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(c) ŷ − ẑ  projection, (d) 3D plot. 59 

Figure 12:  Function value from Eq. (176) versus maneuver epoch. 79 



 xii 

Figure 13: Trajectory propagation with rendezvous maneuver targeting a 
stationary relative ellipse. (a) ŷ − x̂  projection, (b) ẑ − x̂  
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SUMMARY 

 

This dissertation develops a methodology for automated trajectory control of 

a spacecraft about a non-maneuvering target.  The methodology utilizes relative 

orbital elements (ROEs), combined with guidance laws based upon artificial 

potential functions (APFs), to perform automated trajectory planning and maneuver 

design.   

The investigation provides a definitive reference on the definition and use of 

ROEs for relative proximity operations.  The detailed derivation of ROEs is 

provided, along with transformations between ROEs and relative Cartesian state 

elements, characteristics of unforced motion in terms of ROEs, and the effect of 

impulsive maneuvers on ROEs. Through this work, the geometric interpretations of 

the angular ROEs have been clarified, leading to a stronger analogy between ROEs 

and classical orbital elements.  New parameters, relative true anomaly and relative 

inclination, are defined.  In addition, operationally useful guidance algorithms 

utilizing ROEs are developed and demonstrated.  These ROE-based algorithms for 

rendezvous, circumnavigation and station-keeping provide a toolkit for relative 

proximity operations mission planning. 

A new approach for APF formulation using ROEs as the target variables is 

developed. While previous approaches allowed targeting of a specified relative 

position, the present approach allows the targeting of a relative orbit geometry.  The 

approach capitalizes upon the orbital dynamics represented through the ROEs, and 

retains the computational simplicity offered by the APFs.  Formulations for the APF 

targeting of individual ROEs, as well as simultaneous targeting of a set of ROEs, 

are established.  An approach for combining ROE targeting using APFs with 

obstacle avoidance is presented. 



 xxv 

The trajectory guidance algorithm performance is evaluated using a flight-

like guidance, navigation and control simulation environment, including orbital 

perturbations.  Algorithm performance is established through a set of operationally 

relevant scenarios.  The guidance algorithms are shown to be capable of correcting 

for environmental disturbances, while meeting the targeted relative orbits in an 

automated fashion. 



 1 

CHAPTER 1 

MOTIVATION, BACKGROUND AND CONTRIBUTIONS OF THIS 

INVESTIGATION 

 

1.1 Introduction and Motivation 

 The close relative proximity operation (RPO) of two or more spacecraft in orbit is 

increasingly utilized in order to achieve mission objectives spanning on-orbit inspection 

[1], formation flight [2, 3], space station resupply [4], and satellite servicing [5, 6], for 

commercial and defense applications.  The increasing prevalence of nano- and micro-

spacecraft and emerging architectures including fractionated spacecraft have added to the 

priority of robust close proximity trajectory design and control [7, 8]. 

 While the mission objectives related to RPO are diverse, there exists a set of 

relative trajectory control behaviors that are common to most RPO mission architectures, 

including rendezvous and station-keeping.  Cooperative formation missions often have a 

stringent requirement on the relative spacing of the satellites in the cluster.  For on-orbit 

inspection applications, circumnavigation of the space object may be desired.  For 

satellite servicing or resupply missions, close approach and mating must occur.  

Underlying all of these behaviors is the requirement to maintain safe relative trajectories, 

where collision avoidance is assured [9, 10, 11, 12, 13]. 

 A clear understanding of the relative motion between close proximity spacecraft 

on orbit is critical to the design of safe, robust mission plans [14].  To this end, this 

investigation advances the development of relative orbital elements (ROEs) for RPO 

mission planning.  Analogous to classical orbital elements, ROEs provide a geometric 

interpretation of the relative motion of a deputy spacecraft with respect to a chief 

spacecraft that is in a circular orbit.  ROEs allow the characterization of the deputy 
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spacecraft relative motion in a free-drift (unforced) trajectory, and ROEs provide a direct 

visualization of the maneuver effects on the relative motion geometry.  The ROE 

formulation gives rise to straightforward control strategies that can be utilized to establish 

desired RPO behaviors [15, 16]. 

 The common RPO requirement to ensure the avoidance of unintended contact 

between vehicles can be addressed, in part, by the utilization of a control methodology 

that is based upon artificial potential functions (APFs).  APFs are widely utilized in 

robotics applications to establish relative control of vehicles [17, 18].  Attractive and 

repulsive potentials can be utilized to establish vehicle behaviors, including formation 

control and impact avoidance.  This work advances the application of APFs to RPO 

missions, with the objective of providing a guidance formulation using ROEs to target the 

desired orbit geometry and ensure persistent collision avoidance.  To date, ROEs have 

not been utilized for automated on-orbit mission planning.  Limited testing of APF 

formulations for relative path planning has been conducted (as discussed in Section 1.2), 

but APFs have not been utilized for a flight mission to date.  This work represents the 

first presentation of an APF formulation for targeting ROEs, allowing the targeting of a 

relative orbit geometry. 

 The work developed through this investigation is directly relevant to a number of 

mission applications, including the Georgia Institute of Technology’s Prox-1 small 

satellite mission, sponsored by the United States Air Force Office of Scientific 

Research/Air Force Research Laboratory.  Planned for launch in 2016, the Prox-1 

mission will demonstrate automated trajectory control relative to a deployed CubeSat, for 

on-orbit inspection purposes.  The trajectory guidance approaches developed through this 

work are validated within the Prox-1 guidance, navigation and control simulation 

environment, leading to implementation for the flight mission [19]. 
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1.2 Background 

1.2.1 A Brief History of Relative Proximity Operations 

 There is a rich history of relative proximity operations, dating back to the early 

years of human spaceflight.  In the mid-1960’s, the United States’ Gemini program, and 

the Soviet Union’s Soyuz program, had parallel goals to develop and demonstrate the 

systems, operational concepts, and techniques for orbital rendezvous and docking [20].  

On December 16, 1965, U.S. astronauts Walter Schirra and Thomas Stafford navigated 

the Gemini VI spacecraft to rendezvous with Gemini VII, carrying astronauts Frank 

Borman and James Lovell.  With an initial range following rendezvous of 40 m, over the 

next three orbits the two spacecraft stayed within ranges from 30 cm to 90 m.  The first 

docking of two spacecraft occurred on March 16, 1966, when Neil Armstrong and David 

Scott docked Gemini VIII with the Agena target vehicle. 

 Following the failed Soyuz 1 mission in April 1967 that resulted in the 

catastrophic loss of the spacecraft and cosmonaut Vladimir Komarov, two unmanned 

Soviet Soyuz prototype spacecraft performed the first automated spacecraft rendezvous 

and docking.  This automated approach was repeated in early 1968, paving the way for 

additional manned Soyuz missions beginning in October 1968.  In January 1969, Soyuz 4 

and 5 completed orbital rendezvous, docking, and crew transfer. 

 Two distinct methods arose from the rival space programs.  The approach for 

orbital rendezvous and docking that was developed by the United States’ National 

Aeronautics and Space Administration (NASA) favored a manual method for rendezvous 

and docking missions, with a priority placed upon operational flexibility with a pilot-in-

the-loop.  This approach reduced the need for hardware redundancy and complexity, and 

relied upon the astronauts’ expertise for both nominal operations and anomaly response.  

The Soviet Union’s approach to rendezvous and docking was centered on autonomy. The 



 4 

stringent reliability requirements mandated by this approach added complexity to the 

system, resulting in longer development times and higher development costs, but over 

time the automated approach became highly efficient and repeatable [20]. 

 NASA’s Apollo mission architecture for the human exploration of the lunar 

surface depended upon the successful rendezvous and docking of the ascent stage of the 

lunar excursion vehicle (LEM) with the orbiting command/service module (CSM).  

Based upon technology demonstrated in the Gemini program, the LEM was equipped 

with a digital guidance computer, an inertial measurement unit, optical equipment, and a 

rendezvous radar system.  The geometry of the LEM/CSM rendezvous scenario was 

defined such that the LEM was initially placed in a co-elliptic orbit 28 km below the 

CSM.  When the “look angle” (the angle from the local horizontal in the LEM’s orbit to 

the CSM) reached 26.6 deg, the terminal-phase burn was initiated to place the LEM on a 

rendezvous transfer.  Astronauts actively controlled the terminal docking maneuvers. 

 The U.S. Skylab space station was launched in 1973.  Three manned missions to 

Skylab were conducted, using the Apollo CSM for rendezvous and docking, and crew 

transfer.  An Apollo CSM also docked with a Soviet Soyuz vehicle in July 1975, marking 

the first on-orbit docking of spacecraft from different nations. 

 In the three decades of NASA’s Space Transportation System (STS, also known 

as the Space Shuttle) program, the Shuttle flew over sixty missions that involved close 

proximity operations [21].  With missions involving resupply and crew transport to Mir 

and the International Space Station (ISS), satellite servicing, payload deployment and 

retrieval, the Shuttle program demonstrated RPO capability that was highly flexible over 

a broad range of applications.  Similar to Gemini and Apollo, the core systems of the 

Shuttle’s RPO capability consisted of digital guidance computers, inertial measurement 

units, optical equipment, and a rendezvous radar.  For rendezvous and docking, the 

Shuttle utilized a laser ranging device mounted in the payload bay, that provided range, 

range rate, and bearing to the target within 1.5 km.  A visible camera was used to provide 
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the crew with visual aids during terminal docking.  Shuttle RPO differed from Gemini 

and Apollo in that many of the RPO targets were not equipped with navigation aids 

(transponders or lights), nor were they designed to support rendezvous, retrieval, and on-

orbit servicing.  However, the Shuttle systems combined with skilled astronauts resulted 

in a highly successful RPO track record. 

Automated RPO for robotic spacecraft has advanced significantly in the past 15 

years.  NASA Johnson Space Center (JSC) developed and flew the Autonomous 

Extravehicular Robotic Camera (AERCam) Sprint vehicle during the STS-87 mission in 

December 1997 [22].  The free-flying microsatellite demonstrated technologies necessary 

for external inspection and remote viewing of human spaceflight activities.  Equipped 

with 12 cold-gas thrusters and gyros for maneuvering and angular rate sensing, the Sprint 

spacecraft employed a variable focal length video camera with a light source to provide 

illumination.  The 16 kg flight system was 36 cm in diameter.  Sprint was released and 

retrieved in the Space Shuttle Orbiter Payload Bay by astronaut Winston Scott during an 

extra-vehicular activity, and operated for approximately 75 minutes.  JSC is currently 

developing Mini AERCam, a successor to AERCam Sprint.  Mini AERCam development 

began in 2000, with the goal of reducing the free-flyer size (5 kg, 19 cm diameter) while 

adding additional cameras and relative navigation capability using GPS.  Automatic 

position hold and point-to-point maneuvering capability are being developed, although 

the Mini AERCam will primarily be remotely piloted by astronauts. 

The National Space Development Agency (NASDA) of Japan ETS-VII mission 

successfully performed the first fully autonomous rendezvous and docking of robotic 

satellites in July 1998 [23, 24].  The two satellites were launched together, and the chaser 

satellite was equipped with global positioning system (GPS) receivers, laser radar for 

ranging and bearing angles data, and a visible camera to measure relative position and 

attitude.  The target satellite was cooperative, with passive laser radar reflectors and 

markings to assist the vision-based navigation.  It was also equipped with GPS, and 
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transmitted its orbital state to the chaser.  GPS measurements were used for relative 

navigation to a range of 500 m, laser ranging was used during approach from 500 m to 2 

m, and the visible proximity sensing system was used for the final docking phase. 

 The United States Air Force Research Laboratory (AFRL) Experimental Small 

Satellite-10 (XSS-10) was launched in 2003, and demonstrated automated mission 

planning and trajectory control to provide rendezvous and on-orbit inspection relative to a 

spent launch vehicle upper stage [25].  A visible camera system was used for 

identification and relative tracking of the upper stage.  The 20-hour mission was fully 

successful.  AFRL followed with XSS-11 in 2005, a more capable flight system that 

conducted an 18-month mission, also demonstrating on-orbit inspection of a launch 

vehicle upper stage and other resident space objects.  Details of the XSS-10 and XSS-11 

guidance, navigation and control system architecture are not publicly available. 

 The Demonstration of Autonomous Rendezvous Technology (DART) mission, 

managed by NASA Marshall Spaceflight Center with Orbital Sciences Corporation as the 

system contractor, was designed to demonstrate autonomous close proximity operations 

of a small satellite (363 kg) relative to an experimental communications satellite, 

Multiple Paths, Beyond-Line-of-Sight Communications (MUBLCOM) [26, 27].  

DART’s primary sensor was the Advanced Video Guidance Sensor (AVGS), which 

derived from the Video Guidance Sensor that flew successfully onboard two Space 

Shuttle missions (STS-87 and STS-95).  AVGS provided bearing measurements for 

ranges from 200-500 m, and provided range, bearing, and relative attitude within 200 m 

of the target.  Additionally, GPS receivers on DART and MUBLCOM were used 

cooperatively to determine relative position and velocity.  GPS data was used for relative 

navigation over large ranges; close-range relative navigation incorporated AVGS data as 

the primary data type.  DART was not designed to receive ground commands, and the 

intent of the mission was to demonstrate that a pre-programmed spacecraft could 

autonomously rendezvous with a cooperative satellite.  The flight of DART occurred on 
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April 15, 2005.  A problem occurred in the transition from GPS to AVGS navigation that 

prevented the full capability of the AVGS system from being utilized [28].  With AVGS 

bearing data but without ranging data, DART was able to steer towards MUBLCOM, but 

was not able to accurately estimate range.  Less than 11 hours into the mission, DART 

collided with MUBLCOM.  Shortly thereafter, with little fuel remaining, DART 

autonomously initiated its pre-programmed departure and retirement maneuver, which 

ended the mission. 

In 2007, the Defense Advanced Research Projects Agency (DARPA) Orbital 

Express mission demonstrated the technical feasibility and operational utility of 

autonomous techniques for on-orbit satellite servicing [29, 30].  Following autonomous 

rendezvous, proximity operations, and capture, propellant was transferred from the 

servicing satellite, ASTRO, to the chief satellite, NEXTSat (Figure 1).  A flight hardware 

component was installed by the ASTRO onto NEXTSat, and the operation of the 

component was verified.  The Orbital Express Autonomous Rendezvous and Capture 

Sensor System (ARCSS) consisted of visible and infrared sensors, and a laser 

rangefinder.  On-board vision-based flight software performed relative orbit estimation 

and determined the attitude of the chief, while guidance and relative navigation software 

provided mission planning capability to enable fully automated relative proximity 

operations.    While the chief spacecraft was passive, apriori knowledge of the chief 

configuration was utilized in the relative navigation algorithms. 

The Massachussetts Institute of Technology Space Systems Laboratory developed 

a system called “Synchronized Position Hold Engage and Reorient Experimental 

Satellites” (SPHERES), that has been used in ground testing and on-board the ISS to 

validate navigation and control algorithms for RPO applications.  In 2007 and 2008, a 

series of six tests were performed on the ISS using the SPHERES platforms [31, 32].  

The initial tests involved three SPHERES satellites: a chaser, a target, and an obstacle.  

The test to demonstrate automated obstacle avoidance and rendezvous were not 
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successfully completed due to incorrect deployment by the crew.  A subsequent test with 

a single satellite maneuvering about a virtual obstacle, and conducting rendezvous with a 

virtual target, was successful. 

 

Figure 1: NEXTSat as imaged from ASTRO during Orbital Express proximity 

operations.  Image credit: DARPA. 

 

 The European Space Agency’s Jules Verne automated transfer vehicle (ATV) 

mated with the International Space Station (ISS) in April 2008 using an automated 

rendezvous and docking control system, along with automated collision avoidance 

software [33].  The European Prototype Research Instruments and Space Mission 

Technology Advancement (PRISMA) mission was launched in 2010, to demonstrate 

autonomous rendezvous and formation flying of two collaborative spacecraft, Mango and 

Tango [34, 35].  The chaser spacecraft, Mango, had a mass of 150 kg.  Several different 

relative navigation techniques were utilized during the 10-month primary mission, 

including differential GPS measurements, spacecraft-to-spacecraft radio frequency 
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crosslink, and vision-based navigation.  Long-range rendezvous and formation flight with 

as close as 1 m separation between spacecraft was tested. 

 The Georgia Institute of Technology’s Prox-1 mission is designed to demonstrate 

automated trajectory control in low-Earth orbit relative to a deployed three-unit (3U) 

CubeSat, for an on-orbit inspection application [36].  The spacecraft is designed, 

fabricated and tested by a team of Georgia Tech undergraduate and graduate students 

who will also be responsible for mission operations. As shown in Figure 2, the 50 kg 

Prox-1 flight system will deploy The Planetary Society’s LightSail 3U CubeSat. Prox-1 

will then rendezvous with LightSail, and demonstrate automated station-keeping and 

range targeting based upon relative orbit determination using passive infrared and visible 

imaging.  Prox-1 will circumnavigate LightSail, and conduct on-orbit inspection for 

LightSail’s solar sail deployment event.  The central system-level technology 

advancement of the Prox-1 mission is the vision-based autonomous navigation system.  

This system applies automated image processing algorithms to detect the CubeSat against 

the background of space.  Relative orbit determination is performed based upon filtered 

angles and range estimates.  Automated trajectory control maneuvers are calculated using 

a guidance methodology that applies ROEs to provide station-keeping, range targeting, 

and natural motion circumnavigation behaviors while APFs provide persistent collision 

avoidance.  Prox-1 will be the first flight mission to utilize ROEs and APFs for 

automated mission planning.  In addition, Prox-1 will provide flight validation of 

advanced micro-sun sensor technology, a micro-satellite propulsion system, and a 

lightweight thermal imager for small satellite applications. 

 A summary of the space flight systems that have performed relative proximity 

operations is provided in Table 1. The sensors and navigation aids used for guidance and 

control during rendezvous and proximity operations are indicated.  While it is difficult to 

determine from the literature the level of autonomy that has been achieved by each 

system, it is clear that increased autonomy has been a trend since the XSS-10 mission in 
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2003.  Large spacecraft with precise ranging requirements have increasingly utilized 

LIDAR rather than RADAR systems for range measurements.  Since the late 1990s, 

differential GPS has been utilized by several missions for relative orbit determination.  

As flight systems decrease in size and cost, passive sensing (visible and infrared 

imaging), RF crosslink, and differential GPS are often used as an alternative to the 

resource-intensive active systems (LIDAR and RADAR).  

 

Figure 2: In 2016, Prox-1 will perform automated relative proximity operations for on-

orbit inspection of the LightSail spacecraft using ROEs and APFs for trajectory guidance. 
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Table 1:  Summary of RPO approaches used for U.S. and international missions. 
Instrumentation Operability Behaviors  
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Soyuz USSR 1967-   X  X    X X  X X X 
Apollo NASA 1966-1972 X X X  X  X  X X  X X X 
STS NASA 1981-2011   X  X  X X X X  X X X 
AERCam Sprint NASA 1997   X        X  X  
ETS-VII NASDA 1997-1999   X  X X  X  X X X X  
XSS-10 AFRL 2003   X       X  X X  
XSS-11 AFRL 2005-2006   X     X  X  X X  
DART NASA 2005   X   X      X X  
Orbital Express DARPA 2007   X X    X  X  X X X 
SPHERES MIT 2006-2008   X          X  
ATV ESA 2008 -   X  X X    X  X X X 
PRISMA ESA 2010 -   X  X X    X  X X  
CPOD Tyvak 2015 (plan)   X  X X    X  X X X 
Prox-1 Georgia Tech 2015 (plan)   X X      X  X X  
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1.2.2 Trend Toward Autonomy 

Based upon missions in the recent past, and priorities for technology advancement 

related to proximity operations, there is a clear trend toward increasing autonomy in RPO 

applications.  Future concepts for many RPO missions are centered on small spacecraft, 

without the capacity to operate power-intensive navigational systems.  RPO is to be 

achieved without sophisticated collaboration schemes between spacecraft, and human-in-

the-loop operation is not practical for most small satellite missions. 

In the 2012 NASA Broad Agency Announcement (BAA) for the Edison Small 

Satellite Flight Demonstration Missions within the Office of the Chief Technologist, a 

Technology Focus Area was established for “Demonstration of Close Proximity 

Operations Technologies Utilizing Small Spacecraft Systems” [37].  The goal of the 

focus area was to demonstrate the ability of one or more small spacecraft to rendezvous 

and dock with other space objects, to advance technologies related to on-orbit inspection 

and satellite servicing.  The Edison BAA noted: “Large and small spacecraft have 

demonstrated limited proximity operations, but more work is needed to develop highly 

reliable autonomous formation flight and rendezvous systems, especially for approaching 

uncooperative objects…”  Through this opportunity, Tyvak Nano-Satellite Systems LLC, 

in partnership with California Polytechnic State University of San Luis Obispo, was 

selected to implement a space flight project to demonstrate automated rendezvous and 

docking of two three-unit CubeSats in orbit.  The CubeSat Proximity Operations 

Demonstration (CPOD) mission is scheduled to launch in 2015. 

 The Office of the Unites States Air Force Chief Scientist describes a potential 

capability area related to fractionated/distributed space systems: “Constellations of 

smaller satellites operating cooperatively to perform a given mission set can provide 

greater survivability and greater ease of systematic upgrade. Architectures based on 

fractionation involve several functionally different satellite elements that cooperate to act 



 13 

as a single system, while distributed architectures involve many copies of identical 

elements that operate coherently to produce greater capability than each element could 

individually” [38].  Such a vision will require significant autonomy to be achieved, 

including automated path planning and safe trajectory control.  The United States Air 

Force Space Command is examining disaggregated space architectures to increase the 

resilience and affordability of critical space systems, as an alternative to traditional 

monolithic assets.  Disaggregated systems distribute the capabilities of the system across 

multiple platforms.  The Air Force Space Command white paper entitled “Resiliency and 

Disaggregated Space Architectures” states: “A disaggregated system design offers a 

means to avoid threats, ensure survivable capabilities despite hostile action, and develop 

the capacity to reconstitute, recover or operate through adverse events should robustness 

fail.  Carefully pursued, disaggregation can lead to less costly and more resilient space 

architectures in the face of a rapidly evolving security environment” [39].  A key 

advantage of the fractionation approach is the capability to upgrade or replace a 

subcomponent without having to replace an entire system.  Unit development costs and 

launch costs can be significantly reduced through fractionation.  The fractionation 

approach requires automated collaborative operation between dispersed systems 

operating in a relative proximity operations domain. 

Building upon the technical advancements of the past five decades in RPO, new 

tools and techniques are required to meet the demanding mission objectives of the future.  

Presently, close proximity operations generally require significant cooperation between 

vehicles, resource-intensive navigation instrumentation, or a human-in-the-loop to 

provide interactive control.  Future RPO systems will become increasingly automated, 

with limited or no human involvement during critical mission operations.  Increasingly, 

resource-constrained small spacecraft will be called upon to perform automated RPO 

tasks utilizing light-weight, low-power navigation sensors without reliance upon active 

cooperation from the chief vehicle. 
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1.2.3 Relative Orbital Elements 

For RPO applications where two or more spacecraft are flying in close proximity, 

it is often convenient to apply the Clohessy-Wiltshire differential relative motion 

equations (discussed in Section 2.1), in order to calculate the relative motion of a deputy 

spacecraft about a chief spacecraft that is assumed to be in a circular orbit [40, 41].  

Under these assumptions, the solutions to the Clohessy-Wiltshire equations can be re-

parameterized as a set of relative orbital elements that fully characterize the relative 

motion of the deputy about the chief.  In contrast to the position and velocity state 

elements expressed in a local-vertical, local-horizontal (LVLH) frame, ROEs provide a 

clear geometric interpretation of the relative motion.  They also yield an intuitive 

understanding of how the unforced relative motion will evolve with time, and how the 

relative orbit will change in response to impulsive maneuvers with components in the 

LVLH unit directions. 

Previous works have defined and utilized geometric parameterizations of the 

relative motion.  Schaub and Junkins [42] and Vallado [43] defined scalar offsets in the 

orbit radial and downtrack directions, consistent with the relative orbital elements 

representing the instantaneous center of the motion in the plane of the chief’s motion.  

Vallado describes the magnitude of the oscillatory motion in the chief’s orbital plane.  He 

also defines a constant that is consistent with the amplitude of the motion in the out-of-

plane direction.  Numerous works have evaluated relative motion and control algorithms 

associated with small variations in classical orbital elements between the deputy and 

chief [42, 44].  A relative parameter set that has been used extensively for mission 

applications is that developed by D’Amico and Montenbruck [45, 46, 47].  These relative 

parameters consist of either orbital element differences, or nonlinear combinations 

thereof.  Han and Yin [48] put forward a set of geometric relative coordinates and 

demonstrate their use for elliptical chief relative motion.  
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 This investigation advances the development of a parameterization of ROEs for 

close proximity mission planning.  ROEs are a direct re-parameterization of the solutions 

to the Clohessy-Wiltshire equations.  Lovell, Tragesser and Tollefson initially formulated 

ROEs in 2004 [15, 16], defining six elements that fully characterize the Clohessy-

Wiltshire relative motion, and establishing the transformation between ROEs and LVLH 

Cartesian coordinates.  They also showed the effect of one or more instantaneous 

maneuvers on ROEs, and developed a multiple-impulse guidance methodology for 

relative trajectory control.  These advancements provide a useful framework for relative 

orbit mission planning.  Analogous to classical orbital elements, ROEs provide a 

geometric interpretation of the relative motion of a deputy spacecraft with respect to a 

chief spacecraft that is in a circular orbit.  ROEs allow the characterization of the deputy 

spacecraft relative motion in an unforced (free-motion) trajectory, and provide a direct 

visualization of the effects of maneuvers on the relative motion geometry. 

 Since the introduction of ROEs in 2004, the formulation has been used for the 

development of several analytical guidance strategies.  Bevilacqua and Lovell [49] 

developed relative motion guidance solutions applying continuous, on-off thrust, and 

utilizing ROEs as a geometrical representation of the dynamics.  Phillips [50] utilized 

ROEs for determination of satellite collision probability.  Aubin [51] employed ROEs to 

generate solution vectors for a particle swarm evolutionary algorithm.  Schwartz et al [52, 

53] developed an ROE-based controller for station-keeping of a cluster of spacecraft as 

part of the DARPA System F6 flight program.  Estimation of ROEs from relative angles 

and range data has been studied by the Air Force Research Laboratory’s Space Vehicles 

Directorate, as described in Doolittle, Chavez and Lovell [54].  Johnson [55] derived 

ROEs for spacecraft on elliptical orbits in close proximity to a virtual chief on a known 

circular orbit.  The Prox-1 small satellite mission will apply impulsive control strategies 

based upon ROEs to implement formation flight and circumnavigation maneuvers [56]. 
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 This work formally documents the derivation of the ROE parameterization in 

Section 2.1.  A geometric interpretation of the ROEs is provided, leading to a strong 

analogy between ROEs and classical orbital elements.  Additional parameters related to 

ROEs are described, including the newly-defined parameters relative true anomaly and 

relative inclination.  The transformation between the LVLH Cartesian state elements and 

ROEs is provided in Section 2.2, and the evolution of ROEs with time is evaluated.  

Characteristics of the unforced motion are described in terms of ROEs in Section 2.3, 

including discussion of the three primary modes of the motion that are determined based 

upon the values of the ROEs.  The formulation of this canonical set of ROEs is a recent 

advancement that provides a framework for mission planning within the context of the 

circular chief problem.  This investigation seeks to utilize this framework to develop 

operationally-useful algorithms for RPO mission planning, described in Chapter 4. 

It is noted that the notation for the ROEs used in this dissertation differs for some 

elements from that previously presented in References [15, 16].  Specifically, the 

coordinates for the instantaneous center of the relative motion, xr and yr, are changed 

from the notation previously used by Lovell et al, xd and yd.  The notation for the semi-

major axis of the instantaneous relative ellipse, ar, is changed from ae.  The notation for 

relative eccentric anomaly, Er, is changed from β.  The subscript r denotes “relative.”  

The notation for the amplitude of the motion in the z-direction, Az, is changed from the 

notation used by Lovell et al, zmax.  These notation changes are intended to strengthen the 

analogy to classical orbital elements; the geometric interpretation of these ROEs is quite 

similar to their counterparts in classical orbital elements.  

1.2.4 Artificial Potential Functions 

Artificial potential function (APF) guidance formulations have been used since 

the 1980s for robotic control, beginning with Khatib [17], and continuing to the present 

time with a broad array of terrestrial applications [57].  Similar to potential fields that 
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occur in nature, such as gravitational and electromagnetic fields, artificial potential fields 

can be defined to shape the interaction of a robotic vehicle with the environment.  Force 

vectors for vehicle control are found by taking the gradient of the APF.  Trajectories 

based upon APF control are not planned explicitly, but rather, are shaped by the potential 

field in reaction to the changing environment. 

The control forces resulting from an APF may be used to guide the robotic vehicle 

to a goal, at the minimum of the scalar potential function, along a path of steepest 

descent.  Obstacles may be represented as areas of high potential in the APF, with the 

resultant repulsive control forces to enable obstacle avoidance.  The attractive potential 

associated with the goal and repulsive potentials associated with obstacles can be 

superposed to provide a three-dimensional potential field that governs robot motion to the 

goal along a collision-free path [58].  The continuous nature of guidance based upon 

APFs, along with its computational simplicity, makes it an appealing approach for 

sustained robotic control applications where computational capability is limited.  APFs 

may also be used to guide formations of vehicles [18]. 

Difficulties associated with APF formulation include the possible existence of 

local minima, where the total force acting on the vehicle is summed to zero at a point 

other than the goal.  A second issue is oscillatory behavior, where the control forces 

acting on the vehicle result in an unstable, but bounded, motion.  Lyapunov’s second 

method for stability is often applied to APFs to demonstrate asymptotic stability about 

the goal [59]. 

In 1993, McInnes developed an APF control approach for orbital vehicles [60], 

and he later extended the algorithm to enable distributed control of multiple vehicles [61],  

and applied the approach to autonomous rendezvous [62].  McQuade [63] developed an 

APF-based controller for station-keeping and on-orbit assembly, and Tatsch and Xu 

described an approach for utilizing APFs for spacecraft attitude control [64].  Tatsch and 

Fitz-Coy developed a controller that applies APFs for on-orbit inspection and satellite 
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servicing [65].  Formulations for spacecraft swarm navigation and control using APFs 

were demonstrated by Saaj, Lappas and Gazi [66]. 

In 2007 and 2008, tests of a multiple-spacecraft close-proximity control algorithm 

were performed on board the International Space Station, using the SPHERES facility 

developed by the Massachusetts Institute of Technology Space Systems Laboratory [67].  

The control algorithm, provided by the United States Naval Postgraduate School [68], 

combined a linear quadratic regulator for attraction to goal positions with artificial 

potential functions for collision avoidance.  A total of six flight tests were implemented 

on board the ISS, demonstrating the capability to avoid obstacles and control an approach 

trajectory to enable soft docking. 

Common APF formulations operate upon the range vector from the goal, and/or 

obstacle, to the vehicle.  Lopez and McInnes [62] presented a guidance law that exerts 

control forces to align the velocity vector with the negative gradient of the potential field.  

While these methods will generally allow the vehicle to reach the goal, provided that the 

available thrust levels and propellant are great enough, the control strategy does not take 

advantage of the dynamics associated with the orbital environment. 

This investigation seeks to develop APFs that operate upon ROEs, rather than 

range or velocity vectors, to control spacecraft motion in a manner that capitalizes upon 

the relative motion dynamics as expressed in the solutions to the Clohessy-Wiltshire 

equations.  As such, this approach has the potential to enable spacecraft guidance with 

reduced thrust and propellant requirements relative to traditional methods, while retaining 

the computational simplicity that is inherent in the APF approach. 

The general APF control methodology is described in Section 3.1, and applied to 

orbital trajectory guidance.  An APF formulation for targeting ROEs is developed in 

Section 3.2.  Targeting of individual ROE parameters is shown, and then the 

simultaneous targeting of multiple ROEs is demonstrated.  An approach for combining 

attractive APFs for ROE targeting and repulsive APFs for obstacle avoidance is given.  



 19 

The performance of the APF formulation is evaluated through a Monte Carlo simulation, 

and propellant utilization is compared with that for traditional maneuver design methods. 

1.3 Contributions of this Investigation 

 This dissertation develops a methodology for automated trajectory guidance of a 

deputy spacecraft about a non-maneuvering target spacecraft designated the chief.  The 

methodology utilizes relative orbital elements (ROEs), combined with guidance laws 

based upon artificial potential functions, to perform automated trajectory planning and 

maneuver design.  The performance of the formulation is evaluated in a simulated flight 

environment, using the Prox-1 mission as a test case. 

This investigation results in three key contributions that, together, advance the 

state of the art in relative proximity operations: 

1. Advancement of Relative Orbital Elements 

This investigation provides the detailed derivation of ROEs, transformations 

between ROEs and LVLH relative Cartesian state elements, establishes characteristics of 

unforced motion in terms of ROEs, and defines the effect of impulsive maneuvers on 

ROEs.  While ROEs have been previously defined and their utility illustrated, this 

dissertation represents a definitive reference on the definition and application of ROEs 

for relative proximity operations.  Through this work, the geometric interpretations of 

relative eccentric anomaly and the crosstrack-motion phase angle have been clarified, 

leading to a stronger analogy between ROEs and classical orbital elements.  New 

parameters, relative true anomaly and relative inclination, are defined.  The unforced 

relative motion trajectory is characterized in terms of ROEs, and three primary modes of 

the motion are described in terms of the values for ROEs.   In addition, operationally 

useful control algorithms utilizing ROEs are developed and demonstrated; these 

algorithms for ROE-based rendezvous, natural motion circumnavigation, and station-

keeping, represent a toolkit for relative proximity operations maneuver planning. 
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2. Artificial Potential Function Control Formulation Using Relative Orbital 

Elements 

This work develops a new approach for APF formulation using ROEs as the 

targeted variables. Previous investigations of APFs for on-orbit trajectory control have 

utilized LVLH relative Cartesian state elements as input variables from which control 

forces are computed. Through the present approach, the APFs are constructed such that 

the derived control forces take advantage of the orbital dynamics that are embedded 

within the ROEs.  This represents a significant advancement relative to prior 

formulations of APFs for on-orbit trajectory control, which often must work against 

orbital dynamics in order to achieve the desired behaviors.  Formulations for the APF 

targeting of individual ROEs, as well as simultaneous targeting of a set of ROEs, are 

established.  Through this formulation, the targeting of a full relative orbit geometry is 

accomplished.  An approach for combining ROE targeting using APFs with obstacle 

avoidance is presented.  Convergence of the APF algorithms to the targeted ROE values 

is evaluated. 

3. Evaluation of Trajectory Control Algorithms in a Realistic Environment 

This investigation evaluates the performance of the ROE and APF-based 

trajectory control approaches within the framework of a realistic guidance, navigation 

and control simulation environment.  Flight-like scenarios are evaluated, including ROE 

station-keeping, ROE transfers to leading or trailing orbits, ROE transfers with APF-

based obstacle avoidance, and APF targeting of ROEs with and without APF-based 

obstacle avoidance.  It is shown that the automated trajectory control algorithms 

developed through this investigation are effective in correcting for environmental 

disturbances, and are suitable for application in flight missions. 
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CHAPTER 2 

RELATIVE ORBITAL ELEMENTS 

 

2.1  Clohessy-Wiltshire Equations for Relative Motion 

 The solutions to the Clohessy-Wiltshire equations [41] are often used to 

approximate the relative motion of one spacecraft with respect to another.  Figure 3 

shows the vector positions of two spacecraft in orbit about the same central body.  For the 

derivation of the classical Clohessy-Wiltshire differential relative motion equations, it is 

assumed that the “chief” spacecraft travels in circular two-body motion about the central 

body, and the “deputy” also travels in two-body motion about the central body; the 

central body, chief, and deputy are treated as point masses, and all perturbations are 

neglected.  The relative motion of the deputy about the chief is desired.  The derivation of 

the HCW relative motion equations is included in numerous works, including Vallado 

[43]. 

 

Figure 3:  Coordinate system definition for LVLH frame. 
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The vector from the central body to the deputy is , and the vector from the 

central body to the chief is r C .  The vector from the chief to the deputy is ρ . 

 r + r C = ρ  (1) 

Differentiating twice with respect to time in an inertial reference frame yields: 

 
 
I r + I r C = I ρ  (2) 

The left superscript I indicates that the derivative is taken with respect to the inertial 

frame.  The acceleration of the chief spacecraft due to two-body gravity in the inertial 

frame, is given by: 

 
 

I r C = −
µ
rC( )3

r C  (3) 

The acceleration of the deputy spacecraft with respect to the chief expressed in the 

inertial reference frame is: 

 
 

I ρ = R ρ + 2 Iω R × R ρ( ) + Iα R × ρ + Iω R × Iω R × Rρ( )  (4) 

The left superscript R indicates that the derivative is taken with respect to the rotating 

reference frame.  The rotating reference frame, commonly known as the local-vertical, 

local-horizontal (LVLH) frame, is shown in Figure 3.  It is defined such that the x̂ -axis is 

aligned with the radial vector from the central body to the chief, the ŷ -axis is in the 

chief’s along-track direction, and the ẑ -axis is orthogonal to x̂  and ŷ , in the direction of 

the chief’s angular momentum vector.  The angular velocity of the rotating frame with 

respect to the inertial frame is given by Iω R , and the angular acceleration of the rotating 

frame with respect to the inertial frame is Iα R .  Substituting Eqs. (3) and (4) into (2) 

gives: 

r
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I r = −
µ
rC( )3

r C + R ρ + 2 Iω R × R ρ( ) + Iα R × ρ + Iω R × Iω R × Rρ( )  (5) 

The acceleration of the deputy spacecraft in the inertial frame,  I r , is due to the 

gravitational acceleration from the central body, g , plus any acceleration resulting from 

external forces (thrust, drag, etc.), aT : 

 
 
I r = g + aT  (6) 

Expanding the two-body gravitational acceleration term, treating the central body as 

spherically symmetric, and neglecting the mass of the deputy spacecraft: 

 
 

I r = −
µ
r3
r + aT  (7) 

Substituting Eq. (1) into (7) gives: 

 
 

I r = −
µ

r C + ρ
3 r

C + ρ( ) + aT  (8) 

The absolute value in the denominator of Eq. (8) can be expanded as: 

 r C + ρ = r C + ρ( ) ⋅ r C + ρ( )⎡⎣ ⎤⎦
1/2

 (9) 

Carrying out the dot product gives: 

 r C + ρ = r C 1+
2 r C ⋅ ρ( )
rC( )2

+
ρ2

rC( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

 (10) 

and 

 r
C + ρ

−3
=

1
rC( )3

1+
2 r C ⋅ ρ( )
rC( )2

+
ρ2

rC( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−3/2

 (11) 
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The Binomial Theorem is employed to simplify Eq. (11).  Neglecting terms of second 

order and higher, Eq. (11) can be rewritten as: 

 r C + ρ
−3
=

1
rC( )3

1− 3
2
2 r C ⋅ ρ( )
rC( )2

+
ρ2

rC( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (12) 

It is assumed that the distance from the chief to the deputy is much less than the radial 

distance from the central body to the chief (i.e., ρ << rC ), allowing Eq. (12) to be further 

simplified as: 

 r
C + ρ

−3
=

1
rC( )3

1−
3 r C ⋅ ρ( )
rC( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (13) 

 

Substituting Eq. (13) into Eq. (8) gives: 

 

 

I r = −
µ
rC( )3

r C + ρ( ) 1− 3 r
C ⋅ ρ( )
rC( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ aT  (14) 

 

Eqs. (5) and (14) can be combined to yield: 

 
 

−
µ
rC( )3

r C + R ρ + 2 Iω R × R ρ( ) + Iα R × ρ + Iω R × Iω R × Rρ( ) =  

 −
µ
rC( )3

r C + ρ( ) 1− 3 r
C ⋅ ρ( )
rC( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ aT  (15) 

Expanding the right-hand side of Eq. (15) and simplifying gives: 
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R ρ + 2 Iω R × R ρ( ) + Iα R × ρ + Iω R × Iω R × Rρ( ) =  

 −
µ
rC( )3

ρ −
3r C r C ⋅ ρ( )

rC( )2
−
3ρ r C ⋅ ρ( )

rC( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ aT  (16) 

Each term in Eq. (2.1-16) will now be written in terms of Cartesian coordinates expressed 

in the LVLH rotating frame.  The position vector from the chief to the deputy is written: 

 ρ = xx̂ + yŷ + zẑ  (17) 

so the relative velocity of the deputy with respect to the chief in the LVLH frame is: 

 
 
R ρ = xx̂ + yŷ + zẑ  (18) 

and the relative acceleration of the deputy expressed in the LVLH frame is: 

 
 
R ρ = xx̂ + yŷ + zẑ  (19) 

The angular velocity of the LVLH frame with respect to the inertial frame is: 

 Iω R =ω ẑ  (20) 

and the angular acceleration of the LVLH frame with respect to the inertial frame is: 

  
Iα R = ω ẑ  (21) 

The second term on the left-hand side of Eq. (16) can be expanded as: 

 
 
2 Iω R × R ρ( ) = 2 ω ẑ × xx̂ + yŷ + zẑ( )⎡⎣ ⎤⎦  (22) 

Carrying out the cross product gives: 

 
 
2 Iω R × R ρ( ) = −2ω yx̂ + 2ω xŷ  (23) 

The third term on the left-hand side of Eq. (16) can be expanded as: 
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Iα R × ρ = ω ẑ × xx̂ + yŷ + zẑ( )  (24) 

Carrying out the cross product gives: 

 
 
Iα R × ρ = − ωyx̂ + ωxŷ  (25) 

The fourth term on the left-hand side of Eq. (16) can be expanded as: 

 Iω R × Iω R × Rρ( ) =ω ẑ × ω ẑ × xx̂ + yŷ + zẑ( )⎡⎣ ⎤⎦  (26) 

Carrying out the cross products gives: 

 Iω R × Iω R × Rρ( ) = −ω 2xx̂ −ω 2yŷ  (27) 

On the right-hand side of Eq. (16), the mean motion of the chief’s orbit, representing the 

average angular rate of the orbit, is defined as: 

 n =
µ
rC( )3

 (28) 

Squaring both sides, 

 n2 =
µ
rC( )3

 (29) 

 

The dot product that appears twice on the right-hand side of Eq. (16) can be expanded as: 

 r C ⋅ ρ = rC x̂( ) ⋅ xx̂ + yŷ + zẑ( )  (30)  

Carrying out the dot product gives: 

 r C ⋅ ρ = rCx  (31)  

Evaluating the second term on the right-hand side of Eq. (16), 
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 −
3r C r C ⋅ ρ( )

rC( )2
= −3xx̂  (32) 

and the third term on the right-hand side of Eq. (16) is evaluated as: 

 −
3ρ r C ⋅ ρ( )

rC( )2
=
−3x
rC

xx̂ + yŷ + zẑ( )  (33) 

Substituting Eqs. (17), (19), (22), (25), (27), (29), (32) and (33) into Eq. (16) yields: 

 
 
xx̂ + yŷ + zẑ − 2ω yx̂ + 2ω xŷ − ωyx̂ + ωxŷ −ω 2xx̂ −ω 2yŷ =  

 −n2 xx̂ + yŷ + zẑ − 3xx̂ − 3 x
rC

xx̂ + yŷ + zẑ( )⎡
⎣⎢

⎤
⎦⎥
+ aT  (34) 

Collecting terms in each of the LVLH frame unit directions, 

 x̂ :     
 

x − 2ω y − ω 2 + 2n2( )x − ωy − 3n
2x2

rC
= aTx  (35) 

 ŷ :     
 

y + 2ω x − ω 2 − n2( )y + ωx − 3n
2xy
rC

= aTy  (36) 

 ẑ :      
 

z + n2z −
3n2xz
rC

= aTz  (37) 

At this point, simplifying assumptions are made to obtain the HCW equations.  For a 

circular orbit, the orbit angular velocity is equal to the mean motion, i.e., 

 ω =
µ
rC( )3

 (38) 

 

and the angular acceleration for a circular orbit is zero, 

  ω = 0  (39) 
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If, as before, it is assumed that ρ << rC , then the following terms are negligible and can 

be neglected: 

 
3n2x2

rC
≈ 0  (40) 

 
3n2xy
rC

≈ 0  (41) 

 
3n2xz
rC

≈ 0  (42) 

 

Note that each of these terms arises from the term 
3ρ r C ⋅ ρ( )

rC( )2
 in Eq. (16). 

With these assumptions, Eqs. (35), (36) and (37) can be simplified to the Clohessy-

Wiltshire equations: 

 
 
x − 2ny − 3n2x = aTx  (43) 

 
 
y + 2n x = aTy  (44) 

 
 
z + n2z = aTz  (45) 

For unforced motion, where no thrust is applied to the deputy spacecraft, the Clohessy-

Wiltshire equations reduce to: 

 
 
x − 2ny − 3n2x = 0  (46) 

 
 
y + 2n x = 0  (47) 

  z + n
2z = 0  (48) 
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A detailed derivation of the solutions to the Clohessy-Wiltshire equations using Laplace 

transforms is given in Vallado [43].  If the initial conditions for the relative Cartesian 

state are denoted by the subscript 0, then the position and velocity solutions to the 

Clohessy-Wiltshire equations are given by: 

 
 

x =
x0
n
sin n t − t0( )⎡⎣ ⎤⎦ − 3x0 +

2 y0
n

⎛
⎝⎜

⎞
⎠⎟
cos n t − t0( )⎡⎣ ⎤⎦ + 4x0 +

2 y0
n

 (49) 

 
 

y =
2 x0
n
cos n t − t0( )⎡⎣ ⎤⎦ + 6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟
sin n t − t0( )⎡⎣ ⎤⎦ − 6nx0 + 3 y0( ) t − t0( ) − 2 x0

n
+ y0  

  (50) 

 
 

z =
z0
n
sin n t − t0( )⎡⎣ ⎤⎦ + z0 cos n t − t0( )⎡⎣ ⎤⎦  (51) 

 
 
x = x0 cos n t − t0( )⎡⎣ ⎤⎦ + 3nx0 + 2 y0( )sin n t − t0( )⎡⎣ ⎤⎦  (52) 

 
 
y = −2 x0 sin n t − t0( )⎡⎣ ⎤⎦ + 6nx0 + 4 y0( )cos n t − t0( )⎡⎣ ⎤⎦ − 6nx0 + 3 y0  (53) 

 
 
z = z0 cos n t − t0( )⎡⎣ ⎤⎦ − nz0 sin n t − t0( )⎡⎣ ⎤⎦  (54) 

From Eqs. (49) and (52), the radial motion oscillates about a fixed offset, while Eqs. (50) 

and (53) show that the along-track motion has a similar oscillation, but with a secular 

drift at a constant rate. From Eqs. (51) and (54), it is seen that the motion in the cross-

track direction is a simple harmonic oscillator, and the cross-track motion is decoupled 

from the motion in the chief’s orbit plane.  

2.2  Definition of Relative Orbital Elements 

 Similar to classical orbital elements that convey the orbit geometry in an inertially 

fixed reference frame, ROEs provide a geometric interpretation of the relative orbit 

expressed in the LVLH frame.  The six ROE parameters fully define the relative orbital 
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state, and there is a clear transformation between the Cartesian state expressed in the 

LVLH frame and ROE’s.  

2.2.1 Derivation of Relative Orbital Elements 

 The ROEs are derived from the solution to the Clohessy-Wiltshire equations.  The 

application of the Harmonic Addition Theorem to Eqs. (49-51), detailed in Appendix A, 

results in the equations: 

 

 

x t( ) =

4x0 +
2 y0

n
+

1
2

sgn − 3x0 +
2 y0

n
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

6x0 +
4 y0

n
⎛
⎝⎜

⎞
⎠⎟

2

+
2 x0

n
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

⋅

                cos n t − t0( ) + tan−1 x0 n

3x0 +
2 y0

n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 , 3x0 +
2 y0

n
≠ 0

4x0 +
2 y0

n
+
x0

n
sin n t − t0( )⎡⎣ ⎤⎦  , 3x0 +

2 y0

n
= 0

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (55) 

 

 

y t( ) =

y0 −
2 x0

n
− 6nx0 + 3 y0( ) t − t0( ) + sgn 2 x0

n
⎛
⎝⎜

⎞
⎠⎟
⋅

                   cos n t − t0( )⎡⎣ ⎤⎦ + tan−1 −
6 x0 + 4 y0 n

2 x0 n
⎛
⎝⎜

⎞
⎠⎟

 ,  x0 ≠ 0

y0 −
2 x0

n
− 6nx0 + 3 y0( ) t − t0( ) + 6 x0 +

4 y0

n
⎛
⎝⎜

⎞
⎠⎟

sin n t − t0( )⎡⎣ ⎤⎦  ,  x0 = 0

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(56) 

 

 

z t( ) =
sgn z0( ) z2

0 +
z0

n
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

cos n t − t0( ) + tan−1 −
z0 n
z0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  , z0 ≠ 0

z0

n
sin n t − t0( )⎡⎣ ⎤⎦  , z0 = 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (57) 

Through introduction of the atan2 function, it can be shown that Equations (55-57) may 

be expressed as: 
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x t( ) = 4x0 +
2 y0
n

−
1
2

6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

cos n t − t0( ) + atan2 2 x0
n
,6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  (58) 

 
 

y t( ) = y0 −
2 x0
n

− 6nx0 + 3 y0( ) t − t0( ) +  

 
 

6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

sin n t − t0( ) + atan2 2 x0
n
,6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 (59) 

 
 

z t( ) = z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2

sin n t − t0( ) + atan2 z0 ,
z0
n

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 (60) 

In Eqs. (58-60), the atan2(a,b) function is related to the arctangent function tan−1 a
b

⎛
⎝⎜

⎞
⎠⎟

, 

where −π < atan2 a,b( ) ≤ π  based upon which quadrant contains the two arguments a 

and b.  The atan2(a,b) function eliminates the need for the sgn function, as well as the 

need to account for two different cases that appear in each of Eqs. (55-57).  Note that for 

each equation, if both arguments of the atan2(a,b) function are equal to zero, the 

coefficient of the sinusoid also equates to zero, resulting in a zero value for the periodic 

term. 

The expressions for the deputy spacecraft position in the orbital plane of the chief 

spacecraft, Eqs. (58-59), each have periodic terms and constant terms.  The along-track 

expression (59) also has a term that varies linearly with time, resulting in a secular drift 

motion.  The first two ROEs describe the deputy spacecraft’s instantaneous center of 

motion relative to the chief, encompassing the constant and linear time-varying terms in 

Eqs. (58-59).  Expressed in terms of the LVLH Cartesian state initial conditions, the 

instantaneous center of motion ROEs are defined as: 
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xr = 4x0 +
2 y0
n

 (61) 

 
 

yr = y0 −
2 x0
n

− 6nx0 + 3 y0( ) t − t0( )  (62) 

 From Eq. (59), the amplitude of the sinusoidal motion in the along-track direction 

is given by: 

 
 

Ay = 6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (63) 

From Eq. (58), the amplitude of the sinusoidal motion in the radial direction is: 

 
 

Ax =
1
2

6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (64) 

Note that the amplitude of the sinusoidal motion in the radial direction is half of that in 

the along-track direction. Thus, the motion in the x̂ − ŷ  plane is always along an 

“instantaneous ellipse” with the major axis in the along-track direction and with a length 

that is twice that of the minor axis in the radial direction.  Therefore, a single parameter 

can specify the shape of the instantaneous ellipse in the x̂ − ŷ  plane.  This parameter, ar, 

is the ROE representing the semi-major axis of the instantaneous relative orbit ellipse, 

equal to the along-track amplitude of the sinusoidal motion, Ay: 

 
 

ar = 6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (65) 

  The fourth ROE parameterizes the angular position of the chaser spacecraft as it 

moves along the instantaneous relative orbit ellipse in the x̂ − ŷ  plane. This ROE is 
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termed the relative eccentric anomaly, Er.  It represents the argument of the sine and 

cosine functions in Eqs. (58) and (59), and can be written: 

 Er = Er0
+ n t − t0( )  (66) 

where 

 
 

Er0
= atan2 2 x0

n
,6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟

 (67) 

  A geometric interpretation of the first four ROE’s is shown on an instantaneous 

relative motion ellipse in Figure 4.  The semi-major axis of the ellipse is given by ar.  The 

instantaneous center of the ellipse is given by xr and yr, and the deputy’s periapsis is 

annotated as point P.  The instantaneous deputy position along the ellipse is annotated as 

point D, with coordinates (x, y).  A circle of radius ar is circumscribed about the ellipse, 

and a dashed line, perpendicular to the major axis, is extended through point D, 

intersecting with the circumscribed circle at point Q.  Relative eccentric anomaly, Er, 

measures the angle centered on (xr, yr), between the periapsis point P and point Q.  

Relative eccentric anomaly increases from zero at periapsis with motion in the counter-

clockwise direction. 
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Figure 4:  Relative orbit geometry in the LVLH x̂ − ŷ  plane. 

  The fifth ROE, Az, is defined as the amplitude of the sinusoidal motion in the 

cross-track direction.  The cross-track component of the relative motion is a simple 

harmonic oscillator that is independent of the x̂ − ŷ  motion under the Clohessy-Wiltshire 

assumptions.  From Eq. (60), the amplitude of the cross-track motion is: 

 
 

Az = z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (68) 

 The sixth ROE, ψ, is defined as the phase angle in the cross-track harmonic 

motion, representing the argument of the sine function in Eq. (60): 

 ψ =ψ 0 + n t − t0( )  (69) 

where 

 
 

ψ 0 = atan2 z0 ,
z0
n

⎛
⎝⎜

⎞
⎠⎟

 (70) 
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A geometric interpretation of Az and ψ is shown in Figure 5, where the three-dimensional 

relative motion is projected onto the x̂ − ẑ  plane.  The deputy position along the relative 

motion ellipse is annotated as initial condition D0 at time t0 and as point D at time t.  A 

circle of radius Az is drawn, with the center of the circle coincident with the center of the 

ellipse at point C. A dashed line, perpendicular to the ẑ -axis, is extended through point 

D0, intersecting with the circumscribed circle at point F0.  Point G0 is shown where a line 

parallel to the ẑ -axis through point F0 intersects the x̂ -axis . The angle ψ then represents 

the angle, centered on point C with coordinates (xr, yr, 0), between the − x̂ -axis and the 

segment CF on the circle. The deputy’s relative motion intersects the chief’s orbit plane 

at ψ = 0  and ψ = π .  These points are referred to as the relative ascending and 

descending nodes, respectively [15, 16].  The relative ascending node is the point where 

the deputy spacecraft passes through z = 0  with  z = 0 ; the direction of the deputy’s 

motion is indicated by an arrow in Figure 5.  At t = t0 , the cross-track motion phase 

angle is ψ0.  As the deputy progresses in its relative motion about the chief, the cross-

track motion phase angle changes according to Eq. (69) as point F progresses at a 

constant rate (equal to the chief’s mean motion) about the circle.  At the point in the 

ellipse where z = Az , ψ =
π
2

.  The relative descending node occurs at ψ = π , and 

z = −Az  at ψ = −
π
2

. 
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Figure 5:  Cross-track motion phase angle geometry, projected onto the x̂ − ẑ  plane. 

  Expressions for ROEs in terms of the time-varying Cartesian state elements may 

be found as follows.  Eq. (61) may be combined with Eqs. (49) and (53) to show that: 

 
 

xr = 4x +
2 y
n

 (71) 

(For Cartesian state elements without the subscript 0, time dependence is implied.)  

Likewise, Eq. (62) may be combined with Eqs. (50) and (52) to give: 

 
 

yr = y −
2 x
n

 (72) 

For unforced motion, the time derivative of xr may be taken using Eq. (71), and by 

substituting for the 
 
y  acceleration term using Eq. (47), 

 
xr  is shown to be equal to zero.  

Therefore, xr is invariant with time.  However, taking the time derivative of yr in Eq. (72) 
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and substituting for the  x  acceleration term using Eq. (46) shows that yr has a secular 

drift that varies linearly with time. 

 Eq. (65) may be combined with Eqs. (49), (52), and (53) to show that: 

 
 

ar = 6x + 4
y
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x
n

⎛
⎝⎜

⎞
⎠⎟
2

 (73) 

Taking the time derivative of ar as expressed in Eq. (73) and substituting for  x  using Eq. 

(46) and for 
 
y  using Eq. (47), it is shown that 

 
ar  is equal to zero.  Therefore,  ar is 

constant for unforced motion.  Eqs. (71) – (73) indicate that while the instantaneous 

center of the motion in the x̂ − ŷ  plane may drift in the along-track direction, its radial 

component and size are invariant with time. 

  Eqs. (66) and (67) may be combined with Eqs. (49), (52) and (53) to show that: 

 
 

Er = atan2
2 x
n
,6x + 4

y
n

⎛
⎝⎜

⎞
⎠⎟

 (74) 

From Eq. (66), it is seen that the time derivative of Er is equal to n. 

  Eq. (68) may be combined with Eqs. (51) and (54) to show that: 

 
 

Az = z2 +
z
n

⎛
⎝⎜

⎞
⎠⎟
2

 (75) 

Taking the time derivative of Az as expressed in Eq. (75), and substituting for the  z  term 

using Eq. (48), it is shown that 
 
Az  is equal to zero.  Therefore, Az is a constant of the 

unforced motion. 

  Eqs. (69) and (70) may be combined with Eqs. (51) and (54) to show that: 
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ψ = atan2 z,
z
n

⎛
⎝⎜

⎞
⎠⎟

 (76) 

From Eq. (69), it is seen that the time derivative of ψ is equal to n. 

  Table 2 summarizes the expressions for the six ROEs as a function of time in 

terms of the LVLH Cartesian state initial conditions, and in terms of the instantaneous 

LVLH Cartesian state elements. 

Table 2:  Expressions for ROEs in terms of LVLH Cartesian state elements. 

Relative Orbital 
Element 

Expressed in terms of LVLH 
Cartesian State Initial Conditions 

Expressed in terms of 
Instantaneous LVLH 

Cartesian State Elements 

xr 
 

4x0 +
2 y0
n

 
 

4x + 2
y
n

 

yr 
 

y0 −
2 x0
n

− 6nx0 + 3 y0( ) t − t0( )  
 

y −
2 x
n

 

ar 
 

6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 
 

6x + 4
y
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x
n

⎛
⎝⎜

⎞
⎠⎟
2

 

Er 
 

atan2 2 x0
n
,6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟
+ n t − t0( )  

 

atan2 2 x
n
,6x + 4

y
n

⎛
⎝⎜

⎞
⎠⎟

 

Az 
 

z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2

 
 

z2 +
z
n

⎛
⎝⎜

⎞
⎠⎟
2

 

ψ  
 

atan2 z0 ,
z0
n

⎛
⎝⎜

⎞
⎠⎟
+ n t − t0( )  

 

atan2 z,
z
n

⎛
⎝⎜

⎞
⎠⎟

 

2.2.2 Transformation from Relative Orbital Elements to LVLH Cartesian State 

  It is frequently desirable to transform from ROEs to LVLH Cartesian states.  

These transformations are developed here.  The position components of the LVLH 

Cartesian state can be found as follows: Eqs. (61, 65, 66, 67) may be substituted into Eq. 

(58) to yield: 

 x = xr −
1
2
ar cosEr  (77) 
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Similarly, Eqs. (62, 65, 66, 67) may be substituted into Eq. (59) to give: 

 y = yr + ar sinEr  (78) 

Eqs. (68, 69, 70) may be substituted into Eq. (60) to give: 

 z = Az sinψ  (79) 

 The velocity LVLH state components can be found as follows.  Eq. (72) may be 

substituted into Eq. (78) and rearranged to yield: 

 
 

x =
n
2
ar sinEr  (80) 

Eq. (71) may be substituted into Eq. (77) and rearranged to give: 

 
 

y = −
3
2
nx +

1
4
nar cosEr  (81) 

Eq. (71) can be rewritten as: 

 
 

x =
xr
4
−
y
2n

 (82) 

Substituting (82) into (81) and solving for 
 
y  gives: 

 
 

y = −
3
2
nxr + nar cosEr  (83) 

Rearranging Eq. (75) gives: 

 
 
z2 = n2 A2z − z

2( )  (84) 

Substituting Eq. (79) into (84) gives: 

 
 
z2 = n2A2z cos

2ψ  (85) 

Taking the square root of both sides of Eq. (43) gives: 
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z = ±nAz cosψ  (86) 

Referencing Fig. 6, because  z > 0  when ψ = 0 , then 

 
 
z = nAz cosψ  (87) 

 

A summary of the transformation from ROEs to LVLH Cartesian state elements is given 

in Table 3. 

Table 3:  Expressions for LVLH Cartesian state elements in terms of ROEs. 

LVLH Cartesian State Element Expressed in Terms of ROEs 

x xr −
1
2
ar cosEr  

y yr + ar sinEr  
z Az sinψ  

 x  
n
2
ar sinEr  

 
y  −

3
2
nxr + nar cosEr  

 z  nAz cosψ  

2.2.3 Evolution of Relative Orbital Elements with Time 

 Previously, expressions for the time variation of ROEs were developed in terms 

of LVLH Cartesian state elements.  In this section, expressions for the time variation of 

each ROE are developed in terms of initial ROE values.  The initial condition for each 

ROE at time t0 is denoted with a subscript 0.   

 Eqs. (61) and (62) express the variation of the instantaneous center of motion with 

time, given initial conditions expressed in terms of the LVLH Cartesian state.  From Eq. 

(61), it is clear that at t = t0 : 
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xr0 = 4x0 +
2 y0
n

 (88) 

 As described in Section 2.2.1, the radial coordinate of the instantaneous center of 

the motion is shown to be constant for unforced motion: 

 xr = xr0  (89) 

Evaluating Eq. (62) at t = t0  yields: 

 
 

yr0 = y0 −
2 x0
n

 (90) 

Multiplying Eq. (61) by a factor of 
3n
2

, and substituting with Eqs. (89) and (90) into Eq. 

(62) gives: 

 yr = yr0 −
3
2
nxr0 t − t0( )  (91) 

As discussed in Section 2.2.1, for unforced motion ar does not vary as a function of time: 

 ar = ar0  (92) 

Relative eccentric anomaly varies with time as expressed in Eq. (66), and repeated here: 

 Er = Er0
+ n t − t0( )  (93) 

The amplitude of the cross-track motion, Az, is given by Eq. (68) as a function of the 

LVLH Cartesian state initial conditions.  Once established by the initial conditions, Az 

does not vary with time, therefore: 

 Az = Az0  (94) 
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Finally, the phase angle in the cross-track harmonic motion is given by Eq. (69), repeated 

here: 

 ψ =ψ 0 + n t − t0( )  (95) 

In summary, for unforced motion the ROEs xr, ar and Az remain constant, yr varies 

linearly with time proportional to the secular drift rate, while the angular ROEs Er and ψ 

vary at a constant angular rate equal to the chief’s mean motion, n.  A summary of the 

expressions for ROEs in terms of the ROE initial conditions is provided in Table 4. 

Table 4:  Expressions for ROEs in terms of ROE initial conditions. 

Relative Orbital Element Expressed in terms of ROE Initial 
Conditions 

xr xr0  

yr yr0 −
3
2
nxr0 t − t0( )  

ar ar0  

Er Er0
+ n t − t0( )  

Az Az0  

ψ  ψ 0 + n t − t0( )  

2.2.4 Additional Parameters Related to Relative Orbital Elements 

 In addition to the ROEs summarized in Table 2, there are several related 

parameters that provide insight into the relative motion.  The additional parameters 

described here include along-track secular drift and drift rate, relative true anomaly, 

phase angle difference, and relative inclination. 

Along-Track Secular Drift and Drift Rate 

 The linear time-varying along-track secular drift term in Eq. (59) indicates the 

direction and rate of the instantaneous center of motion in the x̂ − ŷ  plane.  The secular 

drift parameter, ys, is defined as: 
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ys = − 6nx0 + 3 y0( ) t − t0( )  (96) 

In Eq. (96), ys equals the distance in the along-track direction that the instantaneous 

center of motion has moved during the time period t − t0 .  At a given time, the secular 

drift rate can be written as: 

 
 
ys = − 6nx0 + 3 y0( )  (97) 

For unforced motion, the secular drift rate is a constant.  By taking the time derivative of 

Eq. (62), it is clear that 
 
ys  is equivalent to 

 
yr .  From Eqs. (61) and (97), it is apparent 

that: 

 
 

ys = −
3
2
nxr  (98) 

Thus, the secular drift rate of the instantaneous ellipse in the x̂ − ŷ  plane is negatively 

proportional to the radial coordinate of the instantaneous center of motion; if xr is greater 

than zero, the secular drift is in the negative along-track direction, and vice-versa.  If xr 

equals zero, there is no drift.  From Eqs. (62) and (97) it can be seen that: 

 
 
yr = yr0 + ys t − t0( )  (99) 

where 

 
 

yr0 = y0 −
2 x0
n

 (100) 

An example is shown in Fig. 6.  The initial coordinates of the instantaneous center of 

motion in the x̂ − ŷ  plane at t = t0 are xr0 , yr0( ) .  Three orbit periods later, the 

instantaneous center coordinates are xr , yr( ) .  In this case, xr0 > 0 , so 
 
ys  is negative, and 
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the secular drift is from right to left, in the negative along-track direction.  Secular drift 

rate may be used as an alternative to xr within the set of ROEs. 

 

Figure 6:  Secular along-track drift in the x̂ − ŷ  plane. 

Relative True Anomaly 

 An angle termed relative true anomaly may be defined that is analogous to the 

classical orbital element true anomaly, except that it is defined strictly in the   plane.  As 

shown in Figure 7, relative true anomaly, νr, is the angle, centered on (xr, yr), between the 

periapsis point P and point D, the instantaneous deputy position along the ellipse.  Point 

Q on the circumscribed circle is always twice as far as point D from the semi-major axis 

of the instantaneous relative motion ellipse.  This can be shown as follows.  From the 

standard equation of an ellipse, the instantaneous relative motion ellipse equation is: 

 
y − yr( )2
a2r

+
x − xr( )2
ar
2

⎛
⎝⎜

⎞
⎠⎟
2 = 1  (101) 

Solving Eq. (80) for x − xr  gives: 
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 x − xr =
1
2

a2r − y − yr( )2  (102) 

 

Figure 7:  Geometry of relative eccentric anomaly and relative true anomaly. 

From the standard equation for a circle, the equation for the circumscribed circle can 

be written as: 

 
yq − yr( )2
ar
2 +

xq − xr( )2
ar
2 = 1  (103) 

Solving Eq. (103) for xq − xr , and noting that yq = y , gives: 

 xq − xr = ar
2 − y − yr( )2  (104) 

From Eqs. (102) and (104), the desired result is obtained: 

 x − xr =
1
2
xq − xr( )  (105) 

From Fig. 8, it is clear that: 
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 tanEr =
y − yr

2 xr − x( )  (106) 

Substituting for xr and yr in Eq. (106) using Eqs. (71) and (72) and simplifying gives: 

 
 

tanEr =
x

3nx + 2 y
 (107) 

From Fig. 8, it is apparent that: 

 tanυr =
y − yr
xr − x

 (108) 

Substituting for xr and yr in Eq. (108) using Eqs. (71) and (72) and simplifying gives: 

 
 

tanυr =
2 x

3nx + 2 y
 (109) 

Therefore, relative true anomaly may be expressed as: 

 
 

υr = tan
−1 2 x
3nx + 2 y

⎛
⎝⎜

⎞
⎠⎟

 (110) 

Comparing Eq. (110) with Eq. (107), the relationship between relative eccentric anomaly 

and relative true anomaly is then: 

 υr = tan
−1 2 tanEr( )  (111) 

Relative true anomaly may be used as an alternative to relative eccentric anomaly within 

the set of ROEs. 
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Phase Angle Difference 

  The phase angle difference between the relative eccentric anomaly, Er, and the 

cross-track motion phase angle, ψ, can be expressed as: 

 γ =ψ − Er  (112) 

The cross-track motion phase angle and relative eccentric anomaly both change at a rate 

that is equal to the chief’s mean motion, as seen in Eqs. (66) and (69).  Therefore, the 

phase difference γ  is a constant, equal to the difference between the two angles at any 

chosen instant in time.  Eq. (112) may be used to replace ψ with γ + Er .  The advantage 

of this approach is that four of the six ROEs are then constant, with yr and Er being the 

only time-varying ROEs.  (Note that one could alternatively replace Er with ψ − γ  and 

also achieve four constant ROEs.)  The phase difference may be written in terms of 

LVLH Cartesian state elements as: 

 
 

γ = atan2 z,
z
n

⎛
⎝⎜

⎞
⎠⎟
− atan2 2 x

n
,6x + 4

y
n

⎛
⎝⎜

⎞
⎠⎟

 (113) 

Relative Inclination 

 An important parameter related to the three-dimensional relative motion is the 

relative inclination, the angle between the relative orbit plane and the chief’s orbit plane 

(i.e., the x̂ − ŷ  plane).  As shown in Figure 8, the normal vector to the instantaneous 

relative orbit plane, nr , is found by taking the cross-product of two position vectors on 

the relative orbit, corresponding to Er = 0  and Er =
π
2

.  In Figure 8, the LVLH x̂ − ŷ − ẑ  
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coordinate system is translated to parallel axes x̂ '− ŷ '− ẑ '  with the origin at xr , yr ,0( ) .  

The relative inclination is the angle between the relative orbit normal, n̂r  and the ẑ '  axis. 

 

Figure 8:  Geometry of relative inclination. 

The position of the instantaneous center (IC) of the relative motion with respect to the 

origin of the LVLH coordinate system is given by the vector: 

 ρ IC = xr , yr ,0[ ]T  (114) 

The vector from the origin of the LVLH coordinate system to the relative orbit position 

corresponding to Er = 0  (periapsis) is given by Eqs. (77) – (79) as: 

 ρ 1 =
xr −

1
2
ar

yr
Az sinγ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (115) 
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where, from Eq. (112), γ is equal to ψ for Er = 0 .  The position vector from the 

instantaneous center to the location on the relative orbit corresponding to Er = 0  is given 

by: 

 r1 = ρ 1 − ρ IC  (116) 

From Eqs. (114) – (116), r1  can be evaluated as: 

 r1 =
−
1
2
ar

0
Az sinγ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (117) 

The vector from the origin of the LVLH coordinate system to the relative orbit position 

corresponding to Er =
π
2

 is: 

 ρ 2 =
xr

yr + ar
Az cosγ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (118) 

Note that for Er =
π
2

, γ =ψ −
π
2

.  From Eq. (79), the cross-track component of the 

position vector is equal to Az sinψ , which equates to Az sin γ +
π
2

⎛
⎝⎜

⎞
⎠⎟

 for Er =
π
2

.  This is 

simplified to Az cosγ  in Eq. (118).  The position vector from the instantaneous center to 

the deputy at Er =
π
2

 is given by: 

 r2 = ρ 2 − ρ IC  (119) 
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From Eqs. (114), (118) and (119), r2  can be evaluated as: 

 r2 =
0
ar

Az cosγ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (120) 

Using the two position vectors on the instantaneous relative orbit, the cross-product can 

be taken to find the relative orbit normal, nr : 

 nr = r1 × r2  (121) 

Using Eqs. (117) and (120), the relative orbit normal vector can be evaluated as: 

 nr =

−arAz sinγ
1
2
arAz cosγ

−
1
2
a2r

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (122) 

The unit vector in the direction of the relative orbit normal is given by: 

 n̂r =
nr
nr

 (123) 

The relative inclination, ir, is the angle between the instantaneous relative orbit plane and 

the chief orbit plane.  The angle between the relative orbit normal and the chief’s orbit 

normal can be found through the dot product of the two normal unit vectors: 

 n̂r ⋅ ẑ = cos ir  (124) 

The relative inclination is given by: 

 ir = cos
−1 n̂r ⋅ ẑ( )  (125) 
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Substituting Eqs. (122) and (123) into Eq. (125) and simplifying yields: 

 ir = cos
−1 −ar

3Az
2 sin2 γ + Az

2 cos2 γ + ar
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (126) 

From Eq. (126), it is seen that relative inclination is a function of the semi-major axis of 

the instantaneous relative ellipse in the x̂ − ŷ  plane, ar, the amplitude of the cross-track 

motion, Az, and the phase difference, γ.  For unforced motion, each of these parameters is 

constant, so relative inclination is a constant as well.  If the relative ellipse has a secular 

along-track drift rate due to a non-zero value for xr, the instantaneous relative ellipse lies 

in a plane that is translating in the along-track direction, with a constant relative 

inclination angle.  Note that for relative motion constrained to the x̂ − ŷ  plane Az = 0( ) , 

the relative orbit normal is in the − ẑ  direction, resulting in a relative inclination of 180 

deg.  Because ir is a function of ar, Az, and γ, it may be used to replace any of these three 

quantities within the set of ROEs. 

  To express relative inclination in terms of LVLH Cartesian state elements, Eqs. 

(73), (75) and (113) are substituted into Eq. (126) to give: 

 

ir = cos
−1

− 6x +
4 y
n

⎛
⎝

⎞
⎠

2

+
2 x
n

⎛
⎝

⎞
⎠

2

3 z2 +
z

n
⎛
⎝

⎞
⎠

2⎡
⎣⎢

⎤
⎦⎥
sin2 atan2 z,

z

n
⎛
⎝

⎞
⎠ − atan2

2 x
n
, 6x +

4 y
n

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥
+ z2 +

z

n
⎛
⎝

⎞
⎠

2

+ 6x +
4 y
n

⎛
⎝

⎞
⎠

2

+
2 x
n

⎛
⎝

⎞
⎠

2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 

  (127) 

A summary of the useful parameters related to ROEs is provided in Table 5. 
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Table 5:  Expressions for useful parameters related to ROEs. 

Parameter Expressed in terms of LVLH 
Cartesian State Elements Expressed in terms of ROEs 

ys  
 
− 6nx0 + 3 y0( ) t − t0( )  −

3
2
nxr t − t0( )  

 
ys  

 
− 6nx + 3 y( )  −

3
2
nxr  

υr  
 

tan−1 2 x
3nx + 2 y

⎛
⎝⎜

⎞
⎠⎟

 tan−1 2 tanEr( )  

γ  
 

atan2 z,
z
n

⎛
⎝⎜

⎞
⎠⎟
− atan2 2 x

n
,6x + 4

y
n

⎛
⎝⎜

⎞
⎠⎟

 ψ − Er  

ir  See Eq. (127) cos−1 −ar
3Az

2 sin2 γ + Az
2 cos2 γ + ar

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

2.3  Characteristics of the Unforced Motion 

  Utilizing the ROEs defined in Section 2.2, the unforced “free drift” deputy 

spacecraft trajectory relative to the chief can be readily characterized.  Similar to classical 

orbital elements, ROEs provide a physical understanding of the relative motion that is not 

obvious from the relative Cartesian state. 

  The relative motion is characterized in terms of three primary modes of the 

motion, based upon the values of the ROEs xr, ar, and Az.  As seen in Table 5, the first 

mode of the relative motion is dependent upon the value for xr.  If xr = 0  (Mode 1A), 

then there is no secular drift of the relative motion in the along-track direction.  If xr ≠ 0  

(Mode 1B), then the instantaneous relative ellipse in the x̂ − ŷ  plane will have a secular 

drift with a rate that is dependent upon the value for xr:  a negative value for xr results in a 

positive secular drift rate in the along-track direction, and a positive value for xr results in 

a negative rate for secular along-track drift.  Note that this behavior makes physical sense 

when one considers that xr = 0  implies that the chief and deputy possess the same orbit 
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period, xr > 0  implies that the deputy is on a larger inertial orbit (longer period) than the 

chief, and xr < 0  implies that the deputy is on a smaller orbit (shorter period) than the 

chief. 

  The second mode of the relative motion depends upon the value for ar.  If ar = 0  

(Mode 2A), then there is no instantaneous relative ellipse in the x̂ − ŷ  plane. Stated 

differently, the instantaneous relative ellipse devolves to a point.  If ar > 0  (Mode 2B), 

then the instantaneous relative ellipse in the x̂ − ŷ  plane has the typical 2:1 ratio of semi-

major axis in the along-track direction to semi-minor axis in the radial direction.  This 

behavior makes physical sense when one considers that ar = 0  implies that the chief and 

deputy are both on circular orbits, whereas ar > 0  implies that the deputy is on an 

elliptical inertial orbit. 

  The third mode of the relative motion is dependent upon the value for Az.  If 

Az = 0  (Mode 3A), then there is no cross-track motion.  If Az > 0  (Mode 3B), then there 

is simple harmonic oscillatory motion in the cross-track direction.  It is noted that the 

initial value for yr does not define a primary mode for the relative motion; yr simply gives 

the initial along-track coordinate of the instantaneous relative ellipse in the x̂ − ŷ  plane.  

The angular ROEs Er and ψ are used to define the location of the deputy on the relative 

orbit in-plane and out-of-plane of the chief’s orbit, respectively.  The phasing between 

these angles impacts the three-dimensional shape of the relative orbit, and determines the 

locations of the relative ascending and descending nodes where the deputy’s inertial 

trajectory intersects the chief’s orbit plane. 
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Table 6:  Modes of unforced relative motion. 
 

Mode 
Initial 

Condition 
 

Description 
1A  xr = 0   No secular along‐track drift of instantaneous 

ellipse 

1 
1B  xr ≠ 0   Secular along‐track drift of instantaneous ellipse: 

 

xr > 0⇒ ys < 0
xr < 0⇒ ys > 0

 

 
2A  ar = 0   No instantaneous ellipse in the  x̂ − ŷ  plane 

2  2B  ar > 0   Instantaneous ellipse in the  x̂ − ŷ  plane 
3A  Az = 0   No cross‐track motion 

3  3B  Az > 0   Simple harmonic oscillatory cross‐track motion 
 

 Each of the three primary modes of relative motion can be superposed to capture 

the full motion of the deputy spacecraft relative to the chief.  For Mode 1A, there is no 

secular drift in the along-track direction, so the motion in the x̂ − ŷ  plane is either a 

stationary point with x = 0 (Mode 1A, 2A), or a stationary ellipse (Mode 1A, 2B) with the 

characteristic 2:1 ratio of the major-axis to minor-axis length in the x̂ − ŷ  plane. 

For Mode 1B, where there is a secular drift of the instantaneous ellipse in the along-

track direction, the x̂ − ŷ  projection of the deputy’s motion will take on one of four 

different shapes.  Figure 9 shows an example of each of these relative motion shapes, for 

a case where the chief’s circular orbit altitude is 500 km, the initial along-track 

coordinate for the deputy is 100 m, and xr for the deputy is 5 m, resulting in a negative 

secular drift rate in the along-track direction.  One orbit period is shown.  The shape of 

the relative drifting motion in the x̂ − ŷ  plane is determined by the value of ar relative to 

xr.  For ar = 0  (Mode 1B, 2A), the deputy is on a circular orbit, and the motion with 

respect to the chief is a straight line in the LVLH frame, with a fixed radial component.  

For ar > 0 (Mode 1B, 2B), the relative motion may be a quasi-sinusoidal curve, a cycloid-
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like curve that cusps at the extrema, or a cycloid-like curve that curls at the extrema.  For 

all three of the cases in Mode 1B, 2B, the minimum radial coordinate occurs at perigee in 

the deputy’s orbit, and the maximum radial coordinate occurs at apogee.  The quasi-

sinusoidal curve is produced when the along-track component of the LVLH Cartesian 

state increases or decreases monotonically.   

 

Figure 9:   Four types of relative drifting motion in the x̂ − ŷ  plane.  Mode 1B, 2A: solid 

line, ar = 0 .  Mode 1B, 2B: dashed quasi-sinusoidal curve, ar <
3
2
xr ; bolded cycloid-

like curve with cusp, ar =
3
2
xr ; bold-dashed cycloid-like curve with curl, ar >

3
2
xr .  In 

all cases, motion is from right to left. 
 

Substituting Eq. (77) into Eq. (81), and using Eq. (98) it is found that: 

 
 
y = ys + nar cosEr  (128) 

For the case where the along-track component is monotonically decreasing (as shown by 

the dashed curve in Fig. 10), 
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ys + nar < 0  (129) 

Substituting for 
 
ys  with Eq. (98) gives: 

 ar <
3
2
xr  (130) 

Written generally, to account for both the monotonically increasing and decreasing cases, 

the condition for a quasi-sinusoidal curve can be written as: 

 ar <
3
2
xr  (131) 

For a cycloid-like curve that cusps, 
 
y = 0  at either periapsis or apoapsis in the deputy’s 

orbit (i.e., at Er = 0  or Er = π ).  From Eq. (128), it is found that the condition reduces 

to: 

 ar =
3
2
xr  (132) 

It is noted that for the case where the secular drift rate in the along-track direction is 

negative, cusps occur at perigee (as shown by the bolded curve in Fig. 10), while for a 

positive secular drift rate cusps occur at apogee.  Finally, cycloid-like curves that curl 

occur for all other values of ar, when: 

 ar >
3
2
xr  (133) 

For Mode 3A, there is no cross-track motion and z = 0 .  For the combination of 

Modes 1A, 2A, 3B, the motion is a simple oscillation in the cross-track direction, and 

there is no motion in the x̂ − ŷ  plane. 
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 For Mode 1A, 2B, 3B, the relative orbit is stationary and in a fixed plane.  The 

angular difference between the relative eccentric anomaly and cross-track phase angle 

(equal to the parameter γ defined in Section 2.1) determines the shape and orientation of 

the projection of the motion in the x̂ − ẑ  and ŷ − ẑ  planes.  The motion in the x̂ − ẑ  plane 

is an ellipse centered on x = 0,  z = 0 .  The motion in the ŷ − ẑ  plane is an ellipse 

centered on y = yr ,  z = 0 .  Figure 10 shows an example where xr = 0 , yr = 100 m , 

ar = 20 m , and Az = 10 m .  Relative orbits associated with four different values for γ are 

shown: 0, π 2 , π, and 3π 2 .  While the motion in the x̂ − ŷ  plane is unchanged for each 

case, the shape and orientation of the ellipses in the x̂ − ẑ  and ŷ − ẑ  planes are 

determined by the value of γ.  Note that for γ = π
2  and γ = 3π 2 , the projection of the 

motion onto the x̂ − ẑ  and ŷ − ẑ  planes are straight lines. 

 For Mode 1B, 2B, 3B, a secular along-track drift is superimposed upon the three-

dimensional relative motion.  Figure 11 shows an example where xr = 1 m , yr = 100 m , 

ar = 20 m , Az = 10 m , and γ = 0 .  The “corkscrew” motion apparent in the three-

dimensional plot, Figure 11(d), results from the translation of the instantaneous plane of 

the motion in the along-track direction. 
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  (a)       (b) 

 

 

 

  (c)       (d) 

Figure 10:  Mode 1A, 2B, 3B motion with varying phase difference, γ .  Bold solid line: 
γ = 0 ; dashed line: γ = π

2 ; solid line: γ = π ; dotted line: γ = 3π 2 .  (a) ŷ − x̂
projection, (b) ẑ − x̂  projection, (c) ŷ − ẑ  projection, (d) 3D plot. 
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    (a)      (b) 

 

 

   (c)      (d) 

Figure 11:  Mode 1B, 2B, 3B motion. (a) ŷ − x̂ projection, (b) ẑ − x̂  projection, (c) ŷ − ẑ  
projection, (d) 3D plot. 
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relative velocity vector by the maneuver component in each coordinate direction of the 

LVLH frame: ΔVx, ΔVy, ΔVz.  The relative position vector is unchanged by the 

impulsive maneuver.  Using the superscript “-” to denote state elements prior to the 

impulsive maneuver, and the superscript “+” for state elements following the maneuver, 

the following expressions can be written from Eqs. (77), (78), (79), (80), (83), and (87): 

 x+ = xr
− −

1
2
ar
− cosEr

−  (134) 

 y+ = yr
− + ar

− sinEr
−  (135) 

 z+ = Az
− sinψ −  (136) 

 
 

x+ =
n
2
ar
− sinEr

− + ΔVx  (137) 

 
 

y+ = −
3
2
nxr

− + nar
− cosEr

− + ΔVy  (138) 

 
 
z+ = nAz

− cosψ − + ΔVz  (139) 

 The ROEs following an impulsive maneuver can be expressed in terms of 

Cartesian state elements by substituting Eqs. (134) – (139) into Eqs. (71) – (76), giving: 

 
 

xr
+ = 4x+ + 2

y+

n
 (140) 

 
 

yr
+ = y+ −

2 x+

n
 (141) 

 
 

ar
+ = 6x+ + 4

y+

n
⎛
⎝⎜

⎞
⎠⎟

2

+
2 x+

n
⎛
⎝⎜

⎞
⎠⎟

2

 (142) 

 
 
Er

+ = atan2 x+ , 3nx+ + 2 y+( )  (143) 
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Az
+ = z+( )2 + z+

n
⎛
⎝⎜

⎞
⎠⎟

2

 (144) 

 
 

ψ + = atan2 z+ ,
z+

n
⎛
⎝⎜

⎞
⎠⎟

 (145) 

 Substitution of Eqs. (134) – (139) into Eqs. (140) – (145) allows the post-

maneuver ROEs to be expressed in terms of the pre-maneuver ROEs and the impulsive 

maneuver components.  Specifically, substituting Eqs. (134) and (138) into Eq. (140) 

gives: 

 xr
+ = xr

− +
2
n
ΔVy  (146) 

Substituting Eqs. (135) and (137) into Eq. (141) gives: 

 yr
+ = yr

− −
2
n
ΔVx  (147) 

Substituting Eqs. (134), (137), and (138) into Eq. (142) gives: 

 ar
+ = ar

− cosEr
− +

4
n
ΔVy

⎛
⎝⎜

⎞
⎠⎟
2

+ ar
− sinEr

− +
2
n
ΔVx

⎛
⎝⎜

⎞
⎠⎟
2

 (148) 

Substituting Eqs. (134), (137), and (138) into Eq. (143) gives: 

 Er
+ = atan2 ar

− sinEr
− +

2
n
ΔVx ,ar

− cosEr
− +

4
n
ΔVy

⎛
⎝⎜

⎞
⎠⎟

 (149) 

Substituting Eqs. (136) and (139) into Eq. (144) gives: 

 Az
+ = Az

− sinψ −( )2 + Az
− cosψ − +

1
n
ΔVz

⎛
⎝⎜

⎞
⎠⎟
2

 (150) 

Substituting Eqs. (136) and (139) into Eq. (145) gives: 
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 ψ + = atan2 Az
− sinψ − ,Az

− cosψ − +
1
n
ΔVz

⎛
⎝⎜

⎞
⎠⎟

 (151) 

  Introducing a parameter that represents the maneuver time, tb, the post-maneuver 

ROEs can be expressed in terms of the relative Cartesian state initial conditions, the 

epoch for the initial conditions, given by t0, the maneuver time, tb, and the maneuver 

components ΔVx, ΔVy, ΔVz. Substituting Eqs. (61), (62), (65), (66), (67), (68), (69) and 

(70) into Eqs. (146) – (151), gives: 

 
 

xr
+ = 4x0 +

2 y0
n

+
2
n
ΔVy  (152) 

 
 

yr
+ = y0 −

2 x0
n

− 6nx0 + 3 y0( ) t − t0( ) − 2
n
ΔVx  (153) 

 

 

ar
+ = 6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

cos atan2 x0 ,3nx0 + 2 y0( ) + n tb − t0( )⎡⎣ ⎤⎦ +
4
n
ΔVy

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

+
⎛

⎝

⎜
⎜

 

 

 

6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

sin atan2 x0 ,3nx0 + 2 y0( ) + n tb − t0( )⎡⎣ ⎤⎦ +
2
n
ΔVx

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2 ⎞

⎠

⎟
⎟

1/2

 

  (154) 

 

 

Er
+ = atan2 6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

sin atan2 x0 ,3nx0 + 2 y0( ) + n tb − t0( )⎡⎣ ⎤⎦ +
2
n
ΔVx ,

⎧
⎨
⎪

⎩⎪
 

 

 

6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

cos atan2 x0 ,3nx0 + 2 y0( ) + n tb − t0( )⎡⎣ ⎤⎦ +
4
n
ΔVy

⎫
⎬
⎪

⎭⎪
 

  (155) 
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Az
+ = z0

2 +
z0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

sin atan2 nz0 , z0( ) + n tb − t0( )⎡⎣ ⎤⎦
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

2

+  

 

 

z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

cos atan2 nz0 , z0( ) + n tb − t0( )⎡⎣ ⎤⎦ +
1
n
ΔVz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 ⎫
⎬
⎪

⎭⎪

1/2

 (156) 

 

 

ψ + = atan2 z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

sin atan2 nz0 , z0( ) + n tb − t0( )⎡⎣ ⎤⎦
⎧
⎨
⎪

⎩⎪
,  

 

 

z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

cos atan2 nz0 , z0( ) + n tb − t0( )⎡⎣ ⎤⎦ +
1
n
ΔVz

⎫
⎬
⎪

⎭⎪
 (157) 

 Considerable simplifications can be achieved by writing the above expressions in 

terms of ROE initial conditions rather than Cartesian state initial conditions.  Returning to 

Eqs. (61), (62), (65), (67), (68), and (70), we can express the ROE initial conditions at 

t = t0  as: 

 
 

xr0 = 4x0 +
2 y0
n

 (158) 

 
 

yr0 = y0 −
2 x0
n

 (159) 

 
 

ar0 = 6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (160) 

 
 

Er0
= atan2 2 x0

n
,6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟

 (161) 

 
 

Az0 = z0
2 +

z0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (162) 
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ψ 0 = atan2 z0 ,
z0
n

⎛
⎝⎜

⎞
⎠⎟

 (163) 

Substituting Eqs. (158) – (163) into Eqs. (152) – (157) and simplifying yields: 

 xr
+ = xr0 +

2
n
ΔVy  (164) 

 yr
+ = yr0 −

3
2
nxr0 tb − t0( ) − 2

n
ΔVx  (165) 

 ar
+ = ar0 cos Er0

+ n tb − t0( )⎡⎣ ⎤⎦ +
4
n
ΔVy

⎧
⎨
⎩

⎫
⎬
⎭

2

+
⎛

⎝⎜
 

 ar0 sin Er0
+ n tb − t0( )⎡⎣ ⎤⎦ +

2
n
ΔVx

⎧
⎨
⎩

⎫
⎬
⎭

2 ⎞

⎠⎟

1/2

 (166) 

 Er
+ = atan2 ar0 sin Er0

+ n tb − t0( )⎡⎣ ⎤⎦ +
2
n
ΔVx ,

⎧
⎨
⎩

ar0 cos Er0
+ n tb − t0( )⎡⎣ ⎤⎦ +

4
n
ΔVy

⎫
⎬
⎭

 

  (167) 

 Az
+ = Az sin ψ 0 + n tb − t0( )⎡⎣ ⎤⎦( ){ 2

+ Az cos ψ 0 + n tb − t0( )⎡⎣ ⎤⎦ +
1
n
ΔVz

⎛
⎝⎜

⎞
⎠⎟
2 ⎫
⎬
⎪

⎭⎪

1/2

  

  (168) 

 ψ + = atan2 Az0 sin ψ 0 + n tb − t0( )⎡⎣ ⎤⎦{ ,Az0 cos ψ 0 + n tb − t0( )⎡⎣ ⎤⎦ +
1
n
ΔVz

⎫
⎬
⎭

 

  (169) 

  Through evaluation of Eqs. (164) – (169), the variation of ROEs as a function of 

the impulsive maneuver components in each LVLH coordinate direction may be 

established.  Tables 7 and 8 show the direction of change (“+” representing a positive 

change, “-” representing a negative change) for ROEs xr, yr, and ar, resulting from an 

impulse in the x̂  or ŷ  coordinate directions, shown as ΔVx and ΔVy, respectively.  The 
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location of the maneuver on the instantaneous relative orbit ellipse in the x̂ − ŷ  plane is 

parameterized by Er
− , the relative eccentric anomaly at the maneuver epoch prior to the 

impulsive maneuver; Table 7 shows the variations based upon impulsive maneuvers 

performed within 0 ≤ Er
− < π , and Table 8 shows the ROE variations for maneuver 

locations within the range of π ≤ Er
− < 2π .  Tables 9 – 12 show the effect of impulsive 

maneuvers in the x̂  and ŷ  directions on the value of Er.  Table 13 shows the variation of 

Az based upon the sign of the maneuver component ΔVz, where the maneuver location is 

parameterized by ψ − .  Tables 14 – 15 show the effect of maneuvers in the ẑ  direction on 

the value of ψ.  Collectively, Tables 7 – 15 represent a logic structure that captures the 

effect of an impulsive maneuver on the ROEs, as a function of maneuver component 

values and maneuver placement in the relative orbit. 
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Table 7:  xr, yr, ar variations based upon impulsive maneuver components, 0 ≤ Er
− < π . 

Er
−  ΔVx  ΔVy  Δxr  Δyr  Δar  

+ 0 0 - + 
- 0 0 + + 
0 + + 0 + 

Er
− = 0  

0 - - 0 

0, ΔVy = −
n
2
ar
−

+, ΔVy < −
n
2
ar
−

-, − n
2
ar
− < ΔVy < 0

 

+ 0 0 - + 

- 0 0 + 

0, ΔVx = −nar
− sinEr

−

+, ΔVx < −nar
− sinEr

−

-, − nar
− sinEr

− < ΔVx < 0
 

0 + + 0 + 
0 < Er

− <
π
2

 

0 - - 0 

0, ΔVy = −
n
2
ar
− cosEr

−

+, ΔVy < −
n
2
ar
− cosEr

−

-, − n
2
ar
− cosEr

− < ΔVy < 0

 

+ 0 0 - + 

- 0 0 + 

0, ΔVx = −nar
−

+, ΔVx < −nar
−

-, − nar
− < ΔVx < 0

 

0 + + 0 + 

Er
− =

π
2

 

0 - - 0 + 
+ 0 0 - + 

- 0 0 + 

0, ΔVx = −nar
− sinEr

−

+, ΔVx < −nar
− sinEr

−

-, − nar
− sinEr

− < ΔVx < 0
 

0 + + 0 

0, ΔVy = −
n
2
ar
− cosEr

−

+, ΔVy > −
n
2
ar
− cosEr

−

-, 0 < ΔVy < −
n
2
ar
− cosEr

−

 

π
2
< Er

− < π  

0 - - 0 + 
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Table 8:  xr, yr, ar variations based upon impulsive maneuver components, π ≤ Er
− < 2π . 

Er
−  ΔVx  ΔVy  Δxr  Δyr  Δar  

+ 0 0 - + 
- 0 0 + + 

0 + + 0 

0, ΔVy =
n
2
ar
−

+, ΔVy >
n
2
ar
−

-, 0 < ΔVy <
n
2
ar
−

 
Er

− = π  

0 - - 0 + 

+ 0 0 - 

0, ΔVx = −nar
− sinEr

−

+, ΔVx > −nar
− sinEr

−

-, 0 < ΔVx < −nar
− sinEr

−

 

- 0 0 + + 

0 + + 0 

0, ΔVy = −
n
2
ar
− cosEr

−

+, ΔVy > −
n
2
ar
− cosEr

−

-, 0 < ΔVy < −
n
2
ar
− cosEr

−

 

π < Er
− <

3π
2

 

0 - - 0 + 

+ 0 0 - 

0, ΔVx = nar
−

+, ΔVx > nar
−

-, 0 < ΔVx < nar
−

 

- 0 0 + + 
0 + + 0 + 

Er
− =

3π
2

 

0 - - 0 + 

+ 0 0 - 

0, ΔVx = −nar
− sinEr

−

+, ΔVx > −nar
− sinEr

−

-, 0 < ΔVx < −nar
− sinEr

−

 

- 0 0 + + 
0 + + 0 + 3π

2
< Er

− < 2π  

0 - - 0 

0, ΔVy = −
n
2
ar
− cosEr

−

+, ΔVy < −
n
2
ar
− cosEr

−

-, − n
2
ar
− cosEr

− < ΔVy < 0
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Table 9:  Er variations based upon impulsive maneuver components, 0 ≤ Er
− <

π
2

. 

Er
−  ΔVx  ΔVy  Er

+  

+ 0 0 < Er
+ ≤

π
2

 

- 0 
3π
2

≤ Er
+ < 2π  

0 + Er
+ = 0  Er

− = 0  

0 - 
ΔVy < −

n
4
ar
− < 0⇒ Er

+ = π

ΔVy ≥ −
n
4
ar
− ⇒ Er

+ = 0
 

+ 0 0 < Er
+ ≤

π
2

 

- 0 

ΔVx < −
n
2
ar
− sinEr

− ⇒
3π
2

≤ Er
+ < 2π

ΔVx = −
n
2
ar
− sinEr

− ⇒ Er
+ = 0

−
n
2
ar
− sinEr

− < ΔVx < 0⇒ 0 < Er
+ ≤

π
2

 

0 + 0 ≤ Er
+ <

π
2

 0 < Er
− <

π
2

 

0 - 

−
n
4
ar
− cosEr

− < ΔVy < 0⇒ 0 ≤ Er
+ <

π
2

ΔVy = −
n
4
ar
− cosEr

− ⇒
ar
− = 0⇒ Er

+ = 0

ar
− > 0⇒ Er

+ =
π
2

⎧

⎨
⎪

⎩
⎪

ΔVy < −
n
4
ar
− cosEr

− ⇒
π
2
< Er

+ ≤ π
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Table 10:  Er variations based upon impulsive maneuver components,
 

π
2
≤ Er

− < π . 

Er
−  ΔVx  ΔVy  Er

+  

+ 0 Er
+ =

π
2

 

- 0 

ΔVx < −
n
2
ar
− ⇒ Er

+ =
3π
2

ΔVx = −
n
2
ar
− ⇒ Er

+ = 0

ΔVx > −
n
2
ar
− ⇒ Er

+ =
π
2

 

0 + 0 < Er
+ ≤

π
2

 

Er
− =

π
2

 

0 - 
π
2
< Er

+ ≤ π  

+ 0 
π
2
≤ Er

+ < π  

- 0 

−
n
2
ar
− sinEr

− < ΔVx < 0⇒
π
2
≤ Er

+ < π

ΔVx = −
n
2
ar
− sinEr

− ⇒
ar
− = 0⇒ Er

+ = 0

ar
− > 0⇒ Er

+ = π

⎧
⎨
⎪

⎩⎪

ΔVx < −
n
2
ar
− sinEr

− ⇒π < Er
+ ≤

3π
2

 

0 + 

0 < ΔVy < −
n
4
ar
− cosEr

− ⇒
π
2
< Er

+ ≤ π

ΔVy = −
n
4
ar
− cosEr

− ⇒ Er
+ < 0

ΔVy > −
n
4
ar
− cosEr

− ⇒ 0 < Er
+ ≤

π
2

 

π
2
< Er

− < π  

0 - 
π
2
< Er

+ ≤ π  
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Table 11:  Er variations based upon impulsive maneuver components, π ≤ Er
− <

3π
2

. 

Er
−  ΔVx  ΔVy  Er

+  

+ 0 

0 < ΔVx <
n
2
ar
− ⇒ Er

+ =
3π
2

ΔVx =
n
2
ar
− ⇒ Er

+ = 0

ΔVx >
n
2
ar
− ⇒ Er

+ =
π
2

 

- 0 Er
+ =

3π
2

 

0 + 
3π
2

< Er
+ ≤ 2π  

Er
− = π  

0 - π < Er
+ ≤

3π
2

 

+ 0 

0 < ΔVx < −
n
2
ar
− sinEr

− ⇒π < Er
+ ≤

3π
2

ΔVx = −
n
2
ar
− sinEr

− ⇒
ar
− = 0⇒ Er

+ = 0

ar
− > 0⇒ Er

+ = π

⎧
⎨
⎪

⎩⎪

ΔVx > −
n
2
ar
− sinEr

− ⇒
π
2
≤ Er

+ < π

 

- 0 π < Er
+ ≤

3π
2

 

0 + 

0 < ΔVy < −
n
4
ar
− cosEr

− ⇒π ≤ Er
+ <

3π
2

ΔVy = −
n
4
ar
− cosEr

− ⇒
ar
− = 0⇒ Er

+ = 0

ar
− > 0⇒ Er

+ =
3π
2

⎧

⎨
⎪

⎩
⎪

ΔVy > −
n
4
ar
− cosEr

− ⇒
3π
2

< Er
+ < 2π

 

π < Er
− <

3π
2

 

0 - π ≤ Er
+ <

3π
2
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Table 12:  Er variations based upon impulsive maneuver components, 
3π
2

≤ Er
− < 2π . 

Er
−  ΔVx  ΔVy  Er

+  

+ 0 

0 < ΔVx <
n
2
ar
− ⇒ Er

+ =
3π
2

ΔVx =
n
2
ar
− ⇒ Er

+ = 0

ΔVx >
n
2
ar
− ⇒ Er

+ =
π
2

 

- 0 Er
+ =

3π
2

 

0 + 
3π
2

< Er
+ ≤ 2π  

Er
− =

3π
2

 

0 - π ≤ Er
+ <

3π
2

 

+ 0 

0 < ΔVx < −
n
2
ar
− sinEr

− ⇒
3π
2

≤ Er
+ < 2π

ΔVx = −
n
2
ar
− sinEr

− ⇒ Er
+ = 0

ΔVx > −
n
2
ar
− sinEr

− ⇒ 0 < Er
+ ≤

π
2

 

- 0 
3π
2

≤ Er
+ < 2π  

0 + 
3π
2

< Er
+ ≤ 2π  

3π
2

< Er
− < 2π  

0 - 

−
n
4
ar
− cosEr

− < ΔVy < 0⇒
3π
2

≤ Er
+ < 2π

ΔVy = −
n
4
ar
− cosEr

− ⇒ Er
+ = 0

ΔVy < −
n
4
ar
− cosEr

− ⇒π ≤ Er
+ <

3π
2
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Table 13:  Az variations based upon impulsive maneuver components. 
ψ −  ΔVz  ΔAz  

+ + ψ − = 0  
- - 
+ + 

0 <ψ − <
π
2

 
- 

0,  ΔVz = −2nAz
− cosψ −

+,  ΔVz < −2nAz
− cosψ −

−,  − 2nAz
− cosψ − < ΔVz < 0

 

+ + 
ψ − =

π
2

 - + 

+ 

0,  ΔVz = −2nAz
− cosψ −

+,  ΔVz > −2nAz
− cosψ −

−,  0 < ΔVz < −2nAz
− cosψ −

 π
2
<ψ − < π  

- + 

+ 

0,  ΔVz = 2nAz
−

+,  ΔVz > 2nAz
−

−,  0 < ΔVz < 2nAz
−

 ψ − = π  

- + 

+ 

0,  ΔVz = −2nAz
− cosψ −

+,  ΔVz > −2nAz
− cosψ −

−,  0 < ΔVz < −2nAz
− cosψ −

 π <ψ − <
3π
2

 

- + 
+ + 

ψ − =
3π
2

 - + 

+ + 

3π
2

<ψ − < 2π  
- 

0,  ΔVz = −2nAz
− cosψ −

+,  ΔVz < −2nAz
− cosψ −

−,  − 2nAz
− cosψ − < ΔVz < 0
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Table 14:  ψ variations based upon impulsive maneuver component. 
ψ −  ΔVz  ψ +  

+ ψ + = π  

ψ − = 0  
- 

ΔVz < −nAz
− ⇒ψ + = π

ΔVz = −nAz
− ⇒ψ + = 0

−nAz
− < ΔVz < 0⇒ψ + = 0

 

+ 0 ≤ψ + <
π
2

 

0 <ψ − <
π
2

 
- 

ΔVz < −nAz
− cosψ − ⇒

π
2
<ψ + ≤ π

ΔVz = −nAz
− cosψ − ⇒

Az
− = 0⇒ψ + = 0

Az
− > 0⇒ψ + =

π
2

⎧

⎨
⎪

⎩
⎪

−nAz
− cosψ − < ΔVz < 0⇒ 0 ≤ψ + <

π
2

 

+ 0 ≤ψ + <
π
2

 
ψ − =

π
2

 
- 

π
2
<ψ + ≤ π  

+ 

0 < ΔVz < −nAz
− cosψ − ⇒

π
2
<ψ + ≤ π

ΔVz = −nAz
− cosψ − ⇒

Az
− = 0⇒ψ + = 0

Az
− > 0⇒ψ + =

π
2

⎧

⎨
⎪

⎩
⎪

ΔVz > −nAz
− cosψ − ⇒ 0 ≤ψ + <

π
2

 π
2
<ψ − < π  

- 
π
2
<ψ + ≤ π  
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Table 15:  ψ variations based upon impulsive maneuver component. 
ψ −  ΔVz  ψ +  

+ 
0 < ΔVz < nAz

− ⇒ψ + = π
ΔVz ≥ nAz

− ⇒ψ + = 0
 

ψ − = π  

- ψ + = π  

+ 

0 < ΔVz < −nAz
− cosψ − ⇒π ≤ψ + <

3π
2

ΔVz = −nAz
− cosψ − ⇒

Az
− = 0⇒ψ + = 0

Az
− > 0⇒ψ + =

3π
2

⎧

⎨
⎪

⎩
⎪

ΔVz > −nAz
− cosψ − ⇒

3π
2

<ψ + ≤ 2π

 
π <ψ − <

3π
2

 

- π ≤ψ + <
3π
2

 

+ 
3π
2

<ψ + ≤ 2π  
ψ − =

3π
2

 
- π ≤ψ + <

3π
2

 

+ 
3π
2

<ψ + ≤ 2π  

3π
2

<ψ − < 2π  
- 

ΔVz < −nAz
− cosψ − ⇒π ≤ψ + <

3π
2

ΔVz = −nAz
− cosψ − ⇒

Az
− = 0⇒ψ + = 0

Az
− > 0⇒ψ + =

3π
2

⎧

⎨
⎪

⎩
⎪

−nAz
− cosψ − < ΔVz < 0⇒

3π
2

<ψ + ≤ 2π
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2.5  Relative Orbital Element Control Strategies 

  If the initial conditions are known, Eqs. (164) through (169) represent six 

equations with ten unknown variables: tb, ΔVx, ΔVy, ΔVz, xr
+ , yr

+ , ar
+ , Er

+ , Az
+  and ψ + .  

If four of the unknown variables are specified, then the six equations can be used to solve 

for the six remaining unknowns, assuming a solution exists.  Three different scenarios 

demonstrating impulsive control strategies in terms of ROEs will be described herein: 

rendezvous, natural motion circumnavigation, and station-keeping. 

2.5.1 Rendezvous 

 Rendezvous is defined to occur when the deputy spacecraft attains a desired 

stationary relative orbit with respect to the chief.  The targeted rendezvous distance from 

the chief to the deputy can range from zero (necessary for docking or capture) up to 

several kilometers.  The stationary relative orbit implies that there is no secular drift of 

the instantaneous relative ellipse; in terms of ROE’s, xr is zero upon the completion of 

rendezvous.  The initial conditions, target conditions, and unknown variables for the 

rendezvous problem in terms of ROE’s are summarized in Table 16.  The initial 

conditions are known, and the maneuver epoch, maneuver vector, and the post-maneuver 

angular ROE’s are to be found, while targeting a specific post-maneuver relative orbit 

geometry with zero secular drift. 

Table 16:  Rendezvous problem formulation in terms of ROE’s. 

Initial Conditions t0, xr0 ,  yr0 ,  ar0 ,  Er0
,  Az0

,  ψ 0  

Target Conditions xr
+ = 0 , yr

+ , ar
+ , Az

+  

Unknown Variables tb , ΔVx , ΔVy , ΔVz , Er
+ , ψ +  
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 The unknown variables in Table 16 may be solved through the system of Eqs. (164) – 

(169).  Eq. (164) may be solved directly to find ΔVy .  With the target condition xr
+ = 0 , 

Eq. (164) yields: 

 ΔVy = −
n
2
xr0  (170) 

Solving Eq. (165) for ΔVx  yields: 

 ΔVx =
n
2
yr0 − yr

+( ) − 34 n
2xr0 tb − t0( )  (171) 

Substituting Eqs. (170) and (171) into Eq. (166) gives: 

 ar
+ = ar0 cos Er0

+ n tb − t0( )⎡⎣ ⎤⎦ − 2xr0{ }2 +(  

 ar0 sin Er0
+ n tb − t0( )⎡⎣ ⎤⎦ + yr0 − yr

+ −
3
2
nxr0 tb − t0( )⎧

⎨
⎩

⎫
⎬
⎭

2 ⎞

⎠⎟

1/2

 (172) 

The only unknown in Eq. (172) is the maneuver time, tb, and this can be solved for using 

a root finder, provided a solution exists.  The solution for tb is then substituted into Eq. 

(171) to solve for ΔVx.  Eq. (167) then allows Er
+  to be found, as: 

 Er
+ = atan2 ar0 sin Er0

+ n tb − t0( )⎡⎣ ⎤⎦ + yr0 − yr
+ −

3
2
nxr0 tb − t0( )⎧

⎨
⎩

,  

 ar0 cos Er0
+ n tb − t0( )⎡⎣ ⎤⎦ − 2xr0 }  (173) 

Eqs. (168) and (169) are used as a system of equations to solve for the unknown variables 

ΔVz  and ψ + .  Solving Eq. (168) for ΔVz gives: 

 ΔVz = −nAz0 cos ψ 0 + n tb − t0( )⎡⎣ ⎤⎦ ± n Az
+( )2 − Az0 sin ψ 0 + n tb − t0( )⎡⎣ ⎤⎦{ }2  
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  (174) 

Substituting into Eqs. (169) yields: 

 ψ + = atan2 Az0
sin ψ 0 + n tb − t0( )⎡⎣ ⎤⎦{ ,  ± Az

+( )2
− Az0

sin ψ 0 + n tb − t0( )⎡⎣ ⎤⎦{ }2 ⎫
⎬
⎭

 

  (175) 

 As an example, consider a rendezvous problem where the deputy spacecraft and 

the chief are initially docked, but then the two spacecraft are separated such that the 

deputy initial conditions with respect to the chief at the time of separation are as shown in 

Table 17.  For this example, the chief spacecraft is in a circular orbit at an altitude of 720 

km, with a mean motion about the Earth of 0.0010557 rad/s and an orbital period of 

5,951.5 s.  The desired relative orbit target at rendezvous has a semi-major axis of the 

ellipse in the x̂ − ŷ  plane of 0.5 km centered on xr
+ = 0 , yr

+ = 2 km , and cross-track 

motion with an amplitude of 0.433 km.  The problem is to find the maneuver epoch and 

component magnitudes of the maneuver vector to achieve the targeted rendezvous 

conditions, and the find the resulting angular ROE’s Er
+  and ψ +  immediately following 

the impulsive maneuver. 
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Table 17:  Rendezvous problem example. 

Initial Conditions 

t0 = 0
xr0 = 0.3168 km
yr0 = 3.0137 km
ar0 = 3.0796 km
Er0

= −1.3636 km
Az0

= 0
ψ 0 = 0

 

Target Conditions 

xr
+ = 0
yr
+ = 2 km
ar
+ = 0.5 km
Az

+ = 0.433 km

 

Find tb , ΔVx , ΔVy , ΔVz , Er
+ , ψ +  

 

From Eq. (170), ΔVy = -0.16725 m/s.  Eq. (172) may be rewritten as a function equal to 

zero, and solved for the maneuver epoch tb, using a root-finding routine: 

 ar
+ − ar0 cos Er0

+ n tb − t0( )⎡⎣ ⎤⎦ − 2xr0{ }2 +(  

 ar0 sin Er0
+ n tb − t0( )⎡⎣ ⎤⎦ + yr0 − yr

+ −
3
2
nxr0 tb − t0( )⎧

⎨
⎩

⎫
⎬
⎭

2 ⎞

⎠⎟

1/2

= 0  (176) 

The value of the function on the left-hand side of Eq. (176) is plotted versus the 

maneuver epoch in Figure 12, over a maneuver epoch range from 0 to 20,000 s.  It is seen 

that two roots of the function exist during this time period, at tb = 8,407.28 s and at          

tb = 8,667.27 s. 
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Figure 12:  Function value from Eq. (176) versus maneuver epoch. 

   

  Taking the first root, at tb = 8,407.28 s, Eq. (171) gives ΔVx = −1.69120 m/s .  Eq. 

(174) yields ΔVz = ±0.45713 m/s .  Physically, the two solutions for ΔVz result in 

opposite directions for the initial cross-track motion immediately following the impulsive 

maneuver, and different orientations of the post-maneuver ellipse projections onto the 

x̂ − ẑ  and ŷ − ẑ  planes.  Eq. (173) gives Er
+ = −0.64766  rad, and Eq. (175) results in two 

potential values for ψ + : ψ + = 0  and ψ + = π  rad.  The trajectory for this case is 

propagated using the Clohessy-Wiltshire equations, and is shown in Figure 13.  

Inspection of Figure 13 (a) and (b) shows that the maneuver occurs when x has a negative 

value at z = 0, corresponding to ψ + = 0  rad.  The second maneuver opportunity at tb = 
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8,667.27 s occurs where free-drift trajectory would intersect the target post-maneuver 

ellipse with a positive x̂ -component, corresponding to ψ + = π  rad.  At the maneuver 

opportunity corresponding to the second root, ΔVx = −1.76006 m/s , and the values for 

ΔVy  and ΔVz are unchanged. 

(a) (b) 

   (c)       (d) 

Figure 13:  Trajectory propagation with rendezvous maneuver targeting a stationary 

relative ellipse. (a) ŷ − x̂  projection, (b) ẑ − x̂  projection, (c) ŷ − ẑ  projection, (d) Three-

dimensional trajectory plot. 



 81 

2.5.2 Natural Motion Circumnavigation 

  A natural-motion circumnavigation (NMC) relative orbit about the chief can be 

obtained with a single impulsive maneuver, starting from a leading or trailing orbit where 

the deputy is in the same orbit as the chief, but either ahead of or behind the chief in the 

direction of motion.  Transfer to an orbit where the chief is at the geometric center of the 

NMC relative orbit ( xr
+ = 0 , yr

+ = 0 ) is often desired, although it is noted that an NMC 

orbit can be established about a “virtual” center, with an offset of yr
+  away from zero.  

The problem formulation for establishing a NMC from a leading or trailing orbit, with the 

chief at the geometric center of the NMC, is provided in Table 18.  Because the deputy is 

initially stationary relative to the chief, Er0
 and ψ 0  are undefined.  We desire to find the 

ΔV  components and the resulting ROEs necessary to establish the chief at the center of 

the NMC, with the motion having an amplitude in the along-track direction of ar
+ = yr0  

and amplitude in the cross-track direction of Az
+ = Aztgt . 

Table 18:  Natural motion circumnavigation problem formulation. 

Initial Conditions t0 = 0, xr0 = 0,  yr0 , ar0 = 0, Er0
 undefined, Az0

= 0,  ψ 0  undefined  

Target Conditions 

xr
+ = 0
yr
+ = 0
ar
+ = yr0
Az

+ = Aztgt

 

Unknown Variables ΔVx , ΔVy , ΔVz , Er
+ , ψ +  

 

 The solution to the NMC problem proceeds as follows.  Eq. (165) is solved for 

ΔVx with the initial conditions shown in Table 18, resulting in: 
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 ΔVx =
n
2
yr0  (177) 

Eq. (164) is solved for ΔVy.  With xr0 = 0  and xr
+ = 0  it is found that there is no along-

track component for the maneuver to initiate an NMC orbit from a leading or trailing 

orbit: 

 ΔVy = 0  (178) 

Eq. (168) is used to find ΔVz, giving: 

 ΔVz = ±nAztgt  (179) 

Substituting Eqs. (177) and (178) into Eq. (166), it is seen that: 

 ar
+ = ±yr0  (180) 

If yr0 < 0 , then ar
+ = −yr0 , and if yr0 > 0 , then ar

+ = yr0 , since the parameter ar is always 

positive.  Therefore, Eq. (180) can be expressed as: 

 ar
+ = yr0  (181) 

Eq. (167) results in Er
+ =

π
2

 if ΔVx > 0 , and Er
+ =

3π
2

 if ΔVx < 0 .  Eq. (169) with 

Az0 = 0  yields: 

 ψ + = atan2 0,  1
n
ΔVz

⎛
⎝⎜

⎞
⎠⎟

 (182) 

If ΔVz > 0  then ψ + = 0 , and if ΔVz < 0  then ψ + = π .  If ΔVz = 0  then there is no cross-

track motion and ψ +  is undefined. 
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 An example of the transition from a leading orbit to a circular NMC orbit is 

summarized in Table 19.  From the initial leading orbit position 100 m along-track from 

the chief, the targeted NMC is a circular orbit with a radius of 100 m about the chief, 

including cross-track motion to establish the circular orbit geometry (i.e., the targeted 

deputy relative orbit about the chief has a constant radius).  It is also given that the NMC 

maneuver is designed to have a positive ΔVx component and a positive ΔVz component, 

resulting in Er
+ =

π
2

 and ψ + = 0 .  The NMC maneuver is performed at t0.  The maneuver 

components resulting from Eqs. (177) – (179) are shown in Table 19.  The resulting 

NMC orbit is shown in Figure 14.  As designed, the deputy maintains a constant 100 m 

radius about the chief throughout the NMC orbit. 

 

Table 19:  Example of transition from leading orbit to NMC motion. 

Initial Conditions t0 ,  xr0 = 0,  yy0
= 0.100 km, ar0 = 0,  Az0

= 0  

Target Conditions xr
+ = 0,  yr

+ = 0,  ar
+ = 0.100 km, Az

+ =
3
4
ar
+ = 0.0866 km  

Solutions 

ΔVx = 5.5339E − 02 m/s
ΔVy = 0
ΔVz = 9.3847E − 05 m/s

Er
+ =

π
2

 rad

ψ + = 0

 

 



 84 

    (a)      (b) 

    (c)      (d) 

Figure 14:  Natural motion circumnavigation circular orbit initiated from a leading orbit.  

(a) ŷ − x̂  projection, (b) ẑ − x̂  projection, (c) ŷ − ẑ  projection, (d) Three-dimensional 

trajectory plot. 

2.5.3 Station-Keeping in a Leading or Trailing Orbit 

  In terms of ROEs, the deputy spacecraft is in a stationary leading or trailing orbit 

when xr = 0 , ar = 0 , and Az = 0 .  If the previous conditions are met and yr > 0 , the 
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deputy is in a leading orbit relative to the chief, and if yr < 0 , the deputy is in a trailing 

orbit.  If yr = 0 , the deputy is coincident with the chief.  Within the HCW assumptions, 

in the absence of disturbance forces, there is no secular drift with xr = 0 , and the deputy 

position relative to the chief in the LVLH frame will not change with time in a leading or 

trailing orbit.  In practice, however, variations from a leading or trailing orbit will occur 

due to disturbances such as outgassing, atmospheric drag, solar pressure, etc.  It is often 

desirable to perform station-keeping maneuvers to counteract disturbance forces, and 

maintain the desired leading or trailing orbit.  The station-keeping problem for a leading 

or trailing orbit is summarized in Table 20. 

Table 20:  Station-keeping problem formulation for a leading or trailing orbit. 

Initial Conditions t0 , xr0 , yr0 , ar0 , Er0
, Az0

, ψ 0  

Target Conditions xr
+ = 0, yr

+ = ytgt , ar
+ = 0, Az

+ = 0  
 

 A station-keeping strategy based upon the geometric insights provided by ROEs 

is summarized below.  The strategy applies a sequence of four impulsive maneuvers in 

order to station-keep to the desired leading or trailing orbit: 

1) Perform ΔVy  to establish xr
+ = 0  and stop the secular drift in the along-track 

direction. 

2) At a ŷ -axis crossing, perform ΔVy  to establish a secular drift in the along-track 

direction that will cause the trajectory to cross the ŷ -axis at y = ytgt  an integer number of 

orbits later. 
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3) At the point where the trajectory crosses the ŷ -axis at y = ytgt , perform ΔVx , 

ΔVy  to establish xr
+ = 0 , ar

+ = 0 .  Following this maneuver, the relative position is 

“fixed” in the x̂ − ŷ  plane at x = 0 , y = ytgt . 

4) Perform ΔVz  at a crossing of the x̂ − ŷ  plane at z = 0  to establish Az
+ = 0 . 

Following this sequence of maneuvers, absent any additional disturbance forces, the 

relative position of the deputy is “fixed” relative to the chief in a leading or trailing orbit 

at x = 0 , y = ytgt , z = 0 .  Each maneuver in the station-keeping strategy will now be 

examined in detail. 

Maneuver 1: Stop Secular Along-Track Drift   

 The first maneuver in the station-keeping sequence is designed to stop the secular drift 

in the along-track direction.  This requires that following the maneuver, xr
+ = 0 .  From 

Eq. (164), setting xr
+ = 0 , the required maneuver can be found as: 

 ΔVy = −
n
2
xr0  (183) 

It is noted that this maneuver can be performed at any point in the relative orbit; the 

secular drift in the along-track direction can be arrested at any time by applying an 

appropriately sized ΔVy .  However, from Eq. (166), the point in the relative orbit at 

which the ΔVy  is applied impacts the magnitude of the semi-major axis of the 

instantaneous relative ellipse following the maneuver, ar
+ .  To reduce the magnitude of 

subsequent maneuvers in the station-keeping sequence (specifically, the third maneuver), 

it may be desirable to minimize the magnitude of the ar
+  resulting from the first 
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maneuver.  Eq. (166) can be written in terms of eccentric relative anomaly at the 

maneuver epoch, as: 

 ar
+ = ar0 cosEr

− +
4
n
ΔVy

⎛
⎝⎜

⎞
⎠⎟
2

+ ar0 sinEr
− +

2
n
ΔVx

⎛
⎝⎜

⎞
⎠⎟
2

 (184) 

Differentiating Eq. (184) with respect to Er
− , where ΔVx = 0  gives: 

 ∂ar
+

∂Er
− =

−2ar0 sinEr
− ar0 cosEr

− + 4
n
ΔVy

⎛
⎝⎜

⎞
⎠⎟ + 2a

2
r0
sinEr

− cosEr
−

2 ar0 cosEr
− + 4

n
ΔVy

⎛
⎝⎜

⎞
⎠⎟
2

+ ar0 sinEr
−( )2

 (185) 

Setting Eq. (186) equal to zero and solving for Er
−  allows the maneuver locations in 

terms of relative eccentric anomaly to be found that result in extrema for ar
+ .  The 

resulting values for Er
−  are 0 and π.  The second partial derivative of ar

+  with respect to 

Er
−  where ΔVx = 0  is: 

 
∂2ar

+

∂Er
−2

=
− 2a2r0 cosEr

− sinEr
− − 2ar0 sinEr

− ar0 cosEr
− + 4

n
ΔVy

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

4 ar0 cosEr
− + 4

n
ΔVy

⎛
⎝⎜

⎞
⎠⎟
2

+ ar0 sinEr
−( )2⎡

⎣
⎢

⎤

⎦
⎥

3/2 +  

 
2a2r0 cosEr

− − 2ar0 cosEr
− ar0 cosEr

− + 4
n
ΔVy

⎛
⎝⎜

⎞
⎠⎟

2 ar0 cosEr
− + 4

n
ΔVy

⎛
⎝⎜

⎞
⎠⎟
2

+ ar0 sinEr
−( )2⎡

⎣
⎢

⎤

⎦
⎥

1/2  (186) 

Evaluating Eq. (186) for Er
− = 0  gives: 
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 ∂2ar
+

∂Er
−2

= ar0
ar0

ar0 +
4
n
ΔVy

−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (187) 

and evaluating Eq. (186) for Er
− = π  gives: 

 ∂2ar
+

∂Er
−2

= ar0
ar0

−ar0 +
4
n
ΔVy

+1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (188) 

Eqs. (187) and (188) can be evaluated to determine which value for Er
−  results in the 

minimum value for ar
+ ; the second partial derivative of ar

+  with respect to Er
−  will be 

positive at the minimum.  Once the relative eccentric anomaly for the maneuver is 

known, the maneuver time, tb, can be found from: 

 Er
− = Er0

+ n tb − t0( )  (189) 

Solving Eq. (189) for tb gives: 

 tb = t0 +
Er

− − Er0

n
 (190) 

Maneuver 2: Initiate Secular Drift to Target Location 

 The second maneuver in the station-keeping sequence is designed to initiate a 

secular drift in the along-track direction toward the targeted station-keeping location.  

However, in order to achieve the targeted ŷ -coordinate, ytgt, it is necessary to design the 

second maneuver such that the resulting secular drift will establish a ŷ -axis crossing at 

ytgt.  From the stationary relative ellipse established by the first maneuver in the sequence, 

the second maneuver is designed to be performed at a ŷ -axis crossing, where Er
− =

π
2

 or 
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Er
− =

3π
2

.  As shown in Figure 15, this maneuver is designed to initiate a secular drift 

rate such that an integer number s orbits after the maneuver, the relative orbit crosses 

x = 0 at y = ytgt .  In Fig. 15, the initial stationary relative ellipse with xr
− = 0 , shown in 

blue, is centered on yr
− .  The maneuver occurs at the ŷ -axis crossing labeled “0,” where 

Er
− =

π
2

.  Following the maneuver, the relative trajectory drifts in the positive along-track 

direction, with ascending crossings of the ŷ -axis labeled in numerical order.  The 

trajectory crosses the ŷ -axis at Point 4 with y = ytgt  exactly four orbit periods after the 

maneuver epoch (s = 4).  From Figure 15, it is apparent that Point 0 is located at 

y = yr
− + ar

− .  The maneuver results in a change to the relative orbit geometry such that 

xr
+ < 0 , initiating a secular drift.  Each subsequent ŷ -axis crossing occurs at the same 

relative eccentric anomaly.   The time interval between ŷ -axis crossings is equal to the 

orbital period of the chief, P, where: 

 P =
2π
n

 (191) 

From the geometry in Figure 15, the following equation may be written: 

 
 
ytgt = yr

− + ar
−( ) + sPys+  (192) 

In Eq. (192), the term 
 
sPys

+  represents the distance that the instantaneous center of the 

relative orbit moves during s orbit periods, as a result of the post-maneuver secular drift 

rate 
 
ys
+ .  The secular drift rate following the maneuver may be written as: 
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ys
+ = −

3
2
nxr

+  (193) 

Combining Eqs. (146) and (193) gives: 

 
 

ys
+ = −

3
2
n xr

− +
2
n
ΔVy

⎛
⎝⎜

⎞
⎠⎟

 (194) 

Since xr
− = 0  as a result of the first maneuver in the station-keeping sequence, Eq. (194) 

simplifies to: 

 
 
ys
+ = −3ΔVy  (195) 

Substituting Eqs. (191) and (195) into Eq. (192) and solving for ΔVy  gives: 

 ΔVy =
n yr

− + ar
− − ytgt( )

6π s
 (196) 

  It is emphasized that the integer number of relative orbits s is an important design 

variable for the second maneuver, dictating the secular drift rate for the station-keeping 

segment, and the transit time to the target location.  If a slow drift is acceptable and it is 

desired to minimize total station-keeping ΔV, then s can be given a larger value.  For a 

rapid return to the targeted location, or if the maneuver magnitude must be increased to 

comply with thruster capabilities, then s can be reduced to a small positive integer. 
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Figure 15:  The second maneuver initiates a secular drift designed to reach the station-

keeping target s orbital periods after the maneuver epoch. 

Maneuver 3: Fix Motion in the   Plane at the Targeted Location 

 The third maneuver in the station-keeping sequence is performed at the ŷ -axis 

crossing s orbit periods after the second maneuver, and is designed to fix the motion in 

the x̂ − ŷ  plane at the targeted location, ytgt .  In terms of ROEs, the desired conditions 

following the third maneuver are: xr
+ = 0, yr

+ = ytgt , ar
+ = 0 .  Geometrically, the yr

+ = ytgt  

condition can only be met if the instantaneous ellipse resulting from the maneuver is 

reduced to a point (i.e., ar
+ = 0 ). 
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 Taking the relative orbit state immediately following the second maneuver as the 

initial conditions, ΔVy  for the third maneuver can be found from Eq. (164), setting 

xr
+ = 0 : 

 ΔVy = −
n
2
xr0  (197) 

Eq. (165) can be used to find ΔVx : 

 ΔVx = −
n
2
yr
+ − yr0 +

3
2
nxr0 tb − t0( )⎡

⎣⎢
⎤
⎦⎥

 (198) 

The quantity tb – t0 is the time difference between the second and third maneuvers, which 

is equal to s times the chief’s orbital period.  From Eq. (91) we can write: 

 yr
− = yr0 −

3
2
nxr0 tb − t0( )  (199) 

Substituting Eq. (199) into Eq. (198), setting yr
+ = ytgt  and solving for ΔVx  yields: 

 ΔVx = −
n
2
ytgt − yr

−( )  (200) 

 Performing an impulsive maneuver composed of the maneuver components as shown 

in Eqs. (197) and (200) results in a relative orbit with xr
+ = 0  and yr

+ = ytgt .  The values 

for ΔVx  and ΔVy  calculated from Eqs. (200) and (197) drive ar
+  to zero.  Referring to 

Fig. 15, it is clear that the relative eccentric anomaly at each of the numbered ascending 

ŷ -axis crossings is equal to the relative eccentric anomaly immediately following the 

second station-keeping maneuver.  The geometry repeats each orbit period.  Therefore, it 

is seen that: 



 93 

 Er
− = Er0

+ n tb − t0( ) = Er0
 (201) 

Also, applying the geometry for relative eccentric anomaly shown in Fig. 5 to the 

problem, it may be shown that: 

 sinEr0
=
ytgt − yr0 + 3π sxr0

ar0
 (202) 

and 

 cosEr0
=
2xr0
ar0

 (203) 

Using Eq. (191) we can write: 

 tb − t0 =
2π s
n

 (204) 

Substitution of Eqs. (197), (200), (201), (202), (203) and (204) into Eq. (166) shows that  

ar
+ = 0 . 

Maneuver 4: Zero-Out Cross-Track Motion 

 The fourth maneuver in the station-keeping sequence is designed to zero-out the 

cross-track motion.   This maneuver must be performed at a crossing of the x̂ − ŷ  plane, 

where z = 0  and ψ − = 0  or ψ − = π .  The burn time for the fourth maneuver can be 

found from: 

 ψ − =ψ 0 + n tb − t0( )  (205) 

Solving for tb, 

 tb =
ψ − −ψ 0

n
+ t0  (206) 
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where the initial conditions are specified immediately following the previous maneuver.  

Eq. (168) can be written as: 

 Az
+ = Az sinψ

−( )2 Az cosψ
− +

1
n
ΔVz

⎛
⎝⎜

⎞
⎠⎟
2

 (207) 

The first term under the radical in Eq. (207) equals zero, since ψ − = 0  or ψ − = π .  

Setting Az
+  and solving for ΔVz  gives: 

 ΔVz = −nAz0 cosψ
−  (208) 

The direction (sign) of the maneuver will change, depending upon whether the maneuver 

is performed at ψ − = 0  or ψ − = π .  It is noted that the maneuver to zero-out the cross-

track motion can be performed at any x̂ − ŷ  plane crossing.  It is therefore not required 

that this maneuver be the fourth in the station-keeping sequence; it is represented as the 

fourth maneuver in the sequence only for clarity, since the ẑ -motion is decoupled from 

the x̂ − ŷ  motion controlled by the first three maneuvers in the sequence. 

  The station-keeping maneuver sequence is summarized in Table 21.  The initial 

conditions for each trajectory segment in the station-keeping sequence are indicated by a 

subscript 0.  For example, yr0  appears in the ΔVx  component for the third maneuver; this 

term represents the value for yr  immediately following the second maneuver in the 

station-keeping sequence. 
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Table 21:  Station-keeping maneuver sequence summary. 

Maneuver # 
Maneuver 

Location 
 Components Purpose 

1 Any ΔVy = −
n
2
xr0  

Stop secular along-track 

drift. 

2 x = 0  ΔVy =
n yr

− + ar
− − ytgt( )

6π s
 

Initiate secular drift along-

track drift such that s orbits 

after maneuver, orbit 

crosses x = 0, y = ytgt . 

3 x = 0, y = ytgt  

ΔVx = −
n
2
ytgt − yr

−( )  

ΔVy = −
n
2
xr0  

Fix motion in x̂ − ŷ  plane at 

x = 0, y = ytgt . 

4 z = 0  ΔVz = −nAz0 cosψ
−  

Zero-out cross-track 

motion. 

 

  The station-keeping strategy will now be illustrated within the context of an 

example scenario.  The initial conditions, target conditions, and constraints for the 

example are shown in Table 22.  The targeted station-keeping position is a leading orbit, 

100 m ahead of the chief in the + ŷ -direction.  The initial conditions show that the 

instantaneous center of the deputy’s orbit is 3 m higher than the chief’s orbit, resulting in 

a relative drift in the − ŷ -direction. 

   

!V
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Table 22:  Station-keeping example. 

Initial Conditions 

t0 = 0 s
xr0 = 3 m
yr0 = 100 m
ar0 = 2 m
Er0

= 0 rad
Az0

= 1 m

ψ 0 =
π
2

 rad

 

Target Conditions 

xr = 0 m
yr = ytgt = 100 m
ar = 0 m
Az = 0 m

 

 

 The deputy spacecraft trajectory relative to the chief is shown in Fig. 16.  The 

initial trajectory is shown in black.  Left unchecked, the unforced motion would 

continually drift in the negative along-track direction.  The first maneuver in the station-

keeping sequence occurs when Er
− = 0 , at y = 70 m.  This maneuver halts the secular 

along-track drift, resulting in the motion shown in blue in Fig. 16.   

 The second maneuver in the station-keeping sequence is performed at the ŷ -axis 

crossing where Er
− =

π
2

.  The maneuver initiates a secular drift in the + ŷ -direction such 

that the resulting motion will cross the ŷ -axis at the targeted location of y = 100 m 

exactly four revs after the maneuver (s = 4).  The motion following the second maneuver 

is shown in red in Figure 16. 

 The third maneuver in the sequence is performed at the targeted x̂ − ŷ  location: 

x = 0, y = 100 m .  The maneuver has both x̂ - and ŷ -components in order to 
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simultaneously arrest the secular along-track drift, and reduce the magnitude of ar
+ to 

zero.  The motion following the third maneuver is shown in green in Figure 16.  It is seen 

that there is no further motion in the x̂ − ŷ  plane; the subsequent motion is solely in the 

cross-track direction. 

 The final maneuver in the station-keeping sequence is performed at z = 0 , where 

ψ − = π .  This maneuver nulls the cross-track motion, resulting in a fixed position for the 

deputy relative to the chief at the targeted location.  Barring additional thrusting or 

disturbance forces, the deputy will remain in this relative position within the Clohessy-

Wiltshire assumptions. 

The station-keeping maneuver timing and component magnitudes are given in 

Table 23.  The total ΔV magnitude associated with the station-keeping sequence for this 

example is 5.3654E-03 m/s. 

Table 23:  Station-keeping example maneuver summary. 

 

 

Maneuver 

Time from 

Initial State 

(s) 

 

 

(m/s) 

 

 

(m/s) 

 

 

(m/s) 

1 5,676.981 0 -1.6602E-03 0 

2 15,611.699 0 -3.5632E-04 0 

3 38,319.624 -2.2136E-03 3.5633E-04 0 

4 41,158.115 0 0 1.1068E-03 

 

!Vx !Vy !Vz
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(a) (b) 

 

      (c)       (d) 

Figure 16:  Station-keeping example.  (a) ŷ − x̂  projection, (b) ẑ − x̂  projection, (c) 

ŷ − ẑ  projection, (d) Three-dimensional trajectory plot. 
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CHAPTER 3 

ARTIFICIAL POTENTIAL FUNCTION TRAJECTORY CONTROL 

FORMULATION USING RELATIVE ORBITAL ELEMENTS 

 

3.1  Artificial Potential Function Control Methodology 

 Persistent knowledge and control of the relative orbit is often required for 

missions involving proximity operations.  Maneuvering of the deputy spacecraft for 

station-keeping, formation flight, collision avoidance, and close approach for docking or 

berthing are activities that may require persistent trajectory control.  An approach that is 

often used in terrestrial robotics applications is motion control based upon artificial 

potential fields.  Similar to potential fields found in nature, such as gravitational or 

electromagnetic fields, artificial potential fields may be defined by an operator to shape 

the interaction of a robotic vehicle with the environment.  Vehicle control forces are 

computed by taking the gradient of the scalar potential function: for motion towards a 

goal at the minimum of the potential field, control forces act in the direction of steepest 

descent.  Obstacles may be represented as regions of high potential in the field, with the 

resultant repulsive control forces to enable obstacle avoidance.  Attractive and repulsive 

potentials may be superposed to create a “total” potential field that can govern robotic 

motion to reach the goal while avoiding obstacles.  The continuous nature of guidance 

using APFs, along with the inherent computational simplicity of the approach, provides 

an efficient methodology for robotic motion control where computational capability is 

limited and persistent control is required. 

 APF guidance is based upon the Second Method of Lyapunov [59] for assessing 

the stability of equilibrium points of a dynamical system.  The Second Method states that 
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the following conditions must be met for a globally stable attractive equilibrium point at 

the target location, ρtgt : 

 φ ρ( ) ≥ 0 ∀ ρ, where φ ρ( ) = 0 if and only if ρ = ρtgt  (209) 

  
φ ρ( ) ≤ 0 ∀ ρ, where φ ρ( ) = 0 if and only if ρ = ρtgt  (210) 

 The condition in Eq. (209) is met by choosing φa to be a positive semi-definite 

function of ρ .  The condition expressed in Eq. (210) is met through defining control 

input such that the motion of the robotic vehicle following an impulse is tangent to the 

local gradient of the potential field, in the direction of steepest descent.  This ensures that 

the derivative of the potential function after a control impulse is negative definite.  Under 

these conditions, φ is considered to be a Lyapunov function, and the system is 

asymptotically stable about the globally attractive point ρtgt . 

 An example of an attractive artificial potential function is shown in Eq. (211).  

The attractive potential, φa, is a scalar function of the relative position vector of the 

robotic vehicle with respect to the target location, ρ − ρtgt , the positive-definite diagonal 

shaping matrix Qa , and the scaling parameter ka: 

 
φa =

1
2
ka ρ − ρtgt( )T Qa ρ − ρtgt( )

 (211) 

  Figure 17 shows the attractive potential as a function of the position relative to the 

target location rtgt , where the target is located at the origin of the coordinate system.  In 

the top left figure, the scaling parameter is equal to one, and the shaping matrix is set to 
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the 2x2 identity matrix.  In the top right figure, the scaling parameter is increased to a 

value of three, while the shaping matrix is maintained as the 2x2 identity matrix.  It is 

seen that the effect of increasing the scaling parameter is to steepen the gradient of the 

potential field at every point other than the goal.  In the bottom left figure, the scaling 

parameter is set equal to one, and the shaping matrix is of the form Qa =
10 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ .  

This shaping matrix results in a potential field that has steep gradients toward the goal for 

deviations from the target in the x̂ -direction, and shallow gradients toward the goal for 

deviations in the ŷ -direction.  In the bottom right figure, the scaling parameter is set 

equal to one, and the shaping matrix is of the form Qa =
1 0
0 10

⎡

⎣
⎢

⎤

⎦
⎥ .  Here, the shaping 

matrix results in a potential field that has steep gradients in the ŷ -direction, and shallow 

gradients in the x̂ -direction. 
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   (a)        (b) 

  (c)        (d) 

Figure 17:  Attractive potential as a function of position relative to the goal.  (a) ka = 1, 

Qa = I2x2 , (b) ka = 3, Qa = I2x2 , (c) ka = 1, Qa =
10 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ , (d) ka = 1, Qa =

1 0
0 10

⎡

⎣
⎢

⎤

⎦
⎥ . 
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The potential function in Eq. (211) can be expanded as: 

  
φa =

1
2
ka ρTQaρ − ρTQaρtgt − ρtgt

TQaρ + ρtgt
TQaρtgt( )

 (212) 

Taking the gradient of φa with respect to ρ , 

 
∇ρφa =

∂φa
∂ρ  (213) 

The gradient is evaluated as follows: 

 
∇ρφa =

∂φa
∂ρ

=
1
2
ka

∂
∂ρ

ρTQaρ( ) − ∂
∂ρ

ρTQaρtgt( ) − ∂
∂ρ

ρtgt
TQaρ( )+ ∂

∂ρ
ρtgt
TQaρtgt( )⎡

⎣
⎢

⎤

⎦
⎥

 

  (214) 

Carrying out the partial derivatives, where Qa  is assumed to be a diagonal matrix, and 

simplifying yields: 

 
∇ρφa = kaQa ρ − ρtgt( )  (215) 

The APF control law dictates that immediately following the application of a control 

force (i.e., a maneuver), the relative velocity of the spacecraft, v + , should be in the 

negative gradient direction, that is, 

 
v + = −∇ρφa = −kaQa ρ − ρtgt( )  (216) 
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A maneuver is commanded when the natural motion of the spacecraft is such that, in the 

absence of a maneuver, the potential function would increase with time.  The total 

derivative of the potential function in Eq. (212) is found as: 

  

φa =
dφ
dt

=
1
2
ka

d ρTQaρ( )
dt

−
d ρTQaρtgt( )

dt
−
d ρtgt

TQaρ( )
dt

+
d ρtgt

TQaρtgt( )
dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥   

  (217) 

Carrying out the derivatives under the assumption that Qa  is a diagonal matrix and ρtgt  is 

fixed gives: 

  
φa = ka ρ

TQa ρ − ρtgt( )  (218) 

The total derivative given by Eq. (218) is utilized as a switching condition for the control 

action: 

  

ΔV =
0

−∇ρφa − ρ
⎧
⎨
⎪

⎩⎪  

,        φa ≤ 0
,        φa > 0

 (219) 

The control action is taken when the value of the potential function is increasing; a 

maneuver is defined such that the relative velocity following the impulse is in the 

negative gradient direction of the potential field. 

  Consider an example where the initial relative state of the deputy spacecraft is as 

shown in Table 24: at t = 0, the deputy is at a position 200 m ahead of the chief in the 

along-track direction, with an initial velocity of 0.020 m/s in the radial direction.  The 
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chief spacecraft is assumed to be in a circular orbit about Earth, with a radius of 7098.14 

km (720 km orbit altitude). 

Table 24:  Conditions for APF control example. 

Initial Conditions 
x = 0.000 km           x = 2E − 05  km/s 
y = 0.200 km          

 
y = 0  km/s 

z = 0.000 km           z = 0  km/s 

 Target Location 
x = 0.000 km 
y = 0.100 km 
z = 0.000 km 

APF Parameters 
ka = 1E − 03  

Qa = I3x3  
 

The attractive potential function is defined per Eq. (211), with ρT
tgt = 0 0.100 0⎡⎣ ⎤⎦  

km.  The scaling parameter ka is set equal to 1E-03, and the shaping matrix Qa  is set 

equal to I3x3 .  The switching condition, Eq. (219) is queried every 60 sec along the 

trajectory.  Examination of the switching condition shows that when the range to the 

target is increasing, a maneuver is commanded to drive the relative velocity of the 

spacecraft directly toward the target.  The resulting behavior is shown in Figure 18.  

During the 10,000 sec simulation, 25 maneuvers are performed, with a total ΔV 

magnitude of 0.687 m/s.  In general, the maneuver magnitudes become progressively 

smaller as the target is approached, as shown in Figure 19.  At the conclusion of the 

simulation, the spacecraft is within 0.5 m of the target position. 
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Figure 18:  APF trajectory control to a target using an attractive potential. 

Figure 19:  APF attractive control maneuver magnitudes. 
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An obstacle, or region to avoid, may be represented in the potential field as a 

region of high potential, resulting in the vehicle being repulsed from the obstacle.  An 

example of a repulsive artificial potential function is given in Eq. (220).  The repulsive 

potential, φr, is a scalar function of the relative position vector of the robotic vehicle with 

respect to the obstacle location, ρ − ρobs , the positive-definite diagonal shaping matrix, 

Qr , the scaling parameter, kr, and the broadening parameter,σ : 

 φr = kr exp −
ρ − ρobs( )T Qr ρ − ρobs( )

σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (220) 

Figure 20 shows the repulsive potential as a function of the position relative to the 

obstacle location, where the obstacle is located at the origin of the coordinate system.  In 

the top left figure, the scaling parameter is equal to one, the shaping matrix is set to the 

3x3 identity matrix, and the broadening parameter is set equal to 500.  In the top right 

figure, the scaling parameter is increased to a value of two, while the other parameters 

remain unchanged.  It is seen that the effect of increasing the scaling parameter is to 

increase the peak of the potential field at the obstacle location, thus increasing the 

gradients near the obstacle.  In the bottom left figure, the scaling parameter is set equal to 

one, the shaping matrix is of the form Qr =
10 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ , and the broadening parameter 

remains at 500.  The increase to the Qr 1,1( )  shaping matrix element results in a 

narrowing of the potential field in the x̂ -direction.  In the bottom right figure, the shaping 

matrix is set to the 3x3 identity matrix, and the broadening parameter is increased by an 
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order of magnitude to 5000.  Here, the broadening parameter results in a broadening of 

the base of the potential field, and shallower gradients overall. 

(a) (b) 

(c)        (d) 

Figure 20:  Repulsive potential as a function of position relative to the goal.  (a) kr = 1, 

Qr = I2x2 , σ = 500 , (b) kr = 2, Qr = I2x2 , σ = 500 ,   (c) kr = 1, Qr =
10 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥ , 

σ = 500 , (d) kr = 1, Qr = I2x2 , σ = 5000 .  
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The potential function in Eq. (220) can be expanded as: 

 φr = kr exp −ρTQrρ + ρTQrρobs + ρobs
T  Qrρ − ρobs

T  Qrρobs
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (221) 

Taking the gradient of φr with respect to ρ , 

 
∇ρφr =

∂φr
∂ρ  (222) 

The gradient is evaluated as follows: 

 ∇ρφr =
kr
σ

−
∂ ρTQrρ( )

∂ρ
+
∂ ρTQrρobs( )

∂ρ
+
∂ ρobs

T  Qrρ( )
∂ρ

−
∂ ρobs

T  Qrρobs( )
∂ρ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅  

 exp −ρTQrρ + ρTQrρobs + ρobs
T  Qrρ − ρobs

T  Qrρobs
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  (223) 

If Qr  is assumed to be a diagonal matrix, Eq. (223) can be evaluated and simplified as: 

 ∇ρφr =
−2kr
σ

Qr ρ − ρobs( )⎡
⎣

⎤
⎦ ⋅ exp −ρTQrρ + 2ρTQrρobs − ρobs

T  Qrρobs
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  (224) 

Similar to an attractive APF, the control law for a repulsive field dictates that 

immediately following the application of a control force, the relative velocity of the 
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spacecraft should be in the negative gradient direction (i.e., the direction of steepest 

descent) with respect to the repulsive potential field: 

 v + = −∇ρφr =
2kr
σ

Qr ρ − ρobs( )⎡
⎣

⎤
⎦ ⋅ exp −ρTQrρ + 2ρTQrρobs − ρobs

T  Qrρobs
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  (225) 

The total derivative of the potential function in Eq. (221) is found as: 

 
 

φr =
dφr
dt

=
kr
σ

exp −ρTQrρ + 2ρTQrρobs − ρobs
T  Qrρobs

σ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅  

 
d
dt

−ρTQrρ + 2ρTQrρobs − ρobs
T  Qrρobs( )  (226) 

Carrying out the time derivatives, where ρobs  is assumed to be stationary: 

 
 

φr =
kr
σ

− ρTQrρ − ρTQr
ρ + 2 ρTQrρobs( )exp −ρTQrρ + 2ρTQrρobs − ρobs

T  Qrρobs
σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  (227) 

The total derivative given by Eq. (227) is utilized as a switching condition for the control 

action: 

  

ΔV =
0

−∇ρφr − ρ
⎧
⎨
⎪

⎩⎪  

,        φr ≤ 0
,        φr > 0

 (228) 
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Similar to the attractive potential, the control action in response to a repulsive potential 

field is taken when the value of the potential function is increasing; a maneuver is defined 

such that the relative velocity following the impulse is in the negative gradient direction 

of the potential field. 

  A potential field that combines attractive and repulsive potentials can be 

constructed by superposing the scalar potentials into a total potential field, φTOT : 

 φTOT = φa + φr  (229) 

The gradient of the total potential is simply the sum of the gradients of the attractive and 

repulsive fields, 

 ∇ρφTOT = ∇ρφa +∇ρφr  (230) 

The time derivative of the total potential is given by: 

 
 
φTOT = φa + φr  (231) 

The control action is defined as: 

  

ΔV =
0

−∇ρφTOT − ρ
⎧
⎨
⎪

⎩⎪  

,        φTOT ≤ 0
,        φTOT > 0

 (232) 

  The previous example is now considered with the addition of a repulsive potential 

field, centered on ρT
obs = −0.040 0.130 0⎡⎣ ⎤⎦  km; the attractive potential field 

remains centered on the target location ρT
tgt = 0.000 0.100 0.000⎡⎣ ⎤⎦  km.  The initial 

conditions and APF parameters are given in Table 25.  The total potential field formed by 
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superposing the attractive and repulsive potentials is illustrated in Figure 21.  The values 

for the APF scaling parameters, ka and kr, and the value for the repulsive field broadening 

parameter, σ, are selected iteratively to limit the size of the control maneuvers such that 

the trajectory behavior is as desired.  It is noted that the scaling parameter for the 

repulsive field is selected to be three orders of magnitude smaller than that for the 

attractive field, in order to size the repulsive ΔVs such that the trajectory converges to the 

target. 

 

Table 25:  APF control example, attractive and repulsive fields. 

Initial Conditions 
x = 0.000 km   
y = 0.200 km   
z = 0.000 km    

x = 2E − 05 km/s
y = 0 km/s
z = 0 km/s

 

 Target Location 
x = 0.000 km   
y = 0.100 km   
z = 0.000 km   

 

 Obstacle Location 
x = −0.040 km
y = 0.130 km
z = 0.000 km

 

APF Parameters 
ka = 1E − 03   

Qa = I3x3

kr = 2E − 06   

Qr = I3x3

σ = 1E − 04
 

 

The resulting trajectory is shown in Figure 22.  The effect of the repulsive potential 

field is clearly evident through comparison with Figure 18.  As the vehicle enters the 

influence of the repulsive field, a ΔV is commanded to redirect the velocity vector in the 

negative gradient direction, away from the obstacle.  The trajectory is then influenced 

primarily by the attractive potential, leading to convergence to the targeted location.
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Figure 21: Total potential field with attractive potential centered at x = 0 km, y = 0.100 

km, repulsive potential centered at x = - 0.040 km, y = 0.130 km. 
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Figure 22:  APF trajectory control influence by attractive and repulsive potential 

fields. 

Figure 23:  APF repulsive control maneuver magnitudes. 
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3.2  Artificial Potential Functions Using Relative Orbital Elements 

 Current APF formulations similar to those described in Section 3.1 are 

operationally useful due to their computational simplicity and the flexible, continuous 

nature of the APF control approach.  An attractive APF of the form shown in Figure 17 

results in a potential field with a global minimum at the target location.  Provided the 

vehicle has adequate thrust and propellant to achieve the commanded ΔVs, the control 

strategy will successfully guide the vehicle to the target.  However, this control strategy 

does not utilize any knowledge of orbital dynamics, so it is inherently inefficient.  The 

control methodology is such that impulsive maneuvers are commanded whenever the 

value of the scalar potential is increasing; that is, whenever the range from the target to 

the vehicle is increasing.  Maneuvers are performed to redirect the velocity vector of the 

vehicle in the direction of steepest descent of the potential field at the current position.  In 

the case of an attractive potential field, all ΔVs are commanded such that the relative 

velocity vector immediately following a maneuver is directed toward the target location.  

The applied ΔV ensures that the motion immediately following the maneuver will result 

in a decreasing value for the scalar potential function.  If maneuvers are initiated 

whenever the value of the time derivative of the scalar potential is greater than or equal to 

zero, convergence to the goal position is ensured. 

 In this investigation, a strategy is sought that retains the simplicity of the APF 

approach, but capitalizes upon orbital dynamics to provide trajectory control capability 

with fewer commanded maneuvers and reduced fuel utilization, while meeting the 

objective.  The relative orbital element formulation succinctly captures relative motion 

with a set of algebraic expressions, within the framework of the HCW assumptions.  As 
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such, ROEs offer the potential of achieving an APF control strategy that capitalizes upon 

orbital dynamics, as an alternative to the approach described in Section 3.1.  This work 

investigates artificial potential functions that are expressed in terms of relative orbital 

elements, in order to shape the trajectory along paths that utilize the natural motion 

established by the relative orbital dynamics, while targeting the desired relative orbit.  

Through defining a scalar potential function in terms of ROEs, the resulting potential 

field may be shaped such that the path of steepest descent lies in the direction of the 

desired ROEs, where the natural motion of the trajectory leads to the goal.  A major 

advantage of the ROE-based approach is that the APFs allow targeting of a specified 

relative orbit, whereas the previous approach only allowed targeting of a relative 

position.  The ROE-based approach can target a fixed position if desired (with targets for 

ar and Az set to zero), however, the formulation also allows targeting of orbit geometries 

relative to the chief. 

 When targeting a set of relative orbital elements, the artificial potential function is 

defined in terms of the full relative Cartesian state, including position and velocity 

elements.  As a result, establishing the post-maneuver velocity vector in the negative 

gradient direction of the potential function with respect to the position vector does not 

ensure that subsequent unforced motion will reduce the value of the scalar potential. The 

velocity derivatives may be such that the post-maneuver motion results in an increase in 

the scalar potential.  Convergence to the goal is not ensured. 

 An alternative formulation is needed for ROE targeting.  It is noted that three of 

the ROEs, xr, ar, and Az, are constant for unforced motion.  These ROES can be 

controlled to their target values only through the application of maneuvers.  A fourth 
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ROE, yr, varies with time at a constant rate in unforced motion.  A maneuver can 

instantaneously change the value for yr, and can also change the time rate of change of yr. 

 A control law for ROE targeting may be established whereby impulsive 

maneuvers are defined to control each ROE in the direction of its targeted value, if such a 

ΔV exists.  In this formulation, the gradient of the potential function with respect to 

velocity is determined, and the control ΔV is defined to be in the negative gradient 

direction.  The maneuver is constrained such that it ensures that each ROE value moves 

in the direction of the targeted value as a result of the ΔV.  The applied ΔV therefore 

results in an instantaneous decrease of the scalar potential value.  If a maneuver is 

performed whenever the value for the scalar potential would otherwise increase or remain 

constant, provided a suitable ΔV exists, the control law will result in convergence to the 

goal. 

 An attractive artificial potential may be written in terms of ROEs as: 

 φa =
1
2
ka τ − τ tgt( )T Qa τ − τ tgt( )  (233) 

where τ  is a vector composed of a set of ROEs and τ tgt  is composed of the target values 

for those ROEs.  For brevity, we can replace the vector difference τ − τ tgt  with the vector 

T , where 

 T = τ − τ tgt  (234) 

such that 
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 φa =
1
2
kaT

TQaT  (235) 

 Targeting of ROEs using this attractive potential function will be demonstrated 

initially for target vectors with a single element: xr, yr, ar, or Az.  The targeting of a vector 

composed of multiple ROEs will then be addressed.  It is noted that the targeting of fixed 

values for the angular ROEs, Er and ψ, is not practical with impulsive ΔVs and will not 

be considered here. 

 The negative gradient of the potential function, or path of steepest descent, 

defines the control direction in which a maneuver should be performed.  The control 

equation can be written: 

 

 
 
ΔV = −∇ ρφa  (236) 

The control action may be initiated based upon the maneuver constraints shown in Tables 

7, 8, and 13.  Through utilizing these constraints, a maneuver may be initiated only when 

a maneuver exists that can drive each of the ROEs contained within the target vector 

toward their targeted values. 

3.2.1 Targeting a Single Relative Orbital Element: xr 

  For targeting the single ROE xr, the ROE vector then becomes: 

 τ = xr[ ]  (237) 

and the vector difference of the ROE with respect to the target is: 
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 T = xr − xrtgt⎡⎣ ⎤⎦ = T1[ ]  (238) 

Based upon Eq. (71), we can evaluate T1 in Eq. (238) as: 

 
 

T1 = 4x +
2 y
n

− xrtgt  (239) 

With a single element in the target vector, Eq. (235) can be written as: 

 φa =
1
2
kaq11T1

2  (240) 

Taking the partial derivative of the potential function shown in Eq. (240) with respect to 

the relative velocity vector yields: 

 
 

∂φa
∂x

= kaq11T1
∂T1
∂x

 (241) 

 
 

∂φa
∂y

= kaq11T1
∂T1
∂y

 (242) 

 
 

∂φa
∂z

= kaq11T1
∂T1
∂z

 (243) 

Evaluating the partial derivative of T1 with respect to each component of the relative 

velocity gives: 

 
 

∂T1
∂x

= 0  (244) 

 
 

∂T1
∂y

=
2
n

 (245) 
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∂T1
∂z

= 0  (246) 

Eqs. (244) – (246) establish the gradient vector as: 

 

 

∇ ρφa =

0
2
n
kaq11T1

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (247) 

Based upon Eq. (236), the control strategy gives: 

 

 

ΔV = −∇ ρφa =

0

−
2
n
kaq11T1

0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (248) 

As noted previously, because xr is a constant of the relative motion, the potential function 

based upon xr is constant for unforced motion.  Therefore, 
 
φa = 0 , and 

 
φa  is not useful as 

a control switching condition.  However, per Tables 7 - 8, a ΔV may be implemented in 

the ŷ -direction at any point in the orbit, to increase or decrease the value of xr.  Thus, the 

control action shown in Eq. (248) may be taken at each time step in the orbit, until the 

target conditions are met to the desired tolerance level. 

  An example of xr targeting is summarized in Table 26.  The initial value for xr is 

0.400 km, and the targeted value for xr is zero.  Figure 24(a) shows a 10,000 s 

propagation of the unforced motion, starting with the initial conditions shown in Table 

26.  With no maneuvers, the trajectory drifts in the negative along-track direction due to 

the positive value of xr.  Figure 24(b) shows the effect of APF control, with the control 
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impulse calculated every 60 s.  The control forces shape the relative orbit into a stationary 

ellipse centered on x = 0.  The value of xr as a function of time is shown in Figure 24(c).  

It is seen that the desired condition, xr = 0, is reached within 1,000 s.  Maneuver 

magnitudes as a function of time are shown in Figure 25.  The total ΔV expended for 

trajectory control is 0.211 m/s. 

 

Table 26:  APF control example, targeting ROE xr. 

Cartesian 
 

x = 0.100 km   
y = −0.100 km   
z = 0.000 km    

x = −0.0002 km/s
y = 0.0000 km/s
z = 0.0000 km/s

 

Initial Conditions 

ROEs 
xr = 0.4000 km   
yr = 0.2789 km   
ar = 0.7096 km   

Er = 5.7199 rad
Az = 0.0000 km
ψ = 0.0000 rad

 

 Target ROEs xr = 0.0000 km  

APF Parameters 
ka = 1E − 07

Qa = I1x1
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         (a)               (b) 

 

(c) 

Figure 24:  APF targeting of single ROE xr. (a) Unforced motion, 10,000 s propagation 

from initial conditions, (b) APF targeting of xr = 0, ŷ − x̂  projection, (c) Value of xr as a 

function of time. 
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Figure 25:  APF xr targeting maneuver magnitudes. 

3.2.2 Targeting a Single Relative Orbital Element: yr 

 Targeting the single ROE yr, the ROE vector becomes: 

 τ = yr[ ]  (249) 

and the vector difference of the ROE with respect to the target is: 

 T = yr − yrtgt⎡⎣ ⎤⎦ = T1[ ]  (250) 

Based upon Eq. (72), we can evaluate T1 in Eq. (250) as: 

 
 

T1 = y −
2 x
n

− yrtgt  (251) 
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The potential function and its partial derivatives remain as written in Eqs. (240) – (243).  

Evaluating the partial derivative of T1 with respect to each component of the relative 

velocity gives: 

 
 

∂T1
∂x

= −
2
n

 (252) 

 
 

∂T1
∂y

= 0  (253) 

 
 

∂T1
∂z

= 0  (254) 

Eqs. (252) – (254) establish the gradient vector as: 

 

 

∇ ρφa =
−
2
n
kaq11T1

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (255) 

Based upon Eq. (236), the control strategy gives: 

 

 

ΔV = −∇ ρφa =

2
n
kaq11T1

0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (256) 

The control switching condition is defined as: 

 
 

ΔV =
0

−∇ ρφa

⎧
⎨
⎪

⎩⎪  

,   φa ≤ 0
,   φa > 0

 (257) 
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where 

 
 
φa = kaq11T1 T1  (258) 

and the time derivative of T1 is found by differentiating Eq. (251): 

 
 
T1 = −3 y − 6nx  (259) 

  An example of yr targeting is summarized in Table 27.  The initial conditions are 

the same as in the previous example.  The initial value for yr is 0.2789 km, and the 

targeted value for yr is zero.  Figure 26(a) shows a 10,000 s propagation of the unforced 

motion, which is unchanged from the previous example.  Figure 26(b) shows the effect of 

APF control using yr targeting.  It is seen that the control forces shape the relative orbit 

into a stationary ellipse centered on y = 0.  The value of yr as a function of time is shown 

in Figure 26(c).  The desired condition yr = 0 is quickly reached, however there is some 

jitter about the targeted value.  The jitter occurs because the untargeted ROE xr remains at 

the initial condition value of 0.400 km.  With a positive value for xr, the APF control 

effectively exerts a near-continuous thrust (commanding an impulse at each opportunity) 

once the targeted value of yr is reached.  Impulses are performed in the − x̂ -direction to 

offset the secular drift in the along-track direction and maintain yr at the targeted value.  It 

is noted that the resulting stationary ellipse shown in Figure 26(b) is centered on x = 0.1 

km.  This is not consistent with xr, because the ellipse shown is a forced trajectory based 

upon the control impulses; if the impulses were stopped, the unforced instantaneous 

ellipse would be centered on x = 0.400 km.  Maneuver magnitudes as a function of time 
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are shown in Figure 27.  The total ΔV expended for trajectory control during the 10,000 s 

simulation is 3.201 m/s. 

Table 27:  APF control example, targeting ROE yr. 

Cartesian 
 

x = 0.100 km   
y = −0.100 km   
z = 0.000 km    

x = −0.0002 km/s
y = 0.0000 km/s
z = 0.0000 km/s

 

Initial Conditions 

ROEs 
xr = 0.4000 km   
yr = 0.2789 km   
ar = 0.7096 km   

Er = 5.7199 rad
Az = 0.0000 km
ψ = 0.0000 rad

 

 Target ROEs xr = 0.0000 km  

APF Parameters 
ka = 1E − 07

Qa = I1x1
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         (a)          (b) 

 

(c) 

Figure 26:  APF targeting of single ROE yr. (a) Unforced motion, 10,000 s propagation 

from initial conditions, (b) APF targeting of yr = 0, ŷ − x̂  projection, (c) Value of yr as a 

function of time. 
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Figure 27:  APF yr targeting maneuver magnitudes. 

3.2.3 Targeting a Single Relative Orbital Element: ar 

Targeting the single ROE ar, the ROE vector becomes: 

 τ = ar[ ]  (260) 

and the vector difference of the ROE with respect to the target is: 

 T = ar − artgt⎡⎣ ⎤⎦ = T1[ ]  (260) 

Based upon Eq. (73), we can evaluate T1 in Eq. (260) as: 
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The potential function and its partial derivatives remain as written in Eqs. (240) – (243).  

Evaluating the partial derivative of T1 with respect to each component of the relative 

velocity gives: 

 

 

∂T1
∂x

=
4 x n

6x + 4 y
n

⎛
⎝⎜

⎞
⎠⎟
2

+ 2 x
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

1/2  (263) 

 

 

∂T1
∂y

=
24x +16 y n

n 6x + 4 y
n

⎛
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⎣
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⎤

⎦
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1/2  (264) 

 
 

∂T1
∂z

= 0  (265) 

Eqs. (263) – (265) establish the gradient vector as: 

 

 

∇ ρφa =

4 x n
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⎥
⎥
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 (266) 

Based upon Eq. (236), the control strategy gives: 
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ΔV = −∇ ρφa =
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 (267) 

Because ar is a constant of the relative motion, the potential function based upon 

ar is invariant for the unforced motion.  Therefore, 
 
φa = 0 , and 

 
φa  is not useful as a 

control switching condition.  However, the maneuver logic structure contained in Tables 

7 - 8 may be utilized to determine the locations in the relative orbit where an impulsive 

maneuver may drive ar in the desired direction.  The information in Tables 7 – 8, 

expressed in terms of the ROE Er, is utilized as the switching condition for control 

implementation.  

 An example of ar targeting is summarized in Table 28.  The initial conditions are 

unchanged from the previous examples.  The initial value for ar is 0.7096 km, and the 

targeted value for ar is zero.  Figure 28(a) shows a 10,000 s propagation of the unforced 

motion, which is unchanged from the previous examples.  Figure 28(b) shows the effect 

of APF control using ar targeting.  It is seen that the control forces result in a circular 

deputy orbit with a value for xr of 0.0776 km.  With the resulting positive value for xr, the 

deputy spacecraft has a secular drift in the negative along-track direction.  The value of ar 

as a function of time is shown in Figure 28(c).  The desired condition ar = 0 is reached 

within 1,000 s.  Maneuver magnitudes as a function of time are shown in Figure 29.  The 

total ΔV expended for trajectory control during the 10,000 s simulation is 0.462 m/s. 
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Table 28:  APF control example, targeting ROE ar. 

Cartesian 
 

x = 0.100 km   
y = −0.100 km   
z = 0.000 km    

x = −0.0002 km/s
y = 0.0000 km/s
z = 0.0000 km/s

 

Initial Conditions 

ROEs 
xr = 0.4000 km   
yr = 0.2789 km   
ar = 0.7096 km   

Er = 5.7199 rad
Az = 0.0000 km
ψ = 0.0000 rad

 

 Target ROEs ar = 0.0000 km  

APF Parameters 
ka = 1E − 07

Qa = I1x1
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    (a)           (b) 

 

 

(c) 

Figure 28:  APF targeting of single ROE ar. (a) Unforced motion, 10,000 s propagation 

from initial conditions, (b) APF targeting of ar = 0, ŷ − x̂  projection, (c) Value of ar as a 

function of time. 
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Figure 29:  APF ar targeting maneuver magnitudes. 

3.2.4 Targeting a Single Relative Orbital Element: Az 

Targeting the single ROE Az, the ROE vector becomes: 

 τ = Az⎡⎣ ⎤⎦  (268) 

and the vector difference of the ROE with respect to the target is: 

 T = Az − Aztgt⎡⎣ ⎤⎦ = T1[ ]  (269) 

Based upon Eq. (75), we can evaluate T1 in Eq. (268) as: 

 
 

T1 = z2 +
z
n

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− Aztgt  (270) 
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The potential function and its partial derivatives remain as written in Eqs. (240) – (243).  

Evaluating the partial derivative of T1 with respect to each component of the relative 

velocity gives: 

 
 

∂T1
∂x

= 0  (271) 

 
 

∂T1
∂y

= 0  (272) 
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n
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⎦
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Eqs. (271) – (273) establish the gradient vector as: 
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 (274) 

Based upon Eq. (236), the control strategy gives: 

 

 

ΔV = −∇ ρφa =

0
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z n
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 (275) 
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Because Az is a constant of the relative motion, the potential function based upon 

Az is invariant for the unforced motion.  Therefore, 
 
φa = 0 , and 

 
φa  is not useful as a 

control switching condition.  However, the maneuver logic structure contained in Tables 

13 – 14 may be utilized to determine the locations in the relative orbit where an impulsive 

maneuver may drive Az in the desired direction.  The information in Tables 13 – 14, 

expressed in terms of the ROE ψ, is utilized as the switching condition for control 

implementation. 

 An example of Az targeting is summarized in Table 29.  Initial motion in the 

cross-track direction is added to the initial conditions.  The initial value for Az is 0.1904 

km, and the targeted value for Az is zero.  Figure 30(a) shows a 20,000 s propagation of 

the unforced motion in the   plane.  Figure 30(b) shows the effect of APF control using Az 

targeting.  It is seen that the control forces nullify the cross-track motion.  The value of Az 

as a function of time is shown in Figure 30(c).  Maneuver magnitudes as a function of 

time are shown in Figure 31.  The total ΔV expended for trajectory control during the 

20,000 s simulation is 0.261 m/s. 

Table 29:  APF control example, targeting ROE Az. 

Cartesian 
 

x = 0.100 km   
y = −0.100 km   
z = 0.000 km    

x = −0.0002 km/s
y = 0.0000 km/s
z = 0.0002 km/s

 

Initial Conditions 

ROEs 
xr = 0.4000 km   
yr = 0.2789 km   
ar = 0.7096 km   

Er = 5.7199 rad
Az = 0.1905 km
ψ = 0.1052 rad

 

 Target ROEs Az = 0.0000 km  

APF Parameters 
ka = 1E − 07

Qa = I1x1
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       (a)           (b) 

 

(c) 

Figure 30:  APF targeting of single ROE Az. (a) Unforced motion, 20,000 s propagation 

from initial conditions, (b) APF targeting of Az = 0, ẑ − x̂  projection, (c) Value of Az as a 

function of time. 
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Figure 31:  APF Az targeting maneuver magnitudes. 

3.2.5 Targeting Multiple Relative Orbital Elements: xr, yr, ar, and Az 

In targeting multiple ROEs, xr, yr, ar, and Az, the ROE vector becomes: 

 τ = xr , yr , ar , Az⎡⎣ ⎤⎦
T  (276) 

and the vector difference of the ROEs with respect to the ROE target vector is: 

 T =

xr − xrtgt
yr − yrtgt
ar − artgt
Az − Aztgt
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⎢
⎢
⎢
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⎥
⎥
⎥
⎥
⎥

 (277) 

Using Eqs. (239), (251), (262) and (270), the vector T  may be written as: 
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 (278) 

Expanding Eq. (233) with four ROEs in the targeted set yields: 

 φa =
1
2
ka q11T1

2 + q12 + q21( )⎡⎣ T1T2 + q13 + q31( )T1T3 + q14 + q41( )T1T4 +  

 q22T2
2 + q23 + q32( )T2T3 + q24 + q42( )T2T4 + q33T32 +  

 q34 + q43( )T3T4 + q44T42 ⎤⎦  (279) 

where qij represents the row i, column j element of the matrix Qa .  If Qa  is assumed to be 

a symmetric matrix, Eq. (279) simplifies to: 

 φa =
1
2
ka q11T1

2 + 2q12⎡⎣ T1T2 + 2q13T1T3 + 2q14T1T4 + q22T2
2 + 2q23T2T3 + 2q24T2T4 +  

 q33T3
2 + 2q34T3T4 + q44T4

2 ⎤⎦  (280) 

Taking the partial derivative of φa with respect to  x  gives: 
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Taking the partial derivative of φa with respect to 
 
y  gives: 
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Taking the partial derivative of φa with respect to  z  gives: 
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Evaluating the partial derivatives of the components of the T  vector with respect to each 

component of the relative velocity gives: 
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⎦
⎥

1/2  (291) 

 
 

∂T3
∂z

= 0  (292) 

 
 

∂T4
∂x

= 0  (293) 

 
 

∂T4
∂y

= 0  (294) 

 

 

∂T4
∂z

=
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z2 +
z
n

⎛
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⎞
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2⎡

⎣
⎢

⎤

⎦
⎥

1/2  (295) 

The gradient of the potential function with respect to the relative velocity vector is given 

by: 

 

 

∇ ρφa =

∂φa
∂x
∂φa
∂y
∂φa
∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (296) 

The total derivative of the potential function in Eq. (280) is: 
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φa = ka q11T1 T1 + q12 T1T2 + T1 T2( ) + q13 T1T3 + T1 T3( ) + q14 T1T4 + T1 T4( )⎡⎣ +  

 
 
q22T2 T2 + q23 T2T3 + T2 T3( ) + q24 T2T4 + T2 T4( ) + q33T3 T3 +  

 
 
q34 T3T4 + T3 T4( ) + q44T4 T4 ⎤⎦  (297) 

The time derivatives of the T  vector components are: 

 
 
T1 = 0  (298) 

 
 
T2 = −3 y − 6nx  (299) 

 
 
T3 = 0  (300) 

 
 
T4 = 0  (301) 

For unforced motion, only the yr element of the error matrix, T2, is changing with time.  

Tables 7, 8, and 13 may be utilized to determine the locations in the relative orbit where 

an impulsive maneuver may drive the ROEs in the direction of the target values. 

 An example of the simultaneous targeting of xr, yr, ar, and Az is summarized in 

Table 30.  At t = 0, the deputy is at a position 200 m ahead of the chief in the along-track 

direction, with an initial velocity of 0.020 m/s in the radial direction, and 0.020 m/s in the 

cross-track direction.  The target conditions are expressed in terms of ROEs as xr = 0, yr = 

100 m, ar = 60 m, and Az = 20 m. 
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Table 30:  APF control example, targeting ROEs xr, yr, ar, Az. 

Cartesian 
 

x = 0.000 km   
y = 0.200 km   
z = 0.000 km    

x = 2E − 05 km/s
y = 0 km/s
z = 2E − 05 km/s

 

Initial Conditions 

ROEs 
xr = 0.0000 km   
yr = 0.1621 km   
ar = 0.0379 km   

Er = 1.5707 rad
Az = 0.0189 km
ψ = 0.0000 rad

 

 Target ROEs 

xr = 0.0000 km
yr = 0.1000 km
ar = 0.0600 km
Az = 0.0200 km

 

APF Parameters 
ka = 1E − 07

Qa = I4 x4
 

 

The resulting trajectory is shown in Figure 32.  For this example, the trajectory is 

propagated for 250,000 s.  At the completion of that time period, the following ROEs 

have been reached:  xr = -0.001 m. yr = 100.001 m, ar = 60.005 m, Az = 20.000 m.  The 

time histories of the ROEs xd, yd, ar, Az are shown in Figure 33.  Maneuver components as 

a function of time are shown in Figure 34.  The total ΔV expended for trajectory control 

during the simulation is 0.045 m/s. 
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      (a)       (b) 

      (c)        (d) 

Figure 32:  APF targeting of ROEs xd, yd, ar, and Az, 250,000 sec propagation. (a) ŷ − x̂  

projection, (b) ẑ − x̂  projection, (c) ẑ − ŷ  projection, (d) 3D trajectory plot. 
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  (a)           (b)  

  (c)           (d) 

Figure 33:  APF targeting of ROEs xd, yd, ar, and Az, 25,000 sec propagation. (a) xr time 

history, (b) yr time history, (c) ar time history, (d) Az time history. 
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Figure 34:  Maneuver components as a function of time for APF targeting of ROEs xd, yd, 

ar, and Az.  Blue: ΔVx, Green: ΔVy, Red: ΔVz. 
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 The ROE-based approach utilizing APFs allows the targeting of a desired relative 

orbit.  Repulsive potentials are established for obstacle avoidance, where obstacles are 

defined at fixed relative positions in the LVLH coordinate system.  Combination of the 

attractive ROE targeting with repulsive obstacle avoidance will therefore utilize the 

attractive potentials described above in Section 3.2, along with the repulsive potentials as 

described in Section 3.1.  However, there is a difference between the maneuver 

calculations for ROE targeting using an attractive APF and repulsive maneuvers for 
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maneuvers are defined such that the post-maneuver velocity vector is in the direction of 

the negative gradient of the repulsive potential taken with respect to the relative position 

vector.  We cannot simply superpose the attractive and repulsive potentials and take the 

gradient as was done in Section 3.1.  Alternatively, the attractive and repulsive 

maneuvers will be calculated separately at each time step, and combined to give a total 

maneuver that is responsive to both the attractive and repulsive potentials.  In addition, a 

new parameter, robs_soi, is defined that limits the sphere of influence of the repulsive 

potential; when the distance between the obstacle and the chaser spacecraft is greater than 

robs_soi, the repulsive maneuver is set equal to zero. 

The formulation for the combined attractive and repulsive potentials is 

summarized as follows.  The attractive artificial potential function is defined in Eq. (233) 

as: 

 φa =
1
2
ka τ − τ tgt( )T Qa τ − τ tgt( )  (302) 

The attractive control equation is defined in Eq. (236) as: 

 
 
ΔVa = −∇ ρφa  (303) 

 The attractive control action is initiated based upon the maneuver constraints 

shown in Tables 7, 8, and 13, so that an attractive maneuver is implemented only when a 

maneuver exists that can drive each of the ROEs contained within the target vector 

toward their targeted values. 

 The repulsive potential is defined in Eq. (220) as: 
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 φr = kr exp −
ρ − ρobs( )T Qr ρ − ρobs( )

σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (304) 

The repulsive control action is initiated whenever the repulsive potential is increasing and 

the deputy is within the obstacle sphere of influence.  The repulsive control action is 

expressed as: 

 
 

ΔVr =
0

−∇ρφr − ρ
⎧
⎨
⎪

⎩⎪

,  φr ≤ 0 or ρ − ρobs > robs _ soi

,  φr > 0 and ρ − ρobs ≤ robs _ soi

 (305) 

The total maneuver is calculated at each time step as: 

 ΔVTOTAL = ΔVa + ΔVr  (306) 

  An example is now considered with the addition of an obstacle and repulsive 

potential, as described in Table 31.  The initial conditions in the x̂ − ŷ  plane are the same 

as in the previous example, however in this case there is no cross-track motion in order to 

simplify visualization.  The target ROE conditions are unchanged from the previous 

example. An obstacle is placed at x,  y,  z[ ] = 0,  0.060,  0[ ]  km , with a sphere of influence 

of 0.020 km.  This is a challenging case, because the targeted ROEs will result in motion 

that passes through the obstacle position every orbit.  The trajectory acting only under the 

attractive potential is shown in Figure 35(a); the obstacle sphere of influence is shown 

only for reference.  The trajectory including both attractive and repulsive potentials is 

shown in Figure 35(b).  It is seen that when the deputy enters the obstacle sphere of 

influence, the repulsive potential diverts the trajectory away from the obstacle.  Outside 

of the obstacle sphere of influence, the attractive potential shapes the orbit to the desired 
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parameters.  The time histories of the targeted ROEs are shown in Figure 36.  The 

perturbation of the obstacle to the trajectory prevents the APF guidance from converging 

to the targeted value of ar, however, the trajectory converges to the ROE condition 

xr ,  yr ,  ar[ ] = 0,  0.100,  0.070[ ]  km .  With these ROE values, the relative orbit is 

centered on the desired xr and yr coordinates, and the converged value of ar is such that 

the orbit passes at the boundary of the obstacle sphere of influence.  Figure 36 shows the 

attractive and repulsive maneuver magnitudes as a function of time.  This example has 

high ΔV utilization due to the placement of the obstacle in the nominal orbital path.  As 

shown in Figure 37, when repulsive maneuvers are performed for obstacle avoidance, 

subsequent attractive maneuvers are performed to correct the trajectory toward the 

desired ROEs.  Overall, the attractive ΔV utilized is 3.43 m/s, the repulsive ΔV is 2.43 

m/s, and the total ΔV is 5.86 m/s.  A closer look at the effect of the repulsive maneuvers 

is provided in Figure 37.  Figure 38(a) shows the deputy’s distance from the obstacle as a 

function of time when no repulsive maneuvers are performed.  Figure 38(b) shows the 

trajectory once the repulsive maneuvers are enabled.  In this case, the repulsive 

maneuvers shape the trajectory to avoid the obstacle sphere of influence of 20 m. 
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Table 31: APF control example, targeting ROEs xr, yr, ar, Az with repulsive obstacle. 

Cartesian 
 

x = 0.000 km   
y = 0.200 km   
z = 0.000 km    

x = 2E − 05 km/s
y = 0 km/s
z = 0 km/s

 

Initial Conditions 

ROEs 
xr = 0.0000 km   
yr = 0.1621 km   
ar = 0.0379 km   

Er = 1.5707 rad
Az = 0.0000 rad
ψ = 0.0000 rad

 

 Target ROEs 

xr = 0.0000 km
yr = 0.1000 km
ar = 0.0500 km
Az = 0.0000 km

 

Obstacle Location 
x = 0.000 km
y = 0.060 km
z = 0.000 km

 

APF Parameters 

ka = 1E − 07

Qa = I4 x4

kr = 1E − 06

Qr = I3x3

σ = 1E − 04
robs _ soi = 0.020 km
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      (a) 

 

      (b) 

Figure 35:  APF targeting of ROEs xr, yr, and ar, 250,000 sec propagation, (a) Trajectory 

with no obstacle, attractive potential only, ŷ − x̂  projection, (b) Trajectory with obstacle, 

attractive and repulsive potentials, ŷ − x̂  projection. 
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   (a)           (b) 

 

 

(c) 

Figure 36:  APF targeting of ROEs xd, yd, and ar, with obstacle, 250,000 sec propagation. 

(a) xr time history, (b) yr time history, (c) ar time history. 
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Figure 37:  Maneuver magnitudes for attractive ROE targeting (blue) and repulsive 

obstacle avoidance (red). 
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(a) 

 

(b) 

Figure 38:  The effect of repulsive maneuvers is to shape the trajectory to avoid the 

obstacle sphere of influence.  (a) No repulsive maneuvers performed, (b) Repulsive 

maneuvers performed in response to 20 m obstacle sphere of influence. 
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3.2.7 Monte Carlo Analysis 

 Monte Carlo analyses were performed in order to evaluate the reliability of the 

APF algorithms in converging to the targeted ROE values, and to characterize the ΔV 

utilization of the ROE-based APF approach versus traditional maneuver design methods.  

The first scenario evaluates the convergence and ΔV utilization of an attractive APF 

without obstacles, and the second scenario evaluates the convergence of an attractive 

APF combined with a repulsive APF associated with a single obstacle.  In each scenario, 

the algorithms resulted in consistent convergence to the targeted ROE values. 

Attractive Artificial Potential Function without Obstacles 

 A 500-case Monte Carlo analysis was performed, targeting the ROE parameters 

xr, yr, ar, and Az.  The parameters for the Monte Carlo analysis are summarized in Table 

32.  The initial conditions for the relative Cartesian state were randomly generated, and 

the resulting initial relative Cartesian states are shown graphically in Figure 39.  The 

minimum and maximum initial values for the ROEs corresponding to the randomly 

generated population of relative Cartesian states are shown in Table 33, for reference.  

The ROE target conditions for yr, ar, and Az were randomly generated based upon 

uniform distributions, however, a fixed value of xr = 0 was targeted in each case. 

 In each case, the simulation was run for 1E06 s, and the final ROEs were 

compared to the targeted values.  The results are shown in Table 34.  A single parameter 

representing the root-sum-squared (RSS) of the distance of the four final ROE values 

relative to their targets was calculated as the metric for convergence.  A case was 

considered converged if the RSS distance from the target parameters was less than 1 m.  
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All 500 cases in the Monte Carlo simulation converged to the targets, based upon this 

criterion.  The worst-case RSS distance was 0.036 m. 

Table 32:  Attractive APF Monte Carlo evaluation parameters. 

Cartesian 
State 
Sampling 
Distributions 
 

 

x0 = −1,1[ ]  km, uniform
y0 = −1,1[ ]  km, uniform
z0 = −1,1[ ]  km, uniform
x0 = −0.001,0.001[ ]  km/s, uniform
y0 = −0.001,0.001[ ]  km/s, uniform
z0 = −0.001,0.001[ ]  km/s, uniform

 

Initial Conditions 
ROE Ranges 
Resulting 
from 
Sampled 
Monte Carlo 
Cartesian 
States 

xr0 = −5.619,5.884[ ]  km

yr0 = −2.759,2.678[ ]  km

ar0 = 0.200,9.770[ ]  km

Er0
= 0.006,6.282[ ]  rad

Az0
= 0.014,1.343[ ]  km

ψ 0 = 0.001,6.272[ ]  rad

 

 Target ROEs 

xr = 0.0000 km
yr = −0.5,0.5[ ]  km, uniform
ar = 0,1[ ]  km, uniform
Az = 0,1[ ]  km, uniform

 

APF Parameters 
ka = 1E − 07

Qa = I4 x4
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Figure 39:  Attractive APF Monte Carlo simulation relative Cartesian state initial 

conditions. 

 

Table 33:  Attractive APF Monte Carlo results. 

Final ROE 
State Relative 
to the Target 

 
Minimum 

(km) 

 
Maximum 

(km) 

 
Average 

(km) 

Standard 
Deviation 

(km) 
xr − xrtgt  -3.64E-08 1.07E-06 2.28E-09 4.80E-08 
yr − yrtgt  -1.14E-08 2.98E-08 -2.72E-09 5.13E-08 
ar − artgt  -8.14E-14 3.56E-05 8.10E-08 1.59E-06 
Az − Aztgt  -1.44E-15 -1.74E-18 -5.54E-16 3.40E-16 

RSS 1.57E-16 3.56E-05 8.11E-08 1.59E-06 
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 While there is no expectation of maneuver optimality within the APF approach, it 

is useful to compare the ΔV utilization resulting from the APFs formulation relative to 

the maneuver magnitudes calculated using a deterministic method for maneuver design.  

For this comparison, the state transition matrix (STM) that maps initial conditions to the 

final states using the solutions to the Clohessy-Wiltshire equations will be applied. 

 The position and velocity solutions to the Clohessy-Wiltshire equations, Eqs. (49) 

– (54), can be placed into the form: 

 r
v

⎡

⎣
⎢

⎤

⎦
⎥ =

φrr φrv
φvr φvv

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

r0
v0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (307) 

where 

 φrr =

4 − 3cos n t − t0( )⎡⎣ ⎤⎦ 0 0

6 sin n t − t0( )⎡⎣ ⎤⎦ − n t − t0( ){ } 1 0

0 0 cos n t − t0( )⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (308) 

 φrv =

1
n
sin n t − t0( )⎡⎣ ⎤⎦

2
n
1− cos n t − t0( )⎡⎣ ⎤⎦{ } 0

2
n
cos n t − t0( )⎡⎣ ⎤⎦ −1{ } 4

n
sin n t − t0( )⎡⎣ ⎤⎦ − 3 t − t0( ){ } 0

0 0 1
n
sin n t − t0( )⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

(309) 

 φvr =

3nsin n t − t0( )⎡⎣ ⎤⎦ 0 0

6n cos n t − t0( )⎡⎣ ⎤⎦ −1{ } 0 0

0 0 −nsin n t − t0( )⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (310) 
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 φvv =

cos n t − t0( )⎡⎣ ⎤⎦ 2sin n t − t0( )⎡⎣ ⎤⎦ 0

−2sin n t − t0( )⎡⎣ ⎤⎦ 4 cos n t − t0( )⎡⎣ ⎤⎦ − 3 0

0 0 cos n t − t0( )⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (311) 

For each case in the Monte Carlo simulation, the STM may be utilized to calculate the 

two-impulse ΔV required to transfer from the randomly dispersed initial LVLH Cartesian 

state, ri vi⎡
⎣

⎤
⎦
T

 to the final converged state resulting from the APF trajectory 

simulation rf v f⎡
⎣

⎤
⎦
T

.  Note that the final converged state corresponds to the ROE 

targets.  From Eq. (307), 

 v0 = φ
−1
rv r −φrrr0( )  (312) 

In this scenario, r0  is the initial position equal to ri , r  represents the final converged 

relative position vector equal to rf , and v0  is the velocity vector that targets the final 

position vector rf  with a time-of-flight given by t – t0.  The first maneuver vector, ΔV1 , 

is calculated as the difference between v0  and the initial velocity vector vi : 

 ΔV1 = v0 − vi  (313) 

The second maneuver vector represents the impulse required to match the final velocity 

v f  at the final position, rf : 

 ΔV2 = v f − v  (314) 

The total ΔV utilized in the two-impulse sequence is given by: 
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 ΔVTOT = ΔV1 + ΔV2  (315) 

The maneuver vectors calculated using the STM approach depend upon the time-of-

flight, t – t0.  For this analysis, the time-of-flight was varied from 100 to 100,000 s in 100 

s time steps, and the time-of-flight was found which minimized VTOT  for that case. 

 A comparison of the ΔV utilization from the APF formulation with the two-

impulse state transition matrix approach is shown in Table 34.  It is seen that, on average, 

the APF approach results in ΔV utilization that is 50% greater than the two-impulse STM 

approach, and the APF ΔV standard deviation is significantly greater.  This is not 

unexpected, since the STM approach incorporates an optimization of the transfer time-of-

flight to minimize the total ΔV expended.  However, it is noted that in some cases the 

APF ΔV utilization was less than that for the corresponding two-impulse STM solution.  

It is possible that with additional tuning the APF ΔV utilization could be significantly 

reduced.  Future work regarding the optimization of ΔV utilization  is discussed in 

Section 5.2. 

Table 34:  Comparison of ΔV utilization between the APF formulation and the two-

impulse STM approach. 

ΔV Utilization ROE-Based APF Two-Impulse STM 
Minimum (m/s) 0.554 1.016 
Maximum (m/s) 23.689 9.425 
Mean (m/s) 5.346 3.547 
Standard Deviation (m/s) 4.060 1.461 
 

Attractive Artificial Potential Function Combined with a Single Obstacle 

 Using the approach described in Section 3.2.6, a 500-case Monte Carlo analysis 

was performed for a scenario involving a transfer to a specified leading orbit, with an 
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obstacle at the origin.  The parameters for the Monte Carlo analysis are summarized in 

Table 35.  The initial conditions for the relative Cartesian state were randomly generated, 

using a uniform distribution about the nominal state of x,  y,  z[ ] = 0,  0.2,  0[ ]  km, 

 
x,  y,  z[ ] = 0,  0,  0[ ]  km/s.  The resulting initial relative Cartesian states are shown 

graphically in Figure 40.  The minimum and maximum initial values for the ROEs 

corresponding to the randomly generated population of relative Cartesian states are 

shown in Table 36, and the ROE target conditions were fixed at xr = 0, yr = 0.1 km,        

ar = 0, and Az = 0.  The sphere of influence about the obstacle at the origin was fixed at 

0.020 km. 

 In each case, the simulation was run for 1E06 s, and the final ROEs were 

compared to the targeted values.  The results are shown in Table 36.  Of the 500 total 

cases, 151 cases entered the obstacle sphere of influence, resulting in repulsive 

maneuvers being performed.  As before, the RSS convergence criterion of 1 m was 

evaluated.  All 500 cases in the Monte Carlo simulation converged to the targets.  The 

worst-case RSS distance was 6.2E-05 m.  Attractive ΔV expended in each case ranged 

from 0.120 m/s to 10.581 m/s, and repulsive ΔV ranged from 0 to 1.705 m/s. 
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Table 35:  Attractive APF with obstacle Monte Carlo evaluation parameters. 

Cartesian 
State 
Sampling 
Distributions 
 

 

x0 = −0.002,0.002[ ]  km, uniform
y0 = 0.198,0.202[ ]  km, uniform
z0 = −0.002,0.002[ ]  km, uniform
x0 = −0.0001,0.0001[ ]  km/s, uniform
y0 = −0.0001,0.0001[ ]  km/s, uniform
z0 = −0.0001,0.0001[ ]  km/s, uniform

 

Initial Conditions 
ROE Ranges 
Resulting 
from 
Sampled 
Monte Carlo 
Cartesian 
States 

xr0 = −0.192,0.194[ ]  km

yr0 = 0.014,0.389[ ]  km

ar0 = 0.019,0.427[ ]  km

Er0
= 0.016,6.273[ ]  rad

Az0
= 0.000,0.094[ ]  km

ψ 0 = 0.000,6.283[ ]  rad

 

 Target ROEs 

xr = 0.0000 km
yr = 0.100 km
ar = 0.000 km
Az = 0.000 km

 

APF Parameters 

ka = 1E − 07

Qa = I4 x4

kr = 1E − 06

Qr = I3x3

σ = 1E − 04
robs _ soi = 0.020 km
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Figure 40:  Attractive APF with obstacle Monte Carlo simulation relative Cartesian state 

initial conditions. 

 

Table 36:  Attractive APF with obstacle Monte Carlo results. 

Final ROE 
State Relative 
to the Target 

 
Minimum 

(km) 

 
Maximum 

(km) 

 
Average 

(km) 

Standard 
Deviation 

(km) 
xr − xrtgt  -3.52E-09 1.10E-09 -1.04E-11 2.00E-10 
yr − yrtgt  -6.30E-09 2.14E-09 -2.86E-12 3.34E-10 
ar − artgt  7.06E-14 6.20E-08 5.36E-10 3.14E-09 
Az − Aztgt  1.89E-89 6.48E-83 1.34E-85 2.89E-84 

RSS 7.97E-14 6.24E-08 5.43E-10 3.16E-09 
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CHAPTER 4 

AUTOMATED TRAJECTORY CONTROL IN A SIMULATED 

ENVIRONMENT 

 

 In Chapters 2 and 3, trajectory control approaches using relative orbital elements 

and artificial potential functions are demonstrated within the context of the Clohessy-

Wiltshire assumptions, where both the chief and deputy spacecraft orbit in two-body 

motion about the central body, both spacecraft are treated as point masses, the distance 

from the chief to deputy is much less than the chief orbit radius, and all perturbations 

such as third-body effects, drag, and solar radiation pressure are neglected.  In this 

chapter, the performance of the trajectory control algorithms are evaluated within the 

framework of a flight-like six-degree-of-freedom (6-DOF) guidance, navigation and 

control (GN&C) simulation environment.  The capabilities of the trajectory control 

algorithms to target the specified relative orbit geometries in the presence of 

environmental perturbations are assessed.  Five scenarios are evaluated: ROE station-

keeping; ROE orbit transfer; ROE orbit transfer with APF-based obstacle avoidance; 

APF targeting of ROEs; and APF targeting of ROEs with obstacle avoidance. 

4.1  Guidance, Navigation and Control Six-Degree of Freedom Simulation 

Environment 

 The 6-DOF GN&C MATLAB/Simulink simulation framework established for 

Prox-1 flight software validation [69, 70] is utilized as a realistic test environment for the 

ROE and APF algorithms developed through this work.  As shown in Figure 40, the 

GN&C simulation includes environmental models for the Sun, Earth and Moon locations, 

Earth’s rotation, magnetic field dipole, Earth’s atmosphere, and Earth gravitational field 

parameters, including the J2 through J6 spherical harmonics terms.  Environmental 
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disturbances including third-body gravitational effects from the Sun and Moon, 

aerodynamic drag, solar radiation pressure, magnetic torque, gravity gradient torque, and 

higher-order Earth gravitational field are included.  Inertial orbit states, attitude and 

attitude rates for both the chief and deputy are integrated throughout the simulation.  Both 

spacecraft are treated as rigid bodies.  Initial state and attitude parameters may be 

established via an initialization script, along with spacecraft mass properties.  The 

guidance algorithms developed through this work are utilized to control orbital 

maneuvers by the deputy spacecraft.  Finite burn effects are modeled, with a specified 

constant thrust level applied.  A minimum burn time constraint for maneuver execution 

may be established.  Deputy spacecraft slews to the maneuver attitude are modeled.  For 

the scenarios evaluated in this work, spacecraft-specific error sources are not considered, 

including errors related to relative orbit determination, attitude determination and control, 

and maneuver execution.  These error sources are spacecraft-dependent and vary greatly 

between missions.  A block diagram of the GN&C simulation framework is shown in 

Figure 41. 

 For each of the scenarios evaluated in this chapter, the chief is in a circular orbit 

about the Earth with an orbit radius of 7098.14 km (720 km orbit altitude), and an 

inclination of 24.0 deg.  These are the nominal values for the Prox-1 mission.  For this 

orbit geometry, estimates of the magnitude of accelerations to the deputy spacecraft due 

to orbit perturbations are shown in Table 37.  A deputy spacecraft mass of 60 kg and a 

frontal area 0.25 m2 is assumed in the calculations of the magnitude of accelerations 

shown in Table 37.  It is seen that the spherical harmonic (J2) oblateness term is the 

largest perturbation at the 720 km orbit altitude, followed by the sun and moon 

gravitational perturbations.  Accelerations due to solar radiation pressure and drag are 

modest in comparison with the J2, sun and moon gravitational perturbations. It is noted 

that the relative orbit of the deputy with respect to the chief is most influenced by J2 when 

the deputy’s relative orbit has cross-track motion resulting from a different inertial orbit 
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inclination.  Solar radiation pressure and atmospheric drag result in differential forces on 

the deputy and chief spacecraft due to their different frontal areas and masses.  The chief 

spacecraft in each of the scenarios is modeled as a 3-unit CubeSat with a mass of 5 kg. 

 

Table 37:  Orbit perturbations for a 720 km circular orbit. 

Perturbing Effect Spacecraft Acceleration 
(m/s2) 

J2 spherical harmonic term (oblateness) [71] 1E-02 
Sun’s gravity [71] 6E-03 
Moon’s gravity [71] 3E-05 
Solar radiation pressure [43] 4E-08 
Atmospheric drag [43] 5E-09 
 

 

Figure 41:  Guidance, navigation and control simulation block diagram. 
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4.2  Relative Orbital Elements Station-Keeping 

 The station-keeping strategy described in Section 2.5.3 and summarized in Table 

21 is applied to a realistic scenario where there is an initial condition resulting in a 

secular along-track drift, and the station-keeping maneuver sequence is implemented to 

return the deputy spacecraft to a desired relative orbit location.  The scenario is 

summarized in Table 38.  The station-keeping target location is [x, y, z] = [0, 50, 0].  The 

initial condition xr = 2.502 m  results in a secular drift in the negative along-track 

direction. “Soft constraints” are established at yrmin
= 45 m  and yrmax

= 55 m ; when the 

value for yr drifts outside of the soft constraints, a maneuver to set x+r = 0  and stop the 

secular along-track drift is commanded to occur at the next key maneuver point (KMP).  

Similarly, the cross-track constraint Azmax
= 1 m  is established.  Key maneuver points are 

defined at Er values of 0, π/2, π, and 3π/2, and at ψ values of 0 and π.  Maneuver 1A 

occurs at Er = π/2, as shown in Table 39.  The second maneuver in the sequence, 

Maneuver 2A, is targeted to occur at the next ŷ -axis crossing (x = 0), to initiate a secular 

along-track drift returning to the station-keeping target ŷ -value one revolution later (s = 

1).  As shown in Table 38, this maneuver actually occurs at x = 0.068 m, due to orbit 

perturbations.  Following a drift time of one orbit period, Maneuver 3A is performed to 

halt the drift at the targeted location.  As shown in Table 40, Maneuver 3A is executed at 

[x, y] = [0.0662, 50.7571] m.  Maneuver 3A results in a relative orbit centered on xr = 0, 

yr = 50 m, with ar = 0.7688 m.  The non-zero value for ar following maneuver 3A 

represents the residual error due to orbit perturbations.  Maneuver 4A is performed at ψ = 

π, to negate the cross-track motion.  Following Maneuver 4A, Az = 0. 

 A second cycle of the station-keeping maneuver sequence is summarized in 

Tables 41 and 42.  The second cycle begins approximately two revs after the first cycle is 

completed, due to the natural drift of the relative orbit away from the station-keeping 
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targets.  The total ΔV expended during the two cycles of station-keeping is 0.0086 m/s.  

Following the second station-keeping cycle, the residual error due to orbit perturbations 

results in ar = 0.9861 m.  The station-keeping sequence could be extended indefinitely, 

with a maneuver frequency of approximately 20 maneuvers per day. 

 Figure 42 shows the relative position and velocity components as a function of 

time for this scenario.  Figure 43 shows the projections of the trajectory onto the 

coordinate planes, and the three-dimensional trajectory plot.  In the ŷ − x̂  projection 

shown in Figure 43(a), it is seen that the second cycle of station-keeping maintains the 

deputy’s orbit within ±7 m of the target value y = 50 m in the along-track direction; this is 

the expected performance when the initial conditions are established by the natural orbit 

perturbations.  Figure 44 shows the time histories of xr, yr, ar, and Az.  It is noted from 

Figure 44(d) that once the cross-track motion is nullified by Maneuver 4A, very little 

cross-track motion is introduced by natural perturbations.  Maneuver magnitude as a 

function of time is shown in Figure 45. 

 As seen in this scenario, the ROE station-keeping sequence of maneuvers 

successfully returns the deputy the desired relative orbit. As the station-keeping sequence 

is repeated sequentially, the algorithm achieves the goal of maintaining a desired leading 

or trailing relative orbit in an automated fashion, in the presence of orbit perturbations.  

The residual error due to orbit perturbations following the station-keeping sequence of 

maneuvers is manifested as an elliptical orbit about the station-keeping target location, 

with a semi-major axis of less than 1 m. 
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Table 38:  ROE station-keeping scenario. 

Cartesian 
x = 0.500 m
y = 50.000 m   
z = −2.000 m  

x = 0.000200 m/s
y = 0.000265 m/s
z = 0.000000 m/s

 

Initial Conditions 

ROEs 

xr = 2.502 m
yr = 49.621 m
ar = 4.022 m
Er = 0.094 rad
Az = 2.000 m
ψ = 4.712 rad

 

Station-Keeping Constraints 

yrmin
= 45.0000 m

yrmax
= 55.0000 m

Azmax
= 1.0000 m

 
Station-Keeping Targets 

x = 0.0000 m
y = 50.0000 m
z = 0.0000 m

 Station-Keeping Parameter s = 1

  



 170 

Table 39:  ROE station-keeping maneuvers 1A, 2A. 

 
Maneuver 
Number 

Maneuver 
Time 

(s) 

 
Pre-Maneuver 

State 

 
ΔV  

(m/s) 

 
Post-Maneuver 

State 

 

x− = 2.3747 m
y− = 48.2642 m
z− = −0.1109 m
x− = 0.002077 m/s
y− = −0.003761 m/s
z− = 0.002154 m/s

 

 

x+ = 2.3747 m
y+ = 48.2642 m
z+ = −0.1109 m
x+ = 0.002077 m/s
y+ = −0.004014 m/s
z+ = 0.002154 m/s

 

1A 1,426.7 
xr
− = 2.3747 m
yr
− = 44.3291 m
ar
− = 3.9351 m
Er

− = 1.5708 rad
Az

− = 2.0437 m
ψ − = 6.2289 rad

 

0
−0.001254

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0 m
yr
+ = 44.3291 m
ar
+ = 6.1678 m
Er

+ = 2.4497 rad
Az

+ = 2.0437 m
ψ + = 6.2289 rad

 

 

x− = 0.0680 m
y− = 37.8716 m
z− = 1.5636 m
x− = −0.003215 m/s
y− = −0.000108 m/s
z− = −0.001309 m/s

 

 

x+ = 0.0680 m
y+ = 37.8716 m
z+ = 1.5636 m
x+ = −0.003215 m/s
y+ = −0.000787 m/s
z+ = −0.001309 m/s

 

2A 3,591.9 
xr
− = 0.068 m
yr
− = 43.9615 m
ar
− = 6.0899 m
Er

− = 4.7124 rad
Az

− = 1.9955 m
ψ − = 2.2412 rad

 

0
−0.000679

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = −1.2189 m
yr
+ = 43.9615 m
ar
+ = 6.6114 m
Er

+ = 4.3125 rad
Az

+ = 1.9955 m
ψ + = 2.2412 rad
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Table 40:  ROE station-keeping maneuvers 3A, 4A. 

 

x− = 0.0666 m
y− = 50.7571 m
z− = 1.5414 m
x− = −0.003210 m/s
y− = −0.000868 m/s
z− = −0.001356 m/s

 

 

x+ = 0.0662 m
y+ = 50.7571 m
z+ = 1.5414 m
x+ = 0.000400 m/s
y+ = −0.000141 m/s
z+ = −0.001356 m/s

 

3A 9,543.4 
xr
− = 1.3772 m
yr
− = 56.8389 m
ar
− = 6.7325 m
Er

− = 4.2691 rad
Az

− = 2.0061 m
ψ − = 2.2653 rad

 

0.0036
0.0007
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.0000 m
yr
+ = 50.0000 m
ar
+ = 0.7688 m
Er

+ = 1.7450 rad
Az

+ = 2.0061 m
ψ + = 2.2653 rad

 

 

x− = 0.3294 m
y− = 50.3132 m
z− = 0.0000 m
x− = 0.000127 m/s
y− = −0.000758 m/s
z− = −0.002165 m/s

 

 

x+ = 0.3294 m
y+ = 50.3131 m
z+ = 0.0000 m
x+ = 0.000127 m/s
y+ = −0.000758 m/s
z+ = 0.000000 m/s

 

4A 10,371.0 
xr
− = −0.1189 m
yr
− = 50.073 m
ar
− = 0.9283 m
Er

− = 2.8799 rad
Az

− = 2.0511 m
ψ − = 3.1416 rad

 

0
0

0.002165

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = −0.1189 m
yr
+ = 50.0730 m
ar
+ = 0.9283 m
Er

+ = 2.8799 rad
Az

+ = 0.0000 m
ψ + = 4.7124 rad
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Table 41:  ROE station-keeping, maneuvers 1B, 2B. 

 

x− = 0.3574 m
y− = 55.7660 m
z− = 0.0000 m
x− = 0.000009 m/s
y− = −0.000897 m/s
z− = 0.000018 m/s

 

 

x+ = 0.3574 m
y+ = 55.7660 m
z+ = 0.0000 m
x+ = 0.000009 m/s
y+ = −0.000755 m/s
z+ = 0.000018 m/s

 

1B 22,279.0 
xr
− = −0.2702 m
yr
− = 55.7486 m
ar
− = 1.2553 m
Er

− = 3.1277 rad
Az

− = 0.0166 m
ψ − = 6.2832 rad

 

0
0.000142

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0 m
yr
+ = 55.7486 m
ar
+ = 0.7150 m
Er

+ = 3.1172 rad
Az

+ = 0.0166 m
ψ + = 0.0000 rad

 

 

x− = 0.0646 m
y− = 55.2065 m
z− = 0.0593 m
x− = −0.000370 m/s
y− = −0.000102 m/s
z− = −0.000025 m/s

 

 

x+ = 0.0646 m
y+ = 55.2065 m
z+ = 0.0593 m
x+ = −0.000370 m/s
y+ = 0.000189 m/s
z+ = −0.000025 m/s

 

2B 23,471.0 
xr
− = 0.0646 m
yr
− = 55.9080 m
ar
− = 0.7015 m
Er

− = 4.7124 rad
Az

− = 0.0638 m
ψ − = 1.9466 rad

 

0
0.000142

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.6170 m
yr
+ = 55.9080 m
ar
+ = 1.3087 m
Er

+ = 5.7175 rad
Az

+ = 0.0638 m
ψ + = 1.9466 rad
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Table 42:  ROE station-keeping maneuver 3B. 

 

x− = −0.0411 m
y− = 49.0173 m
z− = 0.0645 m
x− = −0.000446 m/s
y− = 0.000444 m/s
z− = −0.000020 m/s

 

 

x+ = −0.0411 m
y+ = 49.0173 m
z+ = 0.0645 m
x+ = −0.000519 m/s
y+ = 0.000087 m/s
z+ = −0.000020 m/s

 

3B 29,422.0 
xr
− = 0.6782 m
yr
− = 49.8629 m
ar
− = 1.6687 m
Er

− = 5.7518 rad
Az

− = 0.0673 m
ψ − = 1.8620 rad

 

−0.000072
−0.000358

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.0000 m
yr
+ = 50.0000 m
ar
+ = 0.9861 m
Er

+ = 4.7958 rad
Az

+ = 0.0673 m
ψ + = 1.8620 rad
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(a) 

 

(b) 

Figure 42:  ROE station-keeping scenario, (a) Relative position components as a function 

of time, (b) Relative velocity components as a function of time. 
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  (a)       (b) 

 

  (c)       (d) 

Figure 43:  ROE station-keeping scenario, (a) ŷ − x̂  projection, (b) ẑ − x̂  projection, (c) 

ẑ − ŷ  projection, (d) 3D trajectory plot. 
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   (a)      (b) 

   (c)      (d) 

Figure 44:  ROE station-keeping scenario, (a) xr as a function of time, (b) yr as a function 

of time, (c) ar as a function of time, (d) Az as a function of time. 
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Figure 45:  ROE station-keeping scenario, maneuver magnitudes. 

4.3  Relative Orbital Elements Transfer  

 The station-keeping sequence of maneuvers described in Section 2.5.3 and 

demonstrated in Section 4.2 may also be applied to execute a transfer to a specified 

leading or trailing orbit, by simply changing the values of the station-keeping constraints 

and the target location to reflect the desired values upon completion of the orbit transfer.  

An example of this scenario is summarized in Table 43.  The initial conditions are the 

same as those for the scenario described in Section 4.2, however, in this case the targeted 

station-keeping location is [x, y, z] = [0, 100, 0] m, and the along-track station-keeping 

constraints are updated to yrmin
= 95 m  and yrmax

= 105 m . 

 As shown in Table 44, the first two maneuvers in the sequence are performed at 

the same times as maneuvers 1A and 2A from the previous scenario.  Maneuver 1 is 
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performed to halt the secular along-track drift, and Maneuver 2 is performed at 

Er
− = 3π 2  to initiate a secular along-track drift that will cross the ŷ -axis at the desired 

location of y = 100 m one rev later (s = 1).  As shown in Table 45, Maneuver 3 halts the 

secular drift and establishes xr
+ = 0  and yr

+ = 100  m.  Maneuver 4 nullifies the cross-

track motion.  Due to the effect of orbit perturbations during the transfer, upon 

completion of the maneuver sequence there is a relative orbit about the targeted position, 

with ar = 1.5 m.   

 Figure 46 shows the relative position and velocity components as a function of 

time during the transfer.  Figure 46 shows the projections of the trajectory onto the 

coordinate planes, and the three-dimensional trajectory plot.  Figure 48 shows the time 

histories of xr, yr, ar, and Az, and the maneuver magnitudes as a function of time are 

shown in Figure 49. 

 This scenario demonstrates that the station-keeping strategy illustrated in Section 

4.2 may also be applied to execute relative orbit transfers to a leading or trailing orbit, by 

simply updating the target ŷ -locations and the along-track station-keeping constraints.  

The initial condition is arbitrary, and does not need to be on a leading or trailing orbit.  

Orbit perturbations have a modest, but non-negligible effect on the orbit transfer.  Once 

the transfer is completed, the automated station-keeping scenario is in effect, and residual 

errors will be corrected through the subsequent station-keeping maneuver sequences. 
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Table 43:  ROE transfer scenario. 

Cartesian 
x = 0.500 m
y = 50.000 m   
z = −2.000 m  

x = 0.000200 m/s
y = 0.000265 m/s
z = 0.000000 m/s

 

Initial Conditions 

ROEs 

xr = 2.502 m
yr = 49.621 m
ar = 4.022 m
Er = 0.094 rad
Az = 2.000 m
ψ = 4.712 rad

 

Station-Keeping Constraints 

yrmin
= 95.0000 m

yrmax
= 105.0000 m

Azmax
= 1.0000 m

 
Station-Keeping Targets 

x = 0.0000 m
y = 100.0000 m
z = 0.0000 m

 Station-Keeping Parameter s = 1
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Table 44:  ROE transfer maneuvers 1 and 2. 

 
Maneuver 
Number 

Maneuver 
Time 

(s) 

 
Pre-Maneuver 

State 

 
ΔV  

(m/s) 

 
Post-Maneuver 

State 

 

x− = 2.3747 m
y− = 48.2642 m
z− = −0.1109 m
x− = 0.002077 m/s
y− = −0.003761 m/s
z− = 0.002154 m/s

 

 

x+ = 2.3747 m
y+ = 48.2642 m
z+ = −0.1109 m
x+ = 0.002077 m/s
y+ = −0.004014 m/s
z+ = 0.002154 m/s

 

1 1,426.7 
xr
− = 2.3747 m
yr
− = 44.3291 m
ar
− = 3.9351 m
Er

− = 1.5708 rad
Az

− = 2.0437 m
ψ − = 6.2289 rad

 

0
−0.001254

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0 m
yr
+ = 44.3291 m
ar
+ = 6.1678 m
Er

+ = 2.4497 rad
Az

+ = 2.0437 m
ψ + = 6.2289 rad

 

 

x− = 0.0680 m
y− = 37.8716 m
z− = 1.5636 m
x− = −0.003215 m/s
y− = −0.000108 m/s
z− = −0.001309 m/s

 

 

x+ = 0.0680 m
y+ = 37.8716 m
z+ = 1.5636 m
x+ = −0.003215 m/s
y+ = −0.003587 m/s
z+ = −0.001309 m/s

 

2 3,591.9 
xr
− = 0.068 m
yr
− = 43.9615 m
ar
− = 6.0899 m
Er

− = 4.7124 rad
Az

− = 1.9955 m
ψ − = 2.2412 rad

 

0
−0.003480

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = −6.5240 m
yr
+ = 43.9615 m
ar
+ = 14.5225 m
Er

+ = 3.5743 rad
Az

+ = 1.9955 m
ψ + = 2.2412 rad
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Table 45:  ROE transfer maneuvers 3 and 4. 

 

x− = 0.1010 m
y− = 101.4825 m
z− = 1.5614 m
x− = −0.003276 m/s
y− = −0.003760 m/s
z− = −0.001395 m/s

 

 

x+ = 0.1010 m
y+ = 101.4825 m
z+ = 1.5614 m
x+ = 0.000783 m/s
y+ = −0.000213 m/s
z+ = −0.001395 m/s

 

3 9,543.4 
xr
− = 6.7183 m
yr
− = 107.6881 m
ar
− = 14.984 m
Er

− = 3.5686 rad
Az

− = 2.0454 m
ψ − = 2.2731 rad

 

0.0041
0.0035
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.0000 m
yr
+ = 100.0000 m
ar
+ = 1.4962 m
Er

+ = 1.7062 rad
Az

+ = 2.0454 m
ψ + = 2.2731 rad

 

 

x− = 0.6110 m
y− = 100.7523 m
z− = 0.0000 m
x− = 0.000333 m/s
y− = −0.001342 m/s
z− = −0.002247 m/s

 

 

x+ = 0.6110 m
y+ = 100.7523 m
z+ = 0.0000 m
x+ = 0.000333 m/s
y+ = −0.001342 m/s
z+ = 0.000000 m/s

 

4 10,364.0 
xr
− = −0.0985 m
yr
− = 100.1213 m
ar
− = 1.5530 m
Er

− = 2.7232 rad
Az

− = 2.1285 m
ψ − = 3.1416 rad

 

0
0

0.002247

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = −0.0985 m
yr
+ = 100.1213 m
ar
+ = 1.5330 m
Er

+ = 2.7232 rad
Az

+ = 0.0000 m
ψ + = 4.7124 rad
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(a)   

 

(b) 

Figure 46:  ROE transfer scenario, (a) Relative position components as a function of time, 

(b) Relative velocity components as a function of time. 
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Figure 47:  ROE transfer scenario, (a) ŷ − x̂  projection, (b) ẑ − x̂  projection, (c) ẑ − ŷ  

projection, (d) 3D trajectory plot. 
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      (a)       (b) 

      (c)       (d) 

Figure 48:  ROE transfer scenario, (a) xr as a function of time, (b) yr as a function of 

time, (c) ar as a function of time, (d) Az as a function of time. 
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Figure 49:  ROE transfer scenario, maneuver magnitudes. 

 

4.4  Relative Orbital Elements Transfer with Artificial Potential Function 

Obstacle Avoidance 

 In this scenario, the ROE station-keeping maneuver sequence is applied to 

complete a transfer from a leading orbit to a trailing orbit, while a repulsive APF (as 

described in Section 3.1) is used to ensure collision avoidance with the chief, represented 

as an obstacle located at the origin of the LVLH coordinate system.  This scenario is 

constructed to ensure that the repulsive APF is encountered.  As shown in Table 46, the 

transfer is from a leading orbit with yr = 50 m to a trailing orbit with target y = −50 m .  

The ROE station-keeping parameter s = 2 results in a drift phase that, if left unabated, 

would pass very close to the origin. 
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 As shown in Table 47, station-keeping Maneuver 1A sets xr
+ = 0 , and Maneuver 

2A initiates a secular drift in the negative along-track direction.  The drifting trajectory 

encounters the artificial potential field at a distance of 20 m from the origin, and the 

repulsive Maneuver 3-APF (Table 48) is performed which directs the post-maneuver 

relative velocity vector away from the origin.  The application of the APF-based 

maneuver truncates the station-keeping sequence of maneuvers.  Following the APF 

maneuver, station-keeping is re-initialized, and a series of three station-keeping 

maneuvers, 1B, 2B and 3B, are implemented as shown in Tables 48 and 49.  Upon the 

completion of Maneuver 3B, the relative orbit is centered on the desired location, 

xr ,  yr[ ] = 0,  50[ ]  m , with ar = 3.3 m .  No cross-track maneuvers are needed during this 

sequence. 

 Figure 50 shows the relative position and velocity components as a function of 

time during the transfer.  Figure 51 shows the projections of the trajectory onto the 

coordinate planes, and the three-dimensional trajectory plot.  The repulsive maneuver 

introduces a large semi-major axis of the relative motion, ar
+ = 90 m .  However, the 

subsequent station-keeping sequence of maneuvers is able to re-target the trajectory to the 

desired location.  Figure 52 shows the time histories of xr, yr, ar, and Az.  The maneuver 

magnitudes as a function of time are shown in Figure 53.  The largest maneuver is the 

repulsive Maneuver 3-APF, with a magnitude of 0.077 m/s.  The total ΔV utilization is 

0.145 m/s. 

 This scenario shows that ROE station-keeping and a repulsive APF may be used 

together to ensure collision avoidance while targeting a desired leading or trailing orbit.  

Even in this worst-case scenario, where the deputy is placed on a direct impact trajectory 

with the obstacle, the automated control algorithms are able to divert the trajectory away 

from the obstacle and continue on to reach the targeted location. 
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Table 46:  ROE transfer with APF obstacle avoidance scenario. 

Cartesian 
x = −1.8660 m   
y = 49.0000 m
z = 0.7071 m  

x = −0.0005279 m/s
y = 0.0034122 m/s
z = 0.0007465 m/s

 

Initial Conditions 

ROEs 

xr = −0.9985 m
yr = 50.0001 m
ar = 2.0003 m
Er = −0.5236 rad
Az = 1.0000 m
ψ = 0.7854 rad

 

Station-Keeping Constraints 

yrmin
= 95.0000 m

yrmax
= 105.0000 m

Azmax
= 1.0000 m

 
Station-Keeping Targets 

x = 0.0000 m
y = −50.0000 m
z = 0.0000 m

 
Obstacle Location 

x = 0.0000 m
y = 0.0000 m
z = 0.0000 m

 

APF Parameters 

kr = 1

Qr = I3x3

σ = 100
robs _ soi = 20 m
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Table 47:  ROE transfer with APF obstacle avoidance, maneuvers 1A and 2A. 

 
Maneuver 
Number 

Maneuver 
Time 

(s) 

 
Pre-Maneuver 

State 

 
ΔV  

(m/s) 

 
Post-Maneuver 

State 

 

x− = −2.0022 m
y− = 50.8249 m
z− = −0.9657 m
x− = 0.000000 m/s
y− = 0.003679 m/s
z− = −0.000248 m/s

 

 

x+ = −2.0022 m
y+ = 50.8249 m
z+ = −0.9657 m
x+ = 0.000000 m/s
y+ = 0.004227 m/s
z+ = −0.000248 m/s

 

1A 508.8 
xr
− = −1.0381 m
yr
− = 50.8249 m
ar
− = 1.9281 m
Er

− = 0.0000 rad
Az

− = 0.9939 m
ψ − = 4.4737 rad

 

0
0.000548

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.0000 m
yr
+ = 50.8249 m
ar
+ = 4.0043 m
Er

+ = 0.0000 rad
Az

+ = 0.9939 m
ψ + = 4.4737 rad

 

 

x− = −0.0548 m
y− = 54.6618 m
z− = −0.2823 m
x− = 0.002135 m/s
y− = 0.000009 m/s
z− = 0.001062 m/s

 

 

x+ = −0.0548 m
y+ = 54.6618 m
z+ = −0.2823 m
x+ = 0.002135 m/s
y+ = 0.002791 m/s
z+ = 0.001062 m/s

 

2A 1937.5 
xr
− = −0.0548 m
yr
− = 50.6169 m
ar
− = 4.0449 m
Er

− = 1.5708 rad
Az

− = 1.0446 m
ψ − = 6.0095 rad

 

0
0.002704

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 5.0685 m
yr
+ = 50.6169 m
ar
+ = 11.0160 m
Er

+ = 0.3760 rad
Az

+ = 1.0446 m
ψ + = 6.0095 rad

 

 



 189 

Table 48:  ROE transfer with APF obstacle avoidance, maneuvers 3-APF and 1B. 

 
Maneuver 
Number 

Maneuver 
Time 

(s) 

 
Pre-Maneuver 

State 

 
ΔV  

(m/s) 

 
Post-Maneuver 

State 

 

x− = 11.1709 m
y− = 16.4691 m
z− = 0.1587 m
x− = −0.003089 m/s
y− = −0.020586 m/s
z− = −0.001040 m/s

 

 

x+ = 11.1709 m
y+ = 16.4691 m
z+ = 0.1587 m
x+ = 0.004011 m/s
y+ = 0.006114 m/s
z+ = 0.000006 m/s

 

3-APF 5,021.2 
xr
− = 5.6850 m
yr
− = 22.3203 m
ar
− = 12.4345 m
Er

− = 3.6315 rad
Az

− = 0.9980 m
ψ − = 2.9819 rad

 

0.0071
0.0267
0.0011

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 56.2662 m
yr
+ = 8.8699 m
ar
+ = 90.5103 m
Er

+ = 0.0841 rad
Az

+ = 0.1685 m
ψ + = 1.2281 rad

 

 

x− = 55.8836 m
y− = −25.7734 m
z− = 0.1322 m
x− = 0.047540 m/s
y− = −0.088497 m/s
z− = −0.000177 m/s

 

 

x+ = 55.8836 m
y+ = −25.7734 m
z+ = 0.1322 m
x+ = 0.047540 m/s
y+ = −0.117996 m/s
z+ = −0.000177 m/s

 

1B 6,411.1 
xr
− = 55.8834 m
yr
− = −115.8339 m
ar
− = 90.0605 m
Er

− = 1.5708 rad
Az

− = 0.2132 m
ψ − = 2.4729 rad

 

0
−0.0295
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.0000 m
yr
+ = −115.8339 m
ar
+ = 143.5367 m
Er

+ = 2.4633 rad
Az

+ = 0.2132 m
ψ + = 2.4729 rad
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Table 49:  ROE transfer with APF obstacle avoidance, maneuvers 2B and 3B. 

 
Maneuver 
Number 

Maneuver 
Time 

(s) 

 
Pre-Maneuver 

State 

 
ΔV  

(m/s) 

 
Post-Maneuver 

State 

 

x− = −.0971 m
y− = −257.4803 m
z− = −0.3524 m
x− = −0.075572 m/s
y− = 0.000154 m/s
z− = −0.000171 m/s

 

 

x+ = −0.0971 m
y+ = −257.4803 m
z+ = −0.3524 m
x+ = −0.075572 m/s
y+ = −0.005656 m/s
z+ = −0.000171 m/s

 

2B 8,534.7 
xr
− = −0.0963 m
yr
− = −114.3149 m
ar
− = 143.1654 m
Er

− = 4.7124 rad
Az

− = 0.3877 m
ψ − = 4.2823 rad

 

0
−0.00581

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = −11.1035 m
yr
+ = −114.3149 m
ar
+ = 144.8478 m
Er

+ = 4.5598 rad
Az

+ = 0.3877 m
ψ + = 4.2823 rad

 

 

x− = −0.2142 m
y− = −46.7276 m
z− = −0.1071 m
x− = −0.075298 m/s
y− = −0.005439 m/s
z− = −0.000052 m/s

 

 

x+ = −0.2142 m
y+ = −46.7276 m
z+ = −0.1071 m
x+ = 0.001727 m/s
y+ = 0.000452 m/s
z+ = −0.000052 m/s

 

3B 20,438.0 
xr
− = −11.1610 m
yr
− = 95.9190 m
ar
− = 144.3170 m
Er

− = 4.5601 rad
Az

− = 0.1178 m
ψ − = 4.2826 rad

 

0.0770
0.0059
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
xr
+ = 0.0000 m
yr
+ = −50.0000 m
ar
+ = 3.30003 m
Er

+ = 1.4406 rad
Az

+ = 0.1178 m
ψ + = 4.2826 rad
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(a) 

 

(b) 

Figure 50:  ROE transfer scenario with APF obstacle avoidance, (a) Relative position 

components as a function of time, (b) Relative velocity components as a function of time. 



 192 

 

 

      (a)        (b) 

      (c)        (d) 

Figure 51:  ROE transfer scenario with APF obstacle avoidance, (a) ŷ − x̂  projection, (b) 

ẑ − x̂  projection, (c) ẑ − ŷ  projection, (d) 3D trajectory plot. 
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      (a)        (b) 

      (c)        (d) 

Figure 52:  ROE transfer scenario with APF obstacle avoidance, (a) xr as a function of 

time, (b) yr as a function of time, (c) ar as a function of time, (d) Az as a function of time. 
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Figure 53:  ROE transfer scenario with APF obstacle avoidance, maneuver magnitudes. 

4.5  Artificial Potential Function Targeting of Relative Orbital Elements 

 The APF targeting of a relative orbit geometry specified by a set of ROEs is 

demonstrated in this scenario.  The APF formulation described in Section 3.2.5 is used to 

target the ROEs xr, yr, ar, and Az.  The scenario is summarized in Table 50.  Initially, the 

deputy spacecraft is in a relative orbit centered on xr ,  yr[ ] = 0,  162.111[ ]  m , with 

ar = 37.888 m  and Az = 18.944 m .  The objective is to re-center the relative orbit to 

xr ,  yr[ ] = 0,  120[ ]  m , with ar = 60 m  and Az = 20 m . 

 During the 10,000 s simulation, it is seen that the APF is successful in targeting 

the specified ROEs.  Figure 54 shows the relative position and velocity components as a 

function of time.  Figure 55 shows the projection of the trajectory onto the coordinate 

planes, and the three-dimensional trajectory plot.  For comparison purposes, the trajectory 
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including all orbital perturbations is shown in blue, and the trajectory with no orbital 

perturbations is shown in red.  From Figure 55(a), it is seen that the progression from the 

initial orbit to the targeted orbit geometry is very smooth, with rapid convergence to the 

desired orbit.  The effect of orbital perturbations is most pronounced early in the 

trajectory, but once the APF control is exerted and the trajectory approaches the target 

ROE conditions, the effect of orbit perturbations on the controlled trajectory is minor.  

Figure 56 shows the time histories of xr, yr, ar, and Az.  The ROE time histories for the 

trajectory including all orbital perturbations are shown in blue, and for comparison the 

trajectory without the J2 – J6 gravitational spherical harmonics (but including all other 

orbital perturbations) is shown in red.  It is clear from Figure 56 that the gravitational 

spherical harmonics are the primary cause of the “drift” with time of the ROEs xr, ar, and 

Az, which are constant with time under the Clohessy-Wilshire assumptions.  At the 

conclusion of the 10,000 s simulation, each of the specified ROEs has a value that is 

within 0.2 m of the target value.  The maneuver magnitudes as a function of time are 

shown in Figure 57.  A maneuver is performed roughly every 300 s, with generally 

decreasing magnitude.  A spacing of 300 s between maneuvers is enforced within the 

simulation framework, to allow time for slews to the specified maneuver attitude.  It is 

noted that a minimum burn duration of 0.01 s is applied in the simulation, corresponding 

to a minimum ΔV of approximately 1E-04 m/s.    The total ΔV utilization in this scenario 

is 0.030 m/s. 

 This scenario shows that the APF targeting of ROEs can be successfully 

performed within an environment that includes orbital perturbations, and with realistic 

limitations on maneuver timing and maneuver magnitude.  Unlike previous APF 

approaches that target a relative range vector (as described in Section 3.1), this scenario 

shows that APFs may be used to effectively control the spacecraft to target a specified 

orbit geometry. 
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Table 50:  APF targeting of ROEs xd, yd, ar, Az. 

Cartesian 
x = 0 m  
y = 200 m  
z = 0 m   

x = 0.020 m/s
y = 0.000 m/s
z = 0.020 m/s

 

Initial Conditions 

ROEs 

xr = 0 m
yr = 162.111 m
ar = 37.888 m
Er = 1.5708 rad
Az = 18.944 m
ψ = 0 rad

 

Target ROEs 

xr = 0 m
yr = 120 m
ar = 60 m
Az = 20 m

 

APF Parameters 
ka = 1E − 07

Qa = I4 x4
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(a) 

 

(b) 

Figure 54:  APF targeting of relative orbital elements, (a) Relative position components 

as a function of time, (b) Relative velocity components as a function of time. 
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   (a)            (b) 

   (c)            (d) 

Figure 55:  APF targeting of relative orbital elements,  (a) ŷ − x̂  projection, (b) ẑ − x̂  

projection, (c) ẑ − ŷ  projection, (d) 3D trajectory plot. 
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      (a)            (b) 

      (c)            (d) 

Figure 56:  APF targeting of relative orbital elements, (a) xr as a function of time, (b) yr 

as a function of time, (c) ar as a function of time, (d) Az as a function of time. 
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Figure 57:  APF targeting of relative orbital elements, maneuver magnitudes. 

4.6  Artificial Potential Function Targeting of Relative Orbital Elements with 

Obstacle Avoidance 

 In this scenario, the same ROE targets are used as in Section 4.5, however an 

obstacle is inserted directly in the desired orbital path.  A repulsive APF it utilized to 

ensure obstacle avoidance, and the attractive APF restores the trajectory to the desired 

parameters.  To simplify visualization, no cross-track motion is modeled in this scenario.  

The obstacle is placed at x,  y,  z[ ] = 0,  60, 0[ ]  m.  The scenario is summarized in Table 

51. 

 The relative position and velocity components as a function of time are shown in 

Figure 58, and the trajectory in the x̂ − ŷ  plane is shown in Figure 59.  The effect of the 

repulsive potential is clearly apparent in Figure 59; repulsive maneuvers are performed 

twice during the simulation to control the trajectory away from the obstacle.  However, 

the attractive APF is able to restore the trajectory toward the targeted ROE values, as 

shown in Figure 60.  Because the obstacle is directly in the path of the desired orbit, the 

targeted ROEs cannot be precisely attained, however, the attractive APF persistently 
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controls the orbit in the direction of the desired ROE values.  The maneuver magnitudes 

are shown in Figure 61.  The largest maneuvers are the repulsive maneuvers, and each 

repulsive maneuver is followed by a large attractive maneuver to restore the trajectory 

toward the ROE targets.  The total ΔV utilization in this scenario is 0.415 m/s. 

 This scenario shows that attractive and repulsive APFs may be utilized together in 

a realistic environment to target a desired orbit geometry while providing persistent 

obstacle avoidance in an automated fashion.  Even in the worst-case scenario where the 

obstacle is placed directly in the desired orbit path, the control formulation provides 

bounded orbital motion that trends toward the goal. 
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Table 51:  APF targeting of ROEs xd, yd, ar, Az, with obstacle avoidance. 

Cartesian 
x = 0.0000 m   
y = 200.0000 m
z = 0.0000 m  

x = 0.020000 m/s
y = 0.000000 m/s
z = 0.000000 m/s

 

Initial Conditions 

ROEs 

xr = 0.0000 m
yr = 162.1114 m
ar = 37.8886 m
Er = 1.5708 rad
Az = 0.0000 m
ψ = 0.0000 rad

 

Target ROEs 

xr = 0.0000 m
yr = 120.0000 m
ar = 60.0000 m
Az = 0.0000 m

 

Obstacle Location 
x = 0.0000 m
y = 60.0000 m
z = 0.0000 m

 

APF Parameters 

ka = 1E − 07

Qa = I4 x4

kr = 1

Qr = I3x3

σ = 100
robs _ soi = 20 m
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(a) 

 

(b) 

Figure 58:  APF targeting of ROEs xd, yd, ar, Az, with obstacle avoidance, (a) Relative 

position components as a function of time, (b) Relative velocity components as a function 

of time. 
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Figure 59:  APF targeting of ROEs xd, yd, ar, Az, with obstacle avoidance, ŷ − x̂  

projection. 



 205 

 

         (a)             (b) 

 

 

(c) 

Figure 60:  APF targeting of ROEs xd, yd, ar, Az, with obstacle avoidance, (a) xr as a 

function of time, (b) yr as a function of time, (c) ar as a function of time. 
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Figure 61:  APF targeting of ROEs xd, yd, ar, Az, with obstacle avoidance, maneuver 

magnitudes. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1  Conclusions 

This work has presented a new methodology for automated trajectory control for 

relative proximity operations.  The methodology combines the geometric representation 

of relative orbits that is inherent to the relative orbital elements formulation with artificial 

potential functions to allow specified orbit geometries to be targeted in an automated 

fashion. 

A complete derivation of the relative orbital elements formulation is provided for 

the first time.  Geometric interpretation of the angular ROEs, Er and ψ, are developed, 

advancing the ROE formulation.  Key parameters related to ROEs are defined, including 

the new parameters relative true anomaly and relative inclination; introduction of these 

parameters strengthens the analogy between relative orbital elements and classical orbital 

elements.  Transformations between ROEs and the LVLH Cartesian state elements are 

derived, and expressions for the evolution of ROEs with time are presented.  The 

unforced relative motion trajectory is characterized in terms of ROEs.  Three primary 

modes of the motion are described in terms of the values for ROEs xr, ar, and Az.  The 

changes in ROEs due to a single impulsive maneuver are presented, and an evaluation of 

ROE variation based upon impulsive maneuver components is provided.  ROE-based 

control strategies are developed, and scenarios are presented including rendezvous, 

natural motion circumnavigation, and station-keeping in a leading or trailing orbit. 
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This work develops a new formulation for artificial potential functions that are 

expressed in terms of ROEs, in order to shape the trajectory along paths that utilize the 

natural motion established by the relative orbit dynamics, while targeting the desired 

relative orbit.  While previous approaches allowed targeting of a relative position, the 

ROE-based approach allows the targeting of an orbit geometry while retaining the 

computational simplicity of the APF approach.  Formulations for the APF targeting of 

individual ROEs, as well as simultaneous targeting of a set of ROEs, are established.  An 

approach for combining ROE targeting using APFs with obstacle avoidance is presented.  

Convergence of the APF algorithms to the targeted ROE values is evaluated using a 

Monte Carlo analysis, and convergence is consistently shown for attractive APFs, as well 

as attractive APFs combined with repulsive APFs for obstacle avoidance.  Maneuver 

magnitudes using the APF approach were evaluated relative to an optimized two-impulse 

transfer scheme using Clohessy-Wiltshire state transition matrices.  While there is no 

expectation of optimality for the APF-based approach, it is shown that, on average, the 

APF approach utilizes fifty percent more ΔV than the optimized Clohessy-Wiltshire state 

transition matrix approach. 

The performance of the trajectory control algorithms were evaluated using a 

realistic guidance, navigation and control simulation environment, including orbital 

perturbations such as third body effects, aerodynamic drag, and finite burn effects.  

Scenarios were evaluated, including ROE station-keeping, ROE transfers to leading or 

trailing orbits, ROE transfers with APF-based obstacle avoidance, and APF targeting of 

ROEs with and without APF-based obstacle avoidance.  In each scenario, the behavior of 

the trajectory control algorithm is consistent with expectations and the desired orbit 
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characteristics are met.  The control algorithms are shown to be capable of correcting for 

environmental disturbances to the trajectory. 

In summary, ROEs are shown to provide fundamental insight into the relative 

orbit geometry, providing a useful framework for mission planning and maneuver design.  

Artificial potential functions, formulated to target ROEs, provide a computationally 

efficient approach for controlling the spacecraft trajectory to the desired relative orbit 

geometry in an automated fashion. 

5.2  Suggestions for Future Work 

As discussed in Chapter 1, there are several different parameter sets for relative 

motion that have been developed previously, with various applications to orbital mission 

design.  A survey of relative motion formulations would be extremely useful, including 

transformations between relative motion parameter sets, where applicable.  In particular, 

a comparison of the ROE formulation presented in this work and classical orbital element 

approaches would be of interest. 

The ROE re-parameterization of the Clohessy-Wiltshire solution provides 

fundamental insight into the relative motion within the context of the underlying 

assumptions that the chief’s two-body orbit is circular, and the relative distance between 

the chief and deputy is much less than the chief’s orbit radius about the central body.  

Using a similar approach for the case where the chief is on an elliptical two-body orbit 

about the central body, a set of ROEs may be constructed that yield geometric insight into 

the relative motion.  The Tschauner-Hempel equations are a set of linearized equations 

expressed in the LVLH frame, representing the relative motion of a deputy about a chief 

on an elliptical orbit with arbitrary eccentricity [72].  The analytical solution of the 
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Tschauner-Hempel equations produces six independent fundamental solutions.  Sinclair 

et al provide a geometric interpretation of these solutions and define a set of constant 

parameters to characterize the relative motion [73]. Similarly, it may be possible to 

construct a set of ROEs for the parabolic chief problem that yields fundamental insight 

into the relative motion, with application for deep space and interstellar missions.  The 

analytical guidance methodologies presented in Chapter 2 may be compared with other 

similar approaches, including the constant-thrust impulse-shaping approach developed by 

Bevilacqua et al [49]. 

 The approach for APF targeting of ROEs presented in this work may be advanced 

to yield faster convergence to the desired orbit geometry.  In cases where targeting xr = 0 

simultaneously with yr, convergence may be slowed because as xr approaches zero, the 

rate of change of yr approaches zero.  As a result, it takes longer for yr to reach its 

targeted value.  An approach for “relaxation” of the xr target value, initially targeting 

non-zero values for xr and recursively reducing the magnitude of the xr target value as yr 

approaches the target, may yield significantly improved convergence times. 

 Approaches to optimize the ΔV utilization for APF-based targeting of ROEs may 

be pursued.  The ROE maneuver logic structure may be utilized to further constrain the 

maneuver locations such that the partial derivatives of the change in the ROEs with 

respect to the maneuver magnitudes are maximized.  Alternate formulations of the APFs 

to minimize maneuver magnitudes may be explored. 

 A promising application for the APF-based targeting of ROEs is the formation 

control of multiple spacecraft in orbit about a chief (or relative to a “virtual” chief).  In 

this work, the angular ROEs Er and ψ have not been explicitly targeted.  However, for 
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formation control, establishing and maintaining differences between the angular ROEs of 

the various spacecraft in the network may be necessary for establishing the desired 

formation orbit.    An approach for the APF-based collaborative control of a network of 

spacecraft in relative motion is a logical next step in this formulation. 

 As discussed in Chapter 4, this work evaluated effect of environmental 

disturbances on the performance of the automated trajectory control algorithms.  To 

extend the performance assessment, spacecraft-specific error sources should be included.  

Relative orbit determination error, attitude determination error, attitude control error, and 

maneuver execution errors may have a significant effect on the trajectory control 

performance.  Also, reaction wheel desaturation events may affect the timing of planned 

maneuvers.  Finally, robustness testing (e.g., “break it” testing) would be useful to 

determine how much margin is inherent to the control formulations presented herein.  A 

determination of the limitations of the trajectory control algorithms’ capability to correct 

for spacecraft error sources and environmental perturbations due to different orbit 

geometries would be highly useful prior to flight implementation. 
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APPENDIX A 

APPLICATION OF THE HARMONIC ADDITION THEOREM TO 

THE SOLUTION OF THE CLOHESSY-WILTSHIRE EQUATIONS 

 

A.1  Harmonic Addition Theorem 

 The Harmonic Addition Theorem states that a sum of sinusoidal functions of the 

form: 

 f θ( ) = Acosθ + Bsinθ  (A.1) 

can be written as a single sinusoid of the form: 

 f θ( ) = C cos θ + δ( )  (A.2) 

where 

 C = sgn A( ) A2 + B2  (A.3) 

and 

 δ = tan−1 −
B
A

⎛
⎝⎜

⎞
⎠⎟

 (A.4) 

This can be shown as follows.  Expanding Eq. (A.2) using trigonometric addition 

formulas: 

 f θ( ) = C cosθ cosδ − C sinθ sinδ  (A.5) 

Equating the coefficients of Eqs. (A.1) and (A.5) gives: 

 A = C cosδ  (A.6) 
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 B = −C sinδ  (A.7) 

Combining Eqs. (A.6) and (A.7), 

 tanδ =
sinδ
cosδ

= −
B C
A C

= −
B
A

,    A ≠ 0  (A.8) 

so 

 δ = tan−1 −
B
A

⎛
⎝⎜

⎞
⎠⎟

 (A.9) 

Also, from Eqs. (A.6) and (A.7), 

 A2 + B2 = C cosδ( )2 + −C sinδ( )2 = C 2  (A.10) 

Therefore, 

 C = ± A2 + B2  (A.11) 

To remove the sign ambiguity for C, from Eq. (A.6) it is seen that: 

 C =
A
cosδ

 (A.12) 

From the inverse tangent function in Eq. (A.4), it is evident that −
π
2
< δ <

π
2

, so 

cosδ > 0 .  Therefore, if A > 0, then C > 0, and the positive root is taken in Eq. (A.11).  

Similarly, if A < 0, then C < 0, and the negative root is taken.  Thus, Eq. (A.11) can be 

refined to: 

 C = sgn A( ) A2 + B2  ,   A ≠ 0  (A.13) 

Combining Eqs. (A.1) and (A.2), and substituting in Eqs. (A.9), (A.13) and (A.14) gives: 

 f θ( ) = Acosθ + Bsinθ = sgn A( ) A2 + B2 cos θ + tan−1 −
B
A

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,    A ≠ 0  
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  (A.14) 

From Eq. (A.1): 

 f θ( ) = Bsinθ,    A = 0  (A.15) 

A.2  Application of the Harmonic Addition Theorem to the Solution to the Clohessy-

Wiltshire Equations 

The position solution to the Clohessy-Wiltshire equations is given by Eqs. (49) through 

(51) as: 

  

x =
x0
n
sin n t − t0( )⎡⎣ ⎤⎦ − 3x0 +

2 y0
n

⎛
⎝⎜

⎞
⎠⎟
cos n t − t0( )⎡⎣ ⎤⎦ + 4x0 +

2 y0
n  (A.16) 

  

y =
2 x0
n
cos n t − t0( )⎡⎣ ⎤⎦ + 6x0 +

4 y0
n

⎛
⎝⎜

⎞
⎠⎟
sin n t − t0( )⎡⎣ ⎤⎦ − 6nx0 + 3 y0( ) t − t0( ) − 2 x0

n
+ y0

 

  (A.17) 

  

z =
z0
n
sin n t − t0( )⎡⎣ ⎤⎦ + z0 cos n t − t0( )⎡⎣ ⎤⎦

 (A.18) 

           

The Harmonic Addition Theorem, as stated in Eqs. (A.14) and (A.15), may be applied to 

Eqs. (A.16) through (A.18), in order to simplify the expressions and derive the standard 

form for the LVLH Cartesian states in terms of ROEs. 

A.2.1 Application of the Harmonic Addition Theorem to the x-Component of the 

Clohessy-Wiltshire Solution 

 The x-component of the Clohessy-Wiltshire solution expressed in Eq. (A.16) can 

be rewritten as: 

 x t( ) = xr + Acosθ + Bsinθ  (A.19) 

where, from Eq. (61): 
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xr = 4x0 +
2 y0
n  (A.20) 

 

and the coefficients and phase angle are defined using the form of Eq. (A.1) as: 

 
 

A = − 3x0 +
2 y0
n

⎛
⎝⎜

⎞
⎠⎟

 (A.21) 

 
 

B =
x0
n

 (A.22) 

 θ = n t − t0( )  (A.23) 

Equation (65) defines ar as: 

 
 

ar = 6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (A.24) 

By inspection, it is clear from Eqs. (A.21), (A.22) and (A.24) that 

 
ar
2
= A2 + B2  (A.25) 

The Harmonic Addition Theorem as expressed in Eq. (A.14) may be applied to Eq. 

(A.19), resulting in: 

 x t( ) = xr + sgn A( ) ar
2

cos θ + tan−1 B
−A

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,    A ≠ 0  (A.26) 

and Eq. (A.15) may be applied to Eq. (A.19) to give: 

 x t( ) = xr + Bsinθ,    A = 0  (A.27) 

Eqs. (A.26) and (A.27) will be evaluated for all combinations of values for A and B.  It 

will be shown that the following expression utilizing the atan2 function encompasses 
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both Eqs. (A.26) and (A.27), for all combinations of values for A and B except for A = 0 , 

B = 0 : 

 x t( ) = xr −
ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.28) 

For A = 0 , B = 0 , it will be shown that 

 x t( ) = xr  (A.29) 

A > 0, B ≥ 0 

For these conditions, −A < 0  and the function atan2 B,−A( )  is related to the inverse 

tangent function by: 

 atan2 B,−A( ) = tan−1 B
−A

⎛
⎝⎜

⎞
⎠⎟
+ π  (A.30) 

Substituting Eq. (A.30) into (A.26) gives: 

 x t( ) = xr + sgn A( ) ar
2
cos θ + atan2 B,−A( ) − π⎡⎣ ⎤⎦  (A.31) 

Noting that: 

 cos θ + atan2 B,−A( ) − π⎡⎣ ⎤⎦ = − cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.32) 

and since for these conditions sgn A( ) = 1 , substitution into Eq. (A.31) gives 

 x t( ) = xr −
ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.33) 

A > 0, B < 0 

For these conditions, −A < 0  and the function atan2 B,−A( )  is related to the inverse 

tangent function by: 
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 atan2 B,−A( ) = tan−1 B
−A

⎛
⎝⎜

⎞
⎠⎟
− π  (A.34) 

Substituting Eq. (A.34) into (A.26) gives: 

 x t( ) = xr + sgn A( ) ar
2
cos θ + atan2 B,−A( ) + π⎡⎣ ⎤⎦  (A.35) 

Noting that: 

 cos θ + atan2 B,−A( ) + π⎡⎣ ⎤⎦ = − cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.36) 

and since for these conditions sgn A( ) = 1 , substitution into Eq. (A.35) gives: 

 x t( ) = xr −
ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.37) 

A < 0, B unconstrained 

For these conditions, −A > 0  and the function atan2 B,−A( )  is related to the inverse 

tangent function by: 

 atan2 B,−A( ) = tan−1 B
−A

⎛
⎝⎜

⎞
⎠⎟

 (A.38) 

Substituting Eq. (A.38) into (A.26) gives: 

 x t( ) = xr + sgn A( ) ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.39) 

For these conditions, sgn A( ) = −1 , and substitution into Eq. (A.39) gives: 

 x t( ) = xr −
ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.40) 

A = 0, B > 0 

From Eq. (A.19), with A = 0 , 
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 x t( ) = xr + Bsinθ  (A.41) 

Solving Eq. (A.25) for B with A = 0  gives: 

 B =
ar
2

 (A.42) 

Also, 

 sin θ( ) = cos θ −
π
2

⎛
⎝⎜

⎞
⎠⎟
= − cos θ +

π
2

⎛
⎝⎜

⎞
⎠⎟

 (A.43) 

Substituting Eqs. (A.42) and (A.43) into (A.41) gives: 

 x t( ) = xr −
ar
2
cos θ +

π
2

⎛
⎝⎜

⎞
⎠⎟

 (A.44) 

For A = 0, B > 0, the atan2 function can be evaluated as: 

 atan2 B,−A( ) = π
2

 (A.45) 

Therefore, Eq. (A.44) can be written as: 

 x t( ) = xr −
ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.46) 

A = 0, B < 0 

From Eq. (A.19), with A = 0 , 

 x t( ) = xr + Bsinθ  (A.47) 

Solving Eq. (A.25) for B with A = 0  gives: 

 B =
ar
2

 (A.48) 

Also, 



 219 

 sin θ( ) = cos θ −
π
2

⎛
⎝⎜

⎞
⎠⎟

 (A.49) 

Substituting Eqs. (A.48) and (A.49) into (A.47) gives: 

 x t( ) = xr −
ar
2
cos θ −

π
2

⎛
⎝⎜

⎞
⎠⎟

 (A.50) 

For A = 0, B < 0, the atan2 function can be evaluated as: 

 atan2 B,−A( ) = −
π
2

 (A.51) 

Therefore, Eq. (A.50) can be written as: 

 x t( ) = xr −
ar
2
cos θ + atan2 B,−A( )⎡⎣ ⎤⎦  (A.52) 

A = 0, B = 0 

From Eq. (A.19), with A = 0 , B = 0 , it is seen that: 

 x t( ) = xr  (A.53) 

It is noted that this is the only case where the x-component of the LVLH position vector 

cannot be represented by Eq. (A.28), since atan2(0, 0) is generally undefined.  However, 

when coding in MATLAB, the atan2(0, 0) function is evaluated as zero.  Since, from Eq. 

(A.25), ar = 0 for A = 0 , B = 0 , Eq. (A.28) will evaluate correctly to x t( ) = xr  using 

MATLAB. 

A.2.2 Application of the Harmonic Addition Theorem to the y-Component of the 

Clohessy-Wiltshire Solution 

 The y-component of the Clohessy-Wiltshire solution expressed in Eq. (A.17) can 

be rewritten as: 

 y t( ) = yr + Acosθ + Bsinθ  (A.54) 
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where, from Eq. (62): 

 
 

yr = y0 −
2 x0
n

− 6nx0 + 3 y0( ) t − t0( )  (A.55) 

The coefficients and phase angle are defined using the form of Eq. (A.1) as: 

 
 

A =
2 x0
n

 (A.56) 

 
 

B = 6x0 +
4 y0
n

 (A.57) 

 θ = n t − t0( )  (A.58) 

Equation (65) defines ar as: 

 
 

ar = 6x0 +
4 y0
n

⎛
⎝⎜

⎞
⎠⎟
2

+
2 x0
n

⎛
⎝⎜

⎞
⎠⎟
2

 (A.59) 

By inspection, it is clear from Eqs. (A.56), (A.57) and (A.59) that 

 
ar
2
= A2 + B2  (A.60) 

The Harmonic Addition Theorem as expressed in Eq. (A.14) may be applied to Eq. 

(A.54), resulting in: 

 y t( ) = yr + sgn A( )ar cos θ + tan−1 −
B
A

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,    A ≠ 0  (A.61) 

which is equivalent to: 

 y t( ) = yr + sgn A( )ar cos θ − tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,    A ≠ 0  (A.62) 

Eq. (A.15) may be applied to Eq. (A.54) to give: 

 y t( ) = yr + Bsinθ,    A = 0  (A.63) 
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Eqs. (A.62) and (A.63) will be evaluated for all combinations of values for A and B.  It 

will be shown that the following expression utilizing the atan2 function encompasses 

both Eqs. (A.61) and (A.62), for all combinations of values for A and B except for A = 0 , 

B = 0 : 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.64) 

For A = 0 , B = 0 , it will be shown that 

 y t( ) = yr  (A.65) 

A > 0, B > 0 

For these conditions, with A > 0, B > 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
=
π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.66) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟

 (A.67) 

Substituting Eqs. (A.66) and (A.67) into (A.62) gives: 

 y t( ) = yr + sgn A( )ar cos θ −
π
2
+ atan2 A,B( )⎡

⎣⎢
⎤
⎦⎥

 (A.68) 

Noting that: 

 cos θ −
π
2
+ atan2 A,B( )⎡

⎣⎢
⎤
⎦⎥
= sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.69) 

and since for these conditions sgn A( ) = 1 , substitution into Eq. (A.68) gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.70) 
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A > 0, B = 0 

For these conditions, with A > 0, B = 0, from Eq. (A.54) we can write: 

 y t( ) = yr + Acos θ( )  (A.71) 

The function atan2 A,B( )  with A > 0 and B = 0 is evaluated as: 

 atan2 A,B( ) = π
2

 (A.72) 

From Eq. (A.60), 

 ar = A  (A.73) 

Substituting Eqs. (A.72) and (A.73) into (A.71) gives: 

 y t( ) = yr + ar cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.74) 

Also, 

 cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥
= sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.75) 

Substituting Eq. (A.75) into (A.74) with sgn(A) = 1 gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.76) 

A > 0, B < 0 

For these conditions, with A > 0, B < 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
= −

π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.77) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
+ π  (A.78) 
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Substituting Eqs. (A.77) and (A.78) into (A.62) gives: 

 y t( ) = yr + sgn A( )ar cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.79) 

Also, 

 cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥
= sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.80) 

Substituting Eq. (A.80) into (A.79) with sgn(A) = 1 gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.81) 

A < 0, B > 0 

For these conditions, with A < 0, B > 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
= −

π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.82) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟

 (A.83) 

Substituting Eqs. (A.82) and (A.83) into (A.62) gives: 

 y t( ) = yr + sgn A( )ar cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.84) 

Also, 

 cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥
= − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.85) 

Substituting Eq. (A.85) into (A.84) with sgn(A) = -1 gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.86) 
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A < 0, B = 0 

For these conditions, with A < 0, B = 0, from Eq. (A.54) we can write: 

 y t( ) = yr + Acosθ  (A.87) 

The function atan2 A,B( )  with A < 0 and B = 0 is evaluated as: 

 atan2 A,B( ) = −
π
2

 (A.88) 

From Eq. (A.60), 

 ar = −A  (A.89) 

Substituting Eqs. (A.88) and (A.89) into (A.87) gives: 

 y t( ) = yr − ar cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.90) 

Also, 

 cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥
= − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.91) 

Substituting Eq. (A.91) into (A.90): 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.92) 

A < 0, B < 0 

For these conditions, with A < 0, B < 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
=
π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.93) 

The function atan2 A,B( )  is related to the inverse tangent function by: 
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 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
+ π  (A.94) 

Substituting Eqs. (A.93) and (A.94) into (A.62) gives: 

 y t( ) = yr + sgn A( )ar cos θ + atan2 A,B( ) − 3π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.95) 

Also, 

 cos θ + atan2 A,B( ) − 3π
2

⎡
⎣⎢

⎤
⎦⎥
= − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.96) 

Substituting Eq. (A.96) into (A.95) with sgn(A) = -1 gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.97) 

A = 0, B > 0 

For these conditions, with A = 0, B > 0, from Eq. (A.63), 

 y t( ) = yr + Bsinθ,    A = 0  (A.98) 

Solving Eq. (A.25) for B with A = 0  gives: 

 B = ar  (A.99) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
= 0  (A.100) 

Substituting Eqs. (A.99) and (A.100) into (A.98) gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.101) 

A = 0, B < 0 

For these conditions, with A = 0, B < 0, from Eq. (A.63), 



 226 

 y t( ) = yr + Bsinθ,    A = 0  (A.102) 

 

Solving Eq. (A.25) for B with A = 0  gives: 

 B = −ar  (A.103) 

 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
+ π = π  (A.104) 

Substituting Eqs. (A.103) and (A.104) into (A.102) gives: 

 y t( ) = yr − ar sin θ + atan2 A,B( ) − π⎡⎣ ⎤⎦  (A.105) 

Also, 

 sin θ + atan2 A,B( ) − π⎡⎣ ⎤⎦ = − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.106) 

Substituting Eq. (A.106) into (A.105) gives: 

 y t( ) = yr + ar sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.107) 

A = 0, B = 0 

For these conditions, with A = 0, B = 0, from Eq. (A.63), 

 y t( ) = yr  (A.108) 

It is noted that this is the only case where the y-component of the LVLH position vector 

cannot be represented by Eq. (A.64), since atan2(0, 0) is generally undefined.  However, 

when coding in MATLAB, the atan2(0, 0) function is evaluated as zero.  Since, from Eq. 

(A.25) ar = 0 for A = 0 , B = 0 , Eq. (A.64) will evaluate correctly to y t( ) = yr  using 

MATLAB. 
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A.2.3 Application of the Harmonic Addition Theorem to the z-Component of the 

Clohessy-Wiltshire Solution 

 The z-component of the Clohessy-Wiltshire solution expressed in Eq. (A.18) can 

be rewritten as: 

 z t( ) = Acosθ + Bsinθ  (A.109) 

where the coefficients and phase angle are defined using the form of Eq. (A.1) as: 

 A = z0  (A.110) 

 
 

B =
z0
n

 (A.111) 

 θ = n t − t0( )  (A.112) 

Equation (68) defines Az  as: 

 
 

Az = z20 +
z0
n

= A2 + B2  (A.113) 

The Harmonic Addition Theorem as expressed in Eq. (A.14) may be applied to Eq. 

(A.109), resulting in: 

 z t( ) = sgn A( )Az cos θ + tan−1 −
B
A

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,    A ≠ 0  (A.114) 

which is equivalent to: 

 z t( ) = sgn A( )Az cos θ − tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,    A ≠ 0  (A.115) 

 

Eq. (A.15) may be applied to Eq. (A.97) to give: 
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 z t( ) = Bsinθ,    A = 0  (A.116) 

Eqs. (A.115) and (A.116) will be evaluated for all combinations of values for A and B.  It 

will be shown that the following expression utilizing the atan2 function encompasses 

both Eqs. (A.115) and (A.116), for all combinations of values for A and B except for 

A = 0 , B = 0 : 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.117) 

For A = 0 , B = 0 , 

 z t( ) = 0  (A.118) 

A > 0, B > 0 

For these conditions, with A > 0, B > 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
=
π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.119) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟

 (A.120) 

Substituting Eqs. (A.119) and (A.120) into (A.115) gives: 

 z t( ) = sgn A( )Az cos θ −
π
2
+ atan2 A,B( )⎡

⎣⎢
⎤
⎦⎥

 (A.121) 

Noting that: 

 cos θ −
π
2
+ atan2 A,B( )⎡

⎣⎢
⎤
⎦⎥
= sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.122) 

and since for these conditions sgn A( ) = 1 , substitution into Eq. (A.121) gives: 
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 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.123) 

A > 0, B = 0 

For these conditions, with A > 0, B = 0, from Eq. (A.109), 

 z t( ) = Acosθ  (A.124) 

From Eq. (A.113), with B = 0, 

 Az = A  (A.125) 

The function atan2 A,B( )  is evaluated as: 

 atan2 A,B( ) = π
2

 (A.126) 

Substituting Eqs. (A.125) and (A.126) into (A.124) gives: 

 z t( ) = Az cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.127) 

Also, 

 cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥
= sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.128) 

Substituting (A.128) into (A.127) gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.129) 

A > 0, B < 0 

For these conditions, with A > 0, B < 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
= −

π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.130) 

The function atan2 A,B( )  is given by: 
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 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
+ π  (A.131) 

Substituting Eqs. (A.130) and (A.131) into (A.115) gives: 

 z t( ) = sgn A( )Az cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.132) 

Also, 

 cos θ + atan2 A,B( ) − π
2

⎡
⎣⎢

⎤
⎦⎥
= sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.133) 

Substituting Eq. (A.133) into (A.132) with sgn(A) = 1 gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.134) 

A < 0, B > 0 

For these conditions, with A < 0, B > 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
= −

π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.135) 

The function atan2 A,B( )  is given by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟

 (A.136) 

Substituting Eqs. (A.135) and (A.136) into (A.115) gives: 

 z t( ) = sgn A( )Az cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.137) 

Also, 

 cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥
= − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.138) 
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Substituting Eq. (A.138) into (A.137) with sgn(A) = -1 gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.139) 

A < 0, B = 0 

For these conditions, with A < 0, B = 0, from Eq. (A.109), 

 z t( ) = Acosθ  (A.140) 

From Eq. (A.113), with B = 0, 

 Az = −A  (A.141) 

The function atan2 A,B( )  is evaluated as: 

 atan2 A,B( ) = −
π
2

 (A.142) 

Substituting Eqs. (A.141) and (A.142) into (A.140) gives: 

 z t( ) = −Az cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.143) 

Also, 

 cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥
= − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.144) 

Substituting (A.144) into (A.143) gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.145) 

A < 0, B < 0 

For these conditions, with A < 0, B < 0, 

 tan−1 B
A

⎛
⎝⎜

⎞
⎠⎟
=
π
2
− tan−1 A

B
⎛
⎝⎜

⎞
⎠⎟

 (A.146) 
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The function atan2 A,B( )  is given by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
− π  (A.147) 

Substituting Eqs. (A.146) and (A.147) into (A.115) gives: 

 z t( ) = sgn A( )Az cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥

 (A.148) 

Also, 

 cos θ + atan2 A,B( ) + π
2

⎡
⎣⎢

⎤
⎦⎥
= − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.149) 

Substituting Eq. (A.149) into (A.148) with sgn(A) = -1 gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.150) 

A = 0, B > 0 

For these conditions, with A = 0, B > 0, from Eq. (A.109), 

 z t( ) = Bsinθ  (A.151) 

From Eq. (A.112), with A = 0, 

 Az = B  (A.152) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
= 0  (A.153) 

Substituting Eqs. (A.152) and (A.153) into (A.151) gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.154) 
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A = 0, B < 0 

For these conditions, with A = 0, B < 0, from Eq. (A.109), 

 z t( ) = Bsinθ  (A.155) 

From Eq. (A.113), with A = 0, 

 Az = −B  (A.156) 

The function atan2 A,B( )  is related to the inverse tangent function by: 

 atan2 A,B( ) = tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
+ π  (A.157) 

Since tan−1 A
B

⎛
⎝⎜

⎞
⎠⎟
= 0 , from Eq. (A.157) it is seen that: 

 atan2 A,B( ) − π = 0  (A.158) 

Substituting Eqs. (A.156) and (A.158) into (A.155) gives: 

 z t( ) = −Az sin θ + atan2 A,B( ) − π⎡⎣ ⎤⎦  (A.159) 

Also, 

 sin θ + atan2 A,B( ) − π⎡⎣ ⎤⎦ = − sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.160) 

Substituting (A.160) into (A.159) gives: 

 z t( ) = Az sin θ + atan2 A,B( )⎡⎣ ⎤⎦  (A.161) 

A = 0, B = 0 

For these conditions, with A = 0, B = 0, it is clear from Eq. (A.109) that: 

 z t( ) = 0  (A.162) 
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It is noted that this is the only case where the z-component of the LVLH position vector 

cannot be represented by Eq. (A.117), since atan2(0, 0) is generally undefined.  However, 

when coding in MATLAB, the atan2(0, 0) function is evaluated as zero,  so, for A = 0 , 

B = 0 , Eq. (A.117) will evaluate correctly to z t( ) = 0  using MATLAB. 
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