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SUMMARY

Dating as far back as the eighteenth century with Luigi Galvani’s seminal studies in

bioelectricity ([1]) and beyond, interfacing with the nervous system at fast timescales has

proven invaluable for scientific investigation as well as clinical interventions in diseases

such as Parkinson’s [2]. Until somewhat recently, electrical stimulation has been the most

common technique for neuronal control at fast timescales. Over the past fifteen years, the

advent of optogenetics, a technique whereby optical excitation or inhibition of neural ac-

tivity can be targeted genetically, has ushered in a new wave of experimental approaches to

dissecting circuit function ([3, 4]). To date, most optogenetic control of neural activity has

been limited to open-loop stimulation or event-triggered closed-loop stimulation, in which

previously-determined optical inputs are used. However, activity in the brain changes in a

state-dependent fashion such that stimuli (e.g., sensory inputs from the periphery) can elicit

variable responses and ultimately manifest in variable percepts. Given the ever-changing

nature of neuronal activity and the ability to simultaneously record and stimulate targeted

cell types with optogenetics, there is growing interest in the intersection of feedback con-

trol and optogenetics ([5]). In contrast to open-loop stimulation, closed-loop optogenetic

control seeks to achieve target activity by updating optical input as a function of recorded

neuronal activity. In this thesis, engineering approaches to feedback control and state esti-

mation are used to tackle the problems of controlling neuronal firing activity in vivo , with

the goal of developing a set of methods that are general enough that they may be applied to

manipulation of other types of neuronal activity or even animal behavior. Specifically, we

apply closed-loop optogenetic control (CLOC) to manipulate the thalamus, a deep brain

region that serves as a central gateway for conducting sensory information to the cerebral

cortex. Given the importance of brain state in health and disease, we end by investigating

the effects of optogenetic control on the state of the thalamus and its implications for sen-

sory response properties in the somatosensory thalamocortical pathway. First, Chapter 2

xiii



develops a design methodology for using a previously described model-free optogenetic

control scheme ([6]) to entrain naturally relevant patterns of rate modulation such as ob-

served in the rodent somatosensory thalamus during active movement of facial whiskers,

rather than holding firing rate constant over long timescales as was done previously. In

order to ensure the optogenetic control scheme generalizes more gracefully to future multi-

input/multi-output control problems, Chapter 3 applies state-space model-based control and

estimation to the problem of manipulating thalamic firing rates. Importantly, we investigate

the effectiveness of CLOC in the awake animal for the first time, as well as the response of

local populations of neurons to optical stimulation rather than recording from single neu-

rons at a time. Finally, in Chapter 4 we investigate the effect of CLOC on thalamic state

more generally, analyze the robustness of control to a naturally-occurring disturbance (ani-

mal movement), and look at its consequences for downstream cortical activity and sensory

response characteristics. As part of this analysis, a broadly-applicable state-space model

based notion of thalamic state is put forth, marrying previously distinct neuroscientific and

engineering notions of “state”.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Dating as far back as the eighteenth century with Luigi Galvani’s seminal studies in bio-

electricity ([1]) and beyond, interfacing with the nervous system at fast timescales has

proven invaluable for scientific investigation as well as clinical interventions in diseases

such as Parkinson’s [2]. Until somewhat recently, electrical stimulation has been the most

common technique for neuronal control at fast timescales. Over the past fifteen years, the

advent of optogenetics, a technique whereby optical excitation or inhibition of neural ac-

tivity can be targeted genetically, has ushered in a new wave of experimental approaches to

dissecting circuit function ([3, 4]). To date, most optogenetic control of neural activity has

been limited to open-loop stimulation or event-triggered closed-loop stimulation, in which

previously-determined optical inputs are used. However, activity in the brain changes in a

state-dependent fashion such that stimuli (e.g., sensory inputs from the periphery) can elicit

variable responses and ultimately manifest in variable percepts. Given the ever-changing

nature of neuronal activity and the ability to simultaneously record and stimulate targeted

cell types with optogenetics, there is growing interest in the intersection of feedback con-

trol and optogenetics ([5]). In contrast to open-loop stimulation, closed-loop optogenetic

control seeks to achieve target activity by updating optical input as a function of recorded

neuronal activity. In this thesis, engineering approaches to feedback control and state esti-

mation are used to tackle the problems of controlling neuronal firing activity in vivo , with

the goal of developing a set of methods that are general enough that they may be applied

to manipulation of other types of neuronal activity or even animal behavior. Specifically,

we apply closed-loop optogenetic control to manipulate the thalamus, a deep brain region

that serves as a central gateway for conducting sensory information to the cerebral cor-

tex. Given the importance of brain state in health and disease, we end by investigating

1



the effects of optogenetic control on the state of the thalamus and its implications for sen-

sory response properties in the somatosensory thalamocortical pathway. What follows is

the pertinent background necessary for understanding this work, including the anatomical

pathway and model system used for these studies, the state-dependent nature of neuronal

activity, the types of mathematical models commonly used to represent these systems, and,

finally, previous work in the area of optogenetic control.

1.1 Thalamocortical sensory pathways

We rely heavily on our senses for everything ranging from navigation of environments to

communication with those around us. Nestled deep in the brain, the dorsal thalamus serves

as the information conduit to cerebral cortex in almost all sensory pathways (Figure 1.1(a)).

In the context of vision, somatosensation, and audition, sensory signals travel from periph-

eral sensory organs through the brainstem to the corresponding primary relay nuclei of

the dorsal thalamus, the lateral geniculate nucleus (LGN), ventrobasal complex (VB), and

medial geniculate nucleus (MGN), respectively, before making their way to primary sen-

sory cortices. The VB of somatosensory thalamus is composed of the ventral posterolateral

(VPL) and ventral posteromedial (VPM) nuclei, which receive somatic (i.e., spinothala-

mic) sensory input and orofacial input conveyed via the trigeminal nerve, respectively ([7]).

From these primary thalamic relay nuclei, thalamocortical (TC) neurons project to primary

visual, somatosensory, and auditory cortices, chiefly synapsing in the so-called input layer

of cortex, layer 4 (LIV, Figure 1.1(b)). Conversely, corticothalamic (CT) cells in the deep-

est layer of cortex (LVI) project back to these relay nuclei. In addition, TC cells project

to the purely inhibitory (i.e., GABA-ergic) reticular nucleus of the thalamus (RT), which

provides inhibitory feedback to TC cells as well as disynaptic feedforward inhibition from

CT cells ([8]). Together, these constituents make up the thalamocortical loop.

Aside from its position in the pathway as the final way-station before cortex, the tha-

lamus and thalamocortical loop more generally have a number of physiological properties

2



that make it a gatekeeper for information flow. At one extreme, in the context of slow wave

sleep, thalamocortical oscillations serve to block the propagation of sensory inputs onward

to cortex ([9, 10]). This is achieved thanks to the thalamo-reticular loop and the expression

of low threshold voltage-gated T-type calcium channels, which, as the name suggests, are

activated at low membrane potentials, and allow a slow Ca++ current, on top of which mul-

tiple action potentials may fire in a rapid succession, a phenomenon known as “bursting”.

In slow wave sleep, this hyperpolarization followed by bursting happens rhythmically, ef-

fectively blocking sensory responses ([9]). While T-type Ca++ channel-mediated bursting

does occur in wakefulness, the occurrence of burst action potentials is more rare ([10, 11,

12, 13]); however, when they do occur and are driven by sensory inputs, thalamic bursting

results in a salient drive to cortex sometimes termed a “wakeup call” ([14, 15]). This large

response is thought to be an optimal coding scheme for binary detection of the presence

of a simple stimulus ([16]) or features in complex stimuli such as edges in a scene ([17]).

Just as bursting of a single neuron provides multiple inputs to cortex in rapid succession,

the degree of synchronization of multiple thalamic neurons in their response to stimulation

results in more or less potent drive to cortex ([18, 19, 16]). Moreover, [15] found that the

”wake up call” behavior observed with bursting also held true for single action potentials

that were preceded by periods of thalamic silence. This is because the thalamocortical

synapse is susceptible to depression, such that when the thalamus is actively firing preced-

ing a stimulus, the response downstream is less salient ([20]), but less binary and better

suited for discrimination of graded features of a stimulus such stimulus strength or position

in space ([21, 22]). Clearly, the activity of the thalamus at the time of sensory stimula-

tion can have profound effects on sensory information conveyed downstream and what is

ultimately perceived.

3
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Figure 1.1: Thalamocortical pathways. (a) Thalamus serves as a central conduit for sensory in-
formation processing in almost all sensory pathways. (b) The thalamocortical loop is composed of
thalamocortical relay nuclei (e.g., lateral geniculate nucleus, ventrobasal complex, medial genicu-
late nucleus), reticular thalamic nucleus (RT), and the cerebral cortex. Adapted from [8].
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1.2 Rodent vibrissa system

Rodents rely on their large facial whiskers to navigate through and investigate their envi-

ronments. Along the so-called lemniscal pathway, sensory information is conveyed from

the whiskers to the brainstem, VPM thalamus and eventually primary somatosensory cor-

tex (S1) in a discrete, topographically-aligned fashion, such that there are populations of

neurons at each level that respond principally to a single whisker (Figure 1.2) ([23]). Dense

clusters of LIV cells result in a distinct “barrel” appearance to the cortical column, giving

this region of S1 its name “Barrel Cortex” ([24, 25]). Experimentally, this model system

provides unparalleled control over sensory inputs and the ability to trace information flow

through the primary sensory pathway. In contrast, the medial posterior nucleus (POm),

a higher order thalamic nucleus in the somatosensory pathway that is immediately adja-

cent to the VPM (Figure 1.2(b)), receives more spatially diffuse whisker inputs ([23]) and

displays distinct sensory response and movement-related properties ([26, 27]).
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Fol l ic le/
whisker
complex
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Figure 1.2: Rodent Whisker System. (a) Topographically aligned, discrete populations of cells
primarily receptive to single principal whisker from the face, brainstem, thalamus, to cortex where
dense clusters of LIV cells form the “Barrel” cortex. Adapted from [23]. (b) Sagittal view of
parallel pathways from whisker to cortex. The primary lemniscal (red) pathway to cortex is from
the trigeminal nucleus of the brainstem, through the dorsomedial aspect of the VPM (VPMdm), to
S1. Adapted from [23].
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1.3 Thalamic state

Throughout this work, the term “state” will be used multiply to describe neuronal responses

to inputs mathematically (Chapter 3) as well as to describe notions of brain state used in

neuroscience (Chapter 4). In engineering, the state of a dynamical system is the variable or

collection of variables whose knowledge, along with knowledge of any stimuli/covariates,

is sufficient to predict future activity ([28]). While not normally thought of in this way,

the neuroscientific attempts at labeling neuronal (e.g., thalamic, cortical) and behavioral

activity as readouts of underlying “state” share this same goal: extracting a small number of

signals that can, for example, help predict otherwise variable responses to sensory stimuli or

that can serve as “biomarkers” for the onset of disease conditions like seizures in epilepsy.

Therefore, while the manner in which these notions of state are derived and discussed

may vary, they are actually consistent in spirit. To this end, an attempt has been made in

Chapter 4 to marry these mathematical and neuroscientific notions of state in the context

of changing thalamic activity.

1.3.1 Thalamic, cortical, and behavioral correlates of brain state

Thalamic and cortical activity is state-dependent, ranging from “Up” and “Down” cor-

tical activity and thalamocortical spindle oscillations during slow wave sleep and under

certain anesthesias to rapid, small variations in cortical subthreshold membrane potential

and elevated thalamic firing rates during periods of active arousal (for reviews, [29, 30,

31, 32]). Previous work defines the state of the brain during wakefulness in discrete ex-

tremes such as quiet vs. active/aroused ([33, 34, 35, 27]), inattentive vs. alert [36], or

passive vs. engaged in a task ([37]). Despite this discretization, wakefulness is likely a

continuum ([29]), albeit with some well-studied extrema. On one end of the spectrum,

when animals are quiet/inactive the neuronal activity of cortex as measured by membrane

potential or extracellular modalities like local field potential (LFP) or electroencephalog-
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raphy (EEG) is characterized by large amplitude, low frequency fluctuations in activity,

whereas the thalamic activity is characterized by low firing rates and some degree of burst

firing (Figure 1.1(a), “inattentive”; (b) “quiet”). At the other end of this spectrum, in an

active state, the cortex is characterized by lower amplitude, high-frequency fluctuations

in subthreshold potential, while the thalamus exhibits elevated tonic firing (Figure 1.1(a),

“alert”; (b) “active”/whisking). Such state changes can also be behaviorally measured by

factors such as pupil diameter ([36, 38, 39, 40]) and movement including locomotion ([41])

and, in the context of the rodent somatosensory system, whisking ([33]).

(a)

(b)

TC 1

TC 2

Cortex

-10 1050-5
Time (s)

Alert Inattentive

Figure 1.3: Coordinated thalamic, cortical, behavioral states. (a) Transition from “alert” to
“inattentive” states in the visual thalamocortical (TC) cells and cortex (LFP) of an awake rabbit.
Red dots denote bursts of action potentials. Adapted from [36]. (b) Transition between “quiet” and
“active” states across somatosensory thalamus and cortex in an awake, head-fixed mouse. VPM
unit activity recorded juxtacellularly; whisker position measured using high-speed videography;
electromyography (EMG) recorded from the neck muscles; LFP recorded in S1 and its frequency
spectrum analyzed as a function of time. Changes in thalamic firing and cortical LFP spectrum
correlate with whisking behavior. Adapted from [27].

7



1.3.2 State-dependent sensory processing and factors affecting state

While the nature of the effects are apparently different in the visual versus auditory and so-

matosensory pathways, these state changes in thalamus and cortex have been shown to have

consequences for sensation both in terms of neuronal responses as well as in the perception

of sensory stimuli across modalities ([42, 41, 43, 44, 37, 38, 45, 46, 47, 48, 49]). In the

case of vision, periods of active states of wakefulness coinciding with animal locomotion

result in enhanced sensory response gain and signal-to-noise ratios in primary visual cortex

and improved stimulus detection performance ([41, 43]). Conversely, in the case of both

somatosensation and audition, it appears that a quiet state of wakefulness is optimal for

stimulus detection. McGinley et al ([38]) report that detection of an auditory tone in noise

was best when the stimulus was preceded by quiet, stably hyperpolarized cortical activity

and that “hyper-vigilance” that occurred during locomotion was deleterious. Similarly, it

has been reported that when animals are engaged in an auditory task, thalamic firing rates

are elevated and cortical responses to stimuli are suppressed ([37]). Consistent findings

have been seen in the rodent whisker system, in that an active state associated with ele-

vated thalamic firing and movement of whiskers has been shown to reduce cortical sensory

responses and reduce detection of a stimulus ([20, 50, 49]).

These states are likely governed by changing tone of neuromodulators such as acetyl-

choline and norepinephrine in thalamus and cortex ([20, 51, 52, 38, 39]); however, it has

been shown that direct manipulations of thalamic firing have been sufficient to control

cortical state measures ([51, 35]). Conversely, it is also known that corticothalamic feed-

back to thalamus is able to modulate thalamic activity [53, 54, 55], such that the cortex

could “wake up”, or activate, a quiet thalamus in a similar manner. Whatever the source,

changes in thalamic firing rate over longer timescales seem, if not in control, at least pre-

dictive of cortical state. Similarly, because of the dependence of TC bursting mechanism

on prolonged quiet and the dependence of TC synapse depression on baseline activity, tha-

lamic firing rate is also predictive of changes in sensory response characteristics. Taken
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together with the engineering definition of “state” above, these factors suggest that coor-

dinated change in thalamic population firing rate is an ideal candidate for the state of the

thalamus (Chapter 4).

1.3.3 Thalamic state in disease: Generalized epilepsy

Beyond its role as a gatekeeper of sensory information, the thalamus may also serve as

an effective choke point in generalized epilepsies ([56]). In a photothrombotic ischemic

stroke rat model of post-stroke generalized epilepsy, Paz et al ([57]) demonstrated that

silencing the thalamus at seizure onset effectively aborted it. Similarly, in two genetic ro-

dent models of absence epilepsy (GAERS rats, stargazer mice) it was found that preventing

bursts by depolarization of TC neurons halted thalamocortical oscillations characteristic of

the absence seizure ([58]). Finally, there is evidence that changing thalamic state may be

an effective biomarker for prediction of absence seizures in that there is a dip in thalamic

firing rate before seizure onset (GAERS rat, [59]; Scn8a-mutant mice, [60]).

1.4 Closed-loop control of neuronal activity

The ability to control neuronal activity has deep clinical and scientific significance, ranging

from treating disorders such as epilepsy to understanding fundamental operating principles

of single cells and intricately interconnected networks such as the thalamocortical loop.

Indeed, it was the use of a feedback controller—Cole’s voltage clamp—that enabled the

pioneering studies of Hodgkin and Huxley and gave rise to our understanding of the ionic

currents underlying the action potential [61]. The key to this experimental work was the

use of a feedback controller to “clamp” the trans-membrane voltage by injecting current

to counter-act naturally occurring changes in ionic currents. This functional decoupling of

constituent ionic and capacitive currents led to a quantitative description of the nonlinear

dynamics of the action potential.

Today, the neuroscience community is faced more acutely than ever with the task of
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dissecting the functions of neurons in interconnected networks and in the context of ever-

changing activity during wakefulness. Taking the thalamocortical sensory system as an

example, thalamic activity is capable of controlling the ongoing state of cortex as well as its

responses to sensory stimuli, and direct neuromodulatory input from the brainstem is able

to the same (Section 1.3.2). Therefore, under normal conditions it is difficult to ascertain

the relative roles of thalamic vs. intracortical origins of sensory response variability. A

control methodology that could keep the circuit intact while holding components of the

circuit invariant to spontaneous changes would be invaluable in this context as well as the

ubiquitous problem in neuroscience of decoupling linked variables.

Closed-loop, or feedback, control methods represent an engineering solution to such

problems. As opposed to a so-called open-loop control approach where stimulation is

designed either through previous experimentation or using mathematical models, closed-

loop systems make use of feedback to adjust stimulation in realtime by comparing the value

of a measured/estimated signal to a desired setpoint and taking action according to some

control logic. General reasons to use closed-loop control may include achieving a target

or target trajectory despite model inaccuracy (e.g., Chapters 2-3), maintaining a system at

target activity in the face of disturbances (e.g., voltage clamp, Chapter 4), or minimizing

energy usage (e.g., closed-loop deep brain stimulation). The control logic may be as simple

as toggling control on or off on either side of a setpoint (on-off control), or it may use the

error signal to grade stimulation more continuously. Hereon, the terms closed-loop or

feedback control will be used to refer specifically to the latter.

In general, such closed-loop systems are composed of multiple elements: sensors and

estimators that measure outputs of the system being manipulated and estimate variables im-

portant for control; feedback and feedforward controller gains that use estimates of current

system state/output and target activity to generate a control signal; and actuators that physi-

cally interact with the system to effect control. Sensors for measuring neural activity range

from intra- or extracellular electrical recordings by way of single ([15, 42, 19, 27, 62])
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or arrayed electrodes ([20, 63, 64]) to widefield or cellular-resolution optical microscopy

using (genetically-encoded) fluorescent indicators of voltage and calcium signals ([65, 50,

66, 21, 67, 68, 69, 70]). On the other end of the feedback loop, for control of neural ac-

tivity at fast timescales, actuation is often achieved by electrical stimulation (e.g., [71, 72,

20, 73]). Over the past 15 years, however, optogenetic approaches to stimulation [74, 75,

76] have seen widespread adoption and use in neuroscience due to the ability to excite or

inhibit neural activity in cell-type specific manner (Section 1.4.2).

1.4.1 Modeling neuronal systems for control and estimation

Whether used simply as design tools (Chapter 2) or online during implementation of a

control scheme (Chapter 3), mathematical models that describe the relationship between

control signal(s) and the controlled variables are invaluable for feedback control. While

there are not agreed-upon canonical models in neuroscience such those for describing me-

chanical systems, there are a set of model types which have seen varying levels of use in

describing neuronal responses to stimulation. What follows is a brief overview that empha-

sizes phenomenological model types that have been specifically used to describe spiking

responses, since the control objective in this work will be related to thalamic firing.

Linear receptive field, linear-nonlinear-Poisson and generalized linear models of stimulus-

driven neuronal spiking

In sensory systems, feed-forward (i.e., non-dynamical) models have long been used to re-

late stimuli to neuronal spiking. The simplest form is the linear “receptive field” model ([77,

78, 79, 80]). Often identified using variations on spike-triggered analysis ([81, 82, 83]),

they comprise spatiotemporal finite impulse response (FIR) filter(s) that capture features

in stimuli to which neurons are “tuned” to respond (“stimulus filter”, Figure 1.4(a)). To

respect the statistical nature of spiking measurements, a simple extension to the linear re-

ceptive field model is the addition of rectifying nonlinearity and a Poisson assumption
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on spike generation, yielding the linear-nonlinear-Poisson (LNP) model (Figure 1.4(a))

([81, 84, 85, 86, 87, 88, 89, 82]). These models are further extended to include multi-

neuron interactions (through “coupling filters”) and a spike history filter to account for the

non-Poisson refractory nature of neurons, resulting in the generalized linear model (GLM)

(Figure 1.4(b)) ([90, 91]). As the simplest of the spiking models, Chapter 2 will use the

LNP to design a feedback control loop for manipulation of firing rate in vivo . Contrary to

transfer function and state-space models, LNP models have no dynamics and, while they

are widely used in neuroscience to describe spiking responses to stimuli, they are not as

amenable to common control design and implementation (although, see [92] for example

simulated control of GLM).

Dynamical systems state-space models

While the above model types have seen widespread use in describing neuronal responses

to stimulation, models with dynamics (e.g., transfer functions or state-space models) are

widely used for design and implementation of controllers ([28]). At one extreme, neuro-

scientists have developed nonlinear dynamical systems models that describe the evolution

of membrane potential using differential equations: notably, the seminal work of Hodgkin

Huxley ([61]). A simpler, albeit more abstract, model is the leaky-integrate-and-fire (LIF,

[94, 93, 95]), in which membrane potential is modeled using a first order differential

equation, and action potential generation is a simple spike and post-spike reset following

threshold-crossing (Figure 1.4(c)). Notably, LIF models with multiple outputs have inde-

pendent, rather than shared, dynamics (e.g., [95]), with coupling occurring through current

injection as a result of simulated synaptic transmission.

The final form of model considered here is the state-space dynamical system, which is

not as commonly used for describing neuronal response to stimulation. That said, varia-

tions of this model type are seeing increasing use in neuroscience, albeit mostly applied

to motor systems ([96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 64, 107]). In con-
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trast to LIF and GLM models, dynamical system model outputs are driven by a common

set of underlying latent dynamics, which in the state-space form are captured by a first or-

der differential/difference equation of a multi-dimensional “state” variable, x. In general,

these dynamics could be nonlinear; however, this work (Chapters 3-4) will be limited to

linear systems (Figure 1.4(d)). The measured outputs (here, spiking activity) are assumed

to be observed either after corruption with additive Gaussian noise (Figure 1.4(d), top) or

after element-wise rectification and Poisson spike generation (bottom). These model types

are termed Gaussian or Poisson linear dynamical systems ([101, 102]): GLDS and PLDS,

respectively. Note that the GLDS and PLDS are dynamical systems equivalents of the lin-

ear receptive field and the LNP models above. Given the spiking nature of the measured

neuronal activity, PLDS models are more widely used than GLDS ([97, 101, 102]), and es-

timators equivalent to the Kalman filter for linear systems ([108]) have been developed that

allow online estimation of this latent state variable, x, under the Poisson output assump-

tion ([96, 98, 109, 110]). However, many commonly used linear control and estimation ap-

proaches revolve around the use of transfer functions or state-space GLDS models ([28]).

Moreover, the state-space model structure in combination with optimal control provide

generality to multi-input/multi-output control and estimation problems. Therefore, the use

of a GLDS model rather than the more common stimulus-filter-based models above will be

evaluated in Chapter 3, as well as the necessity of a spiking nonlinearity (LNP/PLDS).
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Figure 1.4: Modeling spiking responses to stimulation. (a) Linear-nonlinear-Poisson (LNP) cas-
cade model, composed of stimulus filter, a rectifying static nonlinearity, and assumed Poisson spike
generator. Adapted from [90]. (b) Multi-output Generalized Linear Model (GLM), which is addi-
tionally composed of spike history filter and coupling filters between outputs. Adapted from [90].
(c) Leaky integrate-and-fire (LIF) model. Effectively a 1st-order nonlinear dynamical system, where
the the model membrane potential is reset to a baseline upon crossing a spike threshold. Adapted
from [93]. (d) Gaussian or Poisson Linear Dynamical System (G/PLDS), composed of a linear
dynamical system, whose outputs are either assumed to be Gaussian noise-corrupted linear com-
binations of underlying dynamical states (x), or are assumed to undergo element-wise rectification
and Poisson spike generation.
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1.4.2 Optogenetics

Until somewhat recently, electrical stimulation has been the chief method for controlling

neuronal activity at fast timescales (e.g., [71, 72, 20, 73]), a practice dating as far back as

Luigi Galvani’s work in the eighteenth century ([1]). Over the past 15 years, however, opto-

genetic approaches to stimulation have seen widespread adoption and use in neuroscience

due to the ability to excite or inhibit neural activity in a cell-type specific manner (for re-

views/protocols, [111, 112, 3, 113, 114, 115, 4]). As the name suggests, optogenetics is a

method by which cells can be genetically modified to express “opsins”, membrane bound

light-sensitive ion channels or pumps, such that different wavelengths of light can depo-

larize (excite) or hyperpolarize (inhibit) the cells. The most common opsins are variants

of the following: channelrhodopsin (ChR), an excitatory non-specific cation channel (Fig-

ure 1.5(a) left, [74]); halorhodopsin, an inhibitory chloride pump (Figure 1.5(a) right, [75]);

archaerhodopsin, an inhibitory proton pump ([76]). While there are red-shifted variants

of ChR (e.g., [116, 117]), most are blue-light activated (Figure 1.5(b), blue); conversely,

halorhodopsin is sensitive to amber light (Figure 1.5(b), yellow). This separation in activa-

tion spectra means that at least in theory bidirectional control could be achieved by using

different wavelengths to excite or inhibit activity, which has been achieved in vitro ([118,

6]). Notably, with the possible exception of [119], this does not appear to have been re-

ported in vivo . A survey of the many variants of these opsins is beyond the scope of this

work. While the methods developed in Chapters 2-3 apply generally to any such variants,

a single ChR has been used throughout: specifically, the H134R mutant of ChR2 ([120,

121]).

Besides the ability to use light to excite or inhibit neural activity at fast timescales,

perhaps the biggest reason for the success of optogenetics in neuroscience is the wide

array of techniques whereby specific cell types or populations can be targeted for stimula-

tion ([114]). Their expression may be confined to specific cell types under the control of

appropriate promotor sequences: e.g., excitatory vs. inhibitory cell types (eg, parvalbumin-
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Figure 1.5: Optogenetics. (a) Examples of excitatory and inhibitory opsins: channelrhodopsin
(ChR, non-specific light-gated cation channel), halorhodopsin (HR, chloride pump). Adapted
from [3]. (b) Optical activation spectra for ChR and HR variants. Adapted from [75]. (c) Light-
driven hyperpolarizing (i.e.outward, top) and depolarizing (inward, bottom) currents for HR and
ChR variants recorded intracellularly in cultured hippocampal neurons. Adapted from [75].

expressing interneurons [122, 112]); different lamina of cortex (e.g.layer VI CT cells [54]);

different subcortical nuclei (e.g., VPM/VPL [123]). Cells can also also be targeted as a

function of anatomical projections (e.g., retrogradely labeled [124] or synaptic terminal

stimulation [125]), and expression can even be confined to a single cell ([62]). Moreover,

in the context of rodents and mice especially, there are numerous transgenic lines that allow

for brain-wide expression of opsins as a function of cell type ([113, 123]), in addition to

the broadly-applicable viral injection approach to transfection.

Finally, with optical stimulation techniques ranging from optical fibers ([72, 6, 16,

126]), scanning lasers ([69, 127]), and micro-LEDs embedded on electrode arrays ([128,

129, 130]), optogenetics is ideally suited for combination with electrophysiology. This

is particularly true in the context of feedback control applications because there is less

concern for stimulation artifact, allowing continuous stimulation and recording without the

sorts of large artifacts seen with electrical stimulation (e.g., [20]).
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1.4.3 Optogenetic control

For all the reasons discussed above, there has been recent interest in applying control the-

ory to optogenetic stimulation (for review/perspective, [5]). To date, most examples of

closed-loop optogenetics are limited to event-triggered or on-off control approaches, where

previously determined optical stimuli are triggered on activity of interest: in the context of

two different epilepsy models, Paz et al and Krook-Magnuson et al triggered optical stimu-

lation on the onset of detected seizures ([57, 131]); O’Connor et al achieved illusory touch

via direct optical stimulation of barrel cortex when an animal’s whisker crossed the path

of virtual pole (i.e., interrupted the beam of an infrared laser) ([132]); Latchoumane et al

used optical stimulation triggered on the “Up” phase of cortical slow wave oscillations to

evoke phase-locked thalamic sleep spindles and causally investigate their role in memory

consolidation ([133]); and Zhang et al used an on-off controller to gate optical pulses to

control Ca++ activity in individual neurons recorded via two-photon microscopy ([69]).

That said, in addition to the feedback optogenetic control that laid the groundwork for this

thesis (below), there has been at least one previous report of using continuously-graded

closed-loop optical stimulation in which a proportional-integral controller (Chapter 2) was

used to change the ankle joint angle in rodents ([134]).

More advanced control-theoretic approaches have been applied to the manipulation of

neural spiking activity, but most of these have been limited to simulation studies. For exam-

ple, Ullah et al applied an unscented Kalman filter and feedback control to the problem of

manipulating the activity of a single Hodgkin-Huxley model neuron ([135]). Ahmadian et

al developed an approach for optimal stimulus design for achieving target spike times in a

soft-threshold LIF model ([136]); similarly, Nandi et al designed optimal stimuli to achieve

target spike times in a network of GLM model neurons. Ching and Ritt developed a notion

of spike “sequence controllability” in an underactuated network of LIF model neurons with

only one light source ([95]). Finally, Iolov et al have applied stochastic optimal control to

the problem of achieving target spike times in a single LIF model neuron ([137]).
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Somewhere between these two extremes of experimentally applied event-triggered op-

tical stimulation versus more advanced approaches confined to simulation lies the in vitro

work that laid the groundwork for closed-loop optogenetic control (CLOC) as it is de-

scribed hereon. In an effort to disentangle the relative contributions of firing rate and

synaptic transmission on synaptic strength rescaling that occurs during neural network

homeostasis, Fong et al applied a feedback controller to maintain an average firing rate

among neurons cultured in a dish. Activity of these cultured neurons was recorded with

an embedded multi-electrode array and they were stimulated optically as shown in Fig-

ure 1.6(a). The authors were able to tease apart the contributions of AMPA-ergic synaptic

transmission and overall spiking on synaptic rescaling by using CLOC to keep cells at

100% of baseline activity, despite AMPA-receptor blockade (Figure 1.6(b)).
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Figure 1.6: Closed-loop optogenetic control in vitro. (a) In vitro closed-loop optogenetic control
(CLOC) setup. Adapted from [138]. (b) Multi-hour control of average population firing rate via
CLOC, with vs. without AMPA-receptor blockade via CNQX. (c) Excitatory post-synaptic current
(EPSC) under control conditions, AMPA receptor blockade, AMPA receptor blockade with CLOC
of firing rate. Maintaining firing with CLOC showed that it was changes in synaptic transmission,
not reduced spiking, that led to homeostatic synaptic upscaling.

Concurrent with this work and using the same experimental preparation, Newman et al

demonstrated the ability to hold firing rates of cultured neurons steady for hours, explored

the effectiveness of continuously-modulated light delivery vs. control-modulated patterned

stimulation (triangle, sinusoidal, square pulses), and demonstrated robustness to different

types of pharmacological receptor blockade ([6]). Importantly, while most of the study was
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in vitro, the authors conducted an initial set of anesthetized in vivo experiments in which

they held the firing rate of single thalamic neurons fixed at multiple target firing rates.
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1.5 Overview

The initial in vivo demonstration of CLOC by Newman et al ([6]) was provocative, but

the design of the model-free (i.e., proportional-integral) control scheme was ad hoc, only

applied to the problem of holding firing rate steady over long periods, was limited to the

anesthetized animal, and did not investigate the effects of stimulation on thalamic activity

more generally. In this thesis, Chapter 2 first develops a design methodology for using the

model-free control scheme of Newman et al ([6]) to entrain naturally relevant patterns of

rate modulation such as observed in the rodent VPM during whisking, rather than holding

firing rate constant. In order to generalize more gracefully to future multi-input/multi-

output control problems, Chapter 3 applies state-space model-based control and estimation

to the problem of manipulating thalamic firing rates. Importantly, we investigate the effec-

tiveness of CLOC in the awake animal for the first time. Finally, in Chapter 4 we investigate

the effect of CLOC on thalamic state more generally, analyze the robustness of control to a

naturally-occurring disturbance (animal whisking), and look at its consequences for down-

stream cortical activity and sensory response characteristics. As part of this analysis, a

broadly-applicable state-space model based notion of thalamic state is put forth, marrying

neuroscientific and engineering notions of “state”.
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CHAPTER 2

MODEL-FREE FEEDBACK OPTOGENETIC CONTROL FOR ENTRAINING

TIME-VARYING PATTERNS OF NEURAL ACTIVITY

2.1 Introduction

The ability to control neuronal activity has deep clinical and scientific significance, ranging

from treating movement disorders and epilepsy to understanding fundamental operating

principles of single cells and intricately interconnected networks. Indeed, it was the use

of a feedback controller—Cole’s voltage clamp—that enabled the pioneering studies of

Hodgkin and Huxley and gave rise to our understanding of the ionic currents underlying the

action potential [61]. Today, the neuroscience community is faced more acutely than ever

with the task of dissecting the functions of neurons in the context of connected networks.

To disentangle the roles of different cell types or structures under such conditions, systems

neuroscience requires a set of tools for controlling neural activity at a meso-scale, between

the extremes of stimulating single neurons and non-selectively manipulating large, diverse

populations. Importantly, these control methodologies should also be robust to changes in

ongoing activity in the brain which could otherwise be sources of unexplained experimental

variability.

Over the last fifteen years, optogenetic stimulation has emerged as a tool for understand-

ing neural circuit function. Unlike electrical stimulation, optogenetic manipulations have

the ability to target the expression of opsins genetically (e.g., [122, 113]) and/or anatom-

ically (e.g., single-cell [62] or retrogradely-labeled [124]). Given the flexibility of this

technique and a maturing genetic toolbox, there is growing interest in the intersection be-

tween optogenetics and engineering control theory as a method for dissecting circuit func-

tion [5, 95, 136]. Notably, optogenetics lends itself particularly well to closed-loop control,
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pairing electrophysiological recordings with optical stimulation. In contrast with simulta-

neous electrical stimulation and recording which is plagued by stimulation artifacts, there is

comparatively less concern for such artifacts corrupting measurements when using optical

stimulation.

Control theory has already been brought to bear on the problem of manipulating neural

activity for the purposes of halting seizures ([139, 140, 57, 131, 141]), reducing oscillatory

activity in models of Parkinson's ([142]), and artificially replicating LFP patterns naturally

evoked in response to touch ([73]). To date, most so-called neurocontrol—whether by

means of optical or electrical stimulation—has been conducted in an open-loop or event-

triggered or on-off closed-loop fashion. In the latter case, stimulation is triggered by ac-

tivity of interest (e.g., [57, 131, 132, 143, 133]). In such applications, the stimulation that

is delivered has been previously determined, through experimentation or using previously

identified mathematical models. However, neuronal responses elicited by stimulation can

vary across individuals, cells, and even over time. Rather than using feedback merely to

trigger pre-determined stimulation, another strategy is to make continuous use of feed-

back to update stimulation in real-time. Recently, we demonstrated the first such use of

closed-loop optogenetic control in vivo ([6]), where light intensity was adjusted to main-

tain a constant firing rate over time using a proportional-integral (PI) controller. In this

model-free control strategy, output feedback was provided to the controller using a mov-

ing average filter to smooth spiking activity into an estimate of instantaneous firing rate.

While the first of its kind, the study did not offer a design methodology, nor did it extend

the method beyond static reference tracking. In many applications, the objective of neu-

rocontrol may be to entrain patterns of activity such as embedded artificial surrogates for

sensory responses ([132, 73]) or desired spike trains ([136, 95, 137, 92]). To this end, we

have developed and demonstrated a strategy for tuning the elements of the control loop for

eliciting desired patterns of temporal firing rate modulation.

Here, we demonstrate in the anesthetized rat that the simple model-free control scheme
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used by Newman et al ([6]) can be effective for eliciting desired patterns of firing rate

when appropriately designed, and that the use of feedback confers a reduction in trial-to-

trial variability as compared to open-loop stimulation. Design of this control loop entails

choices for the degree to which measured spikes are smoothed into an estimated firing rate

as well as the proportional and integral feedback controller gains on minimizing instanta-

neous and integrated firing rate tracking error, respectively. We developed an approach for

tuning the parameters of this system for eliciting sinusoidally modulated patterns of firing

rate by optimizing feedback controller gains in a simulated control loop where the spiking

neuronal system was approximated using the simplest of the widely-used spiking models,

the linear-nonlinear-Poisson cascade model (Section 1.4.1). Finally, we demonstrate that

this procedure can generalize to more complex, non-sinusoidal signals of interest.

2.2 Methods

We have developed a principled design strategy for closed-loop control of dynamic trajec-

tories in neural firing patterns through the use of a PI controller and a moving average filter

characterized by its exponential decay time constant serving to estimate the latent firing rate

from measured spikes (“Firing rate (FR) filter”). We utilized an anesthetized rodent model

where in vivo we recorded from and optically stimulated neurons in the ventral posterome-

dial (VPM) region of the thalamus that were transfected with a depolarizing light-sensitive

ion channel. The experimental preparation is outlined in Figure 2.1(a), illustrating the

single-unit thalamic recording, optical drive of opsin-expressing thalamic neurons, and the

relationship of the thalamus to the whisker-driven afferent input from the periphery and the

ascending and descending connections with the primary somatosensory cortex. The block

diagram in Figure 2.1(b) illustrates the control framework, where the “neural system” (in

this case, a single unit in the thalamus) emits measured spiking patterns (z), which are in

turn utilized to estimate firing rate (ŷ). The difference in estimated firing rate and reference

(or, desired) firing rate (r) is defined as the online estimate of tracking error (ê). A con-
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Figure 2.1: Closed loop optogenetic control of firing rate (a) Physical diagram. (b) System block
flow diagram. (c) Procedure for closed-loop stimulation experiments. The firing rate filter used to
estimate output feedback was designed for a given reference firing rate pattern previous to exper-
iments. A model was fit to data recorded for system identification during the experiment. Using
this model, controller gains were optimized in simulation. These parameters were then used for
experimental closed-loop stimulation.

ventional PI controller operates on this error signal, yielding a light input (u) which drives

optogenetic excitation of the thalamic neurons.

2.2.1 Experimental preparation

All procedures were approved by the Institutional Animal Care and Use Committee at the

Georgia Institute of Technology and were in agreement with guidelines established by the

NIH. Experiments were carried out using female albino (Sprague-Dawley) rats. Expression

of channelrhodopsin was targeted to excitatory neurons (rAAV5/CamKIIa-hChR2(H134R)-

mcherry-WPRE-pA; UNC Vector Core, Chapel Hill, NC) in the ventro-posteromedial nu-

cleus (VPM) of the thalamus by way of stereotactic injections (3 x 3 x 5.2 mm rostro-caudal
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x medio-lateral x depth)[16]. A 1 µL volume of virus was injected at a rate of 0.1 µL/min.

The animals were given buprenorphine for pain management (0.03 mg/kg). Animals were

then monitored daily following injection surgery. Wound clips were removed at 10-13 days

post-surgery. Animals were allowed to recover and opsins allowed to express > 3 weeks.

While VPM of the thalamus was the anatomical target, any optogenetically-driven neuron

in thalamus that exhibited well-isolated spiking activity was considered a candidate for this

study.

On the day of the experiment, rats were anesthetized using a cocktail of fentanyl (5 µg/kg),

midazolam (2 mg/kg), and dexmedetomidine (150 µg/kg) delivered intravenously through

the tail vein ([16, 144]). Animal body temperature was maintained at approximately 37° C

using a feedback-controlled heating pad. A 3 mm x 3 mm cranial window centered over

the left hemisphere at 3 mm rostral and caudal of bregma was created and the dura mater

carefully removed. Single units were isolated in thalamus using an optrode: 80 µm, 2 MΩ

tungsten electrode (FHC), coupled to a 200 µm optic fiber (Thorlabs). Blue light was con-

ducted from an LED (470 nm, ThorLabs) to the thalamus via the optic fiber. Prior to the

experiment, an optical power meter was used to measure the light intensity emitted from

the tip of the fiber when peak command voltage (5 V) was sent to the LED driver. We found

a linear relationship between command voltage and light intensity. Therefore, we estimated

the light inputs reported in this study by scaling the command voltage accordingly.

All signals were recorded using a Tucker Davis Technologies (TDT) RZ2 Bioproces-

sor. Extracellular voltage was recorded at 24.414 kHz and bandpass filtered from 500

to 5000 Hz. Single unit spikes were manually thresholded, their dimensionality reduced

using principal component analysis, and clustered in this reduced space using K-means.

Measured spikes were then smoothed into an online estimate of instantaneous firing rate,

and a PI controller was used to modulate the amplitude of optical stimulation of the neu-

ron (Figure 2.1(a-b)). In post-hoc analysis, we found that optical artifacts were minimal,

especially when considering the 500 to 5000 Hz band used for spike thresholding/sorting
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(see Appendix, Figures B.1-B.2). We also found that spikes used for feedback during

control epochs did not significantly differ from the spikes that occurred spontaneously in

inter-trial-intervals.

At the conclusion of each experiment, animals were sacrificed using an overdose of

sodium pentobarbital.

2.2.2 Reference trajectories

Sinusoidal

To extend beyond the methodology laid out by [6] for maintaining a constant firing rate,

we designed the control system to elicit sinusoidally-modulated rates of the form

yt = σsin sin (2πfmod∆t) + µsin ,

where σsin, fmod, µsin, t, and ∆ are the sinusoidal amplitude, modulation frequency, DC

firing rate, time index, and sample period, respectively. Such a parametric time-varying ref-

erence is the ideal starting point for this design problem. Motivated by firing rates observed

in the awake animal (see next section), all reference trajectories had mean firing rates of

20 spikes/s, which was found to be an appropriate average firing rate during awake rodent

whisking (see Appendix A, [27]). To focus our investigation further, the sinusoidal refer-

ence trajectories used here were maximally modulated about the mean (i.e., σsin = µsin).

The control system was tuned for 1, 5, or 10 Hz modulated patterns.

Non-sinusoidal trajectory

In order to test the results of the design procedure on a non-sinusoidal reference trajectory

of interest, we used an example of rate modulation observed in single-unit data recorded in

the VPM of an awake rat (data from [145, 16]; see Appendix A).

Rhythmic spiking activity possibly related to the animal moving its whiskers was iden-
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tified in a subset of trials. To inspect for rhythmic spiking, spike trains were smoothed

using a Gaussian window with standard deviation (SD) of 20 ms and autocorrelograms

calculated for each trial. Putative “whisking” trials (n = 3) were identified by peaks in

correlation located at lead/lag of 100 ms, corresponding to 10 Hz which is within the natu-

ral frequency range of whisking [146, 147, 148]. Spike trains from these trials were aligned

such that their cross-correlations had a peak at zero-lag, were averaged across trials, and

then smoothed with a Gaussian window of 20-ms SD, resulting in the reference trajectory

shown in Figure 2.2(c-d) (see also Appendix, Figure A.1). The mean (i.e., DC) firing rate

of this signal was approximately 20 spikes/s, and 95% of the total power in this signal was

between DC and 10 Hz. Note that approximately 50% of the power in this signal occurred

at DC.

2.2.3 Firing rate estimator design

The closed-loop control system had two designed components: an estimator of output firing

rate and the feedback controller. In this application, measurements (z ∈ R1) took the form

of spiking activity. Given a raw measure of instantaneous firing rate, z/∆ (either ∆−1 or

0 if there is/is not a spike, where ∆ is the sampling period), the firing rate filter yields an

online estimate of the latent rate, ŷ ∈ R1.

Fixed-bandwidth smoothing

Fixed-bandwidth smoothing was used to estimate the firing rate online. An exponential

window was chosen because it is causal and efficiently computed online as a first-order

recursive filter. The firing rate estimator filter was characterized by a single parameter, its

decay time constant (τ ):

ŷt = aŷt−1 + (1− a)
zt
∆
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where,

a = exp

(
−∆

τ

)
,

and t is the sample index.

Parametric sweeps for optimal sinusoidal rate estimation

In designing the bandwidth of the exponential filter, the goal was to choose a filter which

provided an appropriate amount of smoothing such that the underlying firing rate could

be accurately recovered from measured spikes. Consistent with previous work (e.g., [149,

150, 151, 152]), the filter bandwidth was designed in simulation by minimizing the mean

integrated squared error (MISE) between a ground truth firing rate pattern and the estimate:

τ ∗ = arg min
τ

〈
1

T

T∑
t=1

(yt − ŷt)2
〉
,

where 〈·〉 denotes trial-averaging and ŷ is the rate estimated by filtering the spike trains

generated according to Poisson statistics from the ground truth rate, y ∈ R1. Here, y was

taken to be the reference firing rate pattern of interest, r ∈ R1. Depending on the properties

of this pattern, the MISE-optimal estimator may smooth out the temporal modulation due to

a scarcity of spikes within a period of oscillation. Koyama and Shinomoto [150] discussed

such “divergent” solutions in the context of designing the optimal bin width for constructing

a peristimulus time histogram (PSTH).

In the case of sinusoidal rates used here, the optimal filter time constant depended upon

the expected number of spikes per period of the sinusoid, (µsin Ntrials) /fmod, and the de-

gree of the modulation as defined by the ratio of amplitude to DC offset of the sinusoid,

σsin/µsin, where Ntrials is the number of trials used for estimation. To develop a paramet-

ric expression for the filter design, we determined the optimal time constant for different

conditions of a simulated rate-modulated Poisson process.

In simulation, four parameters were swept: the modulation frequency of the driving
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sinusoid (fmod), the mean firing rate (DC offset of the sinusoid, µsin), the amplitude of

the sinusoid around the mean (σsin), and the number of trials used for estimation (Ntrials).

Note that at the conclusion of the design, we sought time constants that were optimized for

single-trial estimation: i.e., where Ntrials = 1. For the rates used in this study, we focused

on the specific cases where µ = 20 spikes/s and σsin/µsin = 1.

The MISE-optimal filters (τ ∗) were calculated for a range of frequencies, mean rates,

modulation intensities, and number of trials. In keeping with Koyama and Shinomoto [150],

a power law relationship was fit to these data for τ ∗ to yield a tuning curve of estimated

time constants, τ̂ :

τ̂ fmod = bτζ
−aτ ,

where [150] defined ζ as

ζ ≡
(
µsin

fmod

Ntrials

)(
σsin
µsin

)2

.

2.2.4 Linear-nonlinear Poisson model

Previously, an ad hoc approach to controller design demonstrated proof-of-principle feed-

back optogenetic control. Here, however, we sought a principled approach that generalized

to dynamic reference trajectories. To finely tune the controller during experiments, we used

a linear-nonlinear Poisson (LNP) model to approximate the response of the neural system

to optical stimulation. The controller gains (Kp, Ki) were tuned around the LNP model in

simulation. In this model structure, a linear system (denoted L) was cascaded with a static

nonlinearity (N) to produce a latent firing rate which drives a Poisson spike generator (P)

and emits spikes.

The optical input was filtered through a finite impulse response (FIR) stimulus filter, or

kernel, k:
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xt = k>ht ,

where ht is the stimulus a vector of stimulus history over a time window up to time t,

inclusive. The output of this filter, xt ∈ R1, was then mapped through a static nonlinearity

(e.g., [153]):

yt(θ, xt) = α log [1 + exp (gxt + d)] ,

where θ = [d, g, α]> are parameters describing the static nonlinearity. d serves as a bias

term reflecting neural firing that does not co-vary with stimulation (i.e., spontaneous firing

rate). g and α together set the effective DC gain of the model neuron’s response to light

stimulation as it approaches the asymptotically linear region of the curve, whereas their

relative values set the knee of the nonlinearity.

During the experiment, an LNP model was fit to spiking data recorded in response to

repeated presentations of a 5-second instantiation of optical uniform white noise. The range

of this noise was titrated for each cell to avoid apparent depolarization block, but on average

ranged between 0 and 8.5 mW/mm2. The white noise stimulus was mean-subtracted and

a light-to-spiking kernel, k̂, was estimated by reverse correlation (“rotated” or “whitened”

spike-triggered averaging, e.g., [85, 80, 154]):

k̂ =
(
U>U

)−1
U>z ,

where U is the stimulus design matrix in which the tth column is a vector of stimulus

history over a time window up to time t, z ∈ RT is the across-time vector spike signal (1

or 0 if there is/is not a spike measured). To avoid ambiguity between the static gain of the

kernel and the scaling factor applied to the output of the kernel in the nonlinearity (g), the

kernel was normalized by its static gain. The stimulus was filtered with this normalized
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kernel, yielding xt, and the remaining parameters
(
θ̂
)

were fit by maximum likelihood:

θ̂ = arg max
θ

∑
K

∑
T

ztk log [ytk(θ, xtk)∆]− ytk(θ, xtk)∆ ,

where t and k denote the time and trial index, respectively. Note that [93] fit LNP models

by maximum likelihood, with the kernel parameters only initialized using the values pre-

dicted by whitened spike-triggered averaging (STA). In our application, we found that the

kernels resulting from this approach were primarily scaled versions of the STA estimate,

k̂. Because parameter g accounts for this scaling, we found that it was unnecessary to re-

estimate the kernel parameters in practice. This allowed for the model to be fit quickly and

dependably during the experiment, where experimental viability is time-limited.

2.2.5 Controller design

We implemented a proportional-integral (PI) controller, which was defined by two param-

eters, Kp and Ki. Given a reference trajectory of interest, a choice for the firing rate filter

time constant (Section 2.2.3), and a model, these controller gains were tuned in simulation

during the experiment.

Control law

The PI controller was implemented in its parallel form:

êt = rt − ŷt

ut = Kpêt + Ki

t∑
i=0

êi∆ ,

where u ∈ R1, Kp and Ki are the control input, proportional, and integral gains, respec-

tively.

Note that due to the fact the light delivered can neither be negative nor exceed the limits
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of the LED output, the variable u was bounded between [0,1] and scaled to the dynamic

range of the LED driver (5 V = 1 A). For all simulations, the control signal was hard

rectified and bounded as was done in hardware to ensure actuation was subject to the same

limitations.

Objective function

A common objective for controller design is to minimize the integrated squared tracking

error (e.g., in the context of PID control [155]). We found that tuning the controller to

minimize the integrated squared error between the reference and online estimate of rate

(i.e., between r and ŷ) yielded undesired tracking behavior, especially at higher frequency

references where the firing rate estimate is less accurate (see insets of Figure 2.3C, Sec-

tion 2.3.2). Because filtered estimates are on average slightly lagged and attenuated in

amplitude compared to ground truth, if stimulation were optimized around this estimate,

the resulting neural firing would lead the target and be of larger amplitude. To avoid this

behavior, we instead tuned the controller by minimizing the squared error between the ref-

erence (r) and the raw measure of instantaneous rate (z/∆), which neither imposes lag nor

amplitude attenuation on the estimate.

While minimizing this raw tracking error ameliorates the aforementioned problems, the

highly punctate nature of the z/∆ estimate of rate and the large error incurred each time the

neuron spikes (r − ∆−1) mean that simply minimizing the integrated square of the error,

e = r − z/∆, yielded trivially low solutions for controller gains where the neuron never

spikes. This motivated controller design in the frequency domain, where the effects of the

spiking error can be down-weighted relative to important tracking criteria. Because we are

willing to tolerate error that occurs at frequencies higher than those of interest for a control

task, we avoided trivial low-gain solutions by weighting the squared error in the frequency

domain according to the spectral content of the reference trajectory (w), thereby penalizing

error at frequencies according to their significance for the intended control.
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We calculated the frequency-domain amplitude of the tracking error, e, as well as that

of the reference trajectory:

E[f ] = |F{e}|

R[f ] = |F{r}| ,

where F{·} denotes the Fourier transform.

The spectral content of the reference was used to create frequency-dependent weights:

w[f ] =
R2[f ]∑Nf
f=0R

2[f ]
,

where Nf corresponds to the Nyquist frequency.

These weights were used to calculate a modified squared error metric where the fre-

quency spectrum of the error was penalized as a function of importance for the control

task:

Jfwt (Kp,Ki) =

〈
Nf∑
f=0

w[f ] E2[f ]

〉
,

where 〈·〉 denotes the across-trial average.

Finally, controller gains were chosen to minimize Jfwt, using a numerical solver (ga,

Mathworks, Inc.): [
K∗p,K

∗
i

]
= arg min

Kp,Ki

Jfwt (Kp,Ki) .

2.2.6 Open-loop stimulus design

To assess the benefits of utilizing feedback with optogenetic stimulation, we designed open-

loop stimuli for each control task (i.e., sinusoids, and a more natural non-sinusoidal trajec-

tory). In Figure 2.2(a)&(b), we compare pulsatile open-loop stimulation (most commonly
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used stimulation mode) with closed-loop, continuous modulation of light amplitude. In this

scenario, 5-ms pulses were generated by varying the frequency of a carrier wave according

to the desired firing rate. To determine the appropriate pulse amplitude at the time of the

experiment, a static logistic mapping was fit to the response to pulsatile inputs of varying

amplitude, where light inputs were presented at the DC firing rate of the target trajectory

(i.e., 20 pulses/s, see Appendix A). The amplitude of stimulation was chosen such that

approximately 1 spike/pulse was generated on average.

In all other cases of open-loop control, a static mapping from light intensity to firing

rate was estimated by fitting a logistic curve to the steady-state firing rate in response to 1.5-

second step inputs of light at various amplitudes. Open-loop control signals were designed

for sinusoidal and non-sinusoidal firing rate trajectories by inverting this curve (i.e., using

this curve as a lookup table).

2.2.7 Disturbance

A load disturbance in the form of whisker stimulation was used to challenge both open-loop

and closed-loop control strategies. Using a computer-controlled galvanometer motor ([145,

16, 67]) positioned approximately 10 mm from the animal’s face, sensory white noise was

applied to the thalamic neuron’s principal whisker [16] at two seconds into the control

epoch.

2.2.8 Offline firing rate estimation

All reported firing rates were estimated offline (ȳ) using an appropriate Gaussian window

to smooth either single-trial (Figure 2.2(a-b)) or trial-averaged spike trains binned at 1-ms

resolution. In the case of the slowly-modulated rates in Figure 2.2(a-b), the same procedure

used for designing the filter time constant for online rate estimation was employed to esti-

mate an MISE-optimal SD of a Gaussian window. Because accurate single-trial estimation

is difficult at higher frequencies, for all other firing rate estimation reported here, a Gaus-
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sian window was used to smooth a trial-averaged peri-stimulus time histogram (PSTH).

The SD of this filter was chosen for each reference trajectory (i.e., 5 Hz or non-sinusoidal)

in the same way as before except now for multiple trials: the MISE-optimal width for re-

covering the reference rate from a PSTH of simulated Poisson spikes, averaging the same

number of trials collected experimentally. Bands around these trial-averaged firing rate es-

timates are 95% confidence intervals for the smoothed PSTH, bootstrapped by sampling

the trials with replacement.

2.2.9 Fano factor

Trial-to-trial variability in spike count was quantified using the Fano factor [156] calculated

in a 250-ms sliding window:

FF =
var [N250]

〈N250〉
,

where N250 is the spike count per 250-ms window of time and 〈N250〉 indicates the across-

trial average.

2.3 Results

Here, we develop a design strategy for closed loop control that could be applied to a range

of different of neural circuits. We have applied this design strategy to the problem of clos-

ing the loop around the spiking activity of a single neuron in the somatosensory thalamus of

the rat in vivo , as illustrated in Figure 2.1(a). Specifically, the input to the “neural system”

was light delivered by way of a fiber optic cable inserted deep into the brain, targetting

the somatosensory thalamus. Blue light (470 nm) drove the depolarization of excitatory

thalamic neurons expressing channelrhodopsin (ChR2). Spiking activity of a single thala-

mic neuron was measured using a tungsten extracellular recording electrode bundled to the

fiber optic cable (often referred to as an “optrode”).

The block-diagram of the control system is shown in Figure 2.1(b). We applied light
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input u to the “neural system”, or plant, whose activity was measured through spiking

activity z ∈ R1. In this application, the control objective was to achieve time-varying

trajectories in firing rate, and thus the feedback signal consisted of a filter’s estimate of

instantaneous firing rate, “Firing rate (FR) filter” in Figure 2.1(b). Optical stimulation

intensity, u ∈ R1, was varied continuously by a proportional-integral (PI) controller, which

acted on the error signal between the reference/desired time-varying firing rate r and the

online estimate of the instantaneous output firing rate, ŷ ∈ R1. Control was effected in the

face of unobserved disturbances, which could take the form of uncontrolled inputs and/or

changes in the dynamics of the system.

The design procedure utilized here required identification of a model for the neural sys-

tem during the experiment; combined with testing the controller design, this places serious

demands on the duration of an experiment, which is typically limited to approximately 2-3

hours. The timeline and task demands are outlined in Figure 2.1(c).

2.3.1 Examples of closed- vs. open-loop stimulation

Before unpacking the technical details of the system design in subsequent sections, we first

present examples representing the basic abilities of the closed-loop framework vs. open-

loop stimulation strategies to track slowly-modulated reference firing rates (here, 1 Hz),

reject exogenous disturbances, and track complex, biologically relevant trajectories in firing

rate.

In the example for controlling a 1 Hz sinusoidal firing rate provided in Figure 2.2(a),

pulsatile input was used for open-loop stimulation (bottom). Note that for this instance of

open-loop control, pulsatile inputs were used since this is the most common way to stimu-

late ChR2. Single-trial and trial-averaged estimates of firing rate are shown for closed-loop

(top) and open-loop (bottom) cases. For the open-loop case, measured firing activity was

not utilized in shaping the light input, but instead the amplitude of the light inputs were

designed based on previous measurements of number of spikes elicited as function of pulse
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amplitude (see Section 2.2.6). In each scenario, the trial-averaged input (i.e., light intensity)

is plotted below the corresponding firing rate. The control epochs begin at time zero. Both

closed- and open-loop stimulation strategies achieved the target firing behavior on aver-

age in the undisturbed scenario (Figure 2.2A, thick red and black versus green). However,

single-trial estimates of firing rate (thin red lines, smoothed with a 120-ms SD Gaussian

window) reveal that open-loop stimulation resulted in more variable rate trajectories than

closed-loop for this example.

A major benefit of a closed-loop system is its capacity to react to changes in ongoing

activity and reject disturbances, as illustrated in Figure 2.2(b). For the same example tha-

lamic neuron in Figure 2.2(a), we identified the whisker on the contralateral side of the

animal's face to which the neuron responded most robustly, often referred to as the “princi-

pal whisker”. A whisker disturbance (see Section 2.2.7) begins at 2 seconds into the control

epoch. During the application of the disturbance, closed-loop stimulation was able to ad-

just to maintain reasonable control of the 1 Hz trajectory (Figure 2.2(b), top). Conversely,

in the case of open-loop stimulation (Figure 2.2(b), bottom), the firing rate was unsurpris-

ingly increased well above the reference. It is also of interest to note that, while the same

open-loop pulsatile stimulus was used in Figure 2.2(a-b), the effectiveness of stimulation

was weaker in the initial 2 seconds of the control epoch before the onset of the disturbance.

Given that time elapsed between these two recordings, this phenomenon speaks to appar-

ent non-stationarity in the system for which closed-loop stimulation is able to compensate,

even over relatively short timeframes.

We also challenged the control framework with a non-sinusoidal, reference trajectory

derived from thalamic spiking measured in an awake animal (Section 2.2.2, Figure A.1), as

shown for a different thalamic neuron in Figure 2.2(c). As described in the Section 2.2.2,

we analyzed previously-recorded single unit firing activity in the VPM thalamus of the

awake rat during active whisking, and used this to generate a more “naturalistic”, non-

sinusoidal firing rate trajectory to track in these separate experiments. Note that open-
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loop control performed qualitatively similarly to closed-loop control on average in this

example, although closed-loop does provide modest improvements in tracking. However,

in agreement with the sinusoidal trajectories above, closed-loop stimulation results in lower

trial-to-trial variability, as shown by Fano factor (FF), where the variability of closed-loop

controlled firing generally falls below open-loop.

These examples of control shown in Figure 2.2 depended upon the design and imple-

mentation of both the firing rate filter and controller elements of a closed-loop system,

which we further detail below, before returning to further analyses of the control perfor-

mance.

2.3.2 Firing rate estimator design

In order to perform feedback control of output firing rate, this underlying instantaneous rate

function had to be estimated online, given measured spiking activity. As described in detail

previously (Section 2.2.3), for simplicity of real-time implementation, instantaneous firing

rate was estimated by a first-order moving average filter with a single parameter, the decay

time constant τ . Figure 2.3(a) shows the basic concept for the design strategy, where a

Poisson spike generator was driven with a sinusoidal rate function, y, and the the latent rate

was estimated by filtering the spike train. The goal of the design procedure was to choose

the filter time constant that optimally recovered the underlying sinusoidal rate. Shown are

the results for an illustrative example where a simulated spike train was filtered with one of

three values of the decay time constant τ (actual rate in green and estimated rates in purple

shown on the right; bottom: too slow, top: too fast, middle: MISE-optimal).

As described in detail in Section 2.2.3, for sinusoidal modulation the optimal filter

for firing rate estimation depended upon the baseline (DC) offset of the sinusoid (µsin),

the modulation frequency (fmod), the amplitude (σsin), and the number of trials used for

estimation (Ntrials), which together influenced the optimal filter bandwidth for recovering

sinusoidal rate modulation from recorded spikes. Plotted on the top panel of Figure 2.3(b)
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Figure 2.2: Closed- vs. open-loop optogenetic control of dynamic firing rate trajectories (a)
Closed- and open-loop control of sinusoidally-modulated firing rate. Closed-loop (black) control
and pulsatile open-loop (red) stimulation were used to elicit a 1 Hz sinusoidally modulated firing
rate. Light lines correspond to single trial firing rates estimated by smoothing spike trains with
a Gaussian window (120 ms SD); bold lines are the trial-averaged rate. Average control inputs
(i.e., light) are below the corresponding firing rate trajectory. (b) Closed- and open-loop control
in presence of a disturbance. Control was challenged with a whisker disturbance at 2 seconds into
the control epoch, as shown in gray (top). (c) Closed-loop and open-loop control of non-sinusoidal
firing rate. Top, firing rates for closed-loop (black) vs. open-loop (red) control: average in bold,
while fills represent 95% confidence intervals for smoothed PSTH. Middle, Fano factor calculated
in 250-ms sliding window for closed- and open-loop control (n = 25 trials). Bottom, trial-averaged
control inputs for closed-loop (black) or open-loop (red).
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Figure 2.3: Firing rate filter: Choosing filter bandwidth (a) Conceptual diagram. A given sinu-
soidal firing rate (λ) drove a Poisson spike generator (P). The resulting spike train was multiplied
by ∆−1 (not shown) ahead of filtering. Filters parameterized by a time constant, τ , yielded an es-
timate of the true rate. (b) Optimal time constant as a function of expected number of spikes per
period and degree of modulation about mean (top) and as a function of ζ (bottom). For visualiza-
tion, the optimal filter has been normalized by the frequency of each sinusoid. Fit: aτ = 0.423,
bτ = 0.389. (c) Filter time constants designed for single-trial estimation where µsin = 20 spikes/s,
σsin/µsin = 1. Bold purple, region of frequencies where the derived design equation was fit. Light
purple, frequencies at which the the design equation was extrapolated (ζ < 12). Insets, example
single-trial estimates (purple) of the ground truth rate (green) at indicated modulation frequencies.
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are the MISE-optimal values of the filter’s decay time constant, τ ∗, as a function of the

number of spikes/period of the sinusoid, for varying degrees of modulation (σsin/µsin). As

expected, the MISE-optimal filter time constant decreased with increasing number of spikes

per period and modulation intensity. We then used the quantity ζ defined by Koyama and

Shinomoto [150] to reduce the dimensionality (see Section 2.2.3). The disparate curves in

the top panel of Figure 2.3(b) then collapsed to a single curve when plotted as a function

of ζ (Figure 2.3(b), bottom). We fit a power law relationship for the optimal time constant

using least-squares, the result of which is shown in red in Figure 2.3(b) (bottom): aτ =

0.423, bτ = 0.389.

In the case of the sinusoidal firing rates utilized in the remainder of this study, where

modulation amplitude was maximal (i.e., σsin/µsin = 1), the MISE-optimal filter masked

temporal modulation in favor of capturing the DC firing rate if there were fewer than 12

spikes per period. More generally, this corresponds to a regime where ζ < 12 in which

there was a deficit in spiking data on a single-trial basis (denoted by the vertical gray line

in Figure 2.3(b), bottom). As such, these data points were excluded from the regression.

For the rates used in the remainder of this study where µsin = 20 spikes/s, this corre-

sponded to frequencies greater than 2 Hz (Figure 2.3(c), light purple). By extrapolating the

expression for filter time constant that was developed and fit in the regime where ζ > 12,

we arrived at choices for time constants that did not smooth out temporal modulation at

higher frequencies despite this fundamental limit while still providing a reasonable degree

of smoothing, as seen in Figure 2.3(c) (insets). From the insets which provide examples

of single-trial estimation of a 1 Hz, 5 Hz, and 10 Hz sinusoidal rates from spikes, it is ap-

parent that when the modulation frequency reached 10 Hz for this DC offset, spikes were

too infrequent per period of oscillation to recover the sinusoid accurately on a single-trial

basis.

The net result of this procedure was a relationship between the filter time constant and

the parameters of the sinusoidal rate which was valid in a regime where there was sufficient
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data to resolve the temporal modulation. When the rate estimation was data-impoverished,

this relationship allowed us to estimate what the filter time constant would be if not for this

fundamental limit. Therefore, while it is impossible to faithfully recover higher frequency

modulation on a single-trial basis, this approach provides a principled choice of firing rate

filter time constant that does not smooth out the rate modulation.

2.3.3 Controller design

Given the design for the firing rate filter time constant, we developed a PI controller design

strategy for tracking sinusoidal trajectories of different frequencies (1, 5, 10 Hz). For prin-

cipled design of the controller, we undertook a brief system identification step during the

experiment to fit a model for the neural system, consisting of a cascade of a linear stimulus

filter, static nonlinear function and Poisson spike generator (LNP model). Controller gains

were then tuned in simulation using the LNP model fit to data in place of the neural system

(Figure 2.4(a)), followed by implementation in the experiment.

To tune the controller, we chose gains which minimized the squared error between the

reference rate and the measured spiking signal. This noisy error signal was weighted in

the frequency-domain according to the importance of a frequency for the intended control

(see Section 2.2.5). In the context of sinusoidal trajectories used here (σsin = µsin), the

frequency-weighted squared error objective function (Section 2.2.5) evenly penalized error

at DC and the modulation frequency.

To illustrate the tuning procedure, we provide example simulations of the control loop

using an LNP model fit to experimental data. The frequency-weighted error metric is shown

as a function of the proportional controller gain (Kp) and the integral controller gain (Ki)

for a 5 Hz sinusoidal trajectory (Figure 2.4(b)). The result of the minimization was that

there were optimal controller gains (circle symbol) which yielded improvement over two

suboptimal examples (x & triangle symbols). This is shown more explicitly with simulated

examples (Figure 2.4(c), bottom), where desired (green) and achieved (black) firing rates
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Figure 2.4: Controller Design: Tuning the controller around an LNP model neuron (a) Con-
troller design through simulation. The closed-loop system was simulated with a model of the neural
system for design purposes. (b) Example tuning surface for 5 Hz sinusoidal trajectory. In simu-
lation, the controller was tasked with tracking a sinusoidal trajectory (here, 5 Hz), using the firing
rate filter designed previously for the corresponding reference. The objective was to minimize the
squared tracking error, weighted as a function of frequencies important for the control task. (c) Ex-
amples of optimal and suboptimal controller gains. Frequency-domain error (top row) corresponds
to amplitude of error between the raw instantaneous rate (z/∆) and the reference at DC and the
modulation frequency (here, 5 Hz). For comparison, the square root of the frequency-weighted
squared error (Jfwt) is also provided. Error bars correspond to +1 SD. Corresponding error spectra
are provided (middle row), as compared to a simulated Poisson process modulated at the reference
rate (light grey). Green lines highlight DC and fmod. Finally, time-domain tracking is provided
(bottom).
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are plotted for the three sets of control parameters. In the middle row of Figure 2.4(c),

the resulting error spectra for these three tunings are compared to the error expected for a

Poisson spike generator (PSG) that has been driven at the reference rate (light grey). The

spectrum for the reference-driven PSG shows the error that results purely as a function of

random spiking, rather than off-target firing rate modulation. Because of the use of feed-

back, the spikes resulting from simulated closed-loop control are not truly random, leading

to less error at low frequencies than would be expected in the Poisson case (black vs. grey

error spectra). The peaks in error at 2fmod (here, 10 Hz) in Figure 2.4(c) occur because the

controlled neuron can spontaneously fire even when the reference rate is zero, resulting in

errors at the troughs of each period. This in combination with error that occurs at peaks

of the sinusoidal reference results in some power at double the modulation frequency. In

comparison to the other two examples, the optimal tuning clearly reduces the error at both

DC and fmod. For the sinusoidal trajectory used here, the tuning procedure involved min-

imizing the combined error at DC and modulation frequency, illustrated in Figure 2.4(c)

(top) as the square-root of the frequency-weighted squared error metric (Jfwt).

2.3.4 Model accuracy and closed-loop performance

While the closed-loop control system is model-free in implementation, the above results

relied upon knowledge of a model relating the light input for optogenetic stimulation and

the neuronal firing. During experiments, we therefore estimated a model that captures this

relationship between the light input, u ∈ R1, and the measurement, z ∈ R1, (Figure 2.5(a))

for use in controller design. We utilized a band-limited “white-noise” optical input for

stimulating the thalamic neuron and fit a simple linear-nonlinear-Poisson (LNP) cascade to

capture these responses (see Section 2.2.4). An example LNP fit is shown in Figure 2.5(b).

Note that the finite impulse response (FIR) stimulus filter, or kernel, is plotted time-reversed

for visualization.

To understand how accurate these LNP models were, we tested their ability to pre-
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Figure 2.5: LNP Model Performance: Open-loop vs. closed-loop (a) Fitting the linear-nonlinear
(LN) model components. (b) A typical LN model fit to training data. Left, the stimulus FIR fil-
ter estimated using whitened spike triggered averaging; error bars correspond to +/- 1 SD for the
lagged coefficients of the kernel when fit to 10 subsets of the full training dataset. Right, the static
nonlinearity fit by Poisson maximum likelihood, given output of the linear stage and measured
spikes. Gray points indicate the experimental firing rate (PSTH smoothed with 1-ms Gaussian)
versus the kernel-filtered stimulus. (c) LNP prediction of response to open-loop ‘replay’ of stimu-
lation used experimentally during a 5 Hz sinusoidal control task, using the same LNP model shown
in (b). Top, firing rate predicted by the model (red) as compared to the experimental data for the
same cell (black); bottom, experimental optical input. (d) LNP prediction of response to simulated
closed-loop stimulation. Firing rate and light input predicted by the model (blue) as compared to
the experimental data for the same cell (black); bottom, simulated (blue) and experimental (black)
closed-loop stimulation.
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dict the input-output relationship in the operating regime observed during a control epoch.

Upon investigating how the LNP models responded to control inputs used during closed-

loop stimulation experiments, we found that the models produced varying levels of success

in predicting the observed firing activity of the thalamic neurons. Shown in Figure 2.5(c) is

one such representative example where light inputs used experimentally for tracking a 5 Hz

sinusoidal target trajectory were presented to the neuron’s corresponding LNP model. The

response of the LNP model neuron (red) did not accurately predict the experimental rate

(black). Given a wealth of literature suggesting difficulty in obtaining predictive models of

neuronal firing in vivo beyond the sensory periphery (e.g., [89, 157]), this finding is perhaps

unsurprising.

However, because these models were used for tuning the controller gains in simula-

tion, it is more important to assess their predictive capability in the context of closed-loop

operation. The use of feedback for control conferred some robustness to model inaccu-

racy, and although the LNP model was generally not a good predictor of neuronal firing

activity in open-loop, the model produced outputs that agreed with experimental results

when simulated in the context of closed-loop control. Figure 2.5(d) provides an example

where the same model neuron in Figure 2.5(c) was simulated in the closed-loop system

parameterized by the firing rate filter time constant (τ) and controller gains used experi-

mentally. In this case, the firing rate of the model neuron (blue) more closely matched the

experimentally-realized firing (black).

2.3.5 Robustness of control to model inaccuracy

Given the observation that the LNP models used for controller tuning were generally poor

predictors of experimental data in the open-loop sense, it is important to know to what

extent the controller performance was robust to modeling error in this context. Therefore,

we set out to determine more systematically through simulation how robust control perfor-

mance was to inaccuracy in two identified LNP model parameters: gain and bias. Taking an
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LNP fit to experimental data, the PI controller was tuned around it, as would be done dur-

ing an experiment. We then tested these controller parameters on perturbed versions of the

original LNP model, where the static gain and the bias term of the linear component of the

LN model were changed systematically. To quantify the distance between the performance

of the original and perturbed systems, the percentage change in tracking performance was

calculated by comparing the error (Jfwt) for the perturbed models to that of control around

the original LNP. Further, to assess the effect of model inaccuracy on “steady-state” track-

ing performance, Jfwt was calculated from 1 second onward for 5-second control epochs.

To inspect for added benefit of closed-loop stimulation as opposed to open-loop, the track-

ing error was assessed for the perturbed models in both closed- and open-loop contexts.

For the latter, light inputs used to control the original LNP were presented to the perturbed

versions of the model in open-loop.

Decrements in control performance due to model inaccuracy are illustrated in Figure 2.6

for tracking a 5 Hz sinusoidal reference, using an example LNP fit to experimental data.

The schematic in Figure 2.6(a) shows the two parameters that were varied: the static gain

(g) and the bias term (d) of the LNP model (see Section 2.2.4). Altering g increases or

decreases the apparent ‘sensitivity’ of the neuron to optical drive. The bias term reflects

the baseline firing rate in the absence of optical drive. Contrary to Section 2.2.4, for this

analysis, LNP models were fit with α equal to 1 to control for differences in the knee of the

nonlinearity. Note also that in the analysis shown here, the shape of the kernel was retained.

The parameters g and d were perturbed over a range extending from five times smaller to

larger than the original values for which the controller was designed and the decrements in

controller performance quantified (Figure 2.6(b)).

While there is interaction between the effects of the two parameters on control per-

formance, changing the bias led to binary effects, as the performance quickly transitioned

from optimal to very poor, moving from left to right in Figure 2.6(b). This observation

is made plain when holding the static gain at the nominal value and fractionally changing
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Figure 2.6: Robustness of Control to Model Inaccuracy (a) Model Perturbation and Simulation.
The static gain (g) and the bias (d) of the linear component of the LNP model were systematically
perturbed and simulated either in closed- or open-loop. (b) Grid Search Over Gain and Bias. Frac-
tional changes in g and d ranged from five times smaller to five times greater than the original pa-
rameter value. Grayscale represents the percentage change in tracking performance (Jfwt) between
that of the original model and each perturbed version. This tracking error was calculated from 1
second onward for 5-second control epochs. (c) Changing Bias. Holding all else constant, d was
changed, and the tracking performance was quantified for closed-loop control vs. open-loop replay
of the light traces used to stimulate the original neuron. Gray circles indicate the estimated biases
of all recorded neurons relative to the model used for perturbation study (n=20). (d) Examples of
Simulated Control When Bias Estimation Inaccurate. (Top) Outcome when the actual neuron (blue)
was 2 times less biased than the model around which controller were tuned (black); (Bottom) the
outcome when the actual neuron (blue) was 2 times more negatively biased than the model around
which the controller was tuned (black). Scale bar indicates 20 spikes/s. (e) Changing Gain. Holding
all else constant, g was changed and the tracking performance quantified for closed-loop control vs.
open-loop replay of the light traces used to stimulate the original neuron. Gray circles indicate the
estimated gains of all recorded neurons relative to the model used for perturbation study (n=20). (f)
Examples of Simulated Control When Gain Estimation Inaccurate. (Top) Outcome when the actual
neuron (blue) was 2 times less sensitive than the model around which controller were tuned (black);
(Bottom) the outcome when the actual neuron (blue) was 2 times more sensitive than the model
around which the controller was tuned (black). Scale bar indicates 20 spikes/s.
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the bias (Figure 2.6(c)). Note that the identified bias term was negative. As the bias term

approached zero (i.e., xd decreases), this increased the baseline firing rate of the model neu-

ron. Conversely, as the bias became more negative than the original value (xd increases),

this mapped the output of the linear portion of the LNP model to the highly nonlinear

portion of the static nonlinearity.

In Figure 2.6(c), the change in tracking performance for a 5 Hz sinusoid is shown for

both closed-loop stimulation (blue) as well as open-loop replay of the stimulation pattern

used to manipulate the original (i.e., unperturbed) model (red). Except at extremes, closed-

loop control was very robust to inaccurate estimation of the bias term. At these extremes,

either the neuron’s baseline firing rate exceeded the reference firing rate or the output of

the linear component of the model was mapped to a regime of the nonlinearity where the

LED or other light source was incapable of delivering inputs intense enough to raise the

firing rate. In both of these scenarios, there would be little if anything a controller could do

to salvage performance. Figure 2.6(d) provides simulated examples for when the neuron

being controlled (blue) was two times less biased (top) or two times more negatively biased

(bottom) than the neuron for which the controller was tuned (black). In the first case,

the baseline firing rate of the neuron in blue was too high to be effectively controlled.

Conversely, in the case where the bias of the neuron was more negative (bottom), it took

more light input (not shown) and, therefore, more time for the system to reach “steady

state” behavior. However, once the controlled system reached steady state, the tracking

performance (blue) was identical to the that of original model neuron the controller was

designed around (black).

Holding the bias term at the original value and instead perturbing the static gain, Fig-

ure 2.6(e) reveals that while the impact of inaccurate estimation of static gain on controller

performance was more graded, closed-loop control of time-varying trajectories was less

robust to inaccurate estimation of gain than to the bias term. As before, it was the case

that closed-loop control (blue) offers a buffer against the effects of such model inaccuracy
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as compared to open-loop stimulation (red). Figure 2.6(f) provides examples for when the

controller was tuned around a model that was two times more sensitive (top) or less sensi-

tive (bottom) to light than the neuron being controlled in blue. In the case where the neuron

being controlled was less sensitive than the model around which the controller was designed

(top), the controller achieved the correct DC firing rate, but was more weakly modulated

than the target oscillatory activity. Conversely, where the neuron being controlled was more

sensitive to optical drive, there were periodic overshoots of the reference. Unlike the case

of the bias term, there are relatively simple actions that could be taken in the future to

ameliorate errors due to inaccurate gain estimation, including online re-estimation.

2.3.6 Control summary: Tracking a sinusoidal trajectory

Figure 2.2 provided a single example of tracking at 1 Hz. Here, we expand on this by

presenting results for eliciting a 5 Hz sinusoidal pattern in thalamic neurons recorded in

separate animals. Figure 2.7(a) provides an experimental example for tracking a 5 Hz

sinusoid at “steady-state” 3 seconds into a control epoch. In this example, controller per-

formance reached the level predicted in simulation for the LNP model used for design

(“neuron 3” in Figure 2.7(b), left vs. middle). Again, the tracking error was quantified as

the frequency-weighted squared error (Jfwt) between the raw measurement of rate (z/∆)

and the reference (r), either for the LNP model used to design the controller (Figure 2.7(b),

left) or for the experiment (middle, right). In the case of the sinusoidal trajectories used

here, Jfwt reflects even penalty placed on error at DC and the modulation frequency. As for

the perturbation analysis (Section 2.3.5), this metric was calculated from 1 second onward

for 5-second control epochs. 95% confidence intervals for the metric were calculated for

simulated Poisson firing at the reference rate and plotted as a light grey horizontal band

(Figure 2.7(b)).

In Figure 2.7(b), each colored line corresponds to a different neuron recorded in a sep-

arate animal, and the black bars represent the population average in simulated closed-loop
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Figure 2.7: Sinusoidal tracking performance (a) Example experimental implementation (“neuron
3”) where the controller and firing rate filter were tuned for a trajectory modulated at 5 Hz. The
third of a five-second control epoch is shown. (b) Population performance for tracking a 5 Hz
sinusoidal trajectory (LNP prediction vs. experimental): average (black bar) and individual cells
(colored symbols). 95% confidence intervals for this metric were calculated for simulated Poisson
firing at the reference rate and plotted in light grey. Left, results of design procedure predicted
by the LNP models fit and tuned around during the experiment. Middle, experimental closed-loop
tracking performance. Right, experimental open-loop tracking performance. (c) Closed- vs. open-
loop experimental performance on 1, 5, & 10 Hz sinusoidal control tasks. Closed-loop tracking error
is significantly less than open-loop (p < 0.05, Wilcoxon signed rank test, n = 12 comparisons, 4
different cells).

(left), experimental closed-loop (middle), and experimental open-loop (right). Here, open-

loop stimulation was a continuously modulated light signal, designed as previously detailed

(Section 2.2.6). Simulated control around the LNP model used for tuning provides a lower

bound for the control error (CL LNP, left). While the level of performance achieved in sim-

ulation was not achieved experimentally (Figure 2.7(b), middle), reasonable control was

nonetheless achieved for all neurons in closed-loop. In contrast, open-loop control was not

as robust, with the designed stimulation sometimes resulted in much worse performance

than the closed-loop scenario (Figure 2.7(b), right).

The control loop was also tuned for and tested on 1 and 10 Hz sinusoidal trajectories.

The tracking error of closed- vs. open-loop control is provided for all frequencies tested

(i.e., 1, 5, 10 Hz) in Figure 2.7c. When all sinusoidal tasks are considered, closed-loop

control provides significantly lower tracking error (p < 0.05, Wilcoxon signed rank test).
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2.3.7 Control summary: Tracking a non-sinusoidal trajectory

For the non-sinusoidal rate trajectory estimated from previously recorded spiking in the

awake animal, 95% of the power in the reference signal was below 10 Hz. We found

that of control systems designed for 1, 5, or 10 Hz sinusoidal trajectories with the same

DC firing rate (20 spikes/s) as this non-sinusoidal signal, controller gains and filter time

constants designed for the 10 Hz trajectory outperformed lower frequencies (not shown).

Figure 2.8(a) provides an example where the system was tuned for a 10 Hz sinusoidal

trajectory and tasked with tracking the non-sinusoidal pattern of rate modulation (“neuron

5” in Figure 2.8(b), color code same as in Figure 2.7), as well as its corresponding er-

ror spectrum (Figure 2.8(a), bottom). For comparison, the error spectrum of simulated

Poisson firing at the reference rate is plotted in light grey. After a period of approxi-

mately 750 ms, the neuron’s firing rate faithfully followed the reference. A controller

tuned for a 10 Hz sinusoidal trajectory did approximately as well as within-experiment

simulations predicted (Figure 2.8(b)). Again, controller performance was quantified using

the frequency-weighted squared error. Note that for this non-sinusoidal reference trajec-

tory, 50% of its power lies at DC and 45% of the remaining power ranges from DC to

10 Hz; therefore, half the penalty is placed on achieving the correct average firing rate,

while the remaining half of the penalty is primarily exerted at and below 10 Hz. In all

cases, open-loop stimulation proved less effective than closed-loop. Furthermore, as was

first shown qualitatively for a single cell in Figure 2.2(c), the response to open-loop stimu-

lation was also more variable than in the case of closed-loop stimulation. We observed this

phenomenon across cells (n=5), where the spike-count variability, as measured by time-

averaged Fano factor calculated in a 250-ms sliding window, was greater in open-loop than

in closed-loop (Figure 2.8(c)).
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Figure 2.8: Non-sinusoidal tracking performance. (a) Example implementation (“neuron 5”)
on the more naturalistic, non-sinusoidal trajectory. Controller and filter were tuned for a 10 Hz
sinusoidally modulated trajectory. The corresponding error spectrum is also shown (bottom). For
comparison, the error spectrum of simulated Poisson firing at the reference rate is plotted in light
grey. (b) Population tracking error for non-sinusoidal trajectory. 95% confidence intervals for this
metric are calculated for simulated Poisson firing at the reference rate and plotted in light grey.
Left, simulated LNP performance predicted by design procedure. Middle, experimental closed-
loop tracking performance. Right, experimental open-loop tracking performance. (c) Experimental
across-trial variability in closed-loop vs. open-loop. Treating 750-ms onward as ‘steady-state’,
time-averaged Fano factor calculated in a 250-ms sliding window for the closed- vs. open-loop
control cases.
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2.4 Discussion

The advent of new tools for measuring and manipulating activity within complex neural

circuits opens up a wealth of possibilities for more interactive electrophysiological experi-

ments, where feedback is used to inform stimulation continuously. Previously, we provided

an initial demonstration for optogenetic control of neural activity with continuous use of

feedback using a simple model-free control strategy ([6]). Specifically, the previous study

was a proof-of-concept concerned with the demonstration of holding firing rates constant

over long control epochs. Further, while holding firing rate steady is certainly of scientific

interest for probing the functions of neural circuitry near steady-state, generalization of

the closed-loop control approach to time-varying patterns of firing would open up a range

of new applications and lines of investigation. Therefore, in the present study we have

developed and demonstrated a design strategy for using closed-loop stimulation to track

time-varying patterns of firing rate.

Ranging from intracellular current injection to electrical and optogenetic stimulation,

there has been previous work using open- and closed-loop control strategies to manipu-

late neural firing patterns (e.g. [158, 159, 136, 95, 92, 137, 73]). Because spiking is often

thought of as the information currency of the nervous system, such studies are usually

concerned with achieving a target train of spike times. However, as a matter of practical

concern, some jitter in the elicited spike times is tolerated, whether explicitly as in [92]

or by means of a quadratic penalty between a spike time and the next desired spike in a

train ([137]). For this reason, the problem of controlling spike times can be reconceptual-

ized as a problem of controlling a time-varying pattern of firing rate, where the timescale

of rate variation depends upon the tolerated jitter in spike timing. Therefore, while we have

chosen to tackle the problem of manipulating instantaneous firing rate, the design method-

ology laid out here could in principle be applied to the problem of controlling spike times,

where the allowable jitter sets the timescale over which desired spike times are smoothed
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into a rate function that is fed to the control loop as a reference (e.g., [158]).

However, we have presently tasked a control system with tracking not precise spike

timing, but relatively slow patterns of rate modulation (1-10 Hz). Therefore, in this study

we are not exercising control over spiking at timescales faster than approximately 100 ms.

Notable rate modulation in this slower range of timescales occurs across neural systems,

including in the context of active sensation [27, 160], hippocampal theta-phase preces-

sion [161], and movement [162]. The ability to insert such patterns of rate modulation

would enable causal investigation into how instantaneous rate affects the function of such

systems. Moreover, the basic framework developed here could be extended to finer timescales,

opening up additional avenues of investigation that revolve around questions of precision

timing.

The choice to use firing rate as the controlled output of the system necessitated design-

ing a filter for estimating this quantity from noise-corrupted measurements in the form of

spikes. In the interest of simplicity needed for widespread adoption of this technique, we

took a model-free approach to estimation, without taking into account any dependence of

the rate on inputs to the system. The obvious benefit of this approach is that it allows an ex-

perimenter to design this part of the control loop prior to the experiment, and it is simple to

implement. However, given the point process nature of the measurements, this approach is

not ideal for recovering time-varying rates, depending on the timescale of rate modulation.

This is especially true of low firing rate regimes: e.g., at modulation frequencies greater

than approximately 2 Hz, with an average rate of 20 spikes/s (Figure 2.3), where estimates

become increasingly poor.

Given the difficulty of accurate rate estimation at higher frequencies of rate modulation,

we took the practical approach of designing the controller with this firing rate output filter in

the loop. That is to say, we did not make the customary assumption that we could design the

controller for the case where the latent state/controlled output (here, y) was known. Instead,

a Poisson spike generator and filter were included in the simulated control loop when tuning
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the PI controller. By minimizing the error between the measured spiking and the reference

at frequencies of interest for control, we endeavored to safeguard performance of the final

closed-loop system against deleterious effects of imperfect online rate estimation.

Another design choice made in this study was to directly modulate the amplitude of

optical input to the system. While channelrhodopsin (ChR) is most often stimulated using

pulsatile inputs, our choice to use feedback to modulate the amplitude of light was made

on the basis that it requires the fewest design decisions for the experimenter. In contrast to

continuous modulation of amplitude, manipulating pulsatile inputs would require a map-

ping between the control signal and pulse amplitude, width, and frequency (e.g., [6]). That

said, there is nothing preventing the details of the methodology laid out here to be applied

to the modulation of a single pulse parameter such as amplitude or width. We expect that

pulsatile and continuously-modulated modes of optical stimulation will have differential

effects on higher-order aspects of activity such as local population synchrony [6]. While

a robust way to stimulate ChR-expressing cells, pulsatile inputs may not suit all control

applications, such as manipulating subthreshold neuron polarization. Another alternative

to continuous modulation or modulation of pulsatile inputs would be to wait to update the

stimulation intensity each time the neuron spikes, as in [159]. In either case, the current

methodology may still be applied if the simulations used for controller tuning were altered

to reflect the chosen implementation of the control signal.

In this study, we have demonstrated the successful use of a single-degree-of-freedom

controller for tracking a time-varying trajectory of interest. In such a system, the designed

controller is necessarily a compromise between feeding forward an optimally transformed

version of the reference and making best use of feedback to attenuate the influence of

disturbances. In this case, the goal of the design procedure was tracking a time-varying ref-

erence trajectory. The success of such a simple approach is noteworthy in that it indicates

scaling of the reference trajectory is a reasonable first-order approach to stimulus design for

the desired rate modulation, while the feedback signal ensured tracking at or near DC by
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providing the appropriate bias to this input. The downside of the use of a single-degree-of-

freedom controller and tuning for trajectory tracking is that there are no explicit constraints

put on the response to load disturbances or other changes in the system. Satisfying re-

quirements on both reference tracking and disturbance rejection independently begs for a

two-degree-of-freedom control strategy [163].

Since the predominant manner in which stimulation is applied to neural systems is

through open-loop control and event-triggered or on-off closed-loop control ([57, 131, 58,

132, 143, 5]), we have compared the effectiveness of our current approach to an open-

loop strategy. The principal reason one might utilize feedback continuously would be to

compensate for disturbances, whether these come in the form of unmeasured inputs to the

system or changes in the underlying dynamics. Although not an explicit goal of controller

tuning in this study, the use of feedback does, of course, grant some robustness to such

disturbances. As shown previously for the static reference case ([6]) and again here in

the case of a time-varying reference (Figure 2.2), the use of feedback enables effective

control even in the face of uncontrolled input to the system in the form of sensory drive.

However, a noteworthy limitation of the current single excitatory opsin approach is the in-

ability to actively inhibit neural activity. As a consequence, disturbances which raise the

firing rate above the desired rate at timescales of interest for control will not be effectively

rejected. This scenario will necessitate a two-input approach, whether it be expression of

both inhibitory and excitatory opsins or expression of opsins targeted to inhibitory neurons.

Notably, this extension will require additional modeling for capturing effects of inhibitory

inputs (whether direct or indirectly mediated through inhibitory neurons) as well as design

of multi-input controllers. A state-space approach to modeling and control would general-

ize to such applications.

Related to the ability to reject disturbances, another difference between the results of

closed- vs. open-loop stimulation highlighted in Figure 2.2 and again in Figure 2.8 is a

reduction in across-trial variability provided by reactively updating stimulation in real-time.
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Given that stimulation of neural systems is often plagued by response variability, this effect

of closed-loop stimulation will certainly be a positive for many applications. However,

it is also the case that there is naturally-occurring variability in spiking within a given

cell and across a population [164, 165, 156]. There may be scenarios, such as artificial

stimulation aimed at naturalistic perception, in which variability will be an important goal

for control. Since adding response-variability will be an easier task than reducing it, the

current approach represents a good initial step toward a more nuanced control of neural

activity.

At least in an anesthetized preparation, we have shown that it is feasible to undergo a

brief period of system identification followed by controller tuning in simulation within the

timespan of an experiment. The fact that the LNP models used for this process were often

poor predictors of the input-output relationship in the open-loop sense and yet closely pre-

dicted the performance of the closed-loop system highlights the need to assess the goodness

of a model in the context of its intended use. If, for example, the use of a mathematical

model is purely as a tool for design rather than for making mechanistic inferences, then

more complicated models that may be more accurate but also more difficult to estimate

may prove unnecessary. Indeed, while not tested here, a nonlinear spiking model may not

have been necessary for effective control, given the robustness of closed-loop stimulation

to the inaccuracies already present in the LNP model. It is possible a linear model would

have been sufficient in this context.

Since the controller was designed around an identified model for the system, it is impor-

tant to ask how sensitive, or conversely how robust, control system performance is to model

inaccuracy. If the resulting design is sensitive to small deviations in estimated parameters,

either the modeling/system identification approach or the control scheme should be mod-

ified accordingly. Here, we have found that even with often inaccurate LNP models, we

achieved reasonable controller performance (Figures 2.7&2.8). Although closed-loop stim-

ulation does relax the requirements for model accuracy, we have also shown that something
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as simple as inaccurate estimation of static gain of the LNP model can have deleterious ef-

fects on control performance in the case of a time-varying reference signal. Importantly,

changes in response properties such as gain and baseline firing rate often occur over time in

neural systems in the contexts of sensory adaptation [86, 84, 166, 88], level of arousal [20],

etc. It is noteworthy that changes in response gain observed in thalamic neurons in the con-

text of sensory input (e.g. [86, 88]) are often on par or greater than those seen here in the

context of optogenetic stimulation. Therefore, the question of controller robustness will be

important moving forward.

2.5 Conclusions

Here, we have found that when appropriately tuned, the simple exponential firing rate filter

and PI controller framework used by Newman et al [6] to maintain a constant firing rate

can also be effective for eliciting time-varying firing rate trajectories. The strength of this

approach lies in its relative simplicity, which should render it readily adoptable for the

neuroscience community. With the availability of an open-source platform for real-time

control of electrophysiology (RTXI, [167]), the design methodology laid out here should

enable widespread application of closed-loop control to optogenetics experiments.

Of particular note is the fact that the simple models used for controller tuning could

be poor predictors of the light-to-spiking transformation and still prove useful. This phe-

nomenon highlights that it is not necessary in all contexts to fit the best possible mathe-

matical model. Instead, modeling decisions should be made in light of the intended end

use, where considerations such as expedience or mathematical tractability may be of great

importance. Indeed, it is possible that in the context of this study, an even simpler model

structure could have sufficed. Moreover, the finding that closed-loop optogenetic stimu-

lation can reduce spike-count variability at the timescales investigated highlights the tech-

nique's utility for more reliable electrophysiological recordings and opens the door to con-

trol strategies that make variability explicit goals of the design process. Taken together,
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the methodology developed in this study will lay the groundwork for more refined use of

optogenetic stimulation and may enable a new class of experiments aimed at elucidating

the functional roles of neural populations in networks.
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CHAPTER 3

STATE-SPACE MODEL-BASED FEEDBACK CONTROL OF

OPTOGENETICALLY DRIVEN NEURAL ACTIVITY

3.1 Introduction

Over the last two decades, there has been a rapid expansion of tools and technologies for

recording the large-scale activity within and across brain structures at single neuron res-

olution ([63, 168]). In parallel, the development of optogenetics provided the ability to

optically excite or inhibit neural activity in a cell-type specific manner ([3]). Together,

these advances in the ability to “read’ or “write” the neural code have led to a wide range

of discoveries of the circuit mechanisms underlying sensory, motor, and cognitive pro-

cesses ([169]). The integration of recording and optogenetic stimulation techniques, how-

ever, has received comparatively little attention until recently ([6, 138, 126, 132, 57, 131,

133, 134, 69]; for review [5]), and in most cases these closed-loop systems utilize event-

triggered or on-off control rather than continuous feedback. While feedback control is the

engineering cornerstone for the function of a wide range of complex technologies rang-

ing from communication to flight, applying this perspective in the nervous system remains

more theoretical ([135, 170, 158, 137, 141]) than experimental. In this study, we estab-

lish a general framework for continuously-modulated closed-loop optogenetic control of

neuronal circuits, where optical actuation is determined in real-time by comparing mea-

sured neuronal spiking to target activity. This work opens up possibilities for investigation

of poorly understood mechanisms of the underlying circuitry and for adaptively interact-

ing with the circuit dynamics within and across brain regions that constantly change in

response to the internal and external environments.

Electrical stimulation has been the gold standard for manipulating the activity of neu-
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rons at fast time-scales, and remains the basis for clinical interventions like deep brain

stimulation ([171]). However, this approach suffers from lack of specificity while also typ-

ically precluding simultaneous measurement of the activity of the neurons being stimulated.

While not yet clinically viable, optogenetics offers an alternative approach that enables cell-

type specificity, bi-directional actuation, the ability to simultaneously stimulate and obtain

electrophysiological recordings, and a potentially lesser degree of unnatural synchroniza-

tion of the local population ([72]). This presents an attractive toolbox for the development

of continuous, feedback control strategies where stimulation is continuously modulated

based on real-time measurements of the local neuronal activity. There has been a range

of studies where previously-determined stimulation is triggered based on recorded activ-

ity in a reactive closed-loop fashion ([57, 131, 132, 133]). In addition to event-triggered

control, a recent study has also used on-off closed-loop control to gate photostimulation

when recorded neuronal activity was below target levels ([69]). Although these approaches

to stimulation have proven effective for their uses, they are fundamentally different from

the continuously-graded feedback control we describe here, where stimulation is updated

on a moment-by-moment basis as a function of the current and past measured neural ac-

tivity. In previous studies, we have developed and demonstrated strategies for closed-loop

optogenetic control of spiking activity of neurons in a cultured network and single neu-

rons in vivo in the anesthetized brain ([6, 126]). While laying the conceptual groundwork,

these approaches do not scale well to neuronal populations and do not take advantage of

more modern approaches in control theory. Additionally, these previous studies had not yet

applied optogenetic control in the context of wakefulness.

In this study we bridge the gap between optogenetics and established paradigms of

more modern control theory by utilizing state-space models to capture single- and multi-

neuron responses to optogenetic stimulation and employing optimal control to design the

control loop for driving desired neuronal activity. Specifically, precise manipulation of

neurons was carried out via optical activation of the excitatory opsin channelrhodopsin-2
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(ChR2) expressed in the somatosensory thalamus of the awake, head-fixed mouse. A feed-

back controller updated light intensity in real-time based on simultaneous electrophysio-

logical measurements of the thalamic neurons being manipulated. A linear dynamical sys-

tem model structure was used to approximate the light-to-spiking input-output relationship

in both single-neuron as well as multi-neuron scenarios in cases where multiple neurons

were measured simultaneously using multielectrode arrays. These linear state-space mod-

els were used in combination with linear quadratic optimal control to design feedback con-

troller gains for the purpose of regulating thalamic firing around a desired target rate. The

models were also used online for estimation of state feedback, using a parameter-adaptive

Kalman filter for robustness to model-mismatch. The resulting controller-estimator feed-

back loop was deployed experimentally by way of a custom-written program running in

real-time. This control scheme provided effective optogenetic control of firing rate in the

awake brain, owing to the robustness to model inaccuracy granted by a parameter-adaptive

Kalman filter that estimated a stochastically-varying process disturbance. Feedback con-

trol using this estimator resulted in very good firing rate tracking experimentally for the

single neurons whose activity was used for feedback. By comparison, control was not as

effective for other simultaneously-measured neurons not used for feedback. To investigate

the generalizability and efficacy of these methods for future multi-output control scenar-

ios, we demonstrate their application to multi-neuron feedback control of a population in

simulation.

3.2 Methods

3.2.1 Animal preparation

All procedures were approved by the Institutional Animal Care and Use Committee at

the Georgia Institute of Technology and were in agreement with guidelines established

by the NIH. Experiments were carried out using either C57BL/6J mice that were virally

transfected to express channelrhodopsin-2 (ChR2) or by single-generation crosses of an
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Ai32 mouse (Jax) with an NR133 cre-recombinase driver line (Jax) which grants better

specificity of ChR2 expression in ventral posteromedial/posterolateral thalamus ([123]).

In the case of viral transfection, ChR2 expression was targeted to excitatory neurons in

the thalamus via stereotactic injection relative to bregma (approximately 2 × 2 × 3.25

mm caudal × lateral × depth) using 0.5 µL of virus (rAAV5/CamKIIa-hChR2(H134R)-

mCherry-WPRE-pA; UNC Vector Core, Chapel Hill, NC) at a rate of 1 nL/s.

At least three weeks prior to recordings, a custom-made metal plate was affixed to the

skull for head fixation and a recording chamber was made using dental cement while the

animals were maintained under 1–2% isoflurane anesthesia ([172]). After allowing a week

for recovery, mice were gradually habituated to head fixation over the course of at least

five days before proceeding to electrophysiological recordings and optical stimulation. On

the day of the first recording attempt, animals were again anesthetized under 1-2% isoflu-

rane and a small craniotomy (1-2 mm in diameter) was centered at approximately 2 ×

2 mm caudal and lateral of bregma. The animals were allowed to recover for a minimum

of three hours before awake recording. At the time of recording, animals were headfixed

and either a single electrode or an electrode array coupled to an optic fiber (Section 3.2.2)

was advanced through this craniotomy to a depth between 3-4 mm for thalamic recording

and stimulation. Between repeated recording attempts, this craniotomy was covered using

a biocompatible silicone sealant (Kwik-Cast, WPI). Following termination of recordings,

animals were deeply anesthetized (4–5% isoflurane) and sacrificed using a euthanasia cock-

tail.

3.2.2 Experimental setup

All optical stimuli were presented deep in the brain via a 200 or 100 µm diameter op-

tic fiber attached to a single tungsten electrode (FHC) or to a 32-channel NeuroNexus

optoelectric probe in a 25 µm-spaced “poly3” configuration (A1x32-Poly3-5mm-25s-177-

OA32LP, NeuroNexus Technologies, Inc.), respectively. Command voltages were gener-
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ated by a data acquisition device (National Instruments Corporation) in a dedicated com-

puter running a custom-written RealTime eXperimental Interface (RTXI, [167]) program

at 1 ms resolution. Command voltages were sent to a Thorlabs LED driver, which drove a

Thorlabs M470F3 LED (470 nm wavelength blue light) connected to the 100-200 µm op-

tical fiber. A commercially available data acquisition device and processor (Tucker Davis

Technologies RZ2) measured extracellular electrophysiology. This system was used for

single-channel PCA spike sorting, binning, and sending these binned spike counts at 2 ms

resolution to the computer running RTXI over ethernet via UDP. The computer running

RTXI for realtime control listened for datagrams over ethernet and linearly interpolated

from 2 ms to the operating resolution of 1 ms. All told, the closed-loop processing loop

was approximately 10 ms.

As mentioned above, the control and estimation algorithms were carried out in real-time

at 1 ms resolution using a custom-written program. The program consisted of an RTXI

“plugin” linked against a C++ dynamic library that was responsible for online estimation

of state feedback (Section 3.2.5) and the generation of control signals (Section 3.2.6). This

functionality was provided as part of a state-space controller C++ class. The RTXI plugin

forwarded the reference, or target, firing rate, model parameters, and feedback controller

gains to a state-space controller object, and the controller returned an updated control signal

each time it was queried by RTXI. This control signal was then routed by RTXI to the LED

driver via a DAC (see above). All linear algebra was carried out using the C++ library

Armadillo ([173]).

3.2.3 Offline spike sorting

For online control applications, single-channel PCA-based spike sorting was carried out

in real-time using a commercially available electrophysiology system (Tucker Davis Tech-

nologies RZ2). Beyond tetrode recordings, spike sorting from high-density electrode ar-

rays requires a multi-step process that is not feasible within the timescale of experiments
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with head-fixed awake animals. Kilosort2 ([174]) was used for all offline spike sorting,

including single-channel recordings, in which case spatial whitening and common mode

referencing steps were disabled. Initial sorting by Kilosort2 was then manually curated

(additional merging/splitting of clusters) using the phy viewer. After manual curation, any

clusters that met the following criteria were considered single units and used in this study:

sub 1 ms ISI violations of <0.5%, sub 2 ms ISI violations of <2%, and mean waveform

amplitude-to-standard-deviation ratio >4.

3.2.4 Mathematical modeling

Linear and Gaussian state space models were used in designing feedback controller gains

before experiments as well as during the experiment as part of the state feedback estimator.

These models were fit offline to neuronal data before experimental application of optoge-

netic control and were fit at 1 ms time resolution, which was also the operating resolution

of the RTXI software used for real-time control and estimation during experiments. In

addition to the single-unit quality selection criteria in Section 3.2.3, models were only fit

to putative single units (called “neurons” hereafter) whose activity was significantly mod-

ulated by optical stimulation. Following Sahani and Linden ([175]), a neuron”s response

was considered significantly modulated if the amount of “signal power” in the response

was greater than one standard error above zero. Note that Sahani and Linden ([175]) define

“power” as the variance in time. We will refer to “signal power” as “signal variance” in

this study.

The underlying dynamics of neural activity were approximated as a linear dynamical

system (LDS) in which a number of latent “state” variables, represented as the vector x ∈

Rn, evolve linearly in time:

xt = Axt−1 + But−1 + µt−1 + wt−1 , (3.1)

where ut ∈ R1 is the optical stimulus at time t, µt ∈ Rn is a process disturbance,
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wt ∼ N (0,Q) is Gaussian noise of covariance Q, A ∈ Rn×n is the state transition matrix,

and B ∈ Rn×1 is the input vector (generally a matrix). Note that the disturbance, µ, was

assumed to be zero during model fitting. However, for robustness in control applications,

µ was allowed to be non-zero and to vary stochastically over time for the purpose of online

state estimation (Section 3.2.5).

Gaussian linear dynamical system

Linear and Gaussian models were used for control system design and implementation be-

cause of the relative simplicity and ubiquity of linear control approaches. In this case, the

output of an LDS y ∈ Rp is modeled as a linear transformation of a latent state x and is

assumed to be corrupted by additive Gaussian noise before measurement in the form of

binned spiking, z ∈ Rp:

yt = Cxt + d , (3.2)

zt = yt + vt , (3.3)

where d (∈ Rp) is an output bias term that describes the baseline firing rates of the p out-

puts (here, neurons), and vt ∼ N (0,R) is zero-mean Gaussian measurement noise of

covariance R ∈ Rp×p. As a system whose dynamics evolve linearly and whose obser-

vation statistics are assumed to be additive/Gaussian, this is termed a Gaussian LDS, or

GLDS ([101]). The bias term d was estimated as the average firing rate of each channel

during spontaneous periods without optical stimulation, and GLDS models were fit relating

ut and (zt–d) using subspace identification (N4SID algorithm, [176]).

Poisson linear dynamical system

While GLDS models were used for control and estimation, we evaluated their performance

in capturing light-driven firing rate relative to an equivalent spiking model type. As it is
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a more accurate statistical observation model for spike count data, we fit linear dynamical

systems with Poisson observations, so-called Poisson LDS, or PLDS ([101, 97]). In this

case, the underlying latent state(s) of the LDS is mapped to an output firing rate by a

rectifying exponential nonlinearity and the measured spike counts are assumed to be drawn

from a Poisson process driven at the given rate:

yit = exp (γixt + di) , (3.4)

zit|yit ∼ Poisson
[
yit
]
, (3.5)

where yit is the firing rate and zit the measured spike counts of the ith output at time t. For

the purposes of this study, PLDS models were fit by first estimating a GLDS model. The

row vectors γi that describe the log-linear contributions of each state to output firing rates

were assumed to be scaled versions of the GLDS output matrix rows: i.e., for the ith output,

γi = gici , (3.6)

where ci is the corresponding row of the GLDS output matrix C.

Note that at each time point the outputs are statistically independent conditioned on

the state, allowing the output function parameters to be estimated in an output-by-output

fashion. The resulting 2p-parameters of the PLDS output function were fit by maximizing

the log-likelihood of the model one output at a time, given the predicted state sequence:

θ∗i = [gi di]
∗ = arg max

θi
Li (θi) , (3.7)

θ∗i = arg max
θi

T∑
t=1

(
zit log yit|xt (θi)− yit|xt (θi)

)
, (3.8)
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where θ∗i are the parameters and Li the log-likelihood of the model for the ith output, (·)∗

denotes the result of the optimization, and

yit|xt (θi) = exp (gicixt + di) . (3.9)

This optimization was carried out iteratively until parameter convergence for each output

by analytically solving for di and numerically solving for gi using Newton’s method in a

manner analogous to Smith et al ([97]).

Finite impulse response model

While state-space models were used in this study, finite impulse response (FIR) models

were also fit in order to provide empirical estimates of the light-to-spiking responses that

did not depend on choices such as number of latent states. Moreover, FIR models, often

termed (“whitened”) spike-triggered average (STA) models, are widely used to characterize

neuronal responses to stimuli ([82]), so they are are a more familiar model type for much

of the neuroscience community and provide a useful point of comparison for state-space

models which are less frequently used in this context. Contrary to state-space models

whose outputs share a set of dynamical states, in FIR models the optical stimulus (u) is

related to the output firing rates (y) of p neurons in the following manner:

yt = Kht + d , (3.10)

where ht is a q-dimensional column vector of stimulus history up to time step t inclusive,

ht =



ut

ut−1
...

ut−q−1


, (3.11)
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and ki is the impulse response of the ith output, comprising the rows of K. Note that this is

effectively a convolution of a set of p FIR filters with the stimulus. The output y is assumed

to be corrupted by additive Gaussian noise before being observed/measured in the form of

binned spiking, z:

zt = yt + vt , (3.12)

where vt is the measurement noise as described in the case of the GLDS model previously.

This FIR model was fit by ordinary least squares linear regression between (zt − d) and

corresponding 100 ms stimulus histories, i.e., ht ∈ R100 at ∆ = 1 ms sample period.

Optical stimulus for model fitting

While the approaches in this study can generalize to multi-input systems (e.g., multiple

light sources spread spatially or multiple wavelengths), only single-input systems are con-

sidered and tested here. As in Bolus et al ([126]), a repeated 5-second instantiation of

1 ms resolution uniform optical noise was used to stimulate spiking activity for model fit-

ting. While the amplitude of this stimulus varied across experiments based on perceived

neuronal sensitivity to light, the average range of this uniform-distributed noise was from 0

to 14.4 mW/mm2, and the same pattern of noise was always presented. State-space models

were fit using data from the first 2.5 seconds of each stimulus trial, while the remaining 2.5

seconds of stimulation were held out and used to assess model performance.

3.2.5 Estimator

GLDS models were used both offline for designing the control law and online for estimating

state feedback. For online estimation, two variants of GLDS model-based state estimation

are considered. The first is a standard implementation of the Kalman filter (Section 3.2.5,

[108, 177]). Another variant of this approach that was used to achieve greater robustness

to plant-model mismatch was to apply Kalman filtering to estimate a parameter-augmented

state vector (Section 3.2.5), which we will refer to here as a parameter-adaptive Kalman
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filter but has elsewhere been described as a proportional-integral (PI) Kalman filter ([178,

179]).

Kalman filtering

The Kalman filter proceeds by alternating between a one-step prediction of the state and

updating this estimate when the corresponding measurement is available ([177]). The filter

has two design parameters which are reflected in the GLDS model structure (Equations 3.1

& 3.3): the covariances of the process and measurement noise, or Q and R, respectively.

The value for R was taken from fits of the GLDS models to training data. In analyzing

the performance of the Kalman filter on previously-collected spiking data, the fit matrix

for Q was rescaled to minimize the mean squared error (MSE) between the Kalman-filter-

estimated firing rate and an output of a model-free estimation method: smoothing the spikes

with a 25 ms Gaussian window.

At each time point, a one-step prediction of the estimated state mean (x̂), state covari-

ance (P), and output (ŷ) were calculated:

x̂t|t−1 = Ax̂t−1|t−1 + But−1 , (3.13)

Pt|t−1 = APt−1|t−1A
> + Q , (3.14)

ŷt|t−1 = Cx̂t|t−1 + d , (3.15)

where (̂·) denotes estimates, (·)t|t−1 denotes the prediction at time t, given data up to time

t−1, and (·)t|t denotes filtered estimates. Recall that all model parameters were fit to optical

noise-driven spiking activity, and note that µ was assumed to be zero unless adaptively re-

estimated (Section 3.2.5). The one-step prediction was updated taking into account the
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latest measurement as

Kest
t = Pt|t−1C

> (R + CPt|t−1C
>)−1 , (3.16)

x̂t|t = x̂t|t−1 + Kest
t

(
zt − ŷt|t−1

)
, (3.17)

Pt|t =
(
I−Kest

t C
)
Pt|t−1 , (3.18)

ŷt|t = Cx̂t|t + d , (3.19)

where Kest
t is the Kalman filter gain and I denotes an identity matrix.

Parameter-adaptive Kalman filtering

For robustness of state estimation to plant-model mismatch, the state and a model param-

eter were jointly re-estimated by the Kalman filter. Specifically, the mean of the process

disturbance, µ, was assumed to vary stochastically over time as a random walk:

µt = µt−1 + wµ
t−1 , (3.20)

where wµ
t ∼ N (0,Qµ) is noise disturbing the stochastic evolution of µ. The covariance

of this process Qµ effectively sets the timescale of adaptive re-estimation of µ. To jointly

estimate this disturbance, the state and model parameters were augmented as follows:

xaug
t =

xt
µt

 , (3.21)
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Aaug =

A I

0 I

 , (3.22)

Qaug =

Q 0

0 Qµ

 , (3.23)

Baug =

B
0

 , (3.24)

Caug =

[
C 0

]
. (3.25)

In general, such joint parameter-state estimation would require the use of the extended

Kalman filter (e.g., [180]). However, in this case, the augmented dynamics and output

equations remain linear with respect to the augmented state. Therefore, Kalman filtering

was carried out on this augmented form of the state and GLDS model as detailed before in

Section 3.2.5. For the purposes of this study, Qaug was assumed to be a diagonal matrix. In

analyzing the performance of this adaptive Kalman filter on spiking data, the elements of

Qaug were scaled to minimize the mean squared error between the Kalman-filter-estimated

firing rate and the Gaussian smoothed estimate as before (Section 3.2.5).

3.2.6 Controller

While the state-space modeling and control framework can be readily used for trajectory

tracking, the control objective in this study was holding the output neuronal firing to a

fixed target, or reference, rate (r), corresponding to a nonzero-setpoint regulation problem

([181]), also described here as “clamping”.
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Control setpoint

In order to use state feedback for the case where the target is an output, we first calcu-

lated the state and optical input that would be required to achieve the target firing rate, r.

Since this was a regulation problem, we calculated the state and input for achieving the

target at steady-state. This steady-state setpoint
[
y∗> x∗>

]> was calculated using models

fit to previously collected optical noise driven data. This problem was solved by linearly-

constrained least-squares [182], where the objective was to minimize the 2-norm ||y∗−r||2,

subject to the system being at steady-state x∗ = Ax∗+Bu∗. The control signal required to

achieve the target at steady state, u∗, was served as a nominal control signal, about which

feedback controller gains modulated light intensity. For single-input/single-output (SISO)

applications, there was a solution that resulted in zero-offset tracking (i.e., y∗ = r). How-

ever, for multi-output control where the responses to control are heterogeneous, the steady-

state solutions do not result in zero-offset tracking, but rather the least-squares compromise

across neurons.

Linear quadratic regulator design

Linear quadratic optimal control was used to design controller gainsKctrl for non-zero-set-

point regulation ([181]):

ut = u∗ −Kctrl

 xt − x∗∑t
i=1 (yi − y∗) ∆

 , (3.26)

where both instantaneous state error (top row) as well as integrated output error (bottom

row) were used for feedback to ensure robustness of control. ∆ is the sample period (1 ms).

The controller gains were chosen to minimize a quadratic cost (J) placed on these tracking
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errors and on deviations in the control ([181, 28]):

J
(
Kctrl

)
=
∞∑
t=1

1

2

 xt − x∗∑t
i=1 (yi − y∗) ∆


>

Qctrl

 xt − x∗∑t
i=1 (yi − y∗) ∆

+ (3.27)

+
1

2
(ut − u∗)> rctrl (ut − u∗) ,

where Qctrl is the weight placed on minimizing squared instantaneous state error and

integrated output error,

Qctrl =

C>C 0

0 qintI

 , (3.28)

and rctrl is the weight placed on control deviations. Minimization of this quadratic cost

function is linearly constrained by the error system dynamics

 xt − x∗∑t
i=1 (yi − y∗) ∆

 =

 A 0

C∆ I


 xt−1 − x∗∑t−1

i=1 (yi − y∗) ∆

+

B
0

 (ut−1 − u∗) . (3.29)

This optimization was carried out numerically by backward recursion of the discrete-time

matrix Riccati equation until convergence ( [181]) or calculated using the MATLAB func-

tion dlqr() (MathWorks). Generally, a stabilizing solution was not possible for multi-output

control scenarios with integral action because of nonzero output error; however, the numer-

ical solution for feedback controller gains still converged in practice.

Experimental SISO control

First-order GLDS models fit to previously collected spiking responses to optical noise were

used offline for designing feedback controller gains,Kctrl, (Section 3.2.6) and online for the

parameter-adaptive Kalman filtering (Section 3.2.5). The diagonal elements of the assumed

process noise covariance, Qaug, used in the parameter-adaptive Kalman filter ranged from

1× 10−9 to 5× 10−8. For controller design, the quadratic weight chosen for integral error
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(
qint
)

was 1×102, while the weight placed on control deviation, rctrl, ranged from 1×10−4

to 1 × 10−3. The online-sorted spiking data fed back to the controller was used to assess

performance of the control scheme; however, in cases where a 32-channel electrode array

was used for recording, offline-sorted population activity was inspected to understand the

local effects of closing the loop around a given putative single neuron.

Simulated SIMO vs. SISO control

In addition to experimental validation in the SISO case, the state-space modeling, estima-

tion, and control methods were also applied to a simulated multi-output control problem

in which the objective was to push the outputs toward a common target firing rate. In this

case, 5th-order models were used. When fitting GLDS models to SIMO datasets, we found

that there was often great heterogeneity in input-output gain across outputs. Therefore, a

two-output PLDS model was the simulated system being controlled, whose second output

(“neuron 2”) was a gain-modulated version of the first (“neuron 1”), before exponentiation

and spike generation. The dynamics and the first output channel of this PLDS came from a

fit to an example SISO dataset. The log-linear gain of neuron 2 was swept between 0.1 and

3 times that of neuron 1. A multi-output controller and estimator were designed using a 2-

output GLDS model fit to simulated PLDS data, where optical noise stimulated the PLDS

in the case where the both neurons had the same gain. The neuron-averaged mean squared

error performance of the SIMO control loop was compared to the SISO scenario when only

neuron 1 data was fed back. For both SIMO and SISO control loops, the diagonal elements

of the process noise covariance for the parameter-adaptive Kalman filter (Qaug) were all

taken as 1 × 10−6, while the weights placed on quadratic cost of integrated tracking error

(qint) versus control deviation (rctrl) were 1× 102 and 1× 10−3, respectively.
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3.2.7 Performance measures

Various measures of performance are used throughout this study to quantify goodness of

fit for state-space models and the effectiveness of the estimators as well as the controller.

Model performance

The performance of GLDS and PLDS models were assessed using variance of the raw 1 ms

binned PSTH explained in the held-out second half of each 5 second trial of optical noise

stimulation. The variance explained was either taken as a proportion of the variance in the

PSTH (pVE), or relative to the amount of “signal” or explainable variance in the PSTH

(pSVE, [175]). These two metrics were computed for each SISO and SIMO dataset for 5th

order PLDS models and 1st and 5th order GLDS models.

Estimator performance

Because the control objective in this study was to track a constant reference firing rate,

it was important that the estimator achieve low bias; otherwise, the integral action of the

controller cannot serve its ideal purpose to eliminate steady state tracking errors. Therefore,

the performance metric considered here for the online estimator was the squared bias of

the single-trial-estimated firing rate compared to the corresponding spiking responses to

5-second step inputs of light.

Control performance

To assess controller performance, the mean squared error (MSE) as well as squared bias

between the achieved single-trial firing rate and the reference firing rate were calculated.

Single-trial firing rate was taken as the online-sorted spike train fed back to the controller,

smoothed offline with a 25 ms standard deviation Gaussian window. While MSE takes

into account variance, we separately considered across-trial variability using the Fano fac-

tor ([183]) of spike counts in a 500 ms sliding window, a mean-normalized measure of
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spike count variability. Finally, in cases where a 32-channel multielectrode array was used

for recording local population activity, the degree of synchrony between simultaneously

recorded neurons was quantified in a manner similar to Wang et al ([19]). Briefly, a

cross-correlogram was constructed by binning the relative spike times of simultaneously

recorded neuron pairs. To quantify degree of synchrony, the number of correlated events

in a ±7.5 ms window (Ncc) was normalized by the total number of spikes in a ±50 ms

window (Ntot):

synchrony =
Ncc

Ntot

. (3.30)

Allowing 1-second for non-steady state performance, all four of these performance metrics

were calculated in a 4-second period of time during closed-loop control. As a point of

comparison, the same metrics were also calculated using 4-second periods of spontaneous

data recorded between trials of closed-loop stimulation.

3.3 Results

In this study, we applied a model-based optimal control framework to the experimental

control of neural activity in vivo using optogenetic stimulation. Specifically, we utilized

the ventral posteromedial (VPm) region of the sensory thalamus in the vibrissa/whisker

pathway of the awake mouse as an experimental model system, where single-unit electro-

physiological recordings were obtained while optically stimulating light sensitive channels

with an inserted optical fiber. The optimal control framework relies on a state-space repre-

sentation of the optically-driven dynamics of neural activity. This model is used both for

the offline design of the optimal controller and for the online estimation of state feedback.

Although experimental results are presented from this specific pathway and brain region,

the approach is directly applicable to others. Furthermore, while the methods used here

generalize to trajectory tracking for multi-input and multi-output (MIMO) applications, we

first focus on the single-input and single-output (SISO) case where the measured outputs
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were single-unit spiking activity and the control objective was to track step commands (i.e.,

clamp neural activity at a fixed target firing rate). In the context of these experiments, we

were able to use a linear and Gaussian model to approximate light-driven spiking responses

for the purposes of controlling firing rate; moreover, we found that a low order approxima-

tion of the neural dynamics was sufficient at least for the slow timescale control/estimation

objectives studied here. In experiments where multi-electrode arrays were employed to

record thalamic activity, we found that simultaneously-recorded neurons responded to op-

tical stimulation with a high degree of diversity, motivating investigation of applicability of

this control framework to multi-output scenarios. We applied this framework in a simulated

single-input/multi-output (SIMO) scenario, where the “output” consisted of the activity of

multiple simultaneously-recorded neurons, and the control objective was to force the popu-

lation activity as close as possible to a common target firing rate. Feeding back multi-output

population activity to the controller enhanced the robustness of the control scheme’s ability

to drive the collective population activity to a desired target in the face of heterogeneity in

sensitivity to light.

Figure 3.1(a) illustrates the control scheme that was implemented experimentally in the

awake, head-fixed mouse, where an “optrode” consisting of an electrode attached to an

optical fiber was inserted into the VPm. Given binned single-unit spiking activity, control

and estimation was carried in realtime at 1 ms resolution using custom-written software

(Section 3.2.2). We designed an estimator that generated an online estimate of the state of

neural activity, and a feedback controller that maintained a target firing rate in the face of

potential disturbances, such as reafferent sensory input (i.e., whisker motion) and changing

brain states.

To develop a control methodology that would generalize to MIMO applications, we ap-

plied a state-space model-based control and estimation scheme where the model is used not

only in the design phase but as an online estimator for the control scheme (Figure 3.1(b)).

The model structure utilized here was a linear dynamical system (LDS), where optical in-
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Figure 3.1: Closed-loop optogenetic control using state-space linear dynamical systems mod-
els. (a) Experimental Setup. (b) Control system block flow diagram. Spiking activity is fed back to a
model-based estimator (“EST”), which provides online estimates of the underlying state of the sys-
tem (x) and the output (y), which is firing rate in the current application. The controller (“CTRL”)
uses a model to generate the system setpoint [y∗> x∗> u∗>]> that corresponds to user-specified ref-
erence firing rate (r). An updated control signal is generated using feedback controller gains and the
error between this setpoint and the online estimates of the system state/output. The updated control
signal is sent to an LED driver to modulate light intensity. (c) Structure of the Gaussian LDS Model.
The GLDS used throughout the control loop consists of a linear dynamical system (LDS) describing
the evolution of the state (x) and a linear remapping of x to the output firing rate and eventually
measured spiking (z). This model is used for single-neuron and multi-neuron estimation/control.
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put(s) modulate the activity of latent state variables. More specifically, for the purposes

of this study we employed a Gaussian linear dynamical system (GLDS), in which a lin-

ear combination of the states is observed after being corrupted by additive Gaussian noise

(Figure 3.1(c)). Here, the output of the model was either single or multi-neuron firing rate,

although in principle these same techniques could be applied to other neural signals of

interest such as local field potential or voltage/calcium signals.
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3.3.1 GLDS captures optical noise-driven responses

The control framework used here depends on a model of the underlying dynamics for both

the design of the controller and online state estimation to execute the control strategy. As

we have previously described in a simpler, classical control framework ([126]), feedback

control is robust to a degree of model inaccuracy. Therefore, there is an application-specific

balance to be struck between model complexity/fidelity and simplicity. Here, we first asked

to what extent a GLDS model could predict the experimentally observed SISO firing rate

modulation with optogenetic stimulation, as this would provide a relatively simple model-

ing framework that is attractive in terms of its widespread applicability and ease of imple-

mentation. Since the measurements were spike counts in 1 ms bins at relatively low firing

rates, a Gaussian observation model is an obvious violation of these statistics. For compari-

son, we also fit an LDS model whose observation model is Poisson (PLDS), which has been

utilized in a range of studies for describing the dynamics of spiking neurons (Figure 3.2(a)).
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Figure 3.2: State-space models of SISO optogenetic responses. (a) SISO LDS model structure:
Poisson (top) or Gaussian (bottom) output functions being considered. (b) Population impulse re-
sponse. This impulse response was fit using pooled data from 37 neurons that were excited by
optical noise. An FIR model fit to population data (black) is plotted alongside the impulse response
from the 5thorder GLDS model fit to the same data (red). (c) Example Data and Model Fits. Top, the
PSTH (black) was smoothed with a 1 ms standard deviation Gaussian window for visualization. The
fit types include 5th-order PLDS (orange), 5th-order GLDS (red). Middle, the corresponding trial-
by-trial spike raster. Bottom, repeated instantiation of uniform optical noise. (d) Proportion variance
in PSTH explained (pVE) and signal variance explained (pSVE) by model response to noise. All
models were trained on data from first half of each trial, while model performance metrics (pVE,
pSVE) were calculated from the second half of each trial. Error bars represent bootstrapped 95%
confidence intervals about the population mean (n=48 neurons, 17 recordings, 9 animals).
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In fitting a state-space model, the order of the model (the dimensionality of the latent

state vector) must be specified. To ascertain the appropriate order of these models, we

pooled together noise-driven response data from 37 neurons that were all significantly ex-

cited by the optical stimulus, and fit GLDS models to this population. For comparison,

we separately fit a finite impulse response (FIR) model to the same population dataset (see

Section 3.2.4), as it is widely used in the neuroscience literature ([81, 82]). Models were

fit from recorded responses to white-noise optical inputs (Section 3.2.4). Shown in Fig-

ure 3.2(b) are the impulse responses for both the GLDS (red) and FIR (black) models, as

a head-to-head comparison. This can be interpreted as the model prediction of the instan-

taneous firing rate in response to a light impulse input at time zero. Prominent in both

is an initial peak at approximately 3 ms reflecting a relatively short latency excitation, fol-

lowed by a subsequent drop below baseline at 7-8 ms reflecting a post-excitatory inhibition.

We found that a 4th to 5th order state-space model was sufficient for these data, striking a

balance between goodness of fit and model complexity. Note that the above analysis was

restricted to thalamic neurons that were found to be excited by the optical input, which

excluded other thalamic neurons that exhibited more heterogeneous behaviour (i.e. a mi-

nority of recorded neurons were indirectly inhibited by the optical input, interestingly).

To capture the full heterogeneity of the population, therefore, we fit 5thorder PLDS and

GLDS models to each single-output dataset individually (n = 48 neurons, 17 recordings

in 9 mice). A representative example SISO dataset is shown in Figure 3.2(c), where the

firing rate estimates for the 5thorder PLDS (first row, orange) and 5thorder GLDS (second

row, red) are superimposed onto the corresponding PSTH (black) at white-noise onset and

offset. Qualitatively, there is little gained in using a PLDS model instead of a GLDS for

this example, aside from the non-negativity of the PLDS firing rate. Across the popula-

tion of units, there is no significant difference between the performance of the Poisson vs.

Gaussian models (Figure 3.2(d), n = 48 neurons, p = 0.234, Wilcoxon signed-rank test).

Specifically, the left plot of Figure 3.2(d) shows the proportion of the variance in the raw
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1 ms PSTH explained by 5thorder PLDS and GLDS fits (pVE). Note that a relatively low

proportion of the variance in the raw PSTHs was explained, due to levels of intrinsic noise

in the observed responses at fine timescales. For this reason, we assessed the quality of the

model using a metric that takes into account the fact that some of the observed variability is

not explainable across trials ([175]), instead quantifying the amount of explainable, or “sig-

nal”, variance the model captures. The right panel of Figure 3.2(d) presents the proportion

of the signal variance explained (pSVE), showing that the models captured approximately

60% of the explainable variance and that there was not a significant difference in the pre-

dictive capabilities between the GLDS and the PLDS models in this dataset. Therefore,

with the exception of multi-output modeling where the same PLDS versus GLDS analysis

was conducted for comparison, GLDS models are used for the remainder of this study in

order to leverage linear controls approaches.

3.3.2 Parameter-adaptive Kalman filtering provides robust online estimation

These GLDS models are used online as part of the Kalman-filter-based estimator (Fig-

ure 3.3(a), grey box) which is used to provide state feedback to the controller. While the

models performed relatively well in the case of uniform white-noise optical stimulation as

shown in Figure 3.2, when challenged with step changes in input that are often utilized in

control scenarios, non-zero-mean model mismatch is clearly revealed (Figure 3.3(b)). In

this example the open-loop model predicted firing rate (OL Prediction, red) initially under-

estimates the experimentally-measured firing rate (PSTH, black) during the first second of

stimulation and then consistently underestimates the firing rate at steady state. Model-based

control and estimation schemes are particularly sensitive to such plant-model mismatch, as

is apparent here when standard Kalman filtering used for online estimation is applied to

these datasets for step changes in input. In this example in Figure 3.3(b) there is still an

obvious bias in the average Kalman-filter estimated firing rate (KF Estimate, purple) when

compared to the smoothed PSTH (PSTH, black). Moreover, because of the rapid time-
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course of the fit neuronal dynamics (Figure 3.2(b)) and the spiking nature of the measure-

ments, the single-trial KF estimates of firing rate which will be fed back to a controller are

full of extreme transients each time a new spike is measured (Figure 3.3(c), purple trace).

Online estimation of firing rate can be made more robust by assuming there is an unmea-

sured, non-zero-mean disturbance that varies stochastically (e.g., other exogenous inputs),

augmenting the state with the mean(s) of this disturbance (µ), and jointly re-estimating

this along with the state using Kalman filtering (Figure 3.3(d), see methods for details),

which we refer to here as the parameter-adaptive Kalman filter, but has elsewhere been de-

scribed as a proportional-integral Kalman filter ([178, 179]). As can be seen in the example

in Figure 3.3(e), this adaptive Kalman filter produces an effectively unbiased estimate of

the experimentally-observed PSTH in SISO applications (Figure 3.3(e), purple vs. black),

and it is able to do so with a single-trial estimate of firing rate that is smoother than that

achieved by the standard Kalman filter (Figure 3.3(f), c.f.Figure 3.3(c)). In this example,

the parameter-adaptive Kalman filter approach accounts for apparent model mismatch by

estimating a process disturbance µ that on average pushes the firing rate above the model

prediction for the first second of optical stimulation and then pulls the estimated firing rate

below that prediction at steady state (Figure 3.3(g)). The filtering approach works well

in this illustrative example and at a population level, as it brings the estimation bias to

near-zero levels compared to the standard Kalman filter (Figure 3.3(h), p = 1.63 × 10−9,

Wilcoxon signed-rank test, n = 48 neurons, 17 experiments, 9 animals). At least in the

context of estimating step responses, we see there is little benefit in using a 5thorder ver-

sus 1st-order GLDS model for this SISO application (Figure 3.3(h), black, p = 0.0830,

Wilcoxon signed-rank test). Importantly, the parameter adaptation provides enough ro-

bustness that even the population-average GLDS model in Figure 3.2(b) was able to esti-

mate SISO firing nearly as well as models fit to each neuron individually (Figure 3.3(h),

gray, p = 0.0142, Wilcoxon signed-rank test). Since the control objective in this study is

to clamp firing rate at relatively long timescales, we therefore used a 1st-order Gaussian
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approximation for the system. However, for fast timescale trajectory tracking problems, a

higher-order model would almost certainly be warranted (see Discussion), and higher-order

models are important even for long timescale control/estimation in multi-output scenarios

(see Section 3.3.6).
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trial-averaged response estimated using the standard implementation of the Kalman filter (5th-order
GLDS) (purple). (c) Example single-trial Kalman filter estimate (purple) along with corresponding
spike raster (grey). (d) Parameter-adaptive Kalman filter. In addition to estimating the state of the
system, this approach jointly re-estimates a state disturbance (µ) at each time step. (e) Same as (b)
but trial-averaged estimate of firing rate using the parameter-adaptive Kalman filter. (f) Same as (c)
except single-trial estimate using parameter-adaptive Kalman filter. (g) Trial-averaged disturbance
on the first state estimated using parameter-adaptive Kalman filter. (h) Population average squared-
bias in estimation calculated between the single-trial spiking responses and the OL prediction of a
5th-order GLDS, the standard Kalman filter using the 5th-order GLDS, and the parameter-adaptive
Kalman filter (aKF) using a 1st- or 5th-order GLDS. Black and grey data points correspond to error
associated with using individually-fit models vs. a single population average fit model, respec-
tively. Error bars represent bootstrapped 95% confidence intervals about the mean (n=48 neurons,
17 recordings, 9 animals).
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3.3.3 State-space control performs well in SISO clamping applications

The control and estimation framework was tested experimentally in the awake head-fixed

mouse in a SISO configuration, where spiking activity of a single neuron was fed back to

a controller with a single channel of optical input. As previously noted, 1st-order GLDS

models were sufficient and were therefore used for this particular application; however,

higher order models would be merited or necessary in other scenarios. The robustness of

the estimator (Figure 3.3), the use of feedback, and the slow timescale nature of the control

objective allowed GLDS models fit to previously-collected noise response data to be used

for experimental control and estimation, rather than fitting a model during an experiment,

the timespan of which is limited in the context of awake, head-fixed recordings. The feed-

back controller was designed using output-weighted LQR ([181]), where the state of the

system was augmented with the integrated output in order to find not only proportional

feedback gains on the state, but integral feedback gains to minimize steady state tracking

errors (Section 3.2.6). Additionally, since this particular application is a non-zero setpoint

regulation problem, the steady-state set-point of the system
[
y∗> x∗> u∗>

]> at the desired

output firing rate (r) was calculated as described in Section 3.2.6.

Figure 3.4 illustrates the performance of the control framework for a typical single

thalamic neuron and the summary performance across experiments. Figure 3.4(a) is an

illustration of the control implementation, highlighting the feedback controller and the on-

line estimator. In the case of the estimator, Parameter-adaptive Kalman filtering is being

used to estimate not only the state of the system being controlled but also the uncontrolled

disturbance (Figure 3.4(a), estimator block). On the other hand, the controller is oper-

ating on the error between the estimated state of the system and the desired steady-state

set point as well as the integrated output error (Figure 3.4(a), controller block). In this

example (Figure 3.4(b)), the baseline ongoing activity of the recorded neuron was approx-

imately 5 spikes/s, and the controller was activated at time zero with a target firing rate of

20 spikes/s. Upon activating the controller, the neuron reached and remained at the target
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firing rate (green), as reflected in the average firing rate (black). Importantly, the controller

operated using online estimates of state and corresponding output firing rate provided by

the estimator (Figure 3.4(b), purple). The firing rate of the online estimator (purple) also

quickly reached the target (green) and remained there. As shown previously in Figure 3.3,

the online estimate was on average unbiased, as it matched the offline estimate of the av-

erage firing (black, PSTH smoothed with 25 ms s.d. Gaussian). The controller achieved

the target with well-below spontaneous levels of across-trial variability, quantified using

the Fano factor (FF) that captures the spike count variance relative to the mean spike count

(Figure 3.4(b), middle). In this particular example, the controller’s use of feedback resulted

in a gradual increase in light intensity that was needed to maintain the target level of spiking

over the control epoch. It is possible that this is a signature of increased inhibitory feed-

back from the reciprocally connected reticular nucleus of the thalamus that the controller

worked against to maintain target activity. Also note that this control signal varied substan-

tially across individual trials (Figure 3.4(b), bottom, light blue), with significant individual

trial variability serving to drive the firing rate tracking and quench the variability.
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Figure 3.4: Experimental SISO control and estimation. (a) SISO control block flow diagram.
Shown inside the controller and estimator blocks are the notions of state being used in each opera-
tion. (b) Example experimental SISO control. (top) Fed-back online estimate in purple (single trial
in light purple, trial-averaged in bold), along with the corresponding trial-average offline estimate
(25 ms s.d. Gaussian-smoothed PSTH); (middle) across-trial spike count variability (Fano factor in
500 ms sliding window) and corresponding example spike rasters from 10 randomly selected trials;
(bottom) controller input. (c) Population controller performance. In spontaneous vs. closed-loop
(CL) control conditions, mean squared error (left) and squared bias (middle) were calculated be-
tween the reference (20 spikes/s) and single-trial feedback spiking data smoothed with a 25 ms s.d.
Gaussian window; average Fano factor was also calculated (right). For each trial, four seconds of
spontaneous data were compared to four seconds of CL control data. The first second was ignored
in order to obtain a measure of steady-state performance. Error bars represent bootstrapped 95%
confidence intervals about the mean. Green bands represent 95% confidence band for the metrics
calculated from simulated Poisson firing at the target rate.
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Across experiments (n = 11 neurons, 11 experiments), the control framework per-

formed well as quantified by the summary of performance metrics in Figure 3.4(c). For

each of these metrics, the measure during closed-loop (CL) control is compared to that

from the spontaneous period (spont) before the control was activated at time zero. The

mean squared-error (MSE) between an offline estimate of the single-trial firing rate and

the target (Figure 3.4(c) left) decreased significantly with activation of the control law as

expected (p = 0.00195, Wilcoxon signed-rank test), and the MSE during closed-loop con-

trol was even below that of a Poisson spike generator driven at the target rate (green bar),

consistent with the sub-Poisson variability as revealed by the Fano-factor in Figure 3.4(b).

Because the MSE captures a combination of the variance and the bias, we separately com-

puted the bias in the control (Figure 3.4(c) middle), substantially reduced with the activa-

tion of the control (p = 0.000977, Wilcoxon signed-rank test) and at the level expected for

a Poisson spike generator driven at the target rate (green band). To further quantify the re-

duction in across-trial variability during the control, we computed the average Fano-factor

in a 500 ms sliding window, exhibiting substantial reduction from supra-Poisson variabil-

ity (FF>1) in the spontaneous activity to sub-Poisson variability (FF<1) during the control

(Figure 3.4(c) right).

3.3.4 Multi-electrode recordings reveal effects of SISO control on simultaneously

recorded neurons

Up to this point, the state-space control framework has been shown effective for track-

ing step commands in single-neuron scenarios. However, neural recording methodologies

(electrophysiology and imaging) continue to scale in size (e.g., larger numbers of chan-

nels for electrophysiology, or pixels for imaging) and one of the main benefits of using

state-space models for control and estimation is the generalizability to such multi-output

problems. While the preceding experimental demonstration was presented in the context

of a single channel of light input and a single channel of neuronal output, in a subset of
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experiments, we simultaneously recorded multiple nearby neurons in the thalamus of the

awake, head-fixed mouse. This provides a window into the effect of the stimulation on the

local population while a single neuron is used as an “antenna” around which the controller

is operating, which we will refer to as the feedback (FB) neuron (Figure 3.5(a)). For the

purposes of this analysis, we inspected simultaneously-recorded neurons that were excited

by 5 ms square pulses of light with sub-10 ms latency. Figure 3.5(b) provides an example

in which one neuron is being used for feedback (purple, top), while offline spike sorting

reveals the activity of six other simultaneously recorded neurons, which we will refer to

as non-FB neurons (black, trial-averaged firing rates; green shows control target). While

nearby on this 25 µm spaced electrode array (Figure 3.5(b), right), these neurons neverthe-

less responded heterogeneously to the optical stimulation. In this particular example, the

FB neuron was substantially more sensitive to light compared to the non-FB neurons, as

evidenced by their modest response following the controller activation at time zero. While

all increase their firing rates in response to the controller input, none are driven to or above

the target firing rate of 20 spikes/sec in this example. This was not always the case, as in

other experiments the non-FB neurons could be either more or less sensitive to the light

input as compared to the FB neuron. This heterogeneity in sensitivity is likely due to a

combination of factors ranging from differences in opsin expression levels to differences

in intrinsic excitability of cells. Across experiments (n = 8 feedback neurons, 23 non-

feedback neurons, 8 experiments), we calculated the average per-trial firing rate during the

pre-control spontaneous (spont) versus control periods for the FB neuron and the non-FB

neurons recorded simultaneously. As expected, for the FB neurons, the controller reli-

ably pushed the firing rate to the 20 spikes/s target. In contrast, while the average firing

rate of non-FB neurons was significantly elevated from spontaneous levels and toward the

20 spikes/s target (p = 0.00781, Wilcoxon signed-rank test), it did so with high variability

as evidenced by very wide confidence intervals about the across-experiment average (12.7

to 25.1 spikes/s, Figure 3.5(c), left, grey) and made more plain by the fact that FF did not
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change from its spontaneous levels in the non-FB neuron case (Figure 3.5(c), right, grey,

p = 0.844, Wilcoxon signed rank test).

Beyond the firing rate of individual neurons within the population, it is important to

determine what effect the optical stimulation has on the spike timing and synchronization

across the population. Although we have previously shown that optical stimulation over

some ranges results in a somewhat reduced synchronization relative to comparable electri-

cal stimulation ([72]), it remains an important issue to quantify the effect in the context of

the control scheme used here. We find that the use of continuously graded closed-loop stim-

ulation did not significantly synchronize the recorded thalamic neurons when compared to

commonly used pulsatile stimulation (Figure 3.5(d-e)). While stimulation elevated popula-

tion firing over longer timescales, continuously graded closed-loop stimulation did so while

allowing natural variability in spike timing across cells, whereas pulsatile inputs tended to

coax cells to fire in concert. Spike cross-correlograms were calculated from relative spike

times for each of 33 simultaneously-recorded pairs of neurons (see Section 3.2.7). The

population correlogram shows no peak at or around zero-lag for the case of closed-loop

control (Figure 3.5(d), black). In contrast, 5 ms square pulses of light delivered in open-

loop to the same neurons caused clearly aligned spiking (Figure 3.5(d), red). The lack of

a peak in the correlogram shows there was very little synchronization of recorded neurons

during closed-loop control epochs compared to the results using pulsatile stimulation (Fig-

ure 3.5(e), p = 5.39 × 10−7, Wilcoxon signed-rank test), where synchrony was quantified

as the number of temporally-aligned spikes in±7.5 ms window, relative to the total number

of spikes in a ±50 ms window. Note that these open-loop pulses were in general higher

amplitude than the continuously modulated closed-loop stimulation, so it is not necessar-

ily the case that pulsatile inputs would have such synchronizing effects at all stimulation

intensities.
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Figure 3.5: Effects of SISO control on local population. (a) SISO control block flow diagram
with multi-output recordings. (b) Example experimental SISO control with simultaneous multi-
output recordings. (top) Fed-back online firing rate estimate in purple (single trial in light purple,
trial-averaged in bold) relative to reference (green); (middle) trial-averaged firing rate estimates
for simultaneously recorded non-FB neurons (25 ms s.d. Gaussian-smoothed PSTH); (bottom)
controller input. To the right are the waveforms of each neuron in this example (average waveform in
black, ±1 s.d. in grey). (c) Spontaneous vs. CL population average firing rate (left) and Fano factor
(right) for the feedback neuron (black) as compared to the other non-feedback-neurons recorded
simultaneously (grey). Error bars represent bootstrapped 95% confidence intervals about the mean.
(d) Population spike cross-correlogram of simultaneously recorded pairs during optical stimulation.
Bold black represents population mean in each 1 ms bin for CL, while fills represent 2 standard
errors about the mean. For comparison, red represents population average spike cross-correlogram
for response of the same cells to 5 ms square pulses of light presented in open-loop. (e) Population
synchrony for spontaneous vs. closed-loop vs. pulsatile conditions. Synchrony was taken as the
number of spikes occurring in the±7.5 ms bins, relative to the total number of spikes in the±50 ms
window. Error bars represent 95% confidence intervals about the mean.
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3.3.5 GLDS models generalize to multi-output datasets

In the previous section, we considered the effects of closed-loop optogenetic control on

nearby neurons when the control was applied in a single FB neuron (i.e., SISO) scenario.

More generally, the goal of control may be bringing the firing rate of a neuronal population

toward a common target, rather than a single neuron, in order to provide a more controlled

and uniform input to downstream neurons. An open question is whether multi-output con-

trol would serve this goal better than the above single-neuron “antenna” approach. One of

the strengths of the state-space control and estimation framework is that it is amenable to

such multi-output applications.

To investigate the multi-output capabilities of this approach, we first demonstrate that

these GLDS models can be used to capture the SIMO systems in cases where we recorded

multiple neurons simultaneously. In such multi-output GLDS models. We found that the

response of multiple neurons to optical noise could be represented by 5thorder GLDS mod-

els due to the similarity in dynamics and coupling across the channels. In other words, a

common state vector is mapped to individual outputs (Figure 3.6(a)). Figure 3.6(b) and (c)

provide example results of the GLDS state-space modeling for an example set of four tha-

lamic neurons recorded simultaneously. Figure 3.6(b) shows the impulse response of the

GLDS model of the dynamics across these recorded neurons (red), superimposed on the

corresponding FIR estimates (black), showing good correspondence as previously exhib-

ited for the single neuron case in Figure 3.2(b). Figure 3.6(c) shows the model predictions

of the responses to uniform white noise optical stimulation (red) as compared to average ex-

perimentally recorded trial averaged firing (black) for this same set of neurons. The neurons

clearly responded heterogeneously to light in terms of overall gain, and the GLDS model

captures this and the temporal characteristics of the response to optical noise well. On av-

erage (n = 11 experiments, 42 neurons), 5thorder GLDS models predict population PSTHs

approximately as well as in the previously shown SISO case (pSVE 60%, Figure 3.6(d)).

As before (Figure 3.2), multi-output PLDS models were also fit to the same data and we
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found no significant difference between the performance of the Poisson vs. Gaussian LDS

models in explaining the PSTHs under these conditions (p = 0.923, Wilcoxon signed-rank

test). As is clear in the example responses in Figure 3.6(c), across recordings we found

there was often large (sometimes tenfold) heterogeneity in overall sensitivity to light as

measured by the static input-output gain, even though the dynamics could be qualitatively

similar. To explicitly characterize this heterogeneity, Figure 3.6(e) represents the static gain

for each recorded neuron, calculated from the steady state input-output gain of the GLDS

fits (circle represents mean, bars represent range). It should be noted that among the in-

clusion criteria for this study was that neurons must be significantly modulated by light

(Section 3.2.3); however, this does not mean that all neurons expressed ChR2 and were

being directly stimulated. Instead, they could be indirectly excited or even inhibited (i.e.,

have negative gains) by optical stimulation of ChR2 expressed in other cells in the network,

which could explain the sometimes large differences in neurons’ sensitivity to light.
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Figure 3.6: State-space models of SIMO optogenetic responses. (a) Multi-output GLDS model
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Example multi-output GLDS model response to optical noise (red) vs. PSTH (black). (bottom)
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(pVE) and signal variance explained (pSVE) by model response to noise. All models were trained
on data from first half of each trial, while model performance metrics (pVE, pSVE) were calculated
from the second half of each trial. Error bars represent bootstrapped 95% confidence intervals about
the population mean. (e) Range of static input-output gain across and within recordings.
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3.3.6 Online estimation methods generalize to multi-output applications

The state-space models were used for both offline controller design as well as for the on-

line estimation of feedback provided to the controller. Figure 3.7 details the performance of

the parameter-adaptive Kalman filter estimator for the single-input, multi-output (SIMO)

case. While a 1st-order GLDS Kalman filter performed sufficiently well as an estimator

for the SISO application (Figure 3.3), a 1st-order approximation leads to substantial bias

in the estimates in multi-output scenarios, as shown in the example 3-neuron recording of

Figure 3.7(a) (trial averaged estimate in dark purple vs. PSTH in black). In this exam-

ple, the adaptive Kalman filter overestimates the firing activity of neurons 1 and 3, while

underestimating the firing of neuron 2. Moreover, the filter fails to capture the gradual de-

cline in firing of neuron 3 over the course of the step response. This is to be expected, as

there is only one state disturbance being estimated in the 1st-order case for multiple outputs

that may be independently perturbed. For the same multi-output example, a higher order

adaptive Kalman filter (5th-order, Figure 3.7(b)) achieves substantially lower estimation

bias, albeit not unbiased like the SISO scenario (Figure 3.3). In this example, the average

activity of neuron 1 is accurately estimated and the gradual decline in neuron 3 firing is

captured; however, estimates for neuron 2 and neuron 3 activity remain biased. Across the

population of recordings (n = 11 experiments, 42 neurons), the 1storder adaptive Kalman

filter provides lower estimation bias than a standard Kalman filter using a 5thorder GLDS

fit (Figure 3.7(c), p = 0.00982, Wilcoxon signed-rank test) as before in single-output ap-

plication; however, an adaptive 5thorder filter provides an improvement in the multi-output

scenario across recordings (p = 1.65×10−8, Wilcoxon signed-rank test). It is unsurprising

that the higher order adaptive filter improved performance because there are more state dis-

turbances being estimated. However, as is evident in Figure 3.7(b), it is important to note

that while higher order models perform better, this form of parameter-adaptive Kalman fil-

tering does not independently minimize the estimation error for each output neuron because

the estimated process disturbances act on a set of common state variables.
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Figure 3.7: Kalman filtering for online estimation in SIMO applications. (a) Online estimation
for example SIMO system using parameter-adaptive Kalman filter with a 1st-order GLDS. Shown
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KF (aKF) for 1st- and 5th-order models. Fills/error bars represent 95% confidence intervals about
the mean.

100



3.3.7 Simulated SIMO control more robust to population heterogeneity than a SISO

“antenna” approach

To demonstrate the generalizability of this approach to multi-output control problems and

to explore the robustness of SIMO control to population heterogeneity in light sensitivity

(Figures 3.5(b), 3.6), we simulated a 2-output system whose second output (neuron 2)

ranged from much less sensitive than neuron 1 to much more sensitive (Figure 3.8(a)).

To simulate spiking, an example PLDS model previously fit to SISO experimental data

was chosen to most accurately represent the complexities in the data (e.g., spiking). The

output matrix of this model was augmented with a second row whose elements were gain-

modulated versions of the first row (Figure 3.8(a), bottom inset). This log-linear gain term

was swept from 0.1 to 3 times that of neuron 1. After fitting GLDS models to simulated

SIMO datasets (below), this resulted in linear gain of neuron 2 ranging from 0.027 to 13.3

times that of neuron 1. In these simulations, the dynamics of the PLDS model neurons were

held fixed. This resulted in a set of simulated datasets representing a range of similarity

between the two output neurons.

Using previously described methods, a multi-output GLDS model was fit to simulated

spiking responses to optical white noise in the case where neurons 1 and 2 had the same

log-linear gain. A single-output model was fit to the responses of neuron 1. An estimator

and controller were designed using these SIMO and SISO models and they were applied to

control of the 2-output PLDS across a range of output gain disparities. In the SISO case,

only the activity of neuron 1 was used for feedback control, while in the SIMO, spiking

activity from both neurons was fed back to the estimator and controller. Note that in these

simulations, the control system only had to overcome static differences in light sensitiv-

ity and not the apparent decrease in neuron sensitivity over time observed in the previous

examples of experimental control. Examples where the log-linear gain of neuron 2 is 1.5-

times that of neuron 1 are provided in Figure 3.8(b) and (c), showing the SISO and SIMO

control results, respectively. Qualitatively, while SISO control of neuron 1 successfully
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clamps activity of that channel at the target 20 spikes/sec, neuron 2 is well above the target

(Figure 3.8b). Conversely, the multi-output control case strikes a balance between the two,

allowing neuron 1 to fall below the target and reigning in the above-target activity of neu-

ron 2 (Figure 3.8(c)). As summarized in Figure 3.8(d), population tracking performance

was quantified as the total MSE of neuron 1 and neuron 2 single-trial firing rates vs. a

20 spikes/s reference firing rate, both for single-output (red) and multi-output (black) con-

trol strategies. Highlighted with the open symbols are the performances of the examples

given in Figure 3.8(b) and (c), where the value of the log-linear gain of neuron 2 was 1.5

times that of neuron 1. As expected, a multi-output control strategy is more robust to pop-

ulation heterogeneity, as the SISO control performance rapidly degrades when the ignored

neuron 2 is increasingly sensitive. Note that this effect is not symmetric, as discrepancies

in sensitivity are substantially less problematic when neurons in the population are less

sensitive to the light input as compared to the feedback neuron (relative gain<1). Taken

together with previous multi-output modeling and estimation on experimental data, these

simulations demonstrate that the techniques used first for SISO applications are readily ap-

plicable to multi-output problems and that such approaches could grant better control of

population neural activity of interest.
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3.4 Discussion

With the continued development of tools for precisely and selectively manipulating neu-

ronal ensembles using multiple inputs ([184, 69]) and corresponding technologies for mea-

suring large-scale neuronal activity ([63]), a framework for the integration of these tech-

nologies enables more intelligent interaction with neuronal circuits within and across brain

regions (for review, see [5]). The state-space model structure is a natural choice for de-

scribing systems that involve a number of inputs and outputs (referred to as multi-input,

multi-output or MIMO) ([185]). State-space models for system dynamics in combination

with the framework of optimal control and estimation allows design and implementation

of control loops to scale without cumbersome changes in methodology, as is evident in this

study where the same model structure has been applied successfully in online estimation

and control of activity in single- as well as multi-neuron systems.

In more modern control approaches, a model of the underlying dynamics to be con-

trolled is used for both design and implementation of the control law. Across different

pathways and circuits, numerous model types have been used to predict neural activity at

fast time scales ([82, 90, 153]), some of which have been applied to ensembles of neurons

([101, 91, 99, 186, 187]). For the purpose of control applications, we modeled optically-

driven responses of neurons in the sensory thalamus using a state-space dynamical systems

representation, where any higher order dynamics are captured in sets of coupled, first-

order difference equations. In contrast to more widely used phenomenological models

for neuronal responses to stimuli such as the linear receptive field ([79, 80]), the linear-

nonlinear-Poisson (LNP) model ([81, 87]), and the generalized linear model (GLM) ([90,

91]), state-space models describe what could be large-scale recordings as arising from some

potentially small number of latent “states” that evolve dynamically in time as a function of

themselves and covariates such as sensory or optical stimuli. We found that linear state-

space (i.e., GLDS) models could be used in the context of the control objective of maintain-
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ing a steady firing rate in the face of ongoing activity changes during wakefulness in these

early sensory neurons. This was not a given, as many applications of state-space models to

neuronal spiking data have used nonlinear dynamical systems, or at least linear dynamical

systems with Poisson observations ([135, 95, 137, 99, 101, 97, 188, 189, 190]). While the

GLDS models used here clearly do not respect the statistics of the measured spiking data

and while they can grossly mis-predict neuronal responses to optical stimulation (e.g., Fig-

ure 3.3(a)), they do capture the basic dynamics and the robustness of the parameter-adaptive

Kalman filter in combination with feedback control allowed the use of this relatively simple

modeling framework and unlocks a wealth of other linear design and analysis methods de-

veloped over years of study. Similarly, a recent study that used state-space feedback control

in the context of hardware-simulated manipulation of electrocorticography (ECoG) made a

practical concession to use a linear model that was more amenable to commonly-used feed-

back control techniques ([191]). In contrast, we previously used a linear-nonlinear-Poisson

(LNP) spiking model in to design a classical proportional-integral (PI) controller ([126]).

While that simple control strategy proved quite effective even for tracking patterns of rate

modulation, the controller was designed numerically around a simulated spiking system,

owing to the multiple nonlinearities that precluded the use of such design tools as LQR

used in the present study. Simply put, there is a natural trade-off between the complexity of

models and complexity of the control design and implementation itself, especially as the di-

mensionality of problems scale. That said, a nonlinear model will likely be needed in some

control applications and it is possible the use of a PLDS model would have improved con-

trol performance even in this application but at the expense of complexity. In cases where

a Poisson model is necessary and/or beneficial, there are previously-developed methods for

estimating the underlying state of a PLDS (“point process filter”, [98, 188]). One could

leverage these nonlinear filtering techniques and design/implement feedback control in the

log-linear state space as described here for linear systems.

Aside from the observed robustness to the linear approximation of nonlinear neuronal
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activity, we also found in the context of SISO control problems that the parameter-adaptive

Kalman filtering and feedback control granted enough robustness to model-mismatch that

the GLDS did not have to be fit during the tight time constraints of awake, head-fixed

recording sessions. Instead, data from previous experiments were used for the controller

design and online estimation. Certainly, a large part of this success comes down to the

fact that the control objective was relatively long-timescale firing rate regulation. In the

context of trajectory tracking, we previously showed that, while closed-loop control grants

some robustness to model mismatch, even things as simple as DC gain mis-estimation can

lead to off-target activity when the target trajectory is time-varying ([126]). Indeed, in the

present study we have observed a wide array of neuron sensitivity to light. Therefore, there

are certainly scenarios in which the control objective would warrant better model fits, or

at least adaptively re-estimating other parameters such as the input matrix (B) or output

matrix (C) rather than attempting to capture all model mismatch with a linear disturbance

as was implemented here. In general, this would call for nonlinear variants of the Kalman

filter, such as the extended Kalman filter ([180, 98]).

In addition to the fact that the control method proved quite robust to model-mismatch in

the sense of the statistics of measured data and the aforementioned long timescale biases in

model predictions, we also found that we were able to effectively carry out the SISO control

and estimation problems using a first order approximation of systems that appeared to be

fourth or fifth order (Figure 3.2(b)). Since the control objective was to track a firing rate step

command over relatively long timescales, this should be expected. After all, the dynamics

of these systems tended to have died out after tens of milliseconds (Figure 3.2(b)). In

applications where the objective is to entrain precisely-timed sequences of spiking activity

rather than an overall firing rate (e.g., [136, 137, 95, 92]), a higher-order model would be

merited and more emphasis would need to be placed on stimulus design.

To this point, all references to the robustness of this control framework have pertained

to activity of the putative single neuron which was used to adjust stimulation in real-time.
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Across recordings, the feedback neuron”s activity was maintained at the target firing rate

with low error on average and, importantly, with low trial-to-trial variability. However, we

found that the local population of neurons also excited by the optical stimulation did not

exhibit this same lowered variability. It is worth noting that it is likely the case that pulsatile

stimulation rather than the continuously-graded stimulation we used here would have had a

less variable effect on the population. However, we showed that presenting 5 ms pulses of

light synchronizes the population and would thus likely strongly impact downstream targets

in a way that is unsuitable for many applications. Therefore, to reap the benefits of closed-

loop control in neural circuits, feedback of population activity rather than a putative single

neuron will likely be of great importance moving forward. Given the difficulty of online

identification of individual neurons from raw electrophysiological recordings (i.e. spike-

sorting) for dense multielectrode arrays such as the ones used here, the thresholded multi-

unit activity often utilized in brain-machine interface applications may prove an effective

alternative measure of population activity ([64]). Alternatively, it is conceivable in the case

of chronic implants to sort and track single units across experiments ([192, 193]).

Aside from providing multi-output feedback to the controller, the addition of multiple

light sources (e.g., [184]) would afford some degree of population control spatially. The

current preparation is highly underactuated in that there is a single light source being used

to manipulate local activity, and there will in practice always be heterogeneities in respon-

siveness to light in space, whether it be due to varying distance from a common light source

or differences in expression of opsins, etc. In addition to multiple spatially-distributed light

sources, having the ability to simultaneously excite and inhibit neuronal activity using light

of different wavelengths will also be key for robustness of optogenetic control moving for-

ward. Note that in the present study, a single excitatory opsin (ChR2) was expressed in

excitatory cells, meaning that the control is limited to pushing activity of those neurons

toward higher firing rates. This effectively limits the control problem to one that maintains

firing at an above-average desired level: here, 20 spikes/s which naturally occurs in this
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pathway. Conversely, if inhibitory opsins were expressed (or excitatory opsins were ex-

pressed in inhibitory interneurons), the control objective would be limited to maintaining

or pulling down spontaneous levels of activity. Therefore, the ability to effectively push

as well as pull back on neuronal activity would greatly expand the utility of this approach.

Importantly, while not tested here, the state-space control and estimation methods used in

the present study should generalize to such multi-input control problems. However, it is

likely the differing kinetics of excitatory and inhibitory opsins would necessitate higher

order models.

Besides the utility in treatment of neurological disorders and diseases ([171, 142, 141,

140]), or in augmenting normal brain function, the precise, closed-loop control of neural

circuits has the potential to significantly enhance our understanding of underlying mech-

anisms of basic brain function. After all, feedback control enabled the seminal work of

Hodgkin and Huxley in uncovering the nature of the ionic currents that underlie the gen-

eration of a neuron’s action potential, for which they won the Nobel Prize in 1963 ([61]).

The key to this experimental work was the use of a feedback controller to “clamp” the

trans-membrane voltage by injecting current to counter-act naturally occurring changes in

ionic currents. This functional decoupling of constituent ionic and capacitive currents led

to a quantitative description of the nonlinear dynamics of the action potential. Single-cell

voltage clamp and dynamic clamp experiments ([194]) continue to be a powerful tool for

scientific discovery, but continuously-graded feedback control of this sort has not been

translated to the circuit-level, where the dynamics are complex and can adaptively change

from moment to moment. Fundamentally different from lesioning or reversibly silencing

brain regions, closed-loop optogenetic control has the opportunity to aid investigation of

the mechanisms governing circuit level dynamics in a similar way voltage clamp did for

the single neuron.
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3.5 Conclusions

In this study, a state-space control and estimation framework has been developed and

demonstrated to work well in the context of wakefulness, where there is spontaneous fluc-

tuation in neuronal activity. Compared to Bolus et al ([126]), this updated approach is

more naturally suited to the MIMO control problems that are important in studying com-

plicated neural circuits. Notably, we were able to use a simple, linear approximation to

this nonlinear system at least for long-timescale control objectives, such as maintaining an

overall firing rate. The relative simplicity of these approaches achieved at the expense of

modeling fidelity represents one of the chief strengths of the methodology, as linear control

is well understood and is widely used. Moreover, while tested in the context of controlling

spiking activity which is often statistically modeled as a point-process, the methods laid

out here are immediately applicable to the control of continuous-valued neuronal signals

of interest such as local field potential and voltage/calcium imaging. This demonstration

of state-space models being used for single- and multi-output applications of optogenetic

control opens the door to other established control strategies that use this modeling frame-

work, such as model predictive control ([185]). As a whole, this work lays the foundation

for future advances in manipulation and study of neuronal circuits using the integration of

neuronal recordings and optogenetic stimulation.
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CHAPTER 4

OPTOGENETIC CONTROL OF THALAMIC STATE AND ITS EFFECTS ON

THALAMOCORTICAL ACTIVITY

4.1 Introduction

From sleep at one extreme to alert wakefulness at the other, the brain moves through a

gamut of states that are accompanied by measurable changes in behavioral and neuronal

activity. Thalamic and cortical activity is state-dependent, ranging from “Up” and “Down”

cortical activity and thalamocortical spindle oscillations during slow wave sleep and under

certain anesthesias to rapid, small variations in cortical subthreshold membrane potential

and elevated thalamic firing rates during periods of active arousal (for reviews, [29, 30, 31,

32]). Previous work defines the state of the brain during wakefulness in discrete extremes

such as quiet vs. active/aroused ([33, 34, 35, 27]), inattentive vs. alert [36], or passive

vs. engaged in a task ([37]). Despite this discretization, wakefulness is likely a contin-

uum ([29]), albeit with some well-studied extrema. On one end of the spectrum, when

animals are quiet/inactive the neuronal activity of cortex as measured by membrane poten-

tial or extracellular modalities like local field potential (LFP) or electroencephalography

is characterized by large amplitude, low frequency fluctuations coordinated across cells,

whereas the thalamic activity is characterized by low firing rates and some degree of burst

firing. At the other end of this spectrum, in an active state, the cortex is characterized by

lower amplitude, high-frequency fluctuations in subthreshold potential, while the thalamus

exhibits elevated tonic firing. Such state changes can also be behaviorally measured by

factors such as pupil diameter ([36, 38, 39, 40]) and movement ([41, 33]).

While the nature of the effects are apparently different in the visual versus auditory

and somatosensory pathways, these state changes in thalamus and cortex have been shown
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to have consequences for sensation both in terms of neuronal responses as well as in the

perception of sensory stimuli across modalities ([42, 41, 43, 44, 37, 38, 45, 46, 47, 48,

49]). These states are likely governed by changing tone of neuromodulators such as acetyl-

choline and norepinephrine in thalamus and cortex ([20, 51, 52, 38, 39]); however, it has

been shown previously that direct manipulations of thalamic firing have been sufficient

to control cortical state measures ([51, 35]). Therefore, it is as yet unclear what the rel-

ative contributions of direct neuromodulation of cortex versus thalamic state itself are to

variability in cortical and, ultimately, perceptual responses to sensory stimuli. An experi-

mental approach that could hold the state of one brain region steady in the face of changing

neuromodulatory and behavioral activity would be an invaluable tool for answering such

questions.

Rejecting such disturbances is one of the chief benefits of using feedback control sys-

tems ([28]). Moreover, optogenetic stimulation in combination with electrophysiology al-

lows unprecedented ability to stimulate and record at fast timescales with less concern

for stimulation artifacts seen with electrical stimulation, as well as the ability to do so

with cell-type specificity (e.g., [122, 113, 62, 124]). Closed-loop optogenetic control is a

general approach to stimulation that utilizes continuous feedback of neuronal activity to

modulate light intensity in order to achieve a target level of activity. To date, this form of

optogenetic control has been demonstrated to work well in vitro ([6, 138]) as well as in the

anesthetized animal ([6, 126]). Here, closed-loop optogenetic control has been applied to

the problem of regulating thalamic activity in the vibrissa, or whisker, system of the rodent

primary somatosensory pathway about an elevated level that is known to occur during an

active state. The control was implemented as previously described (Chapter 3) using the

spiking feedback of a putative single neuron. This study investigates the effect of opto-

genetic control on the state of the thalamus in the awake animal with a special emphasis

placed on understanding the approach’s ability to reject disturbances that would otherwise

change this activity, such as the state changes that occur when when animals move their
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facial whiskers (i.e., “whisk” [33, 27, 160]). We also explore the downstream effects on

ongoing cortical activity, and consequences for sensory response properties in each region.

Given the importance in changing thalamic firing properties for downstream cortical

activity and the lack of agreed-upon thresholds for discrete state delineations, a state-space

dynamical systems notion of thalamic state was used to provide a continuous-valued, la-

tent variable underlying coordinated changes in population thalamic firing, as measured

by multi-unit spiking activity recorded extracellularly. While in general such state vari-

ables could be multidimensional, for the purposes of this work, the state was assumed to

be unidimensional to capture the first-order characteristics of coordinated changes in fir-

ing activity. This variable was used to quantify the effects of closed-loop stimulation on

thalamic activity globally, juxtaposed with activity seen under spontaneous and open-loop

optical stimulation conditions. While applied specifically in the context of thalamic firing,

such a mathematical approach to state definition and estimation could be fruitful for other

systems as well.

4.2 Methods

4.2.1 Animal preparation

All procedures were approved by the Institutional Animal Care and Use Committee at

the Georgia Institute of Technology and were in agreement with guidelines established

by the NIH. Experiments were carried out using either C57BL/6J mice that were virally

transfected to express channelrhodopsin-2 (ChR2) or by single-generation crosses of an

Ai32 mouse (Jax) with an NR133 cre-recombinase driver line (Jax) which grants better

specificity of ChR2 expression in ventral posteromedial/posterolateral thalamus ([123]).

In the case of viral transfection, ChR2 expression was targeted to excitatory neurons in

the thalamus via stereotactic injection relative to bregma (approximately 2 × 2 × 3.25

mm caudal × lateral × depth) using 0.5 µL of virus (rAAV5/CamKIIa-hChR2(H134R)-

mCherry-WPRE-pA; UNC Vector Core, Chapel Hill, NC) at a rate of 1 nL/s.
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At least three weeks prior to recordings, a custom-made metal plate was affixed to the

skull for head fixation and a recording chamber was made using dental cement while the

animals were maintained under 1–2% isoflurane anesthesia ([62, 195, 172]). After allow-

ing a week for recovery, mice were gradually habituated to head fixation over the course

of at least five days before proceeding to electrophysiological recordings and optical stim-

ulation. In cases where recordings were also carried out in primary somatosensory cortex

(S1), non-invasive intrinsic optical imaging ([196, 197, 198, 199]) was used to localize

the approximate location of the cortical column in S1 (or “barrel”) that corresponded to

individually-stimulated whiskers on the animal’s face. Animals were lightly anesthetized

for 1-3 hours using 0.8-1.5% isoflurane, their skulls carefully thinned over S1 to optimize

optical translucency, and single whiskers repetitively stimulated for 4 s at 10 Hz and 500

degrees/s using a computer-controlled galvanometer (Cambridge Technology, Inc.). The

cortex was illuminated with red light (625 nm, M625F2 Thorlabs), while the reflected light

was was recorded at 10 fps using a tandem “macroscope” ([196]) comprised of 50 and

105 mm focal length lenses (Nikon Nikkor) connected front-to-front and mounted on a

camera (Basler AG acA1920). The location of the column in cortex corresponding to the

stimulated whisker was functionally identified as the point in the frame that had the largest

dip in reflectance ([199]).

On the day of the first recording attempt, animals were again anesthetized under 1-2%

isoflurane and a small craniotomy (1-2 mm in diameter) was centered at approximately 2

× 2 mm caudal and lateral of bregma. In cases where recordings were also carried out

in S1 cortex, a second craniotomy was made (approximately 0.5-1 mm diameter) centered

at the point functionally identified using intrinsic optical imaging (see above). Animals

were allowed to recover for a minimum of three hours before awake recording. At the

time of recording, animals were headfixed and either a single electrode or an electrode ar-

ray coupled to an optic fiber (Section 4.2.2) was advanced through this craniotomy to a

depth between 3-4 mm for thalamic recording and stimulation. Between repeated record-
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ing attempts, this craniotomy was covered using a biocompatible silicone sealant (Kwik-

Cast, WPI). Following termination of recordings, animals were deeply anesthetized (4–5%

isoflurane) and sacrificed using a euthanasia cocktail.

4.2.2 Experimental setup

All optical stimuli were presented deep in the brain via a 200 or 100 µm diameter optic

fiber attached to a single tungsten electrode (FHC) or to a 32-channel Neuronexus optoelec-

tric probe in a 25 µm-spaced “poly3” configuration (A1x32-Poly3-5mm-25s-177-OA32LP,

NeuroNexus Technologies, Inc.), respectively. Additionally, in experiments where cortical

recordings were also carried out, a linearly-space 32-channel Neuronexus electrode array

(A1x32-5mm-25-177-A32) was inserted 1 mm into the cortical craniotomy (Section 4.2.1).

Note that even recordings where thalamic and cortical activity was not topographically

aligned (i.e., not responsive to the same facial whisker) were included in this study. A

computer-controlled galvanometer was used to administer angular single-whisker stimu-

lation ([200, 16, 67]) (Cambridge Technology, Inc). Command voltages were generated

by a data acquisition device (National Instruments Corporation) in a computer running a

custom-written RealTime eXperimental Interface (RTXI, [167]) program at 1-ms resolu-

tion. Command voltages were sent to a Thorlabs LED driver, which drove a Thorlabs

470F3 LED (470 nm wavelength blue light) connected to the 100-200 µm optical fiber.

A Tucker Davis Technologies RZ2 system measured extracellular electrophysiology. This

system was used for single-channel PCA spike sorting, binning, and sending these binned

spike counts at 2-ms resolution to the computer running RTXI over ethernet via UDP. The

computer running RTXI for realtime control listened for datagrams over ethernet and lin-

early interpolated from 2-ms to the operating resolution of 1-ms. All told, the closed-loop

processing loop was approximately 10 ms.

In addition to optical stimulation and electrophysiology, the animal’s facial whiskers

were recorded from below using high-speed videography (Basler AG acA1920). The com-
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puter running RTXI triggered frame acquisition at 100 fps with digital strobes. These

frames and frame timestamps were buffered, compiled into video files, and saved on the

same computer using a custom-written C/C++ program.

4.2.3 Quantification of whisker motion

The behavioral videography was used to assess when the animals were moving their whiskers

(i.e., whisking) and with what intensity. Offline, movement of one hemisphere of the an-

imal’s facial whiskers was quantified as the mean squared luminance at a given point in

time in a region of interest (ROI) manually centered on the whiskers. In order to provide

an estimate of gross movements of the whiskers, this signal was smoothed with a 100-

ms rectangular window, was subtracted by 1 standard deviation of the signal in time, and

thresholded such that values below zero (i.e., below 1 s.d.) were set to zero. When this

measure of whisker motion was above zero, the animals were said to be whisking; all other

times were taken as non-whisking.

4.2.4 Thresholded multi-unit activity

In contrast to previous chapters, thresholded multi-unit data comprises most of the neuronal

spiking activity considered in this study, as opposed to sorting this spikes into clusters

belonging to putative single neurons (Section 4.2.5). Each channel of extracellular voltage

recorded from single tungsten or an array of silicon electrodes was high-pass filtered at

250 Hz ([64]) using a fifth-order Butterworth filter. The negative threshold past which

voltage crossings were taken as spikes of one or multiple neurons near the electrode (i.e.,

multi-unit activity, hereon referred to as MUA) was chosen to be four times the standard

deviation of the noise on a given channel, or −4 × σn. Following [201, 202], the standard

deviation of the noise on each channel was estimated as

σ̂n =
median(|v|)

0.6745
,
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where v is the channel voltage time series. The number of standard deviations of the noise

used for the negative threshold is typically between 3 and 5 ([202]), and [64] tried three

different thresholds of −3.5×, −4×, and −4.5× for MUA, and showed little difference

between them in the context of that study. Therefore, the middle −4× was used for the

purposes of this study.

4.2.5 Offline spike sorting

While most analysis of spiking activity was confined to MUA, offline-sorted single unit ac-

tivity was used in one analysis in this study. Kilosort2 ([174]) was used for all offline spike

sorting, including single-channel recordings, in which case spatial whitening and com-

mon mode referencing steps were disabled. Initial sorting by Kilosort2 was then manually

curated (additional merging/splitting of clusters) using the “phy” viewer. After manual cu-

ration, any clusters that met the following criteria were considered single units and used in

this study: sub-1-ms ISI violations of <0.5%, sub-2-ms ISI violations of <2%, and mean

waveform amplitude-to-standard-deviation ratio >4. Additionally, only those units that ex-

hibited significant above-baseline excitation within 10 ms from onset of 5 ms optical square

pulses were considered in this study (n=52 units, 16 recordings, 10 animals).

4.2.6 Cortical local field potential

Cortical local field potential was used to quantify cortical state and sensory response char-

acteristics. Raw extracellular voltages were recorded in S1 of cortex at the operating sam-

pling rate of 24.414 kHz (Section 4.2.2) and downsampled by 48× to a sampling rate of

approximately 500 Hz (508.6 Hz) and bandpass-filtered between 0.5 and 500 Hz using a

fifth-order Butterworth filter. All other signals (optical and sensory stimuli and whisker

motion) were resampled to this same time resolution, and spikes (single- or multi-unit)

were likewise binned at this resolution.
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4.2.7 Thalamic state estimation

For the purposes of this study, a one-dimensional representation of changing population

thalamic firing was taken as the state of the thalamus. In general, higher-dimensional

state estimates may be used; however, the goal of this analysis was a single variable that

best explained coordinated changes in across-channel firing activity. To this end, a first-

order Gaussian linear dynamical system model (GLDS, see Section 3.2.4) was fit to multi-

channel MUA spiking data, (y ∈ Rp). The number of output channels p was at most 32;

however, on the electrode arrays used, some channels were dysfunctional and so were

omitted from analysis. As recorded covariates of thalamic firing, the two inputs to this

multi-input/multi-output (MIMO) GLDS model, (u ∈ R2), were the optical control signal

as well as the whisker motion signal (Section 4.2.2). The 1-dimensional thalamic state

variable, x ∈ R1, was assumed to evolve as

xt = axt−1 + but−1 + wt−1 ,

where wt ∼ N (µ, q) is process noise of mean µ and variance q disturbing the state dynam-

ics. As before (Section 3.2.4) the state was linearly mapped to a p-output firing rate and

measured in this case as 2-ms-binned multi-unit spiking z:

yt = cxt + d ,

zt = yt + vt ,

where d is an output bias term corresponding to the baseline firing rate of each channel,

vt ∼ N (0,R) is the assumed zero-mean Gaussian measurement noise of covariance R.

GLDS state-space models were fit using training data from periods of optical noise stimu-

lation (Section 3.2.4) as well as spontaneous activity. The output bias term, d, was taken

as the average firing rate across all periods of optical and whisker movement silence in the
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training data. Subspace identification ([176]) was used to fit an initial GLDS between u

and (y − d) to each dataset individually.

In fitting these models, care had to be taken to ensure a consistent meaning and scale

for this thalamic state variable, x, across experiments. First of all, because of different

lighting conditions from experiment to experiment, the amplitudes of the whisker motion

signal recorded by videography were widely varied. To ensure consistency across experi-

ments, the whisker motion signal described previously (Section 4.2.2) was normalized by

the standard deviation across time in each training dataset. The same was done for the

optical input, resulting in a two-dimensional input, u, where both channels were of unit

variance.

Most importantly, to ensure consistent notion of state across experiments, a single state

transition coefficient, a, input vector, b, and process noise variance, q, were fit to the entire

population dataset (n=18 recordings, 11 animals). This was achieved by first fitting a GLDS

model for each recording individually, and then performing a single step of the Expectation-

Maximization (EM) algorithm detailed in [177] to solve for maximum a priori estimates

of a and b. Briefly, Kalman smoothing ([203, 177]) was performed with GLDS models fit

individually to each dataset in order to obtain estimates for the state mean and covariance

across all training data. These state and covariance estimates from individual experiments

were pooled together, and the parameters a and b were fit as detailed in the maximization

step of [177]. With this single set of dynamics, the output vector, c, was then refit for each

experiment by iterating the EM algorithm, while holding the dynamics fixed. In this way,

a single consistent set of LDS dynamics were used across experiments.

These GLDS models were used as the basis for thalamic state estimation throughout the

study. In order to estimate thalamic state from optical and whisker motion covariates and

measured MUA, parameter-adaptive Kalman filtering was performed as in Section 3.2.5,

where the process disturbance µ is jointly re-estimated with the state of the system. In

this application, the disturbance was assumed to vary as a random walk of variance qµ =
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1× 10−4.

4.2.8 Cortical LFP frequency ratio

The “state” of cortex is often said to be correlated to the frequency content of signals such as

electroencephalography (EEG) and intracortical local field potential (LFP) ([32]), such that

a so-called deactivated cortical state is characterized by higher amplitude, low-frequency

activity and an activated state is characterized by lower-amplitude, high-frequency activity.

A quantity that captures this spectral redistribution of signal power is the ratio of power in

low frequency (1-10 Hz) to high frequency (30-90 Hz) bands ([32]). In order to estimate

this ratio as a function of time, the power spectral density was estimated in a 1-second

sliding window using the MATLAB function spectrogram() (MathWorks). The frequency

bins corresponding to each of the aforementioned bands were integrated and the low to

high frequency ratio was taken.

4.2.9 Closed- and open-loop optogenetic control

All optogenetic control was performed as detailed in Chapter 3, in a single-input/single-

output (SISO) configuration where spiking activity of a putative single neuron was used for

feedback. As before, the control objective in this study was holding the output neuronal

firing to a fixed target, or reference, rate (r), corresponding to a nonzero-setpoint regula-

tion problem ([181]), also described here as ”clamping”. As in Sections 3.2.6 and 3.3.3,

first order GLDS models for light-to-spiking were used as the basis for the design and

implementation of optogenetic control and estimation in the feedback loop.

A steady-state solution was used for this control problem, and the system state-control

setpoint was calculated using models fit to previously collected optical noise driven spiking

data. This problem was solved by linearly-constrained least-squares ([182]) (Section 3.2.6).

The resulting nominal control input was not only used during feedback control epochs but

was also used as an open-loop (OL) control analogue for comparison to closed-loop (CL).
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In closed-loop control epochs, the adaptive Kalman filter detailed in Section 3.2.5 was

used to provide state feedback to the controller. The state and integrated-output feed-

back controller gains were designed offline using linear quadratic optimal control (See

Section 3.2.6).

4.2.10 Dataset inclusion criteria

All told, the data in this study come from 18 recordings in 11 different animals. However,

not every recording was appropriate for every analysis. For all analyses pertaining to the

effects of closed- and open-loop optogenetic control on thalamic state, only experiments

where the control objective was to maintain feedback neuron firing rate at 20 spikes/s were

used (n=16 recordings, 10 animals). To assess the effects of optogenetic control of thalamic

state on ongoing cortical activity, only those datasets in which there was significant cortical

LFP and MUA spiking responses to optical pulse stimulation of thalamus were included;

additionally, there were a number of datasets in which large low-frequency artifacts in the

LFP possibly related to animal movement prevented the necessary frequency content anal-

ysis. After these were left out, there was a remaining 7 recordings in 4 animals for analysis

of ongoing cortical activity. In analyzing the effects of optogenetic thalamic activation on

thalamic sensory responses, the dataset was limited to those in which there was significant

MUA excitation in response to whisker stimulation within a 30 ms window post stimulus

(n=8 recordings, 7 animals). Likewise, in analyzing the effects of optogenetic activation on

cortical sensory responses, the dataset was limited to those recordings in which there was

significant cortical LFP and MUA response to whisker stimulation within a 30 ms window

post stimulus (n=8 recordings, 6 animals).

4.3 Results

In this study, we examine the effects that optogenetic control has on thalamic activity,

downstream cortical activity, as well as consequences for sensory responses in both areas.
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Optical stimulation and extracellular electrophysiological recordings were conducted in the

primary somatosensory thalamus of the awake mouse. Specifically, the target was the ven-

tral posteromedial nucleus of the thalamus which receives topographically-aligned sensory

input from the facial whiskers ([23]). Thresholded multi-unit activity (MUA) recorded

across an electrode array was used to provide a large-scale measure of thalamic activity,

rather than focusing on the activity of single neurons. The use of MUA has the added

benefit of not requiring online spike sorting of recordings from dense electrode arrays,

which is currently experimentally intractable. A one-dimensional dynamic state variable

relating optical inputs and animals’ whisker self-motion to measured MUA was used as

a representation of thalamic state. In general, higher-dimensional state estimates may be

used; however, the goal of this analysis was a single variable that best explained coordi-

nated changes in across-channel firing activity. In addition to thalamic measurement and

stimulation, extracellular electrophysiology was also recorded downstream of VPM in the

whisker-recipient region of primary somatosensory cortex (S1) known as the barrel cor-

tex ([204, 24]).

4.3.1 Optogenetic control and multi-unit thalamic activity

Closed-loop optogenetic control of thalamic activity was carried out using spiking activity

of a putative single neuron (hereon termed the “feedback (FB) neuron”), as detailed in

Section 3.2.6. Briefly, a reference (r), or target, firing rate was fed to the control loop

consisting of a controller (“CTRL”) and a state estimator (“EST”) (Figure 4.1(a)). The

controller consisted of feedback gains on instantaneous state error and integrated output

tracking error as well as a feedforward model-based optical input for maintaining steady

state firing at the reference rate (Section 3.2.6). The estimator that provided state feedback

was the parameter-adaptive Kalman filter described previously (Section 3.2.5). This filter

provides a robust estimate of output firing rates by adaptively re-estimating an unmeasured

additive disturbance.
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The feedback control system was tasked with clamping FB neuron firing rate at an ele-

vated level of 20 spikes/s (Figure 4.1(b)), which can occur naturally in this pathway in the

context of animal whisking (e.g., [35, 27]). While the control system updated light inten-

sity as a function of FB neuron activity, in most experiments, 32-channel electrode arrays

were used to record population thalamic activity simultaneously. Extracellular voltages

were high-pass filtered and thresholded (Section 4.2.4), giving spike times from single or

multiple neurons/units in the vicinity of each electrode termed multi-unit activity (MUA,

Figure 4.1(c)). As evident in the peristimulus time histogram (PSTH) of MUA in Fig-

ure 4.1(d), although activity of a putative single FB neuron was used to modulate the light

intensity in a closed-loop fashion, the effects of the light are felt across a wide swath of the

approximately 400 µm span between bottom and top electrode contacts on the array. The

PSTH for each channel of MUA is arranged according to depth on the probe (left), such

that lower channels were deeper in the brain and vice-versa. In this particular example,

deeper channels were excited more than shallower channels, although this was not always

the case.
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Figure 4.1: Closed-loop optogenetic control and multi-unit activity. (a) Block flow diagram
for closed-loop optogenetic control. A single neuron is used for feedback while simultaneously
recording a local population. (b) Example of closed-loop optogenetic control of feedback neuron.
Top, trial-averaged (black) and example single-trial (grey) feedback neuron spiking smoothed with
25-ms standard deviation Gaussian window. Middle, optical control stimulus. Bottom, animal self-
motion of whiskers. (c) Three example channels of thresholded multi-unit activity, from bottom
to top of 32-channel electrode array. Thresholds and thresholded spike events shown in red. (d)
Trial-averaged firing rate of MUA for recording in (b).
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4.3.2 Thalamic state estimation

In order to capture coordinated changes in across-channel firing, a one-dimensional dy-

namic state variable, x, of a Gaussian linear dynamical system (GLDS) model relating

optical inputs and animal whisker movement to measured MUA was used as a representa-

tion of thalamic state (Figure 4.2(a)). As mentioned previously, such state estimates may

in general be multidimensional. Using training data consisting of spontaneous and optical

noise trial conditions, a single set of dynamics (i.e., parameters a, b, and q as detailed in

Section 4.2.7) were fit across all recordings (n=18 recordings, 11 animals) to ensure a con-

sistent, albeit abstract, meaning for this thalamic state variable (Section 4.2.7). Effectively,

this state term describes the dynamics in the (anti-)correlated firing rate across the electrode

array.

Estimation of this latent state variable was carried out using the adaptive Kalman filter

detailed previously in the context of feedback estimation for control (Section 3.2.5). An

example of the GLDS model-predicted and Kalman-filtered state estimate is provided in

Figure 4.2(b). A single trial of optical step input, as well as animal whisker motion, is

shown to have a predicted excitatory effect on the state variable (red). Given measured

MUA, Kalman filtering provides data-driven corrections to this model estimate (purple).

A raster plot of multi-unit spiking is also shown for the same trial, where each row is a

channel on the electrode array arranged from top to bottom as before in Figure 4.1. The

estimated thalamic state changes (purple) follow the apparent changes in spike density in

the raster. Although difficult to see, same can be said of trial-averaged estimates of output

firing rate on each channel, shown at the top of Figure 4.2(b).

The accuracy of the GLDS model state prediction and the filtered state estimates was

assessed based on the estimation accuracy of the output firing rates compared to measured

MUA. The squared across-time estimation bias was calculated between the model/filter out-

put and MUA spiking on a single-trial basis in each of four trial conditions: spontaneous

(Spont), optical noise (Noise), open-loop (OL), and closed-loop (CL) steps (Figure 4.2(c)).
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As expected, the filtered estimate of state (purple) was a more accurate representation than

the forward prediction of the model. In general, the filtered state estimate was only off by

between 20-40 spikes2/s2 (4.5-6.3 spikes/s in root-mean-squared error) on average. In the

case of optical noise and open-loop step inputs, where identical optical inputs were repeated

for multiple trials, variance explained in the raw 2-ms-binned PSTH was calculated (Fig-

ure 4.2(d)). This explained variance was either taken as a proportion of the variance in the

PSTH (pVE, top), or relative to the amount of “signal” (i.e., explainable) variance in the

PSTH (pSVE [175], bottom). Again, as should be the case, the filtered estimates captured

greater variance than the model prediction without correction. In terms of pVE, the filtered

state estimates captured 30-35% of the variance in PSTHs recorded in response to noise

and OL steps. In the case of optical noise stimulus conditions, this translated to capturing

approximately 50% of the explainable signal variance. Because there was less explainable

variation in MUA responses to simple step inputs of light, the filtered state estimates were

actually able to capture 100% of this signal variance.
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Figure 4.2: Estimating thalamic state. (a) Thalamic state estimation. Two-dimensional input (u)
to a GLDS model comprised of the optical stimulus and whisker motion. Given this input and MUA
spiking, an adaptive Kalman filter estimates a one-dimensional thalamic state, which is linearly
mapped to MUA. (b) Example response to open-loop (OL) step input of light. Top, trial-averaged
MUA firing rate (black) and output estimate (purple). Below is example single-trial MUA spiking.
Middle, corresponding single-trial GLDS-predicted (red) and filtered (purple) state estimates. Bot-
tom, corresponding single-trial optical and whisker inputs. (c) Population summary of squared out-
put estimation bias for model-predicted (red) and filtered (purple) estimates for spontaneous, optical
noise, closed-loop step, and open-loop step trial conditions. Error bars correspond to bootstrapped
95% confidence intervals about the mean. (d) Population summary of proportion of variance and
signal variance explained for model-predicted (red) and filtered (purple) estimates for optical noise,
and open-loop step trial conditions.
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4.3.3 Effect of optogenetic control on thalamic state

While we have previously characterized the effect of closed-loop optogenetic control on

the FB neuron (Section 3.3.3) and other simultaneously recorded neurons (Section 3.3.4),

here we investigate the effect of optogenetic stimulation, both closed-loop (CL) and open-

loop (OL), on the estimated state of the thalamus. Figure 4.3(a-b) provides an illustrative

example of the effect of optogenetic control on thalamic state both in a single-trial (light

purple) and on average (bold purple), as well as corresponding FB neuron activity around

which the controller operated and the average MUA (Figure 4.3(b)), where output channels

are arranged according to depth as before. The across-experiment distribution of thalamic

state during closed-loop control versus a spontaneous baseline condition (n=16 recordings,

10 animals) is plotted in Figure 4.3(c). At baseline the thalamic state is distributed about

zero, albeit skewed. During optogenetic stimulation (blue), the distribution shifts signif-

icantly rightward to a mean value of approximately 2 (Figure 4.3(c), p = 4.38 × 10−4,

Wilcoxon signed-rank test between per-recording baseline and CL means). Despite the

decrease in FB neuron variability observed previously (Section 3.3.3), closed-loop stimu-

lation did not produce lower state variability. Instead, the thalamic state variability in panel

(c) is very clearly elevated during control; in fact, it is approximately twice as great in

periods of CL stimulation (1.41 a.u.2) as compared to the spontaneous baseline condition

(0.734 a.u.2) (p = 0.0061, Wilcoxon signed-rank test). In addition, variability during OL

control epochs such as shown in Figure 4.2(a) was not significantly greater than that ob-

served during CL (p = 0.179, Wilcoxon signed-rank test). This begs the question what CL

stimulation is achieving over OL in terms of thalamic activity more globally. We have seen

previously that CL stimulation has the ability to compensate for experimentally-imposed

disturbances (Chapter 2). An open question is to what extent CL optogenetic stimulation

achieves this in the context of wakefulness where natural disturbances occur continuously.
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Figure 4.3: Effect of optogenetic control on thalamic state. (a) Example thalamic state during
closed-loop optogenetic control of feedback neuron. Single-trial (light purple) and trial-averaged
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4.3.4 Whisking as a natural thalamic state disturbance

So far, we have focused on the effects of optical stimulation on thalamic activity. However,

under awake conditions, there are spontaneous (i.e., uncontrolled) changes in neuronal ac-

tivity, such as those that occur when animals move their facial whiskers (Section 1.3).

Such behaviorally-correlated activity changes are apparent in the above example. Espe-

cially clear in periods of whisker motion, such as just before two seconds pre-control, at

control onset, and at approximately 1 second after the control epoch, the single-trial activity

of the FB neuron (Figure 4.3(a), grey, FB neuron spike train smoothed with 25-ms standard

deviation Gaussian window) and the single-trial estimate of thalamic state (light purple) are

correlated to the recorded whisker motion. Both the feedback neuron and the more global

estimate of thalamic state are transiently excited as the animal “whisks”. Notably, the op-

tical control signal on the same trial (light blue) sensed and compensated for this apparent

disturbance due to whisking, as shown by lower light intensity at the beginning and towards

the end of the 5-second control epoch, concurrent with whisking.

With this observation and the knowledge that firing activity in VPM thalamus is modu-

lated by whisking ([35, 27, 160]), we investigated the extent at which this representation of

thalamic state was modulated with whisking. Figure 4.4(a) provides an example of spon-

taneous single-unit activity (top), thalamic state (middle), and MUA (bottom raster) as it

is modulated in time with whisking. Since previous studies have quantified average fir-

ing rates in whisking vs. non-whisking conditions, we first considered the population of

all single units recorded (n=52) and segmented the spontaneous data into non-whisking or

whisking at all times when the whisker motion signal was zero or greater than zero, re-

spectively (see Section 4.2.3). During periods of whisking, the average single unit firing

rate increased from 4.9 spikes/s to 8.0 spikes/s (p = 1.40 × 10−8, Wilcoxon signed-rank

test), while previous studies have reported firing rates of 15-20 spikes/s during whisking in

VPM ([35, 27, 160]). It is important to note that many, or at least some, of the recorded

units in the present study were likely not VPM neurons because the inclusion criterion
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used for these analyses was that units be significantly excited by optical pulses with short

latency. In the case where opsin expression was achieved by viral injection, excitatory cells

in other nearby nuclei could have been picked up on the recording electrodes. In the case

of transgenic mice, cells in the VPL thalamus could likewise have been recorded. Since

only a single whisker was probed in each experiment, it is impossible to know which units

were not whisker-driven. For these reasons, the discrepancy in the degree of firing rate

modulation with whisking observed here versus previous studies is not unexpected.

The distribution of spontaneous thalamic state was segmented according to whisker

motion in the same way as the putative single-unit activity (Figure 4.4(c)). As with single

unit activity, thalamic state was significantly activated during whisking (p = 1.96 × 10−4,

Wilcoxon signed-rank test). Note that while the movement of the whiskers could be pro-

viding reafferent input to the thalamus, it has also been previously shown that thalamic

firing rates are elevated during whisking even when the infraorbital nerve is severed ([35]).

For this reason, the measured whisker motion is most accurately described as a correlate

of an unmeasured thalamic state disturbance. For simplicity, we will here consider animal

whisking itself to be a disturbance of thalamic state.
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4.3.5 Closed-loop optogenetic stimulation resists whisking thalamic state disturbance

Since one of the chief reasons to use feedback is to reject disturbances, we examined the ex-

tent to which closed-loop optogenetic control resisted thalamic state change during whisk-

ing. Figure 4.5(a) provides an example of a long (30-second) CL control epoch. In the

single-trial case (light colored traces) during periods of whisking (e.g., approximately 5,

12, 20, and 27 seconds into control epoch), there are compensatory dips in the optical

control signal (light blue). To visualize this more clearly, 1-second snippets of thalamic

state, optical inputs and whisker motion were collected around the onset of any whisker

motion during control. The ensemble average of these snippets is plotted in Figure 4.5(b),

where the whisking-onset-triggered average thalamic state changes very little while there

is a subtle decrease in optical input from on average 1.5 mW/mm2 to 1.4 mW/mm2. The

population distribution of closed-loop optical stimulation during non-whisking (black) vs.

whisking (grey) periods (Figure 4.5(c), n=16 recordings, 10 animals), shows that on av-

erage the light intensity needed to keep the FB neuron firing at 20 spikes/s went from

4.7 mW/mm2 to 3.8 mW/mm2during whisking (p = 2.3 × 10−3, Wilcoxon signed-rank

test).

While the approximately 20% decrease in population average light intensity with whisk-

ing shows that the feedback controller is resisting changes in FB neuron firing rate, the

question remains to what extent this compensation effectively rejects the disturbance to

thalamic state. To investigate this, distributions of thalamic state were constructed for pe-

riods of non-whisking vs. whisking in a baseline condition of spontaneous activity (Fig-

ure 4.5(d), top), CL optogenetic control epochs (middle), and OL control epochs (bottom).

It is clear in comparing black and grey distributions that thalamic state is comparatively

more invariant to the whisking disturbance in the CL case as compared to the other trial

types. While significantly different (p = 0.0084, Wilcoxon signed-rank test), the means of

the non-whisking vs. whisking CL distributions (vertical black and grey lines) are closer

than in either the baseline or OL conditions. The sensitivity index (d′) was used to quantify
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Figure 4.5: Closed-loop optogenetics resists whisking thalamic state perturbation. (a) Example
30-second control epoch. Single trial state, optical stimulus and whisker motion shown in light
colors. Trial-averaged activity in bold. Feedback neuron firing has been smoothed with 25-ms s.d.
Gaussian window for visualization. (b) Whisking onset-triggered average state and optical stimulus
for example in (a). (c) Summary distribution of optical stimulus in non-whisking vs. whisking con-
ditions (vertical bars indicate means, p = 2.3×10−3). (d) Non-whisking vs. whisking distributions
(vertical bars indicate means) for spontaneous baseline (1.96 × 10−4), closed-loop (p = 0.0084),
and open-loop (p = 4.38× 10−4) conditions. (e) Non-whisking vs. whisking selectivity index (d’)
for distributions in (d) in baseline vs. closed-loop (p = 4.38 × 10−4), and open-loop (p = 0.109)
conditions. Error bars correspond to bootstrapped 95% confidence intervals about the mean.
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the distance between non-whisking vs. whisking distributions in each trial type:

d′ =
µwhisk − µnon−whisk√
1
2

(
σ2
whisk + σ2

non−whisk

) ,
where µi and σ2

i denote the mean and variance of the state in whisking or non-whisking,

respectively. Figure 4.5(e) shows that while the non-whisking and whisking distributions

are still discernible in the CL case (i.e., d′ > 0, p = 2.7 × 10−3, Wilcoxon signed-rank

test), there is significantly less difference between the two conditions than in the OL or

spontaneous case (p = 4.38 × 10−4, Wilcoxon signed-rank test). Therefore, although the

disturbance is not completely rejected, closed-loop optogenetic control does indeed resist

thalamic state perturbation by whisking.
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4.3.6 Optogenetic control of thalamus pushes cortex towards activated state

The cerebral cortex, like the thalamus, displays different population activity as a function of

the state of the brain. During wakefulness, cortex is often said to be in a “deactivated” state

when the local field potential (LFP) is characterized by higher amplitude, low-frequency

fluctuations ([32]). Such a cortical state has also been termed “synchronized”, as it has

been shown in such regimes that the activity of nearby cortical neurons are more highly

correlated ([34]). Conversely, in an “activated” cortical state of wakefulness, the LFP is

characterized by lower-amplitude, high-frequency activity. A continuous-valued quantity

that captures this spectral redistribution of signal power is the ratio of power in low fre-

quency (1-10 Hz) to high frequency (30-90 Hz) bands ([32]).

While there are many factors effecting the state of the cortex, it has been previously

shown through direct thalamic manipulation that spiking activity in the thalamus has a

profound effect on cortical state [51, 35]. And similar to the thalamus, it is known that

the cortex displays characteristics of an activated state during periods of whisking ([34]) or

locomotion ([41, 38]). Therefore, we investigated the extent to which optogenetic control

of thalamic activity changed the state of the cortex, and how robust this change was to

natural changes concomitant with whisking.

Example snippets of spontaneous cortical LFP and thalamic state and whisker motion

are shown in Figure 4.6(a). Immediately preceding whisking onset, the thalamic state is low

(hovering around zero, grey line) and the cortical LFP is characterized by higher amplitude,

low-frequency activity. During whisking, the thalamic state is elevated and the cortical

LFP is lower-amplitude and higher-frequency. To quantify the LFP spectral characteristics

indicative of changing cortical state, the power spectral density was estimated in a 1-second

sliding window, the frequency bins corresponding to the aforementioned low- and high-

frequency bands (Figure 4.6(b), red and pink, respectively) were integrated and the low-

to-high frequency ratio was taken. Figure 4.6(c) provides an example of a 30-second CL

control epoch in which thalamic activity was elevated with direct optogenetic stimulation
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and downstream cortical LFP was recorded simultaneously. In this case, the frequency

ratio was reduced from approximately 9 before control onset (dotted line) to approximately

5 during control in thalamus. While not significant due to variability across datasets (p =

0.0781, Wilcoxon signed-rank test, n = 7 recordings, 4 animals), CL control of thalamic

activity pushed the cortical frequency ratio from 15.2 on average at baseline to a value of

12.5. Therefore, while the effect was variable, optogenetic control of thalamus pushes the

cortex towards a so-called “activated” state, consistent with [35].

As was done previously for thalamic state, to investigate the effectiveness of thalamic

control in maintaining cortical state in the face of a perturbation, the cortical frequency

ratio was segmented into distributions for when the animal was whisking (grey) vs. not

(black) in each trial condition (Figure 4.6(d)). As before in thalamus, the non-whisking

and whisking distributions are very close to each other in the CL control case, as compared

to the baseline. In fact, the means of these two distributions (vertical lines) are not signif-

icantly different across recordings (p = 0.375). In contrast, there is a clear change in the

baseline condition such that whisking takes the frequency ratio from a value of 22.5 to 12.5

(p = 0.0156, Wilcoxon signed-rank test). Sensitivity index, d′, was again used quantify

the distances between the whisking/non-whisking distributions, and while the change be-

tween whisking and non-whisking conditions was less on average for CL stimulation than

at baseline, this change was not significant due to variability across recordings (p = 0.156,

Wilcoxon signed-rank test). In contrast to findings in thalamus (Section 4.3.5), the OL

control of thalamus resulted in the same effects in cortex as CL. While speculative, it may

be the case that the effects of thalamic firing and animal whisking on cortical activity are

more binary in nature, such that continuous CL titration of optical stimulation has more

subtle consequences for downstream cortical activity.
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Figure 4.6: Effect of thalamic optogenetic stimulation on cortical activity. (a) Example of spon-
taneous cortical local field potential (LFP) and thalamic state during whisking. (b) Example power
spectral density estimate for cortical LFP. Highlighted in red and pink are the low (1-10 Hz) and
high (30-90 Hz) frequency ranges used to calculated low-to-high frequency ratio. (c) Example
of cortical activity during closed-loop thalamic stimulation. Light colors signify single-trial esti-
mates for each signal, whereas bold signify trial-average. Dotted line in the top plot corresponds to
average low-to-high frequency ratio pre/post optogenetic control. (d) Summary non-whisking vs.
whisking distributions (means, vertical bars) for cortical LFP low-to-high frequency ratio in base-
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intervals about the mean.
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4.3.7 Effect of thalamic state elevation on thalamic and cortical sensory responses

Given these effects of optogenetic control on thalamic and cortical states, the question

remains what effect if any such state manipulations have on thalamic sensory responses.

In the rodent whisker pathway, it has been previously put forward that an elevated thala-

mic state both activates the cortex ([35, 51]) and depresses the thalamocortical synapse,

resulting in suppressed cortical responses to whisker stimulation ([20]). Such cortical re-

sponse suppression is thought to sharpen cortical somatotopic receptive fields ([22, 50])

and mediate better discrimination between whiskers at the expense of simple sensory de-

tection ([21]).

We first investigated the extent to which an elevated pre-stimulus thalamic state affected

thalamic sensory responses. For this investigation, the state of the thalamus would ideally

be clamped a longer timescales but let through sensory responses at a faster timescale. Af-

ter all, if closed-loop stimulation actively rejected responses to sensory inputs, it would

be impossible to investigate the effects of overall thalamic state on neuronal sensory rep-

resentations. A computer-control galvanometer delivered one second of 10-Hz repetitive

stimulation to a single whisker, where each punctate deflection consisted of a rapid expo-

nential rise and fall (300 °/s average angular velocity; 99% rise time, 5 ms; 99% fall time,

5 ms). This sensory stimulation was delivered in a baseline condition without optical stim-

ulation or embedded in the middle of a 5-second OL or CL control epoch, an example of

which is shown in Figure 4.7(a). In the case of CL control, feedback was disabled for the

50 ms after each deflection to prevent compensatory changes in optical input. In this par-

ticular case, the whisker responses can be seen in the middle 5-10 channels of the electrode

array (Figure 4.7(a), top, MUA PSTH smoothed with 5 ms s.d. Gaussian window). In each

dataset (n = 8 recordings, 7 animals), thalamic MUA sensory responses were calculated

for the channel which responded with the largest average magnitude to the first whisker

deflection. Shown in Figure 4.7(b) is the population average peak response in the PSTH

(e.g., left) broken down by stimulus number in the 10 Hz train, where the response at base-
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line is shown in black and the response during optogenetic state manipulation is shown

in blue. For each recording, the responses were normalized to that of the first deflection

at baseline. The peak of the PSTH response to the first stimulus adapted over the course

of the 10 whisker deflections, such that the last response was approximately 80% the am-

plitude of the first at baseline; however, this change was was not statistically significant

(p = 0.148, Wilcoxon signed-rank test). Therefore, the responses to all 10 deflections were

pooled together across datasets.

The resulting population-averaged response to whisker stimulation is shown in Fig-

ure 4.7(c), where each grey or blue line corresponds to the population average response

to a single whisker deflection in the baseline or CL condition, respectively, and the bold

lines indicate the overall response average. In the case of CL stimulation, it is clear there

is a larger response to the sensory stimulus; however, this response is also riding on top

of a heightened background of thalamic activity, shown both in the elevated pre-stimulus

thalamic state (Figure 4.7(a)), as well as the return to this background post-stimulus (Fig-

ure 4.7(c), blue).

Since it is known that the thalamocortical synapse depresses with heightened thalamic

activity ([20]), it is unclear whether from a cortical response or even perceptual perspective

whether the absolute magnitude of the thalamic response is an appropriate measure of re-

sponse strength. An alternative measure is to quantify the magnitude of the response, rela-

tive to the pre-stimulus background. Therefore, two measures were used to quantify single-

trial responses to whisker deflections: the sum of spikes that occurred in a 30 ms window

post stimulus (horizontal bar, Figure 4.7(c)), and this sum subtracted by the background

activity in a 30 ms window immediately preceding the sensory stimuli. Both of these

quantities were z-scored relative to the baseline condition on a recording-by-recording ba-

sis, such that the quantities in Figure 4.7(d-e) represent the number of standard deviations

away from baseline the response was in each trial type. Consistent with previous findings

in the urethane-anesthetized rat ([20]), an activated thalamic state achieved by either CL
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or OL optogenetic control significantly increased the absolute response to sensory stimu-

lation (Figure 4.7(d), CL condition p = 7.58 × 10−12). However, the response relative to

background activity was actually smaller (Figure 4.7(e), CL condition p = 0.001).
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Figure 4.7: Effect of pre-stimulus thalamic activation on thalamic sensory responses. (a) Exam-
ple MUA activity response to 10 Hz single-whisker deflections at 300 degrees/s velocity. All signals
are trial-averaged. (b) Summary per-deflection average MUA firing rate response to whisker stim-
uli in baseline (black) vs. closed-loop optogenetic activation (blue) conditions, normalized to first
response at baseline. Fills correspond to bootstrapped 95% confidence intervals about the mean. (c)
Summary average MUA response to whisker deflection in baseline (black) vs. closed-loop opto-
genetic (blue) conditions. Light lines correspond to single-deflection average response, while bold
indicates ensemble average. Horizontal bar indicates 30 ms window of time in which spikes were
integrated for single-trial response measure (d-e). (d) Summary thalamic sensory response in base-
line vs. closed-loop and open-loop optogenetic stimulation conditions (CL: p = 7.5778 × 10−12;
OL: p = 7.5767 × 10−12; Wilcoxon signed-rank test). Spike counts in 30-ms post whisker de-
flection were z-scored according to baseline condition for that recording. Error bars correspond to
bootstrapped 95% confidence intervals about the mean. (e) Summary pre-stimulus-subtracted sen-
sory response in baseline vs. closed-loop and open-loop optogenetic stimulation conditions (CL:
p = 0.001; OL: p = 0.0031; Wilcoxon signed-rank test). Spike counts in 30-ms post whisker
deflection were subtracted by preceding spikes in the same 30-ms window.
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Since the overall magnitude of thalamic sensory responses was greater while the background-

subtracted response was smaller, the consequences of optogenetic activation of thalamus

for cortical sensory processing are not simple to predict. On one hand, the number of spikes

coming from thalamus to cortex is larger during optogenetic stimulation of thalamus; on

the other, the increase in pre-sensory-stimulus firing rate leads to depression at the thala-

mocortical synapse, such that each impulse exerts less influence downstream. Previously,

it has been reported in the urethane-anesthetized rat that thalamic activation by brainstem

reticular formation stimulation or cholinergic agonist infusion leads to suppressed cortical

responses downstream ([20, 51, 48]). Similarly, in the auditory pathway, sensory responses

in primary cortex of the awake rat are suppressed when animals are engaged in a task and

thalamic firing rate is likewise increased ([37]).

Cortical sensory responses were measured using LFP, such as in the example recording

provided in Figure 4.8(a). For each recording, the channel that displayed the earliest sig-

nificant depolarization in response to stimulation was taken as putative LIV. The response

to each punctate deflection was quantified as the peak amplitude of the evoked response

in a 30 ms. Similar to the analysis of thalamic spiking responses (above), these LFP re-

sponse amplitudes were z-scored against the pooled responses in the baseline condition

for each session (n = 8 recordings, 6 animals). Consistent with the trend in the thala-

mic responses, cortical responses adapt to repetitive stimuli (Figure 4.8(d), p = 0.0078,

Wilcoxon signed-rank test of first vs. last response). As before, to quantify overall sensory

response magnitudes, data for all whisker deflections were pooled together. The resulting

population average evoked LFP response is shown in Figure 4.8. Note that this population

average was carried out on raw LFP, without standardization, and only very minor differ-

ences between CL and baseline conditions survive the population averaging. Z-scored LFP

response amplitudes (Figure 4.8(d)) reveal that there is a significant suppression of corti-

cal responses as a result of CL optogenetic manipulation of thalamic state as compared to

baseline (p = 0.0223, Wilcoxon signed-rank test). This suppression was expected due to
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the well-known depression of the thalamocortical synapse with heightened thalamic activ-

ity ([20]). This decrease in efficacy of the TC synapse apparently outweighed the additional

number of spikes observed in thalamus.
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Figure 4.8: Effect of pre-stimulus thalamic activation on cortical sensory responses. (a) Ex-
ample putative LIV cortical LFP response to 10 Hz single-whisker deflections at 300 degrees/s
velocity. All signals are trial-averaged. (b) Summary per-deflection average LFP amplitude in
response to whisker stimuli in baseline (black) vs. closed-loop optogenetic activation (blue) con-
ditions. Values are z-scored against baseline condition responses for each recording, with all ten
deflection responses pooled together. Fills correspond to bootstrapped 95% confidence intervals
about the mean. (c) Summary average LFP response to whisker deflection in baseline (black) vs.
closed-loop optogenetic (blue) conditions. (d) Population average LFP sensory response amplitude
(CL: p = 0.0019; OL: p = 0.2003; Wilcoxon signed-rank test). Not shown, cortical multi-unit spik-
ing response displays same trend (CL: p = 0.0223; OL: p = 0.1053; Wilcoxon signed-rank test).
Values are z-scored against baseline condition responses for each recording. Error bars correspond
to bootstrapped 95% confidence intervals about the mean.
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4.4 Discussion

Unlike previous work that defines the state of the brain during wakefulness in discrete

extremes such as quiet vs. active/whisking ([34, 35, 27]) or inattentive/passive vs. atten-

tive/engaged ([36, 37]), the definition of thalamic state used in this study is a continuous-

valued quantitative measure of changing population activity. The reason for this choice was

multi-fold. First, by whatever measure, the state of the brain during wakefulness is a con-

tinuum ([29]), albeit with some well-studied extrema. Secondly, there are not agreed-up

thresholds, for example, in thalamic firing rate that are indicative of an active vs. inactive,

or quiet, state. And finally, unlike the periods of concerted “Up” and “Down” cortical ac-

tivity that can occur in slow-wave sleep and under certain anesthesias ([46, 42, 205]), we

saw no clear evidence for bi-/multi-modality in distributions of thalamic firing rate or the

continuous state measure, or at least not until segmenting the data according to whisking

behavior (Figure 4.4(b-c)). Given that the firing rate of thalamic neurons is known to be

important both for changing the state of cortex as well as altering the sensory response char-

acteristics ([35, 20, 51, 48]), the quantitative measure of large-scale, coordinated changes

in firing rate used here would seem an ideal estimate of thalamic state.

Importantly, the notion of state developed in this study provided a way to investigate ef-

fects of optogenetic control on the thalamus more generally when closing the loop around

a single feedback neuron. One of the most surprising results was that, despite a signifi-

cant reduction in the variability in that feedback neuron’s activity both in the anesthetized

rat (Section 2.3.7) and in the awake mouse (Section 3.3.3), this control actually yielded

more variation in population activity than occurred under spontaneous, uncontrolled con-

ditions. One might assume the cause of this heightened variability was simply the variation

in optical stimulation in time, which arises by virtue of using feedback control. While this

is certainly possible, the amount of thalamic state variability in the case of open-loop step

inputs was not significantly different from the closed-loop case (Section 4.3.3). Since con-
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trolling systems in a robust manner, with low variability is one of the chief reasons to use

closed-loop control in general, this deserves further investigation. It is likely that closing

the loop around this population state rather than a single neuron’s activity would result in

more effective population control. Since thresholded MUA was used as the measurement

modality for the state estimator, this extension is imminently feasible, as it requires no so-

phisticated spike sorting techniques to distinguish action potentials of individual neurons

online. Such activity has long been used in the motor field as the basis for decoders in

brain-machine-interface applications ([103, 188, 206]). Moreover, the state-space estima-

tion and control approaches used experimentally in the single feedback neuron case are

immediately generalizable to such multi-output scenarios.

Among other things, this work demonstrates for the first time an example of closed-

loop optogenetic control compensating for a naturally-occurring disturbance in the awake

animal: in this case, whisking. While it cannot be said closed-loop stimulation completely

rejected changes in thalamic state concomitant with whisking, thalamic activity changed

significantly less during periods of closed-loop control than spontaneously or during open-

loop control. It is also interesting that whisking minimally changed the state of the cortex

when the thalamus was undergoing closed-loop stimulation. Since whisking is known to

be accompanied by cholinergic inputs to both thalamus and cortex ([52]), one possible fu-

ture application of this technique may be to hold thalamic state invariant to such perturba-

tion and investigate non-thalamic origins of cortical state and sensory-response variability.

However, this would require further investigation of the thalamic state variation finding

discussed above.

In general, the effects of thalamic activation on cortex were more subtle and variable

than expected. Given prior publications on the effects of direct thalamic activation either via

cholinergic receptor agonist infusion ([51, 48]) or open-loop optogenetic stimulation ([35]),

a much more robust change in cortical LFP was anticipated. In the case of [51, 48], the dis-

crepancy could be due to the fact that these investigations were carried out under urethane
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anesthesia, rather than in awake conditions. However, [35] used a very similar preparation:

direct optogenetic stimulation of thalamus in the awake, head-fixed mouse. In that study,

the authors used a ramp of blue light that went from 0 to approximately 16 mW/mm2

(0.5 mW) over the course of five seconds. On average, the closed-loop controller used

blue light of intensities lower than 5 mW/mm2 (Figure 4.5(c)). The example dataset that

showed the clearest effects of thalamic activation on cortical LFP used closer to an inten-

sity of 10 mW/mm2 (Figure 4.6(c)), so it is possible that the intensity of light used was

disparate enough to explain the disparity. Also, [35] used a 200 µm optical fiber rather than

the 100 µm used here. In that case, for a given light intensity, a larger area of tissue would

be activated. All this said, it is also true that clear periods of “quiet wakefulness” were

infrequent in this dataset, suggesting that animals were in general already in a heightened

state of alertness in these experiments and that thalamic stimulation may have had little

room for further activation of cortex.

4.5 Conclusions

This work presents a novel representation of thalamic state and shows that, even when us-

ing a single neuron for feedback, closed-loop optogenetic control effectively resists state

changes concomitant with disturbances such as whisking in the awake mouse. Since whisk-

ing is known to be accompanied by cholinergic inputs to both thalamus and cortex, one

possible future application of this technique may be to hold thalamic state invariant to such

perturbation and investigate non-thalamic origins of cortical state and sensory-response

variability. In addition to using the thalamic state defined here for feedback, future work

could benefit from bidirectional control either through coexpression of excitatory and in-

hibitory opsins in thalamus or expression of a red-shifted excitatory opsin in the inhibitory

reticular nucleus of the thalamus. Moreover, the utility of the state-space dynamical sys-

tems approach to neuronal state estimation need not be limited to thalamic activity. Such

an approach to state definition and estimation could be applied to other systems to provide
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continuous-valued, large-scale estimates of dynamic population activity in cases where

there are not clearly defined discrete changes in state-related neuronal activity. Likewise,

while developed and tested in the thalamus of the somatosensory system, closed-loop opto-

genetic control is a broadly applicable methodology that should enable decoupling activity

of brain regions or cell types within a region and provide unprecedented ability to assess

the relative roles of otherwise inextricably linked variables such as thalamic and cortical

activity across states of wakefulness.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

A common thread running throughout the work in this thesis is the integration of a number

of engineering concepts and their application to problems in neuroscience. Chief among

these include mathematical modeling and practical system identification for relating optical

stimulation to neuronal activity, numerical or analytical optimization for design of feedback

controllers, and estimation of latent variables from noisy neuronal data. Chapter 3 and

the transition to state-space modeling for control as well as state estimation perhaps best

embodies this intersection. While developed and tested in the context of control of thalamic

spiking activity, the hope is that the work of Chapters 3-4 enables closed-loop optogenetic

control to be more broadly applied in neuroscience. With this in mind, what follows is

a discussion of the strengths as well as limitations of the current approach, what I see to

be prudent next steps algorithmically and experimentally, as well as some ideas for future

applications outside the realm of controlling thalamic firing rate.

5.1 Robustness of closed-loop optogenetic control

In the context of feedback control of neuronal firing rate, we have demonstrated robustness

to sensory white noise disturbance under anesthetized conditions (Chapter 2) as well as ro-

bustness to model inaccuracy in controller design and implementation (Chapters 2 and 3).

Over relatively long timescales, these advantages of feedback were conferred by the use of

integral action for the control, but—just as importantly—by employing estimators that have

zero DC estimation error. For the simple model-free control loop in Chapter 2, the moving

average filter used to smooth spiking activity into an estimate of instantaneous firing rate

has unit gain at DC. In this way, even if higher frequency content in the underlying firing

rate were not accurately conveyed to the feedback controller, the DC component of this
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feedback signal was always accurate. Similarly, in the case of the state estimator of Chap-

ter 3, the random walk model for the adaptation of the process noise mean (Section 3.2.5)

ensured near-zero estimation bias. In fact, this parameter-adaptive Kalman filtering has

been termed a PI Kalman filter ([207, 178, 179]) because the random walk is a stochastic

integration of an additive state correction term. Admittedly, this approach does not always

ensure zero DC estimation error for multi-output systems (Section 3.3.6), but it still pro-

vides a vast improvement over a standard Kalman filter. Given that this estimation step

proved so important for reaping the benefits of PI control in both model-free and model-

based control applications, whatever future developments there are in control approaches

for optogenetic stimulation, a similar degree of thought should be put into the quality of

the feedback signal provided to the controller.

One of the chief reasons to use feedback control is the rejection of disturbances. As

mentioned above, we demonstrated some degree of robustness to an artificial sensory dis-

turbance in the anesthetized animal. However, it was not until later work (Chapters 3-4)

that we were able to apply CLOC in the awake animal where natural disturbances occur

continuously. One such disturbance was the thalamic state change concomitant with animal

whisking. Throughout this work, feedback from single neurons was used to modulate opti-

cal stimulation whose effects were felt more generally. Given the variability in response to

stimulation (see below), it was perhaps surprising to find that this stimulation approach was

able to confer a degree of robustness to animal whisking when viewed through a large-scale

measure of thalamic state developed in Chapter 4. While the single-neuron feedback ap-

proach resisted some changes in the state variable, moving forward, the MUA-based state

estimate should be used for CLOC of thalamus. The same could be said of other poten-

tial applications of CLOC outside of the thalamus, such as controlling laminar activity in

cortex.

149



5.2 Variability and feedback control of single-neuron vs. population activity

Going hand-in-hand with questions of robustness is the issue of variability. Perhaps the

most surprising result from Chapters 3 and 4 was the fact that while closed-loop control

reduced the trial-to-trial variability in spiking activity of the single neuron used for feed-

back, population activity was not less variable, whether analyzing other simultaneously-

recorded single neurons (Chapter 3) or using a more wholistic measure of underlying tha-

lamic state (Chapter 4). In part, this could be due to the fact that online spike sorting was

imperfect, effectively allowing noise spikes from other nearby neurons to creep into the

feedback signal. However, it is also the case that simultaneously-recorded neuronal pop-

ulations exhibited heterogeneity in their response to light. While lower spiking variability

may not be desirable in all control applications, I believe the utility of this approach over

open-loop alternatives will be limited unless at least long-timescale population variability

is reduced. Given heterogeneity in population responses, a prudent future direction would

be to apply optogenetic control where a population state estimate such as that developed

in Chapter 4 were used for feedback. Although not suitable for all applications, if the goal

of a future study is to investigate how the activity in a given region (e.g., thalamus) affects

a downstream target (e.g., cortex), invariant to other disturbances (e.g., whisking), closing

the loop around population activity would likely be more effective than doing the same

around a single neuron.

5.3 Opportunities for dual-opsin bidirectional control

All optogenetic manipulation in this work utilized a single excitatory opsin. A dual-opsin

approach to bidirectional manipulation presents an opportunity for finer control of activity

and would serve to broaden the applicability of this technique. Perhaps the greatest limita-

tion of the current approach is the inability to pull back on neuronal activity in addition to

exciting it, analogous to a cruise control system that only controls throttle and not brakes.
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Throughout this work, the non-scientific, practical reason for making the target for con-

trol an above-baseline firing rate was that ChR is a non-selective cation channel, and so

opening these channels with light will depolarize cells. Choosing an elevated target firing

rate that naturally occurs in this pathway allowed feedback control to display its utility by

pulling back on the light intensity as needed during natural periods of rate elevation like

whisking. Moreover, if firing rate went above a target for any substantial period of time, in-

tegral control would cease to be helpful, becoming instead a nuisance due to a phenomenon

called integrator windup [208]. The PI controller would sense firing rate was too high and

compensate by turning down the light intensity until bottoming out, at which point this

uncontrolled error would continue to accumulate, making any future excitatory action of

the controller delayed.

Adding simultaneous optogenetic inhibition to this loop would greatly improve the util-

ity of the approach and should be prioritized over any algorithmic changes, since the state-

space control approach in Chapter 3 will generalize to this two-input scenario. The most

straight-forward way to achieve such bidirectional control would be to co-express ChR

along with an inhibitory opsin like the chloride pump HR (see Section 1.4.2). Functional

co-expression of these two opsins has been achieved in vitro (e.g., [121, 6]). The two-opsin

plasmid eNPAC2.0 ([118]) is the ideal candidate for this bidirectional CLOC, as it contains

genes for both ChR and HR which should help to ensure there are stoichiometric equiva-

lents of each opsin expressed (barring major differences in membrane trafficking). Usage

of viral injection of cre-recombinase-dependent vector AAV-DIO-eNPAC2.0 in appropri-

ate transgenic mice should allow cell type specific bidirectional control in, for example,

VPM/VPL thalamus (NR133 mouse, [123]), parvalbumin-expressing interneurons ([122]),

or LVI CT neurons ([54]). Notably, however, this construct has only been used in one pub-

lished in vivo study, and it is not clear how effective it was bidirectionally ([119]). Another

consideration is that even most red-shifted opsins have a degree of blue light sensitivity (see

HR activation spectrum in yellow, Figure 1.5). Therefore, to minimize cross-talk between
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stimulation of ChR and HR (or archaerhodopsin-based alternatives), it would be prudent to

use blue light closer to 415 nm (rather than 470 nm used here) to stimulate ChR. Amber

(e.g., 590 nm) or even red light could be used to selectively stimulate HR. Before pursu-

ing this opsin co-expression approach, however, the authors of the aforementioned in vivo

study as well as the originating lab ([118]) should be consulted.

In my view, this co-expression of opsins in the cell type(s) undergoing control would be

ideal in most applications because this way you are directly manipulating one population

of cells at time. However, in cases where the cell type of interest for control is inhibited

by other cells in the network, there is an alternative. A red-shifted ChR variant (e.g., [116,

117]) could be expressed in inhibitory cell populations such as reticular nucleus of the

thalamus (e.g., [124, 209]) or inhibitory interneurons in cortex (e.g., [122]). In this way,

neurons could be excited directly using a blue-light sensitive ChR and inhibited via the local

circuitry. In addition to perhaps being a more natural avenue for inhibition, one practical

benefit of this is that some inhibitory opsins have been been reported to display paradoxical

excitatory effects at certain extremes ([210]).

5.4 Choice of mathematical model for optically-driven neural activity

Throughout this work, an attempt has been made to use the simplest models that are still

useful for the intended application (i.e., control and estimation of neuronal firing). The

initial use of an LNP model (Chapter 2) was motivated primarily by the fact that it was

the simplest commonly used spiking model that relates stimulation (usually sensory) to

neural activity (Section 1.4.1). However, while the LNP and GLM are widely used in

sensory neuroscience, they are built around feed-forward, non-dynamical filters and there-

fore are not amenable to most control methods which generally revolve around the use of

transfer functions or state-space dynamical systems models. As a result, while the design

methodology laid out in Chapter 2 respects the spiking activity of neurons, it did not lever-

age more commonly used control and estimation methods and was not designed to handle
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future multi-input (e.g., bidirectional control above) and multi-output (e.g., multi-channel

MUA) control problems. For this reason, when trying to develop an optogenetic control

approach that would be more generally applicable—even beyond spiking activity—a state-

space dynamical system approach was taken and the necessity of spiking nonlinearity was

investigated (Chapter 3). At least in the context of holding firing rates steady at relatively

long timescales, we found little was functionally gained by using a PLDS instead of the

simpler GLDS, and what you gained was access to widely-used linear controls methods.

Moreover, because other neuronal signals of interest like cortical LFP or voltage/calcium

fluorescence imaging data are continuous-valued rather than spiking in nature, a GLDS

model would actually be a more accurate statistical model in those cases. All these things

together suggested ultimately that the GLDS model was an appropriate compromise be-

tween accuracy and utility in this context and was applied both in CLOC (Chapter 3) as

well as in offline thalamic state estimation (Chapter 4).

This is not to say PLDS models are unnecessary for optogenetic control more generally.

Under different experimental circumstances or control objectives, it may be the case that a

PLDS model is a substantially better choice. Controlling spike timing at finer timescales

is likely an example application where the Poisson LDS would provide substantially better

results. Given that there are published methods developed for estimating the underlying

state of these PLDS models (“stochastic-state point process filter”, [98, 109, 110]), one

could simply leverage these nonlinear filtering techniques and design/implement feedback

control in this log-linear state space as described for linear systems in Chapter 3.

In addition to this output nonlinearity for spike generation, the underlying dynamics of

single cells and populations are clearly not linear, so in some applications even a PLDS

would be an inappropriate modeling choice. One example of a clear nonlinearity that was

encountered in the early days of this project is that of depolarization blockade. If the optical

stimulation is intense and sustained enough that it opens too many ChR channels, the cell(s)

can become depolarized to the point where they cannot repolarize for the generation of
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subsequent action potentials ([211]). In this way, overly intense actuation of the system

can effectively inhibit neuronal firing. This is a potentially-important behavior that cannot

be captured by an LDS with a static input or output nonlinearity. However, in practice, such

nonlinearities were not problematic if the target firing rate was in an achievable range. It is

possible that using feedback control effectively maintained these nonlinear systems within

a regime that could be more effectively capture using linear models than would otherwise

have been the case.

5.5 Trajectory tracking vs. constant set point

In this work, we have applied model-free and model-based forms of proportional-integral

control. In Chapter 2, a simple model-free PI controller was used to entrain patterns of tem-

poral firing rate modulation, whereas in Chapter 3, model-based control was tasked with

clamping the firing rate at a constant set point. This begs the question of how applicable the

latter approach is to reference trajectory tracking problems. The controller was designed

by solving an infinite horizon optimization problem (specifically, LQR), so it was not ex-

plicitly designed for tracking target patterns of activity. That said, the methods laid out in

Chapter 3 would be directly applicable to tracking problems where the desired pattern of

activity is slow compared to the dynamics of the system being controlled. For example,

the average light-to-spiking impulse response for thalamic units tended to die out over tens

of milliseconds, indicating that the methods laid out here for model-based control may not

be completely applicable to control of patterns at that time scale or faster. In such cases, a

finite horizon optimization of feedback controller gains and a nominal control input using

a technique like iterative LQR ([212]) may prove beneficial or necessary.

5.6 Dynamical systems approach to brain state definition and estimation

A dynamical systems approach was taken in Chapter 4 to the problems of defining and

estimating the “state” of the thalamus. In neuroscience literature, converging evidence
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points to thalamic firing rate being at least correlated to changes in behavioral and cortical

measures of brain state and to it being an important factor in determining the gating of

sensory information flow to cortex and ultimately perception (see Section 1.3). Therefore,

consistent with the engineering definition of state as being the minimum set of variables

needed to explain future activity of a dynamical system, the state of the thalamus has been

defined here as a one-dimensional variable that underlies coordinated changes in population

thalamic firing, measured by MUA across an electrode array. Importantly, this approach

is not equivalent to simply averaging activity across the channels of the array. In theory,

at the extreme where half of the channels were suppressed and half were excited, a simple

across-channel average of the activity may be destructive and obscure what were actually

gross changes. In contrast, such anticorrelated changes would be represented in the output

matrix (C) of the GLDS models used as the basis for this state estimation. This is far from

a contrived scenario, as it has been shown in the visual pathway that exciting deep cortical

layer VI CT cells to fire actively inhibits other cortical layers like LIV ([213, 214]).

While a one-dimensional state was used here, it is important to note that this need not

be the case; in thalamus and certainly other regions like cortex, a higher number of latent

variables may be needed to explain activity of interest. In motor systems especially, varia-

tions on this dynamical systems approach have been used to distill high dimensional array

recordings down to a small, albeit greater than unidimensional, state vector (e.g., [100,

104, 106, 64, 107]). Notably, however, this approach is rarely applied to sensory systems

as a way to explain state-dependent variability in responses to stimuli. Therefore, such

dynamical systems state definition and estimation may prove to be a fruitful intersection of

engineering and neuroscience.

As was done for single-neuron feedback control applications in Chapter 3, a GLDS

model and Kalman filtering was used for thalamic state estimation in Chapter 4. One of the

somewhat surprising results noted above was that the state variation appeared to be greater

at CLOC-elevated firing rates than under spontaneous conditions. Although speculative, it
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is possible the use of a GLDS instead of a PLDS model could have resulted in this appar-

ently elevated variability. While not truly Poisson, the variability in neuronal spiking tends

to correlate positively with the firing rate ([165]). If a PLDS model with an exponential rec-

tifying nonlinearity were used, it is possible that, in a compressed logarithmic state-space,

the estimated state variation would not have been so grossly elevated at higher firing rates

during CLOC versus spontaneous conditions. Therefore, this variability analysis may be

an example case where a PLDS, rather than GLDS, would be warranted (see above).

Finally, the use of a dynamical system approach to defining state assumes this state

variable is in fact continuous-valued, rather than discrete. While even experts on states of

wakefulness will often say brain state varies along on a continuum (e.g., [29]), neuroscien-

tists still tend to bin states into discrete categories such as active vs. quiet or synchronized

vs. desynchronized. In the context of the thalamic recordings analyzed here, there was

not clear multi-modality in the distribution of firing rates over time. Therefore, in situa-

tions such as this where there is no agreed-upon threshold for transitions between discrete

states, the dynamical systems approach seems appropriate. That said, in cases where there

are clear transitions (e.g., UP vs. DOWN states in cortex under anesthesia), the discrete

state space equivalent to the dynamical system could be used: the hidden Markov model

(HMM). In fact, HMMs have been used to date to capture coordinated On vs. Off spiking

activity regimes in cortex ([215]). See also [216, 217] for other neuronal applications of

HMMs.

5.7 Applicable measurement modalities for CLOC

Experimentally, spiking from single neurons were used as feedback for CLOC. However,

as has been noted already, control around a larger-scale measure of activity such as thresh-

olded MUA (Chapter 4) is likely the way to push forward with this technique. Using MUA

also has an important practical advantage in that it lessens the need to have well-isolated

single units and opens the window to using chronically implanted electrodes ([193, 63])
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rather than acutely inserting probes each recording. This will be especially important for

longitudinal studies involving animal behavior. Because of the generality of the approach

to control and estimation laid out in Chapter 3, using MUA as the measurement modality

would require no change in methodology.

Besides spiking activity, these approaches could also be used for feedback control of

cortical LFP, calcium imaging signals, or voltage imaging signals. If anything, the use of

GLDS models would be more appropriate in the case of these continuous-valued signals

and, especially in the context of imaging, using low-dimensional state-space representa-

tions for feedback control as well as offline analysis would likely be beneficial.

5.8 Thalamic state and burst vs. tonic firing modes

Because of how rare they are during wakefulness, the role of low-threshold calcium-mediated

bursts in the wakefulness is debated. In a recent study that used intracellular and juxtacel-

lular recordings in VPM of awake, head-fixed mice, the authors reported that they observed

no calcium-mediated bursting. Moreover, across putative single units recorded in the awake

animal here (Chapters 3-4), on average less than 2% of spikes were members of bursts (data

not shown). That said, when bursts do occur in response to sensory stimuli, it is thought

they provide an “wakeup call” to cortical circuitry downstream ([14], see Section 1.3). By

the very language chosen, this implies that the brain had to have been in a quiescent state

for this bursting to occur (e.g., “inattentive” period shown in Figure 1.3(a)). Therefore,

it is possible that the role of thalamic burst firing in sensation is difficult to probe under

experimental conditions because animals are likely in a state of alertness much of the time.

One potential use of bidirectional CLOC (see above) could be to step the thalamus through

different states ranging from very quiet/hyperpolarized to very active/depolarized, and ap-

ply sensory stimuli while recording in cortex. Because calcium-mediated bursting requires

hyperpolarized membrane potential and is therefore anticorrelated to overall firing rate, the

thalamic state definition developed here is ideal for this application.
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5.9 Across-region feedback control

Instead of closing the loop locally in a single brain region as was done in this work, CLOC

could also be used to entrain target activity in a brain region of interest (e.g., cortex) by

way of stimulation in an upstream region (e.g., thalamus). For example, the control ob-

jective may be to make cortical activity invariant to unmeasured state disturbances using

optogenetic thalamic stimulation, and subsequently analyze the thalamic activity required

to maintain target cortical state in a way not dissimilar to how voltage clamp experiments

are analyzed: inspecting the current injection necessary to keep membrane voltage fixed.

While scientifically interesting by analogy to current-day and classical experiments using

voltage clamp, I am not confident this would yield a clear result. First of all, while voltage

clamp is able to maintain membrane potential of a single patched cell quite effectively, it

is unlikely closed-loop optogenetic stimulation would ever be able to overcome all other

modulatory forces that can underlie changes in the activity of a local population of cells, let

alone a downstream population of cells. This would leave the results of such experiments

difficult to interpret. That said, inability to completely regulate cortical state via thalamic

stimulation, for example, is in itself a result of sorts, but it is always difficult to prove a

negative.

5.10 Closing the loop around behavior

Another potentially interesting application of CLOC would be to use neuronal stimulation

to achieve target behavioral performance in, for example, a sensory detection task. As dis-

cussed in Section 1.3.2 the state of the brain at the time of sensory input can have significant

effects on the perception of a stimuli. In the context of audition and somatosensation, when

the brain is in an active/aroused state, thalamic firing is elevated ([27]), cortical sensory

responses to inputs are suppressed ([37, 20]) and sensory detection suffers ([38, 49]). In a

set of experiments, one could causally probe the role of thalamic state in perceptual sensi-
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tivity by combining optogenetic stimulation of thalamus and behavioral feedback with the

goal of keeping animal detection performance (e.g., correct positive or hit rate) invariant

to the strength of a sensory stimulus. If this instantiation of CLOC were able to signifi-

cantly flatten the psychometric curve of animal hit rate versus stimulus intensity, one could

then analyze the thalamic state necessary to achieve such stimulus strength invariance. The

expected result would be that for weaker sensory stimuli, a bidirectional controller would

have hyperpolarized the thalamus, resulting in a larger cortical response downstream. Con-

versely, for stronger sensory inputs, one would expect the thalamus to have been pushed to

an elevated state by depolarization.

5.11 Closed-loop optogenetic control for testing role of thalamic state in seizure

susceptibility in absence epilepsy

Finally, CLOC may provide a useful technique to test the role of thalamic state in seizure

susceptibility. In multiple rodent studies of absence epilepsy, there is a reported decrease

in thalamic firing rate immediately before onset of the generalized seizures that occur in

this disease (GAERS rat, [59]; Scn8a-mutant mice, [60]). This may be merely an epiphe-

nomenon or it may be the case that keeping thalamic activity at a baseline level can effec-

tively prevent such seizures from occurring. This is, of course, speculative, and absence

epilepsies are often responsive to pharmacological treatment. However, this could provide

a tractable model for future applications in other forms of generalized epilepsies in which

the thalamocortical loop is known to play a major role.
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APPENDIX A

NON-SINUSOIDAL REFERENCE FIRING RATE: MEASURED THALAMIC

FIRING RATE MODULATION

Chapter 2 applies the model-free control scheme of Newman et al ([6]) to the problem of

entraining patterns of rate modulation. In order to arrive at an example pattern of naturally-

relevant rate modulation in the rodent somatosensory thalamus used in this study, data

recorded in the VPM of awake rats from Waiblinger et al ([145, 16]) were analyzed. In

example VPM neuron spike trains (Figure A.1(a)), there was evidence in a subset of trials

for a tone in spiking autocorrelation at approximately 10 Hz (Figure B.1(b), green), which

is in the frequency range in which rats move their whiskers. Such trials were taken as

putative whisking trials. For one example VPM neuron, three such trials were identified,

their spike trains were phase-aligned, averaged, and smoothed with a 20 ms s.d. Gaussian

window, resulting in an estimate of naturally-occurring rate modulation (Figure A.1(d)).

Analysis of the frequency content of this pattern showed that there was a DC firing rate

of 20 spikes/s and that 95% of the power in this signal occurs between DC and 10 Hz

(Figure A.1(e)).
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Figure A.1: Firing rate modulation during putative whisking (a) Firing of example single-unit
recorded in awake rat (data from [145, 16]). Whisker stimulus occurs at arrow. (b) Spike auto-
correlograms after smoothing trains with 20 ms s.d. Gaussian window. Putative whisking trials
highlighted in green (n=3). (c) Bootstrapped distribution of squared coefficient of variation (CV2)
in interspike intervals. (d) Phase-aligned putative whisking spike trains. Firing rate trajectory esti-
mated by smoothing spikes with 20 ms s.d. Gaussian window and averaging across phase-aligned
trials. (e) Power spectrum for firing rate trajectory (top). Cumulative power spectrum (bottom).
Grey lines indicate 95% of power.
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APPENDIX B

INSPECTION OF ELECTRICAL RECORDINGS FOR OPTICAL

STIMULATION ARTIFACTS

Feedback control relies on the ability to continuously recording and stimulate. Therefore,

the possibility of optical stimulation artifact was was investigated first by pulsing blue

light (470 nm) through a 200 µm diameter optic fiber, while recording from an affixed

Tungsten electrode (FHC) in saline. Five-millisecond square pulses of light were strobed

at 10 Hz. Results of this test in Figure B.1 reveal that while there are small artifacts at

low frequencies, after the bandpass filtering that is done before spike thresholding and

subsequent sorting, this artifact is negligible.

To further investigate the effects of light on recorded feedback, we analyzed the spike

waveforms of two example feedback neurons used in Chapter 2 for any artifactual changes

in spike waveform. For both large and small example recordings, extracellular spike wave-

forms during spontaneous activity versus during optical control epochs did not display any

major differences (Figure B.2).
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APPENDIX C

TARGETING OPTOGENETICS TO VPM/VPL: AI32;NR133

In a subset of experiments in Chapters 3-4, a transgenic mouse line was used to restrict ex-

pression of ChR2 to VPM/VPL thalamus. A previous anatomical study of cre-recombinase

drive mouse lines reported that a few transgenic lines displayed selectivity for VPM/VPL

thalamus: one example being the NR133 line used here ([123]). A single-generation cross

between this driver mouse and a cre-dependent ChR-expressing mouse (Ai32, Jax), al-

lowed selective ChR expression. Figure C.1 provides an example coronal section of one

such transgenic cross. The ChR2 is reported using EYFP, and cell nuclei are stained blue

using DAPI.
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[66] H. Mutoh and T. Knöpfel, “Probing neuronal activities with genetically encoded
optical indicators: from a historical to a forward-looking perspective.,” Pflügers
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G. Buzsáki, “Spike train dynamics predicts theta-related phase precession in hip-
pocampal pyramidal cells,” Nature, vol. 417, no. 6890, pp. 738–741, 2002.

[162] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian,
S. I. Ryu, K. V. Shenoy, and K. V. Shenoy, “Neural population dynamics during
reaching,” Nature, vol. 487, no. 7405, pp. 51–56, 2012.
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