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Become who you are. Do what only you can do. Be the master and the sculptor of

yourself.

Friedrich Nietzsche
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SUMMARY

Advancements in sensing technology and the shift toward the Internet of Things (IoT)

has transformed and will continue to transform data analytics by producing new require-

ments and more complex forms of data. On one hand, the abundance of data creates a

distinct opportunity to design more efficient systems and make near-optimal operational

decisions (from data-rich to decision-smart). On the other hand, the structural complexity

and heterogeneity of the generated data poses a significant challenge to extracting useful

features and patterns for making sense of the data and facilitating decision-making. There-

fore, continual research to develop new statistical and data analytical methodologies that

overcome these data challenges and turn them into opportunities is required.

Integrating heterogeneous data in an effective manner to construct an efficient model

of a system is the main theme of this Thesis. Heterogeneity of data may refer to different

levels of accuracy of data, different levels of information that process inputs (specifically

functional inputs) may contain in explaining an output, or different forms of data. In this

thesis, we will built upon the existing works and methods related to each of these classes of

heterogeneity, and introduce new methodologies to address existing challenges in practice.

In several applications, a large amount of low-accuracy (LA) data can be acquired at

a small cost. However, in many situations, such LA data is not sufficient for generating a

high-fidelity model of a system. To adjust and improve the model constructed by LA data,

a small sample of high-accuracy (HA) data, which is expensive to obtain, is usually fused

with the LA data. Unfortunately, current techniques assume that the HA data is already col-

lected and concentrate on fusion strategies, without providing guidelines on how to sample

the HA data. In Chapter I, we address the problem of collecting HA data adaptively and

sequentially so when it is integrated with the LA data a more accurate surrogate model is

achieved. For this purpose, we propose an approach that takes advantage of the information

provided by LA data as well as the previously selected HA data points and computes an
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improvement criterion over a design space to choose the next HA data point. The perfor-

mance of the proposed method is evaluated, using both simulation and case studies. The

results illustrate the importance of intelligent sampling of HA data in reducing the cost and

improving the model accuracy.

Learning the relationship between a response variable (e.g., a quality characteristic) and

a set of predictors (e.g., process variables) is of special importance in process modeling,

prediction, and optimization. In many applications the number of these variables is large,

but only a few of them contain information in explaining the output variable. Moreover, in

many situations, these variables are high-dimensional (e.g., they are represented by wave-

form signals). This sparsity of the high dimensional variables (a few of a large number

of HD variables contain information) requires a systematic approach to both modeling the

relationship between the variables and removing the non-informative input variables. In

Chapter II, we propose a functional regression method in which an HD response is esti-

mated and predicted through a set of HD covariates. To deal with the HD variables, the

functional regression coefficients are expanded through a set of low-dimensional smooth

basis functions, making the estimation tractable while preserving the essential information

of the covariates and response. In order to estimate the low-dimensional set of parameters

and to deal with a large number of HD variables a penalized loss function with both smooth-

ing and group lasso penalties is defined. The Block Coordinate Decent (BCD) method is

employed to develop a scalable, iterative, and computationally tractable algorithm for mini-

mizing the loss function and estimating the regression parameters. The group lasso penalty

is modified so that the loss function has a closed-form solution in each block of BCD,

which in turn increases the computational efficiency. Through simulations and case stud-

ies, the performance of the proposed method is evaluated and compared to benchmarks.

The results illustrate the advantage of the proposed method over the benchmark based on

the prediction mean square errors.

In recent years, measurement or collection of heterogeneous sets of data such as those
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containing scalars, waveform signals, images, and even structured point clouds, has be-

come more common. Statistical models based on such heterogeneous sets of data that

represent the behavior of an underlying system can be used in the monitoring, control, and

optimization of the system. Unfortunately, available methods mainly focus on the scalars

and profiles and do not provide a general framework for integrating different sources of

data to construct a model. In Chapter III, we address the problem of estimating a process

output, measured by a scalar, curve, image, or structured point cloud by a set of heteroge-

neous process variables such as scalar process setting, profile sensor readings, and images.

We introduce a general multiple tensor-on-tensor regression (MTOT) approach in which

each set of input data (predictor) and output measurements are represented by tensors. We

formulate a linear regression model between the input and output tensors and estimate the

parameters by minimizing a least square loss function. In order to avoid overfitting and

reduce the number of parameters to be estimated, we decompose the model parameters

using several basis matrices that span the input and output spaces, and provide efficient

optimization algorithms for learning the basis and coefficients.
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CHAPTER 1

AN ADAPTIVE FUSED SAMPLING APPROACH OF HIGH-ACCURACY DATA

IN THE PRESENCE OF LOW-ACCURACY DATA

1.1 Introduction

Accurate modeling of a complex system requires exploration of a large design space. How-

ever, this exploration often requires a large number of high-accuracy (HA) simulations or

experiments that are too costly or time-consuming to conduct. Alternatively, the model can

be built based upon less accurate simulations or experiments that are faster and less costly

to undertake and can provide a large number of data points. These approximate simula-

tions, however, compromise the model accuracy and may introduce bias in the model. A

practical approach is to fuse the LA data obtained from crude but fast experiments with a

few HA data points to remove the bias of the LA model and construct a reasonably accurate

and cost-effective model [1, 2, 3, 4, 5]. Nevertheless, the proposed data fusion strategies

assume the availability of LA and HA data and do not provide any strategy for sampling ex-

pensive HA data using the information that the abundant LA data can provide. The goal of

this work is to propose an LA-data-led approach for collecting HA data to be fused with LA

data for constructing a more accurate model. Therefore, this work lies at the intersection

of design of experiments and data fusion literature. Such LA-data-led sampling approach

of HA data can be used in many applications. For example, in geometric inspection and

metrology [6, 4], measurements from less accurate metrology devices (e.g., structured light

scanner) can lead the sampling trajectory of the HA data obtained from more accurate tools

such as traditional Coordinate Measuring Machines (CMMs) that use contact touch probes.

In another example, reducing the number of tests performed on a combustion engine

is one of the most important requirements to improve cost efficiency of the engine control
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units (ECU) modeling. The ECU includes models of different systems in a vehicle that are

constructed based on a large number of physical tests performed at different levels of engine

torque and speed. Often, these physical tests have already been performed on other engines

with similar specifications when collecting data from a new engine, and can be considered

as historical LA data. This LA data can guide the design values at which performing a

test on the new engine can significantly improve the model. This intelligent sampling

can significantly reduce the number of required experiments on the engine, benefiting the

manufacturer both economically and environmentally.

In general, data fusion refers to the process of combining data obtained from different

sources with the goal of achieving improved results over what could have been obtained

from each source, separately [5]. A data fusion approach may consider one of the following

settings: a) Integrating data obtained from computer codes with different levels of accuracy

[1], b) Integrating physical experiment data with the data obtained from a computer exper-

iment [7], and c) Integrating data collected from physical experiments with different levels

of accuracy [4]. In this chapter, we concentrate on a situation in which measurements con-

tain noise and are collected from two sources, where one source is more accurate but more

expensive than the other. We refer to the data from these two sources as low and high accu-

racy data. As a result, this chapter is more concerned with the third setting, i.e., the fusion

of physical experiments data (or stochastic computer experiment data). Nevertheless, our

proposed approach can be modified to be used in the deterministic settings. This work will

not be concerned with the second setting, which is usually cast as a calibration of a com-

puter model. In order to fuse data from LA and HA experiments, several approaches have

been introduced in the literature. In the simplest approach, the two sets of data are directly

merged together and are used to construct a surrogate model. For example, in metrology

applications, [8] used the CMM machine at the boundaries, where the laser scanner is less

accurate, and combined all the data to construct a model for a surface. Co-kriging models

have extensively been used to fuse LA and HA experiment data [1, 9]. The co-kriging
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approach usually generates very accurate predictive models but are computationally ex-

pensive [10]. Another popular framework used for data fusion is the hierarchical approach.

[11] proposed a hierarchical method with linear models to integrate physical and computer

experiments. [3] introduced Bayesian hierarchical Gaussian process (BHGP) models to

fuse multiple sources of data. Their approach can be viewed as the Bayesian formulation

of a co-kriging model. [4] used a hierarchical Bayesian model to align and fuse CMM and

laser scanner measurements. An alternative method that is tightly related to the Bayesian

approaches uses a link function between the LA and HA observations. In fact, both of the

co-kriging and hierarchical Bayesian employ a form of link function. [2] proposed a two-

step approach in which a surrogate model, referred to as a base model, is first fitted to the

LA data. Next, the base model is corrected according to the HA data, using a link function

that scales the base model linearly and captures the bias by a Gaussian process model. [4]

used a kernel regression link model and employed a hierarchical Bayesian approach for

estimating model parameters.

The aforementioned methods focus on data fusion, assuming that the LA and HA ex-

periments have already been conducted and the data is available. They, however, do not

provide a strategy on how to collect few expensive HA points given LA data to achieve a

more accurate model. Consequently, they may under or over sample from the HA design

space that may result in a less accurate model or unnecessary sampling costs. Therefore, it

would be essential to devise an adaptive approach that uses LA data to systematically ex-

plore the design space and guide the sampling strategy for HA experiments. A large group

of works in the field of computer design of experiments provides methods for sampling a

set of points from a design space, either in one-step or sequentially, to construct an accurate

model of a system. Space-filling designs such as Latin hypercube design [12, 13, 14, 15],

distance-based designs [16], uniform designs [17], and sequential versions of these designs

(e.g., Sobol sequences) are effective approaches for initial exploration of the surface/model

when no information is available. They, however, are constructed based on the assump-

3



tion that the features of the true model are uniformly distributed across the design space.

Criterion-based designs are obtained by minimizing/maximizing a statistical criterion such

as mean square prediction error (MSPE) or entropy [18, 19, 20, 21]. These approaches can

be converted into sequential designs by selecting the point that minimizes/maximizes the

criterion at each step. The issue with these approaches is that they only capture the global

behavior of the model using a correlation function but fail to concentrate on the areas of the

design space where the model has high local variations. To capture both the global and lo-

cal features, [22] introduced an expected improvement criterion for a global fit (EIGF). The

EIGF at each point of a design space represents the amount of improvement (in the fitted

model) that the corresponding point can introduce if added to the design. Unfortunately,

none of the foregoing sequential design schemes takes the fusion of HA and LA data into

account. They only focus on constructing a design when no prior information (e.g., LA

data) is available.

A relevant approach that considers the fusion of LA and HA computer experiment

data is the sequential nested Latin hypercube design (LHD) proposed by [23]. In this

approach the HA computer experiments are conducted at locations sampled by small LHDs

and the LA computer experiments are conducted at points selected by the large LHDs

obtained by enlarging the small LHDs. The issue with this method is that when sampling

the HA data, the information from the LA data is not used. [24] proposed sampling the

LA and HA data using separate designs to calibrate a computer model based on a physical

experiment. Although this approach provides flexibility in terms of choice of designs, the

LA information remains unused when sampling the HA data. Please note that, although

these two works are different in scope (i.e., one focuses on the fusion of data obtained

from computer experiments and the other focuses on a calibration problem), both ignore

the information from the LA data when sampling the HA data. This limitation is the main

focus of this chapter.

The main goal of this chapter is then to introduce a sequential sampling method for
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HA data that utilizes LA data to explore the design space and adaptively identify the points

where HA data can have the highest impact on improving the accuracy of the surrogate

model constructed by fusion of LA data and the sampled HA data. Additionally, as the

proposed method samples the design space sequentially, it can choose just enough HA

data samples for a pre-specified model accuracy and hence reduce the sampling costs. Our

method combines the EIGF experiment design approach with a data fusion method that

employs a link function to adaptively select the HA data. Specifically, we first fit a Gaussian

process (GP) to LA data to obtain a base surrogate model of the system. This model

captures the global behavior of the system but lacks accuracy. To improve this model, we

then select an initial set of HA points using a space filling approach. Next, we modify

the EIGF criterion based upon both HA and LA data, and employ it to select the next HA

points. Because the information is limited early on in the sampling procedure, we propose

a simulated annealing procedure to explore more when data is not reliable, and exploit the

sampled data as the sampling moves forward and more information becomes available.

The rest of the chapter is organized as follows: In the next section, we review the fusion

of the LA and HA data using a Gaussian process model. Section 1.3 describes the adaptive

sampling approach and how it can be used for selecting HA data. Next, in Section 1.4, we

evaluate the performance of the proposed method using two simulation studies. We also

compare the proposed method to three benchmarks based on the model prediction error.

Section 3.5 describes two case studies used to assess the proposed method in real-world

applications. Finally, we summarize this chapter in Section 3.6.

1.2 Review of the one-step data fusion model using a Gaussian process and link

function

In this section, we outline the data fusion method for the situation that both LA and HA data

are available. Next, we modify this framework to adaptively select and fuse the HA data.

When data from both experiments is already available, the common practice is to follow
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a two-step approach for data integration that involves fitting a statistical model (usually a

GP model) to the LA data to generate a base surrogate model. Next, this model is adjusted

using the HA data to obtain the final surrogate model. Before we describe these two steps,

we provide a set of notations used in this chapter.

In this chapter, we consider two sources of data: one obtained from an LA but in-

expensive experiment, and one that is acquired (or to be acquired) from HA, expensive

experiments. We assume that a design value in both the HA and LA experiments con-

sists of same p factors denoted by v = (v1, · · · , vp). We also denote an experiment

data measured at a design value v by z (v). For instance, in the metrology example,

v ∈ R2 is the location of a point in a x − y plane and z (v) is the height of the prod-

uct at that point. In the engine example, v ∈ R2 is a vector consisting of torque and

rpm, and z (v) is the engine performance (e.g., air mass) at a particular design value. We

denote an LA point with an index L and an HA point with an index H , i.e., (vL, zL)

for an LA data and (vH , zH) for an HA point. When no subscript is used for a design

value v, the point is general and can be low or high accuracy. We designate the de-

sign set of the LA experiments with ML runs by DL = {vL1, vL2, · · · , vLML
} and the

corresponding measurement data by zL = [zL1, zL2, · · · , zLML
]T . Our goal is to find an

HA design DH = {vH1, vH2, · · · , vHMH
} with the corresponding HA measurements

zH = [zH1, zH2, · · · , zHMH
]T ; MH � ML so that when integrated with zL a more ac-

curate surrogate model is obtained. That is, for an unexplored point v, the constructed

model returns a value that is almost equal to zH (v). Notice that we assume the HA ex-

periment produces results that agree with the true system and therefore the error in the HA

experiment data is negligible.

6



1.2.1 Fitting a Gaussian process to LA experiment data

The first step of data fusion is to construct a base surrogate model, using the LA data.

Mathematically, this can be represented by

zL = fL (vL) + εL, (1.1)

where εL accounts for the error and is assumed to follow a normal distribution with mean

zero and the variance σ2
N , i.e., εL ∼ N (0, σ2

N), and fL (vL) is the core part of the model

that captures the features and patterns of the surrogate model. In the case of deterministic

LA simulations, the term εL should be removed to reflect the fact that the data is not noisy.

Among all possible models to represent fL (vL), a GP model is usually considered due

to its flexibility and simplicity of parameter estimation. A GP model is a random process

in which a joint distribution of any k < ∞ observations of the process {zL1, · · · , zLk}

follows a multivariate Gaussian distribution. Such a GP model is denoted by zL (v) ∼

GP (mL (vL) , kL (vL,wL)) , where mL (vL) denotes the mean function of the Gaussian

process evaluated at vL and kL (vL,wL) is the covariance function of the GP. The output

of kL (vL,wL) is the covariance between two random variables zL (vL) and zL (wL) when

vL 6= wL and the variance of zL (vL), otherwise. In many applications, a constant or

a linear function is an appropriate selection for the mL. In this article, we consider a

linear function, i.e., we set mL (v) = βT [1;v], where β ∈ Rp+1 is a set of parameters

to be estimated. Several functional forms (kernels) have been introduced for covariance

functions, such as exponential, squared exponential, and Matern covariance functions that

are different in terms of smoothness and differentiability [25]. For a stationary GP, the

covariance function depends only on the distance between the two points. The distance

is usually defined as r (v,w) =
∑p

i=1 θi |vi − wi|
di , where θ = (θ1, · · · , θp) and d =

(d1, · · · , dp) are the scale and power parameters. When di = 2; i = 1, · · · , p the distance

is Euclidean. Often, a covariance function is written as kL (v,w) = σ2
Lh (r (v,w)), where
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h is a correlation function, and σ2
L is the variance of data at any given point v. For example,

in the squared exponential kernel function h (v,w) = exp (−r (v,w; di = 2)). For more

information on the form and properties of the covariance functions see [25, 22]. The hyper-

parameters Θ = {β,σL, θ} of the base model are unknown and should be estimated to best

fit the observed LA data {(vL, zL)}ML

i=1. The estimation procedure is based on the likelihood

maximization of a multivariate normal distribution (see [25] and [2]). Once the hyper-

parameters of a GP model are estimated given the available data, the model can be used

for prediction of z at any unexplored point v. The empirical best linear unbiased predictor

(BLUP) is usually adopted for this purpose (see [2]) as follows:

ẑL (v) = [1,v] β̂ + kT (K + σNIML
)−1
(
zL − V β̂

)
, (1.2)

where β̂ is the vector of estimated parameters, σN is the noise effect due to the noise-

contaminated measurements, kT = [k (v,vL1) , k (v,vL2) ; · · · , k (v,vLML
)] is a vector

whose elements are the covariance between v and all sampled points, K ∈ RML×ML is

a covariance matrix whose (i, j)th element is k (vLi,vLj) ; i, j = 1, · · · ,ML, and V ∈

RML×(p+1) is the regressor matrix whose ith row is [1,vLi]. Note that when the data is de-

terministic σN is zero. The BLUP smoothly interpolates all the observed points to generate

a prediction at a new point.

1.2.2 Fusion of the LA and HA data using a link model

In the second step, to integrate the LA and HA data and generate the final surrogate model,

[2] proposed the following link function:

zH (v) = ρ (v) ẑL (v) + δ (v) + e,

where zH (v) is the observed HA value at point v, ẑL (v) is the base model prediction,

δ (v) is a GP model that captures the bias, ρ (v) is a linear function in v, i.e., ρ (v) =
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ρ0 +
∑p

i=1 ρivi, and e is a random noise that follows a normal distribution. In the case of

deterministic HA simulations, the term e should be removed to reflect the fact that the data

is not noisy. Given a set of HA data, the goal is to estimate the parameters of δ (v), i.e.,

the mean and the covariance function hyper-parameters and ρ = {ρ0, ρ1, · · · , ρp}. The

estimates can be computed by maximizing a likelihood function. For a detailed estimation

procedure of these parameters refer to [2]. Next, given ρ̂i; i = 1, · · · , p, one can compute

δ = [δ (vH1) , · · · , δ (vHMH
)] by

δ (vHi) = zH (vHi)− ρ̂ (vHi) ẑL (vHi) .

Finally, at an unexplored point v, the bias δ (v) can be predicted using a BLUP predictor.

In this article, we select a constant value, δ0, for the mean function. Therefore, the BLUP

is constructed as

δ̂ (v) = δ̂0 + kTK−1
(
δ − δ̂01MH

)
,

where 1MH
is a vector of size MH whose elements are all one. At a given point v the

prediction of the final surrogate model is given by ẑ (v) = ρ̂ (v) ẑL (v) + δ̂ (v). Unless it

is mentioned otherwise, a Matern covariance function with the scale parameter ν = 3
2

(see

[25]) is used for δ (.)

Note that the major assumption for this model is that the LA data provides sufficient

information about the overall geometric shape of the true surface, otherwise discarding the

LA data and using only HA data may provide a better surrogate model.

1.3 Adaptive data fusion using a modified EIGF criterion

Instead of assuming that the HA data is already available, this article aims to sample HA

points sequentially to be integrated with the available LA data in order to construct a more

accurate final surrogate model. For this purpose, we first describe an expected improvement

criterion for a global fit, introduced by [22]. Then, we modify this criterion so that it takes
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the LA data into account when selecting an HA point and ultimately constructing an HA

design.

1.3.1 Expected improvement for a global fit

An expected improvement (EI) for computing the maximum of a black-box function was

first proposed by [26]. [22] extends the EI criterion to a global fit setting, where the goal

is to find a design that leads to a better global fit rather than the maximum point. Let Z (.)

follow a GP model denoted by GP (mZ (.) , kZ (., .)), i.e., Z (v) is a random variable that

follows a normal distribution with mean mZ (v) and the variance V ar (Z (v)) = kZ (v,v).

Then, the improvement of a point v is defined as

I (v) = (Z (v)− z (vc))
2 ,

where vc is the nearest observed design value to v, and z (vc) is its corresponding data.

Note that one may consider I(v) = (Z(v)−Z(vc))
2

||v−vc||2 as an improvement criterion, which effec-

tively gives more weight to the points that are closer to vc. But, due to the major assumption

of the Gaussian process that the closer the points the more similar they are, we would like

to select a point further away from vc to obtain more information. Therefore, a normal-

ized I (v) may not be a good choice. Because Z (v) is a random variable, the expected

improvement for a global fit (EIGF) should be considered and is defined as

EIGF (v) = E
(
(Z (v)− z (vc))

2) = V ar (Z (v)) + [ẑ (v)− z (vc)]
2 ,

where ẑ (v) is the prediction value of the GP model at point v. In the EIGF equation, a

large value of V ar (Z (v)) indicates that the model is uncertain about its prediction at v,

and therefore including v in the design can significantly improve the model. Similarly,

a large value of [ẑ (v)− z (vc)]
2 indicates a high local variation around v and therefore

selection of v in the design may help the model in capturing the local behaviors. As a
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result, in theory, the EIGF captures both the global and local behavior of the model based on

the variance at each point, and by exploiting the observed neighboring points. To obtain a

designDH , one can use the EIGF criterion sequentially. That is, at each step the maximizer

of the EIGF over the design space is sampled until a pre-specified design size is reached.

The main issue with the EIGF criterion is that, with no prior knowledge of the surface

and with a small design size, [ẑ (v)− z (vc)]
2 may not capture the local variations because

the prediction value at a point v is an interpolation of its neighboring points (obtained from

the BLUP), and therefore it is likely that [ẑ (v)− z (vc)]
2 becomes ineffective. Therefore,

given the small size of HA experiments, an adaptive sampling approach based on EIGF

that only relies on HA data may result in an inaccurate surrogate model. However, when

LA data is available, the information from the base surrogate model can be exploited as

the prior knowledge to resolve this problem. Beside this issue, the selection of the EIGF

maximizer at each step of the sequential sampling, especially at the early steps when only

a few data points are explored, may result in excessively greedy choices. To alleviate this

problem, an exploration-exploitation routine can be considered.

In the next section, we introduce a modified version of EIGF that computes the expected

improvement of a point by considering not only the explored HA neighboring points, but

also the available LA data. Furthermore, we design an exploration and exploitation frame-

work that uses the modified EIGF probabilistically to sample the next HA point.

1.3.2 Modified EIGF and data fusion

In this section, we propose an approach for sampling HA points, considering the informa-

tion of the LA data. For this purpose, we modify the EIGF criterion so that it takes the LA

data into account when computing the expected improvement of a design value. The un-

derlying assumption of the proposed method is that the base surrogate model, constructed

using the LA data, captures some of the local features of the system, and therefore can lead

the sampling path to the areas of the design space with higher local variations. This will
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help increase the number of samples collected in these local areas and, consequently, re-

sults in a more accurate model. In order to achieve this goal, we define the fused expected

improvement for a global fit and data fusion (FEIGF) by considering the link function be-

tween the HA and LA, ZH (vH) = ρ (vH) ẑL (vH) + δ (vH) , as follows:

FEIGF (vH) = E
(
(ZH (vH)− zH (vHc))

2)
= E

(
(ρ (vH) ẑL (vH) + δ (vH)− ρ (vHc) ẑL (vHc)− δ (vHc))

2)
= (ρ (vH) ẑL (vH)− ρ (vH) ẑL (vHc))

2 + V ar (δ (vH))

+
(
δ̂ (vH)− δ (vHc)

)2
,

where vH is a design value that may be considered for an HA experiment and vHc is the

nearest explored point to vH . In the FEIGF equation, ρ (.) and δ (.) are assumed to be

known or are estimated based on previously observed data (e.g., data from previous sam-

pling steps). Furthermore, δ̂ (vH) denotes the prediction of the bias GP model, δ (vHc) rep-

resents the bias value computed based on the HA measurement and is assumed to be known,

and ẑL (.) denotes the prediction of the base surrogate model at a given point. The FEIGF

consists of three terms: The first term (ρ (vH) ẑL (vH)− ρ (vH) ẑL (vHc))
2, measures the

local behavior of the surface as it is revealed by the LA model. The large value of this term

at a design value vH signals high variations around that point and therefore, including it in

the design can improve the accuracy of the final model. The second term, V ar (δ (vH)),

captures the prediction uncertainty of the bias model, δ, at vH . When V ar (δ (vH)) is high,

including vH in the design may improve the predictions of the bias model. The third term,(
δ̂ (vH)− δ (vHc)

)2
, quantifies the local variations of the bias around vH , and therefore,

including this point in the design may result in more accurate bias predictions.

In order to adaptively and sequentially sample an HA data point using the FEIGF cri-

terion, we first consider a dense grid, G, over the design space and at each step select

the design value that for example maximizes the FEIGF criterion over such a grid. In
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other words, at the sampling step t (i.e., when t − 1 HA points are already collected), we

first estimate the GP model of bias (δt−1) and the scaling parameter (ρt−1) based on the

available LA points and the HA data points sampled up to step t − 1, using the approach

explained in section 1.2.2. Next, given the GP model of bias and the scaling parameter,

we calculate the FEIGF over the grid G. Finally to select a point to be added to the de-

sign, we may consider the point that maximizes FEIGF criterion. That is, we may sample

vt = arg maxv∈G (FEIGF (v) |δt−1, ρt−1). However, the problem with sampling the point

with maximum FEIGF is that at the early stages of HA sampling when the number of HA

points is small, relying on the maximum value of FEIGF may result in excessively greedy

choices. The reason is that when the GP estimation is based on only few points the pre-

diction variance (i.e., the second term in FEIGF) is large for many points, increasing the

influence of the third term in separating and selecting the HA point. The third term, how-

ever, is inaccurate when the bias δ is estimated based on only few points, and results in a

poor choice of a design value. To alleviate this problem, we adopt a probabilistic sampling

approach in collecting the points so that early on in the process it allows selecting points

with smaller-than-maximum FEIGF value (exploration) and as more information becomes

available, it high-likely samples design values that maximize the FEIGF criterion. For

this purpose, we define the following probability distribution parameterized by αt over the

FEIGF (v):

pαt (FEIGF (v)) =
exp (αtFEIGF (v))∫
exp (αtFEIGF (v)) dv

,

where αt is an increasing sequence that tends to zero as t → 0 and tends to ∞ as t →

∞. In an extreme case, when αt = 0, the distribution pαt (FEIGF (v)) is a uniform

distribution and as αt →∞, the above distribution places all the probability mass over the

max (FEIGF (v)). In this study, we select αt = t
MH

at the sampling step t. We randomly

sample from pαt (FEIGF (v)) at each step t to select the HA data point. Observe that early

in the sampling process, we allow selecting points that have smaller values of improvement

to explore the design space, and as more information becomes available, we select points
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Figure 1.1: Overview of the proposed adaptive data fusion approach

with larger FEIGF. Note that, to compute the probability distribution, we approximate the

continuous distribution by a discrete distribution in which the probability mass is located

at each point of the grid G, where we calculated the FEIGF. Finally note that, one can

sample a batch of points, instead of one, at each sampling process step. However, in our

experience, when the batch size is small comparing to the total sampling budget, it will

not significantly influence the results. Figure 1.1 illustrates an overview of the proposed

adaptive data fusion approach.

1.4 Performance evaluation using simulation study

In this section, we conduct simulations to evaluate the performance of the proposed adap-

tive data fusion technique. We compare the proposed method, labeled as adaptive with

fusion, with three other benchmarks: In the first benchmark, we consider a one-step de-

sign in which MH data points from HA experiments are sampled using an LHD and are

directly used to construct the final model. We label this benchmark as one-step approach.

The second benchmark, designated as one-step-fused, selects MH data points from HA ex-

periments using an LHD and fuses them with the available LA data through a link model

described in Section 1.2.2. Finally, the third benchmark adaptively samples the HA data

using the EIGF without integrating the sampled data with the available LA data. We label

this method adaptive w/o fusion. Note that we used the standard LHD which is not based

on optimizing any criterion. We compare all the methods in terms of prediction accuracy
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using standard mean square error, i.e.,

SMSE =

∑M
i=1 (zi − ẑi)2∑M

i=1 z
2
i

,

where zi is the true system value, ẑi is the predicted value of the final surrogate model, and

M is the total number of points in a grid over which we sample points. In order to estimate

the hyper-parameters of a GP model, we use a MATLAB package developed by [25].

One-dimensional surface simulation: We first consider a one-dimensional non-stationary

function

zH = f (v) = (6v − 2)2 sin (12v − 4) + 3 cos (50v − 1) + cos (4v − 1)

as the true function for v ∈ [0, 1]. Next, we generate the LA data from a shifted and scaled

version of the function f defined as

zL = g (v) = Af (v) +B (v − 0.5)2 + C + ε (v) ,

where, A = 1.2, B = 40, and C = 0.5, and ε (v) is a normally distributed error with

mean 0 and standard deviation τ (v) = 4 (v − 0.5)2, i.e., ε (v) ∼ N
(
0, τ (v)2

)
. Notice

that zL is designed to have larger bias and noise near the boundaries as it is the case in

many real applications (e.g., in metrology). Figure 1.2a illustrates the true curve along

with the LA data collected over an equidistant grid of size 100. Figure 1.2b illustrates

the true curve, the fitted GP to the LA data and the fitted curves obtained by one-step and

one-step-fused benchmarks as well as the adaptive with and without fusion methods. The

initial number of points for the adaptive approaches is MH,init = 5 and the budget, MH , is

25 for all methods. As described, the one-step benchmarks sample the 25 points at once

using an LHD, whereas the adaptive methods first sample MH,init = 5 design values by an

LHD, and then sequentially sample points from a grid of size M = 1000. As illustrated,
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Figure 1.2: (a) Illustration of the true curve and LA data in one dimensional simulation; (b)
Example of the fitted curves in comparison to the true curve

the predictions obtained from the proposed method and the one-step-fused benchmark are

fairly accurate, indicating the advantage of the data fusion when the LA data captures some

of the local and global behaviors of the surface. Between these two methods, the proposed

method performs slightly better where local variations exist and the LA data is more biased

(e.g., in [0, 0.1] and [0.9, 1] intervals). The adaptive w/o fusion selects several points on the

interval [0.8, 1] where the function has a large slope and generates an accurate prediction.

However, it fails to capture the local variations in the intervals [0.1, 0.2] and [0.4, 0.6]

because ẑ (v) is an interpolation of its neighbors, which can be located far apart when the

sample size is small. As a result, the adaptive without fusion does not perform well in this

scenario. The one-step approach performs fairly well but fails to capture some of the local

variations due to a lack of prior information. Such information is provided by the LA data

when fusion is performed.

To further investigate and compare the performance of the proposed method with the

benchmarks, we calculate the SMSE values after sampling of each point in adaptive ap-

proaches and compare them to the SMSEs obtained by one-step methods. Because our

approach is probabilistic in nature, we consider 100 replications of the simulation and take

the average of SMSE values over these replications. For all these simulations, we take the
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initial number of points to be 20% of the budget, MH . Figure 1.3 illustrates the perfor-

mance of proposed method in comparison to all benchmarks at different values of MH .

For a better visualization, we illustrate the logarithm of SMSE in these figures. For the

one-step methods the SMSE represents the error of the fit when MH points are all selected

at once. Observe that in all cases the adaptive approach outperforms the other methods in

terms of SMSE. First, with the same number of samples the proposed method produces

more accurate predictions. For instance, when MH = 20, the logarithm of the SMSE of

the proposed method is about −5, where it is about −4.2 and −2 for one-step-fused and

one-step benchmarks, respectively. Second, it reaches the same level of the prediction error

with fewer number of samples than the benchmarks. For example, in Figure 1.3c and 1.3d

the adaptive approach with fusion obtains the same level of SMSE with about 15 and 20

samples rather than 25 and 30 used by other methods.

In all cases, the SMSE of the adaptive approach drops rapidly at the beginning of the

sampling process. The reason is that early samples provide information about the overall

behavior of the bias (i.e., they introduce large improvements), but late samples mostly

introduce detailed information and provide small improvements. Therefore, after some

sampling steps the improvement in SMSE becomes very slow. In practice, this step can be

considered as a stopping criterion. For example, in Figure 1.3d after sampling 26 points,

no significant improvement can be observed.

Two-dimensional surface simulation: As a two-dimensional example, we consider a six-

hump camel surface proposed by [27] as the true surface:

zH = f (v1, v2) = 4v21 − 2.1v41 +
1

3
v61 + v1v2 − 4v22 + 4v42

with v1 ∈ [−2, 2] and v2 ∈ [−1, 1]. We scale and shift the true function to construct an LA
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Figure 1.3: Comparison of the proposed method to benchmarks in simulation study I at
different values of budget MH . Observe that the adaptive approach reaches the same level
of error as benchmarks with much fewer samples. For example in (c) the proposed approach
reaches the same level of error of one-step-fused with only 15 sampled points.
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data generator as

zL = g (v) = Af (v) +B1 (v1 − 0.5) +B2 (v2 + 0.5) + C + ε,

where A = 0.5, B1 = 1, B2 = 2, and C = 2, and ε is a normally distributed error with

mean 0 and standard deviation τ , i.e., ε ∼ N (0, τ 2). Figure 1.4 illustrates the f and g

functions evaluated over an equidistant grid of 50 × 50 with τ = 0.2. We evaluate the

performance of the proposed method in comparison to all benchmarks at different values

of MH based upon the SMSE values calculated over an equidistant grid of 50× 50 over the

design space. Similar to the previous simulation study, the SMSE of the one-step methods

represents the prediction error of the final model generated by MH points that are selected

at once using an LHD. Figure 1.5 illustrates the SMSE of the proposed method versus the

benchmarks. Because our approach is probabilistic in nature, we consider 100 replications

of the simulation and take the average of SMSE values over these replications. As illus-

trated, in all cases the adaptive approach results in more accurate predictions. For instance,

when MH = 80, the logarithm of the SMSE is about −5.5 that outperforms the one-step-

fused benchmark (−5), and the other two benchmarks (−3.5). Furthermore, the proposed

method can achieve the same level of prediction error with fewer number of samples than

the benchmarks. For example, in Figure 1.5d the adaptive approach with fusion obtained

the same level of SMSE with about 65 samples rather than 100 that is used by other meth-

ods. In addition, the initial SMSE of the proposed method is always smaller than the initial

SMSE of the adaptive w/o fusion benchmark. This superiority is due to the information

provided by the LA data. Finally, it is worth mentioning the two small jumps in Figures

1.5a and 1.5b. The reason for these jumps is the computational instabilities that may oc-

casionally occur when fitting a GP model. Such instabilities are related to the likelihood

optimization procedure that may be trapped in a local maxima. To avoid (or alleviate) these

situations, we incorporate a simulated annealing heuristic for function optimization [28] in

19



-2 -1 0 1 2

v
1

-1

-0.5

0

0.5

1

v 2

True surface

-6

-4

-2

0

(a)

-2 -1 0 1 2

v
1

-1

-0.5

0

0.5

1

v 2

Low accuracy surface

-4

-2

0

2

4

(b)

Figure 1.4: Illustration of the true and biased surfaces used for two dimensional simulation

our procedure.

1.5 Case Study

In this section, we consider two case studies to evaluate the performance of the proposed

method in real-world applications. First, we consider a metrology example in which a set of

HA metrology data are collected using a CMM to improve the LA measurements collected

by a structured laser (SL) scanner for reconstructing a free-form surface. In the second case

study, we are interested in constructing a surrogate model that predicts the air mass of an

engine at a specific torque and revolution speed by performing few new HA experiments

on the engine and combining it with previously collected data from another similar engine.

1.5.1 Freeform surface metrology

The freeform surface, illustrated in Figure 1.6, has been used for this case study. The

freeform surface is machined from a 100mm×100mm×100mmworkpiece. The surface

is measured, using both SL scanner and a Coordinate Measuring Machine (CMM) Zeiss

“Prismo 5 HTG VAST” equipped with an analog probe head with maximum probing error
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Figure 1.5: Comparison of the proposed method to benchmarks in simulation study II at
different values of budget MH . Note that the adaptive approach can obtain the same level
of error as benchmarks with fewer samples. For example in (c), the proposed approach
achieves the same level of error as one-step with fusion benchmark with only 65 sampled
points rather than 100.
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Figure 1.6: The free-form surface used for the case study [5]. Three orthogonal reference
surfaces (left panel). CMM sampling (right panel).

of MPEP = 2µm (according to ISO 10360-2). For more details on the measurement

procedure refer to [5]. The point cloud obtained from each machine (SL scanner and CMM)

contains 9635 points. The measurements from the SL scanner is considered as the LA data

points, and the available data from the CMM is used to construct an emulator of the CMM

by fitting a GP model. The goal is to collect a set of HA data from the CMM so when

combined with the LA data points a more accurate final surrogate model is achieved.

We use our proposed method to construct a final surrogate model of the surface, and

will compare its performance in reconstructing the freeform surface to other benchmarks,

i.e., one-step, one-step-fused, and adaptive w/o fusion at different levels of budget MH .

In the case of adaptive approaches, we choose the initial sample size to be 20% of the

budget. In order to estimate the link model parameters, we consider the squared exponential

covariance function. Before discussing the prediction performance of surrogate models

obtained by the proposed method and the benchmarks, it is interesting to look into the

location of the points selected by the proposed adaptive approach. Figure 1.7 illustrates the

location of the selected points forMH = 30 and 75. As illustrated, more points are selected

on the upper right corner and at the lower left corner where more local variations exist. For

example, several points are sampled around the boundary of the hump on the lower left

area. This indicates the capability of our approach in selecting points at the locations with

higher variability. Figure 1.8 illustrates the logarithm of SMSE of each method at different

levels of budget. As can be seen from the figures and similar to the simulation results, the

22



𝑥

𝑦

Sampled point 𝑀𝐻 = 30

(a)

𝑥

𝑦

Sampled point 𝑀𝐻 =75

(b)

Figure 1.7: Location of the points selected by the proposed method for (a) MH = 30 and
(b) MH = 75

proposed method can achieve the same level of SMSE as other approaches, particularly the

one-step-fused approach, with much smaller sampled points. For example, whenMH = 70,

the proposed approach obtains same SMSE as the one-step-fused approach with about 60%

of the budget. Observe that the initial SMSE of the proposed method is smaller than both

the one-step and adaptive w/o fusion benchmarks. The reason is the good accuracy of the

LA data that results in the base surrogate model with small errors. The base surrogate

model provides significant information about the surface even without any (or with very

few) HA data points available.

1.5.2 ECU calibration

In a modern vehicle, the engine control unit (ECU) ensures the functionality of the vehicle

and diagnoses failure for a number of components. The ECU implements surrogate models

of complex physical dynamical systems that are constructed based on a large number of

tests performed at different levels of engine torque and speed. To reduce the experiment

cost, exploiting the performance measurements of another engine (LA data) with similar

specifications (e.g., with the same number of cylinder and displacement) may help iden-
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Figure 1.8: Comparison of the proposed method to benchmarks in case study I at different
values of budget MH . Note that the adaptive approach requires fewer samples to obtain the
same level of error as benchmarks. For example, in (b) the proposed approach obtains the
same SMSE as the one-step-fused approach with about 75% of the budget.
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tify few design values at which the engine should be evaluated. The data collected from

these tests (HA data) can then be fused to the LA data to construct a surrogate model. For

example, for a new engine, the air mass of the combustion process should be measured

at different combinations of engine torque and revolution speed (rpm) to ensure the right

performance of the engine. Performing these tests over a large number of rpm-torque com-

binations is not economical. Historical data obtained from a similar engine may illuminate

few points where the air mass should be measured.

For this purpose, we consider two diesel engines, both with the displacement of 2000 cc

and four cylinders. In ECU calibration of a diesel engine a typical task is to optimize

the air mass of the combustion process due to the different engine states, namely different

combinations of engine revolutions (rpm) and torque. We designate the engines by E1

and E2. We assume that the data from E1 has already been collected through a series

of experiments and are interested in integrating this data with a few experimental data

obtained from E2 to generate a surrogate model that predicts the performance of E2 at

various design values. Therefore, the data in this case study is the air mass measured over

a two dimensional space of rpm and torque.

The available data for both engines E1 and E2 contains 256 measurements at differ-

ent combinations of rpm-torque. In this case study, we first generate an emulator of each

engineEi; i = 1, 2 by fitting a GP model with a constant mean and piecewise cubic covari-

ance (PCC) function to the available data. These emulators are then used to replicate the

performance of the engines at any given design value. Figure 1.9 illustrates the predictions

of both E1 and E2 emulators over a grid of size 50× 50. Note that the emulator of E1 can

be considered as the base surrogate model, i.e., a GP model fitted to the LA data, but the

emulator of E2 is used as an HA simulator that produces the result of an experiment on E2

at any pair of rpm and torque.

We compare the accuracy of the final surrogate models generated by the proposed

method and the benchmarks for different budgets. For this purpose we calculate the SMSE
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Figure 1.9: Prediction of the engines air mass at different values of rpm-torque pairs ob-
tained by the emulators.

over an equidistant grid of size 100× 100. Figure 1.10 illustrates the logarithm of SMSEs

of each method at Mh = 15, 25. As illustrated, the final surrogate model constructed by

the proposed method achieves lower prediction errors. Furthermore, the proposed approach

can obtain the same level of accuracy with much fewer sampled points when compared to

the benchmarks. For example when MH = 25, the proposed approach obtains the same

level of accuracy as the one-step-fused approach with about 80% of the budget.

Examples of the distribution of the points included in the design for different budgets

are illustrated in Figure 1.11. Note that in all three cases, the points are mostly selected at

the locations with higher local variabilities, especially the upper part of the surface. This is

mainly because the proposed method can identify the locations with higher local variations

and perform exploration at those areas.

1.6 Discussion

This work mainly assumes that the LA data is already available and utilizes the information

from such data to sample HA data. The available LA data could have been collected using

any design of experiment approach such as LHD and criterion-based designs. The design

of experiment method by which the LA data is collected may or may not have significant

influence on the final accuracy of the model. For example, in the situation, in which obtain-
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Figure 1.10: Comparison of the proposed method to benchmarks in case study II for differ-
ent values of budget MH . Observe that in both situations, the adaptive approach can reach
the same level of error as benchmarks with much fewer samples. For example, in (b) the
proposed approach obtains the same SMSE as the one-step-fused approach with about 80%
of the budget.
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ing LA data is very inexpensive and a large set of data that effectively covers the sampling

space can be collected, any legitimate design of experiment may provide sufficient infor-

mation about the LA design space. However, when the size of LA data is not very large, a

design that better captures the design space, by for example an adaptive approach, can be

beneficial.

Given the lowest accuracy data is available, the proposed method may be extended

to the situations in which data can be collected from three or more sources with different

fidelity levels. For this purpose, our proposed method can be used in a nested or hierarchical

fashion to collect data from higher fidelity levels. For example, when three levels of fidelity,

low accuracy (LA), medium accuracy (MA), and high accuracy (HA) exists, one can first

build a base surrogate model using the LA data and employ our approach to collect MA

data and construct a more accurate model (intermediate model) by fusion of LA and MA

data. Then the intermediate model can be used as the base model in our approach to collect

HA data and the final model.

1.7 Conclusion

In many applications, inexpensive high-density but low-accuracy data is fused with high-

accuracy data obtained from expensive experiments to improve the model estimation. Cur-

rent approaches assume that the HA data is already measured and focus on techniques

to integrate the LA and HA data. This chapter considers the problem of selecting high-

accuracy data points to be fused with available LA data. In particular, an adaptive approach

that takes advantage of the LA data as well as the previously selected HA points is proposed

to sequentially select the next HA point. The proposed approach modifies the concept of

expected improvement and combines it with the link model used in data fusion to collect as

few HA data points as possible so when combined with the available LA data, a more accu-

rate surrogate model is achieved. The proposed adaptive data fusion approach is compared

and contrasted with three different benchmarks in several simulation and case studies. The
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simulation studies illustrated the strength of our method in modeling a non-stationary sur-

face with a few HA data points when biased LA data of a surface was available. Two case

studies illustrated the benefit of our approach in real-world applications. The first case

study modeled a freeform surface by collecting (from a CMM) a few HA points and in-

tegrating them with a large number of available LA data points measured by a structured

laser scanner. The results indicated that our approach selects more points at the locations

with larger local variations, which resulted in a more accurate model in terms of prediction

errors. In the second case study, the performance measurements of a vehicle engine were

exploited to collect HA data from a similar engine to generate an accurate surrogate model

for ECU calibration. It was observed that the model generated by the proposed adaptive

method produces more accurate predictions compared to the models constructed by the

benchmarks.

This work assumes that LA data is already available and utilizes the information from

such data to sample HA data. However, when low-accuracy data is not available, one may

or may not consider sampling LA data. Decision to sample LA data to be used for sampling

HA data depends on the relative cost of sampling and the accuracy of LA and HA data and

requires further analysis as a future work.
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CHAPTER 2

PROCESS MODELING AND PREDICTION WITH LARGE NUMBER

HIGH-DIMENSIONAL VARIABLES USING FUNCTIONAL REGRESSION

2.1 Introduction

In various real-world systems, a response variable (e.g., a quality measure) is influenced,

regulated, or related to some input variables (e.g., process variables). Revealing and learn-

ing the relationship between the response variable and the set of covariates/predictors is of

special importance in system modeling, prediction, and optimization. This is a well-studied

problem in regression, design and analysis of experiments, and response surface method-

ology, especially when the variables are scalar. However, in many applications, system

variables are represented in the form of high-dimensional (HD) data, such as waveform

signals [29, 30]. Profile-on-profile regression methods have been introduced for modeling

systems with profile inputs and output [31, 32, 33, 34, 35, 36, 37, 38, 39]. Nevertheless,

these approaches are not suitable for situations in which only a small fraction of inputs

are informative. In reality, however, most industrial processes generate a large number

of waveform signals from which only a small number is related to the response variable.

For example, among a large number of variables measured by sensors, only a few of the

internal combustion engine state variables influence the exhaust gas aftertreatment process

[40]. The effectiveness of this process is measured by a relative air/fuel ratio (λ) that if falls

below an acceptability threshold and remains under the threshold for a given time range

(λ-undershoot fault) causes uncontrolled emissions of nitrogen oxides (NOx) during the

regeneration phase of a catalyst system. Constructing a model that estimates the lambda

signal based on internal combustion engine state variables can be used to better control

the lambda values as well as to identify a faulty λ-sensor by comparing the estimates and
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sensor readings. Unfortunately, however, a large number of redundant input signals creates

a challenge for the existing profile-on-profile regression methods in constructing such a

model.

The challenge of high dimensionality in data analytics usually refers to either I) large

number of samples, II) large number of variables, or III) high dimensionality of each of the

variables (i.e., functional variables). In this chapter, we are dealing with cases II and III.

Beside the computational issues, both of these challenges cause sever overfitting in param-

eter estimation and require dimensionality reduction and sparsity structures to be imposed.

Furthermore, capturing the correlation structure within each of HD variables is critical in

accurate parameter estimation. A regular regression approach that considers each point of

an HD variable as a separate independent scalar variable will significantly fail for ignor-

ing the correlation structure of the points and severely increasing the number of variables

(p � n). Principal Component Analysis (PCA) as a dimensional reduction approach im-

proves process modeling by reducing the dimension of each HD variable while capturing

the linear correlation structure of the points. In fact, the PCA replaces the points observed

from an HD variable, with smaller number of points that are a linear combination of orig-

inal ones, and considers these new points as the scalar variables. However, this approach

masks the effect of each variable by merging them into new ones and fails to exploit the

ordering structure of, for example, a profile variable. To reduce the size of an HD variable

and to capture and exploit the correlation structure of the points, functional data analysis

(FDA) has been widely used in various application from climate analysis [33] to healthcare

[35, 41, 42] and marketing [36]. In this chapter, we focus on functional regression, which

refers to a regression model in which either the inputs, output, or both are in a functional

form. In the literature of functional regression, a function usually refers to a profile, i.e.,

a function with a scalar input (y = f (t) ; t ∈ R). In this work, we interchangeably use

profile and waveform signal. The main idea of the functional regression (to deal with the

third challenge) is to reduce the dimension of each functional variable by a set of functional
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bases such as Fourier and spline bases. The benefit of employing such bases is that unlike

the PCA, it captures the nonlinear correlation structure between the points of a function.

In the functional regression analysis, a large body of work focuses on regression mod-

els with functional inputs and scalar response [31, 43, 44, 45, 46]. Most of these works

consider a linear relationship between the scalar response and the functional input, i.e.,

y = α+
∫
s
β (s)x (s) ds+ε,where α is an intercept, x (s) ; s ∈ R is a profile, β (s) ; s ∈ R

is the profile parameter, and ε is a noise term, and some extend the model to a generalized

functional linear model [47]. The goal of these works is to estimate the parameter α and

the functional parameter β (s) by minimizing a loss function that may include smooth-

ing and sparsity penalties such as L2, L1, or group lasso penalties [43, 46, 44]. These

penalties are usually used to alleviate the overfitting issue. Another group of works con-

siders the case in which a functional response is modeled by a set of scalar inputs, i.e.,

y (t) = α (t) + Xβ (t) ; t ∈ R where X is the design matrix and the goal is to estimate

functional parameters α (t) and β (t). A complete summary of these works can be found

in [48]. Almost all these works focus on the case in which y (t) is a profile, with the

exceptions of [49] and [50], which considered images as the response.

A more recently emerged group of works in the field of functional regression estimates

a functional response with a functional input [31, 32, 33, 34, 35, 36, 37, 38, 39]:

y (t) = α (t) +

∫
β (s, t)x (s) ds+ ε (t) ,

where α (t) ; t ∈ R is a functional intercept, x (s) ; s ∈ R is a functional input (a profile),

β (s, t) ; s, t ∈ R is a functional parameter, and ε (t) is a random process. Such models

are extensively used in healthcare [35, 41, 42] and marketing [36] applications and showed

promising performances. Unfortunately, however, most of the available methods are de-

signed for a single functional input to predict a functional response. Furthermore, those

that allow for multiple profile inputs (e.g., [36, 39]) fail to handle situations in which only
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small portion of the inputs are informative. That is, they are not capable of sensor selection,

i.e., selecting the most informative functional inputs. Finally, these works are limited to the

profile-on-profile regression (i.e, s, t ∈ R) and do not discuss the case with higher dimen-

sional inputs or output, for example when t ∈ R2. The application of such extension can be

found in neuroscience [50]. The main contribution of this work is that we extend previous

profile-on-profile regression methods to situations in which a large number of inputs are

available, but only small fraction of these inputs are informative. This situation is handled

by introducing a functional group lasso penalty that performs variable selection to identify

which inputs are most informative. Other contributions of this work are as follows: we ex-

tend the profile-on-profile regression to situations with HD functions, and demonstrate the

connection between functional regression methods and tensor algebra, and use the tensor

calculus to improve the space and computational complexity of the proposed method.

The main goal of this chapter is to develop a functional regression methodology that

takes in a large number of functional covariates (relative to the sample size) to estimate

an (HD) functional response (e.g., an image or a profile) and is capable of removing non-

informative functional inputs. Similar to other functional regression approaches, we will

start by using a set of basis functions that jointly represent the response and covariate

functions. The use of basis functions will effectively reduce the dimension of the parameter

space, making the parameter estimation tractable. To estimate the parameters of the model,

we define a penalized least square loss with two sets of penalties: One in the form of a

L2 penalty for global smoothness of the estimations and one in the form of a group lasso

(L1) penalty. The group lasso penalty is in fact used for functional variable selection and

handles the large number of inputs challenge. The Block Coordinate Decent (BCD) method

is employed to develop an algorithm for minimizing the loss function and estimating the

regression parameters. In order to reduce the computational issues caused by HD output

functions, we define special structures for penalty functions (both L1and L2) so that the

loss function has a closed-form solution in each block of BCD, and the large matrices are
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decomposed into the Kronecker product of several smaller matrices. Next, the closed-

form solution will be represented by tensors and computed using tensor algebra, further

improving the space and computational efficiency, especially when the output is an HD

function.

The rest of the article is organized as follows: In Section 2.2, we first formulate the re-

gression model for the case of profile-on-profile regression and employ the BCD algorithm

for estimating the parameters. Then, we extend the method to the case in which both inputs

and the output are in higher dimensions. In Section 2.3, we describe two simulation studies,

both with profile inputs, but one with a profile response and the other one with an image

response. In each simulation study, we compare the performance of the proposed method

with benchmarks in terms of mean square prediction errors. Two case studies evaluate the

performance of the proposed method in Section 2.4. We first consider the estimation of

lambda signal in a vehicle engine based on other sensor measurements such as airmass and

engine rotational speed. In the next case study, we investigate the sensor estimation and

selection problem based on the body motion data [51]. Finally, we summarize the chapter

in Section 2.5.

2.2 Proposed method

In this section, we present a functional regression approach to modeling the relationship

between a functional response and a set of functional covariates. For simplicity, we begin

with 1D functional data, also known as profiles or waveform signals. Then, we generalize

the proposed approach to high dimensional functions. Let y (t) : T → R; T ⊂ R denotes

a functional response and x1 (s) , · · · , xp (s) represent a set of p covariate functions, where

xj (s) : Sj → R; Sj ⊂ R. It is assumed that both y (t) and xj (s) are smooth functions.

In a manufacturing process, y (t) can be a quality measure obtained over time or space,

and {x1 (s) , · · · , xp (s)} is a set of process variables that influences the final quality of the

product. We assume the functional response can be modeled by a linear combination of
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covariates as follows:

y (t) =

p∑
j=1

∫
xj (s) βj (s, t) ds+ e (t) , (2.1)

where βj (s, t) is the jth 2D functional parameter and e (t) is a random process. The

goal is to estimate the functional parameters βj (s, t), given a set of M observations,

{(yi (t) , xi1 (s) , · · · , xip (s))}Mi=1. In this work, we assume that the sample size M is of

moderate size and does not generate computational challenge. We assume that each func-

tion yi (t) is observed over a grid of size n, and each of the covariates xij (s) is observed

over a grid of size mj . It is also assumed that the grid size of the response function and

each of the covariates do not change from sample to sample. The main challenge in esti-

mating the functional parameters βj (s, t) is that, in theory, they are continuous functions

with infinite dimension. To address this issue, following [33], we expand the functional

covariates, output, and the parameters using a set of infinite-dimensional smooth basis

functions. Let θj (s) ∈ Rkxj and ψ (t) ∈ Rky be the vectors of kxj � mj and ky � n

basis functions evaluated at points s and t for the jth functional covariate and the response

function, respectively. Using these basis functions, we expand βj (s, t) as θTj (s)Bjψ (t),

where Bj ∈ Rkxj×ky is a matrix of coefficients of the basis functions that should be es-

timated. This expansion transforms the functional coefficient with infinite dimensions

to a set of finite parameters, Bj . Notice that the use of basis functions significantly re-

duces the number of parameters to be estimated from
∑p

j=1mjn to
∑p

j=1 kxjky. Defining

y (t) := [y1 (t) , · · · , yM (t)]T and xj (s) := [x1j (s) , · · · , xMj (s)]T, we can rewrite (2.1)

as

y (t) =

p∑
j=1

∫
xj (s)θTj (s)Bjψ (t) ds+ e (t) . (2.2)

To further simplify (2.1), we define Zj :=
∫
xj (s)θTj (s) ds, where Zj ∈ RM×kxj , Y :=

[y (t1) , · · · ,y (tn)] ∈ RM×n, Ψ = [ψ (t1) ,ψ (t2) , · · · ,ψ (tn)] ∈ Rky×n, and finally the

combined error as E = [e (t1) , e (t2) , · · · , e (tn)] ∈ RM×n. Then, the matrix form of (2.1)
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is given by

Y =

p∑
j=1

ZjBjΨ + E, (2.3)

which can be further simplified by using a Kronecker product as

y =

p∑
j=1

Djbj + e, (2.4)

where Dj = Zj ⊗ ΨT and y, bj , and e are vec (Y T), vec
(
BT
j

)
, and vec (ET), respectively.

The vec(X) operator stacks the columns of a matrix X into a vector. To estimate the

vector of coefficients bj in (2.4), we minimize a penalized least square loss function with

weighted grouped L1 and L2 penalties. The grouped L1 penalty encourages the model

sparsity at the covariate level and hence can be used for identifying important functional

variables. This sparsity as well handles the potential issue of overfitting caused by large

number of inputs. The weighted L2 norm will result in smooth estimates for functions

βj (s, t). Such a penalized loss function is given by

L (b1, · · · , bp) =
1

2

∣∣∣∣∣
∣∣∣∣∣y −

p∑
j=1

Djbj

∣∣∣∣∣
∣∣∣∣∣
2

2

+
λ

2

p∑
j=1

bTjPjbj

+γ

p∑
j=1

√
qjb

T
jWjbj (2.5)

In this loss function, the second term is an L2 norm penalty in which Pj = Pj,s+Pj,t is a

matrix that penalizes the roughness of functions βj (s, t) in both t and s by Pj,t and Pj,s, re-

spectively. We define these two matrices as Pj,t =
[∫
θj (s)θTj (s)

]
⊗
[∫
Ltψ (t)Ltψ

T (t)
]

and Pj,s =
[∫
Lsθj (s)Lsθ

T
j (s)

]
⊗
[∫
ψ (t)ψT (t)

]
, where Lt and Ls are differentiat-

ing operators (e.g., second derivatives) with respect to t and s. In the case of orthogonal

bases such as eigenvectors, wavelets, or orthogonal splines, matrices
[∫
θj (s)θTj (s)

]
and
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[∫
ψ (t)ψT (t)

]
reduce to identity matrices. Appendix A provides detailed information

on how these penalty matrices impose smoothness on βj (s, t). The third term of the loss

function performs variable selection similar to the standardized group lasso [52]. That

is, it shrinks all elements of bj to zero if its corresponding covariate function xj (s) is

not significant. In this term, qj is the size of each group (i.e., the size of vector bj) and

Wj := DT
jDj + λPj is a weight matrix. Finally, λ and γ are tuning parameters.

To minimize the loss function in (2.5), one may apply a standard convex optimization

method such as interior-points algorithms. However, as shown in Proposition 2.1, the spe-

cial structure of Wj can transform the loss function in a way that a closed-form solution for

each bk is obtained, given all bj; j 6= k, . Therefore, we use a BCD algorithm, in which

each group of parameters bj; j = 1, · · · , p is considered as a block.

Proposition 2.1. Given all bj’s; j 6= k, the minimizer of the loss function in (2.5) has a

closed-form solution as

bk =

(
1−

√
qkγ∣∣∣∣V −1k DT
krk
∣∣∣∣
2

)
+

W−1
k DT

krk, (2.6)

where rk = y −
∑

l 6=j Dlbl, (x)+ = max {x, 0} , and Vk is obtained by Cholesky de-

composition of Wk, i.e., Wk = V T
k Vk. The solution in each step is soft-thresholding of an

equivalent ridge regression problem.

The proof is given in Appendix B. This soft-thresholding solution sets the value of

bk to zero if the kth covariate does not explain the variation in y, and therefore performs

variable selection in the context of functional regression. The penalty terms Pj assure the

smoothness of the functional parameters βj (s, t) and extend the soft-threshholding solution

to under-determined problems.

The BCD algorithm optimizes the loss function with respect to each block, given other

blocks, and iterates until convergence. Within each iteration i, the algorithm recalculates
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all the p blocks by solving

bik = arg min
bk

L
(
bi1, · · · , bik−1, bk, bi−1k+1, · · · , b

i−1
p

)
, (2.7)

where bil (l < k) is the value of bl obtained in the lth step of iteration i, and bi−1l (l > k)

is the value of bl obtained in the iteration i − 1. Algorithm 1 summarizes the estimation

procedure outlined above. As can be seen, the algorithm contains one inner loop of size p

that calculates the values of bj and one outer loop that checks for convergence. Note that,

as the loss function is convex with separable non-differentiable parts, the BCD algorithm

has a convergence guarantee.

Algorithm 1 Estimation procedure of the parameters bj using the BCD algorithm
1: Set a convergence threshold ε > 0
2: Initilize bj for all j
3: Set i = 1
4: Set L1 − L0 = inf and L0 = − inf
5: while |Li − Li−1| > ε do
6: for j = 1: p do
7: find bij according to (2.6)
8: end for
9: calculate Li = L

(
bi1,b

i
2, · · · ,bip

)
10: calculate Li − Li−1
11: i = i + 1
12: end while

2.2.1 Extension to high dimensional functions

We extend our proposed method to the case in which both response and covariates are HD

functions (e.g., 2D functions). Specifically, we assume y (t) : Rd → R and xj (s) : Rlj →

R for j = 1, · · · , p, where t =
(
t(1), t(2), · · · , t(d)

)
∈ Rd and s =

(
s(1), s(2), · · · , s(lj)

)
∈

Rlj . We consider a grid of size n = n1 × n2 × · · · × nd over the domain of the response

function and a grid of sizemj = mj1×mj2×· · ·×mjlj over the domain of the jth covariate

function. Note that nk and mjk denote the grid size over the kth dimension of space Rd and

Rlj , respectively. Conceptually, The extension requires defining appropriate basis functions
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for response, covariate, and functional parameters. Let us define ψ (t) := ψ1

(
t(1)
)
⊗

ψ2

(
t(2)
)
⊗ · · · ⊗ψd

(
t(d)
)

and θj (s) := θj1
(
s(1)
)
⊗ θj2

(
s(2)
)
⊗ · · · ⊗ θjlj

(
slj
)

to be the

vectors of infinite dimensional basis functions, whereψk

(
t(k)
)

and θjk
(
s(k)
)

are vectors of

basis functions suitable for the kth dimension of the corresponding space evaluated at t and

s, respectively. Depending on the behavior of the function, one can select an appropriate

basis function (e.g., Fourier or B-spline) in each dimension. For example, if an image has a

smooth waveform behavior, Fourier basis may be appropriate. For notation simplicity, we

assume that the number of basis functions are ky and kxj in all dimensions of the response

function y and the covariate function xj . Therefore, the total number of basis functions

for the response and for the jth covariate function are kdy and kljxj , respectively. Similar

to the 1D case, using these basis functions, one can expand the functional parameters and

estimate the set of finite parameters by using Algorithm 1. However, when d > 1 and

lj > 1, the inversion operation on the matrix Wj ∈ Rk
lj
xj
kdy×k

lj
xj
kdy in (2.6) is extremely

expensive as it has the complexity of O
((

k
lj
xjk

d
y

)3)
. In order to alleviate this problem,

we re-define the penalty matrix Pj in the loss function (2.5) so that matrix Wj can be

decomposed as a Kronecker product of d+1 matrices, i.e.,Wj = Wj1⊗Wj2⊗· · ·⊗Wj,d+1.

With this decomposition, computation of W−1
j ∈ Rk

lj
xj
kdy×k

lj
xj
kdy splits into the calculation of

W−1
j1 ∈ Rk

lj
xj
×k

lj
xj and W−1

ji ∈ Rky×ky (i = 2, · · · , d+ 1), which significantly reduces the

computational effort. Proposition 2.2 provides a first step to achieve this goal.

Proposition 2.2. The matrices Pj,s and Pj,t, j = 1, 2, · · · , p in loss function (2.5) can be

written as the Kronecker product of d+ 1 symmetric positive definite matrices as follows:

Pj,s = Pj,s ⊗ Pj,s2 ⊗ · · · ⊗ Pj,s(d+1),

Pj,t = Pj,t1 ⊗ Pj,t2 ⊗ · · · ⊗ Pj,t(d+1).

The proof can be found in Appendix A. Now, let us define Wj := Wj1 ⊗ Wj2 ⊗
· · · ⊗ Wjd+1, where Wj1 =

(
ZT
jZj + λPj,1

)
and Wjk =

(
ψk−1ψ

T
k−1 + λPj,k

)
for k =
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2, 3, · · · , d+ 1, with Pj,k = Pj,sk + Pj,tk . With this definitions, it can easily be shown that

Wj = DT
jDj +λQj where Qj is a new penalty matrix comprised of a summation of several

penalty terms. For example, for d = 1, Qj = ZT
jZj ⊗ (Pj,s2 + Pj,t2) + (Pj,s1 + Pj,t1) ⊗

ψ1ψ
T
1 + λ (Pj,s1 + Pj,t1) ⊗ (Pj,s2 + Pj,t2). The first and second terms in Qj impose a

penalty on covariates and the output, and the third term captures the interactions between

the penalties, respectively. Using the new definition of the penalty, and decomposing Wj

as a Kronecker product of d+ 1 matrices, we can formulate the BCD closed-form solution

as

bij =

(
1−

√
qjγ∣∣∣∣(V −1

j1 ⊗ V
−1
j2 ⊗ · · · ⊗ Vj(d+1)

)
DT

jrj
∣∣∣∣
2

)
+

×
(
W−1

j1 ⊗W
−1
j2 ⊗ · · · ⊗W

−1
j(d+1)

)
DT

jrj (2.8)

where, Vji is obtained by a Cholesky decomposition of Wji, i.e., Wji = V T
jiVji.

2.2.2 Computational and space complexity

As we are dealing with HD data and the proposed approach requires algebraic opera-

tions on large matrices, computational and space complexities are two major challenges

in implementing our functional regression method. Let us begin by studying the computa-

tional complexity of the BCD solution in (2.8). The cost of inverting Wj1 is O
((

k
lj
xj

)3)
and the cost of inverting Wjk, k = 2, · · · , d + 1 is O

(
k3y
)
. Therefore, the total com-

plexity of matrix inversion operations is O
(
k
3lj
xj + dk3y

)
. The complexity of comput-

ing W−1
j1 ⊗ W−1

j2 ⊗ · · · ⊗ W−1
j(d+1), given the inverted matrices, is O

((
k
lj
xjk

d
y

)2)
. As

a result, the total complexity of calculating W−1
j = W−1

j1 ⊗ W−1
j2 ⊗ · · · ⊗ W−1

j(d+1) is

O

(
k
3lj
xj + dk3y +

(
k
lj
xjk

d
y

)2)
, which is much smaller than the complexity of inverting the

original matrix Wj = DT
jDj + λ (Pj,s + Pj,t) in (2.6), which requires O

((
k
lj
xjk

d
y

)3)
operations. As discussed before, this computational improvement is achieved by refor-

mulating the penalties in the loss function. Finally, the total computational complexity

of calculating the parameter bij (i.e., the parameter of the jth predictor in the ith step) is
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O

(
k
3lj
xj + dk3y +

(
k
lj
xjk

d
y

)2
+ k

lj
xjk

d
yMn

)
, where n = n1 × n2 × · · · × nd . Notice that,

ni ∈ O (ky) ; i = 1, · · · , d, and therefore the complexity of calculating bij can be written

as O
(
k
3lj
xj + dk3y +

(
k
lj
xjk

d
y

)2
+ k

lj
xjk

2d
y M

)
. We further reduce this complexity by using

tensor algebra.

Besides the computational complexity, the space complexity of both matrices W−1
j and

Dj = Zj ⊗ψT
1 ⊗ψT

2 ⊗ · · · ⊗ψT
d that are O

((
k
lj
xjk

d
y

)2)
and O

(
Mnk

lj
xjk

d
y

)
, respectively

generates a new challenge. In both cases the space complexity is exponential in d and

lj and storing these matrices may become an issue. Fortunately, it is not necessary to

store these large matrices as we only need to calculate W−1
j DT

j rj . This observation in fact

reduces the computational complexity as well. Let us define Aj1 = W−1
j1 Z

T
j ∈ Rk

lj
xj
×M and

Ajk = W−1
jk ψk−1∈ Rky×nk−1 , k = 2, 3, · · · , d+ 1. It is straightforward to show that

W−1
j DT

j rj = (Aj1 ⊗ · · · ⊗ Ajd+1) rj. (2.9)

In order to calculate (Aj1 ⊗ · · · ⊗ Ajd+1) rj , we may first compute (Aj1 ⊗ · · · ⊗ Ajd+1)

and then multiply it by rj . However, (Aj1 ⊗ Aj2 ⊗ · · · ⊗ Ajd+1) has a very large space

complexity and its direct computation should be avoided. This can efficiently be done us-

ing the equivalency between the Kronecker and tensor products given in Proposition 2.3.

We first introduce some preliminaries on tensor and multi-linear algebra. Let R denote an

order-n tensor with R ∈ RI1×I2×···×In , where Ii is the dimension of the ith mode of ten-

sor R. We also denote a mode-j matricization of tensor R with R(j) ∈ RIj×I(−j) , whose

columns are the mode-j fibers of the corresponding tensorR, and I(−j) := I1 × I2 × · · · ×

Ij−1 × Ij+1 × · · · × In. The mode-j product of a tensor R by a matrix A ∈ RL×Ij is

a tensor in RI1×I2×···×Ij−1×L×Ij+1×···×In and is defined as (R×j A)i1,i2,··· ,ij−1,l,ij+1,··· ,iK =∑Ij
ij=1Ri1,··· ,ij ,··· ,iKAl,ij . Using Proposition 2.3, we can significantly decrease the compu-

tational and storage complexity of Aj1 ⊗ Aj2 ⊗ · · · ⊗ Ajd+1.

Proposition 2.3. LetR ∈ RI1×I2×···×In be an n-way tensor with dimensions I1, I2, · · · , In.
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Moreover, let Ak ∈ RJn×In for k = 1, 2, · · · , d+ 1. Then,

V = R×1 A1 ×2 A2 ×3 · · · ×d+1 Ad+1 ⇐⇒

V(d+1) = Ad+1R(d+1) (Ad ⊗ Ad−1 ⊗ · · · ⊗ A1)
T

where V and R are the d+ 1 mode matricization of tensors V andR, respectively.

Proof is given in Proposition 3.7 of [53] with minor notation adjustments. According

to Proposition 2.3, we only need to store matrices Ajk and compute Rj ×1 Aj1 ×2 Aj2 ×3

· · · ×d+1 Ajd+1. This implies that the space complexity is now O
(
k
lj
xjM +

∑d
k=1 kynk

)
,

which is linear in d. In practice, the inputs are usually profiles obtained from sensor read-

ings over time ( i.e., lj = 1; j = 1, · · · , p) and the output is either a profile or an im-

age (i,e., d is at most equals two). Assuming lj = 1; j = 1, · · · , p and d = 2, the

computational complexity of our approach for calculating bj in each iteration is about

O
(
k3xj + kxjk

2
yM + kxjk

3
y

)
. Assuming that ky ' kxj = k, the computational complex-

ity is about O (Mk3 + k4). In this scenario, computing bj directly from (2.6) requires at

least O (k9) operations. Note that we are required to compute p parameters separately (i.e.,

bj; j = 1, · · · , p) and therefore computing all the parameters is linear in p.

Using the tensor algebra, we can transform the BCD closed-form solution in (2.8) and

write it in a tensor format as

Bij = ωRj ×1 Aj1 ×2 Aj2 ×3 · · · ×d+1 Ajd+1, (2.10)

where

ω =

(
1−

√
qjγ∣∣∣∣(V −1j1 ⊗ V −1j2 ⊗ · · · ⊗ Vj(d+1)

)
DT
j rj
∣∣∣∣
2

)
,

Bij ∈ Rk
lj
xj
×ky×···×ky , andRj ∈ RM×n1×···×nd are tensorized versions of bij and rj vectors.

As a side note, it is worth mentioning the similarity between the Tucker decomposition

of a tensor [54] and (2.10). In fact, one way to interpret (2.10) is that similar to the Tucker
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decomposition [54], it decomposes Bij into a core tensor Rj and a set of basis matrices

that are known in advance, and shrinks it using a soft-thresholding coefficient. These basis

matrices are related to the covariates, output, and selected basis functions θj (s) and ψ (t).

2.2.3 Choice of tuning parameters

Performance of the proposed approach depends on the choice of tuning parameters λ, γ

and the basis functions ψ (t) and θ (s), as well as the number of basis functions kxj , j =

1, · · · , p and ky. In our simulation and case studies, we use B-splines as the basis functions.

The selection of the basis functions depends on the functional forms of inputs and the output

and should be done based on domain knowledge or some initial analysis. As suggested by

[33], one can choose dense basis matrices (i.e., large kxj and ky) and penalize them by

roughness penalties Ps,j and Pt,j . A few approaches can be found in the literature for

choosing λ and γ values (see [55], for example). For large data sets, one can randomly

divide the data into three subsets, i.e., training, validation, and test, and use the training and

validation subset for tuning the parameters. Otherwise, the k-fold cross-validation (CV)

method can be used [55]. An alternative approach is to choose the set of tuning parameters

that minimizes the generalized CV (GCV) or one of information criteria such as AIC or

BIC. In this work, we perform k-fold CV to obtain λ and γ. More specifically, we divide

our training data into k subsamples and select a grid of λ and γ pairs. Then, for each

pair on the grid, denoted by (λj, γj), we train the model using k − 1 of the subsamples

and test the trained model on the remaining subsample to find the CV error. With this

procedure, we obtain k CV errors for each pair of (λj, γj). We consider the average of the

errors as the performance measure for a given pair on the grid. Finally, we choose the point

(λ∗, γ∗) as the set of tuning parameters that results in the minimum average CV error. In

our simulation studies we select λ from {10−10, 10−8, 10−6, 10−4, 10−2, 0.1, 1, 10} and γ

from {0, 10−6, 10−4, 10−2, 0.1, 1, 10} and use 5-fold CV.
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2.3 Performance evaluation using simulation

In this section, we conduct two simulation studies to evaluate the performance of the pro-

posed method (labeled as HDFFR) and compare it with two other existing methods. In the

first simulation, we consider a profile-on-profile regression in which a profile data is pre-

dicted based on a large number of profile inputs with a small fraction of informative ones. In

the second simulation study, we predict an image data using a set of profile inputs. In both

simulations, we compare our method to a method proposed by [39], designated as Sigcomp.

We implement this benchmark method using the R package FRegSigCom. In the second

simulation, we also compare our approach to the principle component regression method,

designated as PCR. In the PCR method, first the PCA is applied to the predictor curves

and response to extract low dimensional features. Then, a multivariate regression model is

performed between the input and output scores. Specifically, we first perform PCA analy-

sis on the samples of each input xj and the response y and select the first Gxj and Gy PC

scores. Next, we fit Gy regression models, each to estimate one of the PC score of y given

the selected PC scores of all covariates. To form the functional prediction of the response,

the estimated response scores are multiplied by the transpose of Gy principal components.

Notice that because the principle components are orthogonal, fitting a separate regression

model to each output score is equivalent to fitting a multivariate regression. In order to

select Gxj and Gy, one can perform CV. However, because we do not perform CV to select

the number of bases (i.e., kxjand ky) in our proposed approach, we select Gxj = kxj and

Gy = ky. That is we select same number of bases for both approaches. Please note that

other approaches, including functional principle component regression and function partial

least square approach are designed for a single input and are not suitable for scenarios in

which multiple number of inputs exists. In addition the Sigcomp approach can be viewed

as a variant of functional principle component regression that allows multiple inputs.
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2.3.1 Simulation I: Profile-on-profile regression

In this simulation study, we evaluate the performance of the proposed method in compari-

son to Sigcomp in estimating and predicting a profile based on a set of p profiles, where only

peff of them are informative. Because the Sigcomp approach has been shown to outper-

form the PCR in the profile-on-profile scenarios, we do not consider PCR as a benchmark

in this simulation study. We follow the simulation study in [39] to generate the input and

output curves. We first randomly generate βi (s, t) ; i = 1, · · · , p as

βi (s, t) =
1

p2

3∑
k=1

γki (t)ψki (s) ,

where γki (t) and ψki (s), k = 1, 2, 3 and i = 1, · · · , p are Gaussian processes (GP) with

covariance function Σ1 (z, z′) = e−(5|z−z
′|)2 . Next, we construct functional predictors as

follows: first, a set of curves w1, w2, · · · , wp are sampled from a Gaussian process with

covariance function Σ2 (z, z′) = e−(3|z−z
′|)2 . Next, a peff × peff correlation matrix S with

diagonal elements equal to one and off-diagonal elements equal to ρc is constructed and

decomposed as S = ∆∆T, where ∆ is a peff × peff matrix. Finally, the predictors at any

given point s are obtained by

(
x1 (s) , · · · , xpeff (s)

)
=
(
w1 (s) , w2 (s) , · · · , wpeff (s)

)
∆T,

and (
xpeff+1

(s) , · · · , xp (s)
)

=
(
wpeff+1 (s) , · · · , wp (s)

)
,

With this formulation each curve xi (s) ; i = 1, · · · , p is a Gaussian process with covari-

ance function Σ2 (s, s′), and for each s, the vector
(
x1 (s) , · · · , xpeff (s)

)
is a multivariate

normal distribution with covariance matrix S. Finally, we generate the response curves as

y (t) =

peff∑
i=1

∫
βi (s, t)xi (s) ds+ ε (t) ,
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where ε (t) is generated from a normal distribution with zero mean and σ2 = 1. We generate

all the input and output curves over 0 < s < 2 and 0 < t < 1, and take the samples over an

equidistant grid of size n = 30.

To evaluate the performance of each method, we generate a set of M = 30 samples and

randomly divide the data into a training set of size 24 and a test set of size 6. The training

set is used to perform CV and to learn the model. With the learned model, we calculate the

mean square prediction error (MSPE) and the mean square estimation error (MSEE) using

the testing data as follows:

MSPE =
1

Mtest

Mtest∑
i=1

1

n

n∑
k=1

(
ytesti (tk)− ŷi (tk)

)2
and

MSEE =
1

Mtest

Mtest∑
i=1

1

n

n∑
k=1

(
ytesti (tk)− ε (tk)− ŷi (tk)

)2
We perform this simulation for p = 10, 20, 30, 40 with peff = 0.1p. We also take the

same number of bases for all the inputs and output, i.e., kxj = ky = 10; ∀j = 1, · · · , p. We

consider two values of ρc: When ρc = 0 the informative input variables are uncorrelated

and when it is set to 0.7 they are correlated. In each scenario (a combination of p and ρc),

we repeat the simulation for 30 times and compute the averages and standard deviations of

the MSPE and MSEE. As it is reported in Table 2.1, the proposed approach outperforms

Sigcomp for all p and ρc. For example, when p = 20 and ρc = 0.7, the MSPE of Sigcomp

and HDFFR are 1.874 and 1.471, respectively. The reason is that the irrelevant inputs

negatively influence the estimation performance of Sigcomp due to its lack of variable

selection capability. The estimation performance of both approaches deteriorate as the

number of inputs increases, especially when p = 40. Furthermore, both methods benefit

from the introduction of correlation (i.e., ρc = 0.7) among inputs.
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Table 2.1: Comparison between the Sigcomp and our proposed method (HDFFR) in terms
of MSPE and MSEE. The values within the parenthesis are the standard deviation of the
corresponding error calculated over 30 replications.

MSPE ρc Sigcomp HDFFR

p = 10 0 1.822 (0.247) 1.542 (0.240)

p = 20
0 1.992 (0.266) 1.723 (0.374)

0.7 1.874 (0.202) 1.471 (0.201)

p = 30
0 2.358 (0.362) 1.732 (0.340)

0.7 2.184 (0.317) 1.574 (0.237)

p = 40
0 3.357 (0.451) 1.866 (0.432)

0.7 2.976 (0.385) 1.754 (0.354)
MSEE
p = 10 0 0.802 (0.201) 0.394 (0.157)

p = 20
0 0.891 (0.191) 0.630 (0.259)

0.7 0.831 (0.157) 0.528 (0.198)

p = 30
0 1.383 (0.334) 0.773 (0.282)

0.7 1.131 (0.302) 0.556 (0.257)

p = 40
0 2.325 (0.357) 0.899 (0.318)

0.7 1.969 (0.332) 0.770 (0.315)

2.3.2 Simulation II: Image-on-profile regression

In this simulation study, we evaluate the performance of the proposed method in estimat-

ing and predicting an image based on p profile inputs. The data generation model in-

cludes functional input variables generated from Fourier bases as follows: We first con-

sider a vector of R Fourier bases fR (s) =
[
sin (s) cos (s) sin (2s) , · · · , h

(⌊
R
2

⌋
s
)]T,

where h
(⌊

R
2

⌋
s
)

= sin
(⌊

R
2

⌋
s
)

if R is odd and h
(⌊

R
2

⌋
s
)

= cos
(⌊

R
2

⌋
s
)
, otherwise, and

s ∈ [0, 2π]. Second, we generate the ith sample of the jth predictor curve as,

xji (s) = f T
Rj

(s)αji + wi (s) ,

i = 1, · · · ,M ; j = 1, · · · , p

where αji is randomly generated from N
(
0, 4IRj

)
and contains the coefficients of the

bases, and wi (s) is an independent random error generated from N (0, 0.12). The values
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Figure 2.1: Examples of (a) input profiles and (b) response functions in the first simulation
study with τ = 0.3

of s are sampled over an equidistant grid of size 100, i.e., si = 2πi
100
, i = 1, · · · , 100.

After generating the input curves, the following model is used to simulate independent

realizations of the response:

yi (t) =

p∑
j=1

∫
xji (s) βj (s, t) ds+ εi (t) ,

i = 1, · · · ,M.

The functional parameter βj (s, t) is generated using f T
Rj

(s)Bj

(
fR1y

(t)⊗ fR2y
(t)
)

. The

Bj ∈ RRj×R1yR2y is a matrix whose elements are generated randomly from N (0, 4) and

R1y and R1y are the number of bases used in each direction of the output image. The

values of t ∈ [0, 2π] × [0, 2π] are sampled over an equidistant grid of size 50 × 50. That

is, t =
(
2πi
50
, 2πj

50

)
, i = 1, · · · , 50 and j = 1 · · · , 50. The independent noises ε (t) are

generated from N (0, τ 2). For the purpose of this simulation study, we take p = 5, and

Rj = j + 1; j = 1, · · · , p, and R1y = R2y = 3. Figure 2.1 illustrates a few examples of

the covariates and response functions generated through this procedure, with τ = 0.3.

Please note that in this study, data generation step employs Fourier bases, which are
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Table 2.2: Comparison between the proposed method (HDFFR) and the benchmarks at
different level of noise in the output image. As reported, the Sigcomp method significantly
fails because it can only handle curve data and vectorizing an image to a curve eliminates
spatial correlation structure of the image. The values in the parenthesis reflects the standard
deviation of MSPE.

MSPE (std) PCR Sigcomp HDFFR

τ 2 = 0.01 0.027 (0.052) 0.236 (0.012) 0.011 (0.000)
τ 2 = 0.04 0.096 (0.068) 0.312 (0.071) 0.041 (0.000)
τ 2 = 0.09 0.106 (0.057) 0.385 (0.066) 0.092 (0.000)
τ 2 = 0.16 0.206 (0.098) 0.429 (0.051) 0.163 (0.001)
τ 2 = 0.25 0.294 (0.061) 0.535 (0.044) 0.254 (0.001)

different from the the bases (B-splines) used in model training step. For this study, we

generate 200 samples from which we select at random 160 samples for CV and training

and the remaining samples as the testing data. The mean square prediction error (MSPE)

obtained from the test data is used as the performance criterion. We repeat this procedure

50 times and compute the average and standard deviation of the MSPE. In this simulation,

we take kxi = 24 (i = 1, · · · p) bases for the predictor curves and ky = 14 bases in each

direction of the output image.

Similar to the previous simulation study, we compare our proposed method to Sigcomp.

However, because the Sigcomp cannot directly handle the image data, we vectorize the

output to obtain a curve from an image. We also perform PCR for this simulation study.

Table 2.2 reports the mean and standard deviation of MSPE at different values of output

noise. As reported the proposed method outperforms both the Sigcomp and PCR. The

Sigcomp fails significantly because it requires a smooth curve output and vectrization of

an image generates points at which the curve is non-smooth. It also eliminates the spatial

correlation structure of the image. Even though the PCR produces low prediction errors, it

masks the effect of each input on the output by transforming the data into PC space. Our

approach produces the lowest MSPE and solves the issue with the PCR.
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2.4 Case study

In this section, we further evaluate the effectiveness of our HD function-on-function re-

gression method using two case studies. In the first study, we use the proposed method to

estimate λ signal based upon other engine sensors. In the second case, we employ HDFFR

to retrieve a joint motion trajectory based on other joint trajectories and evaluate the per-

formance of the variable selection approach.

2.4.1 Case I: Estimation of lambda sensor

The NOx Storage Catalyst (NSC) is a catalyst system by which the exhaust gas is treated

in a two-phase process: i) adsorption: NOx molecules are trapped by an adsorber based on

a catalytic converter support, coated with a special washcoat containing zeolites; ii) regen-

eration: when the adsorber is saturated, the stored NOx is catalytically reduced. During the

regeneration phase, of duration ranging between 30 to 90 seconds, the electronic control

unit of the engine is programmed in order to maintain the combustion process in a rich

air-to-fuel status. This status is related to the amount of oxygen present during the combus-

tion process. The relative air/fuel ratio (λ) measured upstream of the NSC is assumed as

an indicator for a correct regeneration phase. During regeneration, λ signal should assume

values in the set-point interval 0.9÷0.95. However, faults could occur, detected by a λ sig-

nal falling below an acceptability threshold (0.8÷ 0.9). This kind of fault, which is called

λ-undershoot, worsens NSC performance during the regeneration phase [40]. It is known

that the λ value is dependent on several other engine state values such as engine inner

torque, rotational speed, and quantity of fuel injected. Developing a model that estimates

λ signal based on other engine operation signals can help to better adjust and control the

engine operation condition and to identify faulty sensors. Figure 2.2 illustrates examples of

the input signals and the lambda sensor readings during the regeneration phase. This data

are simulated based upon a set of real data to mask the original engine data.
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Figure 2.2: Examples of the input signals and the lambda sensor readings during the regen-
eration phase.
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Figure 2.3: Examples of lambda curve predictions

In this case study, we consider 200 samples, each containing 15 input signals and one

lambda signal as the output. Among the input signals only five are known to influence the λ

signal directly. All signals are measured over a two seconds interval with 203 measurement

points. We use the input signals to develop a model that can estimate the lambda value and

to identify the informative set of sensors. For this purpose, we randomly partition samples

into training (80%) and testing (20%) data. The training data is used for CV and training a

model and testing data is employed for model evaluation. We repeat this procedure 30 times

and calculate the mean and standard deviation of the prediction error for both the proposed

method and the Sigcomp approach. For our proposed method, we set kxi = ky = 5. Figure

2.3 illustrates examples of predicted curves along with the actual ones. As it is illustrated,

both approaches construct accurate predictions. Figure 2.4 depicts the boxplot of MSPE

obtained over 30 replications of simulation for the proposed method and the Sigcomp.

As it is illustrated, the proposed approach outperforms the benchmark in predicting the
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Figure 2.4: MSPE of predicting the lambda curves using HDFFR and the Sigcomp ap-
proaches

output curve. The reason is that unlike Sigcomp that combines all the inputs, the proposed

approach selects the informative signals and removes the redundant ones when predicting

the output curve. To illustrate the performance of our approach in selecting the informative

signals, we record the selected signals in each of the 30 iterations. Figure 2.5 illustrates the

percentage of times each of the signals has been selected. In this figure, the first five signals

are those that are known to influence the lambda curve and are selected in every iteration.

2.4.2 Case II: Joint motion trajectories

This case study is shown to further demonstrate the effectiveness of the proposed method in

functional variable selection. Because other benchmarks (e.g., Sigcomp) does not perform

variable selection, we only apply our proposed method in this case study without comparing

it to other approaches. We apply HDFFR to the body joint motion trajectory data [51].

Figure 2.6b illustrates the motion trajectories of joints located on the hip and neck (sensors

1 and 3), right and left elbows (sensors 6 and 10), and right and left knees (sensors 14 and

18), measured when a person performs a duck gesture (a command in a game) as illustrated
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Figure 2.5: Selection frequency of each input curve for prediction of lambda curve. The
first five curves from left are known to influence the lambda curve and are selected in every
iteration.

in Figure 2.6a. Intuitively, depending on the gesture, the motion trajectory of a joint (e.g.,

hip) is correlated with the motion trajectories of other joints on the body (e.g., neck).

In a set of experiments, 30 people repeated 12 gestures (e.g., duck and throw), each of

which represents a particular command for a game. During each trial, motion trajectories of

20 joints (e.g., neck, elbows, wrists, knees, and ankles) were recorded, with the sampling

rate of 30Hz and 2cm accuracy in joint positions. The spatial trajectories were sampled

over time in Cartesian coordinates relative to a reference point [51]. The objective of this

case study is to identify informative sensors in order to construct a regression model for

estimating and retrieving a trajectory given other trajectories’ measurements. In this case

study, we analyze the duck gesture motion profiles (see Figure 2.6) of a participant who

repeated the task nine times. Because the duration of each replication is different, the mo-

tion profiles are aligned using the dynamic time warping algorithm [56]. The selected data

contains 540 trajectories (20 joint motions ×3 xyz coordinates ×9 replications). However,
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Figure 2.6: (a) Position of 20 joints in three different time stamps of a duck gesture; (b)
sample measurements at six different joints located on the hip, neck, right elbow, left elbow,
right knee, and left knee [51].

we only focus on the z coordinate motions with 180 trajectories. The goal is to identify the

sensors that are most informative in estimating the values of the sensor 10 located on the

left elbow.

For the purpose of model estimation and validation, we randomly select 8 replications

as the training dataset and the remaining one as the test dataset. For the selected training

dataset, we further use a 3-fold CV for choosing the tuning parameters and training the

prediction models. We repeat this procedure 100 times and in each replication record the

sensors selected for prediction of the sensor 10. Figure 2.7 reports the percentage of times

each sensor has been selected in the model. The result suggests that the motion trajectory of

joints 1,2,3,4,6,7, 8, and 12 corresponding to the hip, back, neck, head, right shoulder, right
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Figure 2.7: Selection frequency of each sensor for prediction of left elbow trajectory. the
motion trajectory of joints 1,2,3,4,6,7, 8, and 12 corresponding to the hip, back, neck, head,
right shoulder, right elbow, right wrist, right hand, and left hand are the most informative

elbow, right wrist, right hand, and left hand (see Figure 2.6a), are the most informative in

estimating the motion of joint 10, i.e., the left elbow. The joints located on the lower body,

such as knees and ankles, are excluded, showing no informative power in explaining the

motion of joint 10. The exclusion of lower body parts is intuitive, because the trajectory of

the left elbow (sensor 10) in the z direction has a larger range than the trajectory of joints

in the lower body. Furthermore, note that the left shoulder and wrist are excluded. The

reason is that the motion of these parts are highly correlated to the motion of the parts that

are selected and therefore are providing redundant information.

2.5 Conclusion

This chapter proposed an HD regression method to predict a functional response (e.g.,

a profile or an image) through a set of functional predictors. The proposed method ex-

pands the functional regression coefficients using smooth basis functions and transforms
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the functional problem with infinite dimension into an ordinary least square regression

model, which reduces the dimensionality and facilitates parameters estimations. The loss

function used for estimating the parameters includes both smoothing and group lasso penal-

ties to handle the under-determined problems, to perform variable selection, and to generate

smooth predictions. The BCD algorithm was employed to find the optimal parameters, and

it was shown that with a particular structure of group lasso penalty, BCD has a closed-form

solution for each block. The smoothing penalty was also modified so that the problem

becomes decomposable in each direction of the response function, improving the compu-

tational time of the estimation algorithm.

In order to evaluate the performance of the proposed method, we conducted two sim-

ulations and two case studies. We compared the performance of the proposed method in

the simulation studies to a benchmark method proposed by [39] and another benchmark

based on PCA regression. In the first simulation study, the response function was esti-

mated through p profiles. The results show the superiority of our approach when only a

small portion of a large number of inputs is informative. In the second simulation study,

we considered estimating an image based on p = 5 curves. The results showed that the

mean square prediction error of the proposed method is significantly smaller than both

benchmarks at all noise levels.

We also evaluated the proposed method using data obtained from vehicle engine sen-

sors. The predictions of the lambda sensors. The capability of our approach in variable

selection has been reported. Finally, we evaluated the performance of the proposed method

in terms of prediction and variable selection using a joint trajectory motion dataset. As

expected, the result showed that the motion of the joints on the lower parts of body were

not informative in estimation of the left elbow trajectory.
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CHAPTER 3

MULTIPLE TENSOR-ON-TENSOR REGRESSION: AN APPROACH FOR

MODELING PROCESSES WITH HETEROGENEOUS SOURCES OF DATA

3.1 Introduction

Nowadays, heterogeneous sets of data containing scalars, waveform signals, images, etc.

are more and more available. For example, in semiconductor manufacturing, process set-

tings (scalar variables), sensor readings in chambers (waveform signals), and wafer shape

measurements (images) may be collected to model and monitor the process. Statistical

models based on such heterogeneous sets of data that represent the behavior of an under-

lying system can be used in the monitoring, control, and optimization of the system. This

can benefit many applications, including manufacturing processes [57, 58], food industries

[59], medical decision-making [60], and structural health monitoring [61]. Specifically,

regression analysis of such data may lead to the construction of a statistical model that es-

timates/predicts a high-dimensional (HD) variable based on various types of predictors. In

this chapter, we refer to non-scalar variables as high-dimensional (HD) variables.

Unfortunately, most works in regression modeling consider scalars and waveform sig-

nals [62, 33, 36, 39], and their extension to images or structured point clouds is non-trivial

if not impossible. However, in several applications, images or structured point clouds can

provide rich information about the system performance. For example, materials scientists

are interested in constructing a link between process variables, e.g., the temperature and

pressure under which a material is operating, and the microstructure of the material [63],

which is often represented by an image or a variation of the microstructure image obtained

by two-point statistics. Generating such a linkage model requires regression analysis be-

tween scalar and waveform process variables as inputs and an image as an output.
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(a) (b)

Figure 3.1: Examples of the (a) wafer shape and (b) x coordinate overlay error. All mea-
surements are in millimeters (mm). The wafer in (a) has an overall bow shape, with several
high-order wave-form patterns that cannot be seen. Figure (b) represents the misalignment
of two layers in the x coordinate. The dark blue represents a large error in the negative di-
rection of the x coordinate, and light yellow represents a large error in the positive direction
of the x coordinate.

As another example, in semiconductor manufacturing, overlay errors (defined as the

difference between in-plane displacements of two layers of a wafer) are directly influenced

by the shape of the wafer before the lithographic process. In this process, both the wafer

shape and the overlay error (in the x and y directions) can be represented as images as

shown in Figure 3.1. Prediction of the overlay error across a wafer based on the wafer shape

can be fed forward to exposure tools for specific corrections [64]. In order to predict the

overlay error based on the wafer shape deformation, an image-on-image statistical model

is required to capture the correlation between the wafer overlay and shape.

In addition to the space and computational issues caused by the large size of the HD

variables, the challenge of developing an accurate model for a process with a heteroge-

neous group of variables is twofold: Integrating variables of different forms (e.g., scalars,

images, curves) while capturing their “within” correlation structure. Mishandling this chal-

lenge can lead to an overfitted or inaccurate model. The regular regression approach that

considers each observation within an HD variable as an independent predictor excessively

increases the number of covariates in comparison to the sample size (p � n) and ignores

the correlation between the observations. Consequently, this method may cause severe
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overfitting and produce inaccurate predictions. Principal component regression (PCR) and

Partial Least Square (PLS) Regression alleviate the problem by reducing the dimension of

both the input variables and the output. Nevertheless, both PCR and PLS fail to exploit the

spatial structure of profiles, images or point clouds. Furthermore, PCR determines the prin-

cipal components (PCs) of the inputs and the outputs separately from each other without

considering the interrelationship between them. Functional data analysis, specifically the

functional regression model (FRM), has become popular in recent years due to its built-in

data reduction functionality and its ability to capture nonlinear correlation structures [62,

33, 34, 36, 38, 39]. However, FRM requires a set of basis functions that is usually specified

based on domain knowledge rather than a data-driven approach. Recently, [39] proposed

an approach that can combine several profiles and scalars to predict a curve, while learning

the bases that span the input and output spaces. Nevertheless, it is not straightforward to

extend this approach to other forms of data effectively.

In the past few years, multilinear algebra (and, in particular, tensor analysis) has shown

promising results in many applications from network analysis to anomaly detection and

process monitoring [65, 66, 67]. Nevertheless, only a few works in the literature use tensor

analysis for regression modeling. [68] has successfully employed tensor regression using

PARAFAC/CANDECOMP (CP) decomposition to estimate a scalar variable based on an

image input. The CP decomposition approximates a tensor as a sum of several rank-1

tensors [69]. [68] further extended their approach to a generalized linear model for ten-

sor regression in which the scalar output follows any exponential family distribution. [70]

performed tensor regression with scalar output using Tucker decomposition. Tucker de-

composition is a form of higher order PCA that decomposes a tensor into a core tensor

multiplied by a matrix along each mode [71]. [72] performed the opposite regression and

estimated point cloud data as an output using a set of scalar process variables. N-way PLS

(N-PLS) is a generalization of PLS offered by [73] that uses CP decomposition to capture

the lower-rank structure of tensors. To address the limitations of N-PLS, including poor
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fitness ability, computational complexity and slow convergence when handling multivari-

ate dependent data and higher order (N > 3) independent data, Higher-Order Partial Least

Squares (HOPLS) is proposed [74]. HOPLS uses Tucker decomposition which is more

flexible and has better fitness ability than CP decomposition. The main challenge of the

tensor PLS approaches is that they require dealing with the covariance tensor between the

input and output tensors. This covariance tensor can become extremely large that makes

the computation inefficient and in some situations intractable. Besides, these approaches

are only designed for a single input tensor and it is not clear how they can be extended to

multiple inputs without artificially increasing the inputs size.

Recently, [75] developed a tensor-on-tensor regression (TOT) approach that can esti-

mate a tensor using a tensor input while learning the decomposition bases. However, there

are some limitations in their proposed TOT. First, TOT uses CP decomposition, which

restricts both the input and output bases to have exactly the same rank (say, R). This re-

striction may cause over- or under-estimation when the input and the output have different

ranks. For example, when estimating an image based on a few scalar inputs, the rank of

the output can be far larger than the input matrix. Second and more importantly, this ap-

proach can only take into account a single tensor input and cannot be used effectively when

multiple sources of input data with different dimensions and forms (e.g., a combination of

scalar, curve, and image data) are available. Because the output and the inputs should have

the same rank, extending the TOT approach to multiple tensor inputs as well requires all

the inputs to have the same rank (which is equal to the rank of the output). However, this

means that in certain situations, such as when scalar and image inputs exist, one of the in-

puts should take the rank of the other, causing a severe underfitting or overfitting problem.

Finally, the TOT approach fails to work on tensors of moderate size (e.g., on the image data

of size 20000 pixels used in our case study) due to its high space complexity.

The overarching goal of this chapter is to overcome the limitations of the previous

methods, such as PCR, FRMs, and TOT, by constructing a unified regression framework
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that estimates a scalar, curve, image, or structured point cloud output based on a hetero-

geneous set of (HD) input variables. This will be achieved by representing the output and

each group of input variables as separate tensors and by developing a multiple tensor-on-

tensor regression (MTOT). To avoid overfitting due to the estimation of a large number

of parameters, we use Tucker decomposition. We obtain the input bases by performing

Tucker decomposition on the input tensors, then define a least square loss function to es-

timate the decomposition coefficients and output bases. To ensure uniqueness, we impose

an orthonormality constraint over the output bases when minimizing the loss function and

show a closed-form solution for both the bases and the decomposition coefficient in each

iteration of our algorithm. This approach not only performs dimension reduction similar to

PCR, but it also learns the output bases in accordance with the input space. Furthermore,

the use of tensors to represent the data utilizes the spatial structure of a profile, image or

structured point cloud.

The rest of the article is organized as follows: In Section 3.2, we introduce notations

and review some of the multilinear algebra concepts used in the chapter. In Section 3.3,

we formulate the multiple tensor-on-tensor regression model and illustrate the closed-form

solution for estimating the parameters. In Section 3.4, we describe four simulation studies.

The first simulation study combines a profile and scalar data to estimate a profile output.

This simulation study is particularly considered to compare MTOT to the available methods

in functional regression. The second and third simulation studies contain images or point

clouds either as the input or output. In each simulation study, we compare the performance

of the proposed method with benchmarks in terms of (standardized) mean square prediction

errors (MSPE). A case study on predicting the overlay errors based on the wafer shape is

conducted in Section 3.5. Finally, we summarize the chapter in Section 3.6.
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3.2 Tensor Notation and Multilinear Algebra

In this section, we introduce the notations and basic tensor algebra used in this chapter.

Throughout the chapter, we denote a scalar by a lower or upper case letter, e.g., a or A; a

vector by a boldface lowercase letter and a matrix by a boldface uppercase letter, e.g., a

and A; and a tensor by a calligraphic letter, e.g., A. For example, we denote an order-n

tensor byR ∈ RI1×I2×···×In , where Ii is the dimension of the ith mode of tensorR. We also

denote a mode-j matricization of tensorR asR(j) ∈ RIj×I−j , whose columns are the mode-

j fibers of the corresponding tensorR, and I−j = I1×I2×· · ·×Ij−1×Ij+1×· · ·×In. We

also define a more general matricization of a tensor T ∈ RP1×···×Pl×Q1×···×Qd as follows:

Let I = {I1, I2, · · · , Il} and Q = {Q1, Q2, · · · , Qd} be two sets that partition the set

{I1, I2, · · · , Il, Q1, Q2, · · · , Qd}, which contains the dimensions of the modes of the tensor

T . Then, the matricized tensor is specified by T (I×Q) ∈ RP×Q, where P =
∏l

i=1 Pi and

Q =
∏d

i=1Qi, and
(
T (I×Q)

)
ij

= Tp1···plq1···qd , where i = 1 +
∑l

r=1

∏r
n=1 Pn (pn − 1) and

j = 1 +
∑d

r=1

∏r
n=1Qn (qn − 1). For simplicity of notation, we will denote T (I×Q) as T .

The Frobenius norm of a tensor R can be defined as the Frobenius norm of any ma-

tricized tensor, e.g., ||R||2F = ||R(1)||2F . The mode-j product of a tensor R by a matrix

A ∈ RL×Ij is a tensor in RI1×I2×···×Ij−1×L×Ij+1×···×In and is defined as

(R×j A)i1,i2,··· ,ij−1,l,ij+1,··· ,iK =

Ij∑
ij=1

Ri1,··· ,ij ,··· ,iKAl,ij .

The Tucker decomposition of a tensor R decomposes the tensor into a core tensor

C ∈ RP1×P2×···×Pn and n orthogonal matrices U i ∈ RIi×Pi (i = 1, 2, · · · , n) so that R =

C ×1 U 1 ×2 U 2 ×3 · · · ×n Un. The dimensions of the core tensor C is smaller than A,

i.e., Pj ≤ Ij (j = 1, 2, · · · , n). Furthermore, the Kronecker product of two matrices A ∈

Rm×n and B ∈ Rr×s is denoted as A⊗B ∈ Rmr×ns and is obtained by multiplying each
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element of matrixA to the entire matrixB:

A⊗B =


a11B ... a1nB

... . . . ...

am1B ... amnB

 .

We link the tensor multiplication with the Kronecker product using Proposition 3.1.

Proposition 3.1. LetU i ∈ RPi×P̃i (i = 1, · · · , l) and V i ∈ RQi×Q̃i (i = 1, · · · , d), and let

T ∈ RP1×···×Pl×Q1×···×Qd and C∈ RP̃1×···×P̃l×Q̃1×···×Q̃d , then

T = C ×1 U 1 ×U 2 ×3 · · · ×l U l ×l+1 V 1 ×l+2 · · · ×l+d V d

is equivalent to

T = (U l ⊗U l−1 ⊗ · · · ⊗U 1)C (V d ⊗ V d−1 ⊗ · · · ⊗ V 1)
T ,

where C ∈ RP̃×Q̃ is an unfold of the core tensor C with P̃ =
∏l

j=1 P̃j and Q̃ =
∏d

j=1 Q̃j .

This proposition can be found in [53] (Proposition 3.7, page 11). Finally, the contrac-

tion product, also known as the Einstein product, of two tensors B ∈ RP1×···×Pl×Q1×···×Qd

and X ∈ RP1×···×Pl is denoted as X ∗ B ∈ RQ1×···×Qd and is defined as

(X ∗ B)q1···qd =
∑

p1,··· ,pl

Xp1,··· ,plBp1,··· ,pl,q1,··· ,qd .

3.3 Multiple Tensor-on-Tensor Regression Framework

In this section, we introduce the multiple tensor-on-tensor (MTOT) regression framework

as an approach for integrating multiple types of data with different dimensions and forms

to model a process. Assume a set of training data of size M is available and includes

response tensors Yi ∈ RQ1×···×Qd (i = 1, · · · ,M) and input tensors Xji ∈ RPj1×···×Pjlj ,
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i = 1, · · · ,M ; j = 1, · · · , p, where p is the number of inputs. The goal of MTOT is

to model the relationship between the input tensors and the response using the following

linear form:

Yi =

p∑
j=1

Xji ∗ Bj + Ei, i = 1, · · ·M, (3.1)

where Bj ∈ RPj1×···×Pjlj
×Q1×···×Qd is the model parameter to be estimated and Ei is an

error tensor whose elements are from a random process. To achieve a more compact repre-

sentation of the model (3.1), we can combine tensors Yi, Xji, and Ei (i = 1, · · · ,M) into

one-mode larger tensors Y ∈ RM×Q1×···×Qd , Xj ∈ RM×Pj1×Pj2×···×Pjlj (j = 1, 2, · · · , p),

and E ∈ RM×Q1×···×Qd and write

Y =

p∑
j=1

Xj ∗ Bj + E . (3.2)

The matricization of (3.2) gives

Y (1) =

p∑
j=1

Xj(1)Bj +E(1), (3.3)

where Y (1) and Xj(1) are mode-1 unfolding of tensors Y and Xj , respectively, and the

first mode corresponds to the sample mode. Bj ∈ RPj×Q is an unfold of tensor Bj with

Pj =
∏lj

k=1 Pjk and Q =
∏d

k=1Qk. It is intuitive that the parameters of (3.3) can be

estimated by minimizing the mean squared loss function L = ||Y (1) −
∑p

j=1Xj(1)Bj||2F .

However, this requires estimating
∑p

j=1

∏lj
i=1 Pji

∏d
k=1Qk parameters. For example, in the

situation in which p = 1, minimizing the loss function gives a closed-form solution B̂ =(
XT

(1)X(1)

)−1
XT

(1)Y (1) that requires estimating
∏l

i=1 Pi
∏d

j=1Qj parameters. Estimating

such a large number of parameters is prone to severe overfitting and is often intractable.

In reality, due to the structured correlation between Xj and Y , we can assume that the

parameter Bj lies in a much lower dimensional space and can be expanded using a set of
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basis matrices via a tensor product. That is, for each Bj (j = 1, · · · , p), we can write

Bj = Cj ×1 U j1 ×2 U j2 ×3 · · · ×lj U jlj ×lj+1 V 1 ×lj+2 · · · ×lj+d V d, (3.4)

where Cj∈ RP̃j1×···×P̃jlj
×Q̃1×···×Q̃d (j = 1, · · · , p) is a core tensor with P̃ji � Pji (i ≤ lj)

and Q̃i � Qi (i = 1, · · · , d); {U ji : j = 1, · · · p; i = 1, · · · , lj} is a set of bases that spans

the jth input space; and {V i : i = 1, · · · , d} is a set of bases that spans the output space.

With this low-dimensional representation, the estimation of Bj reduces to learning the core

tensor Cj and the basis matrices U ji and V i. In this chapter, we allow U ji to be learned

directly from the input spaces. Two important choices of Uji are truncated identity matrices

(i.e., no transformation on the inputs) or the bases obtained from the Tucker decomposition

of the input tensor Xj , i.e.,

{
Dj,U j1, · · · ,U jlj

}
= arg min

Dj ,{Uji}

∣∣∣∣Xj −Dj ×1 U j1 × · · · ×lj U jl

∣∣∣∣2
F
.

In a special case that an input tensor is a matrix, the bases are the principal components

(PCs) of that input if one uses Tucker decomposition. Allowing U ji to be determined

based on only Xj is reasonable because learning the core tensors Cj (j = 1, · · · , p) and the

basis matrices V i (i = 1, · · · , d) provides a sufficient degree of freedom to learn Bj . That

is, for a given set of basis matrices
{
U j1, · · · ,U jlj

}
, we can learn Cj (j = 1, · · · , p), so

that Cj×1U j1×2U j2×3 · · ·×ljU jlj , along with the estimate bases {V 1, · · · ,V d} generate

a correct estimation of Bj . Note that depending on what set of bases to be used we may

require a larger or smaller value of the ranks P̃ji. Furthermore, fixing
{
U j1, · · · ,U jlj

}
improves the computational complexity of our algorithm significantly. Next, we iteratively

estimate the core tensors Cj and the basis matricesV i by solving the following optimization
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problem:

{Cj,V 1, · · · ,V d} = arg min

∣∣∣∣∣
∣∣∣∣∣Y (1) −

p∑
j=1

Xj(1)Bj

∣∣∣∣∣
∣∣∣∣∣
2

F

,

s.t.Bj = Cj ×1 U j1 ×2 U j2 ×3 · · · ×lj U jlj ×lj+1 V 1 ×lj+2 · · · ×lj+d V d,

V T
iV i = IQ̃i

(i = 1, · · · , d) , (3.5)

where IQ̃i is a Q̃i × Q̃i identity matrix. The first constraint ensures that the tensor of pa-

rameters is low-rank, and the orthogonality constraint V T
iV i = IQ̃i ensures the uniqueness

of both the basis matrices and the core tensors if the problem is identifiable. It should be

noted that in general, the problem of estimating functional data through a set of functions

may not always be identifiable. [76, 77, 75] discuss the identifiability problem in functional

and tensor regression. Because the main purpose of this chapter is to estimate and predict

the output, we do not discuss the identifiability issue here, as learning any correct set of

parameters {Bk : k = 1, · · · , p} will eventually lead to the same estimation of the output.

In order to solve (3.5), we combine the alternating least square (ALS) approach with

the block coordinate decent (BCD) method (designated by ALS-BCD). The advantages of

ALS algorithms are conceptual simplicity, noise robustness, and computational efficiency

[78]. ALS has also shown great promise in the literature for solving tensor decomposition

and regression applications with satisfying results [53]. To be able to employ ALS-BCD,

we first demonstrate Proposition 3.2:

Proposition 3.2. GivenU ki (k = 1, · · · , p; i = 1, 2, · · · , lj) ,V i (i = 1, 2, · · · , d), and Ck,

where k 6= j are known, a reshaped form of the core tensor Cj can be estimated as

C̃j = Rj ×1

(
ZT
jZj

)−1
ZT
j ×2

(
V T

1V 1

)−1
V T

1 ×3

(
V T

2V 2

)−1
V T

2 · · · ×d+1

(
V T

dV d

)−1
V T

d,

(3.6)

where Zj = Xj(1)(U jl ⊗U jl−1 ⊗ · · · ⊗U j1) andRj = Y −
∑p

i 6=j Bj ∗ Xj .
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The simplified proof of this proposition is given in Appendix A. Furthermore, if V i’s

are orthogonal, the core tensor can be obtained efficiently by the tensor product as

C̃j = Rj ×1

(
ZT
jZj

)−1
ZT
j ×2 V

T
1 ×3 V

T
2 · · · ×d+1 V

T
d.

Note that C̃j has fewer modes (d + 1) than the original core tensor Cj in (3.4), but it can

be transformed into C by a simple reshape operation. Also in the cases where the sparsity

of the core tensor is of interest, one can add a lasso penalty over the core tensor, and use

numerical algorithms (e.g., Iterative Shrinkage-Thresholding Algorithm [79]) to solve the

problem. Furthermore, one can efficiently estimate the basis matrices Vi using singular

value decomposition according to the following proposition.

Proposition 3.3. Given Cj , U ji, and V k (k 6= i), we can solve V i by

V i = RW T,

where R and W are obtained from the singular value decomposition of Y (i)S
T, where

S =
∑p

j=1 Sj and Sj = C̃j(i) (V d ⊗ · · · ⊗ V i+1 ⊗ V i−1 · · · ⊗ V 1 ⊗Zj)
T ; and C̃j(i) is

the mode-i matricization of tensor C̃j . Note thatR is truncated.

The simplified proof of this proposition is shown in Appendix B. Note that we do not

require the calculation of the Kronecker product V d⊗· · ·V i+1⊗V i−1⊗V 1⊗Z explicitly

to find Y (i)S
T. In real implementation, we can use Proposition 3.1 to efficiently calculate

the complete matrix using tensor products. Also, unlike the principal component regression

(PCR) in which the principal components of the output are learned independent of the

inputs, the estimated basis matrices V i (i = 1, · · · , d) directly depend on the input tensors,

ensuring correlation between the basis matrices and inputs. By combining Propositions 3.2

and 3.3, Algorithm 2 summarizes the estimation procedure for multiple tensor-on-tensor

regression. This algorithm, in fact, combines the block coordinate decent (BCD) algorithm
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with the ALS algorithm.

Algorithm 2 Estimation procedure for multiple tensor-on-tensor regression
1: Set ε = 10−6

2: Estimate Uji using Tucker decomposition of Xj for all i and j
3: Initilize Vi for all i using Tucker decomposition of Y
4: Compute Bj for all j and set w0 =

∣∣∣∣∣∣Y(1) −∑p
j=1Xj(1)Bj

∣∣∣∣∣∣2
F

5: do
6: Estimate Cj for all j = 1 : p using Proposition 3.2
7: Estimate Vi for all i = 1 : d using Proposition 3.3

8: Compute Bj for all j and set wk =
∣∣∣∣∣∣Y(1) −∑p

j=1Xj(1)Bj

∣∣∣∣∣∣2
F

9: while |wk+1 − wk| > ε

3.3.1 Selection of tuning parameters

The proposed approach requires the selection of values P̃ji (j = 1, · · · , p; i = 1, · · · , lj)

and Q̃k (k = 1, · · · , d). For this purpose, we use the k-fold cross-validation method on a

grid of parameters and find the tuple of parameters that minimizes the mean squared error.

In order to minimize the CV-MSE we use genetic algorithm (GA) with the constraint that

the ranks are integer values and they are bounded between one and Pji (Qk) . The genetic

algorithm is a fast and efficient method for minimizing a black-box function and results in

a very accurate solutions. In order to initiate the ranks for the GA, we use the following

heuristic: The rank of the ith mode of a tensor A is initiated by the number of principal

components that explain 95% of variation of the mode-i matricization of the tensor, i.e.,

A(i). For all studies in the next sections, we perform three-fold cross-validation (CV).

3.4 Performance Evaluation Using Simulation

This section contains two parts. In the first part, we only consider curve-on-curve regres-

sion and compare our proposed method to the Partial Least Square Regression (PLS) and

function-on-function regression approach proposed by [39], designated as sigComp. The

reason we compare our approach to sigComp is that sigComp can handle multiple func-
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tional inputs (curves) and learn the basis functions similar to our approach. In the second

part, we conduct a set of simulation studies to evaluate the performance of the proposed

method when the inputs or output are in the form of images or structured point clouds. In

this part, we compare the proposed method with two benchmarks: The first benchmark is

the TOT approach proposed by [75], which can roughly be viewed as a general form of sig-

Comp. Because this approach can only handle a single input tensor, when multiple inputs

exist we perform a transformation to merge the inputs into one single tensor. In order to im-

plement TOT, we use R package MultiwayRegression provided by [75]. The second bench-

mark is based on principal component regression (PCR) similar to a benchmark considered

in [36]. In this approach, we first matricize all the input and output tensors, then perform

principal component analysis to reduce the dimensions of the problem by computing the PC

scores of the first few principal components that explain at least v percent of the variation

in the data. Next, we perform linear regression between the low-dimensional PC scores of

both inputs and output. More formally, let Xj(1) ∈ RM×Pj and Y (1) ∈ RM×Q denote the

mode-1 matricization of the inputs and output, and X =
[
X1(1),X2(1), · · · ,Xp(1)

]
be a

concatenation of all the input matrices. We first compute the firstGx andGy principal com-

ponents of X and the response Y (1). Next, the PC scores of the input X are calculated (a

matrix in RM×Gx) and are used to predict the matrix of the scores of the response function (a

matrix in RM×Gy ). Then, given the PC scores of the new inputs, we use the fitted regression

model to predict the response scores. Finally, we multiply the predicted response scores

by the Gy principal components to obtain the original responses. The number of principal

components Gx and Gy can be identified through a CV procedure. In this chapter, instead

of CV overGx andGy directly, we perform CV over the percentage of variation the PCs ex-

plain, i.e., v. For this purpose, we take the value of v from {85%, 90%, 95%, 99%, 99.5%}

and take the v that minimizes the CV error. The standardized mean square prediction er-

ror (SMSPE) is used as a performance measure to compare the proposed method with the

benchmarks. The SMSPE is defined as SMSPE =
||Y−Ŷ||2F
||Y||2F

.
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3.4.1 Simulation studies for curve-on-curve regression

In this simulation, we consider multiple functional (curve) predictors and multiple scalar

predictors similar to the simulation study in [39]. We first randomly generate (B1, · · · ,Bp)

as follows:

Bi (s, t) =
1

p2
[γ1i (t)ψ1i (s) + γ2i (t)ψ2i (s) + γ3i (t)ψ3i (s)] ,

where γki (t) and ψki (s) (k = 1, 2, 3; i = 1, · · · , p) are Gaussian processes with covari-

ance function Σ1 (z, z′) =
(
1 + 20 |z − z′|+ 1

3
(20 |z − z′|)2

)
e−20|z−z

′|. Next, we gener-

ate p = 1, 3, 6, functional predictors using the following procedure: Let S be a p × p

matrix with the (i, j)th element equal to ρc = 0, 0.75 for i 6= j and equal to one for

diagonal elements. Next, we decompose S = ∆∆T, where ∆ is a p × p matrix and gen-

erate a set of curves w1, w2, · · · , wp using a Gaussian process with covariance function

Σ2 (z, z′) = e−(2|z−z
′|)2 . Finally, we generate the predictors at any given point s as

(x1 (s) , · · · , xp (s)) = (w1 (s) , w2 (s) , · · · , wp (s)) ∆T.

With this formulation, each curve of x1 (s) , · · · , xp (s) is a Gaussian process with covari-

ance function Σ2 (s, s′), and for each s, the vector (x1 (s) , · · · , xp (s)) is a multivariate

normal distribution with covariance S. When ρc = 0, this vector becomes an independent

vector of normally distributed variables. Figure 3.2 illustrates examples of the predictors

when p = 3 for ρc = 0, 0.75. We also generate the scalar predictors (u1, · · · , u5) from a

multivariate normal distribution with the mean vector zero and the covariance matrix with

diagonal elements equal to 1 and off-diagonal elements equal to 0.5. The coefficients of

the scalar variables denoted by αi (t) (i = 1, · · · , 5) are generated from a Gaussian process
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Figure 3.2: Example of the predictors when (a) p = 3, ρc = 0 and (b) p = 3,ρc = 0.75.

with covariance function Σ (t, t′) = e{−5|t−t
′|}2 . Finally, we generate the response curves as

y (t) =
5∑
i=1

αi (t)ui +

p∑
i=1

∫
Bi (s, t)xi (s) ds+ ε (t) ,

where ε (t) is generated from a normal distribution with zero mean and σ2 = 0.1. We

generate all of the input and output curves over 0 < s < 2 and 0 < t < 1 and take the

samples over an equidistant grid of size 100.

For each combination of (p, ρc), we compare the performance of the proposed method

with the method in [39], designated by sigComp, and partial least square (PLS) regression

based on the mean square prediction error (MSPE) and the mean square estimation error

(MSEE). We do not compare our approach to PCR in this simulation because sigComp has

already demonstrated superiority over PCR in simulation studies in [39]. We implement the

sigComp benchmark method using the R package FRegSigCom in which we use 50 spline

bases for both the inputs and output and a default convergence tolerance. To calculate the

MSPE and MSEE, we first generate a sample data of size Mtrain = 400 that is used to

learn the model parameters. Next, we generate a testing sample of size Mtest = 100 and

calculate MSPE as

MSPE =
1

Mtest

Mtest∑
j=1

(
1

100

100∑
i=1

(
ytestj (ti)− ŷtestj (ti)

)2)
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Table 3.1: Comparison between the proposed method with PLS and the sigComp method
proposed by [39].

PLS sigComp MTOT
p ρc MSPE MSEE MSPE MSEE MSPE MSEE

1 0 0.125 (0.003) 0.025 (0.002) 0.109 (0.001) 0.009 (0.000) 0.106 (0.001) 0.006 (0.000)

3
0 0.158 (0.004) 0.059 (0.003) 0.128 (0.003) 0.029 (0.002) 0.117 (0.002) 0.018 (0.001)

0.75 0.149 (0.004) 0.051(0.003) 0.125 (0.003) 0.025 (0.002) 0.113 (0.002) 0.013 (0.001)

6
0 0.173 (0.007) 0.076 (0.006) 0.147 (0.005) 0.046 (0.003) 0.134 (0.003) 0.035 (0.003)

0.75 0.165 (0.006) 0.069 (0.005) 0.131 (0.004) 0.032 (0.002) 0.128(0.003) 0.029 (0.002)

and

MSEE =
1

Mtest

Mtest∑
j=1

1

100

100∑
i=1

(
ytestj (ti)− ε (ti)− ŷj (ti)

)2
.

We repeat this procedure 50 times to find the means and standard deviations of the MSPE

and MSEE for each method. Table 3.1 reports the results at different values of ρc and

different numbers of predictors, p. As reported, our proposed approach is superior to the

sigComp and PLS in terms of MSPE and MSEE for all values of p. For example, when

p = 3 and ρc = 0.75, the average MSPE and MSEE of the sigComp are 0.125 and 0.025,

which are much larger than the corresponding values (0.113 and 0.013) achieved by MTOT.

Please note that the performance of all three approaches deteriorates as the number of input

variables increases, but all three methods perform better when the inputs are correlated.

Figure 3.3 illustrates prediction examples obtained by each method, along with the true

curve for different p = 3. As illustrated all of the approaches produce reasonably accurate

predictions.

3.4.2 Simulation studies for image and structured point-cloud

We first simulate waveform surfaces Yi based on two input tensors, X1i ∈ RP11×P12×···×P1l1

and X2i ∈ RP21×P22×···×P2l2 (i = 1, · · ·M), whereM is the number of samples. To generate

the input tensors, we define xkmj = j
Pkm

(k = 1, 2; m = 1, · · · lk; j = 1, · · ·Pkm). Then,
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Figure 3.3: Prediction examples of sigComp, PLS, and MTOT.

we set U km = [ukm1,ukm2, · · ·ukmRk
] (k = 1, 2; m = 1, · · · lk), where

ukmt =


[cos (2πtxkm1) , · · · , cos (2πtxkmPkm

)]T if t is odd

[sin (2πtxkm1) , · · · , sin (2πtxkmPkm
)]T if t is even.

Next, we randomly simulate elements of a core tensor Dki from a standard normal distri-

bution. Then, we generate an input sample using the following model:

Xki = Dki ×1 U k1 ×2 · · · ×lk U klk (k = 1, 2; i = 1, · · · ,M) .

To generate a response tensor, we first simulate the elements of a core tensor Ck from a stan-

dard normal distribution. Moreover, we set V m = [vm1,vm2, · · ·vmR] (m = 1, · · · , d),

where

vmt =


[cos (2πtym1) , · · · , cos (2πtymQm)]T if t is odd

[sin (2πtym1) , · · · , sin (2πtymQm)]T if t is even
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and ymj = j
Qm

. Next, we define the parameter tensors Bk using the following expansion:

Bk = Ck ×1 U k1 ×2 · · · ×lk U klk ×lk+1 V 1 × · · · ×lk+d V d.

Finally, we simulate a response tensor as

Yi =
2∑

k=1

Xki ∗ Bk + Ei,

where Ei is the error tensor whose elements are sampled from a normal distributionN (0, σ2).

For simulation purposes, we assume X1i ∈ R60, X2i ∈ R50×50, and Yi = R60×40. That is,

we generate a response based on a profile and an image signal. Furthermore, we setR1 = 2,

R2 = 3, andR = 3. This implies that C1 ∈ R2×3×3 and C2 ∈ R3×3×3. Figure 3.4a illustrates

examples of generated response surfaces. For this simulation study, we first generate a set

of M = 200 data points. Then, we randomly divide the data into a set of 160 observations

for training and a set of 40 observations for testing. We perform CV and train the model

using the training set, then calculate the SMSPE for the proposed method and benchmarks

based on the test data. We repeat this procedure 50 times to capture the variance of the

SMSPE. In order to prepare data for the TOT approach, three steps are performed: First,

because the dimension of the curve inputs (1× 60) and the image inputs (50× 50) do not

match, we randomly select 50 points out of 60 to reduce the curve dimension to 50. Sec-

ond, we replicate each curve 50 times to generate 50× 50 images. Third, for each sample,

we merge the image constructed from the curve and the image input to construct a ten-

sor of size 50 × 50 × 2. Combining all of the samples, we obtain an input tensor of size

M × 50× 50× 2, where M is the sample size. We designate this simulation as Case I.

As another simulation case (designated by Case II), we simulate a truncated cone based

on a set of scalars and simple profile data in a 3D cylindrical coordinate system (r, φ, z),

where φ ∈ [0, 2π] and z ∈ [0, 1]. We first generate an equidistant grid of I1 × I2 over the

(φ, z) space by setting φi = 2πi
I1

(i = 1, · · · , I1) and zj = j
I2

(j = 1, · · · , I2). Specifically,
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we set I1 = I2 = 200. Next, we simulate the truncated cone over the grid by

r (φ, z) =
r0 + z tan θ√
1− e2 cos2 φ

+ c
(
z2 − z

)
+ ε (φ, z) , (3.7)

where r0 is the radii of the upper circle of the truncated cone, θ is the angle of the cone, e is

the eccentricity of the top and bottom surfaces, c is the side curvatures of the truncated cone,

and ε (φ, z) is process noise simulated from N (0, σ2). Figure 3.4b illustrates examples

of generated truncated cones. We assume that the parameters of the truncated cone are

specific features obtained from a scalar and three simple profile data. In particular, we

assume that the scalar predictor is x1i = r0i and the profile predictors are x2i (z) = z tan θ,

x3i (φ) = e2 cos2 φ, and x4i (z) = c (z2 − z); i = 1, · · · ,M . That is, the inputs are

one scalar and three profiles. We simulate these profiles for training purposes by setting

the parameters as follows: We set r0 ∈ {1.1, 1.3, 1.5}, θ ∈
{

0, π
8
, π
4

}
, e ∈ {0, 0.3, 0.5},

c ∈ {−1, 0, 1}, and consider a full factorial design to generate 81 samples. That is, for

each combination of parameters (e.g., {1.1, 0, 0.3, −1}), we generate a sample containing

one scalar value and three profiles. We represent each of the inputs by a matrix (a tensor

of order 2) to obtain four input matrices X1, X2, X3, and X4, where X1 ∈ R81×1 and

Xi ∈ R81×200 (i = 2, 3, 4). Finally, we generate the test data by sampling the truncated

cone parameters as follows: We assume r ∼ U (1.1, 1.5), θ ∼ U
(
0, π

4

)
, e ∼ U (0, 0.5),

and c ∼ U (−1, 1), where U (a, b) denotes a uniform distribution over the interval [a, b],

and sample each parameter from its corresponding distribution. In this simulation, we first

train the model using the generated training data. Next, we generate a set of 1000 test data.

We predict the truncated cone based on the input values in the test data and calculate the

SMSPE for each predicted cone. In order to prepare the data for TOT, we first replicate the

column of X1 to generate a matrix of size 81× 200, then merge this matrix with the other

three matrices to construct an input tensor of size 81 × 4 × 200. This tensor is used as an

input in the TOT.
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In each case, we compare the proposed method with benchmarks based on the SMSPE

calculated at different levels of noise σ. Tables 3.2 and 3.3 report the average and stan-

dard deviation of SMSPE (or its logarithm), along with the average running time of each

algorithm for the simulation cases I and II respectively. In Table 3.3, we report the average

and standard deviation of the logarithm of the SMSPE for better comparison of the values.

Note that the SMSPE is a standardized error and should not directly be compared to the

variance. In almost all cases, the MTOT has the smallest prediction errors, reflecting the

advantage of our method in terms of prediction. Furthermore, with the increase in σ, all

methods illustrate a larger SMSPE in all cases. In the first case, the TOT illustrates a pre-

diction performance comparable to our method at a cost of a much longer running time.

For example, when σ = 0.2, TOT requires about 147.33 seconds to reach the SMSPE of

0.0170, obtained in 1.05 seconds by MTOT. The performance of both PCR and TOT are

significantly worse than MTOT in the second case. The inferior performance of TOT is

due to both its restriction on selecting the same rank for both the input and output and the

fact that the CP decomposition it uses does not consider the correlation between multiple

modes.

(a) (b)

Figure 3.4: Examples of generated output for the simulation study (a) case I-waveform
surface and (b) case II–truncated cone.
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Table 3.2: Comparison between the proposed method (MTOT) and the benchmarks in case
I with the waveform response. The TOT requires a much larger running time to achieve the
same level of prediction error as the MTOT.

PCR TOT MTOT

σ SMSPE Time (sec) SMSPE Time (sec) SMSPE Time (sec)

0.1 0.0057 (0.0015) 0.03 (0.00) 0.0046 (0.0011) 154.98 (17.94) 0.0044 (0.0011) 1.05 (0.03)

0.2 0.0199 (0.0045) 0.04 (0.00) 0.0170 (0.0039) 147.33 (2.47) 0.0170 (0.0040) 1.05 (0.01)

0.3 0.0455 (0.0097) 0.04 (0.00) 0.0399 (0.0086) 149.03 (1.36) 0.0395 (0.0086) 1.05 (0.02)

0.4 0.0773 (0.0233) 0.04 (0.00) 0.0678 (0.0135) 149.13 (0.96) 0.0673 (0.0212) 1.05 (0.03)

0.5 0.1186 (0.0222) 0.04 (0.00) 0.1036 (0.0231) 146.17 (0.95) 0.1032 (0.0203) 1.04 (0.01)

0.6 0.1670 (0.0327) 0.04 (0.00) 0.1456 (0.0309) 147.75 (1.81) 0.1454 (0.0299) 1.03 (0.01)

Table 3.3: Comparison between the proposed method and the benchmarks in case II with
truncated cone. Due to the difference between the input and the output rank, the perfor-
mance of the TOT is significantly worse than the MTOT. The PCR is very fast in estimation,
but the prediction accuracy is not as appealing as the MTOT.

PCR TOT MTOT

σ log(SMSPE) Time (sec) log(SMSPE) Time (sec) log(SMSPE) Time (sec)

0.01 -5.555 (0.986) 0.05 (0.00) -5.249 (1.326) 23.58 (5.93) -8.095 (1.196) 3.82 (0.09)

0.02 -5.509 (0.937) 0.07 (0.00) -5.197 (1.254) 27.94 (6.11) -7.629 (0.869) 3.92 (0.10)

0.03 -5.441 (0.879) 0.08 (0.00) -5.127 (1.175) 29.11 (8.46) -7.215 (0.666) 3.93 (0.12)

0.04 -5.360 (0.819) 0.06 (0.00) -5.048 (1.097) 33.61 (9.02) -6.856 (0.537) 3.95 (0.14)

0.05 -5.269 (0.762) 0.07 (0.00) -4.963 (1.023) 34.29 (14.55) -6.543 (0.454) 3.99 (0.13)

0.06 -5.173 (0.710) 0.07 (0.00) -4.875 (0.956) 37.43 (15.19) -6.266 (0.402) 3.95 (0.14)

3.5 Case Study

In semiconductor manufacturing, patterns are printed layer by layer over a wafer in a se-

quence of deposition, etching, and lithographic processes to manufacture transistors [80].
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Many of these processes induce stress variations across the wafer, distorting/changing the

wafer shape [81, 64]. Figure 3.5 illustrates a simplified sequence of processes, causing

the overlay error in the patterned wafers. In the first step, a layer is deposited over the

wafer and exposed to rapid thermal annealing, causing a curvature in the free-state wafer.

The wafer is then chucked flat and patterned in a lithographic process. Next, to generate

a second layer pattern, a new layer is deposited, changing the wafer shape. Finally, in the

lithography step, the flattened wafer is patterned. Because the wafer is flattened, the first

pattern distance increases, but the new pattern is printed with the same distance L, generat-

ing a misalignment between patterns. The overlay error caused by lower order distortions

can be corrected by most of the exposure tools. For this purpose, the alignment positions

of several targets are measured and used to fit a linear overlay error model [81]:


∆x = Tx − θxy +Mxx error in x coordinate

∆y = Ty + θyx+Myy error in y coordinate,
(3.8)

where x and y identify the position of the target point over the wafer, Tx and Ty are tran-

sition errors, θx and θy relate to rotation error, and Mx and My are isotropic magnification

errors pertaining to the wafer size change or wafer expansion due to processing. The fitted

model is then used to correct the overlay errors. This model, however, can only correct

the overlay error induced by a uniform stress field and fails to compensate for overlay er-

rors caused by high-order distortions [81]. Therefore, developing a model that can relate

the overlay error to higher order patterns in the wafer shape is essential for better overlay

correction.

In this case study, we use our proposed method to predict the overlay error based on the

wafer shape data. Such predictions can be fed forward to the exposure tools to result in a

better correction strategy. In practice, the wafer shape is measured using a patterned wafer

geometry (PWG) tool, and the overlay error is measured using standard optical methods

[81]. Both the wafer shapes and the overlay errors (in each coordinate, x or y) can be pre-
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Wafer prior to a process 

and with no stress 

variation

Wafer after deposition of a 

film.
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L

L

L+dL

Overlay error

Bow/warp

Figure 3.5: Process of a wafer, which causes shape variation and consequently overlay
error.
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sented as image data. In this case study, we follow the procedure and results suggested and

verified (through both experiments and finite element [FE] analysis) by [81] to generate

surrogate data of overlay errors (PIR (x, y)) based on the wafer shape prior to two lithog-

raphy steps (w1 (x, y), w2 (x, y)). The data generation procedure is elaborated in Appendix

C.

Based on the described procedure in Appendix C, we generate a set of 500 training

observations, i.e., wafer shapes and overlay errors, {(w1i (x, y) , w2i (x, y) , P IRi)}M=500
i=1 ,

and employ our proposed method to estimate the PIRi based on (w1i (x, y) , w2i (x, y)).

Because in our simulated dataw1i (x, y) remains fixed, we considerwi (x, y) = w2i (x, y)−

w1i (x, y) as the predictor. We also generate 100 observations as the test dataset. The mean

square prediction error obtained from the testing data is used as the performance criterion.

We repeat the simulations 50 times and record the MSPE values. Because our proposed

methodology assumes that the shapes are observed over a grid, we transform the data to the

polar coordinate prior to modeling. In the polar space, each shape is observed over a grid of

100× 200 (100 in the radial direction and 200 in the angular direction, with overall 20,000

pixels). Unfortunately, the TOT approach proposed by [75] failed to run with this size of

images due to its high space complexity. Therefore, we only compared our approach with

PCR. Figure 3.6 illustrates an example of the original and predicted corrected overlay error

image, along with the prediction error. As illustrated, the proposed method predicted the

original surface more accurately, with smaller errors across the wafer. Figure 3.7 illustrates

the boxplots of the logarithm of the prediction mean square error calculated over the 50

replications in contrast with the benchmark. The results show that the proposed method

is superior to the benchmark in prediction of the image. As an example, the average of

log(SMSE) over the replications is -8.33 for the proposed method and -7.56 for the PCR

approach.
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Figure 3.6: Example of (a) the x coordinate overlay error, (b) prediction of MTOT, (c)
MTOT prediction error, (d) prediction of PCR, and (e) PCR prediction error.
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Figure 3.7: Logarithm of the prediction mean square error calculated for the test data over
50 replications. The proposed method illustrates significantly lower standard prediction
error than the PCR approach.

3.6 Conclusion

This chapter proposed a multiple tensor-on-tensor approach for modeling processes with a

heterogeneous set of input variables and an output that can be measured by a scalar, curve,

image, or point-cloud, etc. The proposed method represents each of the inputs as well as

the output by tensors, and formulates a multiple linear regression model over these ten-

sors. In order to estimate the parameters, a least square loss function is defined. In order

to avoid overfitting, the proposed method decomposes the regression parameters through

a low-dimensional set of basis matrices that spans the input and output spaces. Next, the

basis matrices, along with their expansion coefficients, are learned by minimizing the loss

function. The orthogonality condition is imposed over the output bases to assure identifia-

bility and interpretability. To solve the minimization problem, first, a closed-form solution

is derived for both the bases and their coefficients. Second, the block coordinate decent

(BCD) approach combined with the ALS algorithm is applied. The proposed approach is
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capable of combining different forms of inputs (e.g., an image, a curve, and a scalar) to

estimate an output (e.g., a scalar, a curve, or an image, etc.) as demonstrated in first three

simulation studies. For example, in the first and third simulation studies, we combined the

scalar and profile inputs to estimate a profile and a point cloud, respectively; and in the

second simulation study, a profile and an image are integrated to predict an image.

In order to evaluate the performance of the proposed method, we conducted four sim-

ulation studies and a case study. In our first simulation study, we compared our proposed

method with the function-on-function approach proposed by [39]. This simulation con-

sidered scalar and curve inputs since the benchmark can only handle those form of data.

Next, we performed three other simulations to evaluate the performance of the proposed

method when the inputs or outputs are images or point clouds. In these simulation stud-

ies, the proposed approach was compared with principal component regression (PCR) and

tensor-on-tensor (TOT) regression, and showed superior performance in terms of mean

squared prediction error. We also evaluated our proposed method using a set of surrogate

data generated according to the manufacturing process of semiconductors. We simulated

the shape and overlay errors for several wafers and applied the proposed method to esti-

mate the overlay errors based on the wafer shapes measured prior to the lithography steps.

Results showed that the proposed method performed significantly better than the PCR in

predicting the overlay errors.

As a future work, including penalties such as lasso for sparsity and group lasso for

variable selection and imposing roughness penalties over the basis matrices may improve

the prediction results and can be further studied.

84



Appendices

85



APPENDIX A

ROUGHNESS PENALTY AND PROOF OF PROPOSITION 2.1

The matrices Pj,s and Pj,t are the roughness penalties over the functional parameters,

βj (s, t). Let Lt (Ls) denotes an differentiating operator (e.g. second derivative) with

respect to t (s). Then, we define the roughness penalty over βj (s, t) as follows,

pent (βj) =

∫ ∫ [
Ltβ

T
j (s, t)

]2
dsdt

=

∫ ∫ [
Lt

[
ηT (t)BT

j θj (s)
]]2

dsdt

=

∫ ∫ [
Ltη

T (t)BT
j θj (s)

]T [
Ltη

T (t)BT
j θj (s)

]
=

∫ ∫
bTj [θj (s)⊗ Ltηj (t)]

[
θTj (s)⊗ Ltη

T
j (t)

]
bj

= bT
([∫

θj (s) θTj (s)

]
⊗
[∫

Ltηj (t)Ltη
T
j (t)

])
b

where the last equality follows from the property of the Kronecker product that

(A⊗B) (C ⊗D) = AC ⊗BD

for matricesA,B, C,D. Moreover, we notice that ηj (t) = ηj1 (t1)⊗ηj2 (t2)⊗· · ·⊗ηjd (td).

Then we can write

pent (βj) = bTj (Pθ ⊗ PLη1 ⊗ · · · ⊗ PLηd) bj,

where, Pθ =
[∫
θj (s) θTj (s)

]
, and PLηk =

[∫
Ltηj1 (t1)Ltη

T
j1 (t1)

]
; k = 1, · · · , d. Simi-

larly, if we use the operator Ls for the smoothness in the s, we can show that

pens (βj) = bTj (PLθ ⊗ Pη1 ⊗ · · · ⊗ Pηd) bj,

where PLθ=
[∫
Lsθj (s)Lsθ

T
j (s)

]
and Pηk =

[∫
ηjd (td) η

T
jd (td)

]
; k = 1, · · · , d
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APPENDIX B

PROOF OF PROPOSITION 2.2

Proof I: In this appendix, we derive the (2.6) as a solution to the loss function

L (b1, · · · , bp) =
1

2

∣∣∣∣∣
∣∣∣∣∣y −

p∑
j=1

Djbj

∣∣∣∣∣
∣∣∣∣∣
2

2

+
λ

2

p∑
j=1

bTj (Pj,s + Pj,t) bj

+ γ

p∑
j=1

√
qjbTjWjbj

where, Wj = DT
jDj + λ (Pj,s + Pj,t). Note that Wj is positive semi–definite and so

Cholesky decomposition ofWk exists, i.e.,Wj = V T
j Vj . We now calculate the sub–derivative

of L with respect to bk, which gives,

∂L

∂bk
= −DT

k

(
y −

p∑
j=1,j 6=k

Djbj

)

+Wkbk + γ
√
qkV

T
j g (bk) ,

where g (bk) = Vkbk
||Vkbk||2

if bk 6= 0 and is a vector with ||g (bk)|| ≤ 1 if bk = 0. For bk to

be optimal, the sub–differential ∂L
∂bk

should include zero (i.e. 0 ∈ ∂L
∂bk

) and so we can find

optimal bk by setting ∂L
∂bk

= 0. Let us set rk = y −
∑p

j=1,j 6=kDjbj to denote the residuals

when the kth covariate is omitted. Then, we have: ∂L
∂bk

= −DT
krk+Wkbk+γ

√
qkVjg (bk) =

0. Now if
∣∣∣∣V −1k DT

krk − V −1k Wkbk
∣∣∣∣
2
< γ
√
qk then bk = 0, otherwise,

bk =

(
1 +

γ
√
qk

||Vkbk||2

)−1
W−1
k Dkrk
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With some algebra to find ||Vkbk||,

bk =

(
1−

γ
√
qt

V −1k DT
krk

)
W−1
k Dkrk

Finally, we set bk = 0 when 1− γ
√
qt

V −1
k DT

krk
< 0, or we write,

bk =

(
1−

γ
√
qt

V −1k DT
krk

)
+

W−1
k Dkrk

where, (x)+ = max (0, x).

Sketch of an alternative proof using a transformation: Consider the following loss func-

tion,

L =
1

2

∣∣∣∣∣
∣∣∣∣∣y −

p∑
j=1

Djbj

∣∣∣∣∣
∣∣∣∣∣
2

2

+
λ

2

p∑
j=1

bTjPjbj + γ

p∑
j=1

√
qjb

T
jWjbj

with Wj = DT
jDj + λPj . Let us denote Hj =

[
Dj 0 · · ·

√
λP

1
2
j 0 · · · 0

]T
and z =

[y 0 · · · 0]T. Then, we can write,

L =
1

2

∣∣∣∣∣
∣∣∣∣∣z−

p∑
j=1

Hjbj

∣∣∣∣∣
∣∣∣∣∣
2

2

+ γ

p∑
j=1

√
qj ||Hjbj||2 .

Now, consider the QR decomposition of Hj = UjQj , where Uj is unitary matrix (i.e.

UTU = I) and Qj is an upper triangle square matrix. With the QR decomposition, the loss

function can be written as

L =
1

2

∣∣∣∣∣
∣∣∣∣∣z−

p∑
j=1

Ujcj

∣∣∣∣∣
∣∣∣∣∣+ γ

p∑
j=1

√
qj ||cj||2
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where cj = Qjbj . The above is a formulation of the loss function with an orthonormal

design matrix and has a closed-form soft-thresholding solution. Obtaining the closed-form

solution of this new loss function is well-established in the literature [55].
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APPENDIX C

PROOF OF PROPOSITION 3.2

For simplicity, we assume only one input tensor exists. Then, we can solve C by

argminC‖Y(1) −X(1)B‖2F = ‖Y(1) −X(1)(Ul ⊗ Ul−1 ⊗ · · · ⊗ U1)C(Vd ⊗ · · · ⊗ V1)T‖2F

= ‖vec(Y(1))− vec(ZC(Vd ⊗ · · · ⊗ V1)T )‖22

= ‖vec(Y(1))− (Vd ⊗ · · · ⊗ V1 ⊗ Z)vec(C)‖22,

where vec (X) stacks the columns of matrix X on top of each other. This is a simple least

square regression that gives a closed-form solution as in (3.6) after applying Proposition

3.1 to convert Kronecker products to tensor products.
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APPENDIX D

PROOF OF PROPOSITION 3.3

Again assuming a single input tensor, let us define Ỹ = (Vd ⊗ · · · ⊗ V1 ⊗ Z)vec(C) in

the tensor format as Ỹ = C̃ ×1 Z ×2 V1 × · · · ×d+1 Vd, which can be written as Ỹ(i) =

ViC̃(i)(Vd ⊗ · · ·Vi+1 ⊗ Vi−1 ⊗ V1 ⊗ Z)T. First note that

argminVi‖Y(1) −X(1)B‖2F = argminVi‖vec(Y(1))− (Vd ⊗ · · · ⊗ V1 ⊗ Z)vec(C̃)‖2F

= argminVi‖Y(i) − Ỹ(i)‖
2
F

= argminVi‖Y(i) − ViC̃(i)(Vd ⊗ · · ·Vi+1 ⊗ Vi−1 ⊗ V1 ⊗ Z)T‖2F ,

with A := C̃(i)(Vd ⊗ · · ·Vi+1 ⊗ Vi−1 ⊗ V1 ⊗ Z)T. Then, we want to solve

argminVi‖Y(i) − ViA‖
2
F s.t. V

T
i Vi = I.

This is an orthogonal procrustes problem and is known to have solution as is stated in

Proposition 3.3.
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APPENDIX E

SIMULATING THE OVERLAY ERROR

[81] introduced a measure based on in-plane distortion (IPD) called predicted in-plane

distortion residual (PIR) to estimate and predict nonuniform-stress-induced overlay errors

based on wafer shape. For this purpose, they first illustrate that the IPD is proportional to

gradient of wafer shape w (x, y), i.e.,

IPD ∝ −∇w.

Then, for two layers, say i and k, to be patterned, they calculate the IPD and subtract

them to find the shape-slope difference, i.e., SSD = IPDi − IPDk. The shape-slope is

then corrected based on model (3.8) to find the shape-slope residual (SSR). Finally, [81]

calculated the PIR as a factor of SSR. That is,

PIR = c× SSR,

where c is a constant that depends on the wafer thickness. In their study, they showed

through four differently patterned engineer stress monitor (ESM) wafers that the PIR is

linearly correlated by the overlay errors with high R2 values (e.g., 92%). To perform the

experiment, they first deposit a layer of silicon nitride film over a 300mm wafer as a source

of stress. This process changes the wafer shape and causes the wafer to curve. The shape of

the wafer is measured by a patterned wafer geometry (PWG) tool designed for the metrol-

ogy of 300mm wafers. After the wafer is exposed by a designed pattern (four different

patterns considered in this study), it goes through an etching process that relieves some

part of the stress depending on the pattern density. At this stage, and prior to next lithogra-

phy step, the wafer shape is again measured. After the second lithography step, the overlay
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error is measured using standard optical methods. Using the measured wafer shapes, they

calculated the PIR and showed a high correlation between the PIR and overlay error.

In our study, we first simulate the wafer shapes and then estimate the overlay errors us-

ing the following procedure introduced by [81]. Simulating a wafer shape requires knowl-

edge of the different components in wafer geometry. [81] and [64] consider several wafer

shape features that span different ranges of spatial wavelength (λ). At the highest level

is the overall shape of the wafer represented by a bow (or warp) in the range of tens of

micrometers. Other shape variations are those that are spanned by spatial wavelengths in

the range of several meters and waveheight in the micrometer range. Another component is

the nanotopography (NT) of the wafer, with λ ranging from few millimeters to 20mm and

the wave-height in nanometers. Finally, the roughness of the wafer is defined as variations

with λ < 0.2mm. In this study, we only consider the bow shape and the NT components

when simulating a wafer shape. The wafer shapes are simulated as follows: We first as-

sume that a thin layer is deposited over a wafer, which causes only a bow shape geometry

in the wafer (that is, we assume no wave patterns). We simulate the bowed wafer geome-

try using w1 (x, y) =
b1(0.5x2+y2)

R2 , where b1 is the warp or bow size and is assumed to be

100µm, and R is the wafer radius, which is assumed to be 150mm. We then assume that

a lithography/etching process is performed and the wafer shape changes in both bow and

wavy patterns as follows:

w2 (x, y) =
b2 (0.5x2 + y2)

R2
+

p∑
i=1

hi
2

(
1 + sin

(
2πx

λi

))
+

p∑
i=1

hi
2

(
1 + cos

(
2πy

λi

))
,

where b2 is the bow size uniformly sampled from 30 to 100µm, and hi and λi are the wave-

height and wavelength, respectively. Moreover, p is the number of waveforms assumed.

For each wafer (i.e. sample), we first randomly select p from U (2, 10) and then select

p wavelength from U (2, 20) for NT wavelength. Finally, we sample waveheight hi from

U
(
λi
107
, λi
106

)
to ensure that the large wavelength has large a waveheight and vice versa. Af-
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ter simulating a wafer shape prior to two lithography steps, we calculate the IPD and PIR

according to the procedure described previously. Note that we only calculate the values

proportional to the original values. Figure E.1 illustrates an example of generated shapes,

their associated IPDs in the x coordinates, i.e., −∂w
∂x

, and the difference between the x co-

ordinate IPDs prior to and after correction. In order to correct the IPD values, we consider

a second order model:
∆IPDx = k0 + k1x+ k2y + k3x

2 + k4y
2 + k5xy error in x coordinate

∆IPDy = k6 + k7x+ k8y + k9x
2 + k10y

2 + k11xy error in y coordinate,

which is fitted to the calculated values of ∆IPDx = IPDx2 − IPDx1 and ∆IPDy. Then

the fitted model is subtracted from the ∆IPDx and ∆IPDy to find the corrected values.

The corrected values are associated with the PIR and the overlay error.

(a)

(b)

(c)

(d)

(e)

(f)

Figure E.1: Illustration of wafer (a) shape prior to first step lithography, (b) shape prior to
second step lithography, (c) IPDx for the first shape, (d) IPDx for the second shape, (e)
PIR prior to correction, and (f) PIR after correction for second order shapes.
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[35] K. Kim, D. Şentürk, and R. Li, “Recent history functional linear models for sparse
longitudinal data,” Journal of Statistical Planning and Inference, vol. 141, no. 4,
pp. 1554–1566, 2011.

[36] Y. Fan, N. Foutz, G. M. James, W. Jank, et al., “Functional response additive model
estimation with online virtual stock markets,” The Annals of Applied Statistics, vol. 8,
no. 4, pp. 2435–2460, 2014.

97



[37] J. Oliva, W. Neiswanger, B. Póczos, E. Xing, H. Trac, S. Ho, and J. Schneider,
“Fast function to function regression,” in Artificial Intelligence and Statistics, 2015,
pp. 717–725.

[38] A. E. Ivanescu, A.-M. Staicu, F. Scheipl, and S. Greven, “Penalized function-on-
function regression,” Computational Statistics, vol. 30, no. 2, pp. 539–568, 2015.

[39] R. Luo and X. Qi, “Function-on-function linear regression by signal compression,”
Journal of the American Statistical Association, vol. 112, no. 518, pp. 690–705,
2017.

[40] M. Pacella, “Unsupervised classification of multichannel profile data using PCA: An
application to an emission control system,” Computers and Industrial Engineering,
vol. 122, pp. 161–169. 2018.

[41] H. Chen and Y. Wang, “A penalized spline approach to functional mixed effects
model analysis,” Biometrics, vol. 67, no. 3, pp. 861–870, 2011.

[42] L. Zhou, J. Z. Huang, and R. J. Carroll, “Joint modelling of paired sparse functional
data using principal components,” Biometrika, vol. 95, no. 3, pp. 601–619, 2008.

[43] H. Zhu and D. D. Cox, “A functional generalized linear model with curve selection
in cervical pre-cancer diagnosis using fluorescence spectroscopy,” Lecture Notes-
Monograph Series, pp. 173–189, 2009.

[44] E. R. Lee and B. U. Park, “Sparse estimation in functional linear regression,” Journal
of Multivariate Analysis, vol. 105, no. 1, pp. 1–17, 2012.

[45] J. Goldsmith, L. Huang, and C. M. Crainiceanu, “Smooth scalar-on-image regression
via spatial Bayesian variable selection,” Journal of Computational and Graphical
Statistics, vol. 23, no. 1, pp. 46–64, 2014.

[46] G. M. James, J. Wang, and J. Zhu, “Functional linear regression that’s interpretable,”
The Annals of Statistics, pp. 2083–2108, 2009.

[47] B. D. Marx and P. H. Eilers, “Generalized linear regression on sampled signals and
curves: A p-spline approach,” Technometrics, vol. 41, no. 1, pp. 1–13, 1999.

[48] J. S. Morris, “Functional regression,” Annual Review of Statistics and its Application,
vol. 2, pp. 321–359, 2015.

[49] J. S. Morris, V. Baladandayuthapani, R. C. Herrick, P. Sanna, and H. Gutstein, “Auto-
mated analysis of quantitative image data using isomorphic functional mixed mod-
els, with application to proteomics data,” The Annals of Applied Statistics, vol. 5,
no. 2A, p. 894, 2011.

98



[50] Y. Chen, X. Wang, L. Kong, and H. Zhu, “Local region sparse learning for image-
on-scalar regression,” arXiv preprint arXiv:1605.08501, 2016.

[51] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin, “Instructing people for training
gestural interactive systems,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM, 2012, pp. 1737–1746.

[52] N. Simon and R. Tibshirani, “Standardization and the group lasso penalty,” Statistica
Sinica, vol. 22, no. 3, p. 983, 2012.

[53] T. G. Kolda, “Multilinear operators for higher-order decompositions,” Sandia Na-
tional Laboratories, Tech. Rep., 2006.

[54] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Re-
view, vol. 51, no. 3, pp. 455–500, 2009.

[55] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
Springer Series in Statistics New York, 2009.

[56] M. Müller, Information Retrieval for Music and Motion. Springer, 2007, vol. 2.

[57] G Szatvanyi, C Duchesne, and G Bartolacci, “Multivariate image analysis of flames
for product quality and combustion control in rotary kilns,” Industrial & Engineering
Chemistry Research, vol. 45, no. 13, pp. 4706–4715, 2006.

[58] W. Wójcik and A. Kotyra, “Combustion diagnosis by image processing,” Photonics
Letters of Poland, vol. 1, no. 1, pp. 40–42, 2009.

[59] H. Yu and J. F. MacGregor, “Multivariate image analysis and regression for predic-
tion of coating content and distribution in the production of snack foods,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 67, no. 2, pp. 125–144, 2003.

[60] E Bellon, J Van Cleynenbreugel, D Delaere, W Houtput, M Smet, G Marchal, and
P Suetens, “Experimental teleradiology. novel telematics services using image pro-
cessing, hypermedia and remote cooperation to improve image-based medical de-
cision making,” Journal of Telemedicine and Telecare, vol. 1, no. 2, pp. 100–110,
1995.

[61] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural Health Monitoring. John Wi-
ley & Sons, 2010, vol. 90.

[62] H. Liang, H. Wu, and R. J. Carroll, “The relationship between virologic and im-
munologic responses in aids clinical research using mixed-effects varying-coefficient
models with measurement error,” Biostatistics, vol. 4, no. 2, pp. 297–312, 2003.

99



[63] A. Khosravani, A. Cecen, and S. R. Kalidindi, “Development of high throughput
assays for establishing process-structure-property linkages in multiphase polycrys-
talline metals: Application to dual-phase steels,” Acta Materialia, vol. 123, pp. 55–
69, 2017.

[64] K. T. Turner, R. Ramkhalawon, and J. K. Sinha, “Role of wafer geometry in wafer
chucking,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 12, no. 2,
pp. 023 007–023 007, 2013.

[65] J. Sun, S. Papadimitriou, and S. Y. Philip, “Window-based tensor analysis on high-
dimensional and multi-aspect streams,” in ICDM, 2006, pp. 1076–1080.

[66] A. Sapienza, A. Panisson, J. Wu, L. Gauvin, and C. Cattuto, “Detecting anomalies
in time-varying networks using tensor decomposition,” in IEEE International Con-
ference on Data Mining Workshop (ICDMW), 2015, pp. 516–523.

[67] H. Yan, K. Paynabar, and J. Shi, “Image-based process monitoring using low-rank
tensor decomposition,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 1, pp. 216–227, 2015.

[68] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications in neuroimaging
data analysis,” Journal of the American Statistical Association, vol. 108, no. 502,
pp. 540–552, 2013.

[69] H. A. Kiers, “Towards a standardized notation and terminology in multiway analy-
sis,” Journal of Chemometrics, vol. 14, no. 3, pp. 105–122, 2000.

[70] X. Li, H. Zhou, and L. Li, “Tucker tensor regression and neuroimaging analysis,”
arXiv preprint arXiv:1304.5637, 2013.

[71] L. R. Tucker, “Implications of factor analysis of three-way matrices for measurement
of change,” Problems in Measuring Change, vol. 122137, 1963.

[72] H. Yan, K. Paynabar, and M. Pacella, “Structured point cloud data analysis for pro-
cess modeling and optimization,” Technometrics, vol. submitted, 2017.

[73] R. Bro, “Multiway calibration. multilinear PLS,” Journal of Chemometrics, vol. 10,
no. 1, pp. 47–61, 1996.

[74] Q. Zhao, C. F. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka, N. Fujii, L. Zhang,
and A. Cichocki, “Higher order partial least squares (HOPLS): A generalized mul-
tilinear regression method,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 7, pp. 1660–1673, 2013.

[75] E. F. Lock, “Tensor-on-tensor regression,” arXiv preprint arXiv:1701.01037, 2017.

100



[76] G He, H. Müller, and J. Wang, “Extending correlation and regression from multi-
variate to functional data,” Asymptotics in Statistics and Probability, pp. 197–210,
2000.

[77] J.-M. Chiou, H.-G. Müller, and J.-L. Wang, “Functional response models,” Statistica
Sinica, pp. 675–693, 2004.

[78] V. Sharan and G. Valiant, “Orthogonalized ALS: A theoretically principled tensor
decomposition algorithm for practical use,” arXiv preprint arXiv:1703.01804, 2017.

[79] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for lin-
ear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–
202, 2009.

[80] Y. Nishi and R. Doering, Handbook of Semiconductor Manufacturing Technology.
CRC Press, 2000.

[81] T. A. Brunner, V. C. Menon, C. W. Wong, O. Gluschenkov, M. P. Belyansky, N. M.
Felix, C. P. Ausschnitt, P. Vukkadala, S. Veeraraghavan, and J. K. Sinha, “Charac-
terization of wafer geometry and overlay error on silicon wafers with nonuniform
stress,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 12, no. 4,
pp. 043 002–043 002, 2013.

101



VITA

Mostafa Reisi Gahrooei completed a M.S. degree in computational science and engineer-

ing at Georgia Tech, and received M.Sc. degrees in transportation engineering and applied

mathematics both from Southern Illinois University Edwardsville. His research interests

focus on developing efficient data analytics methodologies for modeling and monitoring

complex systems with high-dimensional, heterogeneous data for the purpose of intelligent

decision-making to improve system performance. Specifically, he is interested in incorpo-

rating tensor and network analysis in modeling, assessing, and improving data-rich systems

such as those in manufacturing and healthcare applications. He is the recipient of the IN-

FORMS Data Mining best paper award.

102


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	An Adaptive Fused Sampling Approach of High-Accuracy Data in the Presence of Low-Accuracy Data
	Introduction
	Review of the one-step data fusion model using a Gaussian process and link function
	Fitting a Gaussian process to LA experiment data
	Fusion of the LA and HA data using a link model 

	Adaptive data fusion using a modified EIGF criterion
	Expected improvement for a global fit
	Modified EIGF and data fusion

	Performance evaluation using simulation study
	Case Study
	Freeform surface metrology
	ECU calibration

	Discussion
	Conclusion

	Process Modeling and Prediction with Large Number High-Dimensional Variables Using Functional Regression
	Introduction
	Proposed method
	Extension to high dimensional functions
	Computational and space complexity
	Choice of tuning parameters 

	Performance evaluation using simulation
	Simulation I: Profile-on-profile regression
	Simulation II: Image-on-profile regression

	Case study
	Case I: Estimation of lambda sensor
	Case II: Joint motion trajectories

	Conclusion

	Multiple Tensor-on-Tensor Regression: An Approach for Modeling Processes with Heterogeneous Sources of Data
	Introduction
	Tensor Notation and Multilinear Algebra 
	Multiple Tensor-on-Tensor Regression Framework 
	Selection of tuning parameters

	Performance Evaluation Using Simulation 
	Simulation studies for curve-on-curve regression
	Simulation studies for image and structured point-cloud

	Case Study 
	Conclusion

	 Roughness Penalty and Proof of Proposition 2.1
	 Proof of Proposition 2.2
	 Proof of Proposition 3.2
	Proof of Proposition 3.3
	Simulating the Overlay Error 
	References
	Vita

