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ABSTRACT An accurate statistical energy function that is suitable for the prediction of protein structures of all classes should
be independent of the structural database used for energy extraction. Here, two high-resolution, low-sequence-identity
structural databases of 333 a-proteins and 271 b-proteins were built for examining the database dependence of three all-atom
statistical energy functions. They are RAPDF (residue-specific all-atom conditional probability discriminatory function), atomic
KBP (atomic knowledge-based potential), and DFIRE (statistical potential based on distance-scaled finite ideal-gas reference
state). These energy functions differ in the reference states used for energy derivation. The energy functions extracted from the
different structural databases are used to select native structures from multiple decoys of 64 a-proteins and 28 b-proteins. The
performance in native structure selections indicates that the DFIRE-based energy function is mostly independent of the
structural database whereas RAPDF and KBP have a significant dependence. The construction of two additional structural
databases of a/b and a 1 b-proteins further confirmed the weak dependence of DFIRE on the structural databases of various
structural classes. The possible source for the difference between the three all-atom statistical energy functions is that the
physical reference state of ideal gas used in the DFIRE-based energy function is least dependent on the structural database.

INTRODUCTION

One simple method for estimating the interaction between

the proteins and within a single protein is the knowledge-

based approach in which known protein structures are used

to generate the statistical potentials (or energy functions;

Tanaka and Scheraga, 1976). Knowledge-based statistical

potentials have been applied to fold recognition and

assessment (Bryant and Lawrence, 1993; Casari and Sippl,

1992; Hendlich et al., 1990; Jones et al., 1992; Lu and

Skolnick, 2001; Melo et al., 2002; Miyazawa and Jernigan,

1999; Samudrala and Moult, 1998; Sippl, 1990; Zhou and

Zhou, 2004), structure predictions (Lee et al., 1999; Pillardy

et al., 2001; Simons et al., 1997; Skolnick et al., 1997; Sun,

1993; Tobi and Elber, 2000; Vendruscolo et al., 2000), and

validations (Luthy et al., 1992; MacArthur et al., 1994; Melo

and Feytmans, 1998; Rojnuckarin and Subramaniam, 1999;

Sippl, 1993), docking and binding (Altuvia et al., 1995; Liu

et al., 2004; Pellegrini and Doniach, 1993; Wallqvist et al.,

1995; Zhang et al., 1997), and mutation-induced changes in

stability (Gilis and Rooman, 1996, 1997; Zhang et al., 1997;

Zhou and Zhou, 2002).

One natural consequence of this commonly used statistical

approach is that the outcome (the energy function) is strongly

dependent on input (the structural database). For example,

the structural database of single-chain proteins and the in-

terface database of dimeric proteins produce quantitatively

different pair potentials for folding and binding studies (Lu

et al., 2003; Moont et al., 1999). This is caused by sig-

nificantly different compositions of amino acid residues at

the surface, core, and interface of proteins (Glaser et al.,

2001; Lu et al., 2003; Ofran and Rost, 2003). In another

example, the residue-level, distance-dependent, Sippl poten-

tial extracted from all-a protein structures is quantitatively

different from that extracted from all-b protein structures

(Furuichi and Koehl, 1998). This suggests that different

structural patterns (topology) also change the outcome of the

statistical energy function. The distance-independent statis-

tical energy parameters, however, appear to be less sensitive

to different subsets of protein structure database except that

there is large difference between the parameters from the

crystallographic structures and that from the NMR structures

(Godzik et al., 1995).

The database dependence of statistical energy functions,

however, is unphysical. This is because the same physical

interaction (water-mediated interaction between amino-acid

residues) is responsible for protein folding and binding and

for the formation of b-strands and a-helices. The unphysical,

database dependence of a statistical potential is difficult to

avoid because it is equivalent to requiring the output to be

independent of (or insensitive to) different input information.

Recently, a residue-specific all-atom, distance-dependent

potential of mean-force was extracted from the structures of

single-chain proteins by using a physical state of uniformly

distributed points in finite spheres (distance-scaled, finite,

ideal-gas reference, i.e., DFIRE, state) as the zero-interaction

reference state (Zhou and Zhou, 2002). Remarkably, the phy-

sical reference state yields a potential of mean-force that no

longer possesses some unphysical characteristics associated
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with other statistical potentials. It was shown that the accu-

racy of DFIRE-based potential is insensitive to the parti-

tioning of hydrophobic and hydrophilic residues within a

protein (Zhou and Zhou, 2002). More importantly, the new

structure-derived potential can quantitatively reproduce the

likelihood of a residue to be buried (i.e., the composition

difference of amino-acid residues between core and surface;

Zhou and Zhou, 2003). The potential also yields a stability

scale of amino acid residues in quantitative agreement with

that independently extracted from mutation experimental

data (Zhou and Zhou, 2003). Moreover, the monomer po-

tential (derived from single-chain proteins) is found to be

equally successful in discriminating against docking decoys,

distinguishing true dimeric interface from crystal interfaces,

and predicting binding free energy of protein-protein and

protein-peptide complexes (Liu et al., 2004). The indepen-

dence of the performance for the systems with various

amino-acid compositions suggests that the DFIRE-based

potential possesses some physical characteristics not ob-

served in some other knowledge-based potentials.

The above results raise an interesting question: does the

DFIRE-based potential depend on the structural database

used for statistics? Although the performance of the DFIRE

potential on structure selections has been shown to be

insensitive to the size of the database (number of protein

structures; Zhou and Zhou, 2002) and the database of either

single-chain or dimeric proteins (Liu et al., 2004), it is not

clear whether or not the structural database of all-a proteins

will yield a DFIRE potential that is different from that

generated from the database of all-b proteins. Answering this

question is important for the application of the DFIRE-based

statistical energy function to structure prediction of proteins

with different structural topology.

In this article, we built structural databases of all-a, all-b,

a 1 b, and a/b proteins based on SCOP classification. The

database dependence of three all-atom knowledge-based

potentials (i.e., RAPDF, Samudrala and Moult, 1998; atomic

KBP, Lu and Skolnick, 2001; and DFIRE, Zhou and Zhou,

2002) are compared. Results show that unlike RAPDF and

KBP, the DFIRE energy function is mostly independent of

the database used for training. The origin for the difference in

database dependence between DFIRE and RAPDF/KBP is

discussed.

METHODS

Composition-averaged observed state as the
reference state

The derivation of a distance-dependent, pairwise, statistical potential

uði; j; rÞ starts from a common inverse-Boltzmann equation given by

uði; j; rÞ ¼ �RT ln
Nobsði; j; rÞ
Nexpði; j; rÞ

; (1)

where R is the gas constant, T is the temperature, Nobs(i, j, r) is the observed

number of atomic pairs (i, j) within a distance shell r – Dr/2 to r 1 Dr/2 in

a database of folded structures, and Nexp(i, j, r) is the expected number of

atomic pairs (i, j) in the same distance shell if there were no interactions

between atoms (the reference state). Clearly, the method used to calculate

Nexp(i, j, r) is what makes one potential differ from another because the

method to calculate Nobs(i, j, r) is the same (except the difference in database

and bin procedures).

Samudrala and Moult (1998) used a conditional probability function

Nexpði; j; rÞ ¼
Nobsði; jÞ
Ntotal

NobsðrÞ; (2)

where NobsðrÞ [ +
i;jNobsði; j; rÞ; Nobsði; jÞ [ +

r
Nobsði; j; rÞ; and

Ntotal [ +
i;j;rNobsði; j; rÞ: Lu and Skolnick (2001) employed a quasichemical

approximation of

Nexpði; j; rÞ ¼ xixjNobsðrÞ; (3)

where xk is the mole fraction of atom type k. The common approximation

made by the above two potentials is that +
i;jNexpði; j; rÞ ¼ NobsðrÞ: This

approximation has its origin in the uniform density reference state used by

Sippl (1990) to derive the residue-based, distance-dependent potential. In

this approximation, the total number of pairs in any given distance shell

for a reference state is the same as that for folded proteins. That is,

a composition-averaged observed state is used as the reference state. This

TABLE 1 The standard 92 multiple decoy sets

Source

Decoy

number Target (PDB ID)

4state* 630–687 1r69, 2cro, 3icb

lattice_ssfity 2000 1beo, 1nkl, 4icb

lmdsz 343–500 1b0n-B, 1fc2, 1shf-A,zz 2cro

fisa§ 500–1200 1hdd-C, 2cro, 4icb

fisa_casp3{ 500–1200 1bg8-A, 1bl0, 1jwe

CASP4k 42–112 t0096(1e2x), t0098(1fc3),

t0100(1qjv),zz t0106(1ijx),

t0107(1i8u),zz t0108(1j83),zz

t0123(1exs),zz t0125(1gak)

Rosetta{ 1000 1aa2, 1ail, 1bdo,zz 1cc5, 1eca, 1csp,zz

1gvp,zz 1tit,zz 1hlb, 1lfb, 1lis,

1wiu,zz 1mbd, 1ark,zz 1mzm,

1pal, 1r69, 1tul,zz 1utg, 1vls,

1who,zz 2erl, 2ncm,zz 2gdm,

4fgf,zz 5icb, 1ksr,zz 1sro,zz 5pti

hg_structural** 30 1ash, 1bab-b, 1col-A, 1cpc-A, 1ecd,

1flp, 2lhb, 4sdh-A, 1gdm, 1hbg,

1hlb, 1hlm, 1ith-A, 1mba, 1myt

LKFyy 200 1a7v, 1ab0,zz 1abo,zz 1ae3,zz

1ag6,zz 1an2, 1anu,zz 1avs, 1bbh,

1b2p,zz 1b7v, 1b8r, 1bai,zz 1baj,

1bbb, 1beo, 1bfs,zz 1bg8, 1bhd,

1bja, 1bk2,zz 1bm9, 1bre,zz 1bzdzz

*Park and Levitt (1996).
yXia et al. (2000).
zKeasar and Levitt (2003).
§Simons et al. (1997).
{Simons et al. (1999).
kFeig and Brooks (2002).

**R. Samudrala, E. S. Huang, and M. Levitt, unpublished results.
yyLoose et al. (2004).
zzThese PDB codes are b-type proteins; all the others are a-type proteins.
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composition-averaged state is the most commonly used reference state for

a distance-dependent pair potential. Other reference states for distance-

dependent potentials were also proposed (Jernigan and Bahar, 1996;

Mitchell et al., 1999; Moult, 1997; Vijayakumar and Zhou, 2000).

Distance-scale finite ideal-gas reference
(DFIRE) state

The DFIRE state (Zhou and Zhou, 2002) was derived directly from

a formally exact equation for potential of mean force in statistical mechanics

which is given by Friedman (1985) as

uði; j; rÞ ¼ �RT ln gijðrÞ ¼ �RT ln
Nobsði; j; rÞV
NiNjð4pr2DrÞ

; (4)

where gij(r) is the pair distribution function, V is the volume of the system,

and Ni and Nj are the number of atoms i and j, respectively. The final

equation for the DFIRE-based energy function is then obtained after two

approximations are made. In the first approximation, we assume that the

number of pairs for an ideal gas system increases in ra for an finite system,

rather than r2 for an infinite system. In the second approximation, we assume

that all interactions become zero after a cutoff distance rcut, i. e., uði; j; rÞ ¼ 0

for r . rcut.
The final equation for the DFIRE potential of mean force uði; j; rÞ

between atom types i and j that are distance r apart is given by Zhou and

Zhou (2002) as

uði; j;rÞ ¼
�hRT ln

Nobsði; j;rÞ�
r

rcut

�a�
Dr

Drcut

�
Nobsði; j;rcutÞ

; r,rcut;

0 r,rcut;

8>><
>>:

(5)

where h (¼ 0.0157) is a scaling constant, R is the gas constant, T ¼ 300 K,

a ¼ 1.61, rcut ¼ 14.5 Å, and Dr(Drcut) is the bin width at r(rcut). (Dr ¼ 2 Å,

for r, 2 Å; Dr ¼ 0.5 Å for 2 Å, r, 8 Å; Dr ¼ 1 Å for 8 Å, r, 15 Å.)

The prefactor h was determined so that the regression slope between

the predicted and experimentally measured changes of stability due to muta-

tion (895 data points) is equal to 1.0. The exponent a for the distance depen-

dence was determined by optimizing the fit between ra and the distance

dependence of the pair distribution function for uniformly distributed points

in finite spheres (finite ideal-gas reference state; Zhou and Zhou, 2002).

Residue-specific atomic types were used (167 atomic types; Lu and

Skolnick, 2001; Samudrala and Moult, 1998).

FIGURE 1 Success rates in rank-

ing native states within a given num-

ber of top-ranked structures given by

a-protein-trained energy functions

versus those by b-protein-trained energy

functions for a-protein decoys (left) and
b-protein decoys (right). The results

for RAPDF, KBP, and DFIRE are shown

at top, middle, and bottom panels, re-

spectively.
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Structural training databases

To test the dependence of three statistical potentials (RAPDF, atomic KBP,

and DFIRE) on training databases, we built training databases of all-a and

all-b proteins based on the SCOP classification (1.63 release; Conte et al.,

2002; Murzin et al., 1995). Specifically, we began with the ,40% identity

set built by the authors of SCOP (http://astral.stanford.edu/), then removed

the structures obtained by the NMR methods, the structures whose

resolution .2.5 Å, the structures from composite domains (Furuichi and

Koehl, 1998; Zhang and Kim, 2000), and the structures not from all-a or

all-b structure classes (defined by authors of SCOP). Then, we extracted

the experimentally determined secondary structural states (a, b, and others)

of residues in these structures from DSSP database (Kabsch and Sander,

1983) using a simple mapping scheme similar to Zhang and Kim (2000). We

removed the structures in a (b) class that have .10% content of b (a).

Finally, we removed the structures with.30% identity to decoys (calculated

with FASTA package; Pearson, 1990; Pearson and Lipman, 1988). The final

a-protein and b-protein databases have 333 and 271 single-domain proteins,

respectively.

In addition, we built training databases of a/b and a1b proteins. The

procedure used to build them is exactly the same as described above except

that the a/b and a1b classes (according to SCOP definition) of ,40%

identity SCOP set are used instead. We required that both a/b and a1b

proteins have .10% content of a and b. There are 515 a/b and 399 a1b

single-domain proteins that are,30% identity to decoys. (A list of proteins is

given in http://theory.med.buffalo.edu.) The DFIRE energy functions based

on 333 a-proteins, 271 b-proteins, 515 a/b, and 399 a1b proteins are

labeled as DFIRE-a, DFIRE-b, DFIRE-a/b, and DFIRE-a1b, respectively.

The original structural database (Zhou and Zhou, 2002) for calculatingNobs(i,

j, r) was a structural database of 1011 non-homologous (,30% homology)

proteins with resolution,2 Å, which was collected by Hobohm et al. (1992)

(http://chaos.fccc.edu/research/labs/dunbrack/culledpdb.html). The DFIRE

energy function extracted from this database will be labeled as DFIRE-all.

In addition to generating several DFIRE energy functions by using the

new structural databases, RAPDF and atomic KBP potentials are also

regenerated for comparison. The bin procedures for RAPDF and KBP are as

follows. For RAPDF (Samudrala and Moult, 1998), the first bin covers 0–

3.0 Å and the distance between 3.0 Å and 20 Å is binned every 1 Å. The total

number of bins is 18. All 18 bins with a cutoff distance of 20 Å are used for

scoring. For atomic KBP (Lu and Skolnick, 2001), the distance between 1.5

Å and 14.5 Å is binned every 1 Å and the last bin is from 14.5 Å to infinite.

The total number of bins is 14. The first- and second-sequence neighbors are

excluded whereas backbone atoms are included in counting contacts. When

used in scoring, only the bins covering 3.5–6.5 Å are used. In all cases,

contacts between atoms within a single residue are excluded from the counts

and scoring. In case of zero pairs, both potentials are set to be 2h kcal/mol.

No attempts were made to optimize these parameters and/or procedures

presented by the original articles for possibly better performance. There are

RAPDF-a, RAPDF-b, KBP-a, and KBP-b, depending on the structural

database used.

Multiple decoy sets for a- and b-proteins

The database dependence of the energy functions was tested by the

performance on structural discrimination. We established the decoy sets for

all-a and all-b proteins from the 4state_reduced set (Park and Levitt,

1996), lmds set (through conformational enumeration of loop region,

Keasar and Levitt, 2003), fisa set (Simons et al., 1997), fisa_casp3 set

(Simons et al., 1997), Rosetta (through Rosetta method; Simons et al.,

1997), lattice_ssfit (through conformational enumeration on whole protein,

Samudrala et al., 1999), hg_structural (through comparative modeling),

LKF (through minimizing the number of violations of van der Waals

constraints, Loose et al., 2004), and CASP4 decoy sets (generated by

numerous protein structure prediction teams using a variety of methods,

Feig and Brooks, 2002). There are 64 and 28 decoy sets for a (with

FIGURE 2 Energies of native states given by a-protein-trained energy

functions versus those by b-protein-trained energy functions for a-proteins

(s) and b-proteins (d). The results for RAPDF, KBP, and DFIRE are

shown at top, middle, and bottom panels, respectively.
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b-content ,10%) and b (with a-content ,10%) proteins, respectively.

All these 92 proteins have ,30% identity to the proteins in the train-

ing databases of all-a, all-b, a1b, and a/b proteins. The complete list of

these proteins is shown in Table 1.

Structure selections from decoys

For a given three-dimensional structure of a protein, the total potential of

mean force, G, is

G¼ 1

2
+
i;j

uði; j;rijÞ; (6)

where the summation is over all pairs of atoms. In structure selections from

decoy sets, the total potential G is calculated for each structure including

native state and decoys. The native state is correctly identified if its structure

has the lowest value of G. Z-score is defined as ðÆGdecoyæ�
GnativeÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðGdecoyÞ2æ� ÆGdecoyæ2

p
; where Æ æ denotes the average over all

FIGURE 3 Z-scores given by a-pro-

tein-trained energy functions versus those

by b-protein-trained energy functions for

a-protein (left) and b-protein (right)

decoy sets. The results for RAPDF,

KBP, and DFIRE are shown at top,

middle, and bottom panels, respectively.
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decoy structures of a given native protein and Gnative is the total residue-

residue potential of the native structure. Z-score is a measure of the bias

toward the native structure.

RESULTS AND DISCUSSION

We focus first on the energy functions extracted from the

databases of the all-a structures and all-b structures. Because

the structural difference between all-a and all-b structures

is the largest among all structural classes, the database de-

pendence is likely the largest between the energy functions

extracted from these two databases. It is known that

a-proteins involvemostly local contacts (contacts between the

residues with short sequence separations) whereas b-proteins

involve mostly nonlocal contacts.

Fig. 1 compares the performance of energy functions

obtained from the databases of the all-a structures and all-b

structures on structural discrimination of all-a proteins and

all-b proteins. The performance is characterized by the

success rate in ranking native structures within a given

number of energy-ranked structures (top-ranked structures,

Nt). For all three methods (RAPDF, KBP, and DFIRE), there

is some degree of database dependence because an

a-protein-trained energy function gives a higher success

rate in structure selections of a-proteins than a b-protein-

trained energy function. Similarly, a b-protein-trained

energy function gives a higher success rate in structure

selections of b-proteins than an a-protein-trained energy

function. However, DFIRE has a substantially smaller de-

pendence than either RAPDF or KBP. For example, for the

top 10 ranking (Nt ¼ 10), the difference between the success

rates of selecting a-proteins given by an energy function

trained by the two structural databases is 6% for RAPDF and

14% for KBP, but only 2% for DFIRE. For the structure

selection of b-proteins, the corresponding difference is 17%

for RAPDF, 18% for KBP, and 0% for DFIRE. Fig. 1 shows

that at every number of top-ranked structures, DFIRE

consistently gives the smallest difference between the two

success rates among RAPDF, KBP, and DFIRE.

The difference between the energy functions trained by

different structural databases can also be visualized by

comparing the total energies of the native structures of 64

a-proteins and 28 b-proteins given by the energy functions.

Fig. 2 compares the energy given by the a-protein-trained

potentials with that given by the b-protein-trained potentials.

The root mean-squared deviations between the two energy

values for the 64 a-proteins are 0.296 for RAPDF, 1.07 for

KBP, and 0.132 for DFIRE, respectively. (The relative

difference is used, i.e., the energy difference is divided by the

average energy predicted by two energy functions.) The

corresponding root mean-squared deviation values for the 28

b-proteins are 0.342 for RAPDF, 0.694 for KBP, and 0.068

for DFIRE, respectively. Thus, the DFIRE gives the smallest

database dependence in native energy. In fact, both RAPDF

and KBP show a systematic deviation. An a-protein-trained

energy function always gives a lower energy to a-proteins

than a b-protein-trained energy function does. Similarly, a

b-protein-trained energy function always gives a lower

energy to b-proteins than an a-protein-trained energy

function does. The lower the energy, the stronger the

systematic deviation. In contrast, the correlation slope

between the energy given by the a-protein-trained DFIRE

potential and that given by the b-protein-trained DFIRE

potential is very close to 1 for either a-proteins or b-proteins.

To further illustrate the database dependence, the Z-scores

given by energy functions trained by different databases are

shown in Fig. 3. It is clear that DFIRE has the smallest

database dependence on Z-scores. For a-protein decoys, the

root mean-square deviation values of Z-scores between two

database-trained energy functions are 1.95 for RAPDF, 1.07

for KBP, and 0.387 for DFIRE, respectively. The corre-

sponding values for b-protein decoys are 0.767 for RAPDF,

0.457 for KBP, and 0.257 for DFIRE, respectively.

For a-proteins, there is one significant outlier for DFIRE

at high Z-score value where the Z-score given by DFIRE-b is

lower than that given by DFIRE-a. This is contributed by

1beo in the lattice_ssfit decoy set. We found that the energy

differences given by DFIRE-a and DFIRE-b are in fact quite

small for both decoys and native states (,10%). The large

difference in Z-score resulted from an artificially narrow

range of DFIRE energies of decoys relative to the energy

difference between native state and decoys.

FIGURE 4 As in Fig. 1 but for the comparison of success rates given by

the energy functions trained by a-proteins, b-proteins, a/b proteins, a1b

proteins, and all proteins. The test sets are the decoy sets for 92 proteins.
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Thus, the ranks of native state energies (or success rates),

the energies of native states, and Z-scores predicted by the

energy functions extracted from all-a and all-b structures all

indicate that DFIRE has a significantly smaller database

dependence than either RAPDF or KBP. In addition to the

databases of all-a and all-b structures, we also built the

database of a1b and a/b structures. Because a1b and a/b

structures contain the structural features of both a-helices

and b-strands, one expects that the results based on the

energy functions extracted from mixed a- and b-structural

elements are closer to the results extracted from the

structures of all proteins. Indeed, as Fig. 4 shows, the

success rates predicted by the DFIRE potential extracted

from the original database (1011 proteins, DFIRE-all; Zhou

and Zhou, 2002) are closer to those by the potential extracted

from a1b and a/b structures than those by the potentials

from a- and b-databases. For example, at the top-10 ranking,

the differences between the average success rates over

rankings 1–10 are 2.4% between DFIRE-all and DFIRE-a,

2.4% between DFIRE-all and DFIRE-b, 1.1% between

DFIRE-all and DFIRE-a1b, and 0.2% between DFIRE-all

and DFIRE-a/b. The difference between the success rate

given by DFIRE-all and that by DFIRE-a/b is the smallest.

This is somewhat expected because the a/b structural class

contains mixed elements of a-helices and b-strands whereas

a1b structures do not mix these two structural elements.

FIGURE 5 The distance-dependent

pair potential trained with the databases

of a-proteins (dotted lines), b-proteins

(dashed lines), and all proteins (solid

lines). The left panel is between Cb-atoms

of Leu and ASP and the right panel is

between backbone atom N of Val and O

of Trp. The results for RAPDF, atomic

KBP, and DFIRE are shown in top,

middle, and bottom panels, respectively.
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The database for all proteins should be more similar to

a random mixture of a- and b-structural elements. The

database independence of DFIRE potential further confirms

the previous finding that the performance of DFIRE potential

in structure selection is insensitive to the number of proteins

used in the database (200 or more) and whether or not the

target proteins are contained in training structural databases

(Zhou and Zhou, 2002). It should be emphasized that the

DFIRE potential is not only mostly database independent but

also has higher success rates than RAPDF and KBP in either

a-protein decoys or b-protein decoys.

Fig. 5 provides two examples of the pair potentials given

by RAPDF, KBP, and DFIRE methods using three different

structural databases. One is the potential between Cb atoms

of Leu and Asp and the other is between backbone N atom of

Val and O atom of Trp. It is difficult, however, to judge the

difference between the potentials extracted from different

structural databases from the individual pair potential.

To further understand the source for the difference

between the three methods, one can compare the reduced

reference states ½NexpðrÞ ¼ +
ij
Nexpði; j; rÞ� given by the

methods. For both RAPDF and KBP, NexpðrÞ ¼
+

ij
Nexpði; j; rÞ ¼ NobsðrÞ: For DFIRE, Nexp(r) ¼ (r/

rcut)
a(Dr/Drcut)Nobs(rcut). Thus, the database dependence of

the reduced reference state in the DFIRE only comes from

Nobs(r) at r ¼ rcut, whereas it is Nobs(r) at all distance for

RAPDF and KBP. Fig. 6 plots the ratio of Nexp(r) obtained
from the a-protein database or the b-protein database to that

from the 1011-protein database. Even though all reference

states have the database dependence, the database de-

pendencies of RAPDF and KBP are significantly larger than

that of DFIRE. It should be noted that the database

dependence of Nobs(rcut) is normal because the number of

pairs at a certain distance is strongly dependent on the

number of proteins. This dependence is apparently canceled

by the database dependence of Nobs(i, j, r) in DFIRE. We

emphasize that the distance dependence of the reduced

reference state [Nexp(r)] is the same for RAPDF and KBP,

but, the dependence of Nexp(i, j, r) on atomic types for

RAPDF and KBP is different (see Eqs. 2 and 3).

CONCLUDING REMARKS

The examination of the database dependence of statistical

energy functions is important for an accurate prediction of

protein structures. An accurate energy function should be

capable of folding proteins with a, b, or any other structural

topologies. This requires the statistical energy function to be

independent of the structural database used for energy

extraction. Here, the database dependences of RAPDF,

atomic KBP, and DFIRE are examined based on their

performance on structure selections. It is shown that the

DFIRE potential is the least dependent on the structural

database used for energy derivation, compared toRAPDF and

atomic KBP. The significant database dependence of all-atom

KBP/RAPDF statistical potentials confirms the previous

finding for the database dependence of the residue-level Sippl

potential with smaller databases of different structural classes

(Furuichi andKoehl, 1998). The origin of significant database

dependence for RAPDF and atomic KBP is likely due to

significant database dependence of their reference states. This

highlights the importance of choosing an appropriate

reference state for deriving statistical energy function. The

mostly independent DFIRE energy function on the structural

database, together with the independence of its performance

for the systems with various amino-acid compositions

(surface vs. core, monomer vs. dimeric interface; Zhou and

Zhou, 2002, 2003; Liu et al., 2004), indicates that a physical

reference state produces not only a physically but also

a quantitatively more accurate statistical energy function.
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