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Motivation for this Talk

•
 

Numerous Flagship and New Frontiers mission 
preparations are

 
underway; cost

 
is a big

 
factor

•
 

Detailed mission concept studies conducted
 

by In-
 Space Propulsion Technology (ISPT) Program may be 

relevant:
–

 

Titan Explorer (2002)
–

 

Neptune Orbiter (2003)
–

 

Venus Discovery mission (2004)

•
 

This presentation provides a review of those studies and 
a starting point for

 
considering Aerocapture technology 

as a way to reduce mass and cost, to achieve the 
ambitious science returns currently desired
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Aerobraking vs Aerocapture

Aerocapture

Orbit Insertion 
Burn

Atmospheric Drag
Reduces Orbit 

Period

~300 Passes
Through Upper

Atmosphere
Hyperbolic 
Approach

Aerobraking

Pros Cons
Little spacecraft design 
impact

Still need ~1/2 propulsive fuel 
load

Gradual adjustments; can 
pause and resume as 
needed (with fuel)

Hundreds of passes = more 
chance of failure

Operators make decisions Months to start science

Operational distance limited 
by light time (lag)

At mercy of highly variable 
upper atmosphere

Energy 
dissipation/
Autonomous
guidance

Controlled exit

Target 
orbit

Periapsis 
raise 
maneuver
(propulsive)

Atmospheric entryEntry targeting burn

Jettison Aeroshell
Aerocapture: A vehicle uses active control to autonomously 

guide itself to an atmospheric exit target, establishing a final, low 
orbit about a body in a single atmospheric pass.

Pros Cons
Uses very little fuel--significant 
mass savings for larger vehicles

Needs protective aeroshell

Establishes orbit quickly (single 
pass)

One-shot maneuver; no turning 
back,

 

much like a lander

Has

 

high heritage in prior 
hypersonic entry vehicles

Fully dependent on flight 
software

Flies in mid-atmosphere where 
dispersions are lower

Adaptive guidance adjusts to 
day-of-entry conditions

Fully autonomous so not 
distance-limited
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Ref.:  Hall, J. L., Noca, M. A.,  and Bailey, R. W. “Cost-Benefit Analysis of the Aerocapture Mission Set,”

 

Journal of Spacecraft and Rockets, 
Vol. 42, No. 2, March-April 2005

Mission
Nominal Orbit 
Insertion ΔV, 

km/s

Best A/C 
Mass, kg

Best non-

 
A/C Mass, 

kg

A/C % 
Increase

Best non-A/C 
Option

Venus V1 -

 

300 km circ 4.6 5078 2834 79 All-SEP
Venus V2 -

 

8500 x 300 km 3.3 5078 3542 43 All-SEP
Mars M1 -

 

300 km circ 2.4 5232 4556 15 Aerobraking
Mars M2 -

 

~1 Sol ellipse 1.2 5232 4983 5 Chem370
Jupiter J1 -

 

2000 km circ 17.0 2262 <0 Infinite N/A
Jupiter J2 -

 

Callisto ellipse 1.4 2262 4628 -51 Chem370
Saturn S1 -

 

120,000 km circ 8.0 494 <0 Infinite N/A
Titan T1 -

 

1700 km circ 4.4 2630 691 280 Chem370
Uranus U1 -

 

Titania ellipse 4.5 1966 618 218 Chem370
Neptune N1 -

 

Triton ellipse 6.0 1680 180 832 Chem370

Aerocapture Benefits for Robotic Missions

Aerocapture offers significant increase in delivered payload:
ENHANCING missions to Venus, Mars
STRONGLY ENHANCING to

 

ENABLING missions to Titan, and Uranus
ENABLING missions to Jupiter, Saturn, and Neptune
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Aerocapture at Venus
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Science at Venus

Flagship mission study currently underway
Candidate Mission Elements

• Orbiter
• Landers or rovers
• Aerial vehicles at various altitudes

Candidate Orbiter Science Instruments
• Imaging: multispectral IR
• Radar: altimetry, SAR, InSAR, GPR
• Radiometry:

 

microwave-submm and/or IR
• Radio Science gravity
• Neutral & ion mass spectrometer
• Magnetometer
• Plasma

Very nearly Earth’s twin --

 

why is it so different?

Science Areas of Interest
• Lithosphere (Crust & Interior)

– Composition (elemental, mineralogy, isotopes)
– Structure
– Dynamics

• Atmosphere
–Escape processes (evolution since formation)
–Circulation
–Composition & chemistry

• Especially lower troposphere
• Surface & shallow subsurface

–Interface between lithosphere & 
atmosphere

• Lithosphere-atmosphere interactions
• Clues to interior

–Composition
–Chemistry
–Geology, geophysics

• Any evidence for evolved crust?
Any granite at all?
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Venus Aerocapture Systems Study (2004)

•

 

Aerocapture into 300 km X 300 km polar orbit
•

 

Atmospheric interface = 150 km altitude
•

 

11.25 km/sec inertial entry velocity, -6.12°

 

entry flight path angle
•

 

Autonomous guidance
•

 

Small impulsive periapsis raise ΔV and apoapsis adjustment ΔV to attain science orbit 
calculated.

• Entry vehicle characteristics
• 70º

 

Sphere-Cone, L/D = 0.25 

• Entry Mass = 900 kg (initial allocation)

• Diameter = 2.65 m

• Ballistic Coeff, m/(CD

 

A) = 114kg/m2

• Ballistic Coeff Performance Trade
• m/(CD

 

A) = 228 kg/m2

Spacecraft entry mass allocation = 1090kg 
corresponding m/(CD

 

A) = 138kg/m2
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Atmospheric Density Variation with Height

♦ Venus has Rapid   
Height Variation of
Density

♦ Other Things Being
Equal, This Leads
To Smaller Entry
Corridor Width

Ref.:  J. Justus
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Venus Atmospheric Density Variations 
0-100 km vs Latitude

1-sigma variations at 100 km = ~8%; 3σ

 

= ~24%

Ref.:  J. Justus
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Example Monte Carlo Simulation Results:
 Venus Aerocapture

Venus Aerocapture Systems Analysis Study, 2004
Vehicle L/D = 0.25, m/CD

 

A = 114 kg/m2

Target orbit: 300 km circ., polar
All-propulsive ΔV required for orbit insertion: 3975 m/s
ΔV provided by aerocapture: 3885 m/s (97.7% of total)

100% successful 
capture

90 m/s of post- 
aerocapture 

propulsive ΔV 

Orbit inclination 
error <0.10 deg 

2.65 m

30 deg/sec bank rate 
5 deg/sec2 bank acceleration
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First-Look Aeroheating/TPS Sizing

Material Thickness Recession Areal Mass Total Mass
(cm) (cm) (g/cm2) (kg)

PICA 5.21 1.35 1.25 78.12
Genesis CC 5.61 0.30 1.88 117.50

• Initial convective and radiative aeroheating results computed with LAURA/RADEQUIL and 
DPLR/NEQAIR at pk heating pt on 99.87% pk heat load M.C. trajectory; highest heating 
location on vehicle for radiative and convective; coupling estimate included

• Future work: aeroheating methods to reduce uncertainty in mass and shape change; TPS 
sizing of ARA PhenCarb, a potential non-tile option

Monte Carlo (early ref.)

99.87% Heat Load Trajectory
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Alloc: Allocation MEV: Max Expected Value
Cont: Contingency Cont = (MEV-CBE)/CBE
CBE: Current Best Estimate Margin = (Alloc-MEV)/MEV
# CBE Cont MEV Alloc

1165
89.6
89.6
27.3 50 m/s
50.9 99.2 m/s

8.8 10 m/s
Residual & Pressurant Tank 2.6 Margin

680.0 22.2% 831.2 1075.4 29.4% 36.8%
242.7 20.0% 291.3 349.5 20.0% 30.6%
437.3 23.5% 540.0 725.9 34.4% 39.8%
50.0 30.0% 65.0

121 387.3 22.6% 475.0
8 19.5 2.2% 19.9

26 37.3 17.3% 43.8
5 46.5 17.0% 54.4

39 32.4 6.9% 34.6
1 140.0 30.0% 182.0

Harness 31.00 1 31.0 30.0% 40.3
40 20.6 6.5% 22.0
1 60.0 30.0% 78.0

JPL 
Margin

Instruments

Propellant and Pressurant

Cruise
Hydrazine + Helium

Orbit

Power
Command & Data

Bus
Attitude Control

Structures & Mechan

Spacecraft Dry Mass

Hydrazine Propulsion System

X-Band Telecomm
Thermal

Launch Vehicle Capability

Aerocapture System Dry Mass

Aerocapture

Launch Dry Mass

Venus Orbiter Spacecraft Design
Top-level spacecraft design, mass, power analysis completed 
♦

 

Delta 2925H-10 Launch Capability = 1165 kg  
♦

 

Cruise stage = 50 kg
♦

 

Orbiter entry allocation = 1090 kg
♦Aerocapture system dry mass allocation = 350 kg  (CBE = 243 kg)
♦Aeroshell Allocation (TPS + aeroshell structure) = 30% of wet launch mass capability 

♦

 

Mass margins are 20% or greater
♦

 

1.4 m diameter high gain antenna packages in 2.65m 70deg sphere cone with 
biconic backshell (similar approach to Titan)

s/c dry mass allocation includes 50kg cruise stage

2.65 m
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Aerocapture Benefit for a Venus Mission

1165 kg Launch Vehicle Capability 
Delta 2925H-10, C3 = 8.3 km2/s2

Into 300 x 300 km Venus orbit

 

w/constant launch vehicle, Aerocapture delivers:
•

 

1.8x more mass into orbit than aerobraking
•

 

6.2x more mass into orbit than all chemical

300 x 300 km

Venus Orbiter 
(OML Design Only)

Ø 2.65 m

Reference:  Lockwood et al, “Systems Analysis for a Venus Aerocapture Mission”, NASA TM 2006-214291, April 2006

Mass savings will
scale up for

Flagship-class
mission
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Venus Systems Analysis Conclusions

• Aerocapture performance is feasible and robust at Venus with high 
heritage low L/D configuration

• 100% of Monte Carlo cases capture successfully
• TPS investments could enable more mass-efficient ablative, 

insulating TPS; accompanying aerothermal analysis investments 
would enable prediction of ablation, potential shape change

• Some additional guidance work would increase robustness for 
small scale height of Venus atmosphere 

• For delivery into 300 x 300 km Venus orbit on same launch vehicle 
(Delta 2925H), aerocapture delivers

• 1.8x more mass into orbit than

 

aerobraking
• 6.2x more mass into orbit than chemical only

• These mass savings will scale up for a Flagship-class mission,

 

so 
Aerocapture provides a way to achieve the challenging science 
return that is desired

• Possible orbiter + lander/probe on 1

 

launch
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Aerocapture at Titan
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Science at Titan
Cassini-Huygens Results --

 

“Lifting the

 

Veil”
•

 

Surprisingly Earthlike balance of evolutionary processes
•

 

Methane cycle, analog to Earth’s hydrologic cycle
•

 

Aeolian & fluvial processes
•

 

Rich organic environment
•

 

Probable interior ocean --

 

communicates with surface?

Science Areas of Interest
•

 

Lithosphere
–Composition
–Structure, evolutionary history
–Dynamics: tidal effects, tectonism, (cryo)volcanism
–Role & history of impacts
–Resurfacing through erosion, sedimentation

•

 

Aeolian & fluvial
•

 

Hydrospheres, surface & interior
–Location

 

(interior:

 

depth to top & bottom)
–Composition
–Communication with surface?

•

 

Atmosphere
–Composition; outgassing & resupply from interior
–Circulation, winds
–Weather:  clouds, rain (sometimes heavy), lightning
–Loss processes

•

 

Interactions among the above
•

 

Evolution of organic compounds, in all venues
•

 

External forcing: tidal effects, seasonal variations

Flagship mission study currently underway
Candidate Mission Elements

• Orbiter (long-duration)
• Landers
• Long-duration aerial vehicle(s) with altitude 

control
• Buoys / Boat / Submarine?

Candidate Orbiter Science Instruments
• Spectrometers: IR imaging, UV, submm
• Radar: altimetry, SAR, GPR
• Composition:

 

GC, MS, or other for high-mol-mass 
organics

• Radio Science gravity
• Magnetometer
• Hi-energy plasma
• -> Driven to relatively high data rates
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2002 Titan Reference Concept -
 

Level 1 Objectives

•

 

Orbiter and Lander delivery to Titan
–

 

Orbiter delivers Lander to Titan entry trajectory; Lander performs direct entry 
–

 

Orbiter aerocaptures for Titan orbit insertion –

 

near polar orbit
•

 

10 year total mission lifetime, includes
–

 

3 year orbiter ops
•

 

Orbiter science instruments
–

 

Microwave spectrometer
–

 

SAR
–

 

Multispectral imager
–

 

USO
•

 

Relay for lander ops –

 

1 year

•

 

Launch date = 2010; TRL 6 cutoff = 2006; compare performance with other 
launch opportunities

•

 

Launch vehicle: Delta IV Medium, 4m fairing
•

 

Cruise
–

 

SEP Propulsion Module (compare performance to chemical propulsion module)
•

 

Utilize as much heritage HW as possible
•

 

Class A mission; fully redundant design
•

 

Lander is “black box”, 400 kg allocation

Ref:  Lockwood, et al, “Aerocapture Systems Analysis for a Titan Mission”, NASA TM 2006-214273, March 
2006
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Low L/D Configuration for Titan Aerocapture

• L/D=.25 configuration provides
• 3.5 deg theoretical corridor 

width with 6.5 km/sec entry 
velocity

• 4.7 deg theoretical corridor 
width with 10 km/sec entry 
velocity

• 3.5 deg corridor width more than 
adequate to accommodate 3-

 
sigma

 

navigation delivery errors, 
atmosphere dispersions and 
aerodynamic uncertainties with 
99.7% success

• High heritage low L/D sphere 
cone configuration selected

Contours denote theoretical corridor width

Ref:  Lockwood, et al, “Aerocapture Systems Analysis for a Titan Mission”, NASA TM 2006-214273, March 
2006
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Titan Aeroshell Aerocapture Reference Concept, Mass

SEP Prop 
Module

Solar 
Arrays

Orbiter

Lander

Mass (kg)

Component

Current 
Best 

Estimate
% 

Contingency Grow th
System 

Allocation

Lander 280.2 29.8% 363.8 400.0
Orbiter/Lander Interface 47.5 30.0% 61.8 61.8
Orbiter 883.6 24.2% 1097.7 1200.0
Prop Mod/Orbiter Interface 47.3 30.0% 61.4 61.4
SEP Prop Module 1084.0 21.4% 1316.5 1450.0
Launch/Prop Mod Interface 60.0 30.0% 78.0 78.0

Stack Total 2402.6 24.0% 2979.2 3251.2
3423

29.8% ( LV Cap - CBE ) / LV Cap

13.0% ( LV Cap - Grow th ) / LV Cap

Subsystem Rack-up

System Reserve
System Level Mass Margin
Launch Vehicle Capability

•

 

Delta 4450, SEP, EGA, aerocapture has 30% 
system level margin, >10% system reserve

•

 

Delta 4450, SEP, VGA, aerocapture has 6% 
system reserve, opportunity for 
improvement

•

 

Aerocapture mass fraction = 39% of orbiter 
launch wet mass

•

 

Aeroshell size, packaging efficiency 
governed by 2.4m diameter HGA packaging

•

 

Results not possible without this level of 
detail in packaging, s/c design, structure, 
TPS 

3.75 m diameter 
Aeroshell

2.4 m diameter HGA

Ref:  Lockwood, et al, “Aerocapture Systems Analysis for a Titan Mission”, NASA TM 2006-214273, March 
2006
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Updates Since 2002

•

 

Cassini-Huygens provided:
–

 

Improved ephemeris data for 
reduced flight path angle 
uncertainty

–

 

Improved atmospheric density 
measurement accuracy

–

 

Improved atmospheric constituent 
data (less than 2% CH4

 

vs 5% 
assumed in 2002 study)

•

 

Aerothermal modeling 
investments and testing provided 
improved aeroheating estimates 
and less critical need for TPS 
development

–

 

Reduced heating estimates result 
in 75-100 kg less TPS mass than

 
sized

 

during the 2002 study (Laub 
and

 

Chen, 2005)

Ref:  Mike 
Wright
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Titan-GRAM Atmosphere Model

•

 

Arrival date of current study results in 
maximum variation in density with 
latitude

•

 

Cassini-Huygens data will reduce 
measurement uncertainty

Fminmax=1

Fminmax=0

Fminmax=-1

•

 

Titan-GRAM includes model of:
–

 

Measurement uncertainties, residual uncertainties (turbulence, waves, etc)
–

 

Variation with latitude, altitude, time of day, season
–

 

Composition; maximum CH4 = 5% by volume for -1 ≤

 

FMINMAX ≤

 

1
•

 

Model fidelity required to assess mission feasibility, robustness

Atmosphere Variation at Aerocapture Altitude

Ref.:  J. Justus
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Titan-GRAM Model vs
 

Cassini-Huygens Data

Observations from HASI and INMS are well within Titan- 
GRAM max/min estimates

Ref.:  Justh

 

and Justus,

 

“Comparisons of Huygens Entry Data and Titan Remote Sensing Observations with the 
Titan Global Reference Atmospheric Model (Titan-GRAM)”
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4450
EGA
SEP
Aero
6 yrs

4450
VGA
SEP
Aero
6 yrs

Delta IV H
EGA
SEP
Aero
6 yrs

Delta IV H
VEEGA
Chem
Chem
12 yrs*

Launch Veh:
Gravity Assist:
Upper Stage:
Capture Type:
Trip Time:

Titan Systems Definition Study-Results

•

 

Aerocapture/SEP is Enabling to Strongly Enhancing, dependent on Titan mission requirements
•

 

Aerocapture/SEP results in ~2.4x more payload at Titan compared to all-propulsive mission for 
same launch vehicle

* Includes 2-yr moon tour used to reduce propellant requirements for all propulsive capture

Aerocapture can be used with a chemical ballistic trajectory: Delta IV H, 7.1 year trip, EGA, 32% margin
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Titan Aerocapture Technologies -
 

Ready!
Enabling Technologies -

 

No new enabling technology required

Strongly Enhancing Technologies
•

 

Aeroheating methods development, validation
–

 

Large uncertainties currently exist, improved prediction capability could result in reduced TPS mass
•

 

TPS Material Testing
–

 

TPS materials proposed and other TPS options exist today, but are not tested against expected 
radiative heating at Titan

•

 

Atmosphere Modeling

Enhancing Technologies
•

 

Aeroshell lightweight structures -

 

reduced aerocapture mass
•

 

Guidance -

 

Existing guidance algorithms have been demonstrated to provide acceptable 
performance, improvements could provide increased robustness

•

 

Simulation -

 

Huygens trajectory reconstruction, statistics and modeling upgrades
•

 

Mass properties/structures tool -

 

systems analysis capability improvement, concept trades
•

 

Deployable high gain antennae –

 

increased data return

The following technologies provide significant benefit to the mission but are already in a 
funded development cycle for TRL 6

–

 

MMRTG (JPL sponsored AO in proposal phase, First flight Mars ’09)
–

 

SEP engine (Glenn Research Center engine development complete in

 

‘10)
–

 

Second Generation AEC-Able UltraFlex Solar Arrays (175 W/kg)
–

 

Optical navigation to be demonstrated in MRO

Ref.:  M. K. Lockwood, et al.
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Aerocapture at Neptune



26

Science at Neptune

Candidate Mission Elements
• Orbiter
• Atmospheric entry probes (2 or more)
• Triton lander

Candidate Orbiter Science Instruments
• Cassini-like instrument suite

– Needed for investigation of an entire planetary 
system

– Relatively massive
• -> Driven to relatively high data rates

Ice Giant (or Water Giant)
•

 

Richer in heavier elements (e.g. water, 
ammonia)

•

 

Mix of planet, magnetosphere, satellites, rings
•

 

Triton might be a captured Kuiper Belt object
Science Areas of Interest
•

 

Neptune
–Composition (clues to origins)
–Interior structure
–Atmospheric dynamics: circulation, winds
–Dynamo magnetic field

•

 

Triton
–Composition
–Interior structure & activity
–Surface morphology & activity, distribution of volatiles
–Resurfacing processes
–Orbital history

•

 

Rings & small moons
–Ring particle compositions & sizes
–Ring dynamics
–Moon composition, orbital history

•

 

Magnetosphere
–Structure
–Interactions with solar wind, moons, rings

•

 

Seasonal variations

Subject of recent NASA “Vision Missions” Program 
studies;  long-term flagship mission priority
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Launch Mass Summary

Component
Flight 
Units

Current 
Best 

Estimate
% 

Grow th Grow th
Wet 

Allocation Fuel Load

System 
Allocation 
minus Fuel 

Load
Dry Mass 

Margin

Orbiter Launch Dry Mass 269 518.2 28.5% 666.0 1081.4 282.5 798.9 35.1%
Aeroshell/TPS Dry Mass 34 681.0 30.0% 885.2 885.3 0.0 885.3
Probes (2) 2 159.3 30.0% 207.1 228.6 0.0 228.6 30.3%
SEP Stage Dry Mass 197 1133.8 29.7% 1469.7 2899.2 1154.5 1744.7 35.0%
Launch/Prop Mod Interface 1 49.0 30.0% 70.0 70.0 0.0 70.0

Stack Total 503 2541.3 29.8% 3298.0 5164.5 1437.0 3727.5 31.8%

5964
13.4% Unallocated Reserve / LV Cap

31.8% ( Dry Alloc - Dry CBE ) / Dry Alloc

29.8% ( Dry Grow th - Dry CBE ) / Dry CBE (Measure of component maturity)

13.0% ( Dry Alloc - Dry Grow th ) / Dry Grow th (Measure of system maturity)

Subsystem Rack-up
Mass (kg)

Unallocated Launch Reserve

NASA Dry Mass Margin

Launch Vehicle Capability

JPL System Dry Mass Margin
NASA Dry Mass Contingency

•

 

Delta IV H, 5m Fairing, 5964 kg, C3 = 18.44
•

 

31.8% System Dry Mass Margin; 13% Unallocated 
Launch Reserve (800 kg)

•

 

Mass margin provides opportunity for 
–

 

Third probe
–

 

Increased aeroshell size for possible reduction in 
aeroheating rates/loads, TPS thickness requirements, 
surface recession

•

 

~57% aerocapture mass fraction (includes 
aerocapture propellant)

•

 

~48% structure/TPS mass fraction

35% Dry Margin 
Carried at Orbiter and 
SEP Level

Orbiter

2 Probes

SEP Prop 
Module

Solar 
arrays

Neptune Orbiter Aerocapture Reference Concept

Orbiter
2.88 m Length Flattened 
Ellipsled Aeroshell

5m Fairing

Ref.:  M. K. Lockwood, et al.
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Neptune Aeroheating Challenges

Zone 1
Zone 2

Zone 4
(includes 

base) Zone 3

~0.74 m
2.88 m

Zone 2 – Wind
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• Vehicle divided into 4 zones for TPS sizing. TPS 
selected/sized for max heating point in each zone.   

• Heatshield (forebody) is defined by zone 1 + zone 2. 
Backshell (aftbody) is defined by zone 3 + zone 4.  
Post-aerocapture aeroshell separation occurs 
between the heatshield and backshell. 

• “Low”, “Med”, and “High”

 

aeroheating rates and loads 
along Monte Carlo trajectory #1647 shown.  “Med”

 
level of aeroheating utilized for TPS sizing for 
reference vehicle. After further aeroheating analyses, 
“High”

 

is outside of expected range.
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Neptune Aerocapture Technologies -
 

Need Work

Enabling Technologies
•

 

TPS Manufacturing
–

 

TPS thicknesses are beyond current manufacturing experience for carbon phenolic

 

for this shape/acreage
•

 

Aerothermodynamic methods and validation
–

 

Aerothermodynamics characterized by high radiative and convective aeroheating, coupled 
convection/radiation/ablation, significant surface recession

–

 

Coupled convection/radiation/ablation capability for three-dimensional flowfields
–

 

Approach needed to determine and represent aerodynamics/uncertainties on resultant time varying path dependent 
shapes in aero database/simulation

Strongly Enhancing Technologies
•

 

Guidance Algorithm - Existing guidance algorithms provide adequate performance; Improvements possible to 
determine ability to reduce heat loads for given heat rate; accommodate time varying, path dependent shape and 
ballistic coefficient change

•

 

Flight Control Algorithm - Accommodate shape change uncertainties
•

 

Atmosphere Modeling - Neptune General Circulation Model output to represent dynamic variability of 
atmosphere

•

 

Reduced Mass TPS - Lower mass TPS concepts, ex. Reduced density carbon phenolic
•

 

Alpha Modulation
•

 

Lower Mass and Power Science Instruments
•

 

Dual Stage MMRTGs
•

 

Deployable Ka-Band HGA
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Conclusions

•
 

Using Aerocapture can significantly increase the 
science return from Venus and Titan, and can 
enable a scientifically-viable mission to Neptune

•
 

Aerocapture is ready to be applied to 
challenging missions at Titan, Venus, and with 
some more development, Neptune
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