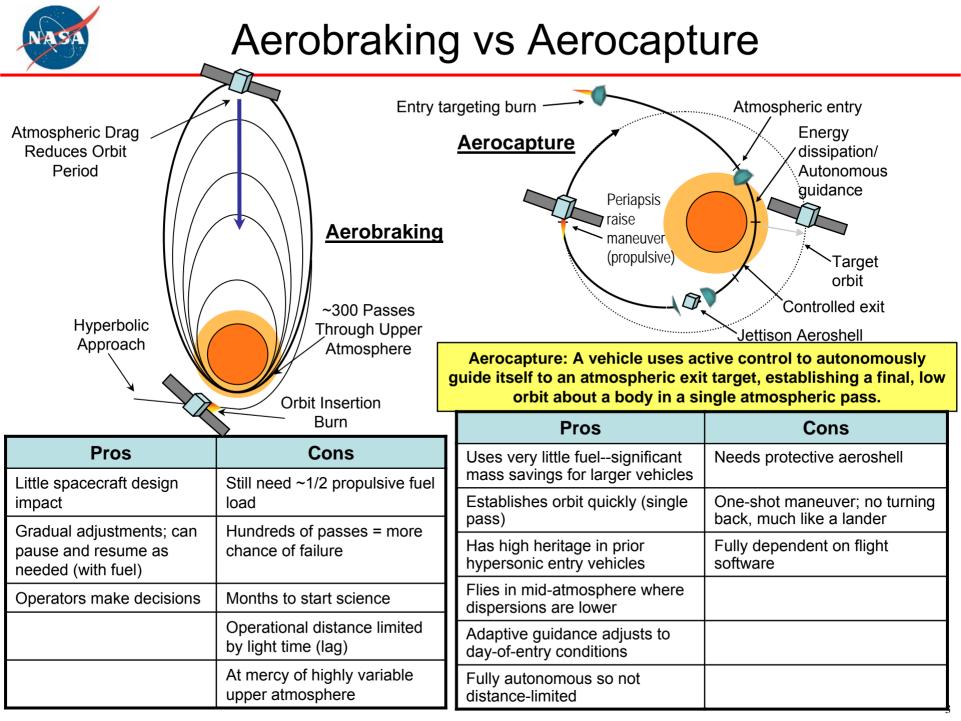


Aerocapture Mission Concepts for Venus, Titan and Neptune


Michelle M. Munk - NASA/LaRC Thomas R. Spilker - NASA/JPL

6th International Planetary Probe Workshop | Atlanta, GA | June 24, 2008

1

- Numerous Flagship and New Frontiers mission preparations are underway; cost is a big factor
- Detailed mission concept studies conducted by In-Space Propulsion Technology (ISPT) Program may be relevant:
 - Titan Explorer (2002)
 - Neptune Orbiter (2003)
 - Venus Discovery mission (2004)
- This presentation provides a review of those studies and a starting point for considering Aerocapture technology as a way to reduce mass and cost, to achieve the ambitious science returns currently desired

Aerocapture Benefits for Robotic Missions

Mission	Nominal Orbit Insertion ∆V, km/s	Best A/C Mass, kg	Best non- A/C Mass, kg	A/C % Increase	Best non-A/C Option	
Venus V1 - 300 km circ	4.6	5078	2834	79	All-SEP	
Venus V2 - 8500 x 300 km	3.3	5078	3542	43	All-SEP	
Mars M1 - 300 km circ	2.4	5232	4556	15	Aerobraking	
Mars M2 - ~1 Sol ellipse	1.2	5232	4983	5	Chem370	
Jupiter J1 - 2000 km circ	17.0	2262	<0	Infinite	N/A	
Jupiter J2 - Callisto ellipse	1.4	2262	4628	-51	Chem370	
Saturn S1 - 120,000 km circ	8.0	494	<0	Infinite	N/A	
Titan T1 - 1700 km circ	4.4	2630	691	280	Chem370	
Uranus U1 - Titania ellipse	4.5	1966	618	218	Chem370	
Neptune N1 - Triton ellipse	6.0	1680	180	832	Chem370	

Aerocapture offers significant increase in delivered payload:

ENHANCING missions to Venus, Mars

STRONGLY ENHANCING to **ENABLING** missions to Titan, and Uranus **ENABLING** missions to Jupiter, Saturn, and Neptune

Ref.: Hall, J. L., Noca, M. A., and Bailey, R. W. "Cost-Benefit Analysis of the Aerocapture Mission Set," *Journal of Spacecraft and Rockets*, Vol. 42, No. 2, March-April 2005

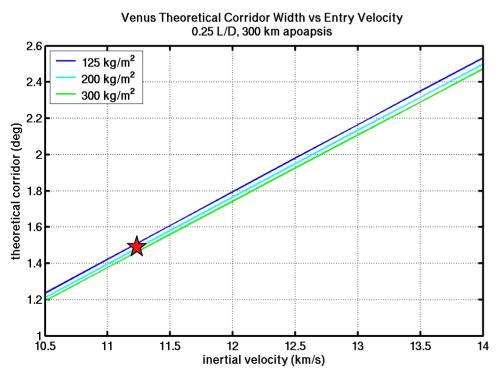
Aerocapture at Venus

Science at Venus

Very nearly Earth's twin -- why is it so different?

Science Areas of Interest

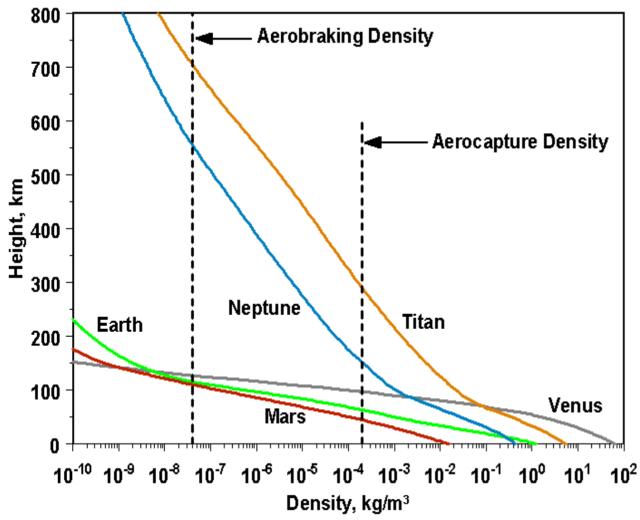
- Lithosphere (Crust & Interior)
 - -Composition (elemental, mineralogy, isotopes)
 - -Structure
 - -Dynamics
- Atmosphere
 - -Escape processes (evolution since formation)
 - -Circulation
 - -Composition & chemistry
 - Especially lower troposphere
- Surface & shallow subsurface
 - –Interface between lithosphere & atmosphere
 - Lithosphere-atmosphere interactions
 - Clues to interior
 - -Composition
 - -Chemistry
 - -Geology, geophysics
 - Any evidence for evolved crust?
 - Any granite at all?


Flagship mission study currently underway Candidate Mission Elements

- Orbiter
- Landers or rovers
- Aerial vehicles at various altitudes

Candidate Orbiter Science Instruments

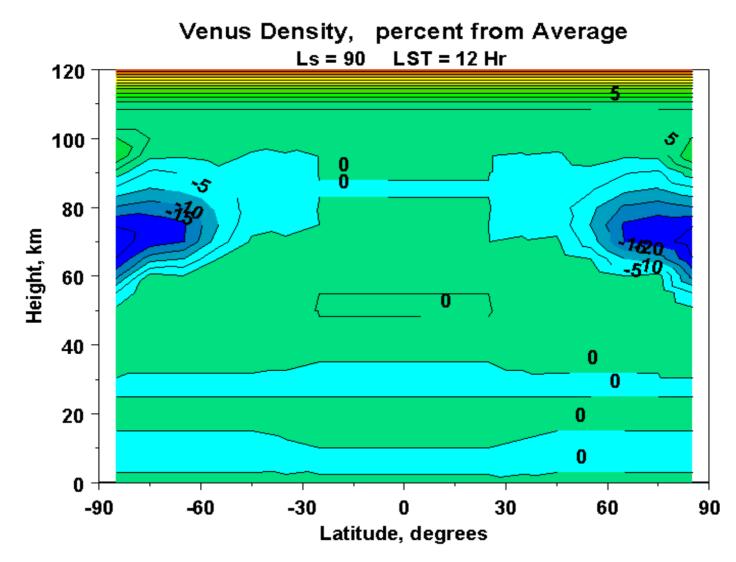
- Imaging: multispectral IR
- Radar: altimetry, SAR, InSAR, GPR
- Radiometry: microwave-submm and/or IR
- Radio Science gravity
- Neutral & ion mass spectrometer
- Magnetometer
- Plasma


- Entry vehicle characteristics
 - 70° Sphere-Cone, L/D = 0.25
 - Entry Mass = 900 kg (initial allocation)
 - Diameter = 2.65 m
 - Ballistic Coeff, $m/(C_DA) = 114 kg/m^2$
- Ballistic Coeff Performance Trade
 - m/(C_DA) = 228 kg/m²

Spacecraft entry mass allocation = 1090kg corresponding m/(C_DA) = 138kg/m²

- Aerocapture into 300 km X 300 km polar orbit
- Atmospheric interface = 150 km altitude
- 11.25 km/sec inertial entry velocity, -6.12° entry flight path angle
- Autonomous guidance
- Small impulsive periapsis raise ΔV and apoapsis adjustment ΔV to attain science orbit calculated.

Atmospheric Density Variation with Height

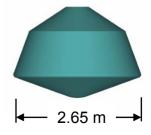


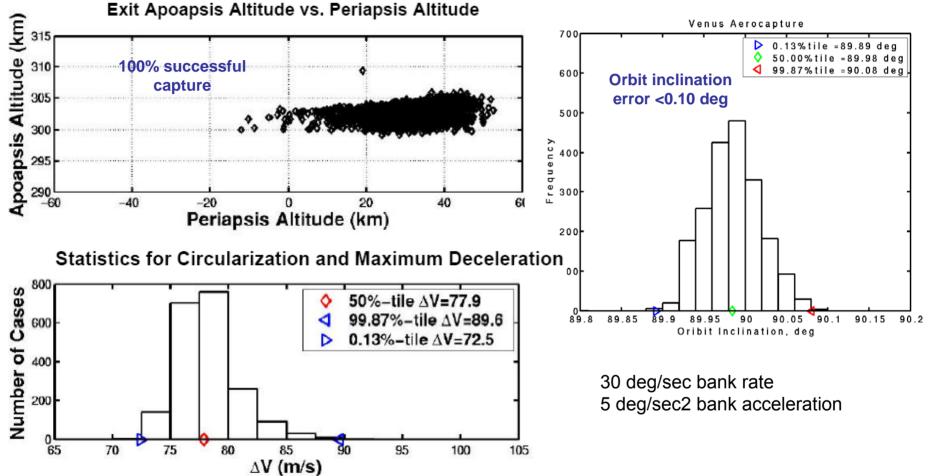
- Venus has Rapid Height Variation of Density
- Other Things Being Equal, This Leads To Smaller Entry Corridor Width

Venus Atmospheric Density Variations 0-100 km vs Latitude

1-sigma variations at 100 km = \sim 8%; 3 σ = \sim 24%

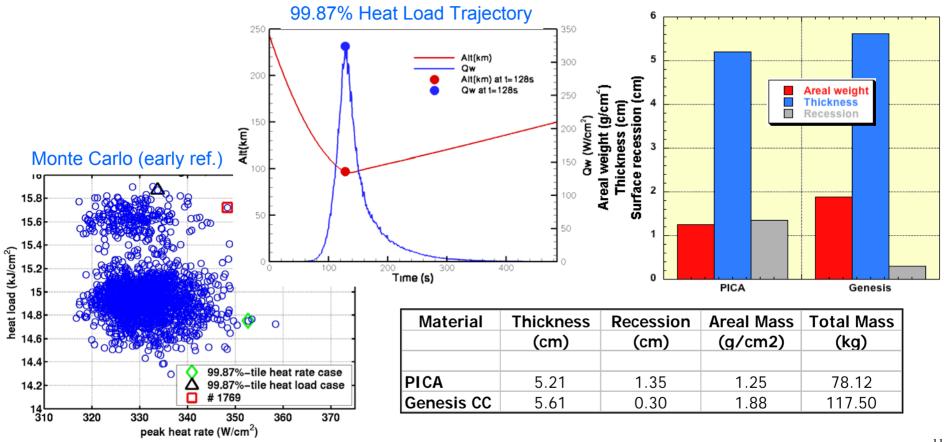
Example Monte Carlo Simulation Results:


Venus Aerocapture

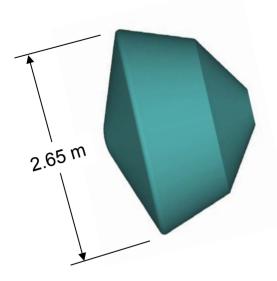

Venus Aerocapture Systems Analysis Study, 2004

Vehicle L/D = 0.25, $m/C_DA = 114 \text{ kg/m}^2$

Target orbit: 300 km circ., polar


All-propulsive ΔV required for orbit insertion: 3975 m/s ΔV provided by aerocapture: 3885 m/s (97.7% of total)

- Initial convective and radiative aeroheating results computed with LAURA/RADEQUIL and DPLR/NEQAIR at pk heating pt on 99.87% pk heat load M.C. trajectory; highest heating location on vehicle for radiative and convective; coupling estimate included
- Future work: aeroheating methods to reduce uncertainty in mass and shape change; TPS sizing of ARA PhenCarb, a potential non-tile option



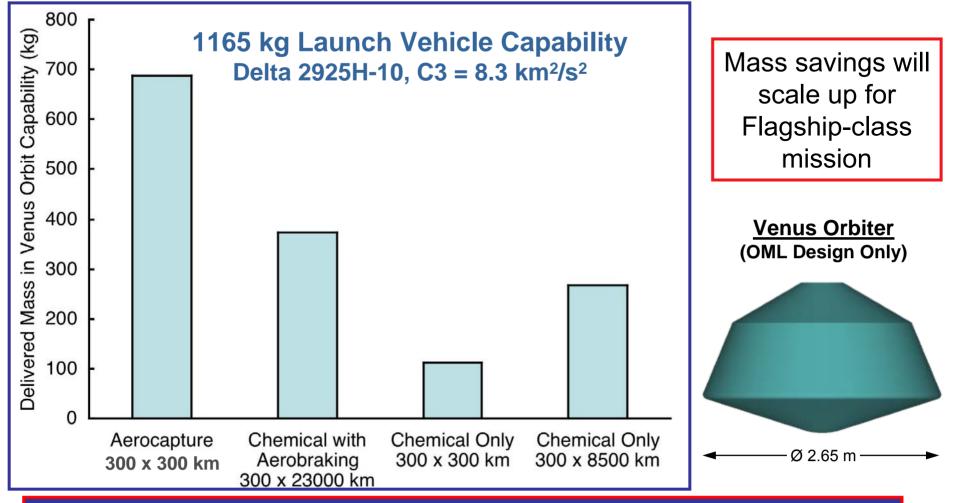
NASA

Venus Orbiter Spacecraft Design

Top-level spacecraft design, mass, power analysis completed

- Delta 2925H-10 Launch Capability = 1165 kg
 - Cruise stage = 50 kg
 - Orbiter entry allocation = 1090 kg
 - Aerocapture system dry mass allocation = 350 kg (CBE = 243 kg)
 - Aeroshell Allocation (TPS + aeroshell structure) = 30% of wet launch mass capability
 - Mass margins are 20% or greater
- 1.4 m diameter high gain antenna packages in 2.65m 70deg sphere cone with biconic backshell (similar approach to Titan)

	Cont: Contingency				Cont = (MEV-CBE)/CBE			
	CBE	: Current	Best Est	imate	Margin :	= (Alloc-M	EV)/MEV	
	#	CBE	Cont	MEV	Alloc			
Launch Vehicle Capability				_	1165			
Propellant and Pressurant				89.6				
Hydrazine + Helium				89.6				
[Ĉruise				27.3		m/s		
Aerocapture				50.9	99.2	m/s	JPL	
Orbit				8.8		m/s	Margin	
Residual & Pressurant Tank				2.6		Margin	Margin	
Launch Dry Mass		680.0	22.2%	831.2	1075.4	29.4%	36.8%	
Aerocapture System Dry Mass		242.7	20.0%	291.3	349.5	20.0%	30.6%	
Spacecraft Dry Mass		437.3	23.5%	540.0	725.9	34.4%	39.8%	
Instruments		50.0	30.0%	65.0				
Bus	121	387.3	22.6%	475.0				
Attitude Control	8	19.5	2.2%	19.9				
Command & Data	26	37.3	17.3%	43.8				
Power	5	46.5	17.0%	54.4				
Hydrazine Propulsion System	39	32.4	6.9%	34.6				
Structures & Mechan	1	140.0	30.0%	182.0				
Harness 31.00	1	31.0	30.0%	40.3				
X-Band Telecomm	40	20.6	6.5%	22.0				
Thermal	1	60.0	30.0%	78.0				


Alloc: Allocation

MEV: Max Expected Value

s/c dry mass allocation includes 50kg cruise stage

Aerocapture Benefit for a Venus Mission

Into 300 x 300 km Venus orbit w/constant launch vehicle, Aerocapture delivers:

- 1.8x more mass into orbit than aerobraking
- 6.2x more mass into orbit than all chemical

Reference: Lockwood et al, "Systems Analysis for a Venus Aerocapture Mission", NASA TM 2006-214291, April 2006

- Aerocapture performance is feasible and robust at Venus with high heritage low L/D configuration
 - 100% of Monte Carlo cases capture successfully
- **TPS investments** could enable more mass-efficient ablative, insulating TPS; accompanying **aerothermal analysis investments** would enable prediction of ablation, potential shape change
- Some additional guidance work would increase robustness for small scale height of Venus atmosphere
- For delivery into 300 x 300 km Venus orbit on same launch vehicle (Delta 2925H), aerocapture delivers
 - 1.8x more mass into orbit than aerobraking
 - 6.2x more mass into orbit than chemical only
- These mass savings will scale up for a Flagship-class mission, so Aerocapture provides a way to achieve the challenging science return that is desired
 - Possible orbiter + lander/probe on 1 launch

Aerocapture at Titan

Science at Titan

Cassini-Huygens Results -- "Lifting the Veil"

- Surprisingly Earthlike balance of evolutionary processes
- Methane cycle, analog to Earth's hydrologic cycle
- Aeolian & fluvial processes
- Rich organic environment
- Probable interior ocean -- communicates with surface?

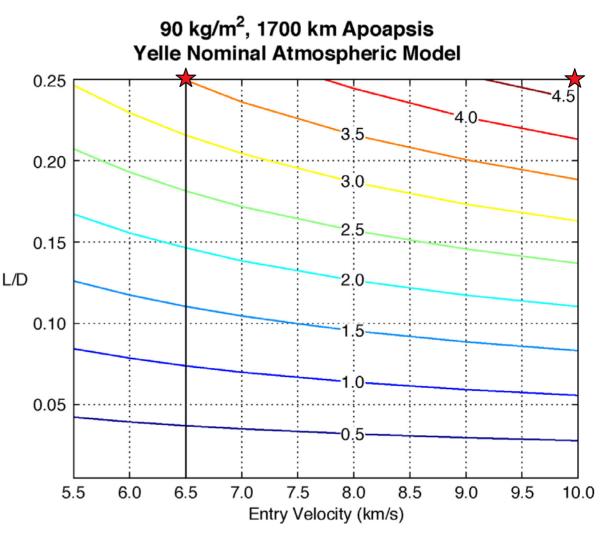
Science Areas of Interest

- Lithosphere
 - -Composition
 - -Structure, evolutionary history
 - -Dynamics: tidal effects, tectonism, (cryo)volcanism
 - -Role & history of impacts
 - -Resurfacing through erosion, sedimentation
 - Aeolian & fluvial
- Hydrospheres, surface & interior
 - -Location (interior: depth to top & bottom)
 - -Composition
 - -Communication with surface?
- Atmosphere
 - -Composition; outgassing & resupply from interior
 - -Circulation, winds
 - -Weather: clouds, rain (sometimes heavy), lightning
 - Loss processes
- Interactions among the above
- Evolution of organic compounds, in all venues
- External forcing: tidal effects, seasonal variations

Flagship mission study currently underway Candidate Mission Elements

- Orbiter (long-duration)
- Landers
- Long-duration aerial vehicle(s) with altitude control
- Buoys / Boat / Submarine?

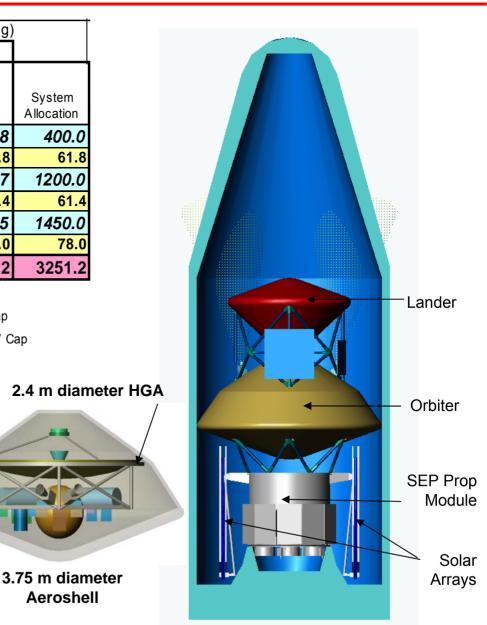
Candidate Orbiter Science Instruments


- Spectrometers: IR imaging, UV, submm
- Radar: altimetry, SAR, GPR
- Composition: GC, MS, or other for high-mol-mass organics
- Radio Science gravity
- Magnetometer
- Hi-energy plasma
- -> Driven to relatively high data rates

- Orbiter and Lander delivery to Titan
 - Orbiter delivers Lander to Titan entry trajectory; Lander performs direct entry
 - Orbiter aerocaptures for Titan orbit insertion near polar orbit
- 10 year total mission lifetime, includes
 - 3 year orbiter ops
 - Orbiter science instruments
 - Microwave spectrometer
 - SAR
 - Multispectral imager
 - USO
 - Relay for lander ops 1 year
- Launch date = 2010; TRL 6 cutoff = 2006; compare performance with other launch opportunities
- Launch vehicle: Delta IV Medium, 4m fairing
- Cruise
 - SEP Propulsion Module (compare performance to chemical propulsion module)
- Utilize as much heritage HW as possible
- Class A mission; fully redundant design
- Lander is "black box", 400 kg allocation

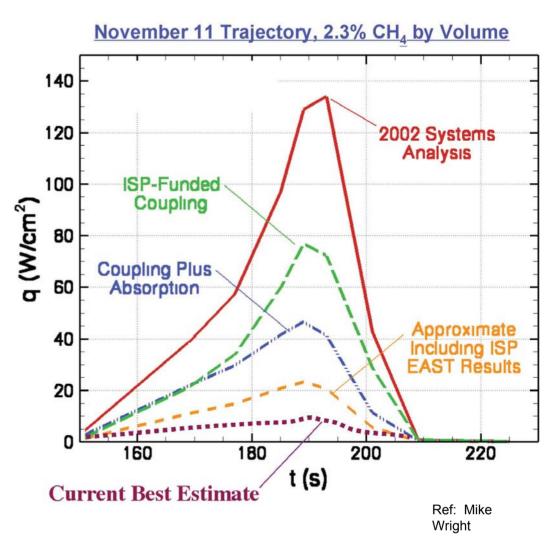
Low L/D Configuration for Titan Aerocapture

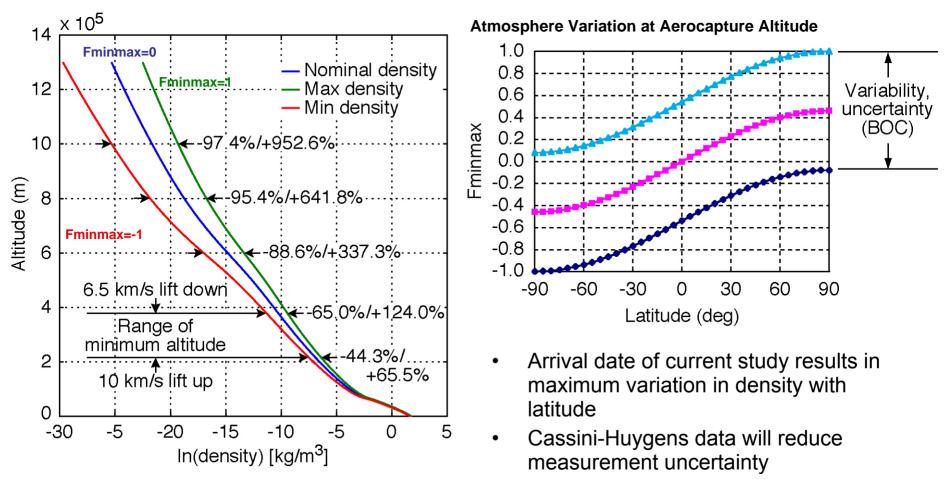
- L/D=.25 configuration provides
 - 3.5 deg theoretical corridor width with 6.5 km/sec entry velocity
 - 4.7 deg theoretical corridor width with 10 km/sec entry velocity
- 3.5 deg corridor width more than adequate to accommodate 3sigma navigation delivery errors, atmosphere dispersions and aerodynamic uncertainties with 99.7% success
- High heritage low L/D sphere cone configuration selected


Contours denote theoretical corridor width

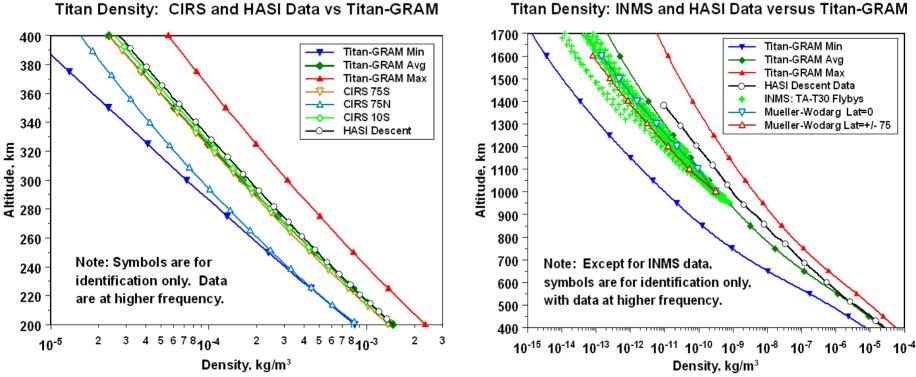
Titan Aeroshell Aerocapture Reference Concept, Mass

	Mass (kg)						
	Sub	system Rac					
	Current						
	Best	%		System			
nent	Estimate	Contingency	Grow th	Allocation			
Lander		29.8%	363.8	400.0			
Orbiter/Lander Interface		30.0%	61.8	61.8			
Orbiter		24.2%	1097.7	1200.0			
Prop Mod/Orbiter Interface		30.0%	61.4	61.4			
SEP Prop Module		21.4%	1316.5	1450.0			
Launch/Prop Mod Interface		30.0%	78.0	78.0			
Stack Total	2402.6	24.0%	2979.2	3251.2			
Launch Vehicle Capability	3423						
System Level Mass Margin	29.8%	(LV Cap - CE	BE)/LV Cap				
System Reserve	13.0%	(LV Cap - Grow th)/ LV Cap					
	er er/Lander Interface fer Mod/Orbiter Interface Prop Module ch/Prop Mod Interface Stack Total Launch Vehicle Capability System Level Mass Margin	Current Best EstimatePer280.2Pr/Lander Interface47.5ter883.6Mod/Orbiter Interface47.3Prop Module1084.0Ch/Prop Mod Interface60.0Stack Total2402.6Launch Vehicle Capability3423System Level Mass Margin29.8%	nentCurrent Best Estimate% Contingencyler280.229.8%er/Lander Interface47.530.0%ter883.624.2%Mod/Orbiter Interface47.330.0%Prop Module1084.021.4%ch/Prop Mod Interface60.030.0%Stack Total2402.624.0%Launch Vehicle Capability3423System Level Mass Margin29.8%(LV Cap - CE	Best % Dent Estimate Contingency Grow th der 280.2 29.8% 363.8 er/Lander Interface 47.5 30.0% 61.8 er/ 883.6 24.2% 1097.7 Mod/Orbiter Interface 47.3 30.0% 61.4 Prop Module 1084.0 21.4% 1316.5 ch/Prop Mod Interface 60.0 30.0% 78.0 System Level Mass Margin 29.8% (LV Cap - CBE)/LV Cap			

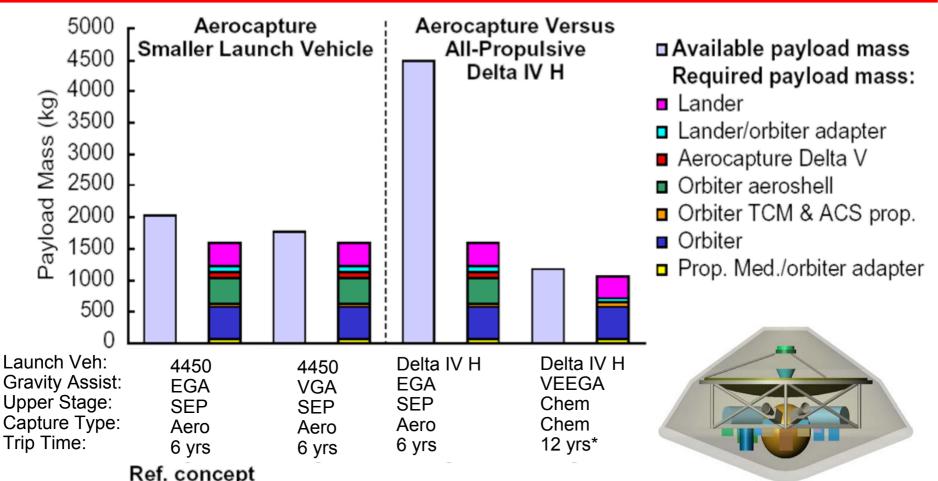

- Delta 4450, SEP, EGA, aerocapture has 30% system level margin, >10% system reserve
- Delta 4450, SEP, VGA, aerocapture has 6% system reserve, opportunity for improvement
- Aerocapture mass fraction = 39% of orbiter launch wet mass
- Aeroshell size, packaging efficiency governed by 2.4m diameter HGA packaging
- Results not possible without this level of detail in packaging, s/c design, structure, TPS
 Ref: Lockwood, et al. "Aerocapture Syst


Updates Since 2002

- Cassini-Huygens provided:
 - Improved ephemeris data for reduced flight path angle uncertainty
 - Improved atmospheric density measurement accuracy
 - Improved atmospheric constituent data (less than 2% CH₄ vs 5% assumed in 2002 study)
- Aerothermal modeling investments and testing provided improved aeroheating estimates and less critical need for TPS development
 - Reduced heating estimates result in 75-100 kg less TPS mass than sized during the 2002 study (Laub and Chen, 2005)



- Titan-GRAM includes model of:
 - Measurement uncertainties, residual uncertainties (turbulence, waves, etc)
 - Variation with latitude, altitude, time of day, season
 - Composition; maximum CH4 = 5% by volume for $-1 \le FMINMAX \le 1$
- Model fidelity required to assess mission feasibility, robustness



Observations from HASI and INMS are well within Titan-GRAM max/min estimates

Ref.: Justh and Justus, "Comparisons of Huygens Entry Data and Titan Remote Sensing Observations with the Titan Global Reference Atmospheric Model (Titan-GRAM)"

Titan Systems Definition Study-Results

* Includes 2-yr moon tour used to reduce propellant requirements for all propulsive capture

Aerocapture/SEP is Enabling to Strongly Enhancing, dependent on Titan mission requirements
Aerocapture/SEP results in <u>~2.4x more payload</u> at Titan compared to all-propulsive mission for same launch vehicle

Aerocapture can be used with a chemical ballistic trajectory: Delta IV H, 7.1 year trip, EGA, 32% margin

Enabling Technologies - No new enabling technology required

Strongly Enhancing Technologies

- Aeroheating methods development, validation
 - Large uncertainties currently exist, improved prediction capability could result in reduced TPS mass
- ✓ TPS Material Testing
 - TPS materials proposed and other TPS options exist today, but are not tested against expected radiative heating at Titan
- Atmosphere Modeling

Enhancing Technologies

- Aeroshell lightweight structures reduced aerocapture mass
 - Guidance Existing guidance algorithms have been demonstrated to provide acceptable performance, improvements could provide increased robustness
- \checkmark Simulation Huygens trajectory reconstruction, statistics and modeling upgrades
 - Mass properties/structures tool systems analysis capability improvement, concept trades
 - Deployable high gain antennae increased data return
 - The following technologies provide significant benefit to the mission but are already in a funded development cycle for TRL 6
 - MMRTG (JPL sponsored AO in proposal phase, First flight Mars '09)
 - SEP engine (Glenn Research Center engine development complete in '10)
 - Second Generation AEC-Able UltraFlex Solar Arrays (175 W/kg)
 - Optical navigation to be demonstrated in MRO

Aerocapture at Neptune

Science at Neptune

Ice Giant (or Water Giant)

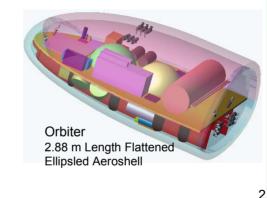
- Richer in heavier elements (e.g. water, ammonia)
- Mix of planet, magnetosphere, satellites, rings
- Triton might be a captured Kuiper Belt object

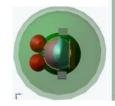
Science Areas of Interest

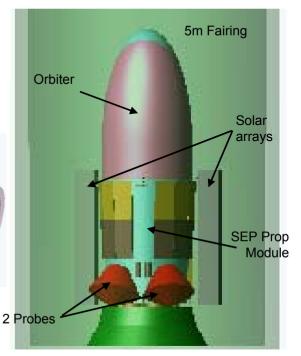
- Neptune
 - -Composition (clues to origins)
 - -Interior structure
 - -Atmospheric dynamics: circulation, winds
 - -Dynamo magnetic field
- Triton
 - -Composition
 - -Interior structure & activity
 - -Surface morphology & activity, distribution of volatiles Candidate Mission Elements
 - -Resurfacing processes
 - -Orbital history
- Rings & small moons
 - -Ring particle compositions & sizes
 - -Ring dynamics
 - -Moon composition, orbital history
- Magnetosphere
 - -Structure
 - -Interactions with solar wind, moons, rings
- Seasonal variations

- Orbiter
- Atmospheric entry probes (2 or more)
- Triton lander

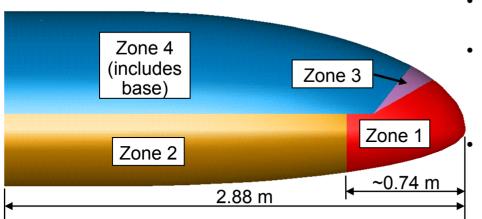
Candidate Orbiter Science Instruments

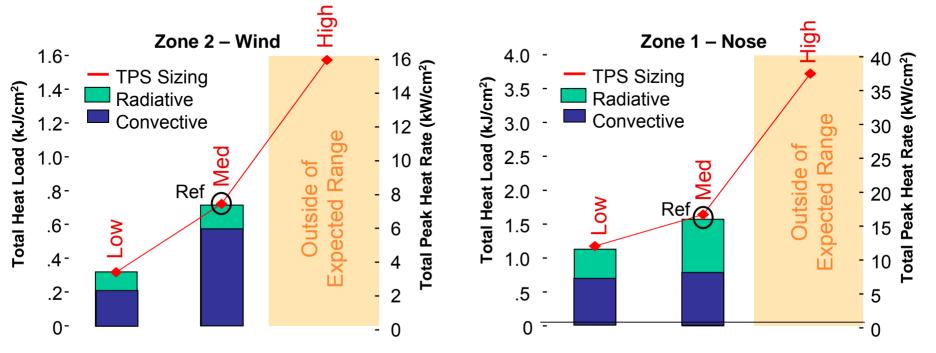

- Cassini-like instrument suite
 - Needed for investigation of an entire planetary system
 - Relatively massive
- -> Driven to relatively high data rates


Neptune Orbiter Aerocapture Reference Concept


		Mass (kg)								
Launch Mass Summary			Subsystem Rack-up							
							System			
	Flight	Current Best	%		Wet		Allocation minus Fuel	Dry Mass		
Component	Units	Estimate	Grow th	Grow th	Allocation	Fuel Load	Load	Margin	L /	
Orbiter Launch Dry Mass	269	518.2	28.5%	666.0	1081.4	282.5	798.9	35.1%	▲/	
Aeroshell/TPS Dry Mass	34	681.0	30.0%	885.2	885.3	0.0	885.3		┛ / `	
Probes (2)	2	159.3	30.0%	207.1	228.6	0.0	228.6	30.3%		
SEP Stage Dry Mass	197	1133.8	29.7%	1469.7	2899.2	1154.5	1744.7	35.0%		
Launch/Prop Mod Interface	1	49.0	30.0%	70.0	70.0	0.0	70.0			
Stack Total	503	2541.3	29.8%	3298.0	5164.5	1437.0	3727.5	31.8%		
Launch Vehicle Capability		5964								
Unallocated Launch Reserve 13.4%				ed Reserve	/ LV Cap					
JPL System Dry Mass Margin 3			(Dry Alloc - Dry CBE) / Dry Alloc							
NASA Dry Mass Contingency 29.8%				wth - Dry C	BE) / Dry CB	E(Measure	of componer	nt maturity)		
NASA Dry Mass Margin 13.0% (Dry Alloc - Dry Grow th) / Dry Grow th (Measure of system maturity)										

- Delta IV H, 5m Fairing, 5964 kg, C3 = 18.44
- 31.8% System Dry Mass Margin; 13% Unallocated Launch Reserve (800 kg)
- Mass margin provides opportunity for
 - Third probe
 - Increased aeroshell size for possible reduction in aeroheating rates/loads, TPS thickness requirements, surface recession
- ~57% aerocapture mass fraction (includes aerocapture propellant)
- ~48% structure/TPS mass fraction


35% Dry Margin / Carried at Orbiter and SEP Level



Neptune Aeroheating Challenges

- Vehicle divided into 4 zones for TPS sizing. TPS selected/sized for max heating point in each zone.
 - Heatshield (forebody) is defined by zone 1 + zone 2. Backshell (aftbody) is defined by zone 3 + zone 4. Post-aerocapture aeroshell separation occurs between the heatshield and backshell.

"Low", "Med", and "High" aeroheating rates and loads along Monte Carlo trajectory #1647 shown. "Med" level of aeroheating utilized for TPS sizing for reference vehicle. After further aeroheating analyses, "High" is outside of expected range.

Enabling Technologies

- TPS Manufacturing
 - TPS thicknesses are beyond current manufacturing experience for carbon phenolic for this shape/acreage
- Aerothermodynamic methods and validation
 - Aerothermodynamics characterized by high radiative and convective aeroheating, coupled convection/radiation/ablation, significant surface recession
 - Coupled convection/radiation/ablation capability for three-dimensional flowfields
 - Approach needed to determine and represent aerodynamics/uncertainties on resultant time varying path dependent shapes in aero database/simulation

Strongly Enhancing Technologies

- Guidance Algorithm Existing guidance algorithms provide adequate performance; Improvements possible to determine ability to reduce heat loads for given heat rate; accommodate time varying, path dependent shape and ballistic coefficient change
- Flight Control Algorithm Accommodate shape change uncertainties
- Atmosphere Modeling Neptune General Circulation Model output to represent dynamic variability of atmosphere
- Reduced Mass TPS Lower mass TPS concepts, ex. Reduced density carbon phenolic
- Alpha Modulation
- Lower Mass and Power Science Instruments
- Dual Stage MMRTGs
- Deployable Ka-Band HGA

- Using Aerocapture can significantly increase the science return from Venus and Titan, and can enable a scientifically-viable mission to Neptune
- Aerocapture is ready to be applied to challenging missions at Titan, Venus, and with some more development, Neptune