Dynamic Authentication for High-Performance Networked Applications

This work was funded by DARPA, Aasert grant DAAHO04-96-1-0209. Patent pending.

Phyllis A. Schneck and Karsten Schwan

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
phyllis,schwan@cc.gatech.edu

February 6, 1998

Abstract

Both government and business are increasingly in-
terested in addressing the growing threats tmposed
by the lack of adequale informalion securily. Con-
sistent with these efforts, our work focuses on the
integrity and protection of information exchanged in
high-performance networked computing applications
such as video teleconferencing and other streamed
interactive data exchanges. For these applications,
security procedures are often omitted in the inter-
est of performance. Since this may not be accept-
able when using public communications media, our
research makes explicit and then utilizes the inher-
ent tradeoffs in realizing performance vs. security
in communications. In this paper, we expand the
notion of QoS to include the level of security that
can be offered within performance and CPU resource
availability constraints. To address performance and
security tradeoffs in asymmetric and dynamic client-
server environments, we developed Authenticast, a
dynamically configurable, user-level communications
protocol, offering variable levels of security through-
out execution. The Authenticast protocol comprises
a suile of heuristics to realize dynamic securily lev-
els, as well as heuristics that decide when and how
to apply dynamic security.

To demonstrate this protocol, we have imple-
mented a protoltype of a high performance privacy
system. We have developed and experimented with a
novel security control abstraction with which trade-

offs in security vs. performance may be made ex-
plicit and then utilized with dynamic client-server
asymmeltries. This abstraction is called a security
thermostat [12], and interacts directly with Authen-
licast to enable adaptive securily processing. Qur
results demonstrate overall increased scalability and
improved performance when adaptive security is ap-
plied to the client-server platform with varying num-
bers of clients and varying resource avatlabilities at
clients.

1 Introduction

Both government and business are increasingly in-
terested in addressing the growing threats imposed
by the lack of adequate information security. Con-
sistent with these efforts, our work focuses on the
integrity and protection of information exchanged in
high-performance networked computing applications
such as video teleconferencing and other streamed
interactive data exchanges. For these applications,
security procedures are often omitted in the inter-
est of performance. Since this may not be accept-
able when using public communications media, our
research makes explicit and then utilizes the inher-
ent tradeofls in realizing performance vs. security
in communications. In this paper, we expand the
notion of QoS to include the level of security that
can be offered within performance and CPU resource
availability constraints.

Performance/security tradeoffs in communica-
tions are exacerbated by asymmetries in host vs.
client resource availability. For example, consider
a client-server streamed application with multiple

connections from a server to clients that differ both
in capability and in their current availability of re-
sources. Moreover, there may be differences required
by individuals across connections. This results in
several problems. First, to maintain appropriate lev-
els of communication performance and security, the
server must be cognizant not only of client capabil-
ities, but also of dynamic resource availabilities at
those clients. Second, as security needs change, dy-
namic adjustments must be made across both server
and clients for high performance across multiple se-
cure connections being maintained. Finally, resource
availabilities also vary as new connections are added
and older connections terminate.

To address performance and security tradeoffs in
asymmetric and dynamic client-server environments,
we developed Authenticast, a dynamically config-
urable, user-level communications protocol, offering
variable levels of security throughout execution. The
Authenticast protocol comprises a suite of heuris-
tics to realize dynamic security levels, as well as
heuristics that decide when and how to apply dy-
namic security. Authenticast tracks security levels
specified by each connection, and treats this as a
user-level system resource component of a user’s re-
quested QoS.

To demonstrate this protocol, we have imple-
mented a prototype of a high performance privacy
system [14] with strong public key security which en-
ables experimentation with strongly-authenticated
video transmission. Using this prototype, we have
developed and experimented with a novel security
control abstraction with which tradeoffs in security
vs. performance may be made explicit and then uti-
lized with dynamic client-server asymmetries. This
abstraction is called a security thermostat [12], and
interacts directly with Authenticast. In transmis-
sions which require security operations at the clients,
we show performance improvements when using the
security thermostat with multimedia streams. For
these transmissions, we develop heuristics that en-
able the thermostat to do selective, per-packet au-
thentication, accompanied by mechanisms that pro-
vide end users with feedback to control the level
of security of the data they are currently receiving.
Security level is defined as the percentage of data
that are authenticated — thus the percentage of data
whose origin is verified before those data are pro-
cessed by the client. Heuristics vary security levels
to remain within a user-specified range, while adapt-
ing to changing CPU resource availabilities.

In summary, Authenticast, with its security ther-
mostat concept and dynamic authentication heuris-
tics results in adaptive security processing. The
applications benefiting from adaptive security are
those in which it is possible to authenticate a user-
specified percentage of the data being processed,

without rendering the application unusable due to
performance degradation. For example, an interac-
tive video conference may be MPEG-encoded and
distributed to interested parties. Some parts of
the conference may contain sensitive issues. Those
frames may be signed, indicating to receivers that
they may want to verify the signed frames before
playout for proof of origination. Dynamic security
levels enable selective authentication. Furthermore,
the same video conference may contain time-crucial
information, where it is more important to receive
some partially-authenticated data immediately, even
though the security level is lower. Adaptive security
offers the ability to make such dynamic security and
performance tradeoffs.

A second set of applications for which adaptive
levels of security may be of use are distributed air
traffic control systems. Here, streams of data are
sent to various clients, each potentially requiring dif-
ferent levels of authentication, depending on the sen-
sitivity of the data being transmitted over a partic-
ular connection. At the same time, performance in
terms of timely data distribution is crucial to the
correct usage of these time-critical distributed ap-
plications.

The heuristics presented herein provide users of
such applications the option to lower the priority of
security to enhance performance, with the stipula-
tion that security will be provided whenever it is
not harmful to performance. Both services may be
provided when client resources are plentiful. During
times of increased load, security can be decreased,
within user specification, in favor of more timely
communications.

Current trends in electronic commerce are leading
toward the use of security level categories to identify
groups of connections or even individual transactions
that require certain amounts of security. This cre-
ates another context for the use of dynamic security
levels. For example, for a transaction to succeed,
a receiver/client may demand a greater level of se-
curity than what is originally offered by the sender,
thus forcing the sender to sign a greater number of
packets so that they may be verified upon receipt.
Increased signing consumes resources, and thus per-
formance implications for that particular transaction
or for other transactions involving the same sender.
Our heuristics address these implications by offer-
ing options to 1) dynamically adjust CPU resource
allocations as needed, and 2) remain within a user-
specified security range even in situations of lesser
resource availability.

We note that the purpose of our work is not to pro-
vide standards to identify and label security levels or
categories. Instead, we aim to expand the notion of
QoS to include system resource availability for, as
well as to demonstrate the feasibility of, adaptive

security. The opportunities and tradeoffs presented
by adaptive security methods are demonstrated with
a common distributed application, streamed authen-
ticated data.

Our work comprises the following contributions:

e We develop the dynamically configurable Au-
thenticast communications protocol offering
variable levels of security throughout execution
within a given range, permitting modifications if
necessary. Authenticast comprises the dynamic
authentication heuristics presented herein, and
it is responsible for the non-user-driven deci-
sions for changes in heuristics in response to
CPU resource availability changes. The Au-
thenticast protocol also serves as CPU resource
manager, in comparison to the the DRRM [13],
which manages network resources.

e We improve platform scalability and perfor-
mance of secure communications in a hetero-
geneous client-server environment. This is
achieved by developing the concept of the Se-
curity Thermostat [12] which enables dynamic
runtime modification of securityLevel for
each connection by communicating with Au-
thenticast. The thermostat setting is mapped to
a user-level QoS specification expressing a range
of permissible security levels.

e We provide feedback to end users depicting the
security level of the data presented to them.

Our results, detailed in Section 5, demonstrate
overall increased scalability and improved per-
formance when adaptive security is applied to
the client-server platform with varying numbers
of clients and varying resource availabilities at
clients.

The remainder of this paper is as follows:

Section 2 presents some work related to our re-
search. Section 3 discusses the flexible authentica-
tion capabilities that our heuristics provide for end
users. Section 4 presents the overall architecture of
the Authenticast protocol, the rationale for some de-
cisions we make on implementation and metrics, and
detailed descriptions of the dynamic authentication
heuristics that we offer. We present our experimen-
tation results and discuss some lessons learned in
Section 5, and our conclusions and future work di-
rections are in Section 6.

2 Related Work

Numerous systems, protocols, and user applications
are currently being enhanced to provide greater se-

curity and thus increased flexibility for systems and
end-users.

[12] details the concept of the security thermostat
as well as how this is coupled with the Authenti-
cast dynamic authentication protocol. This paper
explores the topic of adaptive security, by develop-
ment of and experimentation with runtime heuristics
that modify the security thermostat in response in
response to changes in client behavior as needed.

In comparison to varied levels of security, a large
body of work has been done addressing the cate-
gorization of other application behaviors into “lev-
els”. For example, Huard, Inoue, Lazar and Ya-
manaka address traffic classes in [5], where network
services are mapped to traffic classes as defined by
the COMET group. There exists substantial indi-
cation that future trends in network security may
lead to “security classes,” creating the need for sim-
ilar mappings in the security context, such as those
presented in our work in this paper. [5] also ad-
dresses adaptive mechanisms by which a host may
dynamically adjust its parameters to prevent QoS
violation. Our work addresses adjustments that also
encompass security as part of overall QoS. We pro-
vide user-level heuristics to best use the allocation
of resources provided in a resource reservation pro-
tocol, as defined in [2]. However, we also leave room
for renegotiation as defined in [13].

Nahrstedt and Steinmetz present further schemes
for dynamic resource allocation in networked mul-
timedia systems in [11]. Our work, although it
addresses CPU resources rather than network re-
sources, is similar in spirit to that presented in [11].
We are expanding on this dynamic adaptation trend
to provide for security processing.

SECMPEG [10], has some parallels with Authen-
ticast in that it offers varied levels of security for en-
crypted MPEG. SECMPEG includes the capability
to encrypt only the most important and significant
data, in order to improve performance. In compari-
son, we are addressing not only when and how to ap-
ply security but also how to deal with asymmetries in
multiple clients receiving secure media streams. In
addition, the SECMPEG security levels are based
on the types of MPEG frames encrypted. Although
we are currently investigating selective authentica-
tion based on frame type, we emphasize the provi-
sion of dynamic user and application-driven varied
security levels for any type of application that could
desire modified security levels during application ex-
ecution.

Varied levels of security are also employed in the
MPEG player described by Campbell et al in [8],
which also considers the issue of security vs. perfor-
marnce, yet focuses on encryption whereas we empha-
size authentication. As with [10], [8] also employs

information, such as frame type, to select the par-
ticular frames to be encrypted. Extensions of our
work with authentication could use similar tactics
for dynamically identifying frames to be verified.

3 Enabling Flexible Authentica-
tion

Security requirements vary with information sensi-
tivity and user desires. The ability to comply with
user-specified requirements varies with available host
CPU resources, and, in some cases, network re-
sources. By providing a flexible authentication ca-
pability, we can more closely tailor authentication
provision to these categories. Tailoring combined
with variable security adaptation allows us to ad-
dress cases where security functionality may be sac-
rificed in exchange for improved performance.

Three main functions provided by strong public
key authentication® are 1) proof of user identity, 2)
data integrity, and 3) non-repudiation, which is pos-
itive proof that a given set of data were sent by
a given user, and that a user cannot deny sending
those data. User identity and proof of identity come
from the verification of data by a receiving host.

When both a public and private key are used, the
sender signs data with his private key, and the re-
ceiver “verifies” those data upon receipt with the
public key of the sender. If the verification algo-
rithm does not produce the result that would come
from applying the correct public/private key pair,
then the proof of identity and/or data integrity can-
not be guaranteed for those data. Assuming that
the receiver has the correct public key, then a failed
verification indicates that the sender did not have
the correct private key (and thus may not have been
who he/she claims to be!) or that the data changed
in transit. Neither case is acceptable to a receiver
that desires proof of data origin or integrity. In ad-
dition, this public/private key authentication tactic

can also provide non-repudiation.? Since we know by

'"We note that data integrity and authentication may be
provided at much less computational cost with only message
digests [9] and no signature or verification overheads. How-
ever, this will not satisfy those users whose transactions re-
quire strong public key authentication, or a method that can
fully guarantee proof of origination (message digest functions
cannot always offer this guarantee due to collisions in hash
functions). Often, policies dictate strong security, even if
CPUs cannot comply. Therefore, we use strong public key au-
thentication to demonstrate and highlight the tradeoffs that
come with the highest levels of data security.

2We do not provide the adjudication process or third-party
judge [9] to enable the non-repudiation service; we employ

definition that the sender is ostensibly the only party
with the sender’s private key, then a sender can-
not deny having sent any data that verify as having
been signed with that sender’s private key. Strong
authentication often has significant system resource
requirements, depending on the frequency of sign-
ing and verifying, the algorithms employed, and the
lengths of the keys used.

Our work in flexible authentication provides the
following capabilities:

e Parametric variation at two levels:

1. Choosing a dynamic authentication heuris-
tic
A user may select from a suite of dynamic
authentication heuristics detailed in Sec-
tion 4.3, providing a full range of authen-
tication frequencies as well as performance
improvements.

2. Parameterizing heuristic behavior

The user may select security QoS ranges
(such as security level), require that one
heuristic take precedence over another, or
leave these tasks to the automated option
provided.

e Choosing an authentication algorithm and pa-
rameters (e.g., key and key length)

A user (or the automatic heuristic) may choose
to employ any of these above authentication tac-
tics using different signing and verification com-
putation algorithms, such as RSA [9] and DSA.
[9] These algorithms differ in their on-line sign-
ing and verification processing overheads; RSA
is sender-heavy, whereas DSA imposes a higher
load on the receiver.

In this paper, we explore conditions in which the
use of certain algorithms is warranted, and we char-
acterize those environments in order to better tai-
lor authentication services to performance require-
ments. We demonstrate how certain heuristics that
dynamically modify security levels or change security
algorithms can allow applications to execute with a
specified degree of strong authentication while avoid-
ing many of the performance bottlenecks often asso-
ciated with these type of security procedures. Exper-
imental results in Section 5 illustrate specific trade-
offs with flexibility, overall security level, and the
performance implications of both.

public key algorithms so that the mechanisms are in place
should a user decide to support non-repudiation.

4 Implementation

4.1 Authenticast: User-Level Dynamic Au-
thentication Protocol

4.1.1 Architecture

Sending Hosts Regeiving Hosts /

\
\ \ ————— Parametric Changes — — - - / /

Authenticast Control Panel

4
r

Authenticast Protocol l

| f

Dynamic Resource
Reservation Manager

Underlying Communications Medium

Figure 1: Position of Authenticast protocol in overall
implementation architecture

Users interact with Authenticast by issuing com-
mands and viewing feedback via the security ther-
mostat (this expansion of the thermostat concept
can be considered an “Authenticast Control Panel”),
shown in Figure 2. These interactions are where pa-
rameter changes (e.g. security level or heuristic) are
issued. For instance, if the user chooses to allow the
protocol to manage all adjustments given a specified
range, then the user can enter that range into the
thermostat as well.

Authenticast and its applications communicate
with the underlying network medium through the
Dynamic Resource Reservation Manager [13]. The
DRRM provides the capability to renegotiate a new
connection without interrupting application execu-
tion. This is used to implement the Secret Key
Connection (also referred to as “Secure Connec-
tion”) heuristic, in which authentication is used
in connection negotiation. The DRRM provides
a secure connection and facilitates the connection
change with no visible interruption in service to the
application or user. A Secret Key Connection is only
created at a user’s request.

4.1.2 Why software?

Our dynamic authentication heuristics are imple-
mented in software, as are the algorithms (DSA and
RSA) that we employ to create and verify digital
signatures. We chose software implementation over
hardware (e.g. algorithms on “smart cards”) for the
following reasons:

e Flexibility

One of the options we offer in dynamic authen-
tication is an on-line change in algorithm, key,
or algorithm parameters. This cannot be done
with hardware. Furthermore, a software im-
plementation allows users to employ their own
(e.g., company proprietary) security algorithms
which may not be available in hardware.

e Performance

CPU speeds are increasing faster than mem-
ory speed. This implies that hardware-based
security coprocessors will experience increasing
overloads due to memory performance. Non-
CPU processing could create potential bottle-
necks and may also cause unacceptable reduc-
tions in CPU processing speeds due to caching
effects.

4.2 Performance Metrics

We measure performance based on information re-
tention, which we quantify as the percentage of pack-
ets that are received, verified, and successfully pro-
cessed. When a client cannot compute verification
algorithms fast enough to take in all of the data ar-
riving from the network, we experience information
loss. It is this loss that affects overall application
performance.

We measure security-based CPU load (on the
server or on one of the clients) as the number of
securily operations performed over time. Consider
the following scenario: A client is receiving and pro-
cessing five different data streams, where only one
stream requires the verification of all packets re-
ceived and the other streams require the verification
of one out of every ten packets received. We use the
rate at which packets are received from each stream
and the percentage of packets to be verified to derive
a value for the number of security operations (verifi-
cations in this case) per second metric. The security-
based load on the CPU at that client may end up be-
ing far less than that at another client receiving only
three streams, where each of those three streams de-
mands that every packet be verified. Since these se-
curity operations are highly computation-intensive,
the security-based load has a far greater effect on the

overall CPU load than sending, receiving, or even
playing out data.

Experimental results not reported in this paper
validate the effect of CPU overload on multimedia
transmission. For example, when our ATM client-
server connections have been granted the necessary
bandwidth reservation, non-secure transmissions im-
posed no user-recognizable additional load due to
CPU overhead. As security operations were added,
we selected particular hosts that became unable to
maintain packet processing rates when also faced
with the added computational load of signing and
verifying operations.

4.3 Heuristics

This section provides descriptions of the various
heuristics used to enable dynamic authentication.
Table 1 provides a comparison of these as well. We
do not include the Algorithm Change heuristic in
this table, because all of the heuristics herein can
support either the DSA or the RSA algorithm, and,
as we discuss later, a user may choose not to permit
algorithm changes at all.

1. Percentage-based Authentication

We define percentage-based verification as ver-
ifying a certain percentage of packets before
those data can be processed. This percent-
age is dynamic, and can be modified by the
user through the GUI illustrated in Figure 2, or
automatically changed by an adaptive heuris-
tic that modifies this value with changes in
system resource availability or user require-
ments. Percentage-based verification directly
trades performance vs. security level.

2. Delayed Authentication

This provides an option to decrease the verifi-
cation frequency of received information with-
out reducing the overall level of authentication
that is performed. Thus, every incoming packet,
or whatever fraction the user specifies, will be
verified before playout. Received information
is accumulated in a buffer (size chosen by the
user), and when that buffer fills, all of the re-
ceived information is authenticated in one verifi-
cation operation. The verification of this larger
buffer takes no more time than the verification
of a single received packet. This is because all
data to be verified are hashed [9], which com-
presses them to a standard size, independent of
how much data are hashed. For example, the
product of hashing 90 packets’ worth of data is
the same size as the result of hashing a single
packet’s data. The disadvantage of this method

is that the receiver may choose not to process
data as they come in, but, instead wait until
they are all verified. Further, if one data packet
does not verify, then the whole buffer must be
discounted and possibly re-transmitted. The
advantage is that every received datum is veri-
fied at a significantly-reduced processing cost.

There are two inherent tradeoffs in the Delayed
Authentication heuristic. First, since a large
number of packets may be verified at once, if
just one of those packets was incorrect, then the
entire group may not be processed. Thus, per-
formance may be lost in that a loss of a large
amount of streamed data causes an interrup-
tion potentially visible and annoying to a user.
This scenario is characterized as “loss risk” in
Table 1. The second disadvantage to Delayed
Authentication is end-to-end delay. This delay,
the time spent for a given packet from trans-
mission at the sender to playout at the receiver,
increases for each packet because that packet
waits for all of the other packets in its authen-
tication group to arrive before it can finally be
verified and processed. However, in neither case
does the user sacrifice any security.

. Secret Key Connection

This heuristic, invoked only at user request, pro-
vides the option to use a “secret key” [9] shared
between a given sender and receiver, instead of
a public and private key for each. This secret
key, known only by that sender and receiver
pair, can be used to scramble data. The secu-
rity algorithm processing overhead with this ap-
proach is significantly reduced from that of the
DSA and RSA signing and verification proce-
dures, yet the use of a shared secret key does not
provide non-repudiation, explained in Section 3.
Since the key is known by both the sender and re-
ceiver, the sender can actually deny that certain
data were sent and may choose to blame the re-
ceiver. If users do not require non-repudiation,
then they may choose to enhance their perfor-
mance by selecting the secret key authentica-
tion method over public/private key pairs. In
fact, Authenticast can orchestrate this change
using the DRRM [13], if agreed upon by both
hosts, during application execution, and it will
indicate to both hosts when the change occurs.
The process of obtaining this new connection is
discussed in Section 4.1.1.

. Algorithm change

Certain authentication algorithms such as DSA
are more computation-intensive in verification,
which is done at the client. Further, DSA can
actually be extremely efficient in the signing,
because signature generation requires a single

(- D

W4 D

Figure 2: Expanded Security Thermostat: Authenticast Control Panel

modular exponentiation [9], which can be pre-
computed and, thus, not consume CPU cycles
during application execution. Other algorithms,
such as RSA, have the opposite load and are
more computation-intensive in signing, done by
the server.

The algorithm change heuristic exploits the
fact that DSA and RSA have these respective
“heavy” CPU requirements at opposite ends. In
situations of extremely scarce resource availabil-
ity at one end of a connection, performance can
be enhanced by using a heuristic that is less of
a burden to the already overloaded host. For
example, if a stream is currently being signed
and verified using DSA, and the client does not
have adequate CPU cycles to complete the re-
quired verifications, our heuristics allow RSA to
be used to sign and verify that stream instead
of DSA. In effect, this shifts the heavy security
burden for that stream from the client to the
server.

When an algorithm change is signaled (either by
the user or by a trigger in the heuristics), the
sender immediately begins signing packets using
the new algorithm and sets the algorithm flag in
the packet header to match the new algorithm.
Upon receiving packets, the client always looks
at the algorithm flag and verifies the incoming
data based on that flag. Thus, in the case of an
algorithm switch, the receiver would simply ver-
ify using the new algorithm as soon as it started
receiving packets with the algorithm flag reflect-
ing the change. A key point to note here is that
there is no interruption in signing or verifying,

and thus no heuristic-based decrease in security.
Further, a user always has the option to specify
“no algorithm change.”

We emphasize that we use the Algorithm
Change option sparingly. There are frequently
policies in place for certain applications that re-
quire a specific algorithm, therefore not permit-
ting such a change. It is important to note that
the other heuristics presented are independent
of the algorithm being used, and exploit char-
acteristics of the operations being performed.

4.4 Benefits comparison of Dynamic Au-
thentication Heuristics

Table 1 compares the advantages and disadvantages
to using byPercentage Authentication, Delayed Au-
thentication, or establishing a Secret Key Connec-
tion. “Loss Risk” refers to the probability not being
able to process an entire “bundle” of packets that
were signed together, as a result of a failed verify
operation. In this case, even if only one packet is
in error, the whole bundle is assumed unable to be
authenticated and those data must be retransmitted
to be used. Such instances can great interruption in
playout equal or greater than that related to security
processing. A higher bundle size clearly means that
more data is at risk for being unusable due to an
unsuccessful verification. Delayed Authentication is
the only heuristic presented that poses this problem,
yet it also has the advantage of offering the 100%
security level with very few security operations re-
quired. “Enable QoS” refers to the level of QoS the

Heuristic Non-Repudiation | Loss Risk Enable QoS SecurityLevel
byPercentage YES LOW varies with % | 0 - 100%
Delayed Authentication | YES varies with bundle size | YES 100%

Secret Key Connection | NO LOW YES 100%

Table 1: Comparison of benefits of dynamic authentication heuristics

heuristic can generally offer to the user.

4.5 Adaptive Authentication: Protocol-
Driven Combination of Percentage-
based Authentication, Delayed Authentica-
tion, and Algorithm Change

The Adaptive Authenticalion heuristic is designed
to employ a combination of percentage-based and
delayed authentication based on current system re-
source availability. The Authenticast protocol makes
the modifications, triggered by changes in applica-
tion behavior or system load. All modifications are
made within user-specified ranges. For example, se-
curity level may be decreased during periods of high
system load, but that level of authentication will
never drop below some user-specified minimum.

In many cases, when security operations are de-
creased, the security level decrease is temporary,
and, when the client stops losing packets due to CPU
overload, delayed authentication may be reinstated
with a larger group size, thereby restoring the secu-
rity level to its state before the overload.

In this adaptive authentication heuristic, a stream
may start out at full per-packet verification, us-
ing delayed authentication and signing and verifying
packets in groups. If performance degrades, then the
receiver senses gaps in sequence numbers of pack-
ets successfully verified and processed. In response,
security level is decreased. There are two types of
“gaps”: The first type is that the receiver is pro-
cessing a packet with a sequence number® less than
the sequence number of the most recent packet sent
by the server. The second type is that the receiver
senses that the sequence number of the packet it is
currently processing is greater than one more than
the sequence number of the very last packet it pro-
cessed. Authenticast tracks this information and
will note either case as a potential cause for action.
Upon sensing a gap, the heuristic switches from de-
layed authentication to percentage-based authenti-
cation, clearly with a percentage of less than 100%

FFEach packet is given an “Authenticast sequence number,”
which is part of the Authenticast control information sent with
each packet [12], and is independent of any sequencing identi-
fication assigned at the network level

but greater than any user-specified minimum per-
centage.

When the server notes a server-client performance
disparity (one or both sides cannot maintain perfor-
mance with the current security level request, and
this is signaled when DELTA exceeds LIMIT?*), the
first remedy applied is generally to switch to Delayed
Authentication with a packet group size greater than
10 (if Delayed Authentication is already being used,
then the heuristic would increase the size of the
group of packets that are signed and verified as a
unit). This allows the system to provide 100% veri-
fication, thus not decreasing whatever value the user
had specified, yet it also requires far fewer signing
and verification operations than even the lowest level
of byPercentage (10% authentication). In order to
recover from a performance imbalance such as one
signified by (DELTA > LIMIT), we must allow the
lagging host(s) to catch up, and thus sharply de-
crease the amount of security operations required.

Once the sender and receiver stabilize, we can go
to a greater frequency of verification by either de-
creasing packet group size for Delayed Authentica-
tion, or by switching to the byPercentage heuristic
for greater than 10% authentication.

We do not incorporate the option of algorithm
change into the heuristic algorithm flow for two rea-
sons: 1) The heuristic shown is independent of the
particular algorithm being applied and 2) a user may
specify a particular algorithm must be used, and
therefore we cannot rely on algorithm change as a
principle remedy for performance disparity.

We do implement algorithm change in cases where
a complete workload shift from one host CPU to
another would benefit both the satisfaction of user
security requests for a given stream as well as perfor-
mance of the overall client-server system, including
other streams.

Dynamic adaptation as described above does not

4(Note that we define LIMIT to be a system-specific maxi-
mum performance disparity between the server and client host.
The value of LIMIT is unique to each server-client pair, as it
is dependent on available resources on each host. LIMIT is
a conservative value, in that performance disparities must be
caught before they cause problems visible to the user. Exper-
imentation has shown that these situations generally worsen
with time, but can be remedied if caught early.)

Rete
300 400 500

200

100

T T T T T
0 500 1000 1500 2000 2500

Packet Sequence Number

Figure 3: Example: An unacceptable Stream

create negative security implications for the user, be-
cause 1) using Delayed Authentication (even though
large packet group sizes may lead to increased risk
of one bad packet requiring many packets to be
resent) never decreases security level, 2) the user
may request that the percentage of packets that are
authenticated before being processed is never de-
creased, and 3) a change in authentication frequency
or heuristic does not create result in any type of ser-
vice interruption nor does it result in security level
ever decreasing below the range specified by the user
at the beginning of the stream.

5 Experimental Results

5.1 Client-Server Environment Configu-
ration

Our experimentation uses a dual 148-mhz processor
Sun UltraSparc as the server. Experiment use up
to seven clients, consisting of three additional dual-
processor UltraSparcs identical to the server, as well
as four single 167-mhz processor UltraSparcs. This
hardware configuration comprises a heterogeneous
client-server platform. We impose loads on various
clients while they are receiving data streams. This
creates dynamic changes in client resource availabil-
ity.

The data transmitted are MPEG video segments,
and they are streamed from the server to the
client(s). Playout in each case would occur at the
client as the stream is received. However, when
measuring performance results, such playout pro-
cesses are not performed, as this additional process
would cloud the actual data processing and verifica-
tion times, thereby eliminating the results by pertur-
bating the evaluation of the Authenticast protocol
heuristics.

5.2 Heuristic Performance

Figure 3 depicts the case of a single connection,
where the receiver is attempting to verify data too
often, and thus cannot keep up with incoming pack-
ets. The receiver’s buffers fill and this results in an
effective data loss. In Figure 3, the x-axis represents
time over the entire video stream transmission, de-
picted by packet sequence number. The y-axis por-
trays whether a certain packet is retained. A value
of 100 indicates that the packet is processed at the
receiver, and a value of 0 indicates a loss. In this
case, the receiver performs more verification opera-
tions than its CPU can handle, and thus produces an
unacceptable stream. Therefore, Figure 3 illustrates
a stream transmission with sufficient loss to render
playout of the video infeasible.

100

Percentage Retained

0 20 40 60 80 100

SECURITY LEVEL: Percentage of Data Verified

Figure 4: Variation of Information Retention Verifi-
cation Percentage: 5 Clients

Figure 4 shows how information retention in-
creases as verification frequency decreases. In this
plot, the x-axis represents security level as the “per-
centage of data verified.” The y-axis is the percent-
age of packets processed by the receiver. These mea-
surements are based on data streams sent from a sin-
gle server to five clients. Several trials are performed
at each security level, and the results pictured repre-
sent averages. Figure 4 shows that when verification
frequency is sufficiently low (under 20 percent) for
this particular platform, then information retention
is reasonable. However, if a user requires a greater
level of security, then the “by-percentage” heuristic
alone is not sufficient to satisfy security and perfor-
mance requirements.

Figure 5 demonstrates two concepts. First, it de-
picts the effectiveness of delayed authentication as
the number of clients varies. The x-axis ranges from
one to five clients, and the y-axis indicates informa-
tion retained. For this plot, we use a bundle size of
3, meaning we authenticate three packets at once.
Note that this is not equivalent to using the “by-
percentage” heuristic at a security level of 33 per-
cent. Delayed authentication requires an additional
signature. The sender signs each packet individually
to preserve the ability of the receiver to change to
the “by-percentage” heuristic at any time. However,
in delayed authentication, the sender must also pro-

Percentage Retained

3

Number of Clients

Figure 5: Variation of Information Retention in De-
layed Authentication with Number of Clients

duce a signature for the entire bundle. This slows the
sending rate and effectively buys the receiver more
time to catch up. In fact, as the number of clients in-
creases, so does the number of additional signatures,
explaining the upward trend in retention with num-
ber of clients. Therefore, the retention in delayed au-
thentication surpasses that of “by-percentage.” This
also demonstrates the second insight from Figure 5:
an increased number of clients also contributes to
a lower sending rate on each connection and thus
improves client packet retention.

100

Percentage Retained

3

Number of Clients

Figure 6: Variation of Information Retention in
Adaptive Heuristic with Number of Clients

Figure 6 illustrates retention as it increases with
number of clients when a combination of “by-
percentage” and “delayed authentication” is applied.
This plot again represents an average of retention in
several trials for each number of clients. The trans-
missions start by applying delayed authentication
with a bundle size of 3. The “blend” heuristic forces
the security level down to below 20 percent once it
senses that the receiver is lagging, as described in
Section 4.3. When the receiver catches up and ap-
pears stable, the heuristic reverts back to delayed au-
thentication (to maintain overall security level), but
with a larger bundle size than before, since the re-
ceiver cannot handle the original, lower bundle size.
This blend of heuristics is done automatically by Au-
thenticast, and differs for each connection varying
with system load parameters. The current security

10

level is always visible to the user through the Au-
thenticast Control Panel shown in Figure 2. Figure 6
illustrates the improved performance of Authenticast
compared to the more simplistic approaches in Fig-
ure 4 and Figure 5.

The “diagnosis” of needing improved performance
is presented in Figure 7, Figure 8, and Figure 9.
These three plots are produced from the same stream
as the 1-client case in Figure 6.

s

-

T T T T T
500 1000 1500 2000 2500

Packet Sequence Number

Figure 7: Variation in Sender-Receiver Processing
Disparity Due to Heuristic Changes in Security Level

Figure 7 is a plot of the gap between sender
progress and receiver progress, thus the sender-
receiver disparity over time. Time, the x-axis in this
plot, is defined by the number of packets that have
been received so far at the client.

This plot, when compared to Figure 8 and Figure 9
demonstrates that higher gaps in sender-receiver
progress trigger Authenticast to lower security level.
Figure 7, when directly compared to Figure 8, fur-
ther demonstrates that, if gaps are allowed to grow
too large, this results in the client’s inability to re-
tain packets.

Figure 8 shows the data retention over the life of
the stream, where the x-axis represents packet se-
quence number and a y-axis value of 100 indicates
that the packet was retained. The information loss
at this client occurs approximately between pack-
ets 2250 and 2500. Note the correlation between
this loss and the increase in security level at these
same packets in Figure 9. Looking at the progress
gaps in Figure 7, we also demonstrate that, for this
platform, a gap in sender-receiver progress of under
100 packets led to stable performance. As that gap
rose, triggered by the increased security level, per-
formance degraded.

5.3 Performance Overhead of Heuristics

Although the execution of dynamic authentication
heuristics themselves does consume CPU resources,
this has no affect on application performance rela-
tive to security operations. In experimentation, we

300 400 500

Rete
200

100

B

T
2500

T T T T
500 1000 1500 2000

Packet Sequence Number

Figure 8: Greater Retention Over Time with Adap-
tive Heuristic

100

Current Security Level

T T T T T
500 1000 1500 2000 2500

Packet Sequence Number

Figure 9:
Stream

Security Level Variation Throughout

streamed data from the server to clients and invoked
all of the heuristic operations outlined in the previ-
ous pseudocode without actually executing any secu-
rity operations. We saw no user-recognizable appli-
cation performance degradation in these trials.

5.4 Lessons Learned

To mitigate performance tradeoffs with user-
requested security, neither the “by-percentage”
hueristic nor the “delayed authentication” heuris-
tic is sufficient on its own. We see the sharp per-
formance degradation with “by-percentage” in Fig-
ure 4. If a user requests 100 percent security, that
will often not yield suitable application performance.
Delayed authentication, with a sufficiently large bun-
dle size will provide that 100 percent security level
and high performance, but large bundle sizes lead to
increased end-to-end per-packet playout delays.

To fulfill the overall security requests, if secu-
rity level must be decreased, then we must keep
that security level low for the shortest possible time.
We have discovered through experimentation with
blending “by-percentage” and “delayed authentica-
tion” that, for this platform, a drastic reduction
in security level as soon as sender-receiver progress
gaps are detected is significantly more effective than
more frequent, conservative decreases. Frequently,

11

these large decrease gives that receiver the chance
to “catch up,” while the sender-receiver progress gap
is not yet irreversibly large. Although the blended
heuristic does sacrifice security level at certain points
in the stream, it does minimizes “exposure time” to a
user-specified level, and produces a considerable im-
provement in performance over the “by-percentage”
heuristic alone.

All of the experiments herein use the DSA algo-
rithm for authentication, which, as mentioned ear-
lier, is a greater burden to the receiver than to the
sender. We are currently expanding our platform to
demonstrate scalability on many more clients. In the
final version of this work, we will also demonstrate
results based on both DSA and RSA with a signif-
icantly larger number of clients, likely also demon-
strating improvements in scalability due to bottle-
necks.

6 Conclusions and Future Work

The Authenticast communication protocol provides
adaptive security for interprocess communications.
When using it with a client-server application, vary-
ing numbers of clients, and varying resource avail-
abilities at clients, improvements in scalability and
application performance are attained compared to
non-adaptive approaches. Flexibility concerning se-
curity is attained using its Security Thermostat ab-
straction. Such flexibility is shown useful for both
servers and clients. The server can exploit it to
increase the security offered when communication
rates decrease, since lower communication rates per-
mit clients to do increased security processing for
each channel. Clients can exploit flexibility in secu-
rity vs. performance to balance playout rates and
the resulting timeliness of displayed images against
the security of the data being displayed.

The explicit control of security as well as the feed-
back to end users concerning realized levels of se-
curity are supported by a graphical user interface
and by user-accessible application interfaces. With
these interfaces, users have the capability to access
the Security Thermostat to specify acceptable se-
curity ranges and to modify security levels at any
time during an application’s execution. Typically,
however, security modifications within pre-specified
ranges are performed by heuristic algorithms which
attempt to realize suitable tradeoffs in performance
vs. security throughout an application’s execution.
The Authenticast system offers multiple such heuris-
tics, thereby addressing the diverse needs of different
underlying security methods and variations in end
user needs.

Our future work on adaptive authentication

heuristics includes defining a mapping of security
level to end-results of the application. Instead of
reading feedback from the control panel, we envision
a method by which to integrate security state into
the video playout itself for immediate visual realiza-
tion of security or lack thereof in data being played
out.

In addition, we are currently devising algorithms
for the dynamic optimization of CPU resource al-
location between the server and all of the clients.
As security demands change on a per-stream ba-
sis, resource requests vary as well. Our challenge
is to make the most efficient use of resources at all
points, without the overhead of the optimization
heuristics themselves causing further performance
degradation. Another interesting topic for future re-
search is the interaction of the security thermostat
QoS metrics with other metrics, such as jitter, that
are of known interest to the networking community.
As noted previously, we are also expanding our plat-
form to demonstrate the scalability of our flexible
authentication heuristics to a much wider environ-
ment, such as a campus backbone.

References

[1] I. Agi and L. Gong. An empirical study of se-
cure mpeg video transmission. In Symposium
on Nelwork and Distributed Systems Securily.
IEEE, 1996.

A. Campbell, C. Aurrecoechea, and L. Hauw.
A review of qos architectures. In Proceedings of
4th IFIP International Workshop on Qualily of
Service, IWQS5°96, March 1996.

W.D. Diffie and M.E. Hellman. New directions
in cryptography. IEEF Transactions on Infor-
mation Theory, 22(6), November 1976.

ATM Forum. Atm user-network interface (uni)
signalling specification 3.1. PTR Prentice Hall,
1993.

J.F. Huard, I. Inoue, A. A. Lazar Lazar, and
H. Yamanaka. Meeting qos guarantees by end-
to-end qos monitoring and adaptation. In
Workshop on Multimedia and Collaborative En-
vironments of the Fifth IEEFE International
Symposium On High Performance Dislributed
Computing (HPDC-5). IEEE, August 1996.

J.F. Huard and A.A. Lazar. On qos mapping
in multimedia networks. In 21th IFEF Annual
International Computer Software and Applica-
tion Conference (COMPSAC "97). IEEE, Au-
gust 1997.

12

[7] D. Le Gall. Mpeg: A video compression stan-
dard for multimedia applications. Communica-
tions of the ACM, 34(4), April 1991.

Y. Li, Z. Chen, S. Tan, and R. Campbell.
Security enhanced mpeg player. Department
of Computer Science, Universily of Illinois at
Urbana-Champaign, 1996.

A.J. Menezes, P.C. van Qorschot, and S. A.
Vanstone. Handbook of Applied Cryptography.
CRC Press, Inc., 1997.

[8]

J. Meyer and F. Gadegast. Security mechanisms
for multimedia-data with the example mpeg-
i-project. Project description of SECMPEG,
1995.

K. Nahrstedt and Steinmentz. R. Resource
management in multimedia networked systems.
In Jim Cavanagh, editor, Handbook of Multime-
dia Networking, pages 381-405. Auerbach Pub-
lications, 1995.

P. Schneck and K. Schwan. Authenticast: An
adaptive protocol for high-performance, secure.
Technical Report GIT-CC-97-22, Network Ap-

plicationsGeorgia Institute of Technology, At-
lanta, GA 30332-0280, July 1997.

P. Schneck, E.W. Zegura, and K. Schwan.
Drrm: Dynamic resource reservaion manager.
In International Conference on Computer Com-
munications and Nelworks. IEEE, 1996.

[13]

[14] Bruce Schneier. Cryptography, security, and the
future. Communications of the ACM,40(1):138,

January 1997.

