,DATA(2UO)
    LOGICAL FFLG
    FO = DATA(J(TR)
    FCOFF = DATA(JCTR+1) / 2.
    NR = DATA(JCTR+2)
    FFLG = .TRUE.
    GO TO 20
    ENTRY SYNLP(A)
    FFLG = .TRUE.
    GO TO 10
    ENTRY SYNHP(A)
    FFLG = .FALSE.
10 FO = U.
    FCOFF = DATA(JCTR)
    NR = DATA(JCTR + 1)
2U TEST = EXP(35. / NR)
    CALL FRQFCN(A)
    X = EXP(.69314718 / NR)
    PSI = SQRT(X - 1.)
    FCPR = FCOFF / PSI
    DO 50 I = 1,N
    II = I - 1 - N/2
    F = II * DELF
    FP = SIGN(l.,F) * (ABS(F) - FO) / FCPR
    IF (FFLG) GO TO 3u
    IF (ABS(FP)..LT. 1.E-16) GO TO 40
    FP = -1./FF
30 IF (AOS(FP) .GT. TEST) GO TO 40
    Ul = CMPLX(l.,FP)
    D = Dl**NR
    A(I) = A(I) / D
    GO TO 50
40 A(I) = CMPLX(0.,0.)
50 CONTINUE
    RETURN
    END
```

30. Subroutine TELPLT
Called by: MAIN
Calls: TIMFCN
Commons: blank
Entries: noneDescription: TELPLT is a routine which provides a remote teletype plotof the time waveform data. The routine provides the capability of plot-ting selected portions of the array containing the data. This portionof the data array to be plotted is controlled by specification of theinput parameters NST, NSP, NJUMP which specify the starting point inthe data array, the stopping point, and the number of data array pointsskipped between plotted points.
```
    SUOROUTINE TELPLT(A,NST,NSP,NJUMP)
    COMPLEX A(1)
    LIMENSION IA(50)
    COMMON N,IGAM,DELF,DELT,PD
    CALL TIMFCN(A)
    BMAX = REAL(A(NST))
    BMIN = BMAX
    DO 1 I = NST,NSP,NJUMP
    B = REAL(A(I))
    IF(B.LT•BMIN) BMIN = B
    1 IF(B.GT. SMAX) \triangleMAX = E
        IF((3MAX-BMIN)\bulletLT•1\bulletE-3U) GO TO 999
        0O 33 I = 1,50
    33 IA(I) = 1H
IOU WRITE(6,4)
    4 FORMAT (5X,1H+)
        WRITE(6,3) BMIN,DMAX
    3 FORMAT(12X,-AMPLITUDE- NIN -,E9.4,-, NAX -,E9.4,- VOLTS-)
        WRITE(6,4)
        WRITE (6,6)
    6 FORMAT ( }8\textrm{X},2\textrm{H
        1 3X,2H\bullet6,3X,2H.7,3X,2H.8,3X,2H.9,2X,3H1.0)
        WRITE (6,7)
    7 FORMAT(1H,8X,1HI,1U(5H----I))
        OO 1OI = NST,NSP,NJUMP
        O=FEAL(A(I))
        B=(B-\triangleMIN)/(OMAX-\triangleMIN)
        M = I N T ( B * 5 0 . + . 5 )
        IF(M•EQ.O) GC TO }3
        IA(M) = 1H*
        WRITE(6,35) I,IA
        IA(M) = 1H
    35 FORMAT(2X,I5,3H I,5UA1)
    GO TO 36
    34 WRITE(6,37) I
    37 FORMAT(2X,I5,3H *)
    36 CONTINUE
    10 CONTINUE
        WRITE(6,11)
    11 FORMAT (6X,1HN)
    GO TO 90U
999 WRITE (6,9)
    9 ~ F O R M A T ( I X , 1 2 H E R R O R ~ F I N I S H )
900 RETURN
    END
```

31. Subroutine TIMFCN

Called by: AMDEMO, FMDEMO, FRQMUL, IDLMUL, LIM, PHDEMO, TELPLT, WRTF
Ca11s: LFOLD, FFT
Commons: blank, CDOM
Entries: FRQFCN
Description: TIMFCN checks the type of function stored in the data array (indicated by DOMFLG) and transforms when necessary. A call to TIMFCN will assure that a time function is in the data array, while a call to FRQFCN will assure that a frequency function is in the data array.

Program Listing:

```
        SUGROUTINE TIMFCN(A)
COMPLEX A(1)
COMMON N,IGAM
COMMON/CDOM/ DOMFLG
LOGICAL DOMFLG
IF(DOMFLG) GO TO 999
CALL LFOLD(A,N)
CALL FFT(A,IGAN, 1)
DOMFLG = .TRUE.
GO TO 999
ENTRY FRQFCN(A)
IF(.NOT. DOMFLG) GO TO 999
CALL FFT(A,IGAM,-1)
CALL LFOLD(A,N)
DCMFLG = .FALSE.
999 RETURN
END
```

32. Subroutine TTFP
Ca11ed by: MAIN
Calls: FRQFCN, SCALE
Commons: blank
Entries: none
Description: TTFP is a routine which provides a remote teletype plot ofthe frequency function. The frequency spectrum is plotted between thelimits specified as input parameters. These input parameters are FLOand FHI which specify the low and high frequency limits, in Hz , of thespectrum to be plotted.
Program Listing:
SUBROUTINE TTFP(A,FLO,FHI)
C * * THIS SUBROUTINE PROVIDES A TELYTYPE PLOI OF IHE FREQUENCYC SPECTRUM FRON FLO TO FHI AND PRINTS THE CARRIER FREQUENGYCOMPLEX A(l)
COMMON N,IGAM,DELF
DIMENSION IA(50),MM(6)
CALL FRUFCN(A)
C * * * *
NST $=(N / 2)+$ INT(FLO/DELF + SIGN(.5,FLU))
NST $=$ NST +1
NJP $=(N / 2)+$ INT(FHI/UELF + SIGN(.5,FHI))$N S P=N S P+1$
```
C * * * *
    UBMAX = -1.EE30
    IEND = NSP - NST + I
    DO 1 I = 1,IEND
    DECTMP = CABS(A(NST + I - L))
    IF(UECTMP.LT•1•E-3U) DECTMP = 1.E-30
    \sigma = 20. * ALOGIU(LECTMP)
            IF(B.GT.DठMAX) DGMAX = \sigma
    1 CONTINUE
C * * * *
C * * * *
    WRITE(6,2) IEND
    2 FORMAT (/5x,8HNSIZE = ,I5/)
C * * * *
    CALL SCALE(DBMAX,MAXSCL)
C * * * *
C THE ORDINATE WILL VARY FROM(NAXSCL-50) DB UP
C TO MAXSCL DO.
    DO 33 I = 1,50
    33 IA(I) = 1H
    DO 5 I = 1,6
    5 M M ( I ) = M A X S C L ~ - ~ I v * ( 6 - I ) ~
    MAXF = A\trianglerightS(FLO)
    IF(AOS(FHI).GT.MAXF) MAXF = ABS(FHI)
    NAMEF = 0
    IF(MAXF•GT•1•E3) NAMEF=3
    IF(MAXF•GT•1•E6) NAMEF=6
    IF(MAXF\bulletGT•1\bulletEG) NAMEF=9
    IF(NAMEF.EQ.C) WRITE (6,2UU)
    IF(NAMEF•EU.3) WRITE(6,2U3)
    IF(NAMEF•EQ.6) WRITE(6,2U6)
    IF(NAMEF•EQ•9) WRITE(6,2\cup9)
    2UU FURMAT ( 2X,14HFREQUENCY (HZ),9X,8HUECIロELS)
    2U3 FORMAT( 2X,15HFREQUENCY (XHZ),8X,8HDECIBELS)
    206 FORMAT ( 2X,15HFREQUENCY (MHZ),8X,8HDECIDELS)
    209 FORMAT(2X,15HFREQUENCY (GHZ),8X,8HDECIBELゝ)
    WRITE(6,7) (MM(I),1 = 1,6)
    7 FORMAT (/7X,I 4,4(6X,I4),5X,I4)
    WRITE(6,8)
    8 FORMAT(9X,1HI,5(1UH----+----I))
```


TTFP (Continued)

```
    FFACT = 1.
    IF(NAMEF.EQ.3) FFACT = 1.E-3
    IF(NAMEF\bulletEQ.6) FFACT = 1.t-6
    IF(NAMEF.EQ.9) FFACT = 1.E-9
    FLO = FLO * FFACT
    FHI = FHI * FFACT
    DELF1 = DELF * FFACT
    FLOPRT = DELFI*(NST -1 -N/2)
    DO 10 I = 1,IEND
    DECTMP = CABS(A(NST + 1 - 1))
    IF(DECTMP.LT.I.E-3O) DECTMP = 1.E-30
    B = 20. * ALOGIU(DECTNP)
    M = 50 + B - MAXSCL
    J = I - l
    XJ = J
    FREQ = FLOPRT + XJ * DELFI
    IF(M.LT.O) GO TO 5u
    IF(M•EQ.U) GO TO }3
    DO 1515 II = 1,M
1515 IA(II) = 1H-
    WRITE(6,35) FREQ,IA
    DO 1616 II = 1,N
¥616 IA(II) = 1H
    35 FORMAT(F8.3,2H 1,5UA1)
        GO TO 36
    34 WRITE(6,37) FREQ
    37 FORMAT(1X,F7.3,2H -)
        GO TO 36
    5u WRITE(6,51) FREQ
    5 1 ~ F O R M A T ( 1 X , F 7 . 3 , 2 H ~ I ) ~
#000 FORMAT( )
    36 CONTINUE
    fo continue
        WRITE(6,11)
    11 FORMAT(6X,4HFREQ)
        RETURN
        END
```

33. Subroutine WRTF

Ca11ed by: MAIN
Ca11s: TIMFCN, FRQFCN
Commons: blank
Entries: WRFF
Description: WRTF generates a printed listing of the time function between selected limits. Entry WRFF generates a printed listing of the frequency function between selected limits.

Program Listing:

```
    SUSROUTINE WRTF(A,N1,N2)
COMPLEX A(1)
COMMON N,IGAM,DELLF
CALL TIMFCN(A)
WRITE (6,704)
DO 10 I = N1,N2
10 WRITE(6,700) I,A(I)
GO TO 999
ENTRY WRFF(A,FLU,FHI)
CALL FRQFCN(A)
NCTR = N/2 + 1
FLOT = FLO - DELF/lv.
FHIT = FHI + DELF/lv.
WRITE(6,7U2)
DO 20 I = 1,N
F = (I - NCTR)*DELF
IF (F .LT. FLOT) GO TO 20
IF (F •GT. FHIT) GO TO 999
THETA = 1.E3O
T = CABS(A(I))
IF (T .LT. 1.E-30) GO TO 15
THETA = 57.29578*ATAN2(AIMAG(A(I)),RLAL(A(I)))
15 DB = 1.E30
IF (T •GT. び\bullet) DU = LU.*ALOGIU(T)
wRITE(6,7Ul) I,F,Ȧ(I),T,DB,THETA
20 CONTINUE
999 WRITE(6,703)
7OU FORMAT(1H,I5,2(1PE1C.3,2X))
701 FORMAT(1H,I5,1PE12.4,3(2X,UPFB.3),2X,F7.2,2X,F6.1)
702 FORMAT(/- LINE-,5X,-FREU-,9X,-REAL-,6X,-IMAG-,6X,
    1 -MAG-,6X,-DE-,5X,-PHASE-/1
703 FORMAT (/)
7U4 FORMAT(/- LINE-,OX,-REAL-,8X,-IMAG-/)
    RETURN
    END
```


Abstract

APPENDIX D

Listing of SIGMA-5 Version of those FATCAT Routines which were Modified to Adapt them to the SIGMA-5.

NOTE: Many of the Hollerith strings in format statements were delimited with quote marks. The printer used to make the following listing did not have the quote character; a minus sign appears where each quote should have been.


```
    COMPLEX A(1024)
    COMMON N,IGAM,DELF,DELT,PD,CARRFQ
    COMMON /CFREQ/ NFR,FR(6)
    COMMON /CDOM/ DOMFLG
    COMMON /CDATA/ JCTR,DATA(2UO)
    COMMON /CCIRKT/ NBLK,ITYP(30,2)
    COMMON/CWORD/ WORD(12)
    COMMON/CFLGS/ PDFLG,ARFLG
    LOGICAL PDFLG, ARFLG
    JCTR = 1
    ITYP(1,2) = JCTR
    NFR = 0
    NBLK = 0
    IBLK = 0
    PDFLG = .FALSE.
    ARFLG = .FALSE.
    WRITE(6,7006)
    1 DO 2 I = 1,12
    2 WORD(I) = 4H
    CALL FETCH(WORD, L, NEAD)
    IF (NBAD •EQ. O) GO TO I
    CALL ELFIND(WORD, LTYP)
    GO TOU 10, 20, 30, 20, 50, 60, 70, 80, 90, 100,
    1 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
    2 210, 220, 230, 240, 250, 260, 270, 280, 290, 300,
    3 310, 320, 330, 340, 350, 360, 370, 380, 390, 400,
    4 410, 420, 430),LTYP
    10 IF (WORD(4) •EQ. 1H ) GO TO 12
    N1 = WORD(3)
    N2 = WORD(4)
    GO TO 15
12 WRITE(6,7004)
    READ(5,7000) N1,N2
15 CALL WRTF(A,N1,N2)
    GO TO 1
    20 IF (WORD(4) •EQ. IH ) GO TO 22
    FRLO = WORD(3)
    FRHI = WORD(4)
    GO TO 25
22 WRITE(6,7005)
    READ(5,7000) FRLO,FRHI
    25 IF (LTYP .EQ. 4) GO TO 4U
    CALL WRFF(A,FRLO,FRHI)
    GO TO 1
C * * TTy time plot
    30 IF (WORD(4) •EQ. 1H ) GO TO 32
        NST = WORD(3)
        NSP = WORD(4)
        NJUMP = WORD(5)
        IF (NJUMP •EQ. 1H ) NJUMP = 1
        GO TO 35
```


MAIN (Continued)

```
    32 WRITE(6,7007)
    READ(5,7000) NST,NSP,NJUMF
    35 IF (NJUMP •LT. 1) NJUMP = 1
        CALL TELPLT(A,NST,NSP,NJUMP)
        GO TO l
C * * Tty frequency plot
    40 CALL TTFP(A,FRLO,FRHI)
        go TO l
c * * CALCOMP TIME Plot
    5u WRITE(6,7101) ((ITYP(I,J), J = 1,2), I = 1,5)
    71U1 FORMAT(1X,2(13,3X))
    60 GO TO 650
C * * PRINT PRIME FACTORS
    70 CALL PRTFAC
        GO TO l
C * * ELND OF JOB
    80 GO TO 999
C * * BUTTERWORTH DANDPASS
    90 CALL STRDTA(3,0,0)
        NTYP = 3
        GO TO GUU
C * * bUTTERWORTH LOWPASS
    100 CALL STRDTA(2,0,0)
        NTYP = 4
        GO TO 600
C * * BUTTERWORTH HIGHPASS
    110 CALL STRDTA(2,0,0)
        NTYP = 5
        GO TO 600
C * * BUTTERNORTH BANDSTOP
    120 CALL STRDTA(3,0,0)
        NTYP = 6
        GO TO 600
C * * CHEbySHEV bANDPASS
    130 CALL STRDTA(4,0,0)
        NTYP = 7
        GO TO 600
C * * CHEBYSHEV LOWPASS
    140 CALL STRDTA(3,0,0)
        NTYP = 8
        GO TO 600
C * * CHEGYSHEV HIGHPASS
    150 CALL STRDTA(3,0,0)
        NTYP = 9
        GO TO 600
C * * CHEBYSHEV DANDSTOP
    160 CALL STRDTA(4,0,0)
        NTYP = 10
        GO TO 600
```

C * * SYNCHRONOUS BANDPASS FILTER
170 CALL STRDTA(3,0,0)
NTYP = 11
GO TO 600
C * * SYNCHRONOUS LOWPASS FILTER
180 CALL STRDTA $(2,0,0)$
NTYP = 12
GO TO $6 \cup 0$
C * * SYNCHRONOUS HIGHPASS FILTER
190 CALL STRDTA(2,U,0)
NTYP $=13$
GO TO 600
C * * SIGNAL GENERATOR
200 CALL STRDTA $(6,2,1)$
CARRFQ $=$ WORD(3)
NTYP $=1$
GO TO 600
C * * FREQUENCY MULTIPLIER
210 NTYP $=4$
GO TO 600
220 GO TO 430
(* * IDEAL MULTIPLIER
230 CALL STRDTA $(2,1,2)$
NTYP $=16$
GO TO 600
240 GO TO 430
C * * FM DEMODULATOR
250 CALL STRDTA(1,0,0)
NTYP = 19
GO TO 600
C * * PHASE DEMOUULATOR
260 CALL STRUTA (I, 0,0)
NTYP $=20$
GO TO 600
C * * AMPLIFIER
270 CALL STRDTA(1,0,0)
NTYP $=2$
GO TO 600
C * * LIMITER
280 CALL STRDTA $(3,0,0)$
NTYP $=17$
GO TO 6UO
290 NOUT $=$ WORD (3)
IF (NOUT •LE. NOLK) GO TO 291 WRITE(6,70U1) NOLK
GO TO 1
291 IF (NOUT - IBLK) 295,295,293
293 IF (PDFLG) (ALL PDCHK
$I T M P=I B L K+1$
DO 292 IBLK = ITMP, NOUT

```
    IBTYP = ITYP(IBLK,1)
    JCTR = ITYP(IELK,2)
    CALL PROCES(IETYP,A)
    292 CONTINUE
    IBLK = NOUT
    295 WRITE(6,70U2) IbLK
    GO TO l
    30U CONTINUE
    31U CONTINUE
    320 GO TO 370
    330 GO TO 430
C * * AM DEMODULATOR
    340 CALL STRDTA(1,0,0)
        NTYP = 22
        GO TO 600
C * * FLAT SPECTRUM GENERATOR
    350 CALL STRDTA(3,0,0)
        CARRFQ = O.
        NTYP = 23
        GO TO 600
    360 CALL LSTCOM
        GO TO 1
    370 GO TO 650
    380 CALL INPFOR
        GO TO 1
    390 GO TO 650
    400 GO TO 650
    410 GO TO 650
    420 GO TO 650
    430 WRITE(6,70v3)
        GO TO 1
    600 NBLK = NOLK + 1
        ITYP(NBLK,1) = NTYP
        ITYP(NBLK + 1,2) = JCTR
        GO TO 1
    650 WRITE(6,7100) WORD(1), WORD(2)
        GO TO l
    7000 FORMAT()
C7000 FORMAT(3G.0)
    7 0 U 1 ~ F O R M A T ( - ~ * ~ * ~ E R R O R ~ * ~ * ~ L A R G E S T ~ B L U C K ~ N O ~ I S ~ - , I 2 , - ~ * ~ * - ) ,
    7002 FORMAT( - PROCESSING COMPLETE THRU BLOCK -,I2)
    7003 FORMAT( - * * UNDEFINED STATEMENT * *-)
    7 0 0 4 ~ F O R M A T ( - ~ E N T E K ~ L O W , ~ H I G H ~ I N D I C E S - ) ~
    7 0 0 5 ~ F O R M A T ( - ~ E N T E R ~ L O W , ~ H I G H ~ F R E Q U E N C I E S - ) ~
    7006 FORMAT(- START-)
    7007 FORMAT(- ENTER NSTART, NSTOP, NJUMP-)
    7 1 0 0 ~ F O R M A T ( - ~ C O M M A N D ~ - , A 4 , A 2 , - ~ I S ~ N O T ~ Y E I ~ O P E R A I I O N A L - ) ~
    999 CONTINUE
        STOP
        END
```

```
    SUBROUTINE FETCH(WORD,LL,NBAD)
    INTEGER APOST,BLANK,COMMA,DECPT,EQUAL,PLUS,RPAREN,TEST
    INTEGER BUFF1,BUFF2,BUFF3,BCDFPT,TITLE,WORD,E
    DIMENSION TITLE(12)
    COMMON/CFETCH/ BUFF2(6),BUFF1(80)
    DIMENSION WORD(1)
    EQUIVALENCE (BUFF3,3UFF4)
    DATA APOST,BLANK,COMMA,DECPT,EQUAL,MINUS,NINE,NZ,PLUG
    1 / 1H-,1H ,1H,,1H\bullet,1H=,1H-,1H9,1H0,1H+1
    DATA LPAREN,RPAREN
    1 / lH( , 1H) /
    DATA E / lHE /
    L=0
    NCOLS = 80
    NBAD = 1
            4 ~ I F ~ ( M - N C O L S ~ ) ~ 4 0 , 1 U 0 , 1 0 0
    * EXAMINE EACH COLUMN, REMOVE BLANKS, AND TEST FOR
            SEPARATORS.
    40 M = M+1
        TEST = BUFF1(M)
        IF ( TEST - BLANK ) 41,4,41
    4 1 ~ I F ~ ( ~ T E S T ~ - ~ C O M M A ~ ) ~ 4 2 , 6 , 4 2
    42 IF ( TEST - EQUAL ) 43,6,43
    4 3 ~ I F ~ ( ~ T E S T ~ - ~ L P A R E N ~ ) ~ 4 4 , 6 , 4 4
    44 IF ( TEST - RPAREN ) 45,4,45
    45N=N+1
        BUFF2(N) = TEST
        IF(K ) 5,5,4
            IF TYPE HAS NOT BEEN SET (K=0), TEST CHARACTER TO
            DETERMINE IF IT IS A DIGIT OR SIGN (NO DECISION),
        A 4-8 PUNCH (TITLE (ARD), A DECIMAL POINT (FLOATING
        POINT NUMBERI, OR NONE OF THESE. IN WHICH CASE A
        HOLLERITH WORD IS ASSUMED. IF K IS SET, IT WILL BE
                        O WHEN AN INTEGER
                                1 WHEN A FLOATING POINT NUMBER
                        2 WHEN A HOLLERITH WORD.
```

```
        5 NCOMMA = 1
        IF ( TEST - NZ ) 52,51,51
        51 IF ( TEST - NINE ) 4,4,52
        52 IF ( TEST - PLUS ) 53,4,53
        53 IF ( TEST - MINUS ) 54,4,54
        54 IF ( TEST - APOST ) 55,30,55
        55 IF ( TFST - DECPT ) 56,57,56
        56 IF ( TEST - E ) 561,560,561
    560 IF (N-1 ) 561,561,4
    561 K=2
        GO TO 4
    57 K = 1
        GO TO 4
C * SELECT MODE OF CONVERSION, EASED UPON K.
    6 IF ( K-1 ) 7,7,9
    7 BUFF4 = BCDFPT( EUFF2,N )
        IF (N ) 106,106,8
        8WORD(L+1)= BUFF3
        GO TO 91
        9 ENCODE(4,1002,WORD(L+1))(BUFF2(I),I=1,4)
        ENCODE(2,1002,WOR)(L+2)) (BUFF2(I),I=5,6)
        L = L + 1
    91L=L+1
                IF NOT FINISHED WITH THE CARD IMAGE, REINITIALIZF
                AND CONTINUE. IF THE NCOLS COLUMN CONTAINED A
                COMMA, PROCESS THE NEXT CARD. OTHERWISE, SET THE
                NUMBER OF WORDS CONVERTED IN LL AND RETURN.
        IF (M-NCOLS ) 2,10,10
        10 IF ( TEST - COMMA ) 11,1,11
        11LL = L
        RETURN
C * MOVE A TITlE CARD INTO THE TITLE ARRAY.
    30 ENCODE(48,1001,TITLE) (BUFF1(I),I = 1,48)
        GO TO 1
            A CARD IMAGE HAS EEEN PROCESSEC. IF THE LAST
                NON-BLANK SYMBOL WAS A COMMA (NCOMMA=O), READ
                    THE NEXT CARD. OTHERWISE THERE IS INFORMATION
                    IN *BUFF2* TO BE CONVERTED, AFTER WHICH, FETCH
                    WILL RETURN TO THE CALLING PROGRAM.
    100 IF ( NCOMMA ) 6,1,6
C * FETCH FOUND CONCOMITANT SEPARATORS OR A NUMBER WITH
C MORE THAN 15 DIGITS AND COULD NCT CONTINUE.
    106 WRITE (6,2000) (BUFF2(I),I=1,6)
        NBAD = 0
        RETURN
    107 STOP
    1001 FORMAT(80A1)
    1002 FORMAT (6A1)
    1005 FORMAT (1 X80A1)
    2000 FORMAT(25H0** FETCH CANNOT DECODE 6A1,4H **//)
        END
```

SUBROUTINE INPFOR
COMMON /CWORD/ WORD(12)
INTEGER WORD
LOGICAL FLG
FLG = .TRUE.
CALL ELFIND(WORD(3), L)
1, 1, 1, 1, 1, 1, 1, 1, 9, 10,

```B \(\quad 21,12,13,14,15,16,17,18,19,120\),
```

C $\quad 1, \quad 1,1, \quad 34,35,1,1,1,1,1$,
D RITE(6.7001) WORU(1), WORL
WRITE(6,7001) WORU(1), WORD(2)
GO TO 999
20 WRITE 6,7020$)$
WRITE (6,7104)
IF (FLG) GO TO 999
35 WRITE $(6,7035)$
WRITE(6,7111)
IF (FLG) GO TO 999
9 WRITE (6,7009)
WRITE(6,7101)
IF (FLG) GO TO 999
10 WRITE(6,7010)
WRITE(6,7102)
IF (FLG) GO TO 999
11 WRITE(6,7011)
WRITE(6,7102)
IF (FLG) GO TO 999
12 WRITE(6,7012)
WRITE(6,71U1)
IF (FLG) GO TO 999
13 WRITE $(6,7013)$
WRITE(6,7101)
WRITE (6,7103)
IF (FLG) GO TO 999
14 WRITE $(6,7014)$
WRITE $(6,7102)$
WRITE(6,71U3)
IF (FLG) GO TO 994
15 WRITE $(6,7015)$
WRITE $(6,7102)$
WRITE(6,7103)
IF (FLG) GO TO 999
16 WRITE $(6,7016)$
WRITE $(6,7101)$
WRITE (6,7103)
IF (FLG) GO TO 999

```
INPFOR (Continued)
```

```
    17 WRITE(6,7017)
    WRITE(6,7lU1)
    IF (FLG) GO TO 999
    18 WRITE(6,7018)
    WRITE(6,71U2)
    IF (FLG) GO TO 999
    19 WRITE(6,7019)
    WRITE(6,7102)
    IF (FLG) GO TO 999
    25 WRITE(6,7025)
    WRITE(6,7107)
    IF (FLG) GO TO 999
    34 WRITE(6,7U34)
    WRITE(6,7107)
    IF (FLG) GO TO 995
    26 WRITE(6,7026)
    WRITE(6,7107)
    IF (FLG) GO TO g99
    21 WRITE(6,7021)
    WRITE(6,7105)
    IF (FLG) GO TO 999
    23 WRITE(6,7023)
    WRITE(6,7106)
    IF (FLG) GC TO 999
    27 WRITE(6,7027)
    IF (FLG) GO TO 999
    28 WRITE(6,7028)
    WRITE(6,711U)
    GO TO 999
500 IF (WORD(3) •EQ. 3HALL) GO TO 510
    WRITE(6,7112) WORD(3)
    GO TO 999
510 FLG = .FALSE.
    GO TO 20
7000 FORMAT()
7001 FORMAT(1X,A4,AZ,- IS NOT AN INPUT COMMAND-)
7009 FORMAT(/- BWONOP, FU, GW, NR-)
7 0 1 0 ~ F O R M A T ( / - ~ E W L O W P , ~ F C , ~ N R - ) ~
7011 FORMAT(/- OWHIP, FC, NR...)
7012 FORMAT(/- bWOSTP, FU, BW, NR-)
7013 FORMAT(/- CHONDP, FU, उW', NR, EPSDB-)
7014 FORMAT(/- CHLOWP, FC, NR, EPSDB-)
7015 FORMAT(/- CHHIP, FC, NR, EPSDÖ-)
```

```
INPFOR (Continued)
```

```
7016 FORMAT (/- CHBSTP, FO, BW, NR, EPSDB-)
7017 FORMAT (/- SYNBP, FU, EW, NR-)
7018 FORMAT (/- SYNLP, FC, NR-)
7019 FORMAT (/- SYNHP, FC, NR-)
7020 FORMAT (/- SIGGEN, FU, FMOU, AM, PM, FM, A-1
7021 FORMAT (/- FRQMUL-)
7023 FORMAT (/- IDLMUL, ALO, FLO-)
7025 FORMAT (/- FMDEMO, FO-)
7026 FORMAT (/- PHDEMO, FU-)
7027 FORMAT \(1 /-\) AMP, GAIN-/-GAIN = VOLTAGE GAIN, DB-
    A \(\quad-(6 \mathrm{DB}=\mathrm{FACTOR}\) OF 2)-1
7028 FORMAT(/- LIM, CL, CH, GL-)
7034 FORMAT (/- AMDEMO, FO-)
7035 FORMAT (/- FLATSP, AMP, DELF, N-)
7101 FORMAT \(-F O=\) CENTER FREQ, \(H Z-/-B W=B A N O W I D T H, H Z-1\)
    A - NR = NUMBER OF SECTIONS - )
7102 FORMAT(-FC = CORNER FREQ, HZ-I- NR = NUMOER OF SECTIONS-)
7103 FORMAT ( - EPSDB = CHEGYSHEV RIPPLE FACTOR, DE-)
7104 FORMAT \((-\mathrm{FO}=\) CARRIER FREQ, \(\mathrm{HZ}-1\)
    A - FMOD = MODULATION FREQ, HZ-/
    B - AM = PERCENTAGE AMPLITUDE MODULATION-/
    C - PM = PEAK PHASE DEVIATION, RADIANS-/
    D - FM = PEAK FREQUENCY DEVIATION, HZ-/
    E - \(\quad\) - PEAK AMPLITUDE, VOLTS-I
7105 FORMAT ( - (NO PARAMETERS)-)
7106 FORMAT ( - ALO = PEAK AMPLITUDE OF LO SIGNAL, VOLT, \(\boldsymbol{~} 1\)
    A - FLO = FREQ OF LO, HZ-I
7107 FORMAT ( \(-\mathrm{FO}=\) CENTER FREQ, HZ-)
7110 FORMAT \(1-C L=\) LOW CLIPPING LEVEL, VOLTS-/
    A - CH = HIGH CLIPPING LEVEL, VOLTS-/
    B - GL = LIMITER GAIN, VOLTS/VOLTS-)
7111 FORMAT ( - AMP = AMPLITUDE OF SPECTRAL LINES-/
    A - DELF = FREQ SEPARATION OF LINES, HZ-/
    B - \(\quad\) = ARRAY SIZE-I
7112 FORMAT (/- INPFOR CANNOT DECODE -,A6/)
    999 WRITE (6,7000)
        RETURN
        END
```

```
    SUBROUTINE ELFIND(NAME,L)
    UIMENSION NAME(1), MATCH(84)
    DATA (MATCH(I), I = 1,84)
    A/4HPRIN,2HTT,4HPRIN,2HTF,4HTPLO,2HTT,4HTPLO,2HTF,
    B 4HCPLO,2HTT,4HCPLC,2HTF,4HPRIM,2HEF,4HENDO,2HFJ,
    C 4HBWBN,2HOP,4HBWLC,2HWP,4HBWHI, 2HP, 4HEWBS,2HTP,
    D 4HCHBN,2HOP,4HCHLO,2HWP,4HCHHI,2HP, 4HCHBS,2HTP,
    E 4HSYNE,2HP, 4HSYNL,2HP, 4HSYNH,2HP, 4HSIGG,2HEN,
    F 4HFRQM,2HUL,4H,}2H,4HIDLM,2HJL,4H, ,2H
    G 4HFMDE,2HMO,4HPHJE,2HMO,4HAMP, 2H,4HLIM, 2H,
    H 4H®LOC,2HK,4HYES,2H, 4HNO, 2H,
    I 4H, 2H,4HAMDE,2HMO,4HFLAT,2HSP,4HLIST,2HCO,
    J 4HCIRC,2HUI,4HINPU,2HTF,4HDELE,2HTE,4HINSE,2HRT,
    K 4HREPL,2HAC,4HREPE,2HAT/
    NMAX = 84
    DO 11 I = 1,NMAX,2
    IF {NAME(1) - MATCH(I)) 11,5,11
    5 IF (NAME(2) - MATCH(I + 1)) 11,21,11
11 CONTINUE
    I = NMAX + 1
21L=(I + 1)/2
    REETURN
    END
```

```
    SUBROUTINE LSTCOM
    COMMON /CWORD/ WORD(12)
    INTEGER WORD
    WRITE(6,70U1)
    I = l
    IF (WORD(3) •EQ. 3HALL) GO TO 20
    I = 0
    IF (WORD(3) •EQ. 4HSOUR) GO TO 20
    IF (WORD(3) •EQ. 4HFILT) GO TO 30
    IF (WORD(3) .EQ. 4HDEMO) GO TO 40
    IF (WORD(3) •EQ. 4HMISC) GO TO 50
    IF (WORD(3) \bulletEQ. 4HCONT) GO TO 60
    IF (WORD(3) \bulletEQ. 4HNSIZ) GO TO 70
    IF (WORD(3) \bulletEQ. 4HLIST) GO TO 80
    WRITE(6,7020) WORD(3)
    GO TO 999
    20 WRITE(6,7002)
        IF (I .EQ. O) GO TO 999
    30 WRITE(6,7003)
        IF (I .EQ. O) ЈO TO 999
    40 WRITE (6,7004)
        IF (I .EQ. O) GO TO 979
        5 0 ~ W R I T E ( 6 , 7 0 0 5 )
        IF (I .EQ. O) GO TO 999
    6 0 ~ W R I T E ( 6 , 7 0 U 6 )
        IF (I .EQ. O) GO TO 999
    70 WRITE(6,7007)
        GO TO 999
    80 WRITE(6,70U8)
    999 RETURN
7 0 0 1 ~ F O R M A T ( / 1 5 X , - F A T C A T ~ C O M M A N D ~ S U M M A R Y - ) ,
7002 FORMAT(/10X,-SOURCES-//- SIGGEN-,5X,-SIGNAL GENERATOR-/
    A - FLATSP-,5X,-FLAT SPECTRUN GENERATOR-)
7003 FORMAT(/,10X,-FILTERS-//- BUTTERWORTH--/
    A - BWBNDP-,5x,-BAND PASS-1
    B - BWLOWP-,5X,-LOW PASS-1
    C - BWHIP-,6X,-HIGH PASS-1
    D - BWBSTP-,5X,-\triangleAND STOP-1
    E /- TCHEBYSHEFF--/
    F - CHBNDP-,5X,-UAND PASS-/
    G - CHLOWP-,5X,-LOW PASS-1
    H - CHHIP-,6X,-HIGH PASS-1
    I - CHBSTP-,5X,-BAND STOP-1
    J /- SYNCHRONOUSLY TUNED--/
    K - SYNBP-,6X,-BAND PASS-1
    L - SYNLP-,6X,-LON PASS-/
    M - SYNHP-,6X,-HIGH PASS-1
```

```
7004 FORMAT (/, 10X,-DEMODULATORS - - / / /
    A - FMDEMO-, \(5 X,-F M\) DEMODULATOR-/
    P - AMDEMO-, \(5 X,-A M\) DEMODULATOR-1
    C - PHDEMO-, \(5 X\), -PHASE DEMOLULATOR-1
7005 FORMAT ( / , 1UX,- MISCELLANEOUS -///,
    A - FRQMUL-, \(5 \times\), -FREQUENCY MULTIPLIER-/,
    C - IDLMUL-,5X,-IDEAL MULTIPLIFR-/
    \(D-A M P-, 8 X,-A M P L I F I F R-1\)
    F - LIM-, \(8 \times,-\) LIMITER-)
7006 FORMAT (/, \(16 X,-C O N T P O L ~ C O M N A N D S-/ /\)
    A - PRINTT-, \(5 \times,-P R I N T\) TIME FUNCTION-I
    B - PRINTF-, \(5 \times\), -PRINT FREQUENCY FUNCTION-1
    C - TPLOTT-, \(5 x,-P R I \ T E R\) PLCT OF TI \(\triangle F\) FUNCTION-/
```



```
    F - CPLOTF-, \(5 X\), -REMOTE PLOT OF FREQUENCY FUNCTION-/
```



```
    H - PRIMEF-5X,-LIST PRIMF FACTORS OF ALL SOURCE FREO!IENCIES-/
    I - END CF JOB-, \(1 X,-T E R M I N A T E S\) RUN-/
    \(J\) - INPUT FORMATS, PLOCKNAME LIST INPUTS FOR NAVED RLOCK-/)
\(70 \cup 7\) FORMAT \(1 /, 4 X,-\) SPECIAL COMMANDS TC SPFCIFY ARマAY SIZEーノ/
    A - YES-, \(8 X,-L I S T E D ~ A R R A Y\) SITE ACCEPTABLE-/
    3 - NO-, \(9 X,-L I S T E D\) ARRAY SIZE NOT ACCEPTABLE-/
    C - N-, IUX,-SET ARRAY SIZE TO SPECIFIER VALUE-/)
7008 FORMATI/,- LIST COMMAIIDS- COMMANLS ARE LISTED \(3 Y\) GIVING-,
    A - TWO ALPHANUNFRIC-I- NORD SETS EEPARATED ZY A COMMA. -,
    E - THF FIRST IS -, IH-, -LIST COMMAND,-, IH-/,- POSSIELE-,
    C - SECOND wORDS AND THE RESULTING OUTPUTS ARE--I
    D - ALL-, \(12 X,-L I S T\) ENTIRE COMMAND SET-/
    \(E\) - SOURCES-, \(8 X,-L I S T\) COMMANDS FOR SOURCE ELOCKS-
    F - FILTERS-, \(8 x,-L I S T\) COMMANDS FOR FILTERS-/
    G - DEMODULATCRS-, \(3 X,-L I S T\) COMNANCS FOR DEMODULATORS-/
    H - MISC-, \(11 X\), -LIST OTHER BLOCK COM:ANOS (AMP,LII, FTC)-I
    I - CONTROL-, \(\varepsilon X,-L I S T\) CONTROL COMNANOS-I
    J - NSIZE-, IOX,-LIST CCMMANDS CONTROLLING ARRAY SIZE-/
    \(K\) - LIST COMMANDS-, \(2 \times,-L I S T\) THE AZOVE INFORMATION-/1
7020 FORMAT(/- LSTCOM CANNOT DECODE -, A6/)
        END
```

```
        SUGROUTINE PDCHK
        COMMON N,IEAM,DELF,DELT,PD
        COMMON /CWCRD/ WORD(12)
        COMMON /CFLGS/ PDFLG,ARFLG
        LOGICAL PDFLG,ARFLS
        NFLG = 0
        NSET = N
        CALL PERIOD
        IF(ARFLG) GC TO 50
        NSET = N
        WRITE(6,7O,\hat{O}) PD,DELF
    1U ひRITE(6,70U1) N,IGAM,DELT
    2v (ALL FFTCH(VORD,L,NOAD)
    CALL ELFFIND(WOR),LTYP)
    IF(LTYP.FQ. 30) %0 TO 300
    IF(LTYP •EQ. 31) GO TO 30
    IF(LTYP •FQ. 32) GO T? 40
    IF(LTYP •EQ• &) STOP
    \becauseRITE(6,7O.2)
    GO TO 2?
    3) 《RITF(6,7nO3)
    SO TO 20
    4. N = NORD(3)
    NFLG = 0
    CALL ADJN
    IF(N •GE•NSET) GO TO 10
    NFLG = 1
    GO TO 900
    5.? IF(NSET •OE.N) 6) TO 990
    #RITE(6,7(105) N
    CALL PRTFAC
    WRITE(6,7036)
    STOP
    FOU IF(NFLG •EQ. O) 60 TO 999
    VRITE(6,70U4) N,NSET
    WRITF(6,7ju3)
    GO TO 20
    990 N = NSET
    999 PDFLG = .FALSE.
    ARFLG = •TRUF.
    RFTURN
70O0 FORMAT(/,- PERIOD = -,IPE1O.3,- SECONDS,-,-DELTA-F = -,
    A EIS.3)
70O1 FORMAT(-N= -,IG,-, IGAM= - IM, - , DELTA-T= -
    1 ,IPEIO.3/- IS THIS SATISFACTORY-1
7UU2 FORMAT(- INPUT MEANINGLESS * ENTEF YES, NO, OR N,VAL!JE-)
7003 FORMAT(- ENTER N, VALUE-)
70U4 FORMAT(-N = - IG,- UNACCEPTABLE ** N MUST-
    1 - BE-,I6,- TO MEET NYGUIST CRITFRINN-1
7005 FORMAT(- SOURCE FREQUENCIES RECUIRE THE ARRAY STZE -
    I -TO BE - IG/I- PRIME FACTORS APF-/I
7006 FORMAT(//- RUN IS 3EING TERMINATED-)
    END
```

```
            SUBROUTINE STRDTA(K1,K2,K3)
            COMMON/CJATA/ JCTR,DATA(2UU)
            COMMON/CFREQ/ NFR,FR(6)
            COMMON /CFLGS/ PUFLG,AKFLG
            COMMON /CCIRKT/ NBLK,ITYP(3u,2)
            COMIMON /CWORD/ WORD(12)
            LOGICAL PDFLG
            JCTK = ITYP(NBLK + 1,2)
            UC IUI = I,KI
    IU UATA(JETR + 1 -1) = NOKO(1 + 2)
            JCTR = JCTR + KI
            IF(K2 •EQ. U) GO TO 999
            PDFLG = •TRUE.
            UO ZO I = 1,K2
            TEMP = WORD(K3 + 1 + 1)
            IF (TEMP •LT• 1.) GO TO 2u
            NFR = NFR + 1
            IF(NFR •GT• 6) GO TO 5L
            FR(NFR) = TEMP
    2U CONTINUE
            GO TO 999
    5u wRITE゙(6,70\cupO゙)
            STOP
TOUU FORMAT(/- INPUT FREQUENCIES EXCLEJ SIX-/)
    999 RETURN
            END
```


[^0]: *This list can contain any of the output variables specified in the CIRCUS users manual [3].

[^1]: *Only the first six characters of any command are important, and spaces (blanks) are ignored. This command can be abbreviated to PRIMEF.

[^2]: *May be abbreviated to LISTCO.

[^3]: *Entry Point in subroutine named in parenthesis. **Not used in SIGMA-5 version. +CALCOMP plotter subroutines called by CPLOT.

[^4]: *CALCOMP plotter routine.

[^5]: *Walsh, J. R. and R. D. Wetherington, CCS Down-Link Spectral Studies, Technical Report No. 7, Contract NAS8-20054, Georgia Institute of Technology, 29 May 1970.

