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Abstract—Abstract Visual analytics has been gaining increasing interest due to its fascinating characteristic that leverages both
humans’ visual perception and the power of computing. Although various computational methods are being proposed, they do
not properly support visual analytics. One of the biggest obstacles towards their real-time visual analytic integration is their high
computational complexity. As a way to tackle this problem, this paper presents an iteration-wise computational framework, motivated
by the fact that most advanced computational methods work by refining the solution iteratively. By visually delivering the results
for each iteration to users, the proposed framework enables users to quickly acquire the information that the computational method
provides as well as the ability to interact with them in real time. We show the benefits of the proposed framework by using various
dimension reduction and clustering methods.

Index Terms—Radiosity, global illumination, constant time

1 INTRODUCTION

The innate ability of humans to quickly perceive insight through visual
analysis and decision processes has been a key factor in the growth of
visual analytic research [12, 17]. One of the most significant efforts
made by visual analytics researchers is the integration of various com-
putational methods from data mining and machine learning areas with
visual analytics so that users can benefit from intelligent meaningful
information generated by these techniques.

For example, dimension reduction and clustering methods have
been commonly used in high-dimensional data visual analytics [4, 16].
More recently, latent Dirichlet allocation (LDA) [3], a popular method
for document topic modeling, has been adopted in a wide variety of
visual analytics systems for document analysis [19, 7, 13].

However, a critical hurdle in the integration of computational meth-
ods into visual analytics is the significant amount of computational
time required by these methods. As computational methods become
more advanced and capable, they usually run much slower, making it
almost impossible to use and interact with them smoothly in real-time
visual analytic scenarios.

Due to these reasons, even though numerous computational meth-
ods are currently being developed and some, e.g.,t-distributed
stochastic neighbor embedding (t-SNE) [18], even claim their suitabil-
ity directly in visualization applications, the state-of-the-art systems in
visual analytics are not currently keeping up with the advancements in
computational methods. Consequently, people still adopt only a few
basic computational methods, such as principal component analysis
(PCA) [10] and multidimensional scaling (MDS) [5] for dimension
reduction, hierarchical clustering andk-means [2] for clustering, etc.,
in many real-world analysis tasks.

We claim that, by leveraging the various characteristics which arise
from the integration of computational methods into visual analytics,
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a significant amount of running time can be removed from the com-
putational methods. Thus, we propose a novel framework called
an iteration-wiseintegrationof computationalmethodsfor real-time
visualanalytics.

Our proposed framework exploits the fact that most computational
methods are iterative methods. An iterative method refers to a mathe-
matical procedure that iteratively refines a sequence of approximate
solutions towards the final converged solutions. In contrast, a di-
rect method solves a given problem in a finite number of steps using
some closed-form expressions of the final solution. However, prob-
lems solvable with a direct method are limited, while many modern
computational methods, which can handle complicated problems, are
mostly iterative methods.

Another aspect of iterative computational methods that we exploit
is that, throughout the iterations, major refinement of the solution typ-
ically occurs in early iterations while only minor changes occur in
the later iterations. Considering that humans can quickly perceive the
overall structure/trend in data, a result obtained from an early iteration
may already provide enough information.

However, apart from well-principled stopping criteria studied in
most computational methods, there is no straightforward method to
determine the point at which to terminate the iteration without sacri-
ficing a noticeable amount of information when compared to the final
solution. Instead, our proposed approach is tovisualize the intermedi-
ate results from iterations when they become available.

This idea takes advantage of the useful characteristic of many iter-
ative computational methods that the intermediate result at every iter-
ation maintains the same form as the final output. For instance, in the
case of clustering, many clustering algorithms includingk-means give
the cluster memberships or coefficients of the entire set of data items
at each iteration. The only difference between the results from each
iteration is the preciseness of the result.

Therefore, by adopting the iteration-wise integration framework,
users would be able to acquire an overview of the results much more
quickly than in typical cases where they have to wait for the en-
tire iterations to finish. Furthermore, the proposed framework makes
user interactions with computation methods much more responsive
since these interactions can be reflected immediately in later iterations.
Users would not need to wait for a full run of the set of iterations if
they were to make a particular change to the computational methods



such as parameter changes, data filtering, etc.
Motivated by these ideas, this paper describes the iteration-wise in-

tegration framework of computational methods (Section3) and present
the customization of well-known computational methods fitted to the
proposed framework (Section4). Using the presented computational
methods, we show the quantitative iteration-wise analyses of compu-
tational methods and use cases where we applied the proposed frame-
work in several well-known visual analytics systems (Section5). Fi-
nally, we conclude the paper (Section6).

2 RELATED WORK

3 ITERATION-WISE INTEGRATION FRAMEWORK

First, we discuss an overall flow of the iteration-wise integration
framework of computational methods in visual analytics (Fig.1(a)),
by highlighting its differences from the standard (non-iteration-wise)
approach (Fig.1(b)).

Let us begin with a general procedure when an iterative computa-
tional method is integrated in visual analytics. As shown in Fig.1(a),
input data, which are usually represented as multidimensional vectors,
are given to the computational module along with its required parame-
ter values. The computational module pre-processes the data, if neces-
sary, and runs through iterations, which are usually divided into mul-
tiple sub-routines, until it converges. Upon convergence, the output
goes through a post-processing step.

The final output of the computational module is then passed to the
visualization module, which encodes it in a visual space and finally
delivers its visualization to users. For example, the output of a di-
mension reduction method, e.g., PCA, can map data items onto the
coordinates of the screen space, and the output of clustering can be
used to color-code each group of data clusters.

Users can then better explore the visually represented data with the
help of the information provided by the computational method and
often interact with computational methods by adjusting their input data
as well as their parameters. These interactions trigger another run of
the computational method. For example, given the cluster summary
for a set of text documents, if a user finds an interesting cluster, the user
may perform another iteration of clustering on the particular subset to
obtain more details about the chosen subset. On the other hand, users
might want to adjust the number of clusters, which is usually a user-
specified parameter in clustering methods, to find the best clustering
result for the data.

In most of the described visualizations and interactions, the stan-
dard framework generally treats the computational module as a black
box, which the visualization module has no control over, depicted by
a gray rectangle in Fig.1(a). In other words, once the computational
module has been initiated, visual analytic systems must wait for it to
finish its iterations before it outputs the visualization to users.

On the contrary, the iteration-wise integration framework takes the
results of intermediate iterations out of the computational module and
delivers them to the visualization module whenever they are avail-
able. More specifically, as highlighted with the red horizontal line
in Fig. 1(b), the result from each iteration is always passed to the post-
processing step, the output of which, in turn, reaches all the way to the
visualization module, regardless of whether it has converged or not.
Consequently, these intermediate results are visualized to users much
more quickly than having to wait for the converged solutions.

In addition, the iteration-wise integration framework enables the
above-discussed interactions to be instantly reflected by directly inter-
acting with the process for each iteration of the computational module,
as highlighted with the red vertical line in Fig.1(b). For instance, given
the result of a particular iteration, one could exclude certain data items
from the following iterations, which accelerate the later iterations due
to the reduced data size. Furthermore, users could change the number
of clusters while a clustering method is running, which immediately
affects the following iterations.

3.1 Issues and Solutions
Computational Overhead and Multi-threading
Computational overheads are one of the issues that can be potentially

introduced by this framework. As can be seen in the red-lined stacked
rectangle blocks in Fig.1(b), visual analytics systems have to process
the output for each iteration repetitively while the standard approach
needs to process only the final output once. These additional com-
putations could undermine the effectiveness of the proposed frame-
work. Let us suppose that a particular computational method, which
requires 50 iterations to converge, converges in a minute. If the pro-
posed framework runs only 4-5 iterations within the same amount of
time, then users might prefer the standard approach instead of being
able to check the intermediate results since the results from such early
iterations may not be satisfactory.

However, we claim that this issue can be easily overcome by apply-
ing a multi-threaded approach to the proposed framework. As shown
by the blue ellipses in Fig.1(b), the entire process can be separated
into two concurrent processes/threads. The first thread shown to the
left is responsible only for the sub-routines inside the iteration while
the second thread on the right handles actions from the post-processing
block to the visualization block. These two threads communicate with
each other via a message queue, as shown by the blue rectangle on top
in Fig. 1(b), where the outputs for each iteration for post-processing
are to be stored.

Modern computers are usually equipped with at least two or more
cores on the CPU. These two threads can be executed virtually in par-
allel, which hardly slow down the computational methods compared
to the standard approach. Although not included in this paper, for the
computational methods we customized, we compared the total com-
puting time between the iteration-wise and the standard frameworks,
but with multi-threading implemented, there were essentially no dif-
ferences in their running times.

Even in this multi-threading framework, the following case may
still be problematic. Suppose the second thread involves more inten-
sive computations than the first thread because, for example, the post-
processing block takes more time than the processes at each iteration.
As a result, the second thread would act as a bottleneck in the overall
flow of the proposed framework, resulting in the message queue in-
creasing. One way to handle this issue is to store the results of each
iteration periodically rather than storing every one of them in the first
thread. Alternatively, the second thread could take the most recent
iteration-wise results and discard the remaining older ones from the
message queue. Under this situation, the visualization of the interme-
diate results may be somewhat discontinuous, but users would always
be given the most recent result, which should be the most accurate
solution up to the current iteration.

Finally, the other overhead comes from copying results from each
iteration to the message queue, which results in a memory write op-
eration. In the standard approach, these results for each iteration are
usually written to the same memory space over iterations since the
results from previous iterations do not need to be maintained. How-
ever, memory write operations are generally very fast. Furthermore,
the outputs from each iteration of computational methods take up a
much smaller memory compared to input data. For example, even if
the data is a very high-dimensional, say, in the hundreds of thousands
of dimensions, such as is the case in text data, the dimension reduction
outputs would only be two-dimensional representations assuming they
are visualized in a 2D space. Since the amount of additional compu-
tational time and memory that is required by our approach is minimal,
we do not see memory overheads being a critical issue.
Visual Inconsistency and User Control
The second issue in the proposed framework is the visual inconsis-
tency, which occurs during visualization updates, due to dynamic re-
sults changing each iteration. The most severe case occurs when the
visualization changes too frequently. Although the amount of change
generally diminishes as the iterations proceed, frequently changing vi-
sualizations may prevent users from obtaining a consistent picture of
the data.

To address these issues with visual inconsistencies, we’ve come up
with several possible controls. The first most basic option would be
a stop and resume control which would stop and resume updates of
the visualization. Secondly, a time period control would manage the
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Fig. 1: An overall diagram of the iteration-wise integration framework (b)in contrast to the standard (non-iteration-wise) one (a). In the standard
framework (a), a computional method is treated as a black box, as depicted by a gray rectangle. On the other hand, the iteration-wise framework
(b) breaks down the computational method at its iteration level, allowing it to bevisualized at each iteration while taking into account any user
iteractions. The blue line separates the overall procedure into two separate threads with their message queue, as shown in the blue rectangle, to
remove potential computational overheads.

length of the visualization. Additionally, we could pair this time con-
troller with two choices - the option to visualize the most up-to-date
result or to visualize the result of the next item in the queue, which
would provide the user with smoother visual transitions. Similar to
the ’stop/resume’ interaction, since our approach maintains each of the
intermediate results, we could simply expand the controls to also add
both the ’play backwards’ and ’jump to. . . ’ options. These interac-
tions would help users understand the overall trajectory of the results
through each iteration. Through the use of these controls, it is very
possible that the user may uncover an interesting insight into the data
at a particular iteration or a series of iterations.

3.2 Related Work

In fact, there have been existing approaches which follow the proposed
framework. For example, the force-directed graph layout or spring
layout [8], e.g., the ‘graphview’ implemented in the Prefuse toolkit,1

visualizes data immediately after the first iteration of the layout algo-
rithm. Furthermore, the Prefuse toolkit provides various interactions,
such as moving data points and changing parameters, e.g., ‘Spring-
Coefficient,’ etc., that provide feedback and update the visualization
during its iterations such as moving data points and changing parame-
ters, e.g., ‘SpringCoefficient,’ etc.

The reason for such a tight iteration-wise integration of the force-
directed graph layout is partly because its purpose is directly for visu-
alization and the output is straightforwardly mapped to a visual space
without involving much post-processing.

On the other hand, in many cases, computational methods are
not entirely intended for visualization. Therefore, non-trivial pre-
processing/post-processing steps may have to be involved for their
adoption to visual analytics. In addition, advanced computational
methods are often hard to understand. These numerous obstacles dis-
tract people from the fact that most computational methods have in-
deed an iterative nature similar to the force-directed graph layout, and

1http://prefuse.org/

they can be easily dismantled and tightly coupled with visual analytics
at their iteration level. The rest of the paper will focus on how we can
achieve this claim for various computational methods.

4 CUSTOMIZED METHODS IN VISUAL ANALYTICS SYSTEMS

In this section, following the proposed framework, we present sev-
eral customized computational methods in visual analytics systems.
To begin with, we have chosen three visual analytics systems, Foda-
vaTestbed,2 Jigsaw,3 and iVisClustering [13], which involve computa-
tional methods.4

FodavaTestbed is a visual analytics system for high-dimensional
data, where users can apply various dimension reduction and cluster-
ing methods for exploratory analysis. Among various methods sup-
ported, we have chosen three dimension reduction methods,1. MDS,
2. PCA, and3. t-SNE. Jigsaw is a well-known system for document
analysis, and we have chosen4. k-means, which is used to provide a
summary in terms of a compact set of clusters. Finally, iVisCluster-
ing is an interactive document clustering system which uses5. LDA, a
popular topic modeling method.

In the following, we describe how each method is customized
along with the additional interactions we implemented in the proposed
framework.

4.1 Principal Component Analysis (PCA)

PCA [11] is a well-known dimension reduction method that captures
the maximal variance in the data via a linear projection. PCA is mainly
based on the method called eigendecomposition, the algorithms of
which are categorized into two different methods, the QR algorithm
and the Lanczos algorithm [9].

Basically, the Lanczos algorithm approximates a given data matrix
by a much smaller one in the Krylov subspace [9], the dimension of

2http://fodava.gatech.edu/fodava-testbed-software
3http://www.cc.gatech.edu/gvu/ii/jigsaw/
4We obtained the code from the original authors of the systems.

http://prefuse.org/
http://fodava.gatech.edu/fodava-testbed-software
http://www.cc.gatech.edu/gvu/ii/jigsaw/


which iteratively expands, and efficiently solves the eigendecompo-
sition on the latter matrix. Due to the nature that this matrix well-
approximates the largest eigenvectors of the original one, the Lanczos
algorithm performs much faster than the QR algorithm in visual ana-
lytics in which only a few dimensions are needed.

We customize the Lanczos-based PCA implementation of FodavaT-
estbed so that the results for each iteration are dynamically visualized.

4.2 Multidimensional Scaling (MDS)

MDS [5] is a traditional dimension reduction method that attempts
to preserve given distances/relationships of data items in a lower-
dimensional space. Given the ideal distanceδi j betweenxi and x j,
MDS solves

min
x1, ...,xn

∑
1≤i< j≤n

(

di j −δi j
)2

, (1)

wheredi j is the distance between the reduced dimensional vectorsxi
andx j. A Euclidean distance‖xi−x j‖2 is usually used fordi j. Solving
Eq. (1) iteratively refinesxi’s based on various optimization techniques
[6]. We customize MDS in FodavaTestbed by extracting thexi’s at
each iteration from the MDS implementation.

Interaction / User Intervention

Additionally, while the results for each iteration of MDS are visualized
in a scatter plot, we support the interaction capability that enables users
to move the data points by mouse via drag-and-drop, similar to the
Prefuse force-directed layout. Then, during the MDS iterations, their
new positions in the screen space are translated back to the MDS out-
put coordinates,xi’s. The changes inxi’s at a particular iteration then
affect the following iterations by generating differentdi j ’s. In terms
of how MDS behaves due to these changes, we provide two different
capabilities: ‘soft’ vs. ‘hard’ placement. The soft placement continues
iterations without any changes in MDS behaviors. It is equivalent to
restarting MDS with the intermediate result at the particular iteration
as the initial values forxi’s.

The hard placement capability fixes the values ofxi’s for points
moved by the user. This can be easily achieved by skipping the up-
date step of thesexi’s in the following iterations. Note that, however,
even though their values do not change, other data points are still in-
fluenced by these fixed points, and in this sense, our approach is a
semi-supervised MDS that reflects user interventions.

When using the semi-supervised MDS, an important advantage of
the proposed framework is that users can immediately check the ef-
fects of these interactions via the iteration-wise visualization. Our
modifications in FodavaTestbed support both types of interactions.

4.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE [18] is a relatively new dimension reduction method. It in-
terprets pairwise distances as probabilities both in high-dimensional
and lower-dimensional spaces and tries to minimize their Kull-
back–Leibler divergence, a distance measure between probability dis-
tributions. Unlike the previous methods discussed, it focuses on pre-
serving neighborhood relationships instead of global ones, and it has
shown its outstanding capabilities in visualizations.5

Although we skip the detailed formulations due to the page limit,
the algorithm works iteratively by refining the lower-dimensional co-
ordinates based on a gradient descent framework. In practice, however,
t-SNE does not provide a clear stopping criterion, and thus it typically
iterates several hundred times by default for any data set, which usu-
ally takes a significant amount of time. We customize the t-SNE in
FodavaTestbed in a similar manner to the way we altered MDS.

Interaction / User Intervention

Likewise, we provide both the soft and hard placement interactions
for t-SNE, as discussed in MDS. Although the algorithm details are
different, the overall iterative procedure turns out to be quite similar

5http://homepage.tudelft.nl/19j49/t-SNE.html

to MDS. Thus, for the soft placement, we restart t-SNE with the in-
termediate results immediately during iterations. For the hard one, we
skip the update step for data items moved by the user in the following
iterations while they still influence other points in the t-SNE iterations.
Therefore, our altered method can be viewed as a semi-supervised t-
SNE.

4.4 k-means

k-means, which is a widely-used clustering method, performs the fol-
lowing steps iteratively: 1. computing the centroid of each cluster by
averaging the data vectors in the corresponding cluster and 2. updat-
ing the cluster assignment of each data item based on its closest cluster
centroid. The iteration terminates when there are no cluster member-
ship changes.

Although Jigsaw provides a cluster view based onk-means, it cur-
rently visualizes only the pre-computed results sincek-means is usu-
ally very slow to converge. We customize it so that users can run
k-means in real time and the intermediate cluster memberships are dy-
namically visualized.

Interaction / User Intervention

Additionally, we add several interaction capabilities in the proposed
framework. One is to split/merge clusters during iterations. On a
split/merge interaction, similar to the soft placement in MDS and t-
SNE,k-means restarts with the intermediate cluster memberships that
reflect split/merged clusters, involving dynamic changes in ak-means
parameter which represents the number of clusters.

Similar to the hard placement in MDS and t-SNE, another capabil-
ity we provide is the option to fix the cluster assignments of the data in
a particular cluster. To accomplish this, we skip the updating step of
the cluster assignment for these data in the following iterations. How-
ever, they still contribute to the centroid computing step. A similar
semi-supervised way ofk-means was previously proposed [1], but our
framework significantly accelerates such interactions withk-means.

4.5 Latent Dirichlet Allocation (LDA)

LDA [ 3] is a popular topic modeling method for documents based on a
generative probabilistic model. Given a number of topics, it gives two
outputs: the term-wise distribution of each topic and the topic-wise
distribution of each document. The iterations of LDA basically update
these two outputs alternately. From a clustering viewpoint, the former
corresponds to a centroid vector of each topic cluster, and the latter
to a soft-clustering coefficient. By taking the topic index that has the
maximum value in the latter, a document is clustered to a particular
topic.

iVisClustering uses one of the fastest LDA libraries called Mallet
[14], which implements LDA based on a Gibbs sampling [15]. Al-
though this sampling-based approach does not guarantee a conver-
gence, it is being widely used because of its simplicity and robustness
against overfitting, compared to the variational approximation method
proposed in [3]. Due to this convergence issue, LDA usually iterates
a pre-defined number of iterations and usually requires a significant
amount of time. We customize the Mallet library so that it can give the
outputs from each iteration to iVisClustering, allowing iVisClustering
to dynamically update its visualization.

Interaction / User Intervention

In addition to the original iVisClustering interaction capabilities being
available during iterations, we also add several interactions with LDA
in iVisClustering, similar to those in Jigsaw: splitting/merging clus-
ters and fixing the cluster assignments of particular data items during
iterations. The customization of LDA for such interactions is similar
to k-means, and thus we skip the details due to the page limit.

5 EXPERIMENTS

In this section, we present behaviors within each iteration for compu-
tational methods as well as their interactive aspects in the proposed
framework.

http://homepage.tudelft.nl/19j49/t-SNE.html
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Fig. 2: The behavior for each iteration of PCA and MDS and their visualization snapshots. In (a) and (e), the red lines represent the criteria
values of each method, the lower-dimensional variance in PCA and the stress value, i.e., Eq. (1), in MDS. The blue line is the Euclidean distances
of the lower-dimensional outputs between the current and the previous iterations, and the black line is those between the current and the final
iterations. In (e), the black and the blue lines almost coincide. In PCA, 1,420 facial image data representing pixel values in 2,048 dimensions
have been used, and in MDS, 500 handwritten digit data representing pentraces in 16 dimensions have been used.

(a) The 333th-iteration result (b) The 333th-iteration result after mov-
ing points

(c) The 344th-iteration result (d) The 362th-iteration result

Fig. 4: A point-moving interaction example using t-SNE. The two overlappingclusters,‘l’ and ’o,’ are separated due to a user interaction of
moving apart a few points from each cluster. 1,558 spoken letter data represented in 618 dimensions have been used.
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Fig. 3: Computing times of the example in Fig.2.

5.1 Iteration-wise Behaviors and Visualization

Fig. 2 shows the behaviors of each iteration for the customized PCA
and MDS along with their computing times shown in Fig.3. In PCA,
the criteria value, i.e., the lower-dimensional variance, as well as the
lower-dimensional outputs (Fig.2(a)) converge within a few itera-
tions, indicating that only a few iterations of the Lanczos algorithm

are needed in visual analytics applications (Figs.2(b)-(d)). Nonethe-
less, each iteration takes roughly the same amount of computation time
except for the first iteration which includes the pre-processing time.
(Fig. 3(a)). Instead of having to perform a fairly large number of it-
erations, as most PCA algorithms do, the iteration-wise visualization
enables users to obtain an equivalent visualization much quickly. A
similar argument applies to MDS as well. Although its convergence
is relatively slow compared to PCA (Fig.2(e)), we obtain the results
similar to the final one ahieved at the 10th iteration (Figs.2(f)-(h)).
We do not present the quantitative analyses for t-SNE, but we found
tendencies similar to MDS, and we will focus on its interactive aspects
in the following section.

In clustering, the behavior of each iteration ofk-means is presented
in Fig. 5 as well as their snapshots in Jigsaw in Fig.7. In Jigsaw,
in order to best assist users in easily identifying the location and the
number of changes that occur while the visualization is dynamically
updated, we draw arrows to represent where a particular data item has
moved relative to the previous iteration, and color-code each data item
to represent which cluster index it previously belonged to. As shown in
Fig. 7 and in the redlines in Fig.5, although significant change occurs
in early iterations (Fig.7(a)), they diminishes quickly, as seen in the



(a) The second-iteration result (b) The sixth-iteration result

(c) The converged (25th-iteration) result after fixing clusters (d) The converged (26th-iteration) result without any interaction

Fig. 7: The results of the iteration-wise integration ofk-means in Jigsaw. At the sixth iteration, the interaction of fixing the yellow-colored
clusters is made (b). The final result with and without this interaction is shown in (c) and (d), respectively. The NSF-awarded abstract data have
been used.

(a) The third-iteration result (b) The fourth-iteration result after
split/merge interactions

(c) The final (15th-iteration) result with
split/merge interactions

(d) The final (7th-iteration) result with-
out split/merge interactions

Fig. 8: An example of split/merge interactions. The yellow and green ones in(a) are merged to the same-colored ones, respectively, in (b), and
the white one in (a) is split to the-same colored ones in (b). Webpages about autism have been used as input data.

sixth iteration (Fig.7(b)), which is not much different from the final
result (Fig.7(d)). However, the time each iteration takes is almost the
same (Fig.5(d)).

Finally, LDA, which is a sampling-based approach, shows a signifi-
cantly different behavior from the previous methods (Fig.6). Although
cluster membership changes between iterations generally decrease and
the solution narrows to the final solutions (Fig.6(a)), cluster member-
ships change significantly even after many iterations, in this case after
1,200 iterations. In iVisClustering, we could see the top keywords of
each topic become somewhat stable after several hundreds of itera-
tions (Fig.6(a)), but the randomness of the sampling-based algorithms
might make it harder to give consistent visualizations when compared
to deterministic methods in the iteration-wise framework.

5.2 Interaction Examples

Basically, in all three systems, we provide basic interactions that con-
trol the visualization for each iteration, as discussed in Section3.1. In
the following, we show several use cases of the interactions discussed
in Section4.

5.2.1 Moving data points in t-SNE

Fig. 4 shows an interesting interaction which involves moving a data
point in t-SNE. Given some overlapping clusters in a particular visual-
ization generated by t-SNE (Fig.4(a)), users place several points from
different clusters far apart (Fig.4(b)), and then t-SNE reflects these
changes in the following iterations, resulting in separation of most
points in two clusters from each other (Figs.4(c)(d)). This simple,
yet powerful example clearly illustrates the advantage of providing
users with the ability to interact with computational methods in our
framework in real-time visual analytics.

5.2.2 Fixing cluster assignments in k-means

For our k-means method, we provide users with another interaction
that allows them to fix cluster assignments for particular data items
at a certain iteration. This interaction becomes especially useful when
users feel that particular clusters are adequate and want to prevent them
from changing much. In addition, fixing some clusters that are already
stable in early iterations can accelerate the later iterations by excluding
them from the cluster assignment step.

Fig. 5 shows the effects of such interactions. First, we start with the
same example shown in Fig.7, but we fix the clustering assignments of



(a) The third-iteration result (b) The 300th-iteration result (c) The 700th-iteration result

Fig. 9: An example of filtering documents whose cluster memberships areunclear. This interaction is done in the 300th iteration, and the topics
become clearer in the later iterations. 20 newsgroups data have been used.
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Fig. 5: The behaviors for each iteration ofk-means with and without
the interaction made in Fig.7(b). In (a), the decreasing lines are the
cluster membership changes between the current and the previous it-
erations while the increasing ones are the correct cluster memberships
with respect to the final solutions without the interaction. The black
vertical line represents the iteration point of the interaction made.
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Fig. 6: The iteration-wise behaviors of LDA. In (a), the blue line rep-
resents cluster membership changes between the current and the pre-
vious iterations while the red line represents the correct cluster mem-
berships with respect to the final solutions.

the cluster highlighted in yellow rectangles, which amounts to 44% of
the total data items, at the sixth iteration (Fig.7(b)). Once this interac-
tion is performed, the computing times for the following iterations of
k-means drops significantly (Fig.5(b)). However, only less than 10%
of the final cluster memberships differ from the final results without
this interaction, as shown in the increasing red line in Fig.5(a). The
final outputs of the cluster view in Jigsaw of the two cases can also be
compared in Figs.7(c) and (d), both of which are similar in terms of
cluster sizes as well as keyword descriptions.

5.2.3 Split/merge clusters in k-means

Our customization ofk-means enables users to merge multiple small
or semantically related clusters or split large or unclear clusters. Fig.8
shows its example in Jigsaw. In the third iteration, we merge yellow
and green clusters and split a white cluster (Fig.8(a)). The resulting
is shown in Fig.8(b). We obtain a much more balanced set of clusters
(Fig. 8(c)) compared to the final result in which no splitting/merging
was performed (Fig.8(d)). Furthermore, after analyzing the docu-
ments in two split clusters, we found that one of the clusters primarily
contained documents about the causes of autism while the other about

the symptoms, as seen in the keyword summary in Fig.8(c). Without
the interaction, one will notice in Fig.8(d) that these clusters are not
easily separated.

5.2.4 Filtering noisy documents to improve topics in LDA

The ability to filter noisy documents has been an appealing interaction
for LDA in iVisClustering. To be specific, given parallel coordinate
representations of topic-wise distributions of documents, users can in-
teractively filter out documents that are not strongly related to a single
topic, i.e., documents that have a very small maximum value in the
topic-wise distribution. By removing them and re-running LDA, iVis-
Cluster generally obtains significantly clearer topics. In the iteration-
wise framework, we performed this interaction near the 300th itera-
tion (Fig.9(b)), which is an early iteration when compared to the total
number of iterations performed by LDA. However, such an interac-
tion successfully generates clearer topics (Fig.9(c)) over the standard
approach where users have to wait for the algorithm to finish its full
iterations in order to perform the same interaction.

6 CONCLUSIONS AND FUTURE WORK

We have presented the iteration-wise integration framework of com-
putational methods for real-time visual analytics. One of its apparent
advantages is its ability to present users with intermediate results dur-
ing the interactions, which could reveal a significant amount of infor-
mation immediately in visual analytics. Another important advantage
is that it indeed opens up the possibility of many new micro-level in-
teraction capabilities, which in the past have been considered to be too
inefficient, and allows real-time control over computational methods
in visual analytics. For example, the interactions we proposed in this
paper are relatively simple, which do not involve any major algorith-
mic modifications. Our framework makes them significantly useful by
enabling users to perform these interactions easily and efficiently.

However, the advantage of our framework can be limited when the
changes between iterations remain nontrivial, resulting in inconsistent
visualizations. We have seen similar limitations when using LDA in
our framework due to the random nature of the used LDA algorithm.
We plan to tackle this problem more actively by, for example, post-
processing the results or even imposing additional constraints in com-
putational methods so that the results from the following iterations do
not change much from the current ones.
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