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SUMMARY 
 
 
 
 Noninvasive monitoring of tissue engineered constructs would provide insightful 

information concerning the cell-mediated alterations in structure and metabolism that can 

dramatically affect the overall efficacy of an implant.  Viable cell number is a common 

parameter used to characterize cellularized tissue engineered constructs.  Common 

methods employed for quantifying viable cell number are destructive, invasive, or 

indirect.  Although these techniques provide some information regarding the overall 

status of the tissue engineered construct, noninvasive methods that allow for the temporal 

assessment of viable cell number and construct structural integrity, both in vitro and in 

vivo, would provide a valuable tool in the field of tissue engineering.   

 While recent advancements in imaging modalities and molecular probes have 

garnered significant attention, the focus of this research was to utilize tools that would 

allow for assessment without requiring the addition of extrinsic markers or probes.  For 

this study, 1H Nuclear Magnetic Resonance (NMR) imaging and spectroscopy was 

selected as the methodology of choice, based on its ability to extrude both structural and 

metabolic information using signals inherent to cells and their surrounding environment.  

1H NMR imaging was used to capture general structural features of the tissue engineered 

substitute, while 1H NMR spectroscopy monitored signals arising from the cells.  The 1H 

NMR spectroscopy signal of total-choline (TCho) was measured and its ability to provide 

accurate quantitative assessment of viable cell number was investigated.  To test the 

applicability of this method, the bioartificial pancreas was selected as the model tissue 

engineered construct and βTC3 cells were used as the tested cells. 
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 One of the initial challenges in this study was to establish that accurate TCho signal 

may be collected from the βTC3 cells under both in vitro and in vivo conditions.  Given 

the generality of the TCho signal to mammalian cells, localized 1H NMR techniques were 

utilized to assist in focusing the NMR signal within the βTC3 cells in the construct.  

Although many construct designs were studied in this research, the most promising 

design consisted of an agarose planar disk-shaped construct, which retained the βTC3 

cells within a definable volume.  An outer agarose layer surrounding the disk was added 

for in vivo studies to further isolate the βTC3 cells from surrounding host tissue.  

Mathematical simulations were employed to characterize diffusive transport of nutrients 

and metabolites into and out of the construct, while in vitro construct studies assessed the 

secretory function and viable cell number of the entrapped cells over a time period of two 

weeks.  In vivo tests were also conducted to examine the effectiveness of the agarose 

implants in diabetic C57BL/6J mice.  While the implants were found to decrease blood 

glucose levels, their overall effectiveness in restoring normoglycemia was minimal.  

These results were primarily attributed to low viable cell numbers within the implants, 

due to either the implementation of the buffer layer or activation of the host response.  

Overall, however, the architectural features of the construct design were found to permit 

the collection of TCho signal from the implanted cells without contamination from the 

surrounding environment in vitro and in vivo.   

 While the construct design and NMR acquisition techniques allowed for the 

collection of a 1H NMR spectrum uncontaminated by surrounding cells, solutes from the 

surrounding environment could diffuse into the porous agarose construct and some were 

detectable in the localized spectrum.  The diffusion of glucose into the agarose construct, 
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while desirable in providing nutrients to the entrapped cells, caused errors in TCho 

measurements at the cell densities and glucose concentrations examined in this study.  In 

order to account for glucose contamination effects, post-acquisition methods were 

developed to subtract the glucose signal.  This approach provided a simple and efficient 

means to account for glucose contamination effects, which allowed for the precise 

quantification of TCho in conditions where glucose levels could not be controlled. 

 After designing and implementing methods to ensure the accurate measurement of 

TCho from the βTC3 cells, the linear relationship between TCho and viable βTC3 cell 

number was quantified in vitro.  TCho measurements from agarose constructs containing 

βTC3 cells of varying densities were collected at initial time points and over the course 

of two weeks.  TCho data were then compared to the independent cell viability assay 

MTT, as well as to insulin secretion rates, where strong linear correlations were found.  

The data collected in this phase of study established TCho, measured by 1H NMR 

spectroscopy, as an accurate method to noninvasively assess viable βTC3 cell number in 

vitro.  

 Once the relationship between TCho and viable cell number was established in vitro, 

efforts were focused on translating this technique in vivo.  1H NMR spectroscopy and 

imaging methods were tested using βTC3 cells in buffered agarose disk constructs 

implanted in C57BL/6J mice.  1H NMR imaging provided high resolution images of the 

implanted construct, thereby allowing for noninvasive examination of the overall 

construct structure.  In vivo measurements of TCho of implanted constructs were found to 

correlate strongly and linearly to respective in vitro TCho and MTT measurements, 

calculated from explanted constructs.  Temporal TCho data from implanted constructs 
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were also collected noninvasively over two weeks, which allowed for quantitative 

assessment of the effects of the in vivo environment on viable cell number.   

 The research presented in this thesis demonstrates the potential of applying 1H NMR 

spectroscopy and imaging for noninvasively ascertaining information, both concerning 

viable cell number and implant structure, from tissue engineered constructs under 

dynamic conditions in vitro and in vivo.  Future work in this field could further expand 

the application of the methods developed here to monitor other cell lines within tissue 

engineered constructs of appropriate architectural designs. 
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CHAPTER 1 
 

1. INTRODUCTION AND RATIONALE 
 
 
 

1.1. INTRODUCTION 

 Tissue engineering holds significant promise to provide an alternative or 

complementary treatment for the millions of people affected annually by organ and tissue 

loss from accidents, birth defects, and diseases.  An example of the potential impact of 

tissue engineering is for the treatment of insulin-dependent diabetes, of which the 

common therapy is the bolus subcutaneous or intramuscular injection of insulin.  The 

inability of these injections to avoid either the acute dangers of hypoglycemia or the long-

term complications of hyperglycemia, such as diabetic nephropathy, retinopathy, 

neuropathy, and cardiovascular disease, contributes to its substantial medical cost, which 

exceeds 92 billion dollars a year [1].  A tissue engineered substitute, consisting of insulin-

secreting cells and biocompatible materials, holds significant promise for effectively 

treating and substantially reducing secondary complications for insulin-dependent 

diabetics, by providing a highly regulated, insulin-secretion system that responds to 

environmental glucose levels. 

 Although the field of tissue engineering is promising, the idea of implanting living 

cells within a human is significantly complex.  While problems such as potential 

microbiological hazards, continual immune suppression, and cell sourcing are large 

obstacles that the field must overcome, the characterization and quality control of these 

implants once they are developed are key issues that must also be addressed.  The 
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capacity of a tissue engineered construct to remodel can result in significant deviations 

over time, where the cells can alter the overall structure and function of the construct, 

while also exhibiting dynamic interactions with the host post-implantation.  Cell-

mediated remodeling can result in the development of regions with high nutrient 

requirements, degradation of the supporting matrix, accumulation of cell death 

byproducts, and alterations in cellular phenotype.  Therefore, temporal monitoring of the 

significant structural and functional changes occurring within the construct is of critical 

importance.   

 Common methods employed for monitoring tissue engineered constructs are indirect, 

destructive, or invasive.  Monitoring of physiologic end-points, for instance the 

monitoring of blood glucose levels in a diabetic animal that has received a pancreatic 

implant, is useful but does not provide direct information on the implant itself.  Changes 

within the implant can also be assessed using destructive and invasive techniques, such as 

histological cross-sectioning; however, in order to understand dynamic changes in vivo, 

many animal experiments must be conducted in parallel, which introduces substantial 

variability.  Therefore, there is a strong need to develop a reliable methodology that can 

noninvasively monitor a tissue engineered construct, both in its structural integrity and 

cellular metabolism.   

 The endeavor of this thesis was to establish a means to noninvasively monitor a tissue 

engineered construct in vitro and in vivo.  Specifically, efforts were focused on the use of 

1H Nuclear Magnetic Resonance (NMR) imaging and spectroscopy to noninvasively 

quantify changes in overall structure and viable cell number for tissue engineered 

constructs.  1H NMR imaging and spectroscopy has three particular advantages over 
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other modalities: simultaneous collection of spatial and metabolic information; 

elimination of the need for external molecular probes or enriched media; and the ability 

to monitor over an unlimited time period.  Furthermore, through the application of NMR 

gradient techniques, it is possible to isolate a volume of interest (VOI) within the domain 

studied, to obtain structural and metabolic information from that volume alone [2]. 

 The approach of this research was to utilize intrinsic 1H NMR spectroscopic signals 

in the development of the noninvasive modality, thereby increasing its potential for wide-

spread applicability.  Total-choline (TCho) is a 1H NMR spectroscopic signal detected in 

most mammalian cells and is primarily comprised of cell membrane precursors [3].  

Published reports suggest this marker may provide a strong indicator of cell number [3-

6].  Therefore, the TCho resonance was investigated as a general marker for assessing 

viable cell number within tissue engineered constructs.  The model tissue engineered 

system employed in this study was the bioartificial pancreas.  Construct prototypes were 

designed and thoroughly investigated in vitro and in vivo.  The ability to collect accurate 

TCho signal from the cell-containing region of the construct prototype by localized 1H 

NMR spectroscopy under dynamic environmental conditions was a primary concern.  

The effects of contaminating solutes on TCho quantification were accurately 

characterized and methods to account for these effects were developed.  In vivo, specific 

architectural features were implemented into the construct design to allow for signal 

acquisition and avoidance of contamination from the surrounding host tissue.  The 

traditional cell viability assays MTS and MTT were adapted for use as an independent 

measure of viable cell number within the constructs.  Temporal data collected from in 

vitro and in vivo experiments were used to identify correlations among NMR 
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spectroscopic signals and images, insulin secretion rates, and viable cell numbers within 

the constructs, thereby validating NMR measurements as a means to noninvasively 

determine the status of a pancreatic substitute both in vitro and in vivo.   

 

1.2. RATIONALE 

 This thesis consists of seven distinct topics presented in CHAPTERS 3-9.  Most of 

these chapters represent a modified version of an article published or submitted for 

publication.  The individual chapters contain detailed motivation, research methods, 

results, and discussion.  General background information is presented in CHAPTER 2.  

Preliminary results, along with verification studies and data too lengthy for publication, 

are presented in the APPENDIX.  

 The use of a cell-containing bioartificial pancreas to develop a noninvasive modality 

required a thorough characterization of the construct.  Therefore, our approach was 

threefold: (1) characterization of the transport of nutrients and metabolites and their 

respective consumption and production by the cells, based on the biomaterial selected 

and device shape; (2) in vitro characterization of the construct in terms of cell viability 

and overall secretion dynamics; and (3) in vivo evaluation of construct functionality and 

efficacy.  While several different device designs were explored in this research, all 

constructs utilized the continuous cell line, βTC3, as the delivery vehicle for insulin. 

 Initial studies used alginate/poly-L-lysine/alginate (APA) beads, which have been 

studied extensively in our laboratory for earlier NMR bioreactor experiments [7-9].  

Extensive mathematical modeling and diffusional studies of APA beads have been 

published previously [10]; however, CHAPTERS 3 & 4 discuss the in vitro 
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characterization of the long-term effects of the alginate biomaterial on the metabolic and 

secretory functions of the entrapped cells.  These in vitro alginate studies provided an 

understanding of how the cells remodel in the APA constructs over time.  Preliminary 1H 

NMR studies of APA beads in vitro were promising, where TCho levels were found to 

correlate strongly with cell number (R2=0.96) and their respective glucose consumption 

rates (R2=0.91) on Day 0, as illustrated in APPENDIX A1. 

 APPENDIX A2 presents preliminary in vivo testing of the APA beads.  While these 

in vivo studies found APA bead implants to effectively restore normoglycemia in diabetic 

mice (APPENDIX A2), it was identified that the beads would need to be confined within 

a planar construct for NMR monitoring.  This modification was found necessary after 

significant bead dispersion in vivo hindered the ability to noninvasively monitor the 

implant using localized NMR.  Since localized NMR requires the specification of a 

defined volume of interest, (see CHAPTER 2.6 for more details) the next phase of 

experiments focused on maintaining the APA beads within a single planar volume. 

 While the high surface to volume ratio for free-floating APA beads was lost upon 

confinement of the beads to a single volume, disk-shaped construct designs within a 

specified range of dimensions were found to result in minimal changes in the 

functionality of the entrapped cells.  CHAPTER 5 details experiments performed using a 

silicone ring/polypropylene mesh design.  While a construct was developed that had 

metabolic and secretory profiles similar to free-floating APA beads in vitro, difficulties 

arose upon implantation of the construct.  The silicone/mesh design was not 

biocompatible and the host response to the implant was rapid and severe.  During these in 

vivo experiments, two major problems in the NMR monitoring of TCho levels of the 
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implant were identified: (1) imperfections in the localization sequence; and (2) 

infiltration of significant host tissue into the inter-bead volume of the construct.  

Therefore, the next phase of experiments focused on characterizing the localization 

technique and redesigning the construct to increase biocompatibility and prevent host 

infiltration. 

 APPENDIX A3 discusses the first stage in the characterization of the localization 

sequence.  Although localized 1H NMR spectroscopy isolates the signal to within the 

region selected, no NMR localization sequence is perfect and some signal can be 

collected from outside the VOI specified (see CHAPTER 2 for more detail).  Preliminary 

in vitro experiments sought to understand the effects of localization imperfections on 

accurately quantifying TCho.  These in vitro experiments found minimal contamination 

effects when a “buffer” region between the VOI and the contaminating factor was 

present.  These experiments illustrated the need to “buffer” the cell-containing region 

from the surrounding environment and provided guidelines for their dimensions.  In vivo, 

however, imperfections of the localization technique can be further exacerbated due to 

motion artifacts caused by breathing of the animal.  Therefore, more in depth in vivo 

studies were required, once the appropriate prototype construct was developed. 

 In order to accommodate for the requirement of buffer zones between the cell-

containing region of the construct and its surroundings, and to reduce the significant 

fibrotic response seen in the silicone ring implants, the next construct prototype encased 

the alginate beads in agarose.  This design permitted greater flexibility in varying the 

thickness of the buffer zones, while preventing the infiltration of host cells within the 

inter-bead region of the construct.  APPENDIX A4 presents preliminary in vivo data 
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collected using this design.  The agarose/alginate combination resulted in an excellent 

contrast between the two biomaterials for the 1H NMR images, which allowed ease in 

identification of the cell-containing region of the construct and accurate placement of the 

localized VOI.  In vivo tests of the implant found the construct to be highly biocompatible 

in most cases, where a minimal fibrotic response was seen on the outer areas of the 

construct.  Periodic in vivo images were found to provide some temporal information 

regarding the host-cell response in the single case where a significant fibrotic cap 

developed around the implant.  Preliminary in vivo results also found TCho 

measurements from implanted constructs to compare favorably to the in vitro cell 

viability assay MTS, although the significant variability for both measurements were 

calculated. 

 After promising results were shown for the alginate/agarose construct design, the cell-

containing region was modified from alginate beads to a planar agarose disk, to ease 

manufacturing and ensure accuracy in cell loading.  CHAPTERS 6 and 7 present the 

results for in vitro and in vivo characterization of this construct prototype.  As discussed 

previously, the three-fold approach to fully understand the temporal remodeling of this 

construct was implemented, where diffusional characterization of the biomaterial, 

mathematical modeling, in vitro metabolic and secretory tests, and in vivo evaluation of 

the construct were performed.  While it was determined that the addition of the outer 

agarose buffer layer imparted mass transfer limitations and reduced the overall viable cell 

number within the construct, it was found that the addition of the outer buffer layer 

improved the in vivo biocompatibility of the construct.  Although the effectiveness of the 

agarose implants in restoring normoglycemia for diabetic mice was minimal, these 
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studies established that planar agarose disk constructs could be used to stably maintain 

the cells, both in vitro and in vivo, over the time frame necessary for our purposes. 

 Once the specific NMR design requirements were met, the next focus was to 

extensively characterize the correlation between TCho and viable cell number for the 

agarose constructs.  Although earlier preliminary experiments found a strong correlation 

between TCho and viable cell number, this study further investigated this relationship 

under dynamic conditions of cell death and growth over a two week time period.  

CHAPTER 8 presents the in vitro data, where strong linear relationships were found 

between TCho, the independent cell viability assay MTT, and the secretory activity of the 

entrapped cells.  The RF coil design was also improved from a birdcage coil, the standard 

coil used for all experiments up to this point, to a more sensitive surface coil, which 

resulted in an increase in the sensitivity of the TCho measurement of approximately 

three-fold.  Furthermore, the contamination of glucose on the accurate quantification of 

TCho was identified and methods were developed to subtract for these effects (for more 

detail see APPENDIX A5).  Minimum detection limits of the assay, based on the NMR 

parameters used, were also quantified.  This work laid the foundation for applying these 

techniques in vivo.  

 When research progressed to the in vivo stage, one of the major problems encountered 

was the significant increase in blood glucose levels when the mouse was placed under 

anesthesia.  APPENDIX A6 illustrates the blood glucose data of these mice in varying 

experimental conditions.  The significant rise in glucose levels while the mice were 

anesthetized caused detrimental effects on accurately quantifying TCho in vivo, given the 

glucose contamination effects calculated in CHAPTER 8.  While it was concluded that 
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this significant rise in blood glucose levels was due to the use of xylazine, the 

ketamine/xylazine combination anesthetic was the best choice, given the requirements of 

the NMR experiments.  Therefore, experimental procedures were implemented to combat 

blood glucose effects, as discussed in APPENDIX A6.  

 CHAPTER 9 presents the in vivo data collected using buffered agarose constructs 

implanted within C57BL/6J mice.  This chapter discusses the preliminary in vivo tests 

used to identify the thickness of the buffer regions required to ensure the accurate 

collection of 1H NMR spectra from the cell-containing region of the constructs in vivo.  

The accuracy of temporal TCho data collected in vivo was verified by comparisons to 

respective in vitro measurements of TCho and MTT from explanted constructs.  The 

results from these experiments illustrated the ability of NMR spectroscopy to accurately 

and noninvasively measure viable cell number in vivo, through the quantification of 

TCho.  These studies also established the range of parameters where the NMR-based 

methodology is useful, including a sensitivity threshold of 106 cells, and provide insight 

as to how these parameters can be expanded to include other construct designs, cell types, 

and/or animal models. 

 The implications of our findings on the use of 1H NMR spectroscopy and imaging for 

monitoring tissue engineered constructs, specifically the bioartificial pancreas, and the 

progression of these methods in future research are further discussed in CHAPTER 10.  
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CHAPTER 2 
 

2. BACKGROUND 
 
 
 

2.1. CURRENT TREATMENTS FOR INSULIN-DEPENDENT DIABETES 

 Diabetes mellitus is a serious pathological condition characterized by hyperglycemia 

resulting from defects in insulin secretion, insulin action, or both [11].  Diabetes mellitus 

currently affects an estimated 18 million people in the United States alone, where 5.8 

million of them require insulin therapy [1].  While current treatment options for insulin-

dependent diabetics, which include periodic blood glucose measurements followed by 

daily bolus insulin injections or continuous subcutaneous delivery via an insulin pump, 

are effective, the toll of the disease on its victims is tremendous.  The 1993 Diabetes 

Control and Complications Trial, which found that tight control of glucose levels delays 

the onset and reduces the intensity of diabetes-related complications, outlined the need 

for a more physiological control of blood glucose levels beyond what is achieved with 

bolus insulin injections [12].   

 The need to dampen the dangerous oscillating pattern of blood glucose levels inherent 

in bolus injections has motivated research investigating cell-based therapy.  By utilizing 

cells that have the inherent capacity of continually regulated insulin-secretion in response 

to variable blood glucose levels, tighter regulation and elimination of patient-based 

delivery is possible.  Exciting results have recently been achieved in the area of human 

islet transplantation [13, 14].  While test subjects are limited to extreme diabetic cases, 

such as decreased hypoglycemia awareness, labile diabetes, and progressive 
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complications, the Edmonton group has demonstrated that human clinical islet 

transplantation with steroid-free immunosuppression can result in long-term insulin 

independence [13].   With this procedure, patients are injected with human cadaveric 

islets, isolated from approximately two human pancreata per transplantation, via portal 

vein injection.  Thus far, all patients have required a minimum of two independent 

transplantation procedures.  While these recent clinical trials have been successful, the 

supply of this cell source, of which significant propagation is unavailable, is insufficient 

to provide islets for any substantial number of insulin-dependent diabetics.  Additionally, 

the life-long immunosuppression required to sustain treatment is problematic, especially 

for type 1 diabetics.   

 Another possible treatment option for insulin-dependent diabetics is the bioartificial 

pancreas, which utilizes insulin-secreting cells and biocompatible matrices [15-19].   

Encapsulation of the implanted cells can partially alleviate the need for 

immunosuppression, while the flexibility of cell source relaxes the cell availability 

problem posed by pancreatic islets.  For our applications, the resulting bioartificial 

pancreas must meet four main requirements: (1) retain the viability and functionality of 

the entrapped cells; (2) be relatively biocompatible; (3) be contained within a single, 

definable volume so that it may be monitored via NMR; and (4) permit the complete 

retrieval of the implanted cells, so that the NMR results may be compared with 

independent assays.  In order to fulfill these requirements, great care must be taken in the 

design.  Cell type and loading, polymer selection, and device shape are just a few of the 

factors that must be considered.  
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2.2. INSULIN-SECRETING CELL TYPE  

 In the development of a bioartificial pancreas, cell sourcing is a significant problem.  

Use of human or porcine primary cells of the pancreas is limited, not only by their low 

propensity to proliferate in vitro, but also their significant loss of desired secretory 

functions over time in culture [20].  Therefore, many investigators are focused on the 

development of highly functional and phenotypically stable cell lines that can easily be 

amplified in vitro, particularly to serve as test beds for characterizing cellular phenotype 

within three-dimensional matrices.  Examples of such cell lines include transformed β-

cells, engineered somatic cells, and stem cells [21].  

 The laboratory of Efrat et al has developed a family of continuous β cell lines, the 

βTC, derived from transgenic animals expressing the SV-40-T-antigen [20, 22-24].   

Specifically, the βTC3 cell line has a strong capacity for stable growth in culture, with 

retention of insulin secretion phenotype for approximately 50 passages [23].  Alleviating 

the cell availability problem is not the only advantage of utilizing continuous cell lines.  

Investigators have also found some of these cell lines to possess lower nutrient 

requirements to maintain normal secretory function, which may be advantageous when 

entrapped within extravascular constructs.  For example, Papas et al found βTC3 cells to 

possess unaltered insulin secretion when maintained at oxygen tensions above 7 mmHg 

[25], unlike rat islets whose insulin secretion have been found to decrease as much as 

50% at oxygen tensions below 30 mmHg [26].  In vivo, βTC3 cells within APA beads 

have been shown to restore normoglycemia in rodents for several weeks (see APPENDIX 

A2).  The major caveats of the βTC3 cell line is their hypersensitivity to glucose and 

strong propensity for growth.  Through further genetic engineering techniques, βTC cell 

 12 



lines, such as βTC6, βTC7 and βTC-tet, have been developed that exhibit insulin 

secretion patterns within the physiological range [20].  Furthermore, a greater control 

over the growth of these cells can be accomplished with the use of the βTC-tet cell line, 

which utilizes the tetacycline-conditioned gene expression system to control proliferation. 

βTC-tet cells have demonstrated excellent results in streptozotocin-induced rodents, 

where studies determined that a graft volume of βTC-tet cells ranging from ~4x106 to 

1x107 cells was able to restore normoglycemia in NOD and NODSCID mice for up to a 

year (Weber et al, data not published).  

 

2.3. BIOMATERIALS 

 Although porcine islets and genetically engineered cells lines alleviate the cell 

sourcing problem, the direct implantation of xenogeneic and/or transformed cells poses 

significant health hazards and would still force the need for immunosuppression.  

Therefore, entrapment of cells within permselective biomaterials would provide a barrier 

between the cells and the host, thereby preventing direct cell-host contact and partially 

alleviating the need for immunosuppression, while also allowing for ease in locating the 

implanted cells.   

 Biomaterials selected for the development of a functional bioartificial pancreas must 

possess high mass transfer characteristics and mechanical integrity, while maintaining a 

cell loading adequate to treat the pathological condition.  Beta cells typically possess high 

metabolic needs, which require a steady oxygen and nutrient supply to maintain not only 

their viability, but their normal secretory capacities [27].  The entrapped cells must also 

be able to sense changes in their surrounding environment quickly to eradicate 
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detrimental time lags in glucose stimulated insulin secretion (GSIS).  Researchers 

typically use highly porous but inert biomaterials in the development of the bioartificial 

pancreas.  Natural hydrogels, such as alginate, agarose, and collagen, are the most 

common choices [17, 28].  These biomaterials are chosen for their high mass transfer 

characteristics, structural integrity, ease in manufacturing, mild encapsulation conditions, 

and capacity for modification.   

 Alginate is a common term for the family of unbranched polymers composed of 1,4-

linked β-D-mannuronic and α-L-guluronic acid residues in varying proportions, 

sequence, and molecular weight (Figure 1).  They are abundant in nature and can be 

found in marine brown algae and capsular polysaccharides in soil bacteria.  The gelation 

of alginate takes place when multivalent cations (usually Ca2+) interact ionically with 

blocks of guluronic residues between two different chains resulting in a three-

dimensional network [29].  The strength of the network depends on the overall fraction of 

guluronic acid residues and, in particular, the frequency and length of contiguous 

guluronic acid blocks, the molecular weight of the polymer, and the Ca2+ ion 

concentration at the time of gelation [30]. The physical properties of alginate gels vary 

widely depending on their chemical composition, i.e., the proportion of guluronic to 

mannuronic acid residues, the sequential order of these residues, and the overall 

molecular weight of the polymer.  Numerous publications have investigated the effects of 

chemical composition on the gelation, porosity, biocompatibility, and overall mechanical 

strength of alginate hydrogels.  In summary, alginates possessing a high guluronic acid 

content develop stiffer, more porous gels, which maintain their integrity for longer 

periods of time.  Therefore, high guluronic alginates have long been advocated for use in 
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encapsulated cell systems based on their superior mechanical stability, along with their 

suspected increased biocompatibility [31].  
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Figure 1 .  Molecular structure of alginate. 

 
 
 

Agarose is a purified linear galactan hydrocolloid isolated from agar or agar-bearing 

marine algae.  Structurally, it is a linear polymer predominantly composed of repeating 

units of alternating D-galactopyranosyl and 3,6-anhydro-L-galacto-pyranosyl (Figure 2, 

I), which are typically considered to be more stable than other naturally occurring 

polysaccharides [32].   A low level of sulfate is desirable since sulfate can interfere with 

the homogeneous formation of secondary and tertiary structures during gelation (Figure 

2, II) [33].  Agarose exhibits hysteresis in the liquid-to-gel transition, i.e. their gel point is 

not the same as their melting temperature [34].  Agarose is categorized into several 

grades on the basis of purity, electroendosmosis, gel strength, gelling temperature, and 

melting point properties.  Low-temperature gelling agarose gels are ideal for entrapping 

cells, for they remain in solution at 37ºC.  High-quality agarose is also commercially 

available and commonly used for biomedical and pharmaceutical applications [35].  

Researchers have found agarose gels to be highly compatible for the entrapment of many 
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cell lines, including islets, β cell lines, and chondrocytes [36-38], with high 

biocompatibility and stability in vivo. 
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Figure 2.  Molecular structure of agarose. 

 
 
 

2.4. CONSTRUCT DESIGNS 

 The development of an appropriate device for the bioartificial pancreas has been a 

subject of research for over 25 years. Three main designs have been investigated to date: 

vascular devices [19, 39]; microencapsulation [15, 40]; and macroencapsulation [16, 41-

47].   

Vascular devices were one of the first prototypes explored for the development of the 

bioartificial pancreas.  Maki et al utilized a form of this device using a single-coiled 

acrylic copolymer tubular membrane contained in a disk-shaped acrylic housing with 

grafting ends composed of polytetrafluoroethylene (PTFE) was studied [39, 48].  Testing 

in pancreatectomized dogs found long-term patency of greater than 500 days, with a 

degree of islet function retained for a period ranging from 1-9 months for allogenic islet 
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implantations.  Blood clotting in response to the vascularized device, however, was a 

significant problem.   

 Microencapsulation, used to generate beads in the diameter range from a fraction of a 

millimeter to millimeter range, has been a promising construct design due to its high 

surface to volume ratio.  Although several different biomaterials have been utilized in 

microbeads, the most common are alginate and agarose.  Lim and Sun developed a 

method to entrap cells within alginate microbeads by dropping the cell/alginate solution 

into a bath of calcium chloride using a needle [15].  The size of the cell-filled bead may 

be controlled through regulated airflow around the tip of the needle [49] or through the 

newer method using an electrostatic generator [50].  The alginate beads can then coated 

with a 0.1% poly-L-lysine layer creating a molecular weight cutoff of ~70,000Da, which 

provides partial immune protection of the entrapped cells.  An additional outer coating of 

alginate is then applied to increase biocompatibility.  The alginate/poly-L-lysine/alginate 

(APA) encapsulated cell system provides both a three-dimensional structure and partial 

immunoprotection to the entrapped cells, while allowing for the adequate exchange of 

nutrients.  Implantation of islet-containing microcapsules into streptozotocin-induced 

diabetic and spontaneously diabetic rodent models, along with a few isolated cases of 

larger animals, have provided long-term correction of hyperglycemia [51-56].  Agarose 

microbeads have also been utilized for the development of a functional bioartificial 

pancreas.  Agarose beads are typically manufactured through paraffin oil immersion.  

Kobayashi et al found agarose beads containing allogenic islets to be highly effective in 

restoring normoglycemia in rodent models for periods exceeding 500 days [57].  

Allogenic implantation of agarose microbeads containing islets into pancreatectomized 
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dogs were also moderately successful, where 3 test subjects retained euglycemia for over 

30 days [58].  For xenogenic transplantations, the mixing of agarose and polystyrene 

sulfonic acid (PSS), with coatings of polybrene and carboxy methyl cellulose (CMC), 

was found necessary to prevent rejection of the implant [59].  Implantations of hamster 

islets in rodent models using the three-layered agarose constructs have found to increase 

the efficacy of the implantation from 1 to over 150 days [60]. 

 A major caveat of the in vivo applicability of microcapsules is the absence of a 

reliable mechanism to completely retrieve the implanted microbeads.  In order to allow 

for the retrievability of the implant, researchers have examined the use of 

macroconstructs such as hollow fibers, rods, and disks.  For the purposes of our studies, 

we limited our macroconstruct design to only planar geometries, for ease in defining the 

volume of interest (VOI) in localized NMR experiments.  Ohgawara and co-workers have 

developed a planar silicone disk sealed with two semipermeable membranes [61, 62].  

Results have found that this planar macroconstruct, loaded with genetically engineered 

MIN6 cells, can restore normoglycemia in rodents for up to 30 weeks, with a limited 

fibrotic response [43, 62, 63].  Kuo et al used pure alginate to design disk-shaped 

constructs that were gelled by CaCO3-GDL (D-glucono-δ-lactone), which creates an 

internal, rather than the typical external, gelation [64].  This technique allows for the 

design of macroconstructs with a controlled structure, gelation rate, and mechanical 

properties.  Lahooti et al found the use of agarose gel to contain cell-filled APA beads 

within a disk-shaped macroconstruct design to reduce the significant bead clumping and 

fibrotic response seen in previous in vivo studies of implanted microcapsules [65].  They 
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have found the implant to improve the ease of retrievability and reduce the fibrotic 

response, without significantly altering cell viability.   

 

2.5. NONINVASIVE MONITORING IN VIVO 

 Noninvasive modalities applicable to living systems can provide detailed temporal 

information of in vivo experimental treatments, such as genetic engineering, acellular 

scaffold implants, or tissue engineered substitutes.  Currently, the progression of the field 

of in vivo noninvasive monitoring is driven by significant advancements in the areas of 

molecular and cell biology, electronics and instrumentation.  Typically, small-animals 

models are the first step in characterizing the efficacy of a new treatment.  Therefore, 

monitoring modalities are focused on the development of small-animal instrumentation 

for relaying both spatial and temporal information for these studies.  Approaches to the 

development of noninvasive techniques for monitoring systems in vivo are highly 

variable.  Therefore, a brief overview of some of the emerging technologies is presented.    

 Imaging of living systems using molecular probes is the most common technique 

employed.  The selection of a particular molecular probe is restricted by the modality 

chosen to monitor the system and the cell type or function studied.  Experimental 

techniques can choose to monitor cell viability in general, or specific cellular or 

molecular processes, such as gene expression or protein-protein interactions.  Each 

imaging modality differs in its spatial and temporal resolution, depth penetration, energy 

expended for image generation, availability of the molecular probe, and the respective 

sensitivity threshold, specificity, and longevity of the probe [66]. 
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 Imaging of radionuclide probes is a common technique, where the image may be 

collected by either positron emission tomography (PET) or single photon emission 

computed tomography (SPECT).  PET and SPECT provide detailed spatial and temporal 

images by tracking the emissions from injected radionuclide probes.  PET is the most 

common radionuclide modality chosen for monitoring cells, because of its high 

sensitivity, which allows a lower dosage of isotopes, and robustness, which permits a 

greater range of molecular probes.  The image resolution of clinical PET scanners is ~6-8 

mm3; however, small animal micro-PET scanners have achieved resolutions on the order 

of 2 mm3, with some room for improvement [67].  One of the more recent uses for PET 

imaging of implanted cells has been the tracking of gene expression by injecting a 

radiolabeled probe targeted for a specific reporter gene.  An example of this was 

published by Tjuvajer et al, where the growth of transduced herpes simplex virus-1 

thymidine kinase (HSK-TK) tumor cells was imaged by PET in rodents after the injection 

of [124I]FIAU ([124I]2′-fluoro-2′-deoxy-1-β-D-arabinofuransyl-5-iodouracil) [68].  This 

study has been further expanded to monitor the migration of lymphocytes in SCID mice 

[69].  PET imaging has also been applied to the study of beta-cells, specifically 

alterations in beta-cell mass, through the development of beta-cell radioactive labels, 

such as glibenclamide, tolbutamide, and serotonin, although the imaging resolution for 

the small percentage of beta cells within the pancreas is a significant limiting factor [70-

72].  While nucleotide imaging is promising for tracking cellular function or viability, the 

research is limited by imaging resolution, probe specificity, transient expression and the 

need to continually inject radioactive probes.  Furthermore, PET is unable to detect 
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different molecular probes simultaneously, although there is potential for SPECT to 

develop this capacity by utilizing isotopes of varying energy.   

 Optical imaging is another modality that has recently garnered attention within the 

field of in vivo noninvasive monitoring.  Advancement of charged coupled device (CCD) 

detectors, which sense the emission of light, have increased the applicability of this 

modality to living systems, by the reduction of thermal noise and increased sensitivity.  

Imaging of bioluminescence and fluorescence are the two most common approaches 

used.  Bioluminescence imaging has been used to track the viability of implanted cardiac 

cells expressing firefly luciferase reporter gene over the course of two weeks [73].  

Furthermore, Smith et al employed bioluminescent imaging to assess insulin secretion 

from pancreatic cells in transgenic rodents expressing the firefly luciferase gene, 

regulated by the rat insulin promoter (RIP), within pancreatic islet cells [74].  The 

collection of images from cells tagged with fluorescently labeled antibodies or cells 

expressing the green fluorescent protein (GFP) gene have also been obtained, such as the 

work by Kaneko et al, which tracked viable cells within the peritoneal cavity of a mouse 

using variant GFP labeled cells [75].  Another exciting prospect in CCD imaging is the 

development of nanometer-scale semiconductor crystallites, or Quantum dots, which 

have the ability to emit monochromatic light of a specific wavelength and color [76, 77].  

In vivo integration of these stable, water-soluble fluorophores can be monitored, without 

photobleaching, over time periods extending to four months.  While CCD results for 

monitoring cells in vivo are promising, the resulting images are two-dimensional and lack 

depth information [78-80].  Furthermore, in order to obtain the exact location of the 2-D 

image in relation to the animal, other imaging techniques, such as photography, PET or 
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MRI, are typically employed.  Finally, surgical techniques may be required to expose 

internal organs prior to imaging, due to the significant lack of depth penetration for this 

system (on the order of 1-2 cm) [66]. 

  

2.6. NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND 

IMAGING 

 Nuclear magnetic resonance imaging and spectroscopy is an established noninvasive 

modality for monitoring living systems.  By manipulating magnetic spins, both spatial 

and metabolic information may be collected from the system studied.  Advancements in 

the field of RF coils and gradients have provided a strong framework for intricate studies 

using living systems.  NMR information from cells may be acquired by cellular tagging 

using superparamagnetic particles, detected by NMR imaging, or through the monitoring 

of natural or supplemented nuclei within the cells, such as 1H, 19F, 13C and 31P, which can 

be detected by NMR imaging and spectroscopy.   

 The recent development of superparamagnetic particles that have the ability to label 

specific cells, through phagocytosis or the conjugation of antigen-specific monoclonal 

antibodies, has advanced the use of NMR imaging for tracking specific cells in vivo.  The 

two most common superparamagnetic particles are superparamagnetic iron oxide 

(SPIRO) and monocrystalline iron oxide nanoparticles (MION).  SPIRO integration into 

cells has been demonstrated for a wide variety of cells types, including the 

intracytoplasmic tagging of human mesenchymal, rhesus embryonic, and human 

hematopoietic stem cells, lymphocytes, and HeLa cells [81].  MION, which has a smaller 

mean core size compared to SPIRO, labeling has also be achieved for several cell types 
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including T cells, macrophages, HUVEC, and beta cells  [82-84] (and see APPENDIX 

A.8).  Published reports on in vivo imaging of these contrast agents or visualization of 

transgene expression are promising [85-87].  Furthermore, studies are expanding the use 

of SPIRO labeling to assessment of autoimmune diabetes by using CLIO-tat coated 

SPIRO particles to specifically target lymphocytes and monitor their migration into 

pancreatic tissue for diabetic rodent models [88].  While this methodology is promising, 

current problems facing contrast imaging using paramagnetic agents include: low 

sensitivity, high biolabel load, poor signal-to-noise resolution, long-term stability, 

toxicity, and specificity. 

 Monitoring of natural or supplemented nuclei within living systems is possible 

through NMR imaging and spectroscopy.  Images of nuclei may be collected through the 

use of gradients placed within the bore of the magnet.  NMR spectroscopy can be used to 

noninvasively determine the presence and concentration of compounds, containing the 

studied nuclei, through the detection and quantification of chemical shifts associated with 

the specific compounds.  A large portion of NMR spectroscopy research on living cells 

has used perfusion systems, and 31P or 13C enrichment, to study the metabolism of cells.  

Early studies focused on the development of perfusion systems to maintain cells over 

extended periods of time, while examining the levels of high and low-energy 

phosphorous containing compounds of mammalian cells [89-91].  Research within our 

laboratory has explored the use of NMR spectroscopy to understand genetically 

engineered insulin-secreting cells entrapped within in APA beads that were perfused in 

an NMR-compatible bioreactor.  The effects of nutrient parameters, such as oxygen and 

glucose levels, on the 31P NMR spectroscopic signal in vitro were examined [8, 9, 92, 

 23 



93], as well as the relationship between cellular function and energetics [94].  Monitoring 

systems enriched with NMR sensitive nuclei is another facet of NMR research that can 

provide detailed information regarding cell fate in vivo.  Innovative in vivo research using 

19F has also been conducted by Stegman et al [95].  In vivo imaging of cytosine 

deaminase (CD) transgene expression was possible by tracking the CD-catalyzed 

conversion of injected 5-fluorcytosine (5-FC) using 19F spectroscopy.  Although 

significant research has been conducted in the characterization of cellular metabolism 

using 31P, 13C, and 19F, research is typically limited by sensitivity, thereby forcing the 

enrichment of the system with the NMR sensitive nuclei. 

 Due to the strong sensitivity and natural abundance of the 1H nuclei, 1H NMR 

spectroscopy is superior in its capacity to monitor subtle changes in concentrations of 

studied compounds without the need for additional markers or lengthy techniques. 

Through the implementation of specifically designed solvent-suppressed adiabatic pulses, 

the long-term monitoring of detectable metabolites from cells using 1H NMR 

spectroscopy is feasible.  Therefore, by utilizing a similar bioreactor system generated 

previously in our laboratory for the 31P perfusion studies [8], our group was able to study 

βTC3 cells within APA beads using 1H NMR spectroscopy [7].  A standard water-

suppressed, localized 1H NMR spectrum of βTC3 cells in agarose bathed in glucose- and 

serum-free DMEM is shown in Figure 3.  The two signals of total-choline (TCho), at 3.2 

ppm, and extracellular lactate, at 1.3 ppm, are derived from the entrapped cells.  For 

βTC3 cells, the TCho resonance is typically comprised of multiple resonances attributed 

predominantly to choline-related metabolites, such as phosphocholine (PCho) at ~64%, 

glycerol-3-phosphocholine (GPC) at ~33%, and choline itself (Cho) at ~3% [7].   These 
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percentages may vary with culture conditions and other cell types may also contain 

phosphoethanolamine, inositol and taurine [3].  Previous studies have found strong 

correlations between TCho and cell number for a variety of cell types in vitro and in vivo 

[3-6].  More specifically, 1H NMR spectroscopy studies monitoring TCho of βTC3 cells 

encapsulated within APA beads found strong correlations between the relative changes in 

the TCho peak area and the overall metabolic activity of the culture, as measured by 

glucose and oxygen consumption rates [7].  These findings substantiate the use of 1H 

NMR spectroscopy to noninvasively monitor implanted βTC3 cells. 
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Figure 3.  In vitro water-suppressed 1H NMR spectrum of 8x106 βTC3 cells   
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 In order to accurately assess the functionality of the construct and eliminate the 

problem of resonances originating from the construct overlapping with signals from the 

surrounding environment, localized NMR is utilized [96-98].  Through NMR gradient 

techniques, it is possible to isolate localized regions within the field studied, to extrude 

structural and metabolic information from that area alone [2].  This is illustrated by the 

schematic shown in Figure 4, where it shows the localization of the NMR signal to a 

specific volume of interest (VOI) specified in the acquisition parameters.  In Figure 4, the 

field of view of the RF coil is represented by the outer black square, while the grey region 

is the collected signal region.  A representation of the resulting free induction decay 

(FID), or measured signal, is illustrated to the right of each figure.  Without localization 

(A), signal is collected from the entire field of view; however, with localization (B), the 

FID is localized to within the volume of interest (VOI) specified by the acquisition 

parameters.  Note the decrease in signal intensity of the FID upon localization.  

Therefore, the signal now may be localized to a specific region of interest within the field 

of view of the RF coil.  Localization techniques have been used for the detection of 

cancerous cells in humans in vivo, thereby allowing 31P and 1H NMR spectroscopy to 

become a feasible technique for use in the clinical setting [99-101]. Furthermore, other 

groups have used localized NMR to monitor the progression of disease states such as 

epilepsy, Alzheimer disease, and multiple sclerosis [102-105].  Since no localization 

sequence is perfect, it is critical to characterize the technique for each specific 

application. 
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A.     

B.    

Figure 4.  Schematic representation of localized NMR spectroscopy.   

 
 
 
 NMR imaging is a common technique used in basic studies to noninvasively 

characterize the structure of human organs, bones, and tissue [106-109].  1H NMR 

imaging has also been used to assess disease progression and/or structural damage of 

cartilage, brain tissue, tumors and atherosclerosis within patients [110-113].  It has even 

been used to monitor the structural rejection of organ transplants [114].  Due to the 

dynamic environment of a tissue engineered construct, 1H NMR imaging is a promising 

tool for monitoring overall structural changes and cellular remodeling of the construct 

noninvasively over time both in vivo and in vitro, as well as characterizing the host-

implant interface.  Our laboratory has investigated using 1H NMR imaging for 

noninvasively examining structural changes within a tissue engineered construct over 

time in vitro.  Through the development of a microcoil with a 40 by 40 µm pixel 

resolution, cellular remodeling was visualized within an alginate bead over time in vitro 

[115].  Due to the generality of this technique, current studies are examining the use of 
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this imaging system for other tissue engineered constructs in vitro.  The use of this 

specific microcoil system in vivo, however, is complicated by the implantation of the coil 

along with the construct, although published reports have illustrated the effectiveness of 

implanted surface coils for monitoring structural features, such as spinal cord injury, in 

vivo [116, 117].  Therefore, other systems, such as surface coils and specialized pulse 

sequences, were substituted to obtain in vivo images for our application.   
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CHAPTER 3 
 

3. THE EFFECTS OF ALGINATE COMPOSITION ON ENCAPSULATED 
βTC3 CELLS1  

 
 
 

3.1. ABSTRACT 

 The effects of alginate composition on the growth of murine insulinoma βTC3 cells 

encapsulated in alginate/poly-l-lysine/alginate (APA) beads, and on the overall metabolic 

and secretory characteristics of the encapsulated cell system, were investigated for four 

different types of alginate.  Two of the alginates used had a high guluronic acid content 

(73% in guluronic acid residues) with varying molecular weight, while the other two had 

a high mannuronic acid content (68% in mannuronic acid residues) with varying 

molecular weight.  Each composition was tested using two different polymer 

concentrations.  Our data show that βTC3 cells encapsulated in alginates with a high 

guluronic acid content experienced a transient hindrance in their metabolic and secretory 

activity because of growth inhibition.  Conversely, βTC3 cells encapsulated in alginates 

with a high mannuronic acid content experienced a rapid increase in metabolic and 

secretory activity as a result of rapid cell growth.  Our data also demonstrated that an 

increase in either molecular weight or concentration of high mannuronic acid alginates 

did not alter the behavior of encapsulated βTC3.  Conversely, an increase in molecular 

weight and concentration of high guluronic acid alginates prolonged the hindrance of 

                                                 

1 Modification of paper published in Biomaterials, 22: 1301-1310 (2001). 
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glucose metabolism, insulin secretion and cell growth.  These observations can be best 

interpreted by changes in the microstructure of the alginate matrix i.e. interaction 

between the contiguous guluronic acid residues and the Ca+2 ions, as a result of the 

different compositions. 

 

3.2. INTRODUCTION 

 The encapsulation of cells within semipermeable membranes for the purpose of 

immunoisolation from the host has many potential applications in tissue engineering, 

ranging from the treatment of Parkinson’s disease to chronic pain.  A major field of study 

within encapsulated cell systems has been the encapsulation of insulin-secreting cells for 

the long-term treatment of diabetes.  Studies on the encapsulation of islets, as well as 

transformed β-cells, have yielded promising results [19, 118]. 

 Alginate is the biomaterial commonly used in the entrapment of cells.  Additional 

layers of poly-L-lysine and alginate are typically added to coat the central alginate matrix 

to improve the stability of the gel [119] as well as to create an immunoisolation barrier 

[120].  This method of encapsulation has many advantages.  Alginate/poly-L-

lysine/alginate (APA) beads provide structural integrity and immunoprotection to the 

entrapped cells, they are easy to manufacture, the molecular weight cutoff of the 

membranes can be manipulated, encapsulation takes place under mild conditions, and all 

solutions used are aqueous.   

 Alginate is a common term for a family of unbranched polymers composed of 1,4-

linked β-D-mannuronic and α-L-guluronic acid residues in varying proportions, 

sequence, and molecular weight.  They are abundant in nature and they can be found as 
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structural components of marine brown algae and as capsular polysaccharides in soil 

bacteria.  Alginate gelation takes place when divalent or multivalent cations (usually 

Ca+2) interact ionically with blocks of guluronic residues between two different chains 

resulting in a three-dimensional network.  The model that best describes this interaction is 

the “egg-box model” [29].  The strength of this network depends on the overall fraction 

of guluronic acid residues and in particular the frequency and length of contiguous 

guluronic acid blocks, the molecular weight of the polymer, and the Ca+2 ion 

concentration at the time of gellation [30].   

 The physical properties of alginate gels vary widely depending on their chemical 

composition, i.e., the proportion of guluronic to mannuronic acid residues, the sequential 

order of these residues, and the overall molecular weight of the polymer.  Numerous 

publications have investigated the effects of chemical composition on the gellation, 

porosity, biocompatibility, and overall mechanical strength of alginate hydrogels [121-

126].  In summary, alginates possessing a high guluronic acid content develop stiffer, 

more porous gels, which maintain their integrity for longer periods of time.  Furthermore, 

during Ca+2 crosslinking, they do not undergo excessive swelling and subsequent 

shrinking, thus, they can better maintain their form [127].  Conversely, alginates rich in 

mannuronic acid residues develop softer, less porous beads, which tend to disintegrate 

easier with the passage of time.  Alginates with a high mannuronic acid content are also 

plagued by a high degree of swelling and shrinking during Ca+2 cross-linking [127].   

 The effect of guluronic acid content on alginate biocompatibility is a subject of 

debate.  Some investigators have advocated the use of a highly purified alginate rich in 

guluronic acid residues [56, 128], while others have disregarded the effects of chemical 
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composition and stress the importance of high purity [129].  Although these studies have 

increased awareness concerning the importance of using a highly purified and well-

characterized alginate, the effects of alginate properties on the growth and metabolic 

activity of the entrapped cells have yet to be fully quantified.  An initial investigation of 

these effects was recently published by our laboratory [130].  This study concluded that 

alginates with a high guluronic acid content inhibited cellular growth, and thus the overall 

metabolic activity of the culture was diminished, for a period of 20 days before allowing 

the cells to proliferate and recover.  Conversely, alginates with a high mannuronic acid 

content provided an environment supportive of cell growth although their strength and 

stability characteristics were not desirable.  In that initial report, two different alginates 

were employed, one with a high guluronic acid content and another with a high 

mannuronic acid content.  These alginates were characterized only in terms of their 

guluronic acid content.  Their molecular weights were not known and the alginate 

concentration used to generate the two types of beads was not the same (1.5% for the 

high guluronic acid alginate and 2% for the high mannuronic acid alginate).  The 

information provided by that study highlighted the effects of alginate composition to 

encapsulating cells and the stressed need for a thorough evaluation of these effects.  The 

current study investigates these effects in a thorough manner by delineating the effects of 

guluronic/mannuronic ratio, molecular weight and density of the polymer.  In addition, 

the property of alginate gel responsible for the behavior of encapsulated cells is 

postulated, while the significance of our results on tissue engineering and particularly on 

the development of a bioartificial pancreas is discussed. 
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3.3. MATERIALS & METHODS  

3.3.1. Cell culture 

 βTC3 cells were obtained from the laboratory of Shimon Efrat, Albert Einstein 

College of Medicine, Bronx, NY.  Cells were cultured as monolayers in T-flasks and fed 

fresh medium consisting of Dulbecco’s Modified Eagle’s Medium (DMEM) with 25mM 

glucose and supplemented with 15% horse serum, 2.5% bovine serum, 1% penicillin-

streptomycin, and L-glutamine to a final concentration of 6 mM (SIGMA, St. Louis, MO) 

every 2-3 days. 

 

3.3.2. Alginate 

 Four types of alginate were used in this study: a high molecular weight, high 

guluronic acid content alginate (MVG); a low molecular weight, high guluronic acid 

content alginate (LVG); a high molecular weight, high mannuronic acid content alginate 

(MVM); and a low molecular weight, high mannuronic acid content alginate (LVM) (all 

four types of alginate were provided by Pronova Biomedical, Norway).  Some key 

properties of these alginates are listed in Table 1, including guluronic acid and guluronic 

acid block (GG) content, shown as a percentage of total alginate, average molecular 

weight, and viscosity, for a 1% w/v solution.  Each type of alginate was tested at two 

concentrations.  MVG and LVG alginates were examined at 2% and 1% w/v, while 

MVM and LVM alginates were examined at 2% and 3% w/v.  All alginate solutions were 

prepared by dissolving alginate in physiological saline (0.95% NaCl).  The presence of 

non-crosslinking Na+ ions is desired to generate a more homogeneous gel bead [122]. 
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Table 1.  Table of alginate properties used in this study. 

 MVG LVG MVM LVM 

Guluronic acid (%) 73 73 38 38 

GG content (%) 60 56 20 18 

Molecular Weight 231,000 189,000 226,000 209,000 

Viscosity (mPas) 322 156 234 193 

 

 

3.3.3. Entrapment and culture propagation 

 βTC3 cells were entrapped in alginate gel beads based on the protocol developed by 

Sun [15, 131].  Cells were harvested from monolayer cultures using trypsin-EDTA 

(Sigma, St. Louis, MO) and suspended in sodium alginate at a density of 3.5 x 

107cells/mL alginate.  Viable cell counts were performed using the trypan blue (Sigma, 

St. Louis, MO) exclusion method.  Droplets of the alginate/cell suspension were added in 

a 1.1% CaCl2 solution for gellation.  Two methods were used to generate the droplets.  In 

the first, the suspension was extruded via a 20-gauge needle into a 1.1% CaCl2 solution; 

the droplet size was controlled by parallel airflow.  In the second, suspension droplets 

were created with an electrostatic bead generator (Pronova Biomedical, Norway).  The 

droplet size was regulated by one or more of the following parameters: the electrostatic 

potential, the distance between the needle and the CaCl2 solution, and the diameter of the 

needle.  Both methods yielded bead sizes of 0.9-1 mm.   

 Alginate beads containing cells were placed in a spinner flask, fed with 50 mL of 

fully supplemented DMEM, positioned within a 37 °C humidified incubator, and allowed 
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to recover for a period of 24 hours.  Following this recovery period the beads were 

treated with CaCl2, CHES, PLL (Sigma, MW:19,200), and 0.2% alginate (of the same 

type as that used for the core material) to create the final APA beads as previously 

described [8, 94].  Three encapsulations were performed for each combination of alginate 

composition and concentration examined.  Aliquots of the beads (ranging from 1.5-2mL) 

from each entrapment were transferred into separate T-75 flasks with 50 mL of culture 

medium and placed on an orbital shaker within a humidified 37˚C, 5% CO2/95% air 

incubator.  For all entrapments, one of the T75 flasks was used to withdraw samples of 

beads for histology examination while the others were used to quantify the rates of 

glucose consumption, lactate production and insulin secretion.  This practice minimized 

errors in the quantification of these rates.  Both sets of flasks were compared by histology 

when the experiment was terminated in order to verify that they resulted in identical 

cultures.  All flasks (n=7 per alginate type/concentration) were fed every 2-3 days by 

complete replacement of the culture medium.   

 

3.3.4. Analytical techniques  

 Glucose and lactate concentrations in medium samples were determined using an 

EKTACHEM DT60 bioanalyzer (Eastman Kodak, Rochester, NY).  Insulin was assayed 

by liquid-phase radioimmunoassay (Linco Research, St. Charles, MO).  The kit utilized 

an antibody made specifically against rat insulin, and had an 100% reactivity against both 

human and rat insulin and a sensitivity of 0.1 ng/ml.  Calculation of the rates of 

consumption or production were based on the change in the amount of glucose, lactate, or 

insulin (amount = volume x concentration) between feedings, divided by the 
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corresponding time period.  These rates were normalized to a unit of 105 cells added 

initially to the culture.   

 

3.3.5. Histology   

 Histology samples for each alginate type were taken approximately every seven days.  

A sample of beads was removed from the histology designated flask, washed with 1.1% 

CaCl2, and fixed in 3% glutaraldehyde.  After sectioning, the slides were stained with 

hematoxylin/eosin (H/E). 

 

3.4. RESULTS 

3.4.1. Effects of Guluronic Acid Content 

 Figure 5 illustrates the temporal changes in the rates of glucose consumption (GCR), 

lactate production (LPR), and insulin secretion (ISR) by βTC3 cells encapsulated in 2% 

w/v MVG (solid diamonds), 2% w/v LVG alginates (open diamonds), 2% w/v MVM 

(solid squares) and 2% w/v LVM alginates (open squares).  Each point on the graphs 

represents the average metabolic and secretory rate from the three independent 

encapsulations, while the values determined for each encapsulation represent the average 

rate exhibited by the culture over a period of two to three days depending on the feeding 

cycle.  The error bars represent the standard deviation from the mean.  The graphs 

indicate that βTC3 cells encapsulated in either of the two high guluronic acid content 

alginates (MVG or LVG) displayed an initial decrease in the metabolic and secretory 

activity of the culture.  The metabolic rates, GCR and LPR, recovered sooner and at a 

faster rate with the lower molecular weight polymer (LVG) than with the higher 
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molecular weight polymer (MVG).  Both alginate cultures eventually surpassed their 

initial GCR and LPR values, however, ISR did not recover beyond its initial value for 

either alginate.  Conversely, βTC3 cells encapsulated in either of the two high 

mannuronic acid content alginates (MVM or LVM) displayed a continuous increase in 

both metabolic and secretory rates.  Since beads made from alginates that are rich in 

mannuronic acid residues are softer and tend to deteriorate faster [132], MVM and LVM 

beads began to break within 2-3 weeks from encapsulation.  As a result the measurement 

of the metabolic and secretory rates became erratic and the cultures were terminated.  Our 

data show no significant differences between MVM and LVM cultures.   

 

 At regular time intervals, samples of beads from these cultures were fixed, cross-

sectioned and stained with H/E to examine the growth pattern of encapsulated βTC3.  

Figure 6 shows representative histology cross-sections of MVG (Days 1, 14, 35, and 50) 

and LVG beads (Days 1, 14, and 35) stained with H/E.  For the first few days after 

entrapment, βTC3 cells were >90% viable and uniformly distributed throughout the 

beads as previously reported [130].  Subsequently, the cell viability decreased and overall 

growth was hindered, leaving only a few randomly dispersed pockets of viable cells 

remaining within the beads.  This decline in viability persisted for 2-5 weeks depending 

on the molecular weight of the alginate.  Viable βTC3 cells encapsulated in LVG alginate 

beads that persisted during the initial period of hindered growth began to proliferate 

approximately 20 days after entrapment by growing into ever increasing clusters.  These 

clusters were randomly dispersed throughout the APA beads.  A similar pattern of growth 

was also observed for MVG encapsulated cells.  However, the development of the 
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clusters was delayed until approximately 30 days after encapsulation, and the average 

number of clusters observed per bead was smaller.  These data support the metabolic and 

secretory changes displayed in Figure 5 for the two high guluronic acid content alginates.   
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Figure 5.  Temporal changes in the rates of (A) glucose consumption (GCR), (B) lactate 
production (LPR), and (C) insulin secretion (ISR) by βTC3 cells encapsulated in 2% w/v 
MVG (solid diamonds), LVG (open diamonds), MVM (solid squares), and LVM (open 
squares) alginates.   
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Figure 5. (continued)  Temporal changes in the rates of (A) glucose consumption 
(GCR), (B) lactate production (LPR), and (C) insulin secretion (ISR) by βTC3 cells 
encapsulated in 2% w/v MVG (solid diamonds), LVG (open diamonds), MVM (solid 
squares), and LVM (open squares) alginates. 
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Figure 6.  Cross-sections of 2% w/v MVG and LVG APA beads containing βTC3 cells 
and stained with H/E at the times designated. 

 
 
 
 Figure 7 shows representative cross-sections of 2% w/v MVM and 2% w/v LVM 

beads (Day 1, 7, 16 and 29) stained with H/E.  Encapsulated βTC3 cells began to 

proliferate immediately after encapsulation and by day 16 had increased substantially 

with preferential growth at the periphery of the bead.  At this point bead breakage was 

observed.  However, a few beads were maintained for an additional 10-14 days.  The 

beads that maintained their integrity during this extended culture period displayed a cell 

layer ~0.2 mm thick at the periphery, whereas cells in the center of the bead were dead.  

This “o-ring” like growth pattern has been reported in the literature for encapsulations of 

βTC3 cells in alginates that did not have a precisely defined composition [9, 119, 130]. 
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Figure 7.   Cross-sections of 2% MVM and LVM APA beads containing βTC3 cells and 
stained with H/E at the times designated. 

 
 
 
3.4.2. Effects of Alginate Concentration 

3.4.2.a. MVG and LVG  

 The effects of alginate concentration on the metabolic and secretory profiles as well 

as the growth characteristics of βTC3 cells encapsulated in high guluronic acid content 

alginates were examined by decreasing the concentration of MVG and LVG alginates to 

1% w/v before cross-linking with 0.1 M CaCl2.  Figure 8 shows the temporal changes in 

GCR, LPR and ISR for βTC3 cells encapsulated in 1% w/v MVG (solid diamonds) and 

1% w/v LVG breads (open diamonds).  Comparing these metabolic and secretory profiles 

with those shown in Figure 5 (2% w/v MVG and LVG) and traced in this figure for easy 

visual comparisons, a couple of differences become apparent.  First, cells encapsulated in 

both MVG and LVG at 1% w/v do not display a decline in either metabolic or secretory 

rates, but rather a lag period of approximately 10 days followed by an increase in 
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metabolic and secretory rates.  Second, the significant differences displayed in GCR, and 

LPR profiles at 2% w/v alginate (Figure 5) are diminished at 1% w/v alginates, although 

a pattern of higher values for the 1% w/v LVG encapsulation is seen.  For ISR, however, 

a difference between the profiles of 1% w/v MVG and 1% w/v LVG is detected as the 

values of ISR begin to increase following the lag period.  LVG encapsulated cultures 

displayed a faster recovery than the corresponding MVG cultures.   
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Figure 8.  Temporal changes in the rates of (A) glucose consumption (GCR), (B) lactate 
production (LPR), and (C) insulin secretion (ISR) by βTC3 cells encapsulated in 1% w/v 
MVG (solid diamonds) and LVG (open diamonds) alginates.   
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Figure 8. (continued)  Temporal changes in the rates of (A) glucose consumption 
(GCR), (B) lactate production (LPR), and (C) insulin secretion (ISR) by βTC3 cells 
encapsulated in 1% w/v MVG (solid diamonds) and LVG (open diamonds) alginates.   
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 Figure 9 shows representative cross-sections of 1% w/v MVG and LVG beads at 

Days 1, 6, and 23 stained with H/E.  Unlike the 2% w/v alginates, βTC3 cells 

encapsulated in 1% w/v MVG or LVG display a steady increase in viable cells.  

Furthermore, the growth pattern found within the 1% w/v alginates, appears to be less 

random than that observed in 2% w/v encapsulations.  A great portion of cell clusters 

were gathered on the periphery of the bead.  By Day 25, cell clusters dominated the 

periphery of the beads, and consequently the beads began to rupture.   

 

 

 

Figure 9.  Cross-sections of 1% MVG and LVG APA beads containing βTC3 cells and 
stained with H/E at the times designated. 
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3.4.2.b. MVM and LVM  

 Figure 10 illustrates the temporal changes in GCR, LPR, and ISR by βTC3 cells 

encapsulated in 3% w/v MVM (solid diamonds) and in 3% w/v LVM (open diamonds) 

alginates.  Cell encapsulated in either 3% w/v MVM or 3 w/v LVM demonstrated a steep 

increase in both metabolic and secretory rates post-entrapment that continues until bead 

breakage.  There are no significant differences between these profiles.  Comparing these 

profiles to those shown in Figure 5 for 2% w/v MVM and 2% w/v LVM cultures (these 

profiles are also traced in this figure for easy visual comparison) lead us to conclude that 

an increase in the concentration of high mannuronic acid content alginates does not affect 

the overall metabolic and secretory rates of the encapsulated cells. 

 Figure 11 shows representative cross-sections at Days 1, 14, and 26 from βTC3 cells 

encapsulated in 3% w/v MVM and 3% w/v LVM alginates.  Similar to what is shown in 

Figure 7, encapsulated βTC3 cells began to proliferate immediately after encapsulation 

with preferential growth at the periphery of the bead.  This histology examination did not 

display observable differences between the two high mannuronic alginates at 3% w/v 

alginate concentration or between the 2% w/v and 3% w/v encapsulations.   
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Figure 10.  Temporal changes in the rates of (A) glucose consumption (GCR) (B) lactate 
production (LPR) and (C) insulin secretion (ISR) by βTC3 cells encapsulated in 3% w/v 
MVM (solid diamonds) and LVM (open diamonds) alginates.   

 

 46 



0

200

400

600

800

1000

1200

0 5 10 15 20
Time (Day)

IS
R

 (p
m

ol
/h

r-
10

8 ce
lls

)

3% MVM
3% LVM

C
2% LVM

2% MVM

 
Figure 10 (continued).  Temporal changes in the rates of (A) glucose consumption 
(GCR) (B) lactate production (LPR) and (C) insulin secretion (ISR) by βTC3 cells 
encapsulated in 3% w/v MVM (solid diamonds) and LVM (open diamonds) alginates.   

 

 
Figure 11.  Cross-sections of 3% MVM and LVM APA beads containing βTC3 cells and 
stained with H/E at the times designated. 
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3.5. DISCUSSION 

 Extracellular matrices are known to influence the behavior of encapsulated cells 

[133].  Therefore, it is not surprising that βTC3 cells encapsulated in alginate gels of 

varying composition exhibited differences in their growth dynamics, which correlated 

with the overall metabolic and secretory activities of the cultures.  These changes were a 

function of chemical composition, molecular weight, and concentration of alginate; 

however, the exact cause responsible for these effects is unclear.  A property of alginate 

gels that can best interpret our data is the strength of the gel network.  It is documented in 

the literature that alginates with a high guluronic acid content form a more structured 

crosslinking network due to the formation of junction zones between Ca2+ ions and 

contiguous guluronic acid residues (a.k.a. guluronic blocks) from different alginate 

chains.  The model that describes this interaction is the “egg-box model” [29].  In the 

event that gellation takes place in the presence of high CaCl2 concentration such as the 

0.1 M solution used in the present experiments, multiple layers of junction zones are 

formed strengthening the resultant network.  This network is postulated to behave similar 

to a rigid cylinder [134].  Thus, the stronger the network the more difficult it is to 

displace it.  Consequently, cell growth might be inhibited within a strong cohesive gel 

network.   

 Comparing data acquired from 2% w/v MVG versus MVM alginates or LVG versus 

LVM alginates reveals that an increase in guluronic acid content hinders the growth of 

encapsulated cells.  This is attributed to the strong gel network formed by the MVG and 

LVG alginates due to their high content of guluronic blocks (60% and 56% for MVG and 

LVG respectively versus 20% for MVM and 18% for LVM).  The delayed cell growth 
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observed in the MVG and LVG alginates especially at the 2% w/v alginate concentration 

is attributed to a progressive weakening of this network over time.  Since culture media 

have significantly lower CaCl2 concentration than the 0.1 M CaCl2 solution used for 

gellation, repetitive feedings during a prolonged culture period will result into a leaking 

of the Ca2+ ions, thereby weakening the gel network.  The random location of viable cells 

that survived and proliferated during the initial inhibitory period in the 2% w/v MVG or 

LVG alginates is attributed to areas where the alginate network is not as tightly knit.  The 

presence of these randomly placed clusters was previously attributed to the 

inhomogeneous gellation of high guluronic acid alginates [130]; however, this 

interpretation is unlikely given the radial distribution of gel inhomogeneity [122] and the 

present data.  Alternatively, in alginates with a high mannuronic acid content (MVM and 

LVM), the cell growth and the overall metabolic and secretory activities were not 

inhibited because of the weaker gel network formed by such alginates.  Therefore, the 

pattern of cell growth at the periphery of the beads that was observed in all MVM and 

LVM cultures is dictated by oxygen availability, as previously described [8, 130].   

 Molecular weight is known to influence the strength of the gel network in a biphasic 

manner [30].  A correlation between gel strength and molecular weight exists only for 

molecular weights up to approximately 250 kDaltons.  This correlation ceases for higher 

molecular weight polymers.  It is important to note that the effects of molecular weight 

on gel strength are not as strong as those imposed by an increasing guluronic content 

[30].  The effects of alginate molecular weight on encapsulated βTC3 cells are 

demonstrated by comparing data acquired from MVG versus LVG alginates and from 

MVM versus LVM alginates.  Our data show that cells encapsulated in 2% w/v LVG 
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alginate (189 kDaltons) displayed the same initial inhibitory effects as the higher 

molecular weight MVG alginate (231 kDaltons), however the LVG-encapsulated cells 

started recovering earlier and proliferated faster than cells encapsulated in MVG alginate.  

This distinction in molecular weight was not observed in alginates with weaker gelling 

networks such as the mannuronic-rich alginates (MVM and LVM).  With the 1% w/v 

MVG and LVG cultures, the differences between molecular weight were not significant 

but there was a prevailing pattern that the lower molecular weight afforded a higher 

metabolic activity to the encapsulated cells.  The secretory activity between LVG and 

MVG at 1% w/v alginate gels was significantly different supporting the pattern observed 

in the metabolic rates.   

 The effects of alginate concentration on the encapsulated cells were assessed by 

performing two sets of experiments.  In the first set, the concentration of MVG and LVG 

alginates was reduced from 2% w/v to 1% w/v in an attempt to weaken the rigidity of the 

APA beads and mimic the environment of a high mannuronic acid alginate.  Conversely, 

in the second experiment, the concentration of MVM and LVM alginates was elevated 

from 2% w/v to 3% w/v in an attempt to strengthen the APA beads and mimic the 

environment of a high guluronic acid alginate.  Reduction of the MVG and LVG 

concentration had the predicted effect.  The temporal profiles of the metabolic and 

secretory rates as well as the growth pattern and dynamics of encapsulated cells displayed 

growth hindrance but not cell death during in the first 2-3 weeks after encapsulation.  

Alternatively, increasing the concentration of MVM and LVM did not follow the 

predicted pattern.  There was no difference in either the metabolic and secretory rates or 
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the growth dynamics and pattern of βTC3 cells encapsulated in 2% and 3% w/v alginate 

concentration.   

 From a mechanistic point of view, our data show that it is not simply the overall 

rigidity of the matrix that is responsible for the behavior of the encapsulated cells, but 

rather the strength of the alginate gel network at the microstructure level.  This 

conclusion is deduced from the following three comparisons.  A) βTC3 cells 

encapsulated in 1% w/v MVG or LVG alginates displayed slower growth and metabolic 

and secretory rates than cells encapsulated in 3% w/v MVM or LVM alginates.  A 3% 

w/v MVM or LVM matrix, albeit high in mannuronic acid residues, generates a 

significantly denser gel than the 1% w/v MVG or LVG matrix and thus tolerates a higher 

load before breakage [30].  Yet, the 3% w/v MVM and LVM matrices provide a more 

favorable environment for encapsulated cell growth.  B) βTC3 cells encapsulated in 2% 

w/v MVM or LVM alginates displayed the same metabolic activity with similar cultures 

encapsulated in 3% w/v MVM or LVM alginates.  Independent mechanical 

measurements have shown that the 3% w/v alginate bead is significantly more rigid than 

a 2% w/v alginate bead [30].  Yet, the metabolic activity and growth characteristics of 

encapsulated βTC3 cells were independent of alginate concentration for these alginates.  

C) Comparing our previously published data from βTC3 cells encapsulated in 1.5% w/v 

MVG beads with a liquefied core [130] versus current data from βTC3 cells encapsulated 

in 1% w/v MVG with a gelled core, we observe no difference between the two cultures.  

Beads with gelled cores are significantly more rigid than beads with liquefied cores, yet 

they behave similarly.  Therefore, our data cannot be interpreted simply in terms of the 

overall rigidity or density of the matrix, the way Helmlinger et al. have interpreted the 
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inhibition of spheroid growth within agarose beads [135], since stresses at the microscale 

within the alginate matrix may vary significantly and not be directly correlated with 

macroscopic parameters.  It is our postulate that it is the strength of the alginate gel 

network at the microstructure level, resulting from the “egg-box” configuration of 

guluronic residues and calcium [29, 30, 134], that can best interpret the majority of our 

results and thus is responsible for the behavior of encapsulated cells.  

 Our data illustrate that the appropriate selection of an extracellular matrix can 

provide, at least partial, control of cell growth.  This is of great importance to tissue 

engineering, since cell growth is a generic issue that transcends across many types of 

transformed cell-based tissue-engineered constructs.  As indicated by the case of a 

bioartificial pancreas, alginates with a high guluronic acid content and at high 

concentration, which are traditionally favored for the encapsulation of mammalian islets, 

might not be appropriate for the encapsulation of proliferating cells.  Similarly, APA 

beads with a gelled alginate core have superior mechanical properties over similar beads 

with a liquid core, but the restrictive environment of the gel and/or its chemical 

composition might be detrimental to the proliferation of the encapsulated cells.  It should 

also be noted that the prolonged decline and subsequent recovery of cells encapsulated in 

2% w/v MVG and LVG alginates might result in a change of cell phenotype.  This is 

potentially a problem or a blessing for tissue engineering applications depending on 

whether the altered phenotype provides the function sought by the tissue engineered 

construct.  A better understanding of the effects of alginate composition on cell 

phenotype is currently underway in our laboratory. 
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 In summary, our data demonstrate that alginate composition has a significant effect 

on the viability and growth of encapsulated βTC3 cells and consequently on the overall 

metabolic and secretory activities of the cultures.  For the encapsulation of βTC3 cells 

and possibly other transformed cells with similar growth characteristics, our data indicate 

that a 1%–1.5% w/v LVG alginate provides a favorable environment, while maintaining a 

sufficient mechanical stability, thereby providing an excellent vehicle for in vitro and 

possibly in vivo experimentation. 
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CHAPTER 4 
 

4. EFFECTS OF ALGINATE COMPOSITION ON THE GROWTH AND 
OVERALL METABOLIC ACTIVITY OF βTC3 CELLS2 

 
 
 

4.1. ABSTRACT 

 The effects of alginate composition on the metabolic and secretory activity of βTC3 

cells were explored in vitro.  Earlier studies found that alginates high in guluronic acid 

content transiently impart detrimental effects on the entrapped βTC3 cells, while 

alginates high in mannuronic acid content result in bead rupture after fourteen days.  This 

study explored the use of an intermediate alginate containing a 55% guluronic acid 

content and 45% mannuronic acid content.  In vitro monitoring of the metabolic and 

secretory activity of the entrapped βTC3 cells, along with histological examinations, 

found this alginate to stabilize the cultures to a statistical plateau over a period of 

approximately two weeks.  After this period, the cultures exhibited metabolic and 

secretory behaviors similar to a high mannuronic alginate.  The applicability of this 

alginate to provide a combination of mechanical strength and stable growth is discussed. 

 

4.2. INTRODUCTION 

 The encapsulation of cells within semipermeable membranes for the purpose of 

immunoisolation from the host has many potential applications in tissue engineering, 

                                                 

2 Modification of paper published in Ann NY Acad Sci, 961: 130-133 (2002). 

 54 



ranging from the treatment of Parkinson’s disease to the encapsulation of insulin-

secreting cells for the long-term treatment of diabetes [19, 118]. Alginate is the 

biomaterial commonly used in the entrapment of cells.  Additional layers of poly-L-

lysine and alginate are typically added to coat the central alginate matrix to improve the 

stability of the gel [119] as well as to create an immunoisolation membrane [15].  The 

advantages of alginate/poly-L-lysine/alginate (APA) beads include structural integrity 

and at least partial immunoprotection to the entrapped cells, ease in manufacture, and 

manipulation of the molecular weight cutoff of the membranes.  

 Alginate is a common term for a family of unbranched polymers composed of 1,4-

linked β-D-mannuronic and α-L-guluronic acid residues in varying proportions, 

sequence, and molecular weight.  The gelation of alginate takes place when multivalent 

cations (usually Ca2+) interact with blocks of guluronic residues between two different 

chains resulting in a three-dimensional network [29].  The strength of the network 

depends on the overall fraction of guluronic acid residues the molecular weight of the 

polymer, and the Ca2+ ion concentration at the time of gelation [30].  The physical 

properties of alginate gels vary widely depending on their chemical composition.  In 

summary, alginates possessing a high guluronic acid content develop stiffer, more porous 

gels, which maintain their integrity for longer periods of time whereas alginates rich in 

mannuronic acid have reciprocal properties.  Therefore, high guluronic alginates have 

long been advocated for use in encapsulated cell systems [31].  

 Given the variety of physical properties associated with alginate composition, it is 

reasonable to hypothesize that encapsulated cells might be affected differently by 

changes in the alginate composition.  In CHAPTER 3, we have explored these effects by 
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entrapping βTC3 cells within alginates of varying molecular weight, structure, and 

concentration.  Through these studies, we were able to determine that a high guluronic 

alginate at a 2% w/v concentration, although advocated for use by other research groups 

due to its strength and stability, has detrimental effects on βTC3 cells by inhibiting their 

normal growth and overall metabolic activity for almost 60 days.  A high mannuronic 

alginate at 2% and 3% w/v concentrations permitted βTC3 cell growth at an exponential 

rate, until the microbeads broke due to the high cell density.  Furthermore, the growth 

patterns of the βTC3 within the high guluronic alginates and the high mannuronic 

alginates, in general, differ significantly from an o-ring to a clustering pattern.  

 

4.3. RESULTS AND DISCUSSION 

 In continuation of these studies, an encapsulation system that provided some control 

over excessive cell growth while maintaining structural integrity for in vivo implantation 

would prove to be advantageous.  In an attempt to strike a balance between the strength 

of the high guluronic alginate and the cell-favorable environment of the high mannuronic 

alginate, a composite alginate was created using a 2% w/v concentration of a high 

guluronic alginate (LVG) and a 2% w/v concentration of a high mannuronic alginate 

(LVM) in a 50/50 ratio.  The resulting alginate had 55% guluronic acid content and 45% 

mannuronic acid content.  Figures 12 and 13 illustrate the temporal changes in the rates 

of glucose consumption (GCR) and insulin secretion (ISR) by βTC3 cells encapsulated in 

2% w/v LVG/LVM (solid diamonds), compared with 2% w/v LVG alginates (open 

diamonds) and 2% w/v LVM (gray diamonds).  Each point on the graphs represent the 

average overall metabolic and secretory rate from the three independent encapsulations, 
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while the values determined for each encapsulation are the average rate exhibited by the 

culture over a period of two to three days depending on the feeding cycle.  The error bars 

represent the standard deviation from the mean.  The graphs illustrate that βTC3 cells 

encapsulated the 50/50 mixture of LVG/LVM maintain a statistical plateau in their 

overall metabolic and secretory activity for approximately two weeks.  This is compared 

to the 2% LVG alginate, which display a decrease in the overall metabolic and secretory 

activity over the course of almost one month, and the 2% LVM alginate, which show an 

exponential increase in the overall metabolic and secretory rates following entrapment.  

H/E stained histology images also demonstrate the growth of the cells within the APA 

beads, where the βTC3 cells within the 2% LVG/LVM mixture exhibit a semi-clustering 

growth pattern of cells throughout the bead. Therefore, through these experiments, an 

alginate was created that controls the proliferation rate of the βTC3 cells and retains the 

mechanical properties necessary for safe implantation for two weeks. Our data 

demonstrate that the appropriate selection of an extracellular matrix can provide, at least 

partial, control of cell growth. 
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Figure 12.  Temporal Changes in the rates of metabolic activity (Glucose Consumption 
Rate) for βTC3 cells encapsulated in 2% w/v LVG/LVM (solid diamonds), LVG (open 
diamonds), and 2% LVM (gray diamonds) with representative histological images shown 
a specified time points.   
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Figure 13.  Temporal Changes in the rates of Secretion Activity (Insulin Secretion Rate) 
for βTC3 cells encapsulated in 2% w/v LVG/LVM (solid diamonds), LVG (open 
diamonds), and 2% LVM (gray diamonds).   
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CHAPTER 5 
 

5. NONINVASIVE MONITORING OF A RETRIEVABLE BIOARTIFICIAL 
PANCREAS IN VIVO3 

 
 
 

5.1. ABSTRACT 

 This study explores the ability of 1H Nuclear Magnetic Resonance (NMR) imaging 

and spectroscopy to collect spatial and metabolic information from an implanted 

bioartificial pancreas.  The implant consisted of alginate/poly-L-lysine/alginate (APA) 

beads confined within a planar construct, fabricated from a silicone o-ring and sealed 

with a polypropylene mesh of pore size 500 µm.  In vitro metabolic and secretory 

assessment of the device found levels comparable to free floating APA beads when the 

device thickness was approximately 1.8 mm.  Localized, water-suppressed 1H NMR 

spectra were collected from the device in vitro.  In vivo localized, water-suppressed 1H 

NMR spectra, comparable to in vitro results, were obtained from implanted 5 mm thick 

constructs on Day 0, by localizing the collected signal to a volume inside of the implant.  

1H NMR images allowed for accurate positioning of the localized volume of interest 

(VOI).  The implications of this research on monitoring implanted tissue engineered 

constructs using 1H NMR imaging and spectroscopy are discussed.  

 

                                                 

3 Modification of paper published in Ann NY Acad Sci, 961: 298-301, (2002) 
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5.2. INTRODUCTION 

 The bioartificial pancreas is a potentially efficacious treatment for diabetes, which 

could provide physiologic blood-glucose regulation without immunosuppressive 

medication, administered with relative ease, and be readily available [15, 19].  Although 

various designs have been considered, the design most commonly used to generate these 

tissue engineered constructs is based on the microencapsulation of insulin-secreting cells 

in a biocompatible matrix that provides mechanical support and, at least, partial 

immunoprotection [15].  A variety of cells have been used in these constructs including 

mammalian islets and transformed β-cell lines [43, 136], and the matrix most frequently 

utilized is the alginate/poly-L-lysine/alginate (APA) bead.  At present, our only means of 

assessing the efficacy for an implanted bioartificial pancreas is to measure the blood 

glucose concentration of the host.  Developing a noninvasive imaging technique that can 

monitor the viability and function of encapsulated cells as well as the integrity of the 

matrix is of critical importance.  Nuclear Magnetic Resonance (NMR) has the ability to 

provide both biochemical and structural information, under either in vivo or in vitro 

conditions.   

 Retrieval of all APA beads following IP implantation is difficult due to the dispersal 

of the beads throughout the peritoneal cavity.  A possible solution to this problem is to 

contain the beads within a device that can be easily retrieved.  This device, however, can 

impose additional diffusion barriers and thus be detrimental to the metabolic and 

secretory activity of the encapsulated cells.  A benefit of such containment is the ability 

to acquire NMR spectra localized from within the device.  This study shows our efforts in 
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developing a NMR based methodology to monitor a retrievable bioartificial pancreatic 

construct in vivo.   

 

5.3. MATERIALS AND METHODS 

5.3.1. Cell Culture and APA Encapsulation 

 βTC3 cells were obtained from the laboratory of Dr. Shimon Efrat (Albert Einstein 

College of Medicine, New York, N.Y.) and cultured as previous described in CHAPTER 

3.  Encapsulation of βTC3 cells in APA beads was based on the initial protocol by Sun 

[15] and modified to suit our need.  The alginate solution employed in these studies had a 

2%w/v density and a 45%/55% mannuronic/guluronic content.  The final APA beads 

measured ≈800 µm in diameter and contained initially 5x107 βTC3 cells/ml alginate.   

 

5.3.2. NMR Spectroscopy and Imaging 

 NMR imaging and spectroscopy examinations were performed using a Varian/Inova 

4.7T horizontal bore magnet operating at 200.56 MHz (Varian, Inc., Palo Alto, CA).  The 

magnet was equipped with an 11.7 cm inner diameter self-shielded gradient system with 

a maximum gradient strength of 25 gauss/cm.  NMR signal was transmitted and received 

using a 16-element quadrature birdcage coil of 3.6 cm inner diameter and a 7 cm length.  

For in vitro experiments, constructs were placed within a sterile centrifuge tube filled 

with saline, and the tube was centered in the coil.  For in vivo scans, anesthetized animals 

were centered and secured inside the coil.  Subsequently, the RF coil was positioned in 

the isocenter of the magnet.   
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 Scout 1H NMR gradient-echo images (TR = 200 ms, TE = 3.5 ms, acquisition time of 

51 sec) were acquired to determine the position of the construct.  Once the center of the 

construct was identified, localized 1H NMR spectra were acquired from a 3 mm thick 

volume of interest (VOI), centered within the cell-containing region of the construct.  

Shimming of the water signal was performed on the selected VOI using a localized non-

water suppressed Point RESolved Spectroscopy (PRESS) sequence [137].  Water-

suppressed spectrum on the same VOI was acquired using three CHemical Shift Selective 

(CHESS) pulses prior to executing the PRESS localization sequence.  The PRESS pulse 

parameters used for all of the experiments were TR equal to 3 sec and a total TE, defined 

as 2t1 + 2t2 (t1 = 12.5 ms, t2 = 33 ms), of 91 ms.  All localized, water-suppressed 1H NMR 

spectra were the average of 256 acquisitions, collected at a constant receiver gain using 

real-time digital signal processing.  The total time required to collect each water-

suppressed spectrum was 12 min 56 sec.  Spectral data were processed using the 

frequency domain analysis package supplied in VNMR from Varian.  Time domain data 

were apodized with an exponential line broadening of 3 Hz, Fourier transformed, with the 

residual water signal removed by digital filtering, and the baseline corrected where 

necessary.  A Lorentzian function was fitted to the resulting TCho peak at 3.2 ppm using 

manufacturer-provided software to determine the area under the peak.   

 

5.4. RESULTS AND DISCUSSION 

 A prototype model that consisted of a 13 mm diameter silicone ring with a 

polypropylene mesh of pore size 500 µm covering the top and bottom of the ring was 

considered for the containment of the APA beads (Figure 14).  The thickness of the 
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construct was varied from 1.8 mm to 5 mm, where approximately 0.25 to 0.65 ml of APA 

beads could be injected into the ring and packed tightly within the construct.  Figure 15 

illustrates temporal profiles of the in vitro metabolic and secretory activities of the 

encapsulated βTC3 cells contained within three construct prototypes, compared to free-

floating APA beads.  As can be seen from the figure, while the glucose consumption rates 

of the constructs were not compromised by containment within the ring, the insulin 

secretion rates were significantly decreased when confined within the 3 mm or 5 mm 

thick constructs.  From this data, it can be concluded that the 1.8 mm silicone construct 

was the most promising design for containment of APA beads, without compromising 

function.    
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Figure 14.  Schematic representation of construct prototype.  APA beads contain 
entrapped βTC3 cells, while outer region is the silicone ring. 
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Figure 15.  Temporal changes in the rates of (A) glucose consumption (GCR) and (B) 
insulin secretion (ISR) of βTC3 cells encapsulated in APA beads free-floating (solid 
squares), or confined within 5 mm (solid diamonds), 3 mm (shaded diamonds), or 1.8 
mm (open diamonds) thick constructs.   
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 In vitro experiments were performed to optimize the NMR acquisition parameters.  

Figure 16 shows a gradient-echo image of a 3 mm construct, loaded with APA beads that 

contained βTC3 cells, showing the silicon ring (dark circle) and individual APA beads 

distributed uniformly inside the ring.  The white square represents the volume of interest 

(VOI) within which the water suppressed 1H NMR spectrum was acquired.  The resulting 

spectrum shows a strong total-choline or TCho peak. 

 Preliminary in vivo experiments were initiated using normal C57BL/6J mice.  A 

construct of 5 mm thickness was surgically implanted in the peritoneal cavity using a 

midline celiotomy.  Immediately following implantation, the anesthetized animal was 

placed within the coil and positioned in the magnet.  Figure 17 (Panels A and B) shows 

two orthogonal gradient-echo images of the mouse, delineating the location of the 

construct.  Figure 17C shows a typical water-suppressed 1H NMR spectrum, which was 

localized to the region within the construct.  It should be note that the acquisition 

parameters and volume of interest for the in vivo spectrum were identical to the ones used 

during the in vitro experiment.  The resulting in vivo spectrum was acquired in 

approximately 13 min.  We have previously demonstrated that the 3.2 ppm resonance 

detected by 1H NMR, commonly called total-choline or TCho, is a sensitive marker of 

cell proliferation and oxygen consumption by APA encapsulated βTC3 cells [7].  

Therefore, the ability to detect total-choline from encapsulated cells noninvasively in vivo 

could permit us to monitor the proliferation and oxygenation of these cells.  Such 

information is critical in assessing the functionality and possibly the longevity of an 

implanted construct. 
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Figure 16.  A gradient-echo image of a silicon o-ring with 0.4 mL of APA beads inside 
(Figure A).  The white square is the volume of interest within which the water-suppressed 
1H NMR spectrum was acquired (Figure B). 
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Figure 17.  A sagittal view through the C57BL/6J mouse showing the location of the 
construct (Panel A).  A coronal view through the mouse and the o-ring (Panel B).  A 
water suppressed localized 1H NMR spectrum acquired from within the o-ring (Panel C). 
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5.5. CONCLUSIONS 

 Overall, we have demonstrated that APA beads containing βTC3 cells can be 

restrained within the confines of a construct without significantly affecting the metabolic 

and secretory activity of the cells when the thickness is approximately 1.8 mm.  In 

addition, localized 1H NMR spectra can be collected from an implanted construct in vivo, 

setting the foundations to monitor a tissue-engineered construct in vivo. 
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CHAPTER 6 
 

6. IN VITRO CHARACTERIZATION OF βTC3 CELLS IN AGAROSE DISK 
CONSTRUCTS AS A BIOARTIFICIAL PANCREAS 

 
 

 

6.1. ABSTRACT 

  This study investigated the use of agarose macroconstructs for the development of 

a bioartificial pancreas.  Two disk-shaped macroconstruct prototypes were examined: (i) 

a single disk construct comprised of agarose and βTC3 cells; and (ii) a buffered disk 

construct consisting of agarose and βTC3 cells, coated with an additional layer of pure 

agarose.  Diffusional studies of glucose and insulin were performed to characterize the 

transport properties of the material.  Diffusion-reaction models were used to generate 

oxygen profiles for the two construct prototypes, and these models were compared to 

experimental in vitro results of cell viability and secretory activity.  The applicability of 

this research in the development of agarose-based constructs for use as a bioartificial 

pancreas is discussed. 

 

6.2. INTRODUCTION 

Diabetes mellitus is a serious pathological condition characterized by impaired insulin 

production and oscillation of glucose levels.  While the generally accepted current 

treatment for insulin-dependent diabetes involves blood glucose monitoring and multiple 

daily insulin injections, a treatment that can provide a more physiological control of 

blood glucose levels could significantly decrease diabetic secondary complications, such 
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as retinopathy, neuropathy, nephropathy [12].  A tissue engineered pancreatic substitute, 

consisting of insulin-secreting cells and biocompatible materials, holds significant 

promise for treating insulin-dependent diabetics through continual regulation of insulin 

secretion in response to glucose.  Use of transformed β cells, such as the continuous β 

cell lines developed by Efrat et al [23, 138], relaxes the cell availability problem posed by 

pancreatic islets, while also utilizing cells that have lower oxygenation requirements for 

insulin secretion [25].  Encapsulation of the implanted cells can partially alleviate the 

need for immunosuppression. 

Development of a pancreatic substitute based on encapsulated insulin-secreting cells 

requires (i) a thorough construct design accounting for the transport of nutrients and 

metabolites and their respective consumption and production by the cells; (ii) in vitro 

characterization of the construct in terms of cell viability and the overall secretion 

dynamics; and (iii) in vivo evaluation of the construct functionality and efficacy.  In this 

paper, we focus on the first two stages of development described above: the design, 

fabrication and in vitro characterization of a pancreatic substitute.   

The construct selected for study consists of mouse insulinoma cells encapsulated in 

agarose in a disk-shaped construct.  The ability of purified agarose, a common hydrogel 

used for cell encapsulation [27, 47, 57, 65, 139, 140], to maintain entrapped βTC3 cells 

was explored.  In this study, two macroconstruct designs were examined, and the 

constructs were experimentally evaluated in vitro.  Advantages and shortfalls of the 

implemented design approach, and possible compromises in construct functionality 

imparted by the foregoing architectural features, are discussed. 
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6.3. MATERIALS AND METHODS 

6.3.1. Cell and Cell Culture 

βTC3 cells were obtained from the laboratory of Shimon Efrat, Albert Einstein 

College of Medicine, Bronx, NY.  Cells were cultured as monolayers in T-flasks and fed 

every 2-3 days with fresh medium consisting of Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 25 mM glucose and supplemented with 15% horse serum, 2.5% bovine 

serum, 1% penicillin-streptomycin, and L-glutamine to a final concentration of 6 mM 

(Sigma, St. Louis, MO).  Upon confluency, βTC3 cells were trypsinized using 0.25% 

Trypsin with EDTA (Sigma, St. Louis, MO) and either split for propagation or used in 

construct fabrication (passage numbers 33-48). 

 

6.3.2. Construct Fabrication 

Two types of agarose constructs were used in this study (Figure 18).  One was a 

single 2% agarose disk with entrapped βTC3 cells and final dimensions of 1.8 mm height 

and 11 mm diameter (Figure 18A).  The other was a buffered agarose disk, consisting of 

the single cell-containing agarose disk coated with an additional layer of pure 2% 

agarose, to final dimensions of 3 mm height and 16 mm diameter (Figure 18B).  The 

presence of this buffer layer was found necessary to minimize the contribution of fat 

deposits on the NMR spectrum acquired from implanted constructs.  These in vivo studies 

are reported in CHAPTER 9. 
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d =  16mm 

 

Figure 18.  Schematic representation and dimensions of single agarose disk construct (A) 
and buffered agarose disk construct (B).  The shaded region represents the inner disk 
containing βTC3 cells entrapped in 2% agarose, while the white region indicates pure 2% 
agarose.   

 
 
 
 Agarose (SeaPlaque, low gelling, 1250g/cm2 gel strength) was obtained from 

Cambrex, NJ. The agarose powder was dissolved in PBS at 2%(w/v) according to the 

supplier’s instructions, and the solution was sterile-filtered through a 0.2-µm filter (Pall, 

East Hills, NY) while still warm (>40ºC).  Viable cell counts were performed on the 

freshly trypsinized βTC3 cell suspension using the trypan blue (Sigma, St. Louis, MO) 

exclusion method prior to centrifugation.   The cell pellet was then suspended in the 

agarose solution at 37ºC at the cell loading specified for each experiment and evenly 

mixed using a syringe with a 20G needle.  Pre-sterilized 1.8 mm thick Lexan sheets 

(McMaster-Carr, Atlanta, GA) with 11 mm diameter holes were fastened to pre-sterilized 

d =  11mm 

h =1.8 mm 

B 

h =3 mm 
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Lexan bases by H-clamps and used as molds.  The molds were filled to capacity with the 

agarose/cell mixture (0.2 mL in volume) and allowed to cool at room temperature until 

gelled (~ 3 mins).  For single agarose constructs (Figure 18A), the disks were removed 

from the molds and placed in fully supplemented DMEM.  For buffered agarose 

constructs (Figure 18B), the cell-containing disks were removed from their molds and 

placed into larger Lexan molds of 3 mm height and 16 mm diameter, fabricated from 3 

mm thick Lexan sheets.  These larger molds were partially filled with 2%(w/v) agarose 

solution prior to placement of the cell-containing disks and then filled to capacity after 

the inner disk was centrally aligned.  Constructs were allowed to solidify at room 

temperature for 5 min before being placed in fully supplemented DMEM.   

 

6.3.3. Diffusivity Measurements 

Glucose and insulin diffusivities through agarose were measured by mixing glucose 

or porcine insulin (both from Sigma) with 2% (w/v) agarose and casting 1.5 mm slabs 

into wells of a six well plate.  The concentrations of glucose and insulin in the slabs were 

18 mg/mL and 0.1 mg/mL, respectively.  These initial concentrations were selected to 

allow for accurate measurement of solutes during the initial stages and were based on the 

sensitivity of their respective assays.  The agarose/solute solutions were allowed to gel 

for approximately 5 min at room temperature before 3 mL of PBS solution were added to 

each well, marking time zero of the experiment.  Plates were placed on an orbital shaker 

for mixing and tests were performed at room temperature.  For glucose, 5µL samples 

were collected from each well at intervals of 1 min during 0-20 min, 2 min during 20-30 

min, 5 min during 30-60 min, and 15 min during 60-120 min.  For insulin, 150 µL 
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samples were collected, while 150 µL of pure PBS was added, in order to maintain a 

constant volume, from each well at intervals of 1 min during 0-10min, 2 min during 10-

20 min, 5 min during 20-60 min, and 15 min during 60-240 min.  Finally, for each run, a 

sample was collected after 24 hours and compared to the previously collected sample to 

verify equilibrium.   

To assess the effect of cells on effective diffusivities, glutaraldehyde-deactivated cells 

were incorporated into the agarose constructs.  Glutaraldehyde deactivation prevented 

consumption or production of glucose or insulin by the cells, while retaining the basic 

elements of cell structure.  Cells were deactivated through incubation with 1% 

glutaraldehyde for 1 minute, the glutaraldehyde was removed through a series of four 

washes with PBS, and the dead cells were suspended at a density of 5x107 cell/mL with 

agarose/glucose or agarose/insulin solutions prepared as described above. The mixture 

was then cast into 6 well plates and tested using the same method described for the pure 

agarose experiments.   

To assess the effects of an agarose/agarose interface on the effective diffusivity, a 

buffered slab was created by first casting 0.9 mm thick slabs in 6 well plates using 2% 

agarose and 25.2 mg/mL glucose or 0.14 mg/mL porcine insulin solution.  The slabs were 

allowed to gel for 5 mins, and then coated with an additional 0.6 mm layer of pure 2% 

agarose.  Testing of the composite slab was then delayed 30 min for the glucose and for 

100 min for the insulin tests to allow for equilibration of the solute concentration within 

the entire construct volume.  At time 0, 3mL of PBS was added to each cast and samples 

were collected in a manner identical to that described above.   
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For each experimental type, a minimum of three independent experiments were 

conducted, and data were fitted to the appropriate one-dimensional diffusion equation to 

estimate the effective diffusivity.   

 

6.3.4. In Vitro Construct Characterization 

For in vitro studies, both constructs types containing different initial cell numbers 

were examined.  For single agarose constructs, initial cell loadings were 14x106, 10x106, 

and 7x106 cells, while buffered agarose constructs initially contained 7x106 and 3x106 

cells.  For each experiment, twelve identical constructs were fabricated and split into two 

groups of 6 constructs each.  Each group was placed in a 125 mL spinner flask (Wheaton, 

Millville, NJ) containing 35 mL of fully supplemented DMEM.  The spinner flasks were 

placed on a spinner plate in a humidified 37°C, 5% CO2 / 95% air incubator and were 

agitated at 30 rpm.  The time duration of each experiment was 13 days.  Complete media 

changes were performed every other day.  Samples for insulin analysis were collected 

every 24 hrs.  Two constructs from one spinner flask were removed on Days 0, 1, 3, 5, 7, 

and 13 for MTT and histology testing.   

 

6.3.5. Analytical Techniques 

Glucose concentrations in samples were measured using a calibrated Elite 

Glucometer (Bayer, PA).  Insulin concentrations in samples from the diffusion 

experiments, where insulin was the only protein in solution, were measured with a 

Coomassie blue-based total protein assay (Pierce, IL).  A calibration curve was generated 

for each assay run using the stock insulin solution diluted to the appropriate range.  
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Insulin from in vitro incubation experiments was measured with an ultra-sensitive mouse 

insulin EIA kit (ALPCO, NH) following the manufacturer’s protocol.  

 To measure the viable cell number in a construct using the CellTiter 96 MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay (Promega, Madison, WI), 

the construct was cut into four equal segments.  Three of the segments were incubated in 

separate wells of a 12-well plate (Corning, Acton, MA), each containing 3 mL of fully 

supplemented DMEM and 450 µL of MTT, for 4 hrs at 37˚C, 5% CO2 / 95% air.  

Following incubation, each construct segment was placed in a mortar, ground using a 

pestle, and returned to its original well.  Two milliliters of Solubilization/Stop solution 

was added to each well and the plate was sealed and placed within a humidified 37˚C, 5% 

CO2/95% air incubator for 24 hrs to fully dissolve the formazan crystals.  A volume of 

120 µL of the final solution in each well was then transferred to a 96 well plate, and the 

absorbance was read at 595 nm.  Absorbance values read from the three segments were 

then numerically averaged.  A viable cell number calibration curve for the MTT assay 

was generated by varying the initial cell loading of βTC3 cells within agarose constructs 

over the appropriate experimental range, Figure 19. 

Samples designated for histology were fixed in 3% glutaraldehyde for 48 hrs and then 

prepared for paraffin embedding and sectioning.  After sectioning into 5µm samples, the 

slides were stained with hematoxylin/eosin (H/E). 

 
6.3.6. Statistical Analysis 

All measurements are presented as the mean ± SD.  All statistical analyses were 

performed using a two-sample t-test.  Results were considered significantly different 

when p-values were less than 0.05.   
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Figure 19.  Correlation between viable cell number, assessed by trypan blue, and MTT 
absorbance for βTC3 cells entrapped in agarose constructs at varying cell loadings.   
 
 
 

6.4. RESULTS 

6.4.1. Effective Diffusivity in Agarose Constructs 

Equation (1) describes the diffusion of solutes out of the agarose and into the solution 

for the experimental conditions outlined in the Methods section, assuming one-

dimensional diffusion, uniform concentration of the solute in solution, adequate mixing 

of the bathing solution, constant effective diffusivity, and a partition coefficient of 1 (see 

section 6.6 for more details) [141, 142]. 
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where the parameters are defined as: D effective diffusivity of solute out of the agarose 

slab; L slab thickness; Co initial concentration of solute in agarose; Cb concentration of 

solute in the bulk solution; α ratio of the bulk liquid volume to agarose slab volume; and 

qn the nth root of the equation 
αn

n
n q

q
q

+
=

3
3

tan .  To simulate experimental results, only 

three terms of the series in equation (1) were required, based on the magnitude of the 

term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

2

exp
L

tDqn . 

 Expressing equation (1) in the form of the total amount of solute Mt in solution at 

time t as a fraction of Minf, the corresponding quantity after infinite time, one obtains: 
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where the parameters are defined as: ; bbt CVM =
)/11(inf α+

= osCVM ; Vb volume of the 

bulk solution; and Vs volume of the agarose slab.  For glucose measurements, a total of 

only 5.8% of the solution was removed during sampling, therefore volume changes were 

not taken into account.  While the volume of the bathing solution remained constant 

during the insulin experiments, the insulin concentration in the bathing solution was 

altered by the removal of sampled fluid and the addition of insulin-free fluid.  Therefore, 

insulin concentrations were corrected at each experimental and theoretical data point 

during the analysis to account for these effects.  The effective diffusivity D for each 

solute was determined by fitting equation (2) to experimental data, with D as the only 

adjustable parameter.   
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Figures 20A and B show experimental and theoretical results for the diffusion of 

glucose out of single cell-free agarose constructs (Figure 20A) and cell-containing single 

agarose constructs (Figure 20B).  Effective diffusivities were measured to be 4.26x10-4 

cm2/min and 3.22x10-4 cm2/min for the cell-free and cell-containing constructs, 

respectively, or 103% and 78% of glucose diffusivity in water at 25ºC [143].  Results for 

insulin diffusivity through single agarose constructs are shown in Figures 20C and D.  

Insulin effective diffusivities for the cell-free and cell-containing constructs were 

measured to be 1.15x10-4 cm2/min and 9.19x10-5 cm2/min, respectively, or 96% and 77% 

of the diffusivity in water at 25ºC [144].  In all cases, results from the buffered 

agarose/agarose constructs were statistically identical to those from the corresponding 

single layer constructs.   

 

6.4.2. Diffusion-reaction modeling of construct with cells 

To evaluate the viable cell number that can be supported in the agarose constructs, 

diffusion/reaction models were developed to simulate the axial concentration profile of 

dissolved oxygen, since dissolved oxygen is typically the limiting nutrient for 

extravascular constructs [145-148].  To simulate the oxygen profile within the construct, 

the following assumptions were made: (i) mass transport primarily in axial dimension; 

(ii) cellular oxygen consumption following Monod’s model; and (iii) homogeneous 

distribution of cells in the agarose matrix.   
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Figure 20.  Time course of diffusion of Glucose (A and B) and Insulin (C and D) out of 
2% agarose disks without (A and C) and with (B and D) cells.  
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Insulin Diffusion out of 2% Agarose
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Figure 20 (continued).  Time course of diffusion of Glucose (A and B) and Insulin (C 
and D) out of 2% agarose disks without (A and C) and with (B and D) cells.  
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Based on these assumptions, the resulting steady-state equation for oxygen concentration 

is: 

AM
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       (3) 

with boundary conditions of: 
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The oxygen tension at the center is set at 7 mm Hg based on earlier experimental data 

(see next paragraph for more details).  In the above equation, the parameters are defined 

as: CA the concentration of oxygen; B the viable cell density within the construct; Deff the 

oxygen effective diffusivity; vmax the maximal rate of oxygen consumption by the βTC3 

cells; and KM the Michaelis kinetic constant for oxygen consumption by the cells. 

For βTC3 cells, earlier experiments concluded that oxygen tensions above 7 mmHg 

were required for the cells to retain their secretory capacity [25, 92, 149], thereby this 

tension was set as the minimum threshold (Cox = 9.5x10-3 mM).  Parameters vmax and KM, 

which are inherent to the cell type, were estimated at 2 µmol/(109cells•min) and 0.01 

mM, respectively, based on earlier published work [10, 149, 150].  The oxygen 

diffusivity in the agarose constructs was not measured in the earlier section; however, 

studies have found that the ratio of effective diffusivity in a matrix to the molecular 

diffusivity in water is not dependent on molecular size [151].  Therefore, the oxygen 

effective diffusivity could be estimated based on the percentages calculated in the glucose 

and insulin diffusivity experiments, which is approximately 100% for pure agarose and 

75% for cell-containing agarose.  The oxygen diffusivity in water at 37ºC has been 

estimated previously, using the Wilke-Change equation, to be 1.8x10-3 cm2/min [149].  
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Thus, the oxygen effective diffusivities for the cell-free agarose and cell-containing 

agarose regions were assumed to be 100% (1.8x10-3 cm2/min) and 75% (1.35x10-3 

cm2/min) of the oxygen diffusivity in water at 37ºC, respectively.   

Axial profiles of dissolved oxygen concentration for three bulk oxygen 

concentrations, at three different cell densities, are shown in Figure 21 for single agarose 

constructs and Figure 22 for buffered agarose constructs.  The bulk oxygen 

concentrations used in the calculations correspond to normoxia (Cox = 0.2 mM), arterial 

oxygen (Cox= 0.1 mM) and interstitial oxygen concentrations (Cox = ~ 0.05 mM).  

These simulations determined the maximum cell loading in each construct at the three 

bulk oxygen tensions, where all the cells are at or above the 7 mmHg oxygen threshold.  

These results are summarized in Table 2 where the cell density is converted to total cell 

number within the construct, using the volume of the experimental constructs (0.2mL). 

 

6.4.3. In Vitro Construct Characterization 

 The experimental in vitro temporal profiles of viable cell number, measured by MTT, 

and insulin secretion rate (ISR) for single agarose constructs are shown in Figures 23 A 

and B.  Three initial cell loadings were selected for study to correspond to approximately 

that supported by a normoxic environment (1.0x106 cells/mL), followed by one lower 

(7.0x106 cells/mL) and one higher (1.4x107 cells/mL) than modeling predictions (initial 

cell loadings are based on measurements made using fabrication using the trypan blue 

exclusion method).  MTT results (Figure 23A) show an increase in viable cell number for 

all of the constructs during the first 24 hrs, with a decline in viable cell number over the 

subsequent days towards an equilibrium value of approximately 7.5x106 cells by Day 5.  
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After initial fluctuations, the ISRs of all constructs also stabilized to the same statistical 

plateau after approximately 5 days in culture.  
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Figure 21.  Model predicted oxygen profiles for single agarose disk constructs.  The 
model predicted maximum cell density, where the oxygen level at center of construct is 
set to 7mmHg, is shown for normoxia (A), arterial oxygen (B) and approximated 
interstitial oxygen (C) conditions. 
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Figure 22.  Model predicted oxygen profiles for buffered agarose disk constructs.  The 
model predicted maximum cell density, where the oxygen level at center of construct is 
set to 7mmHg, is shown for normoxia (D), arterial oxygen (E) and approximated 
interstitial oxygen (F) conditions. 

 
 
 

Table 2.  Predicted maximum cell densities (or total number) in constructs 

Construct Type Normoxia 
(0.2 mM) 

Arterial oxygen 
(0.1 mM) 

Interstitial oxygen 
(0.05 mM) 

Single 4.6x107 cell/mL agar 

or   9.2x106 cells 

2.4x107 cell/mL agar 

or   4.8x106 cells 

1.1x107 cell/mL agar 

or   2.2x106 cells 

Buffered 1.7x107 cell/mL agar 

or   3.4x106 cells 

8.6x106 cell/mL agar 

or   1.7x106 cells 

4.3x106 cell/mL agar 

or   1.3x106 cells 
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Figure 23.  Temporal changes in MTT-assessed viable cell number (A) and insulin 
secretion rates (B) for single agarose disk constructs with initial cell loadings of 14x106 
cells (diamonds), 10x106 cells (squares), and 7x106 cells (triangles).   
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Comparable experiments using buffered agarose constructs involved two different 

initial cell loadings, one approximately equal to that calculated by the model to be 

supported by normoxia (3x106cells) and a higher one (7x106 cells) (initial cell loadings 

are based on measurements made during fabrication using the trypan blue exclusion 

method).  For the latter, the model predicts that only 40% of cells are exposed to oxygen 

levels at or above 7 mmHg.  Results of MTT-assessed viable cell numbers and ISRs are 

shown in Figures 24 A and B, respectively.  Constructs initially loaded with 7x106 cells 

exhibited a decline in viable cell number, which stabilized to ~1.6x106 cells at the end of 

the experiment.  In constructs loaded with 3x106 cells, the viable cell number slowly 

declined over the first 7 days before plateauing at ~1.6x106 cells.  The ISR for constructs 

initially seeded with 7x106 cells exhibited a steady decline over the first 5 days before 

stabilizing at ~30% of its initial levels. The ISR profile for constructs initially seeded 

with 3x106 cells exhibited an increase from Day 0 to 2, followed by a decrease from Day 

3 to 5, before remaining stable thereafter at  ~80% of its initial value.   
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Figure 24.  Temporal changes in MTT-assessed viable cell number (A) and insulin 
secretion rates (B) for buffered agarose disk constructs with initial cell loadings of 7x106 
cells (diamonds), and 3x106 cells (squares).   
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H/E stained histological cross-sections of agarose constructs cultured in vitro are 

shown in Figure 25.  Figure 25A shows a typical Day 0 construct with a homogeneous 

distribution of viable single cells throughout the cell-containing domains.  By day 5, all 

of the constructs exhibited some remodeling, with the majority of the live cells found in 

clusters at the periphery of the cell-containing domains of the construct.  Figure 25, B and 

C are typical examples of this remodeling for both the single and buffered constructs.  

For all buffered agarose constructs, no cell migration was observed into the pure agarose 

buffer domains (Figure 25 C). 
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Figure 25.  Typical H/E stained histological cross-sections of agarose constructs cultured 
in vitro: (A) single agarose disk on Day 0 containing 10x106 cells; (B) single agarose disk 
on Day 5 containing 10x106 cells; and (C) buffered agarose disk on Day 5 containing 
7x106 cells.  
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6.5. DISCUSSION 

This study focused on the design, development and in vitro characterization of 

agarose macroconstructs containing βTC3 cells as a pancreatic substitute.  Initial studies 

examined the diffusion of critical solutes, in particular glucose and insulin, and 

determined effective diffusivities in pure 2% agarose to be 103% and 96% of the 

diffusivities of glucose and insulin, respectively, in water at 25oC.  These measurements 

are within the range of previously published values for pure hydrogels of similar 

concentrations [152-154].  While the insulin diffusivity is somewhat higher than 

published work on other hydrogels, such as alginate, this could be due to variations in the 

quaternary structure of the insulin protein used in the experiment [155, 156].  For agarose 

constructs containing deactivated cells, a decrease of ~25% was calculated for both 

solutes, which is within the literature range for hydrogels containing cells deactivated 

through similar methods [47, 152, 157, 158].  Since glutaraldehyde deactivation renders 

the dead cells impermeable, it is possible that constructs containing live cells have 

somewhat higher diffusivities.  Finally, experiments using buffered agarose constructs 

found the presence of the agarose interface to have an undetectable effect on the diffusion 

of glucose or insulin.   

Using mathematical models to develop oxygen profiles provided an estimation of the 

cellular environment within the agarose constructs.  In vitro monitoring of the insulin 

secretion and total cell viability profiles tested the applicability of the modeling results.  

For the single agarose constructs, after an initial transient period, the ISR and MTT 

values plateaued to statistically similar levels, regardless of the initial cell loading.  The 

plateau values for the single agarose disk constructs are only slightly lower than the 
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modeling predictions, indicating oxygen as the dominating parameter for establishing cell 

functionality and viability for this construct type.  Similar results were also obtained for 

the buffered agarose constructs, in the fact that both the ISR and MTT values plateaued to 

the same level regardless of the initial cell loading.  The mathematical model of the 

buffered agarose constructs predicted that all of the cells should be above the 7 mm Hg 

threshold at a cell loading of 3.4x106 cells or lower.  An unexpected decline in both the 

ISR and MTT profiles of the 3x106 cell loading, however, was seen between Day 3 and 5 

that was below Day 0 levels.  Therefore, the addition of the outer agarose layer imparts a 

negative effect on the entrapped cells after three days in culture, by a mechanism not 

accounted for in the oxygen model.   

Cellular remodeling observed for all the constructs after 3-4 days in culture might 

provide an explanation for the disparity between model and experimental results in the 

buffered agarose constructs.  While the presence of a peripheral band of cell clusters at 

the inner cell/agarose disk was expected, given earlier results showing this pattern for 

βTC3 cells entrapped in other permissive matrices, e.g., high mannuronic alginate, it is 

plausible that the addition of the outer agarose layer imparts additional mechanical stress 

to the cell clusters at the periphery of the inner disk, thereby reducing their proliferative 

capacity and resulting in the decrease in insulin secretion and viable cell number 

observed on Day 5 in vitro.  Indeed, the detrimental effects of mechanical stress on the 

growth of cell clusters when entrapped in agarose concentrations greater than 0.9% has 

been documented in the literature, where spheroid growth was significantly inhibited 

once a threshold level of solid stress was attained [135].   
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Overall, the mathematical model developed in this study provided a useful initial 

estimation for oxygen profile of the cells within the construct, based on its architecture 

and scaffold material.  While the in vitro buffered agarose disk results were not 

compatible with model predictions after 3 days in culture, comparisons between model 

and experimental results highlighted the detrimental effects of the outer agarose layer 

addition, which were not revealed in the diffusional studies.  Similar models have been 

utilized to predict environmental conditions and identify critical parameters for cells 

within other tissue engineered devices.  Tziampazis and Sambanis used diffusion/reaction 

models to characterize the cellular environment within alginate/poly-l-lysine/alginate 

microbeads and predict appropriate bead size ranges [149].  Dulong et al used finite 

element techniques to develop oxygen, glucose, and insulin transport models, which 

identified oxygen transport and cell density as the most significant parameters affecting 

overall cell viability and function for islets entrapped in hollow-fiber constructs [148, 

159].  Overall, published reports identified construct architecture and oxygen levels as 

dominating parameters in establishing the functionality and viable cell number within 

extravascular, highly porous constructs, which correlate well with the results presented in 

this study.   

Future work is focused on characterizing the efficacy of these agarose disk-shaped 

implants for restoring normoglycemia in diabetic rodent models.  The data collected in 

this study will provide guidelines for the implantation study, such as appropriate cell 

loadings, construct architecture and expected secretion levels.   
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6.6. APPENDIX 

6.6.1. Modeling one-dimensional solute diffusion through slab. 

Figure 26 illustrates the experimental set up used to measure effective diffusivities.  
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Figure 26.  Diagram of experimental setup used for diffusivity experiments for single 
agarose (A) and buffered agarose (B) disk constructs. 

 
 
 

Assuming constant physical properties, transport in the slab by diffusion alone in the 

axial direction x, and an initially homogeneous solute distribution in the slab, the 

equation describing the system is [142]: 
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with initial condition:     (5) oCtLxC ==≤≤ )0,0(

and boundary conditions:     (6) )(),( tCtLxC ss ==

   and   0),0( ==
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x
C     (7) 

where, C(x,t) solute concentration in the agarose slab at axial position x and time t; D 

effective diffusivity of solute through agarose slab; Ls thickness of slab, which is equal to 
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Ls1 + Ls2 for the buffered agarose experiments; Co initial concentration of solute in 

agarose slab; Cs concentration of solute at the surface of the slab. 

If the slab is exposed to a well-mixed bath, and assuming no boundary effects at the 

interface, the concentration of solute in the slab at the surface (Cs) is related to the bulk 

concentration (Cb) as follows:      (8) bs KCC =

where K is the partition coefficient between the bulk solution and the slab.  Since the 

agarose slab is mostly water, K was assumed equal to 1 (also verified in experimental 

methods). 

Invoking the mass balance equation between the slab and the solution, one obtains:  
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where  Vb is the volume of bulk solution and A the cross-sectional area of both the 

solution and the slab.  Thus: 

  Vb = LbA      

where Lb is the height of the bulk solution.  Equation (9) then becomes: 
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In the experiments of this study, the solution was initially free of solute, thus the initial 

condition is: 

 0        (11) )0( ==tCb

Equations (4) and (10) with their respective initial and boundary conditions can be solved 

to calculate the concentration, Cb(t), in solution.   The analytical solution for diffusion of 

solute out of the slab and into the bulk, which is initially free of solute, is [141, 142]: 
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where α is the ratio of bulk liquid to slab volume, i.e. 
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and qn is the nth root of the equation 
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In all simulations reported in this study, only three terms in the series of equation (12) 

were needed to accurately solve the equation based on the magnitude of the term Dt/Ls
2.  

Expressing equation (12) in the form of the concentration of solute Ct in the bulk solution 

at time t as a fraction of C∞, the corresponding quantity after infinite time, one obtains: 
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6.6.2. Modeling one-dimensional oxygen diffusion and consumption through slab 

containing βTC3 cells. 

Monod kinetics were assumed for the specific rate ν of oxygen and glucose 

consumption by βTC3 cells [149]: 
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v

M +
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where C is the solute concentration, vmax the maximum specific rate of consumption, and 

KM the Michaelis constant in the Monod expression.  The equation describing one-

dimensional diffusion and consumption is 

Aeff R
x
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t
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+
∂
∂

=
∂
∂ )( 2

2

       (17)

where RA is the consumption rate per unit volume of construct, or 

 
CK

Cv
NR

M
A +

−= max
        (18) 

In the above equation, N (cells/mL) is the density of cells in agarose.  The initial and 

boundary conditions are: 
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Modeling simulations were used to identify construct design parameters that resulted in 

the cells at the center being exposed to oxygen tensions no less than 7 mmHg, or  

9.46x10-3 mM .  Equation (19) was integrated using finite differences as follows. 
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With Co known, C1 could thus be calculated, and equation (20) could then be used to 

advance the integration towards the surface of the construct.  

 For buffered agarose constructs, integration from the center to the surface of the inner 

slab, corresponding to x=Ls1, was carried out as above.  For diffusion in the cell-free 

buffer zone, equation (19) becomes: 
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where A1 and A2 are constants.  These constants were calculated from the boundary 

conditions at the interface: 
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where Deff is the effective oxygen diffusivity  through agarose with cells and Dagarose is 

the effective oxygen diffusivity  through the pure agarose buffer zones. 
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CHAPTER 7 
 

7. IN VIVO CHARACTERIZATION OF βTC3 CELLS IN AGAROSE DISK 
CONSTRUCTS AS A BIOARTIFICIAL PANCREAS 

 
 
 

7.1. ABSTRACT 

 This study characterized the in vivo efficacy of agarose disk constructs for use as a 

bioartificial pancreas.  Four construct prototypes were examined: (i) an 11 mm in 

diameter single disk construct comprised of agarose and βTC3 cells; (ii) a 16 mm in 

diameter buffered disk construct consisting of agarose and βTC3 cells, coated with an 

additional layer of pure agarose; (iii) a 13 mm in diameter buffered disk construct 

consisting of agarose and βTC3 cells, coated with an additional layer of pure agarose; 

and (iv) 0.9 mm in diameter beads comprised of agarose and βTC3 cells.  In vivo 

experiments examined construct stability and efficacy in restoring normoglycemia for 

STZ-induced diabetic mice and were compared against implants of agarose beads.  

Implantation of agarose constructs resulted in up to 50% reduction in blood glucose 

levels.  Histological studies found the addition of the outer agarose coating to reduce 

host-mediated cell death; however, mass transport limitations imposed by the addition of 

the outer coating appeared to be detrimental.  The applicability of this research in the 

development of agarose-based constructs for use as a bioartificial pancreas is discussed. 

 

 99 



7.2. INTRODUCTION 

Diabetes mellitus is a serious pathological condition involving damaged pancreatic 

islets, impaired insulin production, and poor glycemic control.  Typically, treatment for 

insulin-dependent diabetics includes blood glucose monitoring and multiple daily insulin 

injections.  The 1993 Diabetes Control and Complications Trial, which found that tight 

control of glucose levels delays the onset and reduces the intensity of diabetes-related 

complications, outlined the need for a more physiological control of blood glucose levels 

beyond what is achieved with bolus insulin injections [12].  While the implantation of 

human islets has been successful in recent clinical trials  [13, 14], the supply of this cell 

source, of which significant propagation is unavailable, is insufficient to provide islets for 

any substantial number of insulin-dependent diabetics.  Additionally, the life-long 

immunosuppression required to sustain treatment is problematic, especially for type 1 

diabetics. 

A tissue engineered pancreatic substitute, consisting of insulin-secreting cells and 

biocompatible materials, holds significant promise for treating insulin-dependent diabetes 

through continual regulation of insulin secretion in response to glucose.  Use of 

transformed β cells, such as the continuous β cell lines developed by Efrat et al [23, 138], 

relaxes the cell availability problem posed by pancreatic islets, while also utilizing cells 

that have lower oxygenation requirements for insulin secretion [25].  Encapsulation of the 

implanted cells can partially alleviate the need for immunosuppression. 

Development of a pancreatic substitute based on encapsulated insulin-secreting cells 

requires (i) a thorough construct design accounting for the transport of nutrients and 

metabolites and their respective consumption and production by the cells; (ii) in vitro 
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characterization of the construct in terms of cell viability and the overall secretion 

dynamics; and (iii) in vivo evaluation of the construct functionality and efficacy.  With 

regard to (iii) in particular, it is useful to be able to monitor the construct noninvasively, 

by a method such as Nuclear Magnetic Resonance (NMR) spectroscopy or imaging, as 

this would establish an important link between implantation and end-point physiologic 

effects in animal experiments [115, 160]. 

In this paper, we describe the in vivo characterization of a pancreatic substitute 

consisting of mouse insulinoma cells encapsulated in pure agarose.  CHAPTER 6 

demonstrated that agarose is an appropriate hydrogel for maintaining βTC3 cells over 

reasonable time periods.  Furthermore, the disk-shaped design is advantageous in vivo, 

since it affords ease in implantation and complete retrievability.  The in vivo efficacy of 

the construct designs were examined by implantation within diabetic mice.  Advantages 

and shortfalls of the disk-shaped agarose implants, and comparisons to agarose bead 

implants, are presented. 

 

7.3. MATERIALS AND METHODS 

7.3.1. Cell and Cell Culture 

βTC3 cells were obtained from the laboratory of Shimon Efrat, Albert Einstein 

College of Medicine, Bronx, NY.  Cells were cultured as monolayers in T-flasks and fed 

every 2-3 days with fresh medium consisting of Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 25 mM glucose and supplemented with 15% horse serum, 2.5% bovine 

serum, 1% penicillin-streptomycin, and L-glutamine to a final concentration of 6 mM 

(Sigma, St. Louis, MO).  Upon confluency, βTC3 cells were trypsinized using 0.25% 
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Trypsin with EDTA (Sigma, St. Louis, MO) and either split for propagation or used in 

construct fabrication (passage numbers 33-48). 

 

7.3.2. Construct Fabrication 

Four agarose construct designs were used in this study (Figure 27).  One was a single 

2% agarose disk with entrapped βTC3 cells and final dimensions of 1.8 mm height and 

11 mm diameter (Figure 27A).  The second was a buffered agarose disk, consisting of the 

single cell-containing agarose disk coated with an additional layer of pure 2% agarose, to 

final dimensions of 3 mm height and 16 mm diameter (Figure 27B).  These two 

constructs were characterized in vitro in CHAPTER 6.  The third construct consisted of 

the single cell-containing agarose disk coated with an additional layer of pure 2% 

agarose, to final dimensions of 3 mm height and 13 mm diameter (Figure 27C).  Finally, 

the fourth construct consisted of agarose beads 0.9 mm in diameter.  (Figure 27D). 

 Agarose (SeaPlaque, low gelling, 1250g/cm2 gel strength) was obtained from 

Cambrex, NJ. The agarose powder was dissolved in PBS at 2%(w/v) according to the 

supplier’s instructions, and the solution was sterile-filtered through a 0.2-µm filter (Pall, 

East Hills, NY) while still warm (>40ºC).  In the fabrication of each construct type, 

viable cell counts were performed on the freshly trypsinized βTC3 cell suspension using 

the trypan blue (Sigma, St. Louis, MO) exclusion method prior to centrifugation.   The 

cell pellet was then suspended in the agarose solution at 37ºC at the cell loading specified 

for each experiment and evenly mixed using a syringe with a 20G needle.   

 Disk-shaped constructs were fabricated using methods described extensively in 

CHAPTER 6.  The 13 mm buffered agarose disk constructs were fabricated by identical  
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Figure 27.  Schematic representation and dimensions of the single agarose disk construct 
(A), 16 mm buffered agarose disk construct (B), 13 mm buffered agarose disk construct 
(C), and agarose beads (D).  The shaded regions represent βTC3 cells entrapped in 2% 
agarose, while the white regions indicates pure 2% agarose.   
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methods as those described in CHAPTER 6, with the exception that the final mold size 

was 13 mm in diameter and 3 mm in height.  Furthermore, agarose beads were also 

fabricated for use as controls.  Freshly trypsinized βTC3 cells at a density of 3.5x107 

cells/mL were evenly suspended in sterile-filtered 2% SeaPlaque agarose within a sterile 

round bottom glass tube and maintained at 37ºC.  Sterilized paraffin oil (Sigma) at 37ºC 

was then gently poured onto the cell agarose solution and the tube was capped.  The 

liquids were emulsified by manual shaking to form the desired size of agarose solution 

droplets and then immersed in an ice bath for 5 min with gentle agitation to induce 

gelation of the agarose beads.  After the addition of 30 mL of cold Hanks Buffered Saline 

Solution (HBSS) to the tube, the mixture was centrifuged at 500 rpm for 5 mins.  The oil 

phase was removed by suction and this process was repeated 3 times to thoroughly 

remove residual oil.  A sample of the beads was taken to quantify the bead diameter, 

which was found to be 0.9 ± 0.23 mm.   

 After fabrication, each construct type was separately transferred to individual 125 mL 

spinner flasks containing 35 mL of HBSS.  The spinner flasks were then placed on a 

spinner plate in a humidified 37˚C, 5% CO2 / 95% air incubator and agitated at 30 rpm 

awaiting transplantation.   

 

7.3.3. Animal Studies 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Emory University.  Male C57BL/6J mice of at least 20 grams 

were obtained from Jackson Laboratories (Bar Harbor, Maine) and used for surgical 

implantations.  Mice were made diabetic through a single IP injection of streptozotocin 
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(STZ; 200mg/kg body weight).  Blood glucose levels were monitored daily via tail 

clipping and measured using an Elite Glucometer (Bayer, PA).  Mice that maintained a 

blood glucose level above 350 mg/dL for three consecutive days were used for diabetic 

implantation studies.  Control mice (not STZ injected, nondiabetic) were used for 

biomaterial implantation studies. 

For implantation, mice were sedated using an IP injection of ketamine/xylazine 

(150/15 mg/kg body weight) and one agarose construct was implanted within the 

peritoneal cavity via a 2 cm midline celiotomy.  For biomaterial implantation studies, 

cell-free buffered disk constructs were implanted into normal C57BL/6J mice to assess 

the host response and mechanical stability.  Explantation of the constructs was performed 

on Days 2, 5, 8, 15, and 30.  For studies using STZ-injected diabetic mice, all four 

construct forms were tested: (i) single agarose disks, (ii) 16 mm buffered agarose disks, 

(iii) 13 mm buffered agarose disks, and (iv) agarose microbeads.  Single agarose disks 

were tested using an initial cell loading of 7x106 (n=20).  Buffered agarose disks of 16 

mm in diameter were tested at initial cell loadings of 7x106 (n=20) and 3x106 (n=3) cells, 

while 13 mm buffered agarose disks were tested using an initial cell loading of 7x106 

cells (n=9).  For agarose microbeads, 0.2 mL of beads at a cell density of 3.5x107 cell/mL 

were loaded into the peritoneal cavity, resulting in a total of 7x106 cells implanted (n=3).  

Mice were euthanized using CO2 asphyxiation either on Day 5 or 6.  Agarose disk 

constructs were explanted using forceps, while agarose beads were retrieved using a 

series of saline lavages.  All explants were set aside for histological examination. 
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7.3.4. Analytical Techniques 

Blood glucose samples were collected via tail clipping and measured using a 

calibrated Elite Glucometer (Bayer, PA).  Samples designated for histology were fixed in 

3% glutaraldehyde for 48 hrs and then prepared for paraffin embedding and sectioning.  

After sectioning into 5µm samples, the slides were stained with hematoxylin/eosin (H/E). 

 

7.3.5. Statistical Analysis 

All measurements are presented as the mean ± SD.  All statistical analyses were 

performed using a two-sample t-test.  Results were considered significantly different 

when p-values were less than 0.05.   

 

7.4. RESULTS 

All agarose implants were easily explanted from the peritoneal cavity and found to 

maintain their structural integrity at all time points examined.  Representative histological 

images of constructs upon explantation after 5 days in vivo are shown in Figure 28.  

Histological images of single agarose disk constructs (Fig 28A) showed significant βTC3 

cell death near the outer edges of the construct.  Examining histological cross-sections, 

the thickness of this region was found to be 0.77 mm ± 0.41 mm, although histological 

processing may have altered the actual size of these regions.  This pattern of cell death at 

the periphery was not observed for single agarose disks maintained in vitro.  Figure 28B 

illustrates a typical histological cross-section of a 16 mm buffered agarose disk construct.  

As was seen in vitro, the implanted cells retained a high viability primarily at the 

periphery of the cell-containing region, with the majority of cell death located at the inner 
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regions of the construct.  For the 13 mm buffered agarose disk construct (Figure 28C), a 

majority of the viable cells were located at the periphery of the construct, thereby 

exhibiting a similar H/E staining pattern as that seen for the 16 mm buffered agarose disk 

constructs.  The H/E images of the agarose beads (Figure 28D), however, showed 

significant cell death, where only a small fraction of the cells within the beads are viable.  
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Figure 28.  H/E stained histological cross-sections of explanted constructs after 5 days in 
vivo showing cellular remodeling for a single agarose disk construct (A), a 16 mm 
buffered agarose disk construct (B), a 13 mm buffered agarose disk construct (C), and 
agarose beads (D).   

 
 
 
 For some portions of the 13 mm buffered agarose disk constructs, cell death was 

observed at the outer periphery of the cell-containing region of the construct.  Figure 29 

shows histological images collected from the same 13 mm buffered agarose construct, 
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where some portions exhibited peripheral cell death.  The region of cell death seen at the 

outer edges of the cell-containing regions of the 13 mm buffered agarose constructs was 

much smaller than that found for the single agarose disk constructs. 

 Representative histological images of the host response to the implants are shown in 

Figure 30 (A, B and C).  The host response to cell-free constructs was moderate, with a 

maximum thickness of approximately 2-3 cells.  In some rare cases, a stronger 

inflammatory response was visualized, but this aberration appeared sporadically and was 

unrelated to the implantation time period.  The host’s response to agarose implants 

containing βTC3 cells are shown in Figures 30 B and C.  For the agarose constructs, the 

host response was similar to that seen in the cell-free implants, for the implantation times 

examined in this study (6 days).  In all cases, the host cells were relegated to the 

periphery of the agarose material and did not penetrate into the gel.   

 The efficacy of the agarose implants containing 7x106 cells in restoring 

normoglycemia for STZ-induced diabetic C57BL/6J mice is shown in Figure 31.  Since 

the blood glucose levels of the diabetic mice prior to implantation was highly variable, 

data is represented as the percent decrease in blood glucose level following implantation 

to allow for the averaging of the data among mice that received identical implants.  

Percent decrease was calculated by 100
0

0 ×
−

BG
BGBGt  where BG0 is the blood glucose 

value at Day 0 and BGt is the blood glucose at time, t.  Figure 31 shows the percent 

decrease in blood glucose levels of the diabetic mice following implantation of either a 

single agarose disk (solid triangles), 16 mm buffered agarose disk (solid diamonds), 13 

mm buffered agarose disk (solid squares), or 0.9 mm agarose beads (open diamonds), all 

with an initial cell loading of 7x106 cells.  Temporal changes were compared to controls
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Figure 29.  H/E stained histological cross-sections of a 13 mm buffered agarose disk 
construct explanted after 5 days in vivo.  Panels (A-C) represent different regions of the 
same construct. 
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Figure 30.  H/E stained histological cross-sections of explanted constructs after 5 days in 
vivo showing interface between host and implant for (A) cell-free agarose constructs, (B) 
cell-containing single agarose disk constructs, and (C) cell-containing buffered agarose 
disk construct. 
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of cell-free buffered agarose disk implants (open squares).  Compared to cell-free 

controls, statistically significant improvement in blood glucose levels was seen for all 

time points in the 16 mm buffered agarose disk implants, and up to day 3 for the single 

agarose disk, 13 mm buffered agarose disk, and agarose bead implants.  While the data 

exhibit a general trend that 16 mm buffered agarose implants resulted in lower blood 

glucose levels than the single agarose and 13 mm agarose disk implants, only the 16 mm 

buffered and single agarose disk implants were statistically different on Day 1.  While the 

implants were effective in reducing blood glucose levels, normoglycemia (70-150 mg/dL 

blood glucose) was only transiently attained for approximately 3 days in 10% of the mice 

studied (n=55).  In a similar experiment reported in Figure 32, buffered agarose disk 

implants of 16 mm in diameter initially loaded with 3x106 cells were found to result in 

only moderate decreases in blood glucose levels during the entire implantation time 

period.  Figure 33 compares the percent change in blood glucose for STZ-induced 

diabetic C57BL/6J mice receiving either agarose or alginate/poly-L-lysine/alginate (APA) 

beads of identical cell loading (see APPENDIX A2), where the % blood glucose change 

achieved by APA beads was significantly higher than the agarose beads for all time 

points. 
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Figure 31.  Percent decrease in blood glucose levels of the diabetic mice following 
implantation of either a single agarose disk (solid triangles), 16 mm buffered agarose disk 
(solid diamonds), 13 mm buffered agarose disk (solid squares), or 0.9 mm agarose beads 
(open diamonds), all with an initial cell loading of 7x106 cells.  Implants were compared 
to controls of cell-free buffered agarose disks (open squares). 
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Figure 32.  Percent decrease in blood glucose levels of the diabetic mice following 
implantation of either a 16 mm buffered agarose disk with an initial cell loading of 7x106 
(solid diamonds) or 3x106 (open diamonds) cells. 
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Figure 33.  Percent decrease in blood glucose levels of diabetic mice following 
implantation of 0.2mL of either agarose or alginate/poly-L-lysine/alginate (APA) beads 
at a cell density of 3.5x107 cells/mL.   
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7.5. DISCUSSION 

This study focused on the in vivo characterization of agarose constructs containing 

βTC3 cells as a pancreatic substitute.  In vivo experiments of cell-free agarose constructs 

found the constructs to be well tolerated by the host and elicit minimal fibrotic responses, 

while maintaining their structural integrity for one month in vivo.  Observed histological 

results found a comparable fibrotic response in both the cell-containing and cell-free 

implants, over the one-week time period studied.  The effect of implantation on cell 

viability for the single agarose disks and the agarose beads, however, was unexpected.  

While in vitro studies found the single agarose disks to exhibit high levels of viable cells 

at the periphery of the construct (see CHAPTER 6), in vivo studies revealed significant 

cell death at the periphery of the agarose implant.  While a similar host response was 

found on all implants, this pattern of cell death was not observed for the 16 mm buffered 

agarose disk implants.  Furthermore, only a small region of cell death at the periphery in 

the 13 mm buffered agarose constructs was observed at a sporadic portions of some 

constructs.  Therefore, it is postulated that addition of the outer agarose layer reduces 

host-mediated cell death at the periphery by: (i) preventing direct cell-host contact, which 

could activate the direct antigen presentation pathway, thereby resulting in peripheral cell 

death; and/or (ii) creating a transport distance between the implanted cells and the host 

cells large enough to prohibit the toxic accumulation of soluble host factors, such as 

cytokines, superoxide radicals, or hydrolytic enzymes, into the cell-containing region of 

the construct and/or reduce the shedding of graft protein or peptide antigens, which 

would activate the host immune system via the indirect antigen presentation pathway.   
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Literature supports both theories.  For (i), it is widely documented that inadequate 

encapsulation of cells within biomaterials leads to activation of the host immune 

response, which can lead to cell death within the implant.  Direct interactions between the 

graft and host cells activate host CD8+ T cells via the direct antigen presentation 

pathway, leading to damage of the graft cells [161].  De Vos et al have linked the failure 

of APA bead implants to restore normoglycemia in diabetic rodents to inadequate 

encapsulation of the islets [127, 162], while Iwata et al have also obtained similar results 

using agarose beads and allogeneic islets [57, 163].  Therefore, direct cell to cell contact 

between the host and the βTC3 cells could be the instigating factor that results in the 

significant cell death observed for both the single agarose disk and agarose bead 

constructs. 

Regarding theory (ii), published reports have also documented that increasing the  

distance between the implanted cell and the host increases implant efficacy and cell 

viability, when the support matrix is pure agarose or alginate, a biomaterial with similar 

mass transport properties [149].  For example, Lanza et al documented significant 

improvement in efficacy and cell viability using pure alginate and xenogeneic islets by 

simply increasing the bead diameter from 1600 µm to greater than 3700 µm [164], while 

Jain et al achieved long-term efficacy for xenogeneic islets using pure agarose 

macrobeads 6000-8000 µm in diameter [139, 165].   Since islet loading within the 

implants was unaltered in these studies, increases in bead diameter resulted in an increase 

in the distance between the implanted cell and the host.  Therefore, these reports support 

our data, which show that the incorporation of a buffer region between the host and the 

implanted cells reduces host-mediated cell death.   
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Published studies further suggest that this buffer region may not be necessary when 

either the host’s immune system is suppressed or immunoprotective barriers are 

incorporated into the implant.  Examples of this include the addition of 

immunosuppressant agents, such as cyclosporine or 15-deoxyspergualin, [164, 166-168], 

or the incorporation of immunoprotective materials such as poly(styrene sulfonic acid) 

into agarose and the addition of outer coatings of polybrene and carboxy methyl cellulose 

[47, 59, 60], of which both methods were found to increase the efficacy of discordant 

islets in agarose implants for STZ diabetic rodent models.  Published reports using 

transformed cell lines in pure agarose are limited; however, long-term efficacy has been 

documented for an allogeneic transformed beta cell line in diabetic rodents after their 

incorporation between 0.1µm nucleopore membranes and silicon [61].  Studies in our 

laboratory and by Weber et al (unpublished data) have also found success using βTC3 

cells when alginate was coated with poly-L-lysine (APA beads), where normoglycemia 

was attained in STZ-diabetic mice for time periods from two to ten weeks.  These reports 

suggest that the incorporation of an immunoprotective barrier increases the long-term 

efficacy of implants using xenogeneic or transformed cell lines.  

The transient effectiveness of the buffered agarose disk implants, however, is 

attributed to significant cell death in the inner regions of the construct over time, due to 

mass transport limitations.  As the mathematic models illustrated in CHAPTER 6, the 

incorporation of the 2.5 mm outer buffer layer imparts mass transfer limitations and is 

predicted to result in functional cell numbers lower than 1.3x106 cells.  Separate in vivo 

studies in our laboratory with buffered agarose constructs found significant declines in 

viable cell number over the first 48 hrs, with a final plateau of approximately 2x106 cells 
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attained by Day 5 (see CHAPTER 10).  Results from constructs at cell loadings of 3x106 

cells suggest that this number of βTC cells is inadequate to restore normoglycemia. 

Future work is focused on characterizing the mechanism of the host-mediated cell 

death seen in the single agarose disks by eliminating or reducing the immunological 

response of the host through the use of immunosuppressive agents or 

immunocompromised mouse models. 
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CHAPTER 8 
 

8. NONINVASIVE MEASUREMENT OF VIABLE CELL NUMBER IN 
TISSUE ENGINEERED CONSTRUCTS IN VITRO USING 1H NMR 

SPECTROSCOPY4 
 
 
 

8.1. ABSTRACT 

 Noninvasive monitoring of tissue engineered constructs is of critical importance for 

accurate characterization of constructs and their remodeling in vitro and in vivo.  This 

study investigated the utility of 1H NMR spectroscopy to noninvasively quantify viable 

cell number in tissue engineered substitutes in vitro.  Agarose disk-shaped constructs 

containing βTC3 cells were employed as the model tissue engineered system.  Two 

construct prototypes containing different initial cell numbers were monitored using 

localized, water-suppressed 1H NMR spectroscopy over the course of 13 days.  1H NMR 

measurements of the total-choline resonance at 3.2 ppm were compared with results from 

the traditional cell viability assay MTT and with insulin secretion rates.  Results show a 

strong linear correlation between total-choline and MTT (R2 = 0.86), and between total-

choline and insulin secretion rate (R2 = 0.90).  Overall, this study found noninvasive 

measurement of total-choline to be an accurate and nondestructive assay for monitoring 

viable βTC3 cell numbers in tissue engineered constructs.  The applicability of this 

method to in vivo monitoring is also discussed.   

 

                                                 

4 Modification of paper submitted for peer review, 2004. 
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8.2. INTRODUCTION 

 Tissue engineering holds significant promise to provide an alternative or 

complementary treatment for the millions of people affected annually by tissue and organ 

loss from accidents, birth defects, and diseases [28].  Tissue engineered substitutes 

constitute highly dynamic systems, where cells significantly alter the structure, metabolic 

activity and overall function of the construct over time, while also exhibiting a dynamic 

interface with the host post-implantation.  For the accurate characterization of these 

constructs, noninvasive monitoring of viable cell number and the dynamics of cellular 

turnover would be highly useful, particularly for construct development studies, long-

term construct growth in bioreactors, and in vivo monitoring applications.  

 Current methods for assessing viable cell number are typically based on metabolic 

activity or labeling techniques.  Common assays include: (i) mitrochondrial enzyme 

reduction of a tetrazolium compound, such as MTT [169] and MTS [170] into its 

respective formazan byproduct; (ii) cellular redox indicators such as Alamar Blue [171]; 

(iii) ATP quantification through bioluminescence [172]; (iv) S-phase incorporation of 

BrDU [173]; and (v) co-staining with fluorescent DNA-specific dye for live cells, such as 

SYTO [174].  Excluding MTS and Alamar blue, use of these assays requires disruption of 

the construct integrity, and damage to the cells and surrounding matrix.  Furthermore, 

none are directly applicable to in vivo monitoring.   

 This paper explores the use of Nuclear Magnetic Resonance (NMR) spectroscopy to 

develop an accurate assay for noninvasive quantification of viable cell number in a tissue 

engineered construct, which would be applicable both in vitro and in vivo.  NMR 
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spectroscopy noninvasively determines the presence and concentration of specific 

compounds through their characteristic chemical shift and signal amplitude.  Although 

several nuclei, such as 13C and 31P, can be detected by NMR spectroscopy, the strong 

sensitivity of the 1H nucleus makes 1H NMR spectroscopy superior in its capacity to 

monitor subtle changes in the concentrations of highly-mobile, proton-containing 

compounds, such as phospholipid metabolites [3].  The focus of this study is the 

resonance at 3.2 ppm.  The observed peak is comprised of multiple resonances attributed 

predominantly to choline-related metabolites such as phosphocholine (PCho), glycerol-3-

phosphocholine (GPC), and choline itself (Cho), as well as contributions by 

phosphoethanolamine, inositol and taurine [3].  This resonance at 3.2 ppm is commonly 

referred to as “total-choline” (TCho), and this term is used henceforth in this study.  

Published reports have correlated the area of the TCho peak to cell number, for several 

cell types [3 , 6].  More specifically, 1H NMR spectroscopy studies monitoring TCho of 

βTC3 cells encapsulated within alginate/poly-l-lysine/alginate (APA) beads found strong 

correlations between the relative changes in the TCho peak area and the overall metabolic 

activity of the culture, as measured by glucose and oxygen consumption rates [7].   

 This study aims to verify the direct relationship between viable cell number and total 

choline peak area, while exploring 1H NMR spectroscopy as a means to noninvasively 

monitor tissue engineered constructs.  The system employed consisted of mouse 

insulinoma βTC3 cells entrapped within a disk-shaped agarose construct, which is used 

in our laboratory as a model pancreatic tissue substitute.  Measurements of the TCho 

peak area were correlated to results from the established MTT assay, as well as overall 
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insulin secretion rates.  Minimum detection limits of the TCho-based assay and the 

effects of interfering solutes were also quantified.    

 

8.3. MATERIALS AND METHODS 

8.3.1. Cell Culture 

 βTC3 cells were obtained from the laboratory of Shimon Efrat, Albert Einstein 

College of Medicine, Bronx, NY.  Cells were cultured as monolayers in T-flasks and fed 

every 2-3 days with fresh medium consisting of Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 25 mM glucose and supplemented with 15% horse serum, 2.5% bovine 

serum, 1% penicillin-streptomycin, and L-glutamine to a final concentration of 6 mM 

(Sigma, St. Louis, MO).  Upon confluency, βTC3 cells were trypsinized using 0.25% 

Trypsin with EDTA (Sigma, St. Louis, MO) and either split for propagation or used in 

construct fabrication (passage numbers 33-48). 

 

8.3.2. Construct Fabrication 

 Two types of agarose constructs were used in this study (Figure 34).  One was a 

single 2% agarose disk with entrapped βTC3 cells and final dimensions of 1.8 mm height 

and 11 mm diameter (Figure 34A).  The other was a buffered agarose disk, consisting of 

the single cell-containing agarose disk coated with an additional layer of pure 2% 

agarose, to final dimensions of 3 mm height and 16 mm diameter (Figure 34B).  The 

presence of this buffer layer was found necessary to minimize the contribution of fat 

deposits on the NMR spectrum acquired from implanted constructs.  These in vivo studies 

are reported in CHAPTER 9. 
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Figure 34.  Schematic representation of single agarose disk construct (A) and buffered 
agarose disk construct (B), with overall dimensions shown.  Shaded region represents the 
entrapped βTC3 cells within 2% agarose, while white region indicates pure 2% agarose.   

 
 
 
 Agarose (SeaPlaque, low gelling, 1250g/cm2 gel strength) was obtained from 

Cambrex, NJ. The agarose powder was dissolved in PBS at 2%(w/v) according to the 

supplier’s instructions, and the solution was sterile-filtered through a 0.2-µm filter (Pall, 

East Hills, NY) while still warm (>40ºC).  Viable cell counts were performed on the 

freshly trypsinized βTC3 cell suspension using the trypan blue (Sigma, St. Louis, MO) 

exclusion method prior to centrifugation.   The cell pellet was then suspended in the 

agarose solution at 37ºC at the cell loading specified for each experiment and evenly 

mixed using a syringe with a 20G needle.  Pre-sterilized 1.8 mm thick Lexan sheets 

(McMaster-Carr, Atlanta, GA) with 11 mm diameter holes were fastened to pre-sterilized 

Lexan bases by H-clamps and used as molds.  The molds were filled to capacity with the 

agarose/cell mixture (0.2 mL in volume) and allowed to cool at room temperature until 

gelled (~ 3 mins).  For single agarose constructs (Figure 34A), the disks were removed 

di =  11mm 

h =1.8 mm 

B 
h =3 mm 
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from the molds and placed in fully supplemented DMEM.  For buffered agarose 

constructs (Figure 34B), the cell-containing disks were removed from their molds and 

placed into larger Lexan molds of 3 mm height and 16 mm diameter, fabricated from 3 

mm thick Lexan sheets.  These larger molds were partially filled with 2%(w/v) agarose 

solution prior to placement of the cell-containing disks and then filled to capacity after 

the inner disk was centrally aligned.  Constructs were allowed to solidify at room 

temperature for 5 min before being placed in fully supplemented DMEM.  

 

8.3.3. In Vitro Construct Characterization 

 For Day 0 calibration studies, constructs of both types were fabricated with varying 

cell loadings from 20x106 to 1x106 cells.  NMR and MTT experiments were performed 

within 4 hrs post-entrapment on three constructs for each cell loading.  For long-term in 

vitro studies, both constructs types containing different initial cell numbers were 

examined.  For single agarose constructs, initial cell loadings were 14x106, 10x106, and 

7x106 cells, while buffered agarose constructs were 7x106 and 3x106 cells.  For each 

experiment, twelve identical agarose constructs were fabricated and split into two groups 

of 6 constructs each.  Each group was placed in a 125 mL spinner flask (Wheaton, 

Millville, NJ) containing 35 mL of fully supplemented DMEM.  The spinner flasks were 

placed on a spinner plate in a humidified 37˚C, 5% CO2 / 95% air incubator and were 

agitated at 30 rpm.  The time duration of each experiment was 13 days.  Complete media 

changes were performed every other day.  Samples for insulin assays were collected 

every 24 hours.  NMR and MTT analyses were performed on Days 0, 1, 3, 5, 7, and 13, 
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where three different constructs were tested by NMR and two constructs by MTT at each 

time point.   

 For cell death experiments, both single and buffered agarose disk constructs 

containing a high cell loading of 14x106 cells were scanned using NMR and then exposed 

to a 55ºC bath of phosphate buffered saline for 2 min to induce cell death.  Following 

heat exposure, constructs were incubated in glucose- and sera-free DMEM, and NMR 

spectra from the constructs were collected over the course of 12 hrs.   

 

8.3.4. 1H Magnetic Resonance Imaging and Spectroscopy 

 NMR imaging and spectroscopy examinations were performed using a Varian/Inova 

4.7T horizontal bore magnet operating at 200.56 MHz (Varian, Inc., Palo Alto, CA).  The 

magnet was equipped with an 11.7 cm inner diameter self-shielded gradient system with 

a maximum gradient strength of 25 gauss/cm.  NMR signal was transmitted and received 

using either a birdcage or a home-built surface coil.  The 16-element quadrature birdcage 

coil had a 3.6 cm inner diameter and a 7 cm length, while the customized surface coil 

measured 35 mm in length and 24 mm in width and was attached to the outside of a 32 

mm diameter polycarbonate tube.  For each experiment, the construct was washed three 

times in the specified bathing medium, placed in a sterile 50 mL centrifuge tube 

containing 50 mL of the same medium, centered within the coil, and positioned at the 

magnet’s isocenter.    

 Standard 1H NMR gradient-echo images (TR = 200 ms, TE = 3.5 ms, acquisition time 

of 51 sec) were acquired to determine the position of the construct, and a single high 
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resolution spin-echo image (TR = 2 sec, TE = 40 ms, acquisition time of 17 min and 10 

sec) was collected to provide a more detailed image of the construct structure.   

 Localized 1H NMR spectra were acquired from a 2 mm thick volume of interest 

(VOI), centered within the cell-containing region of the construct.  Shimming of the 

water signal was performed on the selected VOI using a localized non-water suppressed 

PRESS sequence [137].  Water-suppressed spectrum on the same VOI was acquired 

using three CHESS pulses prior to executing the PRESS localization sequence.  The 

PRESS pulse parameters used for all of the experiments were TR equal to 3 sec and a 

total TE, defined as 2t1 + 2t2 (t1 = 12.5 ms, t2 = 33 ms), of 91 ms.  At the TR time 

selected, the magnetization was completely relaxed.  The TE time, selected to reduce the 

glucose signal intensity, was found to result in minimal (~5%) changes in TCho, when 

compared to the shortest echo time allowable by the sequence.  All localized, water-

suppressed 1H NMR spectra were the average of 256 acquisitions, collected at a constant 

receiver gain using real-time digital signal processing.  The total time required to collect 

each water-suppressed spectrum was 12 min 56 sec.  Spectral data were processed using 

the frequency domain analysis package supplied in VNMR from Varian.  Time domain 

data were apodized with an exponential line broadening of 3 Hz, Fourier transformed, 

with the residual water signal removed by digital filtering, and the baseline corrected 

where necessary.  A Lorentzian function was fitted to the resulting TCho peak at 3.2 ppm 

using manufacturer-provided software to determine the area under the peak.   
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8.3.5. Analytical Techniques 

 To measure the viable cell number in a construct using the CellTiter 96 MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay (Promega, Madison, WI), 

the construct was cut into four equal segments.  Three of the segments were incubated in 

separate wells of a 12-well plate (Corning, Acton, MA), each containing 3 mL of fully 

supplemented DMEM and 450 µL of MTT, for 4 hrs at 37°C, 5% CO2/95% air.  

Following incubation, each construct segment was placed in a mortar, ground using a 

pestle, and returned to its original well.  Two milliliters of Solubilization/Stop solution 

was added to each well and the plate was sealed and placed within a humidified 37°C, 

5% CO2/95% air incubator for 24 hrs to fully dissolve the formazan crystals.  A volume 

of 120 µL of the final solution in each well was then transferred to a 96 well plate, and 

the absorbance was read at 595 nm.  Absorbance values read from the three segments 

were then numerically averaged.   Insulin samples were analyzed using an ultra-sensitive 

mouse insulin EIA kit (ALPCO, Windham, NH) following the manufacturer’s protocol.   

 

8.3.6. Statistical Analysis 

 All measurements are presented as the mean ± SD.  All statistical analyses were 

performed using a two-sample t-test.  Results were considered significantly different 

when p-values were less than 0.05.   

 

8.4. RESULTS 

 Typical 1H NMR images of a buffered agarose construct containing βTC3 cells, 

obtained using the RF surface coil, are shown in Figure 35.  Figure 35A shows a spin-
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echo image of a sagittal (parallel to the axis of the magnet bore) view of the construct.  

The construct is positioned at the center of the excitation field of the coil.  Figure 35B is a 

spin-echo image of a coronal view through the planar center of the same agarose 

construct.  The boundary between the inner cell-containing agarose disk and the outer 

agarose layer is easily discernable, allowing for accurate central placement of the VOI in 

the cell-containing agarose disk, as indicated by the white square.   
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Figure 35.  Sagittal (A) and coronal (B) spin-echo 1H NMR images of a buffered agarose 
disk construct.  The white square shown in the coronal image is the VOI used to collect 
the localized 1H NMR spectrum from the inner cell-containing disk. 

 
 
 
 Figure 36 shows localized, water-suppressed 1H NMR spectra of a buffered agarose 

disk construct containing 14x106 βTC3 cells, equilibrated in media containing varying 

levels of glucose.  All spectra were acquired using a home-built surface coil and are 

displayed at the same vertical scale.  Each spectrum represents the average of 256 
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acquisitions with an exponential line broadening of 3 Hz.  The assignments of 1H NMR 

resonances are indicated accordingly.  Figure 36A is the spectrum for the construct in 

sera- and glucose-free DMEM.  The dominant resonance at 3.2 ppm is assigned to TCho.  

Figures 36B and 36C are spectra derived from the same construct, but bathed in sera-free 

DMEM containing 150 mg/dL and 250 mg/dL glucose, respectively.  The collection of 

resonances downfield of the TCho resonance, ranging from 3.85 to 3.22 ppm, is 

attributed to glucose.  Note the increase in the intensity and linewidth of the TCho peak 

with increasing concentrations of glucose in the bathing medium.  The interference of 

glucose in accurately quantifying the TCho area was alleviated by using one of the 

following two approaches: (i) removing glucose by rinsing and incubating the construct 

in glucose and sera-free medium immediately prior to and during spectrum acquisition; or 

(ii) correcting for the glucose interference post-acquisition.  To establish the feasibility of 

using TCho to measure viable cell number in the constructs, the first option was 

implemented.   A method to correct for the contribution of glucose to the TCho area was 

also developed and is described later in this article.  Unless explicitly stated otherwise, 1H 

NMR spectra were acquired from constructs in glucose- and sera-free media, and thus no 

glucose correction was implemented. 

 Figure 37 illustrates the correlation between TCho, measured by 1H NMR 

spectroscopy shortly after construct preparation, and viable cell number, measured by 

Trypan Blue in the cell suspension prior to entrapment.  Data were collected using both 

types of constructs and grouped by the RF coil used to collect the NMR signal.  The data 

show that the TCho peak area is directly proportional to the number of viable βTC3 cells 

within the VOI of the agarose constructs for either RF coil design.  In comparison with 

 127 



the birdcage coil, the surface coil increased the sensitivity of the TCho measurement 

three-fold, with a minimum quantifiable TCho signal at 1x106 cells.  Thus, the surface 

coil was used to collect all 1H NMR spectra for the subsequent experiments, and the 

standard curve shown for the surface coil in Figure 37 was used to interpolate the 

measured TCho peak area to viable cell number. 
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Figure 36.  Water-suppressed, localized 1H NMR spectrum of 14x106 βTC3 cells in a 
buffered agarose disk construct equilibrated in glucose and sera-free DMEM (A), 
150mg/dL glucose and sera-free DMEM (B), and 250mg/dL glucose and sera-free 
DMEM (C). 
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Figure 37.  Correlation between viable cell numbers and TCho peak areas for βTC3 cells 
in agarose constructs. NMR measurements were collected using either the surface coil 
(filled diamonds) or birdcage coil (open diamonds).   

 
 
 
 In vitro experiments monitored the temporal changes in TCho along with MTT 

absorbance and insulin secretion rate.  These experiments were conducted with both 

types of constructs loaded with different cell numbers.  Earlier studies established the 

range of cell loadings for each construct type that are predicted to result in an increase, 

decrease, or stabilization of viable cell number (see CHAPTER 6).  For the single agarose 

disk constructs, three different cell loadings were used, where a net decrease (14x106 

cells), no net change (10x106 cells), and a net increase (7x106 cells) in viable cell number 

would be expected over time.  For the buffered agarose constructs, two different cell 

loadings were prepared, where a net decrease (7x106 cells) and increase (3x106 cells) in 
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viable cell number was anticipated.  Figure 38 shows the temporal profiles of the TCho–

assessed viable cell number for single agarose disk constructs with varying initial cell 

numbers.  Although the three cell loadings are statistically different on Day 0, the viable 

cell number for all of the constructs stabilizes to the same statistical plateau after 

approximately 3 days in culture.  For the buffered agarose disk constructs, Figure 39 

shows the temporal changes in TCho-assessed viable cell number for the two different 

initial cell loadings.  Viable cell numbers in constructs from both initial conditions follow 

similar patterns and were statistically different only on Days 0 and 5.   
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Figure 38.  Temporal changes in the TCho-assessed viable cell number for single agarose 
disk constructs with initial cell loadings of 14x106 cells (diamonds), 10x106 cells 
(squares), and 7x106 cells (triangles).   
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Figure 39.  Temporal changes in the TCho-assessed viable cell number for buffered 
agarose disk constructs with initial cell loadings of 7x106 cells (diamonds) and 3x106 
cells (squares). 

 
 
 
 In order to test if dead cells contribute significantly to the TCho resonance, 

experiments inducing cell death in both construct types by excessive hyperthermia (55ºC 

for 2 min) were performed.  TCho was monitored in constructs prior to and following 

lethal hyperthermic treatment of the entrapped cells was monitored over time.  Data is 

shown in Figure 40, where time zero data points were collected prior to hyperthermic 

episode.  For single agarose disk constructs (filled diamonds), TCho dropped by 

approximately 50% after 30 mins with complete depletion within 5 hrs, while for 

buffered agarose constructs (filled squares), TCho decreased by roughly 50% after 1 hr 

and were completely depleted after 10 hrs.  Control experiments were also performed 
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under identical experimental conditions, excluding the hyperthermia episode (open 

diamonds).  A decline of approximately 15% TCho was recorded for all constructs over 

the course of 12 hrs. 

 Figure 41 illustrates the strong linear correlation (R2 = 0.86) between the TCho peak 

area and MTT absorbance.  All time points, construct types, and cell loadings tested are 

included as data points in this figure. 
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Figure 40.  Temporal profile of TCho, measured from the VOI centered in the cell-
containing region of the construct, following hyperthermia-induced cell death for single 
agarose (filled diamonds) and buffered agarose (filled squares) constructs initially 
containing 14x106 cells.  Control is shown by the open diamonds.   
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Figure 41.  Correlation between MTT assay absorbance values and TCho peak areas for 
βTC3 cells in agarose constructs for all time points, construct types, and cell densities 
tested.   

 
 
 
 
 Figure 42 shows the correlation between TCho peak areas and their respective insulin 

secretion rates for the two construct types and five initial cell loadings tested in the in 

vitro time experiments.  The data show a strong linear relationship with a correlation 

coefficient of 0.90. 
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Figure 42.  Correlation between Insulin Secretion Rates (ISR) and TCho peak areas for 
βTC3 cells in agarose constructs for the two construct types and three cell loadings tested 
in the long-term culture experiments.   

 
 
 
 To gain a perspective of the levels of TCho present within the βTC3 cells, 1H NMR 

spectroscopy experiments were performed using cell-free buffered agarose constructs 

bathed in varying concentrations of choline buffered in saline.  Spectra were acquired 

using the surface coil under the same NMR acquisition parameters employed for the cell-

containing construct experiments.  Using this method, commonly called a phantom 

replacement reference [175], the VOI location, coil loading, and surrounding 

environment within the surface coil is similar to that used to collect the cell-containing 

construct measurements.  Choline concentrations tested were 1.44, 1.0, 0.75, 0.5, and 

0.25 mM.  The resulting calibration curve is shown in Figure 43.  Based on this data, 
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there is approximately 0.1 mmol of choline per 1010 cells, assuming that T2 and T1 

differences between choline in solution and TCho within cells are negligible.   
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Figure 43.  Correlation between choline concentration (mM) and peak area at 3.2 ppm 
for cell-free agarose constructs equilibrated in varying concentrations of choline buffered 
in saline. 

 
 
 
 As illustrated in Figure 36, one of the glucose peaks interferes with TCho at 3.2 ppm, 

thus resulting in an overestimation of the TCho peak area.  For cases where the complete 

removal of glucose from the VOI is not feasible or desirable, the negative peak of glucose 

at 3.85 ppm can be used to indirectly determine the glucose contribution to the 3.22 ppm 

resonance.  The strict ratio of the glucose peaks at 3.85 ppm and 3.22 ppm was quantified 
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by collecting 1H NMR spectra from cell-free agarose constructs equilibrated in DMEM 

with various concentrations of glucose (for more detail, see APPENDIX A5).  Once this 

ratio was determined, accurate estimation of the 3.22 ppm glucose peak area could be 

made through the quantification of the 3.85 ppm glucose peak.  Therefore, in constructs 

with cells, the contribution of glucose to the 3.2 ppm peak area can be indirectly 

quantified and subtracted, allowing for the accurate measurement of TCho.  Figure 44 

illustrates the use of this technique using buffered agarose constructs containing cell 

loadings of either 14x106 or 7x106 cells.  Constructs were first placed in medium 

containing the level of glucose specified and the TCho peak area was quantified and 

reported before (Figure 44, black bars) and after correcting for the glucose contribution 

(Figure 44, striped bars).  The same constructs were then washed free of glucose, placed 

in sera- and glucose-free DMEM, and the TCho signal was measured to serve as the 

control (Figure 44, white bars).  While the uncorrected TCho data from constructs 

containing glucose showed artificially high results, the glucose-corrected TCho values 

were in agreement with the TCho measurements in the glucose-free environment. 

 

8.5. DISCUSSION 

 This study establishes the use of 1H NMR-measured TCho as an accurate index for 

the noninvasive quantification of viable cell number in a model tissue engineered 

substitute.  TCho peak areas strongly correlated with viable βTC3 cell numbers in the 

VOI of agarose constructs over a wide range, from 1x106 to more than 20x106 viable  
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Figure 44.  TCho measurement of buffered agarose constructs containing either 14x106 
or 7x106 cells, collected in three different glucose concentrations: 450 mg/dL, 250 
mg/dL, or 50 mg/dL.  Black bars represent the raw TCho peak area under the specified 
glucose concentration.  Striped bars represent the TCho peak area after the glucose 
contribution is subtracted using the technique presented in the text.  White bars represent 
the control, i.e. the TCho peak area of the same construct in glucose- and sera-free 
DMEM.  

 
 
 
cells.  Periodic monitoring of TCho enabled the tracking of changes in viable cell number 

over time for constructs under dynamic conditions of cell growth or death.  Assessment 

of viable cell number by measurement of TCho was found comparable with the 

traditional viability assay MTT, yet it did not impart detrimental effects to the cells.  

Thus, the TCho-based assay could be further expanded to monitor viable cell number 

over a prolonged time period through the development of an NMR-compatible bioreactor, 

such as the packed-bed bioreactor system used in earlier studies in our laboratory to 
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maintain βTC3 cells over a period exceeding 30 days [7].  In vitro studies where this 

noninvasive assay would be highly useful include long-term development of tissue 

substitutes, assessment of constructs before and after cyropreservation procedures, and 

quality control of constructs prior to implantation.   

 The correlation between TCho peak areas and their respective insulin secretion rates 

for the constructs studied suggest that this assay also provides a valuable indicator of 

construct function when cell viability is the dominating factor.  In both construct types, 

dynamic changes were seen in the insulin secretion rates of the constructs over time; 

however, these variable insulin secretion rates correlated to results from the choline 

assay. Therefore, the observed trends for the insulin secretion rates in long-term cultures 

could mostly be attributed to changes in the number of viable cells in constructs.   One 

major implication of the data presented in this study is the ability to monitor temporal 

changes in viable cell number for a relatively high cell turnover system under varying 

extents of cell growth.  On Day 0, the majority of the entrapped cells were viable and in a 

proliferative state; however, over time, a heterogeneous cell population developed within 

the constructs with a large fraction of necrotic cells in the center and a band of highly 

proliferative cells on the periphery (CHAPTER 6).  Monitoring the TCho of these 

constructs, as they remodel from the initial to the final state described above, raises the 

following questions: (i) does the presence of highly proliferative cells skew the data to 

higher levels of TCho; and (ii) does the presence of dead cells significantly contribute to 

the TCho signal within the VOI? 

 With regard to question (i), literature reports suggest that highly proliferative cells 

contain higher levels of water-soluble choline-containing compounds compared to their 
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quiescent counterparts.  This is speculated to be due to the intensified membrane 

synthesis and enhanced production of PCho during the G1-phase and S-phase of the cell 

cycle [176].  While in vitro 31P NMR spectroscopy studies of numerous tumorigenic and 

non-tumorigenic cell types have found substantial increases in PCho levels during phases 

of rapid cell growth, a plateau of the PCho level was attained when the same culture 

entered a metabolic steady-state [3, 177].  A similar trend was also observed for 1H NMR 

spectroscopy studies of TCho in βTC3 cells, which was expected given that PCho is the 

dominant component of the TCho resonance for this cell line [7].  In this study, the strong 

agreement between TCho measurements and the independent MTT assay, at all time 

points and for constructs with varying degrees of growth, also suggests that TCho 

measurement is not significantly skewed by the strong presence of highly proliferative 

cells.   

 Question (ii) addresses the concern that necrotic cells may contribute to erroneously 

high TCho signals, especially for constructs initially loaded with a cell number exceeding 

that supportable by the surrounding environment.  Cell death typically activates 

phospholipases, which can degrade membrane bound phosphatidylcholine into its 

precursors GPC, PCho and Cho, resulting in a rapid increase in water-soluble choline-

containing compounds within the cells [178].  However, in constructs initially loaded 

with a high cell number, where significant cell death occurred over the first 24 hours 

(Figure 6), the strong correlation between TCho and MTT indicate that the contribution 

of dead cells to TCho is minimal.  On the other hand, when rapid and substantial cell 

death occurs, as illustrated in the results from the hyperthermia experiment, the TCho 

signal does not provide an accurate measurement of viable cell number in the first 5 to 10 
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hours following the initiation of cell death.  Thus, the contribution from dead cells is 

negligible under slow cellular turnover conditions, whereas TCho measurements 

transiently are incorrectly high under conditions of massive and rapid cell death.   

 The inherent level of TCho varies between different cell types and degrees of 

differentiation or transformation [3].  Therefore, each cell line must be individually 

characterized to determine the appropriate calibration curve and range of cell numbers 

that result in a linear relationship between the TCho peak area and viable cell number.  

For this study, it was determined that the intercellular TCho level within βTC3 cells is 

approximately 0.1 mmol per 1010 cells.  Published reports have documented the TCho for 

normal tissues, obtained from both human and animal sources.  While commonly these 

values are presented as mmol/g of wet weight of tissue or as mmol/L, these values may 

be converted to mmol per cell by approximating the wet weight of the tissue and/or the 

cell density.  The wet weight and cell density for tissue was assumed to be 1.05 gm/mL 

and 108 cells/mL, respectively.  Both of these values are the average of data found for 

liver, brain, heart, and muscle tissue [179-182].  Using these approximations, the TCho 

ranges within varying tissues are: 0.07-0.20 mmol for brain [175, 183, 184], 0.05 mmol 

for heart[183], 0.27 mmol for liver[183], and 0.03 mmol for muscle[183], all normalized 

to 1010 cells.  Therefore, the TCho level calculated for βTC3 cells is within the normal 

range found for tissues containing other cell types.   

 The effect of solute interference on the accuracy of the 1H NMR detectable TCho 

resonance was also studied.  The glucose artifact was expected to occur, given the range 

of cell numbers used in the agarose constructs.  In natural tissues, where the cell number 

is typically 10-fold higher than what is used in this study, the effect of the glucose 
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resonance on the TCho peak area is minimal, given the dominant presence of choline 

compared to glucose within the VOI studied.  In vitro choline studies of cell cultures have 

also avoided the glucose interference by either studying the 31P nucleus or examining 

cellular extracts under high magnetic fields [185-187].  This 1H NMR study, however, 

was able to develop a method for monitoring constructs under conditions where it is not 

desirable to remove glucose from the system or the glucose levels cannot be controlled, 

such as in closed-loop bioreactors or in vivo.  By developing an indirect method for 

quantifying the glucose interference in the system, the contamination of the glucose 

signal on the TCho peak area can be precisely subtracted under a wide range of glucose 

concentrations and viable cell numbers.  While the ratio between the 3.85 ppm and 3.22 

ppm glucose resonances will stay fixed when collected under constant NMR parameters, 

this ratio is expected to vary under different NMR conditions, such as magnet strength 

and pulse sequences.  Therefore, recalibration of the ratio between the glucose peaks may 

be necessary under different experimental conditions.   

 An implicit parameter in the design of this study was the ability to adapt the 

developed methods to monitoring tissue engineered constructs in vivo.   To ease the 

transition to animal studies, RF coil designs were restricted to those where the signal 

from the implant can be collected from outside the animal, thereby eliminating the use of 

more sensitive coils that require close proximity to the construct.  Higher magnetic fields 

and increases in collection times could vastly increase the sensitivity of the assay and the 

resolution of the construct images; however, NMR magnets of high field strength that 

accommodate in vivo sampling are scarce and the time frame for NMR acquisition is 

limited, given that the effective time period for standard anesthesia methods is on the 
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order of 45 min.  Without these in vivo boundaries, the sensitivity of the TCho assay 

could be greatly increased, i.e. to measurements within a single 0.8 mm bead containing 

only 3x105 cells [188].  Furthermore, 1H NMR choline measurements could be expanded 

from aggregate viable cell number measurements to the collection of spatial viability 

information using 1D-, 2D, or 3D-chemical shift imaging techniques, which could detect 

spatial heterogeneities within the construct itself [188].  

 Future work is focused on applying the methods developed in this study to the in vivo 

environment.  Specifically, research is ongoing in monitoring TCho in buffered agarose 

disk constructs implanted within the peritoneal cavity of mice. 
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CHAPTER 9 
 

9. IN VIVO NONINVASIVE MONITORING OF VIABLE CELL NUMBER 
IN TISSUE ENGINEERED CONSTRUCTS USING 1H NMR 

SPECTROSCOPY5 
 

 
 

9.1. ABSTRACT 

Direct, noninvasive monitoring of tissue engineered constructs would provide 

valuable information on the dynamic changes that occur post-implantation.  This study 

investigated 1H NMR spectroscopy and imaging as a tool for noninvasively monitoring 

the viable cell number within a tissue engineered construct over time in vivo.  The disk-

shaped construct studied consisted of mouse βTC3 insulinoma cells in agarose, 

surrounded by a cell-free agarose layer.  Utilization of the highly sensitive proton nucleus 

and intrinsic cellular signals eliminated the need to add extrinsic probes or markers to the 

system.  Accurate in vivo measurements of the total-choline resonance within implanted 

constructs were collected by localized 1H NMR spectroscopy, as verified by comparisons 

with in vitro total-choline measurements, and they correlated strongly to MTT cell 

viability results.  Overall, total-choline measurements were able to accurately and 

noninvasively quantify viable βTC3 cell numbers in vivo, in the range of 1x106 to more 

than 14x106 cells.   

                                                 

5 Modification of paper submitted for peer review, 2004. 
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9.2. INTRODUCTION 

Tissue engineering is typically defined as the use of living cells and biocompatible 

materials for the development of biological substitutes to repair, replace, maintain, or 

enhance the function of a particular organ or tissue [189].  Upon implantation, the activity 

of the cells within the construct and its interaction with the host can result in significant 

changes in construct structure and function over time.  Direct monitoring of such 

changes, however, is limited.  In vivo monitoring of physiologic end-points, for instance 

the monitoring of blood glucose levels in a diabetic animal that has received a pancreatic 

implant, is useful but does not provide direct information on the implant itself.  

Therefore, there is a need to develop a reliable and direct methodology to noninvasively 

monitor a tissue engineered substitute in vivo, in regard to both its viable cell number and 

structure.   

Although there are several reliable in vitro methods for assessing viable cell number 

[169-172], use of these destructive assays to monitor implants requires several animal 

experiments to be conducted in parallel, thereby imparting substantial inter-animal 

variability.  Recently, promising studies monitoring tagged cells in vivo using optical and 

radionuclide imaging have recently been published [68, 73, 75, 79, 81]; however, the use 

of molecular probes for monitoring a tissue engineered implant is difficult, based on 

problems such as transient expression, toxicity, and poor resolution, sensitivity, and 

specificity issues [66].  

Proton Nuclear Magnetic Resonance (NMR) spectroscopy and imaging is a promising 

modality for assessing tissue engineered substitutes in vivo, since it can provide accurate 

and detailed metabolic and spatial information of living systems by monitoring inherent 
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compounds.  Although biologically-relevant, NMR-detectable nuclei such as 31P and 13C 

may be studied, the strong sensitivity of the proton nucleus allows for the efficient 

collection of 1H NMR spectra and images with spatial and temporal resolution unmatched 

by other nuclei [190].  1H NMR spectroscopy and imaging has three particular 

advantages over other modalities: simultaneous collection of spatial and metabolic 

information; elimination of the need for external molecular probes or enriched media; and 

the ability to perform longitudinal studies on the same sample.  Furthermore, through 

NMR gradient techniques, it is possible to isolate localized regions within the field 

studied to collect structural and metabolic information from that volume alone [2].   

Of particular focus in this research is using 1H NMR spectroscopy to measure viable 

cell number by monitoring the resonance at 3.2 ppm.  This resonance commonly includes 

choline-containing compounds such as choline (Cho), phosphocholine (PCho), and 

glycerol 3-phosphocholine (GPC), with possible contributions from 

phosphoethanolamine (PEtn), inositol and taurine [3].  This peak is commonly referred to 

as “total-choline” (TCho), and this term is used henceforth in this study.  Published 

reports have found strong correlations between TCho and cell number for a variety of cell 

types in vitro and in vivo [3-6].  More specifically, data presented in CHAPTER 8 found 

TCho to be an efficient, accurate, and noninvasive in vitro assay for measuring the 

number of viable βTC3 cells in agarose constructs. 

This study tests the in vivo applicability of the NMR methods illustrated in 

CHAPTER 8 using a model tissue engineered construct.  The disk-shaped implant 

consisted of mouse  βTC3 insulinoma cells in agarose surrounded by an outer cell-free 

agarose layer.  This construct design was identical to one of the constructs characterized 
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during the in vitro NMR experiments in CHAPTER 8.  A critical parameter in this study 

was ensuring accurate and complete measurement of the TCho signal from the βTC3 

cells within the implant.  Therefore, the agarose construct was designed so that signal 

from the cell-containing region of the construct could be collected, without signal 

contamination from the surrounding host tissue.  In vivo TCho measurements were 

acquired by 1H NMR spectroscopy and correlated to respective in vitro results of TCho 

and the traditional MTT cell viability assay, performed on explanted constructs.  1H 

NMR images of the implants were also collected.  Methods for accounting for 

contaminating solutes and the minimal detection limit of the TCho assay are presented.  

 

9.3. MATERIALS AND METHODS 

9.3.1. Cell Culture 

βTC3 cells were obtained from the laboratory of Shimon Efrat, Albert Einstein 

College of Medicine, Bronx, NY.  Cells were cultured as monolayers in T-flasks and fed 

every 2-3 days with fresh medium consisting of Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Sigma, St. Louis, MO) with 25 mM glucose and supplemented with 15% horse 

serum, 2.5% bovine serum, 1% penicillin-streptomycin, and L-glutamine to a final 

concentration of 6 mM (Sigma).  Upon confluency, βTC3 cells were trypsinized using 

0.25% Trypsin with EDTA (Mediatech, Herndon, VA) and either split for propagation or 

used in construct fabrication (passage numbers 33-48). 
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9.3.2. Construct Fabrication 

The agarose disk-shaped construct used in this study is illustrated in Figure 45.  It 

consisted of an inner cell-containing disk coated with a layer of pure 2% agarose to final 

dimensions of 3 mm height and 16 mm diameter.  Experimental justification for the 

presence and thickness of the buffer layer are presented later in this article.   

 
 
 

d0 =  16mm 

 
Figure 45.  Schematic representation and dimensions of buffered agarose construct used 
for implantations.  The shaded region represents the inner disk containing βTC3 cells 
entrapped in 2% agarose, while the white region indicates pure 2% agarose.   

 
 
 
The agarose construct was fabricated by methods described in CHAPTER 6.  Briefly, 

a suspension of βTC3 cells, at the density specified for each experiment, in 2%(w/v) 

SeaPlaque agarose (Cambrex, NJ) at 37ºC was poured into pre-fabricated sterile molds of 

11 mm diameter and 1.8 mm height (0.2 mL in volume).  After gelling, the disks were 

coated with an outer layer of pure 2%(w/v) agarose using larger Lexan molds (16 mm 

diameter, 3 mm height).  Completed constructs were then placed in sera-free Hanks 

Buffered Saline Solution (HBSS) (Mediatech, Herndon, VA).  Constructs were implanted 

within 4 hrs after manufacturing.  During this period, constructs were maintained in a 

di =  11mm 

h =1.8 mm 

 
h =3 mm 
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humidified 37°C, 5% CO2/95% air incubator in 125 mL spinner flasks (Wheaton, 

Millville, NJ), containing 35 mL of sera-free HBSS and agitated at 30 rpm.  

In experiments aimed at determining the necessary thickness of buffer zones, cell-free 

constructs were fabricated from 2% (w/v) agarose using pre-sterilized Lexan molds, with 

systematic changes in diameter from 11 mm to 16 mm and in height from 1.8 mm to 3 

mm.     

 

9.3.3. Animal Studies 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Emory University.  Male C57BL/6J mice of at least 20 grams 

were obtained from Jackson Laboratories (Bar Harbor, Maine) and used for surgical 

implantations.  Mice were sedated using an IP injection of ketamine/xylazine (150/15 

mg/kg body weight) prior to implantation, and a single buffered agarose construct was 

placed within the peritoneal cavity via a 2 cm midline celiotomy.  For control studies, 

cell-free agarose constructs were implanted.  For experimental studies, buffered agarose 

constructs containing three initial cell loadings of 14x106, 8x106, and 4x106 cells were 

tested.  NMR data were collected on Days 0, 1, 2, 3, 4, 5 and 14.  All mice were scanned 

by NMR on Day 0, with subsequent NMR scans performed on other test days in groups 

of three or more.  No single mouse was scanned more than three times. To relieve the 

transient hyperglycemia caused by the use of the chosen anesthetic (see APPENDIX A6), 

tested mice were fasted by removing food from their cages approximately 8 to 10 hrs 

before each NMR scan.  Immediately prior to NMR scanning, the same mice were then 

sedated using an IP injection of ketamine/xylazine (150/15 mg/kg body weight).  
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Following confirmation of sedation, 1 mL of saline was injected into the peritoneal 

cavity, to further dilute the glucose concentration in the abdominal fluid.  Upon 

completion of NMR scans, mice were either allowed to recover in a prewarmed cage and 

eat freely from the food provided, or euthanized using CO2 asphyxiation.  Constructs 

were removed from euthanized mice by cutting open the skin and muscle layers and 

removing the construct using forceps.  Constructs were then washed three times in sera- 

and glucose-free DMEM to remove in vivo solutes prior to subsequent in vitro NMR 

scanning.  In vitro NMR scanned constructs were then placed in complete DMEM for 

two hours prior to MTT viability analysis. 

 

9.3.4. 1H Magnetic Resonance Imaging and Spectroscopy 

NMR imaging and spectroscopy examinations were performed using a Varian/Inova 

4.7T horizontal bore magnet operating at 200.56 MHz (Varian, Inc., Palo Alto, CA).  The 

magnet was equipped with an 11.7 cm inner diameter self-shielded gradient system with 

a maximum gradient strength of 25 gauss/cm.  Constructs were investigated using a 

transmit/receive home-built surface coil measuring 35 mm in length and 24 mm in width, 

attached to a 32 mm diameter polycarbonate tube.  The RF signal intensity decreased by 

45% at 1 cm from the surface of the coil.  For all experiments, the construct location was 

no more than 0.7 cm from the surface of the coil.  The signal variability across the 

construct volume was found to be a maximum of ~17%.  For in vivo experiments, the 

implanted construct was centered within the surface coil field of excitation, and the 

anesthetized mouse was secured.  For in vitro experiments, constructs were loaded in a 

sterile centrifuge tube containing 50 mL of glucose- and sera-free DMEM and centered 
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within the surface coil field of excitation.  The surface coil was subsequently positioned 

at the magnet’s isocenter.    

Standard 1H NMR gradient-echo images (TR = 200 ms, TE = 3.5 ms, Acquisition 

time of 51 sec) were acquired to determine the exact positioning of the construct within 

the field of view.  A single high resolution spin-echo image (TR = 2 sec, TE = 40 ms, 

Acquisition time of 17 min and 10 sec) was collected to provide a detailed image of the 

construct structure and the surrounding environment.   

Localized 1H NMR spectra were acquired from an 8x8x2 mm3 thick volume of 

interest (VOI), centered within the cell-containing region of the construct.  Shimming of 

the water signal was performed on the selected VOI using a localized PRESS sequence 

[137].  Water-suppressed spectra on the same VOI were then acquired using three 

CHESS pulses prior to executing the PRESS localization sequence.  The PRESS pulse 

parameters used in all experiments were TR equal to 3 sec and a total TE, defined as 2t1 + 

2t2 (t1 = 12.5 ms, t2 = 33 ms), of 91 ms.  At the TR time selected, the magnetization was 

completely relaxed.  The TE time, selected to reduce the glucose signal intensity, was 

found to result in minimal (~5%) changes in TCho, when compared to the shortest echo 

time allowable by the sequence.  All localized, water-suppressed 1H NMR spectra were 

the average of 256 acquisitions, collected at a constant receiver gain using real-time 

digital signal processing.  The total time required to collect each water-suppressed 

spectrum was 12 min 56 sec.  Spectral data were processed using the frequency domain 

analysis package supplied in VNMR from Varian.  Time domain data were apodized with 

an exponential line broadening of 3 Hz, Fourier transformed, with the residual water 

signal removed by digital filtering, and the baseline corrected where necessary.  A 
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Lorentzian function was fitted to the resulting TCho peak at 3.2 ppm using manufacturer-

provided software to determine the area under the peak.   

 

9.3.5. Analytical Techniques 

Methods for assessing construct viable cell number using the CellTiter 96 MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay (Promega, Madison, 

WI) have been described in CHAPTER 6.  Briefly, three one-quarter segments of each 

construct were separately incubated in 3 mL of fully supplemented DMEM and 450 µL 

of MTT, for 4 hrs at 37°C, 5% CO2/95% air.  Solubilization of the resulting formazan 

crystals was achieved by 24 hr incubation in the solublization/stop solution within a 

humidified 37°C, 5% CO2/95% air incubator.  The resulting absorbance for each test was 

read at 595 nm and then numerically averaged.    

The fourth and final construct segment was set aside for histological examination.  

Samples designated for histology were fixed in 3% glutaraldehyde for 48 hrs and then 

prepared for paraffin embedding and sectioning.  After sectioning into 5µm samples, the 

slides were stained with hematoxylin/eosin (H/E). 

 

9.3.6. Statistical Analysis 

All measurements are presented as the mean ± SD.  All statistical analyses were 

performed using a two-sample t-test.  Results were considered significantly different 

when p-values were less than 0.05.   
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9.4. RESULTS 

To assess the effectiveness of the PRESS localization sequence in acquiring NMR 

signal from the VOI without imparting contamination from the surrounding host tissue, a 

series of control experiments were performed in vivo utilizing cell-free constructs of 

varying dimensions.  Figure 46 shows localized 1H NMR spectra acquired from three 

different cell-free constructs implanted in the peritoneal cavity of C57BL/6J mice (one 

construct per mouse), where only the radial dimension was varied (the 8x8 mm2 side of 

the VOI).  Each 1H NMR spectrum represents the average of 256 acquisitions with an 

exponential line broadening of 3 Hz and all spectra are displayed at the same vertical 

scale.  All spectra were acquired within 1 hour after implantation and the VOI used to 

collect the signal was maintained constant at 8x8x2 mm3.  Since only freshly implanted, 

cell-free constructs were scanned, all resulting signals in the spectra were due to 

contamination from the surrounding host tissue.  Spectrum A was collected from a 

construct 11 mm in diameter, while spectra B and C were obtained from constructs with 

diameters of 13 mm and 16 mm, respectively.  The data show that abdominal fat 

dominated the spectrum when the construct diameter was 11 mm or 13 mm; however, 

spectra collected from the 16 mm diameter construct was free of host contamination.  

Therefore, when a 2.5 mm buffer layer is added to the 11 mm single agarose disk 

construct in the radial dimension, host contamination of the collected spectrum is 

eliminated.  Similar experiments were also conducted to determine the minimum 

thickness of the buffer layer in the height dimension (the 8x2 mm2 VOI side) and this 

thickness was determined to be 0.6 mm.  The variation in buffer layer thickness required 

for the radial and height dimension is due to the difference in gradient strengths for each 
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axis of the VOI, where the larger the dimension, the smaller the gradient strength.  Based 

on these experiments, a pure 2% agarose buffer layer was applied to the cell-containing 

disk at the dimensions illustrated in Figure 45.  Constructs of these dimensions were used 

throughout the rest of this study. 

Figure 47 shows typical spin-echo 1H NMR images of a construct containing βTC3 

cells implanted within the peritoneal cavity of a C57BL/6J mouse.  Figure 47A shows a 

sagittal (parallel to the axis of the magnet bore) view of the implant, with a displayed 

pixel resolution of 78 µm by 40 µm.  Note the construct position at the center of the 

excitation field of the surface coil.  Figure 47B shows a spin-echo image of the coronal 

view through the planar center of the same agarose construct, with a displayed pixel 

resolution of 68 µm by 68 µm.  The boundary between the inner cell-containing disk and 

the outer agarose layer is easily discernable, allowing for accurate central placement of 

the VOI in the cell-containing region, as indicated by the white square.  1H NMR images 

collected from the constructs over time, showed no significant changes in the structure of 

the construct.  For all time points used in this study, constructs were found to retain their 

initial structural integrity upon explantation.  Histological sectioning of implants 

exhibited a moderate host response, typically no more than 2-3 cell layers thick, as 

illustrated in CHAPTER 7. 

Figure 48 shows typical localized, water-suppressed 1H NMR spectra, collected on 

Day 0 and Day 3, from implanted agarose disks containing either no (Panels A and B) or 

14x106 cells (Panels C and D).  Day 0 spectra were collected within 1 hour after 

implantation.  Day 0 spectra typically did not contain host solutes due to the short time 

frame between implantation and NMR acquisition, and the dilution of the peritoneal fluid 
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A 
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Figure 46.  Water-suppressed, localized 1H NMR spectra of implanted 3 mm thick cell-
free buffered agarose constructs with radial buffer layers of 0 mm (A), 1 mm (B), and 2.5 
mm (C) thickness.   
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Figure 47.  Sagittal (A) and coronal (B) spin-echo 1H NMR images of a buffered agarose 
disk construct.  The white square shown in the coronal image is the VOI used to collect 
the localized 1H NMR spectrum from the inner cell-containing disk.   

 
 
 

by saline during the surgical procedure.  The spectrum of freshly implanted cell-

freeconstructs (Figure 48A) showed no 1H NMR detectable metabolites, while 

resonances attributed to glucose (resonance range from 3.85 ppm to 3.22 ppm) were 

discernable on the Day 3 spectrum (Figure 48B).  In the Day 0 spectrum with cells, the 

resonance at 3.2 ppm is attributed to TCho (Figure 48C).  The Day 3 1H NMR spectrum 

also displayed the TCho resonance, albeit at a reduced intensity in comparison to Day 0 

(Figure 48D).  Furthermore, glucose was also detected within the localized region of the 

construct.  Previous 1H NMR studies determined that glucose, specifically the βH2 

resonance at 3.22 ppm, interferes with the accurate quantification of the TCho peak area, 

when examined under the cell ranges used in this study (see CHAPTER 8).  Post-

acquisition methods, however, can be employed to effectively remove the interfering 

glucose peak at 3.22 ppm, through the quantification of the glucose resonance at 3.85 
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ppm.  Specifically, the measured intensity of glucose resonance at 3.85 ppm is multiplied 

by the calibration ratio found for the glucose peaks at 3.22 and 3.85 ppm, to evaluate the 

glucose peak area at3.22 ppm.  This contribution is then subtracted from the calculated 

3.2 ppm peak area to produce the area attributed only to TCho.  Details on this procedure 

and in vivo calibration data, collected using cell-free implants, are given in APPENDIX 

A5. 

 
 
 

 
Figure 48.  Localized, water-suppressed 1H NMR spectra of an implanted buffered 
agarose construct containing either no (A, B) or 14x106 (C, D) cells.  For both constructs, 
spectra are shown for Day 0 (A, C) and Day 3 (B, D).   
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In vivo experiments monitored implanted constructs containing initial cell loadings of 

14x106, 8x106, and 4x106 cells, over a period of 14 days.  These experiments monitored 

temporal changes in the in vivo collected TCho, which were then compared to respective 

in vitro measurements of TCho and MTT from explanted constructs.  Figure 49 compares 

TCho measurements collected in vivo to their respective TCho measurements in vitro.  

Data shown were collected with constructs at various initial densities and time points, and 

all constructs are represented in the graph.  Lines represent the best linear fit of data 

points.  Figure 49A compares the TCho peak area in vivo and in vitro, when no 

corrections were made for measurements collected in the presence of glucose.  Although 

a linear trend among the data points was found (R2=0.54), this graph illustrates deviations 

between the TCho signal collected in vivo and in vitro for the same construct.  Figure 

49B plots the same measurements, except the post-acquisition method accounting for the 

interference of glucose on TCho quantification was employed.  This data show a strong, 

linear relationship (R2=0.96) between the two measurements with a slope close to 1.  Day 

0 data, which typically did not require glucose correction, were included in both plots.  

All subsequent results for in vivo collected TCho peak area are shown with glucose 

correction.   

Figure 50 illustrates the strong linear correlation (R2=0.87) between in vivo TCho and 

its respective in vitro MTT absorbance.  Explanted constructs from all time points and 

cell loadings were included in the graph.   
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Figure 49.  Correlation between raw (A) or glucose-corrected (B) in vivo TCho peak 
areas (y-axis) and respective in vitro post-explantation (x-axis) TCho peak areas for the 
same cell-containing construct.   
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Figure 50.  Correlation between in vivo glucose-corrected TCho peak area and respective 
in vitro MTT assay absorbance for βTC3 cells in agarose constructs.   
 
 
 

In CHAPTER 8, a strong linear correlation was established between TCho and viable 

cell number in vitro.   From these studies, a calibration curve was developed, where TCho 

data could be interpolated to viable cell number.  Figure 51 illustrates the temporal 

changes of the in vivo TCho peak area, interpolated to viable cell number, for the three 

initial cell loadings tested.  Within each cell density, statistically significant changes in 

viable cell number were found only within the first 2 days for constructs initially loaded 

with 14x106 cells, and in the first day for constructs initially loaded with 8x106 cells.  

Comparison among the three cell loadings at each time point found statistically 

significant differences on Day 0; however, by Day 1, statistical differences were found 

only between constructs initially loaded with 14x106 and 8x106 cells, and between 
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14x106 and 4x106 cells.  By Day 3, no statistically significant differences were found 

among any of the construct types for each time point.   
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Figure 51.  Time profile of in vivo TCho-assessed viable cell numbers for buffered 
agarose disk constructs with initial loadings of 14x106 (solid bars), 8x106 (striped bars), 
and 4x106 (white bars) cells, over a period of 14 days.  Each data point represents the 
mean ± SD, for a minimum of three independent implants.  * indicates days when viable 
cell number results for a specific cell loading were significantly different (p < 0.05) from 
the previous day. 

 
 
 

9.5. DISCUSSION 

This is the first in vivo study to demonstrate the use of TCho, measured by 1H NMR 

spectroscopy, for tracking changes in the viable cell number within a model tissue 

engineered construct.  While CHAPTER 8 noninvasively correlated TCho to viable cell 
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number in vitro, this study was able to translate these methods to the in vivo environment.  

Minimizing contributions from the surrounding host tissue and correcting for glucose 

contamination effects allowed for the accurate collection of TCho measurements in vivo, 

as illustrated by the direct comparison to respective in vitro TCho data points.  

Noninvasive in vivo TCho results were comparable to results from the traditional cell 

viability assay MTT, obtained from explanted constructs. 

The TCho assay provided a means to monitor the number of viable βTC3 cells in an 

implanted construct within a single animal over the entire implantation period, which 

provided valuable information of construct changes in the in vivo environment.  Given 

the oxygen tension at the implantation site, estimated at ~40 mmHg, and the mass 

transfer characteristics of the construct, the stabilization in viable cell number of the three 

cell loadings to approximately 2x106 cells was partially expected.  Indeed, mathematical 

modeling predictions of the in vivo oxygen profile within these constructs estimated that 

approximately 1.3x106 cells would retain oxygen tensions above 7 mm of Hg (see 

CHAPTER 6), which is slightly lower than the experimental plateau of viable cell 

number.  While this deviation is not significant, experimental values could be higher due 

to (i) TCho contributions from residual dead cells, or (ii) use of conservative conditions 

for mathematical modeling, i.e. oxygen tensions could be higher than predicted or that 

cells could remain viable at oxygen concentrations lower than those supporting insulin 

secretion. 

In vivo measurement of TCho using 1H NMR spectroscopy has been experimentally 

studied for the characterization of tumors, primarily in brain and breast tissue [191-195]. 

Although these studies found strong correlations between TCho and markers of cell 
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proliferation in the early stages of growth, results from tumors at higher metastatic levels, 

such as III and IV, yielded ambiguous results [3, 196, 197].  This trend has mostly been 

attributed to the increasing presence of necrotic cells within the core of the tumor as it 

progresses over time [3, 196, 197].  Most of these in vivo studies used VOIs smaller than 

the actual size of the tumor, in order to reduce contamination from the surrounding tissue.  

Therefore, the resulting localized 1H NMR signal was primarily skewed by the cells 

within inner region of the tumor, possibly resulting in unclear TCho results at the later 

stages of tumor growth.  In this study, however, incorporation of the buffer regions 

permitted the use of a large VOI that resulted in the collection of TCho measurements 

reflecting the majority of the entrapped cells.   

As the cells progressed from a population where the majority of the cells were viable 

and in a proliferative state to a heterogeneous mixture of cells in varying stages of cell 

growth, the collection of TCho signal from dead cells is a concern.  Dissipation of TCho 

signal from dead cells out of the VOI has been established, in hyperthermic-induced cell 

death in vitro experiments using agarose constructs of identical dimensions and materials 

(see CHAPTER 7).  While cell death may be continuously occurring in the implants used 

in this study, and thus a contribution to TCho from dead cells may always exist, this 

contribution is expected to be small.  Furthermore, the cell densities used in this study, 

which are typically 10-fold lower than that found in tumors, may assist in the diffusion of 

TCho out of the agarose implants, whereas the TCho from dead cells within the inner 

tumor core may be retained for longer time periods.     

In vivo, the TCho assay was found to accurately measure viable cell number from 

1x106 to over 14x106 cells, which is similar to previous in vitro results obtained under 

 162 



identical NMR parameters.  In vivo quantification of TCho was complicated by the 

interference of glucose and the line broadening of the TCho peak due to movement of the 

animal.  Therefore, under conditions of high glucose or significant movement, the 

minimum detection limits in vivo could be compromised.  Furthermore, it has been well 

documented that the inherent level of TCho varies, depending on cell type and degree of 

differentiation or transformation [3].  Therefore, application of the methods illustrated in 

this study to other cell types would require the recalibration of TCho levels to viable cell 

number.   

Although the NMR localization techniques and construct design employed in this 

study were found to accurately isolate the cell-containing region of the implant from the 

surrounding host tissue, the requirement of buffer zones results in additional mass 

transfer limitations, and thus a reduction in the number of viable cells supported in the 

construct.  Therefore, future work is focused on two areas: (i) improvement of the 

localization sequence by employing other NMR techniques, such as volume preselection 

[198], spatially-selective lipid suppression [199], or inversion recovery [200], to dampen 

signal from surrounding host tissue; or (ii) modification of the RF coil design from an 

external coil to an implanted coil that would be wrapped around the cell-containing 

region of the construct.  Either of these approaches could result in the reduction or 

elimination of the buffer zone layer, while possibly creating an overall increase in TCho 

signal sensitivity.   

1H NMR imaging is another facet that could provide useful information regarding the 

status of the implanted construct.  Although significant structural changes were not seen 

for the implants used in this study, the pixel resolution of the images collected is capable 
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of detecting structural defects, such as cracks, in the agarose constructs.    Furthermore, 

while the current 1H NMR image resolution was unable to detect the moderate fibrotic 

response seen in these implants, earlier studies demonstrated the ability of the same 

system to detect the development of significant fibrosis over time in vivo (see 

APPENDIX A4).  Improvements in coil design of the type outlined earlier could 

substantially increase the pixel resolution of the resulting images, thereby providing a 

more sensitive means to detect structural changes and host response effects on the 

implant.  
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CHAPTER 10 
 

10. CONCLUSIONS AND FUTURE WORK 
 
 
 

10.1. CONCLUSIONS 

Noninvasive monitoring of tissue engineered constructs is of critical importance for 

accurate temporal characterization of constructs in vitro and in vivo.  In this thesis, we 

have contributed to this field by developing a means to noninvasively monitor a model 

tissue engineered construct, which is applicable under different experimental conditions.  

The design of an appropriate model tissue engineered construct for our specific NMR 

application was the first challenge of this research.  While earlier microbead results were 

promising, the need to confine the cells within a definable volume refocused the research 

to macroconstruct designs.  The use of a disk-shaped construct allowed for ease in 

placement, identification, and retrieval of the construct in vivo, while confining the cell 

signal to a single definable region.  The reduction of the surface to volume ratio, 

however, reduced the overall viable cell density, thereby decreasing the efficacy of the 

construct in restoring normoglycemia.  In spite of these challenges, the final agarose-

based, disk-shaped construct maintained the number of viable cells within the range 

necessary for quantification using current NMR methods, while also retaining its 

structural integrity over extended time periods in vitro and in vivo.  Mathematical 

modeling and in vitro studies characterized the model construct and provided valuable 

information regarding the dynamic changes in cell number, growth patterns, and 

secretory function, under the studied environmental conditions.   
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The second phase of research quantified the direct relationship between total-choline 

and viable cell number within the constructs.  In vitro studies established the strong linear 

correlation between total-choline and viable cell number not only for freshly made 

constructs, but as the cells remodeled over time periods extending several weeks.  Using 

the accepted cell viability assays MTS and MTT as the standard, the total-choline assay 

was found to be highly comparable in accuracy and efficiency, without destruction of the 

construct or addition of external probes or markers to the system.  Therefore, the use of 

this noninvasive total-choline assay could provide reliable, temporal assessment of viable 

βTC3 cell number within a single tissue engineered construct.  The methods developed in 

this phase of study could provide a valuable tool for many in vitro tissue engineering 

applications, such as the testing of cyropreservation protocols, long-term construct 

development studies, and quality control of constructs prior to implantation.   

The final phase of this thesis tested the applicability of the NMR total-choline assay 

in vivo.  By designing a construct that minimizes contributions from the surrounding host 

tissue and accounting for glucose contamination effects, accurate total-choline 

measurements could be collected from implanted constructs and interpolated to determine 

viable cell number.  Therefore, the NMR methods developed were able to demonstrate, 

for the first time, the ability of total-choline to provide direct and accurate temporal 

measurements of viable cell number in a tissue engineered construct in vivo.  1H NMR 

imaging was also found to be a useful tool in providing detailed structural information of 

the implant.  In cases where construct integrity is of critical importance, such as in blood 

vessel and cartilage substitutes, 1H NMR imaging could provide a useful method for 

noninvasively assessing defects and degradation of structural elements.  Temporal 1H 
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NMR images of implanted constructs collected in this thesis also found these images to 

be helpful in characterizing the host response, by monitoring the development of a 

fibrotic cap.  The ability to monitor constructs noninvasively in vivo can provide valuable 

information regarding the effects of implantation that cannot be precisely mimicked using 

mathematical modeling and in vitro testing.  Therefore, the NMR methods presented in 

this thesis could be used to quantify integration of the implant and further understand the 

effects of specific in vivo parameters, such as immune-acceptance, on the overall viable 

cell number within an implant.   

The data presented in this thesis outlined quantitative criteria for the capability and 

limitations of this NMR modality, such as cell number and construct architecture.  1H 

NMR spectroscopy, under the specific NMR parameters used in this study, was found to 

accurately quantify viable βTC3 cell number in vitro and in vivo, at a minimum threshold 

of 2x106 cells within a volume of 0.2 mL.  While this cell density of 4x106 cells/mL may 

be high for some applications, these NMR methods could be applicable in monitoring 

tissue engineered constructs that typically contain cell numbers of this magnitude, such as 

the bioartificial liver.  Furthermore, advancements in RF coil sensitivity could increase 

this threshold to a cell level comparable to other tissue engineered systems, such as tissue 

engineered cartilage or myocardial patches.  While the architectural constraints discussed 

in this thesis appear to limit the scope of the NMR monitoring system to constructs where 

buffer regions are implemented, it is feasible to assess substitutes where the viable cell 

number throughout the construct is assumed homogeneous, or in cases where 

measurements of the total viable cell number within the construct is not desired.  In these 

cases, localized 1H NMR spectra may be collected from implants where the volume of 
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interest is set to be smaller than the actual size of the construct, thereby creating a false 

“buffer” between the implant and the surrounding tissue.  Furthermore, at the 

implantation site studied in this thesis, the strong presence of abdominal fat was the 

major factor of host contamination.  For other implantation sites, such as the knee, fat 

may not be significant, thereby allowing for the reduction of the buffer zone requirement.  

Furthermore, in areas where surrounding host tissue is of a low cell density, a buffer 

region may be superfluous.  Therefore, while the buffer regions implemented in this 

study assisted in accurate implementation of the NMR method, this requirement may not 

be necessary for other applications.   

 

10.2. FUTURE WORK 

The data presented in this thesis were primarily relegated to monitoring total-choline 

in βTC3 cells.  In order to expand the applicability of the total-choline assay to other 

tissue engineered constructs, cells of varying lineages and degrees of transformation will 

need to be tested.  APPENDIX A6 shows the comparison between βTC3 cells and βTC-

tet, a continuous beta cell line transfected with a tetacycline-conditioned gene expression 

system to control proliferation.  The strong agreement between the two cell lines suggests 

that total-choline levels for continuous beta cell lines are of similar magnitude.  

Furthermore, literature reports of total-choline levels within other tissue types found these 

values to be highly comparable to those calculated for the βTC3 cell line, see CHAPTER 

8.  These reports provide further evidence to suggest the broad applicability of the 

methods presented in this thesis for testing other tissue engineered prototypes.  
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Another aspect for future study would be the elimination or reduction of the buffer 

zones, which could relax the architectural constraints outlined in this thesis.  Future work 

in this area is focused on two aspects: (1) improvement of the localization sequence by 

employing other NMR techniques, such as volume preselection [198], spatially-selective 

lipid suppression [199], or inversion recovery [200], to dampen signal from surrounding 

host tissue; or (2) modification of the RF coil design from an external coil to an 

implanted coil that would be wrapped around the cell-containing region of the construct, 

thereby reducing signals from outside of the coil.  Either of these approaches could result 

in the reduction or elimination of the buffer zone layer, while possibly increasing the 

signal-to-noise ratio of the resulting spectrum.   

The inference of glucose on the measurement of the total-choline signal is another 

aspect of this research that would benefit from future studies.  Although the method 

developed in this thesis was able to effectively reduce glucose as a contaminating factor, 

these techniques could not be accurately implemented under conditions of high glucose 

and low total-choline concentrations.  Separation of the two peaks would be the ideal 

solution to the contamination problem and could possibly be achieved through the use of 

higher magnetic fields and the manipulation of acquisition parameters and times.  Since 

the glucose peaks are J-modulated, it is feasible to further reduce the intensity of the 

glucose peak at 3.22 ppm through the manipulation of pulse sequence parameters.  

Furthermore, employment of NMR methods described in the previous paragraph for 

reducing buffer zones could decrease glucose contamination by increasing the total-

choline signal, while also reducing glucose contamination effects by decreasing the 

glucose contribution from non-cellular regions.   
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1H NMR imaging is a promising aspect not extensively explored in this thesis.  Future 

research could significantly expand imaging capabilities, to provide detailed spatial 

information concerning the implanted tissue engineered construct.  Earlier published in 

vitro studies were able to demonstrate the ability of 1H NMR imaging to collect spatial 

information regarding cellular growth patterns and the distribution of spheroids 

throughout the biomaterial [115].  While these in vitro studies are not currently 

translatable to in vivo systems due to the RF coil design, future research on the 

development of implantable RF coils could lead not only to the visualization of temporal 

changes in cellular growth patterns noninvasively in vivo, but also allow for the 

monitoring of host response and/or fibrotic development.  Furthermore, through 

improvements in RF coil design and sequencing techniques, 1D-, 2D, or 3D-chemical 

shift imaging techniques could be employed to collect spatial total-choline information, 

which would expand from the current aggregate viable cell number measurements to the 

collection of spatial viability information to detect heterogeneities within the construct 

itself [188]. 

Other NMR techniques could also be applied to further advance this research.  The 

use of superparamagnetic particles, such as MION and SPIRO (see INTRODUCTION 

for more details), have shown promising in vivo results for monitoring the immune 

response and tracking specific cell populations.  Research in our laboratory have found 

MION to be highly compatible with beta cells including βTC3 and βTC-tet cells, see 

APPENDIX A7, while NMR studies have found MION to be retained within cell-filled 

APA beads for extended time periods (Oca-Cossio, J, in preparation).  Incorporation of 

MION particles within cells would permit the monitoring of implanted constructs on the 
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microscale.  Another NMR technique that could be applied to this research is the use of 

perfluorocarbons, which are monitored using 19F NMR spectroscopy.  Published reports 

have been able to assess oxygen levels in vivo using 19F NMR monitoring and 

perfluorocarbon incorporation within APA beads [201].  While the effects of 

perfluorocarbon incorporation on cell viability have not yet been adequately explored, 

these results lay the foundation for the incorporation of perfluorocarbons within tissue 

engineered constructs to gain valuable information regarding the overall oxygenation of 

the construct in vivo. 
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APPENDIX 
 
 
 
A.1. 1H NMR SPECTROSCOPY OF APA BEADS 

 Earlier NMR experiments found a strong correlation between total-choline (TCho) 

and the overall oxygen consumption rate, for βTC3 cells in alginate/poly-L-

lysine/alginate (APA) beads [7].  To explore the direct relationship between cell number 

and TCho for βTC3 cells, the initial cell density within APA beads was varied and TCho 

was measured on Day 0, using the same bioreactor system described in Long et al [7].  

APA beads were generated using the same method described in CHAPTER 3, where the 

cell density was based on Trypan Blue viability measurements from the cell suspension 

prior to encapsulation.  For each cell density, half of the beads were loaded in the NMR 

bioreactor and half were maintained in spinner flasks.  Figure A1 plots the resulting 

correlation between cell density and TCho for Day 0.  TCho levels were normalized to a 

reference compound from the media, as described in Long et al [7].  The plot shows a 

strong, linear correlation (R2=0.97) between initial cell density and TCho.  Since the 

volume of beads within the bioreactor remained constant, collected TCho measurements 

could be correlated to either total cell density or number.  Furthermore, glucose 

consumption rates, collected from the spinner flasks and averaged over a 24 hr time 

period, show a strong, linear correlation (R2=0.91) against their corresponding TCho 

measurements, as illustrated in Figure A2.   
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Figure A1.  Correlation between TCho and cell density for Alginate/Poly-L-
lysine/Alginate beads on Day 0.   

 
 
 
 While these APA experiments only examined initial time points, this study provides 

further evidence to support the hypothesis that TCho is a strong candidate for a 

noninvasive indicator of viable cell number. 
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Figure A2.  Correlation between TCho and glucose consumption rate (GCR) for 
Alginate/Poly-L-lysine/Alginate beads on Day 0.  
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A.2. IMPLANTATION OF APA BEADS  

  

 The efficacy of APA beads, containing βTC3 cells, in restoring normoglycemia in 

diabetic mice was tested using male C57BL/6J mice of at least 20 grams obtained from 

Jackson Laboratories (Bar Harbor, Maine).  Mice were made diabetic through a single IP 

injection of streptozotocin (STZ; 200mg/kg body weight).  Blood glucose levels were 

monitored daily via tail clipping and measured using an Elite Glucometer (Bayer, PA).  

Mice that maintained a blood glucose level above 350 mg/dL for three consecutive days 

were used for diabetic implantation studies.  A volume of 0.2 mL of APA beads, with an 

initial cell density of 3.5x107 βTC3 cells/mL alginate, were injected into the peritoneal 

cavity via midline celiotomy.  Blood glucose levels were monitored over the course of 12 

days.  Figure A3 illustrates the resulting blood glucose levels.  These experiments 

established the efficacy of a small volume of APA beads containing βTC3 cells in 

stabilizing blood glucose to normoglycemic levels. 

 Preliminary in vivo experiments were also conducted using APA beads to determine 

the feasibility of NMR imaging and spectroscopy for noninvasively monitoring a 

bioartificial pancreas.  BALB/c mice were injected with 0.5 mL of 800 µm-diameter 

APA beads, containing 7x107 cell/mL alginate, by midline celiotomy into the peritoneal 

cavity.  1H NMR images were then collected on the anesthetized mouse three days after 

implantation.  Images were obtained using a 3.8 cm diameter quadrature birdcage RF coil 

and the 4.7 T Varian/Inova magnet.  Figure A4 illustrates the resulting T2-weighted 

image of the peritoneal cavity of the BALB/c mouse.  While the T2-image was not able to 

accurately discern the APA beads, higher resolution diffusion-weighted images (Figure 
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A5) were able to identify the implanted beads.  While these images lay the foundation for 

in vivo monitoring of implants, the poor resolution of the small microbeads and the 

significant distribution of the beads throughout the cavity of the mouse, relayed the need 

for a device that would confine the implant to a defined region.  
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Figure A3.  Temporal blood glucose levels of STZ-induced diabetic C57-BL/6J mice.  A 
volume of 0.2 mL of APA beads, containing an initial cell density of 3.5x107 βTC3 
cells/mL alginate, were implanted on Day 0.  Day 0 data point was collected prior to 
implantation. 
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Figure A4.  T -weighted H NMR image of the peritoneal cavity of a live BALB/c 
mouse three days after the implantation of 0.5 mL of APA beads.   

2
1

 

APA BeadsAPA Beads

 
Figure A5.  Diffusion weighted 1H NMR image of the region shown in Figure A4 by the 
dashed box.  A cluster of implanted APA beads, shown by dark circles in a bright 
background, is identified by arrows. 
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A.3. TESTING OF LOCALIZATION IMPERFECTIONS 

 Initial in vitro experiments to test imperfections in the NMR localization sequence 

were performed using the silicone/mesh constructs studied in CHAPTER 5.  Localized, 

water-suppressed 1H NMR spectra were collected from VOIs at varying locations at or 

near the cell-containing region of the construct.  An example of this is shown in Figure 

A6, where the VOI selected is identified in the gradient-echo image by the white box.  

When the entire VOI was positioned approximately 2 mm outside of the cell-containing 

region of the construct, no choline signal was detected, as shown in Figure A6, Panel B.  

While these experiments helped to verify the accuracy in positioning of the VOI, the 

major contaminating factor in vivo was not choline or other low concentration 

metabolites, but contributions from abdominal fat.  
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Figure A6.  Gradient-echo 1H NMR image of a silicone/mesh construct containing 0.4 
mL of APA beads (Panel A).  The white square is the volume of interest where the water-
suppressed 1H NMR spectrum was acquired (Panel B). 
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 Therefore, the next phase of localization tests used two solutions confined to two 

separate layers: one containing choline buffered in saline, at a concentration similar to the 

cell-based experiments; and the other oil.  The immiscibility of the two solutions 

permitted their separation into two identifiable volumes.  Oil was selected because of its 

similarity in 1H NMR resonances and concentration to in vivo abdominal fat.  With this 

test solution, the disparity of concentrations between the choline and oil mimicked what 

was typically encountered in vivo.  Using the RF surface coil and varying the location of 

the VOI within the choline solution, but keeping the dimensions constant, the ability to 

accurately quantify the choline resonance was examined.  These studies found that a 

minimum distance of 1.5 mm in the planar dimension (the dimension of the sides of the 

box of the VOI) was required to eliminate the presence of oil signal in the resulting 1H 

NMR spectrum, and allow for the accurate quantification of the choline resonance.  In the 

height dimension, a minimum distance of 0.5 mm was required. 

 Preliminary in vivo experiments were also conducted, primarily to ensure the accurate 

positioning of the VOI within the field of view of the RF coil.  The position of the 

implanted construct was determined through the collection of 1H NMR scout images in 

the sagittal (Figure A7, Panel A), transverse (Figure A7, Panel C), and coronal planes.  

Once the position of the center of the construct, in all three-dimensions, was identified, 

the VOI was set to 8mmx8mmx2mm.  Localized 1H NMR images were collected of the 

specified VOI, as illustrated in Figure A7, Panels B and D.  These experimented verified 

the accurate positioning of the VOI within the field of view of the RF coil.  As can be 

illustrated in the VOI images, however, some signal was collected from outside the 

specified region, as seen by the appearance of bright areas outside of the localized VOI, 
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especially in the planar dimension (Panel B).  Although not quantitative, these results 

provide evidence that localization accuracy may be aggravated in vivo possibly due to 

breathing of the animal. 
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Figure A7.  Spin-echo 1H NMR images of a C57BL/6J mouse implanted with a single 
agarose disk construct (Panels A and C).  Respective localized 1H NMR images of the 
selected VOI (8x8x2mm3), used to isolate the inner region of the implanted construct 
(Panels B and D). 
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A.4. TESTING OF AGAROSE/ALGINATE BEAD CONSTRUCTS  

 The next phase of experiments focused on the development of an alginate/agarose 

composite construct, which would confine the alginate beads to a defined space, restrict 

the infiltration of host tissue within the cell-containing region, provide a “buffer” zone 

between the implanted cells and the surrounding environment, and retain the viability of 

the cells.  Figure A8 is a schematic representation of the agarose/alginate device.  The 

thickness of the alginate bead region was set to be 1.8 mm, with a diameter of 11 mm.  

Detailed testing of the imperfections of the localization technique in vivo (see CHAPTER 

9 for more detail) specified the resulting thickness of the outer buffer region at 0.6 mm 

along the thickness dimension and 2.5 mm in the radial dimension, as illustrated in Figure 

A8. 
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Figure A8.  Schematic representation of construct prototype.  Alginate beads contain 
entrapped βTC3 cells, while outer white region is agarose. 

 
 
 
 Upon implantation of the construct within the peritoneal cavity of C57BL/6J mice, 1H 

NMR images and spectra were collected.  Figure A9 (Panels A and B) illustrates typical 

spin-echo 1H NMR images in both sagittal (parallel to the axis of the magnet) and coronal 

views.  Note the striking contrast between the cell-filled alginate beads and the 
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surrounding agarose layer.  Furthermore, the interface between the agarose and the 

surrounding host tissue is discernable.  The contrast between the alginate beads and the 

surrounding agarose matrix allowed for ease in locating the center position of the cell-

containing region of the implant, and thus accurate placement of the localized VOI.  

Figure A9, Panel C shows a typical localized, water-suppressed 1H NMR spectrum 

collected in vivo on Day 0.   

 Spectra were collected over the course of 6 days from eight independent implants, 

each containing 0.2 mL of APA beads with βTC3 cells at a density of 7x107 cells/mL of 

alginate.  TCho resonance for each scan was analyzed and normalized to its respective 

Day 0 scan.  These data points are shown in Figure A10 (solid bars).  For each day, at 

least one construct was explanted, the alginate beads were released from the agarose 

matrix, and the viable cell number was assayed using MTS (for details on method see 

APPENDIX A.9.a).  MTS results of the explanted constructs were also normalized to 

Day 0 measurements and plotted over time, Figure A10 (white bars).  The number of 

implants used to collect the data for each time point is specified in the figure by n.  

Although statistical significance could not be attained due to the small sample size, TCho 

appeared to decline over the first 3 days in vivo in a manner comparable to the respective 

in vitro MTS results.   
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Figure A9.  Sagittal (Panel A) and coronal (Panel B) spin-echo 1H NMR images of an 
implanted agarose construct containing alginate beads loaded with 7x107 βTC3 cells/mL 
alginate.  The white box shown in Panel B is the VOI selected for the resulting localized, 
water-suppressed 1H NMR spectra shown in Panel C.   
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Figure A10.  Temporal profile of in vivo TCho and in vitro MTS measurements within 
agarose constructs containing alginate beads loaded with 7x107 βTC3 cells/mL alginate, 
over a period of six days.  

 
 
 
 Periodic 1H NMR spin-echo images were collected from anesthetized mice during the 

duration of the experiments.  For five animals, the implantation time was extended to two 

weeks to assess if structural changes in the implant could be visualized by 1H NMR 

imaging.  In four of the five animals, no changes were detectable in the implant over the 

two week period, and a moderate fibrotic response two to three cell layers thick was seen 

upon explantation; however, for one implant, the development of a white band was 

detected in the 1H NMR spin-echo images, as shown in Figure A11.  While a white band 

at the interface between the agarose and the host tissue was not seen on Day 1, the 

development of a thin white band at some portions of the interface was seen by Day 7, 

with the final Day 13 image showing a distinct bright band surrounding the entire 

construct.   
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Figure A11.  Sagittal spin-echo 1H NMR images of a single implanted agarose construct 
containing alginate beads loaded with βTC3 cells on Day 1 (Panel A), Day 7 (Panel B), 
and Day 13 (Panel C). 

 
 
 
 Upon explantation, visual examination found a thick fibrotic cap coating the entire 

construct.  H/E staining of a histological cross-section of the fibrotic cap illustrated a 

significant layer of host cells, as shown by Figure A12, Panel A (for details on histology 

method, see APPENDIX A.9.b).  Compared to the typical host response, shown in Figure 

A12, Panel B, this fibrotic cap was significantly thicker and highly abnormal.  While this 

response was not seen for any of the subsequent implants, these experiments provide 

evidence that the host response to the implant could be assessed noninvasively using 1H 

NMR imaging. 
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Figure A12.  Paraffin embedded histological cross-sections of explanted agarose 
constructs containing alginate beads loaded with βTC3 cells stained with H/E.  Panel A is 
the histological image of the fibrotic cap surrounding the construct explanted on Day 13 
from Figure A11.  Panel B represents the typical fibrotic response seen for explanted 
constructs on Day 13.   
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A.5. EFFECT OF GLUCOSE ON TOTAL-CHOLINE MEASUREMENT 

 As discussed in CHAPTER 8, glucose at the 3.22 ppm resonance interferes with the 

accurate quantification of the TCho peak area at 3.2 ppm.  In order to account for this 

effect, a method was developed that would allow for the indirect, but accurate, 

quantification of the glucose peak at 3.22 ppm.  Experimental data was collected using 

cell-free agarose constructs equilibrated in sera-free DMEM containing varying 

concentrations of glucose.  Localized, water-suppressed 1H NMR spectra were collected 

using the NMR acquisition parameters described in CHAPTERS 8 and 9.  The resulting 

glucose peaks in the collected 1H NMR spectra, such as the intensity of the glucose peak 

at 3.85 ppm, are strongly correlated to glucose concentration, as can be seen in Figure 

A13, where the intensity of the 3.85 ppm peak was calculated as the difference between 

the baseline of the spectra and the maximum value of the 3.95 ppm peak.  The individual 

glucose peaks also share a strict, linear relationship to each other.  To investigate the 

effects of glucose on accurately quantifying TCho peak area, the peak at 3.2 ppm was 

integrated for the varying glucose concentrations.  Figure A14 correlates this area to the 

intensity of the glucose peak at 3.85 ppm.  The intensity of the 3.85 ppm peak was used 

instead of peak area, given the fact that its peak shape is not easily fitted by Gaussian 

and/or Lorentzian functions (see spectra in CHAPTERS 8 & 9).  Two conclusions were 

reached from these cell-free experiments: (1) glucose contributes significantly to TCho 

peak area quantification under high glucose concentrations; and (2) a strong, linear 

relationship (R2=0.98) could be defined between the peak area at 3.2 ppm and the peak 

intensity at 3.85 ppm.  Thus, while the glucose effects on TCho measurement can not be 

ignored, Figure A14 provides an indirect means to account for glucose effects on TCho, 
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by simply assessing the intensity of glucose peak at 3.85 ppm.  The validity of this 

method for accurately measuring TCho in the presence of glucose is further explored in 

CHAPTER 8. 

 Once the construct is placed within the in vivo environment, solutes from the 

peritoneal cavity easily diffuse within the construct.  Therefore, it was expected that 

glucose would infiltrate the VOI and result in the need to account for its effects.  One 

concern, however, was using an in vitro-based relationship to account for in vivo solutes.  

While the strict relationship between the individual glucose peaks is inherent, the exact 

nature of this correlation is highly dependent upon NMR acquisition parameters and 

environmental conditions.  Furthermore, in vivo, additional contaminating solutes or 

contributions from macromolecules that are not identifiable in vitro could be present. 

Therefore, several cell-free agarose implants were monitored over different time points, 

while the glucose level within the VOI was varied by fasting the mice for a time period 

extending from 0 to 12 hrs prior to NMR scanning.  Interperitoneal saline injections were 

also performed to dilute the surrounding host fluid (see APPENDIX A6 for further 

details).  Localized, water-suppressed 1H NMR spectra were collected from the 

constructs, using the same acquisition parameters described in CHAPTERS 8 AND 9, 

and the resulting peaks at 3.85 ppm and 3.2 ppm were correlated.  Figure A15 illustrates 

this relationship.  While a strong, linear relationship (R2=0.90) between the 3.2 ppm peak 

area and 3.85 ppm peak intensity was also established in vivo, the slope of the line is 

slightly different than that determined in vitro.  Therefore, for all in vivo experiments, the 

linear relationship illustrated in Figure A15 was used to account for contaminating 

effects. 
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Figure A13.  In vitro correlation between glucose concentration and the intensity of the 
resulting 1H NMR spectroscopy peak at the 3.85 ppm resonance for cell-free agarose 
constructs bathed in varying concentrations of glucose. 
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Figure A14.  In vitro correlation between peak intensity at 3.85 ppm and peak area at 3.2 
ppm for cell-free agarose constructs bathed in varying concentrations of glucose. 
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Figure A15.  In vivo correlation between peak intensity at 3.85 ppm and peak area at 3.2 
ppm for cell-free agarose constructs implanted in C57Bl/6J mice. 

 190 



A.6. ANESTHESIA EFFECTS ON BLOOD GLUCOSE  

 As outlined in APPENDIX A5, when glucose concentrations are high, the 

contaminating effects of glucose on accurate TCho quantification are significant.  For the 

accuracy of in vivo TCho measurements and to ensure the ability to monitor constructs at 

the lower limits of the TCho assay, the blood glucose levels of the studied mice must be 

maintained at a reasonable level.  While it was expected that diabetic mice would exhibit 

high glucose levels, our initial NMR experiments found glucose levels within normal 

C57BL/6J mice to be comparable to their untreated diabetic counterparts.  It was 

concluded that the high glucose levels found in normal C57BL/6J mice during NMR 

scanning were due to the anesthetic.  Figure A16 illustrates the effect of the 

ketamine/xylazine anesthetic on the blood glucose levels for normal C57BL/6J mice over 

the course of 2.5 hrs.  This figure shows the stark difference between the temporal blood 

glucose levels for anesthetized (filled diamonds) and non-anesthetized (open diamonds) 

mice, where blood glucose levels in the diabetic regime were transiently observed for 

anesthetized mice.  The slight increase in blood glucose levels of the non-anesthetized 

mice was expected, given the documented relationship between blood glucose and stress 

levels [202].  Literature review supports this data, where researchers have found xylazine, 

an α2-receptor mediated anesthetic, to transiently inhibit beta cell function [203].  Other 

anesthetics documented to inhibit insulin secretion include medetomidine, also an α2-

receptor agonist [204], isoflurane [205], and urethane [206] (see Table A1).   
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Figure A16.  Temporal profile of blood glucose levels for normal C57BL/6J mice 
collected while either non-anesthetized (open diamonds) or anesthetized (solid 
diamonds).   

 
 
 
 Based on the NMR experimental protocols, four factors are critical in the 

anesthetization of the mice: (1) inducement of heavy anesthesia for over 1 hr; (2) stability 

of animal while confined in magnet; (3) ease in animal recovery; and (4) retention of 

effectiveness over multiple anesthetic doses.  Therefore, selecting a comparable 

anesthetic to replace the ketamine/xylazine combination proved to be difficult, as 

outlined in Table A1.  Traditional dosage and delivery method (Dsg/Dlv) for each 

anesthetic is listed (IP appreviation for interperitoneal).  Dosage is in mg/kg unless 

otherwise noted.  Known blood glucose effects are listed, along with common side 

effects.  As can be see from the table, Avertin is not ideal, based on its sensitization and 

inflammatory properties after multiple doses [207-209].  Chloral hydrate is a harsh 

anesthetic not recommended for multiple applications [210], while pentobarbital induces 
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hypothermia and depresses respiration, making long-term stability of the mouse within 

the magnet difficult [209].  Therefore, the ability of the ketamine/xylazine combination to 

provide a safe, stable, and long-term anesthetic state makes this drug superior to the other 

commonly used anesthetics.   

 
 
 
Table A1.  Summary of common anesthetic agents for mice.   

Agent Dsg/Dlv Blood Glucose 
Effects Other Effects/Problems 

  Avertin 
(tribromoethanol) 240-375 IP Unknown 

Shown to have inflammatory 
properties/difficult to procure, 

sensitization to repetitive injections 

Chloral hydrate 400 IP Unknown Not very stable, difficult for repetitive 
anesthesia 

Medetomidine + 
ketamine 

1 IP 
 + 

75 IP 

Medetomidin – 
inhibits beta cell 

function 
 

Pentobarbital 50-80 IP Minimal Profound respiratory depressant, 
hypothermia a common problem 

Pentobarbital + 
Ketamine ---- Minimal Cannot be used in mice 

(Rats only) 

Urethane 1000-1500 
IP 

Inhibits beta cell 
function 

Chemical hazard, should only be used 
for non-survival procedures 

Xylazine+ 
Ketamine 

15 IP + 100 
IP 

Zylazine inhibits 
beta cell function 

Effective anesthetic agent for over 
1hour deep anesthesia 

Isoflurane Inhalant Isoflurane inhibits 
beta cell function  

Methoxyflurane Inhalant  Nephrogenic diabetes insipidus 

 
 
 
 If use of the ketamine/xylazine anesthetic was to continue, measures needed to be 

implemented to dampen the transient effects of the agent on glucose levels.  Two 

procedures were employed to reduce the presence of glucose within the VOI during the 
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NMR experiments: (1) mice were fasted for 10 hrs prior to the start of the NMR 

experiment; and (2) 1 mL of saline was injected into the peritoneal cavity of the mice 

immediately following the administration of the anesthetic.  The effectiveness of step (1) 

in reducing blood glucose levels is illustrated in Figure A17, where blood glucose levels 

under anesthesia were significantly dampened when mice were fasted (solid triangles), in 

comparison to non-fasted mice (solid diamonds).  Fasting only occurred 10 hrs prior to 

the start of the NMR scan and was only implemented a maximum of three times per 

animal.  Body weight measurements of normal C57BL/6J mice during experimental time 

periods found minimal effects of fasting (less than 1%), as shown in Figure A18.  In this 

figure, fasted mice underwent three incidences of 10 hr fasting periods on Days, 2, 5, and 

8.  None of the mice shown in Figure A18 received surgical implants during the time 

frame shown in this graph.  Saline injections in the peritoneal cavity prior to NMR 

scanning were also helpful in diluting glucose concentration in the VOI of the construct 

and assisted in the collection of NMR spectra, by increasing the shimming capacity of the 

sample. 
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Figure A17.  Temporal profile of blood glucose levels for normal C57BL/6J mice 
collected while either non-anesthetized (open diamonds), anesthetized (solid diamonds), 
or anesthetized after fasting for 10 hrs (solid triangles). 
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Figure A18.  Body weight measurements of normal C57BL/6J mice under either non-
fasted (open diamonds) or fasted (solid diamond) conditions.  
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A.7. TOTAL-CHOLINE CALIBRATION CURVE FOR OTHER BETA CELL 

LINE 

  

 The primary cell line explored in this thesis was the βTC3 cell line.  In order to 

explore the applicability of the techniques developed in this thesis to monitoring other 

beta cells lines, preliminary experiments were conducted using the βTC-tet cell line, a 

continuous beta cell line transfected with a tetacycline-conditioned gene expression 

system to control proliferation.  For these experiments, a calibration curve correlating 

TCho and viable cell number on Day 0, similar to that described in Chapter 8 for βTC3 

cells, were generated.  Figure A19 compares the βTC-tet calibration curve to that for 

βTC3 cells.  These two cell lines exhibit very similar TCho values. 
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Figure A19.  Comparison between TCho and viable cell number for βTC3 cells (solid 
diamonds) and βTC-tet cells (open diamonds). 
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A.8. EFFECTS OF MION ON METABOLIC AND SECRETORY ACTIVITY 

OF βTC3 AND βTC-TET CELLS 

 Monocrystalline iron oxide nanoparticles (MION) have shown significant promise for 

noninvasive imaging of cells in vivo, such as T cells.  We explored the applicability of 

superparamagnetic labeling for beta cells.  Preliminary studies were conducted to test the 

effects of MION particles on the metabolic and secretory activity for βTC3 and βTC-tet 

cells in monolayer cultures when exposed to varying dilutions of 30 mM MION over 

time periods from 4 to 24 hrs.  For both cell types and incubation periods, the majority of 

the dilutions, from 1 to 5 up to 1 to 50, showed were comparable to the control 

monolayers, which contained no MION.  In some cultures, the presence of MION 

appeared to cause slight declines in the metabolic or secretory activity of the cells, see 

Figures A 20-22, but primarily at the lower dilutions.  Each data point represents the 

average ± std from three independent cultures.  * indicates statistically different values 

(p< 0.05) compared to the control (no MION).  These experiments establish the 

feasibility of using MION superparamagnetic particles for use in beta cell lines. 
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Figure A20.  Comparison of glucose consumption rates for βTC3 cells in monolayers.   
Cells were exposed to varying dilutions (specified by 1:5, etc) of 30mM MION solution 
and glucose consumption rates were calculated for 4 and 24 hr time periods.   

 

 

 200 



0

5

10

15

20

25

30

35

40

45

4 24Time of Exposure (hrs)

G
C

R
 (n

m
ol

/h
r-

10
5 ce

lls
)

Control
1:5 MION
1:10 MION
1:20 MION
1:50 MION

  

Figure A21.  Comparison of glucose consumption rates for βTC-tet cells in monolayers.   
Cells were exposed to varying dilutions (specified by 1:5, etc)  of 30mM MION solution 
and glucose consumption rates were calculated for 4 and 24 hr time periods.   
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Figure A22.  Comparison of insulin secretion rates for βTC-tet cells in monolayers.   
Cells were exposed to varying dilutions (specified by 1:5, etc) of 30mM MION solution 
and insulin secretion rates were calculated for 4 and 24 hr time periods. 
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A.9. REFERENCED METHODS 

A.9.a MTS measurement of viable cell number of alginate beads in agarose  

 To measure the viable cell number for the agarose/alginate constructs using the 

CellTiter 96 MTS assay (Promega, Madison, WI), the alginate beads were first released 

from the agarose matrix using a scalpel.  Beads were taken from varying regions of the 

construct to ensure a heterogeneous distribution.  Single beads were incubated in separate 

wells of a 96-well plate (Corning, Acton, MA), each containing 100 µL of fully 

supplemented DMEM and 20 µL of MTS, for 3 hrs at 37°C, 5% CO2 / 95% air.  For 

background absorbance, cell-free alginate beads were used.  Following incubation, the 

absorbance was read at 490 nm, while ensuring protection from light in the interim 

stages.  Absorbance values were then corrected by subtracting the controls, converted to 

cell number using a previously generated calibration curve, and numerically averaged. 

 

A.9.b Histological processing of Alginate/Poly-L-lysine/Alginate beads 

 Alginate/poly-L-lysine/alginate beads are quite sensitive to normal fixation methods 

involving formalin or formaldehyde.  APA beads have a tendency to rapidly break open 

upon exposure to these compounds due to disruption of the ionic bonds holding the beads 

together.  Therefore, to prepare beads properly for paraffin embedding, a fixation by 3% 

glutaraldehyde for a minimum of 48 hrs was necessary.  For high mannuronic alginates, 

quick exposure to glutaraldehyde can cause bead rupture, therefore these beads were 

exposed to a quick rinse of calcium chloride prior to glutaraldehyde exposure.  After 48 

hrs, the glutaraldehyde was removed, beads were washed with Millonig’s Buffer four 

times, fixed with 70% ethanol, and incubated for a minimum of 24 hrs.  The beads were 
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then placed in labeled cassettes and processed using the following sequence of steps: 

70% alcohol rinse (3 times); incubation in 80% alcohol for 15 minutes, in 95% alcohol 

for 15 minutes, and 100% alcohol for 20 minutes; 100% alcohol incubation repeated five 

times; xylene incubation six times at 10 min per wash; paraffin incubation three times at 

20 min per wash; and a final wash with paraffin for 30 mins.  Following processing, 

cassettes were then embedded and cut to 10 mm thick slices using standard histological 

methods. 
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