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PREFACE

In this thesis, I focus on the analysis of the evolution from the Bardeen-Cooper-Schrieffer

(BCS) limit of loosely bound and largely overlapping Cooper pairs to the Bose-Einstein

condensation (BEC) limit of tightly bound small bosonic molecules. This evolution occurs

when the strength of the attractive interparticle interaction increases from weak to strong

values, and has been recently observed in ultracold superfluid Fermi gases. This thesis is

an overview of some of my contribution (in colloboration with C. A. R. Sá de Melo) to

the field of ultracold superfluid Fermi gases, and it consists of four main chapters and two

appendices.

In Chapter I, I initially discuss quantum statistics of Bose and Fermi particles, and their

condensation as two separate phenomena: BEC and BCS, respectively. Then, I introduced

the pioneering idea that combines these two fundamentally very different phenomena into

one: BCS to BEC crossover. After discussing the early ideas that lead to this theory and

its development in condensed matter community, I present a brief introduction on how this

phenomenon is currently being studied in atomic physics experiments by using ultracold

gases of fermionic alkali atoms.

In Chapter II, I analyze zero and nonzero orbital angular momentum pairing effects,

and show that a quantum phase transition occurs for nonzero angular momentum pairing,

unlike the ℓ = 0 s-wave case where the BCS to BEC evolution is just a crossover. This

quantum phase transition is topological in its nature, characterized by a gapless superfluid

on the BCS side and a fully gapped superfluid on the BEC side. This chapter is a detailed

overview of the following publications and preprints:

• “Evolution from BCS to BEC superfluidity in p-wave Fermi gases”, Phys. Rev. Lett.

96, 040402 (2006); cond-mat/0510300.

• “Nonzero orbital angular momentum pairing in superfluid Fermi gases”, Phys. Rev.

A 74, 013608 (2006); cond-mat/0602157. [long paper]
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In Chapter III, I analyze two-species fermion mixtures with mass and population imbal-

ance in continuum, trap and lattice models. In contrast with the crossover physics found

in the mass and population balanced mixtures, I demonstrate the existence of phase transi-

tions between normal and superfluid phases, as well as phase separation between superfluid

(paired) and normal (excess) fermions in imbalanced mixtures as a function of scattering

parameter, and mass or population imbalance. This chapter is a detailed overview of the

following publications and preprints:

• “Two-species fermion mixtures with population imbalance”, Phys. Rev. Lett. 97,

100404 (2006); cond-mat/0604184.

• “Asymmetric two-component Fermi gas with unequal masses”, cond-mat/0606624.

[unpublished]

• “Superfluid and insulating phases of fermion mixtures in optical lattices”, cond-mat/0612496.

[in review]

• “Mixtures of ultracold fermions with unequal masses”, to be published in Phys. Rev.

A (2007); cond-mat/0703258. [long paper]

Finally, in Chapter IV, I present a brief summary of current results, and a short outlook

for possible future extentions of the problems discussed in Chapters II and III.

In addition to these, I have contributed to other publications and preprints during my

Ph.D. thesis research, but they are not discussed as a part of this thesis due to space and

time constraints, including

• “BCS-BEC crossover of collective excitations in two-band superfluids”, Phys. Rev. B

72, 024512 (2005); cond-mat/0408586.

• “Exotic p-wave superfluidity of single hyperfine state Fermi gases in optical lattices”,

cond-mat/0502148. [unpublished]

• “Superfluidity of p-wave and s-wave atomic Fermi gases in optical lattices”, Phys.

Rev. B 72, 224513 (2005); cond-mat/0508134. [long paper]
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• “Two-band superfluidity from the BCS to the BEC limit”, Phys. Rev. B 74, 144517

(2006); cond-mat/0603601.

• “Ultracold heteronuclear molecules and ferroelectric superfluids”, cond-mat/0610380.

[in review]

In my opinion, these papers are as important as the ones overviewed in Chapters II and III,

but with a small overlap in between.
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SUMMARY

This thesis focuses on the analysis of Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein

condensation (BEC) evolution in ultracold superfluid Fermi gases when the interaction

between atoms is varied. The tuning of attractive interactions permits the ground state of

the system to evolve from a weak fermion attraction BCS limit of loosely bound and largely

overlapping Cooper pairs to a strong fermion attraction limit of tightly bound small bosonic

molecules which undergo BEC. This evolution is accompanied by anomalous behavior of

many superfluid properties, and reveals several quantum phase transitions. This thesis has

two parts: In the first part, I analyze zero and nonzero orbital angular momentum pairing

effects, and show that a quantum phase transition occurs for nonzero angular momentum

pairing, unlike the s-wave case where the BCS to BEC evolution is just a crossover. In the

second part, I analyze two-species fermion mixtures with mass and population imbalance in

continuum, trap and lattice models. In contrast with the crossover physics found in the mass

and population balanced mixtures, I demonstrate the existence of phase transitions between

normal and superfluid phases, as well as phase separation between superfluid (paired) and

normal (excess) fermions in imbalanced mixtures as a function of scattering parameter and

mass and population imbalance.
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CHAPTER I

INTRODUCTION

The theoretical framework of quantum mechanics was established during the first half of the

twentieth century by Planck, de Broglie, Bohr, Heisenberg, Schrödinger, Dirac, Pauli and

others [1]. The word ‘quantum’ in quantum mechanics refers to a discrete unit that quantum

theory assigns to some of the physical quantities such as the energy of particles. This discrete

spectrum of quantum theory lead physicists to a fundamentally different understanding of

nature than ever before.

For instance in classical mechanics, it is always, in principle, possible to determine the

position and momenta of any particle at any given time since, intuitively, each particle can

be distinguished from the others. On the contrary, in quantum mechanics, it is not possible

to determine the position and momenta of particles more accurately in phase space than the

fundamental volume, which is a consequence of the Heisenberg’s uncertainity principle [2].

Accordingly, one cannot know which particular particle is in this volume, but instead can

only determine the probability of finding it.

One of the consequences of indistinguishability of identical particles is the classification

of particles in nature with respect to their exchange symmetry [3]. When the particles are

indistinguishable, the probability of finding one particular particle in one particular state

and another particular particle in another particular state must be equal to the case when

the particles are exchanged. This leads to two possibilities for the probability amplitudes

under exhange symmetry, hence classification of all particles into two fundamental groups:

(i) bosons are described by symmetric wavefunctions, and (ii) fermions are described by

anti-symmetric wavefunctions. The symmetry character of the wavefunction has important

consequences for the thermodynamic and statistical properties of a system. Therefore, in

order to study a given quantum system, one first needs to determine the symmetry of the

constituents of that system. The answer to the question of which particles are fermions
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and which are bosons was given by Belinfante and Pauli in 1940 in their spin-statistics

theorem [4, 5], and it is discussed next.

1.1 Bose-Einstein and Fermi-Dirac Statistics

According to the spin-statistics theorem, the symmetry character of the wavefunctions can

be related to the intrinsic spin of the particles. This leads to the division of all known

particles of nature into two groups with respect to their integer or half-integer intrinsic spin

angular momentums (spin is in units of ~), such that even the elementary particles in the

whole universe are characterized as either bosons or fermions named after physicists S. N.

Bose and E. Fermi, respectively.

Non−interacting
Bosons Fermions

Non−interacting

(spin 0)

εF

BEC

(spin −1/2)

(spin +1/2)

Figure 1.1: Illustration of quantum statistics for identical non-interacting (or ideal indis-
tinguishable) bosons and fermions at zero temperature. (a) Identical spin-0 bosons undergo
a BEC in which all of the particles macroscopically occupy a single quantum state. (b) Due
to the Pauli exclusion principle, identical spin-1/2 fermions form a Fermi sea that is pairs
of fermions occupy only the quantum states which are below the Fermi energy, and leaving
other states unoccupied.

Bosons such as quanta of light (photons), sound (phonons), spin wave (magnons), etc.

have integer intrinsic spins, and obey Bose-Einstein statistics. A consequence of Bose-

Einstein statistics is the Bose-Einstein condensation (BEC) of non-interacting bosons at

sufficiently low temperatures. This manifests itself in many different areas of physics ranging

from condensed matter, nuclear to atomic, molecular and optical physics. Due to their
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quantum statistics, this phenomenon relies on the fact that nothing prevents infinitely

many identical bosons to share the same quantum state. In contrast, fermions such as

electrons, protons, neutrons, etc. have half-integer intrinsic spins, and obey Fermi-Dirac

statistics. A consequence of Fermi-Dirac statistics is the formation of Fermi sea and Fermi

pressure for non-interacting fermions at sufficiently low temperatures. Due to their quantum

statistics, this phenomena relies on the fact that the Pauli exclusion principle prevents

multiple occupancy of identical fermions to share the same quantum state. Therefore,

while identical bosons like to stick together, identical fermions avoid each other in space

at a given time. An illustration of the zero temperature occupation of available quantum

states by non-interacting (ideal) spin-0 bosons and spin-1/2 fermions is shown in Fig. 1.1

for a harmonic potential.

In addition to the elementary bosons and fermions discussed above, there are also com-

posite particles which are made up of elementary particles. Composite particles such as

mesons, baryons, atoms, etc. are also classified as fermions or bosons with respect to their

integer or half-integer total intrinsic spin angular momentums. Accordingly, depending only

on the number of fermions they contain, a composite particle containing an even number

of fermions is a boson and a composite particle containing an odd number of fermions is

a fermion, such that the number of bosons within a composite particle has no effect on

whether it is a boson or a fermion. For instance, neutral atoms fall into one of these two

categories depending on the total number of neutrons, since there are equal number of

protons and electrons. Therefore, if the number of neutrons is even, the neutral atom is a

boson; if it is odd, the neutral atom is a fermion which makes 4He, 7Li, 85Rb, 23Na, etc.

bosons and 3He, 6Li, 40K, 171Yt, etc. fermions.

This distinction between identical (or indistinguishable) bosons and fermions, and their

quantum mechanical Bose-Einstein and Fermi-Dirac statistics are important only when the

quantum effects are not negligible, i.e. for sufficiently dense gases at low temperatures. On

the other hand, when the de Broglie wavelength, which is proportional to the inverse square

root of mass of the particles and the temperature of the gas, becomes much smaller than

the average interparticle distance for sufficiently low densitites and high temperatures, the
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distinction is lost. When this is the case, all particles become distinguishable, and their

statistics is well-described by classical Maxwell-Boltzmann statistics [3]. For Bose gases,

the quantum limit is separated from this classical limit by a BEC transition occurring at

finite temperatures in three dimensions, while there is no phase transition for Fermi gases

which separates the low and high temperature phases.

Having discussed the low temperature behavior of non-interacting Bose and Fermi gases,

next I discuss the low temperature behavior of weakly interacting Bose and Fermi gases with

attractive and repulsive interactions.

1.1.1 Weakly Interacting Bose Gases

In the previous section, I argued that non-interacting indistinguishable Bose gases undergo

a phase transition towards BEC at low temperatures with a diverging compressibility, i.e.

vanishing pressure. Therefore, it should not be surprising that even the very weak inter-

actions between particles may effect dramatically the low temperature properties of very

dilute gases. So the remaining question is what happens if the Bose gas is interacting? Is

there a difference between a repulsive and an attractive interaction? For the weakly inter-

acting Bose gas, this problem was solved by Bogoliubov in 1947 [6], and his method is the

basis of modern approaches for studying BEC, details of which can be found in almost all

textbooks on modern techniques [7, 8].

By using the Bogoliubov method, it can be shown that a uniform Bose gas with attrac-

tive interactions is unstable at zero temperature because the system can lower its energy by

increasing density of particles. In the absence of a strong enough short range repulsive in-

teraction to oppose this increasing density, the attractive Bose gas is susceptible to collapse,

since Bose-Einstein statistics does not prevent overlap of multiple particles. Therefore, even

arbitrarilly weak interactions between bosons change dramatically the ideal gas behavior in

the case of attractive interactions as mentioned above.

More technically, the condition of thermodynamic stability requires that the compress-

ibility of the gas to be positive. It can be shown that the compressibility of a weakly

interacting Bose gas is inversely proportional to the density of bosons and the strength of
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interparticle interactions, which suggests that the compressibility diverges as the interpar-

ticle interaction vanishes, recovering the non-interacting Bose gas result [8]. I arrive at a

very important conclusion that the weakly interacting Bose gas with attractive interactions

collapses mechanically since the compressibility of the gas becomes negative. Collapse dy-

namics of such an attractive Bose gas has been the subject of previous studies in various

contexts [9, 10, 11, 12], and it will not be further discussed in this thesis.

Therefore, a uniform weakly interacting dilute gas may undergo a BEC transition only

if the interparticle interactions are repulsive, which is discussed next.

1.1.2 Bose-Einstein Condensation (BEC)

The possibility of the BEC transition of identical non-interacting bosons is a consequence

of Bose-Einstein statistics, and was predicted long ago by Bose in 1924 [13] and by Einstein

in 1925 [14]. They claimed that a finite fraction of bosons (at zero temperature all of the

bosons) should occupy a single quantum state below a critical transition temperature, which

is determined by mass and density of the bosons. This exotic phenomenon was initially seen

only as a mathematical artifact until London reinterpreted it to explain the superfluidity

(frictionless flow) of 4He soon after its discovery in 1938 by Kapitza [15], and independently

by Allen and Misener [16]. He proposed that the superfluidity of 4He was a consequence of

BEC of bosonic 4He atoms which are made up of an even number of electrons, protons and

neutrons [17]. However, it was the subsequent works by Bogoliubov [6] and Landau [18]

that established theoretically the connection between superfluidity and BEC.

After years of struggle, atomic physicists have successfully cooled down bosonic gases

to quantum degeneracy (to nano Kelvin temperatures), and this quantum phenomena was

observed in weakly interacting dilute atomic gases at ultracold temperatures for the first

time in 1995 in a series of remarkable experiments [19, 20], and has been the subject of

intense theoretical and experimental research worldwide [21, 22]. A good summary of

the history of atomic BECs is provided by the 2001 Nobel Prize lectures of Cornell and

Wieman [23] and, of Ketterle [24].

It is important to emphasize that ultracold gases of bosonic atoms such as 85Rb and
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23Na were used in atomic physics experiments to produce atomic BECs. These bosonic

atoms, in fact, are small tightly bound composite particles made up of an even number of

fermions. In addition, it is possible and easy to manipulate the strength of interparticle

interactions, as well as to change the nature of these interactions from repulsive to attractive

and vice versa, which makes atomic Bose systems an ideal toolbox for studying fundamental

many-body physics.

This success in Bose systems naturally lead to the question of whether one can also trap

and cool fermionic atoms to ultracold temperatures, and control and manipulate the inter-

particle interactions. The possibility of studying small composite bosonic molecules which

may be formed from tightly bound fermionic atoms, and their condensation (molecular

BECs) is the main focus of this thesis, and it is discussed next.

1.1.3 Weakly Interacting Fermi Gases

I argued that the ground state of a non-interacting Fermi gas at zero temperature corre-

sponds to the Fermi sea with complete filling of the single particle states up to the Fermi

energy, and the complete absence of particles in other states. It is well-known from quantum

statistics of non-interacting particles that the low temperature phases of fermionic gases and

liquids differ dramatically from that of bosons. At finite temperatures, excitations of such

Fermi systems correspond to transfer of particles from occupied to unoccupied states [25].

After the realization of atomic BECs, the natural complement to the bosonic research is

to study weakly as well as strongly interacting fermionic atoms at ultracold temperatures.

Using similar techniques developed for bosonic atoms, in their pioneering work, DeMarco

and Jin successfully produced for the first time a quantum degenerate Fermi gas of 40K

atoms, and studied the effects of Fermi statistics in 1999 [26]. Due to this exciting possibil-

ity of studying quantum degenerate Fermi gases in atomic systems, many other experimental

groups have achieved quantum degeneracy in either 40K, 6Li or 171,173Yb [27]. Like their

Bose counterparts, Fermi systems also offer great control of experimental parameters in-

cluding the particle density, strength of interactions, spin populations and temperature.

Thus, studies of superfuidity in atomic Fermi gases can provide a better understanding of
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the pairing mechanisms in many other systems ranging from metals and neutron stars to

nuclear matter.

The ground state of interacting Fermi systems also depends crucially on the nature

of the interparticle interactions. For instance, if a Fermi gas consisting of half-integer

intrinsic spin angular momentum fermions has repulsive interparticle interactions, then the

energy spectrum is different from the boson counterparts. However, if the interparticle

interactions are attractive, and tend to associate particles into pairs, then the constituents

of the resulting gas consists of integer intrinsic spin angular momentum molecules, leading

to a bosonic energy spectrum, which is discussed next.

1.1.4 Bardeen-Cooper-Schrieffer (BCS) Superconductivity

The macroscopic phenomenon for fermions that is analogous to BEC for bosons is the

superfluidity of Cooper pairs described by the Bardeen-Cooper-Schrieffer (BCS) theory,

and the possibility of observing BCS transition is an important motivation for studying

ultracold fermionic gases [28, 29].

Long after the discovery of metallic superconductivity of mercury in 1911 [30] (charged

superfluidity in which electrical current flows without resistance), the microscopic theory

of superconductivity was formulated in 1957 by Bardeen, Cooper, and Schrieffer [31], and

it is known today as the BCS theory of conventional superconductors. The authors of the

BCS theory were awarded the Nobel prize in Physics in 1972, and their work was based

on a model calculation performed by Cooper in 1956 [32], which relies on the existence of

attractive interparticle interactions.

The basic idea of Cooper was that a weak attraction can bind pairs of fermions into

bound pairs in the presence of the Fermi sea, and that the Fermi sea is unstable against

formation of at least one bound pair regardless of how weak the attractive interparticle

interaction was [32]. This crucial result is a consequence of Fermi-Dirac statistics and

existence of the Fermi surface. If it was not for the Pauli exclusion principle and the presence

of the Fermi surface, a bound state between two fermions does not occur until the strength

of the interparticle interaction reaches a finite threshold value in three dimensions [33].
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Furthermore, Cooper showed that these bound pairs have largest binding energy when they

are at rest with respect to the Fermi sea such that their center of mass momentum is zero.

The BCS theory consisted then of a non-trivial many-body extention of Cooper’s prob-

lem in which the ground state was constructed from pairs of fermions including the necessary

anti-symmetrization of the full wave function, and the attractive interaction was assumed

to arise due to electron-phonon interactions. Most important of all, below a finite critical

temperature, this theory predicted a finite energy gap in the excitation energy of the su-

perconducting state, and this gap was just necessary to understand the basic properties of

known superconductors [31]. In their theory, BCS assumed that the Cooper pairs consist

of spin singlet fermion pairs which have zero net spin, and the center of mass of every pair

is at rest with respect to the Fermi sea.

The BCS transition in atomic Fermi gases is expected to be very similar to the transition

from normal conductor to super conductor in ordinary metals or normal fluid to super fluid

transion in liquid 3He. Thus, the possibility of studying such a transition in atomic systems

has attracted intense theoretical and experimental interest worldwide [28, 29] as discussed

next.

1.2 BCS to BEC Crossover

So far, I discussed two fundamentally very different descriptions for understanding the

low temperature behavior of superfluidity in Bose and Fermi systems. To summarize, the

BEC of bosons occur at a much higher critical temperature that is of the order of their

degeneracy temperature. In most cases, these bosons are tightly bound small composite

particles which are made up of an even number of fermions. These composite particles form

at some very high temperature scale which is of the order of their binding energy, and they

condense only at much smaller temperatures. On the other hand, in the BCS theory of

superconductivity, the normal state is a degenerate Fermi gas which undergoes a pairing

instability below a critical temperature that is much less than the Fermi energy. In contrast

to BEC of composite particles, the formation of Cooper pairs and their condensation occur

simultaneously at the same transition temperature.
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The possibility of studying the formation and condensation of small composite bosonic

molecules starting from fermionic atoms opens up the exciting possibility of exploring the

connection between Bose-Einstein and Fermi-Dirac statistics in the same physical system.

This also raises the question of whether or not it is possible to observe bosonic statistics

emerge from the underlying fermionic statistics. This problem is known today as the BCS-

BEC crossover, and is an important topic of current research for condensed matter, nuclear,

atomic and molecular physics communities. A brief history of this problem is discussed next.

1.2.1 History of Composite Bosons

The idea that the small electron pairs undergo BEC is older than the BCS theory itself.

In their theory of quasichemical equilibrium, as early as 1954, Blatt, Schafroth, and Butler

originally proposed to explain metallic superconductivity in terms of BEC of pairs of elec-

trons into localized bound states [34]. Unfortunately, this theory could not compete with

the striking success of the BCS theory due to some mathematical difficulties which did not

allow the authors to obtain the famous BCS results [31] which agreed with the experiments.

Then the triumph of the BCS theory replaced the far more obvious concept of small tightly

bound local pairs and their BEC by the loosely bound and largely overlapping Cooper pairs,

and their instability to momentum space pairing which takes place in the necessary presence

of a Fermi surface. It should be also emphasized that Blatt later showed in 1962 that their

theory could be extended to give the BCS results [35].

Several years later, in 1969, the first discussion on the possibility of BCSBEC crossover

appeared, where pairing above the superconductivity transition temperature for a low den-

sity of carriers was carried out by Eagles in the context of a condensed matter system, a

ceramic superconductor of Zr-doped SrTiO3 [36]. He noted that, when the carrier density is

low, the system is in a regime where the Cooper pair size is small, and the critical transition

temperature of BCS theory does not correspond to a phase transition but corresponds to

the formation of preformed pairs. He also argued that the superconducting transition would

take place at a much lower temperature in this low density regime, corresponding to the

BEC of preformed pairs. Then, he proposed to study the crossover problem by varying the
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Figure 1.2: Illustration of the loosely bound and largely overlapping Cooper pairs and
the small tightly bound local pairs in the BCS and BEC regimes, respectively, where ξpair

is the size of the pair and k−1
F is the Fermi momentum and it is of the order of interparticle

distance. While the size of the Cooper pairs is much larger than the interparticle spacing in
the BCS regime, it decreases with inreasing interaction strength and becomes much smaller
than the interparticle spacing in the BEC regime.

carrier density.

An illustration of the loosely bound and largely overlapping Cooper pairs and the tightly

bound small pairs are shown in Fig.1.2 in the BCS and BEC regimes, respectively, where ξpair

is the size of the pair, and k−1
F is the Fermi momentum which is of the order of interparticle

spacing. While the size of the Cooper pairs is much larger than the interparticle spacing in

the BCS regime, it decreases with increasing interaction strength and becomes much smaller

than the interparticle spacing in the BEC regime. However, it was Leggett in 1980 [37, 38],

who independently from Eagles, analyzed the crossover problem of dilute Fermi gases as a

function of the s-wave scattering length at zero temperature. His work lead to insight into

the wavefunction of the ground state throughout the BCS-BEC crossover as discussed next.

1.2.2 Leggett’s Ground State

Motivated by early ideas of the quasi-chemical equilibrium theory [34], in his pioneering

work [37, 38], Leggett proposed that the extended BCS wavefunction is more widely appli-

cable then just to the weakly interacting limit [31]. In the context of superfluid 3He, at zero

temperature, he studied a dilute Fermi gas with attractive interactions, and showed within

a variational approach that there is a smooth crossover from a BCS ground state with large

Cooper pairs (giant diatomic molecules) overlapping in space to a BEC of small tightly
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bound diatomic molecules. The main difference between the BCS-BEC crossover problem

and the simple BCS theory is that the Cooper pairing is not allowed only for fermions with

energies close to the Fermi energy but is also allowed for all other fermions. To take this

into account, Leggett noted that the chemical potential of fermions is not necessarily fixed

at the Fermi energy but must be determined self-consistently together with the BCS order

parameter.

Self-consistent solutions of Leggett’s ground state recovers, by construction, the well-

known BCS results in the weak interparticle interaction limit. However, in the opposite

limit, when the attractive interparticle interaction strength is large, the chemical potential

of fermions becomes large and negative and its magnitude is given by just half the binding

energy of the two-body bound state. In addition, the BCS order parameter equation reduces

to nothing but the Schrödinger equation of independent diatomic molecules, where twice

the chemical potential of fermions plays the role of the energy eigenvalue as expected for

a weakly interacting composite boson gas. Thus in this limit, Leggett arrived simply a

BEC of weakly interacting diatomic molecules. It is also remarkable that self-consistent

calculations admits a unique solution for all interaction strengths even in the intermediate

region.

Unitarity BECBCS

0
k   a  

1

F F
−

Figure 1.3: There are three important limits in Leggett’s BCS-BEC crossover problem. (i)
In the BCS limit, the scattering length is small and negative, and the interparticle fermion-
fermion interaction is small and attractive. (ii) In the BEC limit, the scattering length is
small but positive, and although the interparticle fermion-fermion interaction is large and
attractive, the interparticle composite boson-boson interaction is small and repulsive which
suggests that the composite boson gas is stable. (iii) At unitarity limit, the scattering length
diverges, and the interparticle fermion-fermion interaction is very large and attractive. In
this latter limit, for dilute systems, the superfluid properties does not depend on the actual
value of the diverging scattering length, and the Fermi momentum kF is the only relevant
length scale left in the problem, an important cosequence of which is the universality of the
superfluid properties. Here, kF is the Fermi momentum and it is related to the density of
fermions by n = k3

F /(3π2).
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Leggett considered a dilute Fermi gas at zero temperature where the range of the in-

teratomic potential is much smaller than the interparticle distance such that the scattering

particles never explore the fine details of the short-range scattering potential, and only the

s-wave scattering is important. Under these assumptions, superfluid properties are governed

by a single parameter, which is the s-wave scattering length aF . He argued that while a

two-body bound state exists beyond a critical interaction strength corresponding to aF > 0,

the pairing is purely a many-body effect for aF < 0. Then, he analyzed three important

limits in the BCS-BEC crossover problem, and they are illustrated in Fig. 1.3.

This simple mean-field approach by Leggett describes equally well the weak and strong

attraction limits, where the constituents of the gas are weakly interacting. (i) In the BCS

limit, the scattering length is small and negative, and the interparticle fermion-fermion

interaction is small. (ii) In the BEC limit, the scattering length is small but positive,

and the interparticle composite boson-boson interaction is small but repulsive. Notice that

the repulsive composite boson-boson interaction is in fact necessary for the stability of the

boson gas resulting in the BEC limit. While in between, around what is called the (iii)

unitarity limit, the scattering length and the interparticle fermion-fermion interaction are

very large, leading to a strongly interacting system. When the scattering length diverges,

the superfluid properties should no longer depend on the actual value of the diverging

scattering length, and the Fermi momentum kF is the only relevant length scale left in the

problem, an important cosequence of which is the universality of the superfluid properties

including the critical temperature, average energy, thermodynamic quantities, etc [39, 40].

This means that results obtained with dilute ultracold Fermi gases at unitarity is directly

related to other systems including nuclear matter and neutron stars. For instance, the

critical temperature at unitarity is simply a universal constant times the Fermi energy.

It is very important to note here that although the attractive interparticle fermion-

fermion interaction is strongest in the BEC limit, the gas is weakly interacting since the

interparticle composite boson-boson interaction is weak and proportional to the scattering

length of fermions. Therefore, the most strongly interacting gas occurs in the unitarity limit

where many-body calculations are the most difficult. Furthermore, in this generalized BCS
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theory, while only the fermionic (bosonic) nature of particles dominates the low temperature

behavior of the system with decreasing (increasing) attractive interaction, the fermionic and

bosonic degrees of freedom play equally important roles in the intermediate region. However,

in contrast to the BCS and BEC limits, an exact solution of the many-body problem is not

available for the unitarity limit, and as a first approximation Leggett argued that the self-

consistent solutions may be qualitatively valid as an interpolation scheme for arbitrary

interactions, which has been the focus of intense theoretical and experimental research.

Motivated by the possibility of exciton condensation in semiconductors, Nozieres and

Schmitt-Rink used a diagrammatic approach, and extended the analysis of Leggett to a

lattice model and more importantly to finite temperatures [41]. They showed that the

evolution from weak to strong interaction limit is smooth such that the critical transition

temperature saturates in the BEC limit going continuously from an exponentially small

values in the BCS limit (where it is controlled by pair breaking) to an ideal Bose gas limit

(where it is contolled by the center-of-mass motion of bound pairs).

A schematic phase diagram of crossover from the BCS transition of Cooper pairs to the

BEC of preformed pairs is shown in Fig. 1.4. When the interparticle interaction is weak, the

ground state is a BCS condensate of loosely bound and largely overlapping Cooper pairs

where the pair formation and condensation occur simultaneously at the same temperature.

For intermediate interparticle interactions, the pair formation and the condensation tem-

perature scales are different that is the latter occurs at a much lower temperature. When

the interparticle interaction is large, the ground state is a BEC of tightly bound and small

local pairs, and the critical condensation temperature saturates at the BEC temperature of

preformed pairs. Therefore, the critical superfluid transition temperature is of the order of

the Fermi energy, Tc ∼ 0.2ǫF , in the BEC limit, and it is much higher than the exponentially

small values characterizing the BCS limit.

In addition to these developments, with the discovery of high temperature copper-oxide

superconductors by Bednorz and Müller in 1986 [42], it became clear that, besides their

very high critical temperatures and low carrier densities, the size of the Cooper pairs is

of the same order with the average interparticle distance (or lattice spacing). This is in
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Figure 1.4: Schematic phase diagram of crossover from the BCS to the BEC of preformed
pairs. The dashed line is the simple BCS result characterizing the pair formation, and the
solid line is the true critical normal to superfluid transition temperature due to Nozieres
and Schmitt-Rink [41]. When the interparticle interaction is weak, the ground state is a
BCS condensate of loosely bound and largely overlapping Cooper pairs where the pair for-
mation and condensation occur simultaneously at the same temperature. For intermediate
interparticle interactions, the pair formation and the condensation temperature scales are
different that is the latter occurs at a much lower temperature. When the interparticle in-
teraction is large, the ground state is a BEC of tightly bound and small local pairs, and the
critical condensation temperature saturates at the BEC temperature of preformed pairs. In
the BEC limit, the critical transition temperature is of the order of the Fermi energy, and
it is much higher than the exponentially small values characterizing the BCS limit.

sharp contrast with the conventional low temperature superconductors that is the size of

the Cooper pairs is much larger than the lattice spacing. Although the BCS-BEC crossover

problem is of great fundamental interest, it was the experimental discovery of copper-oxide

superconductors that made this problem directly relevant to a particular system.

While the critical transition temperature Tc (in units of Fermi energy) was about 10−5

to 10−4 for conventional low temperature superconductors and about 10−3 for 3He, it was

about 10−2 for high critical temperature superconductors. Motivated by these results, it

was suggested that these high temperature superconductors were in the intermediate regime

between the limit of large and overlapping Cooper pairs found in the BCS theory and the

opposite limit of BEC of small composite bosons consisting of tightly bound fermions.

Therefore, a good understanding of the BCS-BEC crossover may be one of the key ingredi-

ents to solve the long standing mystery of high temperature superconductivity [43, 44].
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The seminal works of Leggett [37, 38] and of Nozieres and Schmitt-Rink [41] had a major

influence on many of the recent works in the field of high temperature superconductivity

in the condensed matter community, and more recently in the field of quantum degenerate

ultracold Fermi gases in the atomic physics community [44, 45, 46]. In the latter context,

their theoretical formalism is extended to include the trapping potential [47, 48] as well as

the effects of multiple scattering channels [49, 50] which are both present in atomic systems

as discussed below.

With new advances developed in atomic physics experiments, it has become possible to

study the intermediate interparticle interaction or strongly interacting regime as well as the

theoretically predicted crossover from the BCS to the BEC limit, which is discussed next.

1.3 Ultracold Atomic Fermi Gases

With the ultimate success of the techniques for trapping and cooling bosonic atoms devel-

oped and improved gradually since the 1980s, ultracold atomic Bose gases have emerged as

a unique testing ground for many theories of exotic matter in nature, allowing for the cre-

ation of complex, but yet very accessible and well controlled many-body quantum systems.

A good summary of the history of cooling, trapping and manipulating neutral atoms can be

found in the 1997 Nobel Prize lectures by Chu [51], Cohen-Tannoudji [52], and Phillips [53].

The successfull BEC of dilute gases of bosonic atoms [19, 20] (atomic BECs) led to the

possibility of also cooling and trapping fermionic atoms to quantum degeneracy [54]. In

contrast to Bose gases with strong interactions (large scattering lengths) where rapid three-

body decay prevents experiments to reach the strongly interacting regime [55, 56], research

in ultracold atomic Fermi gases is mostly motivated by the idea of creating a clean strongly

interacting system with the controllability which is absent in condensed matter systems.

In principle, the particle density and interparticle interactions as well as the temperature

can be fully controlled, and the physical properties can be studied as a function of particle

density, interaction strength and temperature.

One of the main objectives of such experiments is the condensation of composite bosons

which are made up of two fermionic atoms that behave statistically like bosons, namely the
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creation of molecular BECs. For this purpose, one needs to create an effectively attractive

interparticle interaction between fermionic atoms, and to be able to change the strength

of this interaction from weak to strong values such that the system evolves from the BCS

limit of large Cooper pairs to the BEC limit of tightly bound molecules.

In the conventional theory of superconductors, s-wave Cooper pairing occurs between

spin-up and spin-down electrons with opposite momenta, and a similar pairing could also be

realized with the creation of a two-pseudo-spin component atomic Fermi gas as follows [57].

Alkali atoms have only one electron (S = 1/2) out of closed shells. This electron is in a zero

orbital angular momentum (L = 0) channel, and its total angular momentum J = L+S gives

J = 1/2. The nuclear angular momentum I and electron angular momentum J are combined

in a hyperfine state with total angular momentum F = I + J which gives F = I ± 1/2 for

alkalis. Furthermore, the electron and nuclear spins are coupled by the hyperfine interaction

that splits the atomic levels in the absense of magnetic field Hhf ∝ I · J. A weak magnetic

field causes Zeeman splitting of the hyperfine levels |F, mF > with different mF , and atoms

trapped in these hyperfine states can be made to correspond to pseudo-spin labels [22]. For

instance, the energies of different hyperfine states is shown as a function of magnetic field

in Fig. 1.5 for 6Li atoms. Therefore, it is, in principle, possible to study pairing problem in

ultracold atomic experiments, which have attracted an intense theoretical and experimental

attention in recent years.

Short after the creation of the first quantum degenerate Fermi gas [26], it was in 2002

when the first strongly interacting resonant Fermi gas was created by Thomas and cowork-

ers, where they observed the hydrodynamic behavior in the free expansion of a 6Li gas [58].

In 2003 and 2004, within the span of a few months, several groups reported the creation of

diatomic molecules from ultracold Fermi gases of 40K [59] and 6Li atoms [60, 61, 62]. It

turned out that these diatomic molecules made up of strongly interacting fermionic atoms

were remarkably stable against inelastic decay, and they were surprisingly long-lived, al-

lowing for the formation of stable molecular quantum gases. The remarkable stability of

strongly interacting Fermi gases was due to the fermionic nature of the atoms: inelas-

tic three-body scatterings were strongly suppressed due to Pauli exclusion principle, since
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Figure 1.5: The energies of different hyperfine states as a function of magnetic field is
shown for 6Li. The s-wave Cooper pairing can occur between atoms trapped in any two
of these pseudo-spin components corresponding to spin-up and spin-down electrons of the
usual BCS theory.

this process would involve at least two identical fermions with the same spin state to be

very close [63]. This was the key ingredient that enabled all of the subsequent studies on

superfluid Fermi gases.

Later that year, four groups achieved the creation of molecular BEC with 6Li [64, 65, 66]

and 40K atoms [67], which were followed by the condensation of atomic pairs in strongly in-

teracting Fermi gases with resonant interactions [68, 69]. These experiments demonstrated

a new macroscopic quantum state of ultracold matter beyond the well-established BEC

physics, and due to its universal behavior [39, 40], they have stimulated an intense theo-

retical as well as experimental interest in different fields of physics ranging from condensed

matter, nuclear, astro to atomic, molecular and optical physics.

Then, it became possible to investigate some properties of BCS-BEC evolution, and the

theoretically predicted smooth crossover [37, 38, 44] was experimentally realized in an adi-

abatic and reversible way [70]. It should be emphasized that, since two-body bound states

do not exist in the BCS limit, the observed pairing was necessarily a many-body effect. Fol-

lowing experiments also provided clear evidence for pairing throughout the crossover region

including measurements of collective excitations, radio-frequency spectroscopy, molecular

probe technique, and measurements of the heat capacity [71, 72, 73, 74]. However, the

observation of vortices reported by Ketterle and coworkers in 2005 was the final and most
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convincing evidence of superfluidity in strongly interacting Fermi gases [75]. Most recently,

population imbalanced two-component Fermi mixtures have been created and several phase

transitions have been reported leading to an immense activity in this field [76, 77]. The

mass and/or population imbalanced fermion mixtures is the subject of Chapter III of this

thesis.

In most of these experiments, the control over the strength of interparticle interactions

is very crucial, and this is accomplished via Feshbach resonances by varying the strength of

the externally applied magnetic field as discussed next.

1.3.1 Feshbach Resonances: Tuning the Interactions

Feshbach resonances proposed by H. Feshbach in 1958 [78] (see also [79]) is one of the most

powerful techniques used in dilute atomic gases to control the strength of interparticle inter-

actions in both Bose and Fermi systems. In practice, the tuning of interparticle interactions

is accomplished by varying a magnetic field, providing experiments on dilute atomic gases

a knob to control the interactions. This precision control has made atomic gases an ideal

toolbox to study many-body phenomena.

In atomic systems, the attractive potential is provided by the interatomic van der Waals

interactions which are due to mutually induced dipole moments of atoms, and these poten-

tials are deep enough to support a large number of bound vibrational states. A Feshbach

resonance occurs when the energy of one of these bound states coincides with the kinetic

energy of the colliding pair of atoms in a different scattering channel as shown in Fig. 1.6.

Such a degeneracy can occur only when the bound state exists in a potential that has a

higher threshold energy than that of the colliding atom pair, which is satisfied in ultracold

atomic systems due to the presence of atomic hyperfine structure [80]. These resonances

were first observed in 1998 in a 23Na Bose-Einstein condensate [81] and in a laser cooled

85Rb [82] cloud.

The main effect of a Feshbach resonance is that the elastic scattering in one channel

can be altered dramatically if there is a low energy bound state in a second channel. The
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Figure 1.6: A simplified illustration of the interatomic potentials involved in a Feshbach
resonance. The solid lines represent the potential energy versus internuclear separation for
the colliding atoms. The dashed lines show the threshold energy of the open scattering
channel. A Feshbach resonance occurs when energy of one of the closed channel bound
states, shown by the short horizontal line, coincides with the threshold energy of the open
channel potential. The atoms are initially prepared in the open channel, and the relative
splitting of the internal states of the atoms ε called detuning is varied through the Zeeman
effect using an external magnetic field to create a resonance.

interatomic potential of the two free atoms is often referred to as the open or triplet scat-

tering channel, while the potential containing the bound state is referred to as the closed or

singlet scattering channel. The threshold of the singlet potential generally appears above

the threshold of the triplet potential, and it is unfavored for atoms to scatter out of the

singlet potential. These singlet and triplet spin states may couple to one another through

hyperfine interactions with the spin of the nucleus. When the singlet and triplet channels

describe atoms in different magnetic sublevels, the relative separation of the internal states

of the atoms may be varied through the Zeeman effect using an external magnetic field.

Typically the effect of the coupling between the singlet and triplet channels is small, but at a

Feshbach resonance, the effect of the coupling can be significantly enhanced which changes

the effective interatomic potential leading to a change in the scattering length which is

known as the resonance scattering [28].

The presence of the bound state near zero energy dramatically affects the scattering

properties of colliding atoms, since these atoms can make transition to the bound state and

stay there before moving apart after the collision. To first order in coupling between singlet
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Figure 1.7: (a) Behavior of the s-wave scattering length aF between the |F = 9/2, mF =
−9/2 > and |F = 9/2, mF = −7/2 > states at a Feshbach resonance in a 40K gas. (Adapted
from [83].) (b) Illustration of the scattering length as a function of the externally applied
magnetic field. The BCS limit is in the higher magnetic field side where the scattering
length is small and negative, while the BEC limit is in the lower magnetic field side where
the scattering length is small but positive. Unitarity limit is at the resonance field where
the scattering length diverges. Notice that the scattering length has a sign change at
the resonance magnetic field, and two-body bound states exist only for the magnetic field
strengths that lead to positive scattering length.

and triplet channels, the scattering is unaltered. However, two triplet channel particles

may scatter into an intermediate state in the singlet channel, and decay back into triplet

channel. Using perturbation theory, such second order processes suggest huge contributions

when the energies are nearly degenerate. Even though the bound state exists in a different

interatomic potential from that of the colliding atoms, the variable bound state energy

can still dramatically change the scattering length which characterizes the strength of the

interparticle interaction. This technique has been extensively used in experiments with

Bose and Fermi atoms, and it has become one of the most important ingredients to the

production of molecular BECs.

For instance, Jin and coworkers observed in 2003 the suggested behavior of the scattering

length at a Feshbach resonance in a 40K Fermi gas [83], as shown in Fig. 1.7. There are three

important regions in this figure: (i) higher magnetic field region where the scattering length

is small and negative corresponding to BCS regime, (ii) lower magnetic field region where

the scattering length is small but positive corresponding to BEC regime, and (iii) around

resonance region where the absolute value of the scattering length is large corresponding
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to unitarity regime. Notice that the scattering length has a sign change at the resonance

magnetic field, since a new bound state emerges at the onset of two-body bound state

formation, leading to divergence of the scattering length.

So far, I argued that the Feshbach resonances have proved to be very convenient to

study BCS to BEC crossover in trapped geometries. These resonances have been recently

observed in optical lattices [84, 85, 86], and the superfluid properties of strongly interacting

Fermi gases in optical lattices are just beginning to be studied [87], as discussed next.

1.3.2 Optical Lattices

The interaction between induced dipole moments of atoms and the electric field of laser

beams is used to trap Fermi atoms in optical lattices [88, 89, 90]. Initially, tunable optical

lattices have been extensively used to study phase transitions in atomic Bose gases, since

they allow the controlled manipulation of the particle density and of the ratio between the

particle transfer energy, and the interparticle interaction strength. This kind of control is

not fully present in standard fermionic condensed matter systems, and has hindered the de-

velopment of experiments that could probe systematically the effects of strong correlations.

Because of the greater tunability of experimental parameters, novel superfluid phases may

be more easily accessible in the experiments involving ultracold atomic gases. For instance,

recent studies of Bose atoms in optical lattices have revealed the existence of superfluid and

Bose-Mott insulator (BMI) phases [91, 92].

The research explosion that followed this discovery, guarantees a priori another research

explosion following the very recent experimental observation of superfluid and insulating

phases of Fermi atoms in optical lattices [87]. Thus, it is only natural to propose that

optical lattices could be used to study the normal state and superfluid properties of ultra-

cold fermionic systems as a function of particle density, atom transfer energy, interaction

strength, filling fraction, and lattice symmetry and dimensionality. These systems are also

of broad interest not only for the atomic physics community but also for the nuclear, con-

densed matter and more generally for the many-body physics communities, where models

for superfluidity have been investigated in various contexts.
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Eventhough great success was achieved in cooling and studying Bose atoms in optical lat-

tices, it was not until very recently that Fermi atoms (mixtures of two-hyperfine states) [87]

or mixtures of Bose and Fermi atoms begun to be experimentally studied [93]. In addition,

several groups around the world are attempting to create fermion mixtures made of two

types of Fermi atoms, similar to experiments with boson mixtures consisting of two types

of Bose atoms [94]. Ultracold fermions in optical lattices are ideal systems to study novel

atomic and/or condensed matter phases in particular because attractive fermions can lead

to Bose behavior (Bose molecules made of two-fermions), as well as to combined Bose-Fermi

behavior where there are bound Bose molecules and unbound excess fermions. Thus, the

resulting quantum phases of fermion mixtures are much richer than those of Bose atoms or

Bose-Fermi mixtures in optical lattices.

The lattice and continuum models describe essentially the same physics in the BCS

limit, and the fact that fermions are confined to a lattice geometry makes no difference,

since the size of the Cooper pairs is much larger than the lattice spacing. In the opposite

BEC limit, significant differences arise once the pair size becomes comparable to the lattice

spacing. In this limit, there can only be a single composite boson on any lattice site forming

local hard-core bosons on a given site with a high binding energy, and other fermions are

blocked by the Pauli exclusion principle. These particles can move only via pair breaking,

and therefore, their nearest neighbor tranfer energy decreases with increasing interaction,

that is they become heavier with increasing interaction and the critical BEC transition

temperature decreases to zero. This is in sharp contrast with the continuum case where

the composite boson mass (equals to the total mass of fermion pairs) and critical BEC

temperatures are finite constants [41, 95].

However, lattice and continuum models have one common feature. In order to obtain

the collective mode of the superfluid ground state, it is necessary to include correlations

between bound pairs with finite center of mass momentum. While the critical transition

temperature results from thermal excitation of collective modes in the BEC limit, it results

from thermal excitation of individual particles in the BCS limit. Therefore, the physics is

quite different in two limits: pair breaking in one case, and motion of bound pairs in the
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other [95].

Having discussed the history and experimental background of the BCS-BEC crossover

problem, I briefly discuss next the functional integral formalism, which is the theoretical

framework of this thesis.

1.4 Functional Integral Formalism

Under some circumstances, several many-body systems can be well-described by some ef-

fective actions such that the original actions involving fundamental particle fields such as

electrons, atoms, etc. are replaced by the ones containing auxiliary quantum fields char-

acterizing the order parameter of those systems such as in superconductors, superfluids,

ferromagnets, ferroelectrics, etc. Functional integrals provide a powerful tool for studying

such many-body systems, in which the partition function is written as an integral over the

field configurations, providing both a physically intuitive description of the system and a

useful starting point for approximations.

This formalism uses Feynman path integrals, in which the transformation to auxiliary

fields amounts to mere changes of integration variables in functional integrals. The essence

of the path integral approach was introduced by Dirac in 1933 [96], and later developed

extensively by Feynman in 1948 [97], and the details of this formalism can be found in most

of the modern textbooks [98, 99, 100].

In addition to quantum field theory [101], functional integral methods have also been

widely used in statistical physics to deal with collective excitations such as Goldstone

phonons and quantum vortices in superfluids and superconductors [7, 102]. One of the

advantages of this formalism is that it is, in principle, easier to do and calculate perturba-

tive expansions to any order. In particular to the BCS-BEC crossover problem, in addition

to recovering the stationary BCS results originally obtained from a variational approach,

this formalism can be used to determine the collective modes of the system by including

fluctuations about the stationary solutions [43, 44, 103]. In fact, this will prove to be

extremely important at finite temperatures as will be discussed in this thesis.
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1.5 Outline

In this thesis, I focus on the analysis of Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein

condensation (BEC) evolution in ultracold superfluid Fermi gases as a function of interpar-

ticle interaction strength. The tuning of attractive interactions permits the ground state of

the system to evolve from the weak fermion attraction (BCS) limit of largely overlapping

Cooper pairs to the strong fermion attraction limit of tightly bound bosonic molecules which

undergo BEC. This evolution is accompanied by anomalous behavior of many superfluid

properties, and reveals several quantum phase transitions, as briefly introduced next.

1.5.1 Nonzero Angular Momentum Pairing

For paired identical fermions, the Pauli exclusion principle requires the total pair wave func-

tion to be anti-symmetric. The total orbital angular momentum should be odd for pseudo-

spin symmetric pairs and even for pseudo-spin anti-symmetric ones. Therefore in the case

of trapping two-hyperfine-states (THS), s-wave scattering of atoms between fermions from

different hyperfine states is dominant. One also expects that the superfluid ground state

of such two-component Fermi gases with equal populations to be s-wave and pseudo-spin

singlet for which the theoretically proposed BCS to BEC crossover has been experimentally

realized in recent experiments [71, 72, 73, 75].

However, the properties of single-hyperfine-state (SHS) ultracold fermions and their

possible superfluid behavior are beginning to be investigated [104, 105, 106, 107, 108, 109].

These systems are probably the next frontier for experiments with ultracold atoms. When

identical fermionic atoms are trapped in a single-hyperfine-state, the interparticle interac-

tion is strongly influenced by the Pauli exclusion principle, which prohibits s-wave scattering

of atoms in identical pseudo-spin states. As a result, in SHS degenerate Fermi gases, two

fermions can interact with each other at best via p-wave scattering. Thus, one expects that

the superfluid ground state of such SHS Fermi gases to be p-wave and pseudo-spin triplet.

Motivated by these recent experiments [71, 72, 73, 75], in Chapter II, I analyze zero

and nonzero orbital angular momentum pairing effects, and show that a quantum phase

transition occurs for nonzero angular momentum pairing, unlike the s-wave case where the
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BCS to BEC evolution is just a crossover. This quantum phase transition is topological in

its nature, characterized by a gapless superfluid on the BCS side, and by a fully gapped

superfluid on the BEC side.

Similar topological quantum phase transitions with much richer phase diagram also

occur in mass and population imbalanced THS mixtures, as as briefly introduced next.

1.5.2 Imbalanced Fermion Mixtures

The lack of precise control over standard condensed matter systems hindered the develop-

ment of experiments that could probe systematically the effects of strong correlations, and

makes atomic systems a powerful tool for studying novel superfluid phases. For instance,

a new frontier with population imbalanced fermion mixtures has been recently reported.

Since the population of each component as well as the interaction strength between two

components are experimentally tunable, these knobs enabled the study of the BCS to BEC

evolution in population imbalanced two-component fermion superfluids [76, 77]. In contrast

with the crossover physics found in the population balanced case [37, 38, 41, 44, 110], these

experiments have demonstrated the existence of phase transitions between normal and su-

perfluid phases, as well as phase separation between superfluid (paired) and normal (excess)

fermions as a function of population imbalance [111, 112].

Motivated by these very recent experiments, in Chapter III, I analyze two-species

fermion mixtures with mass and population imbalance in continuum, trap and lattice mod-

els. In contrast with the crossover physics found in the mass and population balanced

mixtures, I demonstrate the existence of phase transitions between normal and superfluid

phases, as well as phase separation between superfluid (paired) and normal (excess) fermions

in imbalanced mixtures as a function of scattering parameter, and mass and population im-

balance. In optical lattices, in addition to the standard superfluid, phase separated or

coexisting superfluid/excess fermion phases, I find several insulating phases including a

molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase sepa-

rated BMI/FPI mixture, and a Bose-Fermi checkerboard phase depending on fermion filling

fractions.
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CHAPTER II

NONZERO ORBITAL ANGULAR MOMENTUM SUPERFLUIDITY

IN ULTRACOLD FERMI GASES

In single hyperfine state Fermi gases, s-wave scattering of identical atoms is prohibited by

the Pauli exclusion principle, and two fermions can interact with each other at best via p-

wave scattering. When this is the case, the superfluid ground state corresponds to a p-wave

and pseudo-spin triplet pairing. The evolution of p-wave superfluidity from the BCS to the

BEC limit is very different from the usual s-wave case as discussed next in this chapter.

2.1 Introduction

Experimental advances involving atomic Fermi gases enabled the control of interactions

between atoms in different hyperfine states by using Feshbach resonances [58, 59, 60, 61, 62,

65, 66]. These resonances can be tuned via an external magnetic field and allow the study of

dilute many-body systems with fixed density, but varying interaction strength characterized

by the scattering parameter aℓ. This technique allows for the study of new phases of strongly

interacting fermions. For instance, the recent experiments from the MIT group [75] marked

the first observation of vortices in atomic Fermi gases corresponding to a strong signature of

superfluidity in the s-wave (ℓ = 0) channel. These studies combined [68, 71, 72, 73, 74, 75]

correspond to the experimental realization of the theoretically proposed Bardeen-Cooper-

Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover [36, 37, 41, 44, 110] in

three dimensional (3D) s-wave superfluids. Recent extensions of these ideas include trapped

fermions [47, 48] and fermion-boson models [49, 50].

One of the next frontiers of exploration in ultracold Fermi systems is the search for

superfluidity in higher angular momentum states (ℓ 6= 0). Substantial experimental progress

has been made recently [104, 105, 106, 107, 108, 109] in connection to p-wave (ℓ = 1) cold

Fermi gases, making them ideal candidates for the observation of novel triplet superfluid

phases. These phases may be present not only in atomic, but also in nuclear (pairing
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in nuclei), astrophysics (neutron stars), and condensed matter (organic superconductors)

systems.

The tuning of p-wave interactions in ultracold Fermi gases was initially explored via

p-wave Feshbach resonances in trap geometries for 40K atoms in Ref. [104, 105] and 6Li

atoms in Ref. [106, 107]. Finding and sweeping through these resonances is difficult since

they are much narrower than the s-wave case, because atoms interacting via higher an-

gular momentum channels have to tunnel through a centrifugal barrier to couple to the

bound state [105]. While losses due to two-body dipolar [106, 113] or three-body [104, 105]

processes challenged earlier p-wave experiments, these losses were still present but were

less dramatic in the very recent optical lattice experiment involving 40K atoms and p-wave

Feshbach resonances [108].

Figure 2.1: (a) Theoretical calculation of the thermally averaged elastic cross section for
the p-wave FR, including all partial-wave projections mℓ = −1, 0, 1. At low temperatures,
the doublet splitting emerges clearly, but it is washed out a higher temperatures due to
thermal broadening. The lower field resonance has mℓ = ±1 and the higher field resonance
has mℓ = 0. (b) Experimental observation of the p-wave FR through heating of the gas,
clearly showing the doublet feature of the p-wave resonance. The cloud started at T =
0.34mK and then was held at a constant magnetic field. Inelastic processes at the FR,
three-body dominated, heat the cloud resulting in an increase in the measured size of the
trapped cloud. (Adapted from [105].)

Furthermore, due to the magnetic dipole-dipole interaction between valence electrons

of alkali atoms, the nonzero angular momentum Feshbach resonances corresponding to

projections of angular momentum ℓ [mℓ = ±ℓ,±(ℓ− 1), ..., 0] are nondegenerate (separated

from each other) with total number of ℓ+1 resonances. In Fig.2.1, the lifting of degeneracy
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is shown for a 40K p-wave resonance [105]. Therefore, in principle, these resonances can

be tuned and studied independently if the separation between them is larger than the

experimental resolution. Since the ground state is highly dependent on the separation and

detuning of these resonances, it is possible that p-wave superfluid phases can be studied from

the BCS to the BEC regime. For sufficiently large splittings, it has been proposed [114, 115]

that pairing occurs only in mℓ = 0 and does not occur in the mℓ = ±1 states. However, for

small splittings, pairing occurs via a linear combination of the mℓ = 0 and mℓ = ±1 states.

Thus, the mℓ = 0 or mℓ = ±1 resonances may be tuned and studied independently if the

splitting is large enough in comparison to the experimental resolution.

The BCS to BEC evolution of d-wave (ℓ = 2) superfluidity was discussed previously

in the literature using continuum [116, 117, 118] and lattice [119, 120] descriptions in con-

nection to high-Tc superconductivity. More recently, p-wave superfluidity was analyzed at

T = 0 for single hyperfine state (SHS) systems in two dimensions (2D) [121, 122, 123], and

for two hyperfine state (THS) systems in 3D [127] using fermion-only models. Furthermore,

fermion-boson models were proposed to describe p-wave superfluidity at zero [114, 115] and

finite temperature [128] in 3D.

In this chapter, I present a generalization of the zero and finite temperature analysis of

both THS pseudo-spin singlet and SHS pseudo-spin triplet [122, 129] superfluidity in 3D

within a fermion-only description. My main results are as follows.

Through an analysis of the low energy scattering amplitude within a T-matrix approach,

I find that bound states occur only when the scattering parameter aℓ > 0 for any ℓ. The

energy of the bound states Eb,ℓ involves only the scattering length a0 for ℓ = 0. However,

another parameter rℓ related to the interaction range 1/k0 is necessary to characterize Eb,ℓ

for ℓ 6= 0. Therefore, all superfluid properties for ℓ 6= 0 depend strongly on k0 and aℓ, while

for ℓ = 0 they depend strongly only on a0 but weakly on k0.

At zero temperature (T = 0), I study the possibility of a topological quantum phase

transition in ℓ 6= 0 atomic Fermi gases during the evolution from BCS to BEC regime [116,

117, 121, 122, 123, 114, 115, 129, 135]. I show that there is a fundamental difference

between the ℓ = 0 and ℓ 6= 0 cases. In the s-wave (ℓ = 0) case, there is no phase transition
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as the magnetic field is tuned through the Feshbach resonance from the BCS to the BEC

limit. That is, the zero temperature thermodynamic properties are analytic functions of the

scattering length a0 when the Feshbach resonance is crossed. In this case, the superfluid

ground state does not change in any fundamental way as a0 is varied. This has been noted

in the condensed matter literature long ago [37, 41, 44, 110] and it is referred to as the BCS-

BEC crossover problem. However, for ℓ 6= 0, I show that there is a phase transition as the

magnetic field is swept through the ℓ 6= 0 Feshbach resonance. The phase transition does

not occur when two-body bound states are first formed, but occurs when the many-body

chemical potential crosses a critical value.

To show that such a zero temperature (quantum) phase transition occurs in ℓ 6= 0, I

calculate the order parameter, chemical potential, quasiparticle excitation spectrum, mo-

mentum distribution, atomic compressibility, low energy collective excitations and average

Cooper pair size as a function of aℓ, and show that they are non-analytic at T = 0 when

the chemical potential µℓ crosses a critical value. The symmetry of the order parameter

remains unchanged through the transition, as the ground state wavefunction experiences a

major rearrangement of its analytic structure. In addition, the elementary excitations of

the superfluid also change from gapless in the BCS side to fully gapped in the BEC side

leading to qualitatively different thermodynamic properties in both sides. Thus, I conclude

that there is a potentially observable BCS-BEC phase transition in ℓ 6= 0 atomic Fermi

gases in contrast to the BCS-BEC crossover already found in s-wave (ℓ = 0) gases.

At finite temperatures, I develop a gaussian fluctuation theory near the critical temper-

ature (T ≈ Tc,ℓ) to analyze the number of unbound, scattering and bound fermions as well

as the chemical potential. I show that while the saddle point number equation is sufficient

in weak coupling where all fermions are unbound, the fluctuation contributions have to be

taken into account in order to recover the BEC physics in strong coupling where all fermions

are bound.

I also derive the time-dependent Ginzburg-Landau (TDGL) functional near Tc,ℓ and

extract the Ginzburg-Landau (GL) coherence length and time. I recover the usual TDGL

equation for BCS superfluids in weak coupling, whereas in strong coupling I recover the
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Gross-Pitaevskii (GP) equation for a weakly interacting dilute Bose gas. The TDGL equa-

tion exhibits anisotropic coherence lengths for ℓ 6= 0 which become isotropic only in the

BEC limit, in sharp contrast to the ℓ = 0 case, where the coherence length is isotropic

for all couplings. Furthermore, for any ℓ, the GL time is a complex number with a larger

imaginary component for µℓ > 0 reflecting the decay of Cooper pairs into the two-particle

continuum with short lifetimes. However, the imaginary component vanishes for µℓ ≤ 0 and

Cooper pairs become stable with long lifetimes above Tc,ℓ.

The rest of the chapter is organized as follows. In Section 2.2, I analyze the interaction

potential in both real and momentum space for nonzero orbital momentum channels. I

introduce the imaginary-time functional integration formalism in Section 2.3, and obtain

the self-consistency (order parameter and number) equations. There I also discuss the low

energy scattering amplitude of a finite range interaction for all possible angular momentum

channels, and relate the self-consistency equations to scattering parameters. In Section 2.4,

I discuss the evolution from BCS to BEC superfluidity at zero temperature. There I ana-

lyze the order parameter, chemical potential, quasiparticle excitation spectrum, momentum

distribution, atomic compressibility and ground state energy as a function of scattering pa-

rameters. I also discuss gaussian fluctuations and low energy collective excitations at zero

temperature in Section 2.5. In Sec 2.6, I present the evolution of superfluidity from the

BCS to the BEC regimes near the critical temperature. There I discuss the importance of

gaussian fluctuations, and analyze the number of unbound, scattering and bound fermions,

critical temperature and chemical potential as a function of scattering parameters. In Sec-

tion 2.7, I derive TDGL equation and extract the GL coherence length and time. There,

I recover the GL equation in the BCS and the GP equation in the BEC limit. A short

summary of my conclusions is given in Section 2.8. Finally, I present in Appendices A.1

and A.2 the coefficients for the low frequency and long wavelength expansion of the action

at zero and finite temperatures, respectively.
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2.2 Generalized Hamiltonian

To describe a dilute Fermi gas in three dimensions, I start from the Hamiltonian (~ = 1)

H =
∑

k,s1

ξ(k)a†k,s1
ak,s1 +

1

2V
∑

k,k′,q

∑

s1,s2,s3,s4

V s3,s4
s1,s2

(k,k′)b†s1,s2
(k,q)bs3,s4(k

′,q), (2.1)

where sn labels the pseudo-spins corresponding to trapped hyperfine states and V is the

volume. These states are represented by the creation operator a†k,s1
, and b†s1,s2(k,q) =

a†
k+q/2,s1

a†−k+q/2,s2
. Here, ξ(k) = ǫ(k) − µ where ǫ(k) = k2/(2M) is the energy with M

being the mass, and µ is the chemical potential of fermions.

The interaction term can be written in a separable form V s3,s4
s1,s2 (k,k′) = Γs3,s4

s1,s2V (k,k′),

where Γs3,s4
s1,s2 is the spin and V (k,k′) is the spatial part, respectively. In the case of THS case,

where sn ≡ (↑, ↓), both pseudo-spin singlet and pseudo-spin triplet pairings are allowed.

However, I concentrate on the pseudo-spin singlet THS state with

Γs3,s4
s1,s2

= Γs3,s4
s1,s2

δs1,−s2δs2,s3δs3,−s4δs4,s1 . (2.2)

In addition, I discuss the SHS case (sn ≡↑), where only pseudo-spin triplet pairing is

allowed, and the interaction is given by

Γs3,s4
s1,s2

= Γs3,s4
s1,s2

δs1,s2δs2,s3δs3,s4δs4,↑. (2.3)

In this chapter, I analyze THS singlet and SHS triplet cases for all allowable angular mo-

mentum channels. THS triplet pairing is more involved due to the more complex nature of

the vector order parameters, and is not discussed here.

The two fermion interaction can be expanded as

V (k,k′) =

∫
d3rV (r)ei(k−k′)·r, (2.4)

and should have the necessary symmetry under the Parity operation, where the trans-

formation k → −k or k′ → −k′ leads to V (k,k′) for singlet, and −V (k,k′) for triplet

pairing. Furthermore, V (k,k′) is invariant under the transformation (k,k′) → (−k,−k′),

and V (k,k′) reflects the Pauli exclusion principle.
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In order to obtain an approximate expression for the atomic interaction potential, I use

the Fourier expansion of a plane wave in 3D

eik·r = 4π
∑

ℓ,mℓ

iℓjℓ(kr)Y ∗
ℓ,mℓ

(r̂)Yℓ,mℓ
(k̂), (2.5)

where jℓ(kr) is the spherical Bessel function of order ℓ and Yℓ,mℓ
(k̂) is the spherical harmonic

of order (ℓ, mℓ), in Eq. 2.4 to evaluate the matrix elements of the interaction potential in

k-space

V (k,k′) = 4π
∑

ℓ,mℓ

Vℓ(k, k′)Yℓ,mℓ
(k̂)Y ∗

ℓ,mℓ
(k̂′). (2.6)

Here,
∑

ℓ,mℓ
=

∑∞
ℓ=0

∑ℓ
mℓ=−ℓ, and k̂ denotes the angular dependence (θk, φk). The (k, k′)

dependent coefficients Vℓ(k, k′) are related to the real space potential V (r) through the

relation

Vℓ(k, k′) = 4π

∫ ∞

0
drr2jℓ(kr)jℓ(k

′r)V (r). (2.7)

The index ℓ labels angular momentum states in 3D, with ℓ = 0, 1, 2, ... corresponding to

s, p, d, ... channels, respectively.

In the long wavelength limit (k → 0), one can show that the k dependence of this poten-

tial becomes exactly separable. In fact, for kr ≪ 1 and k′r ≪ 1, the asymptotic expression

of the spherical Bessel function for small arguments can be used, giving Vℓ(k, k′) = Cℓk
ℓk′ℓ,

with the coefficient Cℓ dependent on the particular choice of the real space potential. In

the opposite limit, where kr ≫ 1 and k′r ≫ 1, the potential is not separable. In this case,

Vℓ(k, k′) mixes different k and k′, and shows an oscillatory behavior (which is dependent on

the exact form of V (r)) with a decaying envelope that is proportional to 1/(kk′).

Under these circumstances, I choose to study a model potential that contains most of the

features described above. One possibility is to retain only one of the ℓ terms in Eq. (2.6), by

assuming that the dominant contribution to the scattering process between fermionic atoms

occurs in the ℓth angular momentum channel. This assumption may be experimentally

relevant since atom-atom dipole interactions split different angular momentum channels

such that they may be tuned independently. Using the properties discussed above, I write

Vℓ(k, k′) = −λℓΓℓ(k)Γℓ(k
′), (2.8)
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where λℓ > 0 is the interaction strength, and the function

Γℓ(k) =
(k/k0)

ℓ

(1 + k2/k2
0)

ℓ+1
2

(2.9)

describes the momentum dependence. Here, k0 ∼ R−1
0 plays the role of the interaction range

in real space and sets the scale at small and large momenta. In addition, the diluteness

condition (nℓR
3
0 ≪ 1) requires (k0/kF)3 ≫ 1, where nℓ is the density of atoms and kF is

the Fermi momentum. This function reduces to Γℓ(k) ∼ kℓ for small k, and behaves as

Γℓ(k) ∼ 1/k for large k, which guarantees the correct qualitative behavior expected for

Vℓ(k, k′) according to the analysis above.

2.3 Functional Integral Formalism

In this section, I describe in detail the THS singlet case for even angular momentum states.

A similar approach for the SHS triplet case for odd angular momentum states can be found

in Ref. [122, 129], and therefore, I do not repeat the same analysis here. However, I point

out the main differences between the two cases whenever it is necessary.

2.3.1 THS Singlet Effective Action

I would like to warn the reader that this section is rather technical, and it may be skipped

entirely until Section 2.3.2 if desired.

In the imaginary-time functional integration formalism (~ = kB = 1, and β = 1/T ), the

partition function for the THS singlet case can be written as

Zℓ =

∫
D(a†, a)e−Sℓ (2.10)

where Sℓ is the action, and it is given by

Sℓ =

∫ β

0
dτ


∑

k,s

a†k,s(τ)(∂τ )ak,s(τ) + Hℓ(τ)


 (2.11)

Here, τ is the imaginary time and a†k,σ(τ) and ak,σ(τ) are Grassmann variables [100, 124].

The Hamiltonian for the ℓth angular momentum channel is

Hℓ(τ) =
∑

k,s

ξℓ(k)a†k,s(τ)ak,s(τ) − 4πλℓ

V
∑

q,mℓ

b†ℓ,mℓ
(q, τ)bℓ,mℓ

(q, τ), (2.12)
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where bℓ,mℓ
(q, τ) =

∑
k Γℓ(k)Yℓ,mℓ

(k̂)ak+q/2,↑ak−q/2,↓ and ξℓ(k) = ǫ(k) − µℓ. I first intro-

duce the Nambu spinor ψ†(p) = (a†p,↑, a−p,↓), where p = (k, iwj) denotes both momentum

and fermionic Matsubara frequency wj = (2j + 1)π/β, and use a Hubbard-Stratonovich

transformation [125, 126]

e−
P

q λ|b(q)|2 =

∫
D[Φ†, Φ]e

P

q

»

|Φ(q)|2

λ
+b†(q)Φ(q)+Φ†(q)b(q)

–

(2.13)

to decouple fermionic and bosonic degrees of freedom. The resulting integration have Gaus-

sian form in fermionic fields , and it can be easily performed. Integration over the fermionic

part [D(ψ†, ψ)] leads to the action

Seff
ℓ = β

∑

q,mℓ

|Φℓ,mℓ
(q)|2

4πV−1λℓ
+

∑

p,q

[
βξℓ(k)δq,0 − Tr ln (Gℓ/β)−1

]
, (2.14)

where q = (q, ivj), with bosonic Matsubara frequency vj = 2πj/β. Here,

G−1
ℓ = Φ∗

ℓ (q)Γℓ(p)σ− + Φℓ(−q)Γℓ(p)σ+ + [iwjσ0 − ξℓ(k)σ3] δq,0 (2.15)

is the inverse Nambu propagator, Φℓ(q) =
∑

mℓ
Φℓ,mℓ

(q)Yℓ,mℓ
(k̂) is the bosonic field, and

σ± = (σ1 ± σ2)/2 and σi is the Pauli spin matrix. The bosonic field

Φℓ,mℓ
(q) = ∆ℓ,mℓ

δq,0 + Λℓ,mℓ
(q) (2.16)

has τ -independent ∆ℓ,mℓ
and τ -dependent Λℓ,mℓ

(q) parts.

Performing an expansion in Seff
ℓ to quadratic order in Λℓ,mℓ

(q) leads to

Sgauss
ℓ = Ssp

ℓ +
β

2

∑

q,mℓ,m
′
ℓ

Λ̃†
ℓ,mℓ

(q)F−1
ℓ,mℓ,m

′
ℓ

(q)Λ̃ℓ,m′
ℓ
(q), (2.17)

where the vector Λ̃†
ℓ,mℓ

(q) is such that Λ̃†
ℓ,mℓ

(q) = [Λ†
ℓ,mℓ

(q), Λℓ,mℓ
(−q)], and F−1

ℓ,mℓ,m
′
ℓ

(q) are

the matrix elements of the inverse fluctuation propagator matrix F−1
ℓ (q). Furthermore, Ssp

ℓ

is the saddle point action given by

Ssp
ℓ = β

∑

mℓ

|∆ℓ,mℓ
|2

4πV−1λℓ
+

∑

p

[
βξℓ(k) − Tr ln

(
Gsp

ℓ /β
)−1

]
, (2.18)

and the saddle point inverse Nambu propagator is

(Gsp
ℓ )−1 = iwjσ0 − ξℓ(k)σ3 + ∆∗

ℓ (k)σ− + ∆ℓ(k)σ+, (2.19)
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with saddle point order parameter

∆ℓ(k) = Γℓ(k)
∑

mℓ

∆ℓ,mℓ
Yℓ,mℓ

(k̂). (2.20)

Notice that, ∆ℓ(k) may involve several different mℓ for a given angular momentum channel

ℓ.

The matrix elements of the inverse fluctuation matrix F−1
ℓ (q) are given by

(F−1
ℓ,mℓ,m

′
ℓ

)11 = − 1

β

∑

p

(Gsp
ℓ )11(

q

2
+ p)(Gsp

ℓ )11(
q

2
− p)Γ2

ℓ(p)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂)

+
δmℓ,m

′
ℓ
V

4πλℓ
, (2.21)

(F−1
ℓ,mℓ,m

′
ℓ

)12 =
1

β

∑

p

(Gsp
ℓ )12(

q

2
+ p)(Gsp

ℓ )12(
q

2
− p)Γ2

ℓ (p)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂). (2.22)

Notice that while (F−1
ℓ,mℓ,m

′
ℓ

)12(q) = (F−1
ℓ,mℓ,m

′
ℓ

)21(q) are even under the transformations

q → −q and ivj → −ivj ; (F−1
ℓ,mℓ,m

′
ℓ

)11(q) = (F−1
ℓ,mℓ,m

′
ℓ

)22(−q) are even only under q → −q,

having no defined parity in ivj .

The Gaussian action Eq. (2.17) leads to the thermodynamic potential Ωgauss
ℓ = Ωsp

ℓ +

Ωfluct
ℓ , where

Ωsp
ℓ =

∑

mℓ

|∆ℓ,mℓ
|2

4πV−1λℓ
+

∑

k

{
ξℓ(k) − Eℓ(k) − 2

β
ln [1 + exp(−βEℓ(k))]

}
, (2.23)

Ωfluct
ℓ =

1

β

∑

q

ln det[F−1
ℓ (q)/(2β)] (2.24)

are the saddle point and fluctuation contributions, respectively. Here,

Eℓ(k) =
[
ξ2
ℓ (k) + |∆ℓ(k)|2

] 1
2 , (2.25)

is the quasiparticle energy spectrum. Having completed the presentation of the functional

integral formalism, I discuss next the self-consistency equations for the order parameter and

the chemical potential.

2.3.2 Self-consistency Equations

The saddle point condition δSsp
ℓ /δ∆∗

ℓ,mℓ
= 0 imposed on Eq. (2.18) leads to the order

parameter equation

∆ℓ,mℓ

4πλℓ
=

1

V
∑

k

∆ℓ(k)Γℓ(k)Y ∗
ℓ,mℓ

(k̂)

2Eℓ(k)
tanh

βEℓ(k)

2
, (2.26)
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which can be expressed in terms of experimentally relevant parameters via the T -matrix

approach [127].

The low energy two-body scattering amplitude between a pair of fermions in the ℓth

angular momentum channel is given by [130]

fℓ(k) = − k2ℓ

1/aℓ − rℓk2 + ik2ℓ+1
, (2.27)

where rℓ < 0 and aℓ are the effective range and scattering parameter, respectively. Here rℓ

has dimensions of L2ℓ−1 and aℓ has dimensions of L2ℓ+1, where L is the length of the system.

The energy of the two-body bound state is determined from the poles of fℓ(k → iκℓ), and

is given by Eb,ℓ = −κ2
ℓ/(2M). Bound states occur when a0 > 0 for ℓ = 0, and aℓ6=0rℓ6=0 < 0

for ℓ 6= 0. Since rℓ < 0, bound states occur only when aℓ > 0 for all ℓ, in which case the

binding energies are given by

Eb,0 = − 1

Ma2
0

, (2.28)

Eb,ℓ6=0 =
1

Maℓrℓ
. (2.29)

Notice that, only a single parameter (a0) is sufficient to describe the low energy two-body

problem for ℓ = 0, while two parameters (aℓ, rℓ) are necessary to describe the same problem

for ℓ 6= 0. The point at which 1/(k2ℓ+1
F aℓ) = 0 corresponds to the threshold for the formation

of a two-body bound state in vacuum. Beyond this threshold, a0 for ℓ = 0 and |aℓ6=0rℓ6=0|

for ℓ 6= 0 are the size of the bound states.

For any ℓ, the two-body scattering amplitude is related to the T -matrix via

fℓ(k) = −M

4π
Tℓ[k, k; 2ǫ(k) + i0+], (2.30)

where the T -matrix is given by

T (k,k′, E) = V (k,k′) +
1

V
∑

k′′

V (k,k′′)T (k′′,k′, E)

E − 2ǫ(k′′) + i0+
.

Using the spherical harmonics expansion for both V (k,k′) and T (k,k′, E) leads to two

coupled equations,

1

λℓ
= − M

4πk2ℓ
0 aℓ

+
1

V
∑

k

Γ2
ℓ (k)

2ǫ(k)
, (2.31)

rℓ6=0 = − πk2ℓ
0

M2V
∑

k

Γ2
ℓ(k)

ǫ2(k)
− ℓ + 1

k2
0aℓ

, (2.32)
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relating λℓ and k0 to aℓ and rℓ. Except for notational differences, notice that these relations

are related to recent results found in the literature [127]. After performing momentum

integrations I obtain

k2ℓ+1
0 aℓ =

Mk0λℓ
√

π

Mk0λℓφ̃ℓ − 4π
√

π
, (2.33)

− 1

aℓ6=0rℓ6=0
=

2k2
0

√
π

k2ℓ+1
0 aℓφℓ + 2(ℓ + 1)

√
π

, (2.34)

where φ̃ℓ = Γ(ℓ + 1/2)/Γ(ℓ + 1) and φℓ = Γ(ℓ − 1/2)/Γ(ℓ + 1). Here Γ(x) is the Gamma

function. Notice that, k2ℓ+1
0 aℓ diverges and changes sign when Mk0λℓφ̃ℓ = 4π

√
π, which

corresponds to the critical coupling for Feshbach resonances (the unitarity limit).
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Figure 2.2: Plots of original interaction strength Mk0λ0 versus scattering parameter
1/(k0a0). The inset shows Mk0λ0 versus 1/(kFa0) for k0 ≈ 200kF. Notice that the scattering
length is small and negative (positive) in the weak (strong) interaction BCS (BEC) limit,
and it diverges in the intermediate region where it also changes sign. Therefore, tuning
the strength of the external magnetic field in atomic physics experiments (see Fig. 1.7) is
equivalent to increasing the strength of the attractive interparticle interaction.

In addition, the scattering parameter has a maximum value in the zero (λℓ → 0) and a

minimum value in the infinite (λℓ → ∞) coupling limits given respectively by

k2ℓ+1
0 amax

ℓ6=0 = −2(ℓ + 1)
√

π

φℓ
, (aℓ < 0), (2.35)

k2ℓ+1
0 amin

ℓ =

√
π

φ̃ℓ

, (aℓ > 0). (2.36)

The first condition Eq. (2.35) (when λℓ → 0) follows from Eq. (2.34) where rℓ6=0 < 0 has

to be satisfied for all possible aℓ6=0. However, there is no condition on r0 for ℓ = 0, and
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Figure 2.3: Plots of original interaction strength Mk0λ1 versus scattering parameter
1/(k3

0a1). The inset shows Mk0λ1 versus 1/(k3
Fa1) for k0 ≈ 200kF. These figures are

valid when k3
0|a1| ≥ 4 in the BCS limit. Notice that the scattering parameter is small

and negative (positive) in the weak (strong) interaction BCS (BEC) limit, and it diverges
in the intermediate region where it also changes sign. Therefore, tuning the strength of
the external magnetic field in atomic physics experiments (see Fig. 1.7) is equivalent to
increasing the strength of the attractive interparticle interaction.

k0a
max
0 = 0 in the BCS limit. The second condition Eq. (2.36) (when λℓ → ∞) follows from

Eq. (2.33), which is valid for all possible ℓ. The minimum aℓ for a finite range interaction

is associated with the Pauli principle, which prevents two identical fermions to occupy the

same state. Thus, while the scattering parameter can not be arbitrarily small for a finite

range potential, it may go to zero as k0 → ∞. Furthermore, the binding energy is given by

Eb,ℓ6=0 = − 2
√

π

Mk2ℓ−1
0 aℓφℓ

, (2.37)

when k2ℓ+1
0 aℓφℓ ≫ 2(ℓ + 1)

√
π.

In Fig. 2.2, I plot the original interaction strength Mk0λ0 versus the scattering parameter

k0a0 for the s-wave (ℓ = 0) channel. Notice that, k0|a0| → 0 in the BCS and k0a0 → 1 in the

BEC limit. A divergence in k0a0 corresponds to an s-wave Feshbach resonance occurring

at Mk0λ0 = 4π.

In Fig. 2.3, I plot the original interaction strength Mk0λ1 versus the scattering parameter

k3
0a1 for the p-wave (ℓ = 1) channel. Notice that, k3

0|a1| → 4 in the BCS and k3
0a1 → 2 in

the BEC limit. A divergence in k3
0a1 corresponds to a p-wave Feshbach resonance occurring

at Mk0λ1 = 8π.
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Thus, the order parameter equation in terms of the scattering parameter is rewritten as

MV∆ℓ,mℓ

16π2k2ℓ
0 aℓ

=
∑

k,m′
ℓ

[
1

2ǫ(k)
− tanh[βEℓ(k)/2]

2Eℓ(k)

]
∆ℓ,m′

ℓ
Γ2

ℓ(k)Y ∗
ℓ,mℓ

(k̂)Yℓ,m′
ℓ
(k̂). (2.38)

This equation is valid for both THS pseudo-spin singlet and SHS pseudo-spin triplet states.

However, there is one important difference between pseudo-spin singlet and pseudo-spin

triplet states. For pseudo-spin singlet states, the order parameter is a scalar function of k,

while it is a vector function for pseudo-spin triplet states discussed next.

In general, the triplet order parameter can be written in the standard form [131]

Oℓ(k) =




−dx
ℓ (k) + idy

ℓ (k) dz
ℓ (k)

dz
ℓ (k) dx

ℓ (k) + idy
ℓ (k)


 , (2.39)

where the vector dℓ(k) = [dx
ℓ (k), dy

ℓ (k), dz
ℓ (k)] is an odd function of k. Therefore, all up-up,

down-down and up-down components may exist for a THS pseudo-spin triplet interac-

tion. However, in the SHS pseudo-spin triplet case only the up-up or down-down compo-

nent may exist leading to ∆ℓ(k) ∝ (Oℓ)s1s1(k). Thus, for the up-up case dz
ℓ (k) = 0 and

dx
ℓ (k) = −idy

ℓ (k), leading to dℓ(k) = dx
ℓ (k)(1, i, 0), which breaks time reversal symmetry,

as expected from a fully spin polarized state. The corresponding down-down state has

dℓ(k) = dx
ℓ (k)(1,−i, 0). Furthermore, the simplified form of the SHS triplet order param-

eter allows a treatment similar to that of THS singlet states. However, it is important to

mention that the THS triplet case can be investigated using my approach, but the treatment

is more complicated.

The order parameter equation has to be solved self-consistently with the number equa-

tion Nℓ = −∂Ωℓ/∂µℓ where Ωℓ is the full thermodynamic potential defined in Eqs. (2.23)

and (2.24). In the approximations used,

Nℓ ≈ Ngauss
ℓ = N sp

ℓ + Nfluct
ℓ (2.40)

has two contributions. The saddle point contribution to the number equation is

N sp
ℓ =

∑

k,s

nℓ(k), (2.41)
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where nℓ(k) is the momentum distribution given by

nℓ(k) =
1

2

[
1 − ξℓ(k)

Eℓ(k)
tanh

βEℓ(k)

2

]
. (2.42)

For the SHS triplet case, the summation over s is not present in N sp
ℓ . The fluctuation

contribution to the number equation is

Nfluct
ℓ = − 1

β

∑

q

∂[detF−1
ℓ (q)]/∂µℓ

detF−1
ℓ (q)

, (2.43)

where F−1
ℓ (q) is the inverse fluctuation matrix defined in Eq. (2.21) and (2.22).

In the rest of the chapter, I analyze analytically the superfluid properties at zero tem-

perature (ground state) and near the critical temperatures for THS singlet (only even ℓ)

and SHS triplet (only odd ℓ) cases. In addition, I analyze numerically the s-wave (ℓ = 0)

channel of THS singlet and p-wave (ℓ = 1) channel of SHS triplet cases, which are currently

of intense theoretical and experimental interest in ultracold Fermi atoms.

2.4 BCS to BEC Evolution at T = 0

At low temperatures, the saddle point self-consistent (order parameter and number) equa-

tions are sufficient to describe ground state properties in the weak coupling BCS and strong

coupling BEC limits [37]. However, fluctuation corrections to the number equation may be

important in the intermediate regime [132].

Ground state properties (T = 0) are investigated by solving saddle point self-consistency

(order parameter and number) equations to obtain ∆ℓ,mℓ
and µℓ, which are discussed next.

2.4.1 Order Parameter and Chemical Potential

I discuss in this section ∆ℓ,mℓ
and µℓ. In weak coupling, I first introduce a shell about

the Fermi energy |ξℓ(k)| ≤ wD such that ǫF ≫ wD ≫ ∆ℓ(kF), inside of which one may

ignore the 3D density of states factor (
√

ǫ/ǫF) and outside of which one may ignore ∆ℓ(k).

While in sufficiently strong coupling, I use |ξℓ(k)| ≫ |∆ℓ(k)| to derive the analytic results

discussed below. It is important to notice that, in strictly weak and strong coupling, the

self-consistency equations Eq. (2.41) and (2.38) are decoupled, and play reversed roles. In
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weak (strong) coupling the order parameter equation determines ∆ℓ,mℓ
(µℓ) and the number

equation determines µℓ (∆ℓ,mℓ
).

In weak coupling, the number equation Eq. (2.41) leads to

µℓ = ǫF (2.44)

for any ℓ where ǫF = k2
F/(2M) is the Fermi energy. In strong coupling, the order parameter

equation Eq. (2.38) leads to

µ0 = − 1

2Ma2
0

, (2.45)

µℓ6=0 = −
√

π

Mk2ℓ−1
0 aℓφℓ

, (2.46)

where φℓ = Γ(ℓ− 1/2)/Γ(ℓ + 1) and Γ(x) is the Gamma function. This calculation requires

that a0k0 > 1 for ℓ = 0 and that k2ℓ+1
0 aℓφℓ > (ℓ + 1)

√
π for ℓ 6= 0 for the order parameter

equation to have a solution with µℓ < 0 in the strong coupling limit. In the BEC limit

µ0 = −k2
0/[2M(k0a0 − 1)2] for ℓ = 0. Notice that, µ0 = −1/(2Ma2

0) when k0a0 ≫ 1 [or

|µ0| ≪ ǫ0 = k2
0/(2M)], and thus, I recover the contact potential (k0 → ∞) result. In the

same spirit, to obtain the expressions in Eq. (2.45) and (2.46), I assumed |µℓ| ≪ ǫ0. Notice

that, µℓ = Eb,ℓ/2 in this limit for any ℓ.

On the other hand, the solution of the order parameter equation in the weak coupling

limit is

|∆0,0| = 16
√

πǫF exp

[
−2 +

π

2

kF

k0
− π

2kF|a0|

]
, (2.47)

|∆ℓ6=0,mℓ
| ∼

(
k0

kF

)ℓ

ǫF exp

[
tℓ

(
k0

kF

)2ℓ−1

− π

2k2ℓ+1
F |aℓ|

]
, (2.48)

where t1 = π/4 and tℓ>1 = π2ℓ+1(2ℓ − 3)!!/ℓ!. These expressions are valid only when the

exponential terms are small. Therefore, they suggest that the range of BCS to unitarity

region in terms of 1/(2k2ℓ+1
F |aℓ|) is of order 1 for ℓ = 0 and of order (k0/kF)2ℓ−1 for ℓ 6= 0.

The solution of the number equation in the strong coupling limit is

|∆0,0| = 8ǫF

(
µ0

9ǫF

) 1
4

, (2.49)

∑

mℓ

|∆ℓ6=0,mℓ
|2 =

64
√

π

3φℓ
ǫF(ǫFǫ0)

1
2 (2.50)
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to order µℓ/ǫ0, where I assumed that |ξℓ(k)| ≫ |∆ℓ(k)| for sufficiently strong couplings with

|µℓ| ≪ ǫ0.
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Figure 2.4: Plots of (a) order parameter ∆r = |∆0,0|/ǫF and (b) chemical potential
µr = µ0/ǫF versus interaction strength 1/(kFa0) for k0 ≈ 200kF. For ℓ = 0 pairing, I show
that the evolution of self-consistency parameters is analytic for all interactions.

Next, I present numerical results for two particular states. First, I analyze the THS

s-wave (ℓ = 0, mℓ = 0) case, where

∆0(k) = ∆0,0Γ0(k)Y0,0(k̂) (2.51)

with Y0,0(k̂) = 1/
√

4π. Second, I discuss the SHS p-wave (ℓ = 1, mℓ = 0) case, where

∆1(k) = ∆1,0Γ1(k)Y1,0(k̂) (2.52)

with Y1,0(k̂) =
√

3/(4π) cos(θk). In all numerical calculations, I choose k0 ≈ 200kF to

compare s-wave and p-wave cases.

In Fig. 2.4, I show |∆0,0| and µ0 at T = 0 for the s-wave case. Notice that the BCS to

BEC evolution range in 1/(kFa0) is of order 1. Furthermore, |∆0,0| grows continuously with-

out saturation with increasing coupling, while µ0 changes from ǫF to Eb,0/2 continuously

and decreases as −1/(2Ma2
0) for strong couplings. Thus, the evolution of |∆0,0| and µ0 as

a function of 1/(kFa0) is smooth. For completeness, it is also possible to obtain analytical

values of a0 and ∆0,0 when the chemical potential vanishes. When µ0 = 0, I obtain for

|∆0,0| = 8ǫF[π2√π/Γ4(1/4)]1/3 ≈ 3.73ǫF at 1/(kFa0) = (2π3√πǫF/|∆0,0|)1/2/[2Γ2(3/4)] ≈

0.554, which also agrees with the numerical results. Here Γ(x) is the Gamma function.
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Figure 2.5: Plots of (a) order parameter ∆r = |∆1,0|/ǫF and (b) chemical potential
µr = µ1/ǫF versus interaction strength 1/(k3

Fa1) for k0 ≈ 200kF. For ℓ = 1 pairing, I
show that the evolution of self-consistency parameters is non-analytic when µ1 changes
from positive values in the BCS side to negative values in the BEC side as a function of
interaction strength.

In Fig. 2.5, I show |∆1,0| and µ1 at T = 0 for the p-wave case. Notice that the BCS

to BEC evolution range in 1/(k3
Fa1) is of order k0/kF. Furthermore, |∆1,0| grows with

increasing coupling but saturates for large 1/(k3
Fa1), while µ1 changes from ǫF to Eb,1/2

continuously and decreases as −1/(Mk0a1) for strong couplings. For completeness, I present

the limiting expressions

|∆1,0| = 24
k0

kF
ǫF exp

[
−8

3
+

πk0

4kF
− π

2k3
F|a1|

]
, (2.53)

|∆1,0| = 8ǫF

(
ǫ0
9ǫF

) 1
4

, (2.54)

in the weak and strong coupling limits, respectively.

The evolution of |∆1,0| and µ1 are qualitatively similar to recent T = 0 results for

THS fermion [127] and SHS fermion-boson [115] models. Due to the angular dependence of

∆1(k), the quasiparticle excitation spectrum E1(k) is gapless for µ1 > 0, and fully gapped

for µ1 < 0. Furthermore, both ∆1,0 and µ1 are nonanalytic exactly when µ1 crosses the

bottom of the fermion energy band µ1 = 0 at 1/(k3
Fa1) ≈ 0.48. The nonanalyticity does

not occur in the first derivative of ∆1,0 or µ1 as it is the case in 2D [123], but occurs in

the second and higher derivatives. Thus, in the p-wave case, the BCS to BEC evolution is

not a crossover, but a quantum phase transition occurs, as can be seen in the quasiparticle
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excitation spectrum to be discussed next.

2.4.2 Quasiparticle Excitations

The quasiparticle excitation spectrum

Eℓ(k) = [ξ2
ℓ (k) + |∆ℓ(k)|2]1/2 (2.55)

is gapless at k-space regions where the conditions ∆ℓ(k) = 0 and ǫ(k) = µℓ are both

satisfied. Notice that the second condition is only satisfied in the BCS side µℓ ≥ 0, and

therefore, the excitation spectrum is always gapped in the BEC side (µℓ < 0).

For ℓ = 0, the order parameter is isotropic in k-space without zeros (nodes) since it does

not have any angular dependence. Therefore, the quasiparticle excitation spectrum is fully

gapped in both BCS (µ0 > 0) and BEC (µ0 < 0) sides, since

min{E0(k)} = |∆0(kµ0)|, (µ0 > 0), (2.56)

min{E0(k)} =
√
|∆0(0)|2 + µ2

0, (µ0 < 0). (2.57)

Here, kµℓ
=

√
2Mµℓ. This implies that the evolution of the quasiparticle excitation spec-

trum from weak coupling BCS to strong coupling BEC regime is smooth when µ0 = 0 for

ℓ = 0 pairing.

In Fig. 2.6, I show E0(kx = 0, ky, kz) for an s-wave (ℓ = 0, mℓ = 0) superfluid when (a)

µ0 > 0 (BCS side) for 1/(kFa0) = −1, (b) µ0 = 0 (intermediate regime) for 1/(kFa0) ≈ 0.55,

and (c) µ0 < 0 (BEC side) for 1/(kFa0) = 1. Notice that the quasiparticle excitation

spectrum is gapped for all three cases. However, the situation for ℓ 6= 0 is very different as

discussed next.

For ℓ 6= 0, the order parameter is anisotropic in k-space with zeros (nodes) since it has

an angular dependence. Therefore, while the quasiparticle excitation spectrum is gapless in

the BCS (µℓ6=0 > 0) side, it is fully gapped in the BEC (µℓ6=0 < 0) side, since

min{Eℓ6=0(k)} = 0, (µℓ > 0), (2.58)

min{Eℓ6=0(k)} = |µℓ|, (µℓ < 0). (2.59)

This implies that the evolution of quasiparticle excitation spectrum from weak coupling

BCS to strong coupling BEC regime is not smooth for ℓ 6= 0 pairing having a nonanalytic
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Figure 2.6: Plots of quasiparticle excitation spectrum E0(kx = 0, ky, kz) when (a) µ0 > 0
(BCS side) for 1/(kFa0) = −1, (b) µ0 = 0 (intermediate regime) for 1/(kFa0) ≈ 0.55, and
(c) µ0 < 0 (BEC side) for 1/(kFa0) = 1 versus momentum ky/kF and kz/kF. For ℓ = 0
pairing, I show that the quasiparticle excitation spectrum is fully gapped for all interaction
strengths.

behavior when µℓ6=0 = 0. This signals a quantum phase transition from a gapless to a fully

gapped state exactly when µℓ6=0 drops below the bottom of the energy band µℓ6=0 = 0.

In Fig. 2.7, I show E1(kx = 0, ky, kz) for a p-wave (ℓ = 1, mℓ = 0) superfluid when (a)

µ1 > 0 (BCS side) for 1/(k3
Fa1) = −1, (b) µ1 = 0 (intermediate regime) for 1/(k3

Fa1) ≈ 0.48,

and (c) µ1 < 0 (BEC side) for 1/(k3
Fa1) = 1. The quasiparticle excitation spectrum is gapless

when ∆1(k) ∝ kz/kF = 0 and k2
x + k2

y + k2
z = 2Mµ1 are both satisfied in certain regions of

k-space. For kx = 0, these conditions are met only when kz = 0 and ky = ±√
2Mµ1 for a

given µ1. Notice that, these points come closer as the interaction (µ1) increases (decreases),

and when µ1 = 0 they become degenerate at k = 0. For µ1 < 0, the second condition can
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Figure 2.7: Plots of quasiparticle excitation spectrum E1(kx = 0, ky, kz) in (a) µ1 > 0
(BCS side) for 1/(k3

Fa1) = −1, (b) µ1 = 0 (intermediate regime) for 1/(k3
Fa1) ≈ 0.48, and

(c) µ1 < 0 (BEC side) for 1/(k3
Fa1) = 1 versus momentum ky/kF and kz/kF. For ℓ = 1

pairing, I show that the quasiparticle excitation spectrum changes from gapless in the BCS
side (µ0 > 0) to fully gapped in the BEC side (µ0 < 0) as a function of interaction strength.

not be satisfied, and thus, a gap opens in the excitation spectrum of quasiparticles as shown

in Fig. 2.7c.

The spectrum of quasiparticles plays an important role in the thermodynamic properties

of the evolution from BCS to BEC regime at low temperatures. For ℓ = 0, thermodynamic

quantities depend exponentially on T throughout the evolution. Thus, a smooth crossover

occurs at µ0 = 0. However, for ℓ 6= 0, thermodynamic quantitites depend exponentially on

T only in the BEC side, while they have a power law dependence on T in the BCS side.

Thus, a non-analytic evolution occurs at µℓ6=0 = 0. This can be seen best in the momentum

distribution which is discussed next.
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2.4.3 Momentum Distribution

In this section, I analyze the momentum distribution

nℓ(k) =
1

2
− ξℓ(k)

2Eℓ(k)
(2.60)

in the BCS (µℓ > 0) and BEC sides (µℓ < 0), which reflect the gapless to gapped phase

transition for nonzero angular momentum superfluids.
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Figure 2.8: Contour plots of momentum distribution n0(kx = 0, ky, kz) when (a) µ0 > 0
(BCS side) for 1/(kFa0) = −1, (b) µ0 = 0 (intermediate regime) for 1/(kFa0) ≈ 0.55, and
(c) µ0 < 0 (BEC side) for 1/(kFa0) = 1 versus momentum ky/kF and kz/kF. For ℓ = 0
pairing, I show that the evolution of momentum distribution is analytic for all interaction
strengths.

In Fig. 2.8, I show n0(kx = 0, ky, kz) for an s-wave (ℓ = 0, mℓ = 0) superfluid when (a)

µ0 > 0 (BCS side) for 1/(kFa0) = −1, (b) µ0 = 0 (intermediate regime) for 1/(kFa0) ≈ 0.55,

and (c) µ0 < 0 (BEC side) for 1/(kFa0) = 1. As the interaction increases the Fermi sea
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with locus ξ0(k) = 0 is suppressed, and pairs of atoms with opposite momenta become

more tightly bound. As a result, n0(k) broadens in the BEC side since fermions with

larger momentum participate in the formation of bound states. Notice that, the evolu-

tion is a crossover without any qualitative change. Furthermore, n0(kx, ky = 0, kz) and

n0(kx, ky, kz = 0) can be trivially obtained from n0(kx = 0, ky, kz), since n0(kx, ky, kz) is

symmetric in kx, ky and kz.
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Figure 2.9: Contour plots of momentum distribution n1(kx = 0, ky, kz) in (a) µ1 > 0
(BCS side) for 1/(k3

Fa1) = −1, (b) µ1 = 0 (intermediate regime) for 1/(k3
Fa1) ≈ 0.48,

and (c) µ1 < 0 (BEC side) for 1/(k3
Fa1) = 1 versus momentum ky/kF and kz/kF. For

ℓ = 1 pairing, I show that the momentum distribution has a major rearrangement when
µ1 changes from positive values in the BCS side to negative values in the BEC side as a
function of interaction strength.

In Fig. 2.9, I show n1(kx = 0, ky, kz) for a p-wave (ℓ = 1, mℓ = 0) superfluid when (a)

µ1 > 0 (BCS side) for 1/(k3
Fa1) = −1, (b) µ1 = 0 (intermediate regime) for 1/(k3

Fa1) ≈ 0.48,
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and (c) µ1 < 0 (BEC side) for 1/(k3
Fa1) = 1. Notice that n1(kx = 0, ky, kz) is largest in the

BCS side when kz/kF = 0, but it vanishes along kz/kF = 0 for any ky/kF in the BEC side.

As the interaction increases the Fermi sea with locus ξ1(k) = 0 is suppressed, and pairs of

atoms with opposite momenta become more tightly bound. As a result, the large momentum

distribution in the vicinity of k = 0 splits into two peaks around finite k reflecting the p-wave

symmetry of these tightly bound states. Furthermore, n1(kx, ky, kz = 0) = [1−sgn(ξ1(k))]/2

for any µ1, and n1(kx, ky = 0, kz) is trivially obtained from n1(kx = 0, ky, kz), since n1(k)

is symmetric in kx, ky. Here, sgn is the Sign function.

Thus, n1(k) for the p-wave case has a major rearrangement in k-space with increasing

interaction, in sharp contrast to s-wave. This qualitative difference between p-wave and

s-wave symmetries around k = 0 explicitly shows a direct measurable consequence of the

gapless to gapped quantum phase transition when µ1 = 0, since n1(k) depends explicitly

on E1(k). These quantum phase transitions are present in all nonzero angular momentum

states, and can be further characterized through the atomic compressibility as discussed in

the next section.

2.4.4 Atomic Compressibility

At finite temperatures, the isothermal atomic compressibility is defined by

κT
ℓ (T ) = − 1

V

(
∂V
∂P

)

T,Nℓ

(2.61)

where V is the volume and P is the pressure of the gas. This can be rewritten as

κT
ℓ (T ) = − 1

N2
ℓ

(
∂2Ωℓ

∂µ2
ℓ

)

T,V

=
1

N2
ℓ

(
∂Nℓ

∂µℓ

)

T,V

, (2.62)

where the partial derivative ∂Nℓ/∂µℓ at T ≈ 0 is given by

∂Nℓ

∂µℓ
≈ ∂N sp

ℓ

∂µℓ
=

∑

k,s

|∆ℓ(k)|2
2E3

ℓ (k)
. (2.63)

The expression above leads to κT
0 (0) = 2N(ǫF)/N2

0 in weak coupling BCS and κT
0 (0) =

2N(ǫF)ǫF/(3|µ0|N2
0 ) in strong coupling BEC limit for ℓ = 0, where N(ǫF) = MVkF/(2π2)

is the density of states per spin at the Fermi energy. Notice that κT
0 (0) decreases as a2

0 in

strong coupling since |µ0| = 1/(2Ma2
0). However, I only present the strong coupling results
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for higher angular momentum states since they exhibit an interesting dependence on aℓ

and k0. In the case of THS pseudo-spin singlet, I obtain κT
ℓ>1(0) = 4N(ǫF)ǫFφ̄ℓ/(ǫ0φℓN

2
ℓ )

for ℓ > 1, while in the case of SHS states I obtain κT
1 (0) = N(ǫF)ǫF/(

√
ǫ0|µ1|N2

ℓ ) for

ℓ = 1 and κT
ℓ>1(0) = 2N(ǫF)ǫFφ̄ℓ/(ǫ0φℓN

2
ℓ ) for ℓ > 1. Here φℓ = Γ(ℓ − 1/2)/Γ(ℓ + 1) and

φ̄ℓ = Γ(ℓ−3/2)/Γ(ℓ+1), where Γ(x) is the Gamma function. Notice that κT
1 (0) decreases as

√
a1 for ℓ = 1 since |µ1| = 1(Mk0a1) and κT

ℓ>1(0) is a constant for ℓ > 1 in strong coupling.
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Figure 2.10: Plot of isothermal atomic compressibility κr = κT
0 (0)/κ̃0 versus interac-

tion strength 1/(kFa0) for k0 ≈ 200kF. The inset shows the numerical derivative of
dκr/d[(kFa0)

−1] versus 1/(kFa0). Here, κ̃0 is the weak coupling compressibility. For ℓ = 0
pairing, I show that the isothermal atomic compressibility is analytic for all interaction
strengths, suggesting that the BCS to BEC evolution is just a crossover.

In Fig. 2.10, I show the evolution of κT
0 (0) for a s-wave (ℓ = 0, mℓ = 0) superfluid from

the BCS to the BEC regime. κT
0 (0) decreases continuously, and thus the evolution is a

crossover (smooth) as can be seen in the inset where the numerical derivative of κT
0 (0) with

respect to 1/(kFa0) is shown {dκT
0 (0)/d[(kFa0)

−1]}. This decrease is associated with the

increase of the gap of the excitation spectrum as a function of 1/(kFa0). In this approxi-

mation, the gas is incompressible [κT
0 (0) → 0] in the extreme BEC limit.

In Fig. 2.11, I show the evolution of κT
1 (0) for a p-wave (ℓ = 1, mℓ = 0) superfluid

from the BCS to the BEC regime. Notice that, there is a change in qualitative behavior

when µ1 = 0 at 1/(k3
Fa1) ≈ 0.48 as can be seen in the inset where the numerical derivative

of κT
1 (0) with respect to 1/(k3

Fa1) is shown {dκT
1 (0)/d[(k3

Fa1)
−1]}. Thus, the evolution

from BCS to BEC is not a crossover, but a quantum phase transition occurs when µ1 =
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0 [121, 123, 122, 114].
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Figure 2.11: Plot of isothermal atomic compressibility κr = κT
1 (0)/κ̃1 versus interac-

tion strength 1/(k3
Fa1) for k0 ≈ 200kF. The inset shows the numerical derivative of

dκr/d[(k3
Fa1)

−1] versus 1/(k3
Fa1). Here κ̃1 is the weak coupling compressibility. For ℓ = 1

pairing, I show that the isothermal atomic compressibility is non-analytic when µ1 changes
from positive values in the BCS side to negative values in the BEC side, suggesting that
the BCS to BEC evolution is not a crossover but a quantum phase transition.

The non-analytic behavior occurring when µℓ6=0 = 0 can be understood from higher

derivatives of κℓ with respect to µℓ

[
∂κT

ℓ (T )

∂µℓ

]

T,V

= −2Nℓ[κ
T
ℓ (T )]2 +

1

N2
ℓ

(
∂2Nℓ

∂µ2
ℓ

)

T,V

. (2.64)

For instance, the second derivative ∂2N sp
ℓ /∂µ2

ℓ = 3
∑

k,s |∆ℓ(k)|2ξℓ(k)/[2E5
ℓ (k)] tends to

zero in the weak (µℓ ≈ ǫF > 0) and strong (µℓ ≈ Eb,ℓ/2 < 0) coupling limits. On the other

hand, when µℓ = 0, ∂2N sp
ℓ /∂µ2

ℓ is finite only for ℓ = 0, and it diverges for ℓ 6= 0. This

divergence is logarithmic for ℓ = 1, and of higher order for ℓ > 1. Thus, I conclude again

that higher derivatives of N sp
ℓ are nonanalytic when µℓ6=0 = 0, and that a quantum phase

transition occurs for ℓ 6= 0.

Theoretically, the calculation of the isothermal atomic compressibility κT
ℓ (T ) is easier

than the isentropic atomic compressibility κS
ℓ (T ). However, performing measurements of

κS
ℓ (T ) may be simpler in cold Fermi gases, since the gas expansion upon release from the

trap is expected to be nearly isentropic. Fortunately, κS
ℓ (T ) is related to κT

ℓ (T ) via the

thermodynamic relation

κS
ℓ (T ) =

CV
ℓ (T )

CP
ℓ (T )

κT
ℓ (T ), (2.65)
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where κT
ℓ (T ) > κS

ℓ (T ) since specific heat capacitites CP
ℓ (T ) > CV

ℓ (T ). Furthermore, at low

temperatures (T ≈ 0) the ratio CP
ℓ (T )/CV

ℓ (T ) ≈ const, and therefore, κS
ℓ (T ≈ 0) ∝ κT

ℓ (T ≈

0). Thus, I expect qualitatively similar behavior in both the isentropic and isothermal

compressibilities at low temperatures (T ≈ 0).

The measurement of the atomic compressibility could also be performed via an analysis

of particle density fluctuations [133, 134]. As it is well know from thermodynamics [3],

κT
ℓ (T ) is connected to density fluctuations via the relation

〈n2
ℓ 〉 − 〈nℓ〉2 = T 〈nℓ〉2κT

ℓ (T ), (2.66)

where 〈nℓ〉 is the average density of atoms. From the measurement of density fluctuations

κT
ℓ (T ) can be extracted at any temperature T .

It is important to emphasize that in this quantum phase transition at µℓ6=0 = 0, the

symmetry of the order parameter does not change as is typical in the Landau classification

of phase transitions. However, a clear thermodynamic signature occurs in derivatives of the

compressibility suggesting that the phase transition is higher than second order according

to Ehrenfest’s classification. Therefore, if the symmetry of the order parameter does not

change when µℓ changes sign, what is changing? To address this question, the topology of

momentum space is discussed next.

2.4.5 Topological Quantum Phase Transitions

In what follows, I discuss the role of momentum space topology [135, 117] in the non-

analytic behavior of the thermodynamic potential, when µℓ6=0 = 0. To investigate the role

of topology, I make an immediate connection to the Lifshitz transition [136] in the context

of ordinary metals at T = 0 and high pressure. In the conventional Lifshitz transition,

the Fermi surface ǫ(k,P) = ǫF changes its topology as the pressure P is changed. For an

isotropic pressure P, the deviation ∆P = P−Pc from the critical pressure Pc is proportional

to ∆µ = µ−µc where µc is the critical chemical potential at the transition point. A typical

example of the Lifshitz transition is the disruption of a neck of the Fermi surface which

leads to a non-analytic behavior of the number of states N (µ) inside the Fermi surface. In

this case, N (µ) behaves as A(µc) + B|µ − µc|3/2 for µ < µc, and as A(µc) for µ > µc, in
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the vicinity of µc. Here, K = (3/2)B|µ − µc|1/2/n2
c is the electronic compressibility, where

nc = Nc/V is the critical density of electrons at the transition point. Notice that K is

nonanalytic, but it is not singular. The quantity that signals a phase transition in this case

is not K, but the thermopower Q, which is proportional to −∂ ln(n2K)/∂µ, thus leading

to Q ∝ −|∆µ|−1/2. In the conventional Lifshitz transition, the system lowers its energy by

∆E ∝ −|∆µ|5/2 ∝ −|∆P|5/2, and the transition is said to be of second and half order [137].

The topological transition proposed here is analogous to the Lifshitz transition in the

sense that the surface in momentum space corresponding to Eℓ6=0(k) = Eℓ6=0(k, µℓ) = 0

changes from a well defined set of k points for µℓ6=0 > 0 to a null set for µℓ6=0 < 0. Here,

Eℓ6=0(k, µℓ) plays the role of ǫ(k,P) and µℓ6=0 = µc = 0 plays the role of the critical pressure

Pc.

For the Lifshitz transition in ℓ 6= 0 superfluids, there is a non-analytic behavior in

∂2Nℓ6=0/∂µ2
ℓ , and thus in ∂κT

ℓ6=0(0)/∂µℓ. This behavior in κT
ℓ6=0(0) is due to the collapse of

all order parameter nodes at k = 0, which produce a gap in the excitation spectrum Eℓ6=0(k)

and a massive discontinuous rearrangement of the momentum distribution nℓ6=0(k) in the

ground state as µℓ6=0 → µc
ℓ6=0 = 0. A direct topological analogy with the standard Lifshitz

transition can be made by noticing the collapse of locus of zero quasiparticle excitation

energy at µℓ6=0 = µc
ℓ6=0 in the excitation spectrum of the system. Generalized topological

invariants can be invented along the lines of Ref. [117, 135], however, I do not discuss them

here. Instead, I analyze next the phase diagram at zero temperature.

2.4.6 Phase Diagram

To have a full picture of the evolution from the BCS to the BEC limit at T = 0, it is

important to analyze thermodynamic quantities at low temperatures. In particular, it is

important to determine the quantum critical region (QCR) where a qualitative change

occurs in quantities such as the specific heat, compressibility and spin susceptibility. Here,

I do not discuss in detail the QCR, but I analyze the contributions from quasiparticle

excitations to thermodynamic properties. However, the discussion can be extended to

include collective excitations [117] (see Section 2.5).
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Next, I point out a major difference between ℓ = 0 and ℓ 6= 0 states in connection with

the spectrum of the quasiparticle excitations (see Section 2.4.2) and their contribution to

low temperature thermodynamics.
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Figure 2.12: The phase diagram of s-wave superfluids as a function of 1/(kFa0). For ℓ = 0
pairing, since the quasiparticle excitations are always fully gapped, the thermodynamic
quantities have an exponential dependence on the temperature and the minimum energy of
quasiparticle excitations for all interaction strengths.

For ℓ = 0, quasiparticle excitations are gapped for all couplings, and therefore, ther-

modynamic quantities such as atomic compressibility, specific heat and spin susceptibility

have an exponential dependence on the temperature and the minimum energy of quasi-

particle excitations ∼ exp[−min{E0(k)}/T ]. Using Eqs. (2.56) and (2.57) leads to ∼

exp[−|∆0(kµ0)|/T ] in the BCS side (µ0 > 0) and ∼ exp[−
√
|∆0(0)|2 + µ2

0/T ] in the BEC

side (µ0 < 0) as shown in Fig. 2.12, where kµℓ
=

√
2Mµℓ. Notice that, there is no qualita-

tive change across µ0 = 0 at small but finite temperatures. This indicates the absence of a

QCR and confirms there is only a crossover for s-wave (ℓ = 0) superfluids at T = 0.

|

< 0µ 1 > 0

(BCS side) µ   = 01

C1 α T β1 ]T/−[expα1C

0
−1

F
3

1(k   a )

1µ

(BEC side)

gapless gapped

|1µ

Figure 2.13: The phase diagram of p-wave superfluids as a function of 1/(k3
Fa1). For

ℓ = 1 pairing, since the quasiparticle excitations are gapless in the BCS side and are only
gapped in the BEC side, the thermodynamic quantities have a power law dependence in
the BCS side while an exponential dependence in the BEC side on the temperature and the
minimum energy of quasiparticle excitations for all interaction strengths.

For ℓ 6= 0, quasiparticle excitations are gapless in the BCS side and are only gapped in
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the BEC side, and therefore, while thermodynamic quantities such as atomic compressibility,

specific heat and spin susceptibility have power law dependences on the temperature ∼ T βℓ6=0

in the BCS side, they have exponential dependences on the temperature and the minimum

energy of quasiparticle excitations ∼ exp[−min{Eℓ6=0(k)}/T ] in the BEC side. Here, βℓ6=0

is a real number which depends on particular ℓ state. For ℓ = 1, using Eqs. (2.58) and (2.59)

leads to ∼ T β1 in the BCS side (µ1 > 0) and ∼ exp(−|µ1|/T ) in the BEC side (µ1 < 0)

as shown in Fig. 2.13. Notice the change in qualitative behavior across µ1 = 0 (as well as

other ℓ 6= 0 states) at small but finite temperatures. This change occurs within the QCR

and signals the existence of a quantum phase transition (T = 0) for ℓ 6= 0 superfluids.

Having analyzed the low temperature phase diagrams, I discuss next the thermodynamic

potential in the BCS and BEC limits.

2.4.7 Thermodynamic Potential

Now, I discuss the thermodynamic potential Ωℓ at T = 0 in the asymptotic BCS and BEC

limits. In the weak coupling limit, from Eq. (2.23) I obtain

Ωsp
ℓ = −2

5
NℓǫF, (2.67)

which is identical to the full thermodynamic potential Ωℓ. This indicates that Ωfluct
ℓ is

negligible in the BCS limit.

However, in the strong coupling limit, from Eq. (2.23) I obtain

Ωsp
ℓ = −1

2
Nℓ(2µℓ − Eb,ℓ). (2.68)

Notice that, µB,ℓ = 2µℓ − Eb,ℓ > 0 is the Bosonic chemical potential and NB,ℓ = Nℓ/2

is the number of bosons. To evaluate µB,ℓ, it is necessary to find the first nonvanishing

correction for 2µℓ − Eb,ℓ. In the specific case of ℓ = 0, I obtain µB,0 = 4ǫFkFa0/(3π) =

4πaB,0/MB,0 for the chemical potential and Ωsp
ℓ = −πN2

0 a0/(MV) = −NB,0µB,0 for the

thermodynamic potential of the pairs. Here aB,0 = 2a0 and MB,0 = 2M is the scattering

length and mass of the corresponding bosons. A better estimate for aB,0 ≈ 0.6a0 can be

found in the literature [138, 63, 139, 140], by taking into account higher order processes.

The main reason for this difference is that my theory does not include possible intermediate
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(virtual) scattering processes which renormalize aB,0. This is also the case when I analyze

the collective modes in Section 2.5.3 and the TDGL equation in Section 2.7.2.

Using µℓ = (µB,ℓ + Eb,ℓ)/2 and the thermodynamic relation µℓ = (∂Eℓ/∂Nℓ)V , where

Eℓ is the ground state energy, I obtain

Ωℓ = −1

2
NB,ℓµB,ℓ. (2.69)

Notice that this expression is identical to the thermodynamic potential of bosons ΩB,ℓ =

EB,ℓ − NB,ℓµB,ℓ, where EB,ℓ is the ground state energy. Therefore, the fermionic thermo-

dynamic potential in the strong coupling limit should lead to the thermodynamic potential

of real bosons (Ωℓ ≡ ΩB,ℓ). Since Ωℓ = Ωsp
ℓ + Ωfluct

ℓ , I conclude from this thermodynamic

argument that

Ωfluct
ℓ =

1

2
NB,ℓµB,ℓ (2.70)

in the strong coupling limit. Therefore, Eℓ−NℓEb,ℓ/2 ≡ EB,ℓ, or Eℓ/Nℓ−µℓ ≡ (EB,ℓ/NB,ℓ−

µB,ℓ)/2 which is consistent with quantum Monte Carlo calculations [142].

The fluctuation contribution to Ωfluct
ℓ comes from the zero point energy of the collective

excitations, which is discussed next.

2.5 Gaussian Fluctuations

The pole structure of Fℓ(q, ivj) defined in Eqs. (2.21) and (2.22) determines the two-particle

excitation spectrum of the superconducting state with ivj → w + i0+, and has to be taken

into account to derive Ωfluct
ℓ . The matrix elements of Fℓ(q, ivj) are Fℓ,mℓ,m

′
ℓ
(q, ivj) for a

given ℓ. I focus here only on the zero temperature limit and analyse the collective phase

modes. In this limit, I separate the diagonal matrix elements of F−1
ℓ,mℓ,m

′
ℓ

(q) into even and

odd contributions with respect to ivj

(F−1
ℓ,mℓ,m

′
ℓ

)E
11 =

∑

k

(ξ+ξ− + E+E−)(E+ + E−)

2E+E−[(ivj)2 − (E+ + E−)2]
Γ2

ℓ(k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂)

−
δmℓ,m

′
ℓ
V

4πλℓ
, (2.71)

(F−1
ℓ,mℓ,m

′
ℓ

)O
11 = −

∑

k

(ξ+E− + ξ−E+)(ivj)

2E+E−[(ivj)2 − (E+ + E−)2]
Γ2

ℓ(k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂). (2.72)
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The off-diagonal term is even in ivj , and it reduces to

(F−1
ℓ,mℓ,m

′
ℓ

)12 = −
∑

k

∆+∆−(E+ + E−)

2E+E−[(ivj)2 − (E+ + E−)2]
Γ2

ℓ(k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂). (2.73)

Here the labels ± denote that the corresponding variables are functions of k ± q/2.

In order to obtain the collective mode spectrum, I express Λℓ,mℓ
(q) = τℓ,mℓ

(q)eiϑℓ,mℓ
(q) =

[ρℓ,mℓ
(q) + iθℓ,mℓ

(q)]/
√

2 where τℓ,mℓ
(q), ϑℓ,mℓ

(q), ρℓ,mℓ
(q) and θℓ,mℓ

(q) are all real. Notice

that the new fields ρℓ,mℓ
(q) = τℓ,mℓ

(q) cos[ϑℓ,mℓ
(q)], and θℓ,mℓ

(q) = τℓ,mℓ
(q) sin[ϑℓ,mℓ

(q)]

can be regarded essentially as the amplitude and phase fields respectively, when ϑℓ,mℓ
(q) is

small. This change of basis can be described by the following unitary transformation

Λℓ,mℓ
(q) =

1√
2




1 i

1 −i







ρℓ,mℓ
(q)

θℓ,mℓ
(q)


 . (2.74)

From now on, I take ∆ℓ,mℓ
as real without loss of generality. The diagonal elements of the

fluctuation matrix in the rotated basis are (F̃−1
ℓ,mℓ,m

′
ℓ

)11 = (F−1
ℓ,mℓ,m

′
ℓ

)E
11 + (F−1

ℓ,mℓ,m
′
ℓ

)12, and

(F̃−1
ℓ,mℓ,m

′
ℓ

)22 = (F−1
ℓ,mℓ,m

′
ℓ

)E
11 − (F−1

ℓ,mℓ,m
′
ℓ

)12; and the off-diagonal elements are (F̃−1
ℓ,mℓ,m

′
ℓ

)12 =

(F̃−1
ℓ,mℓ,m

′
ℓ

)∗21 = i(F−1
ℓ,mℓ,m

′
ℓ

)O
11 with the q dependence being implicit.

2.5.1 Collective (Goldstone) Modes

The collective modes are determined by the poles of the propagator matrix Fℓ(q) for the

pair fluctuation fields Λℓ,mℓ
(q), which describe the Gaussian deviations about the saddle

point order parameter. The poles of Fℓ(q) are determined by the condition

detF−1
ℓ (q) = 0, (2.75)

which leads to 2(2ℓ + 1) collective (amplitude and phase) modes, when the usual analytic

continuation ivj → w + i0+ is performed. Among them, there are 2ℓ + 1 amplitude modes

which I do not discuss here.

The easiest way to get the phase collective modes is to integrate out the amplitude fields

to obtain a phase-only effective action. Notice that, for ℓ 6= 0 channels at any temperature,

and for ℓ = 0 channel at finite temperature, a well defined low frequency expansion is not

possible for µℓ > 0 due to Landau damping which causes the collective modes to decay
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into the two quasiparticle continuum. A well defined expansion [collective mode dispersion

w] must satisfy the following condition w ≪ min{E+ + E−}. Thus, a zero temperature

expansion is always possible when Landau damping is subdominant (underdamped regime).

To obtain the long wavelength dispersions for the collective modes at T = 0, I expand the

matrix elements of F̃−1
ℓ,mℓ,m

′
ℓ

to second order in |q| and w to get

(F̃−1
ℓ,mℓ,m

′
ℓ

)11 = Aℓ,mℓ,m
′
ℓ
+

∑

i,j

Ci,j
ℓ,mℓ,m

′
ℓ

qiqj − Dℓ,mℓ,m
′
ℓ
w2, (2.76)

(F̃−1
ℓ,mℓ,m

′
ℓ

)22 = Pℓ,mℓ,m
′
ℓ
+

∑

i,j

Qi,j
ℓ,mℓ,m

′
ℓ

qiqj − Rℓ,mℓ,m
′
ℓ
w2, (2.77)

(F̃−1
ℓ,mℓ,m

′
ℓ

)12 = iBℓ,mℓ,m
′
ℓ
w. (2.78)

The expressions for the expansion coefficients are given in App. A.1.

For ℓ = 0, the coefficients Ci,j
0,0,0 = C0,0,0δi,j and Qi,j

0,0,0 = Q0,0,0δi,j are diagonal and

isotropic in (i, j), and P0,0,0 = 0 vanishes. Here, δi,j is the Kronecker delta. Thus, the

collective mode is the isotropic Goldstone mode with dispersion

W0,0(q) = C0,0|q|, (2.79)

C0,0 =

(
A0,0,0Q0,0,0

A0,0,0R0,0,0 + B2
0,0,0

) 1
2

, (2.80)

where C0,0 is the speed of sound. Notice that the quasiparticle excitations are always fully

gapped from weak to strong coupling, and thus, the Goldstone mode is not damped at

T = 0 for all couplings.

For ℓ 6= 0, the dispersion for collective modes is not easy to extract in general, and

therefore, I consider the case when only one of the spherical harmonics Yℓ,mℓ
(k̂) is dominant

and characterizes the order parameter. In this case, Pℓ,mℓ,mℓ
= 0 due to the order parameter

equation, and the collective mode is the anisotropic Goldstone mode with dispersion

Wℓ6=0,mℓ
(q) =


∑

i,j

(Ci,j
ℓ,mℓ

)2qiqj




1
2

, (2.81)

Ci,j
ℓ6=0,mℓ

=

(
Aℓ,mℓ,mℓ

Qi,j
ℓ,mℓ,mℓ

Aℓ,mℓ,mℓ
Rℓ,mℓ,mℓ

+ B2
ℓ,mℓ,mℓ

) 1
2

. (2.82)

Notice that the speed of sound has a tensor structure and is anisotropic. Furthermore,

the quasiparticle excitations are gapless when µℓ6=0 > 0, and thus, the Goldstone mode
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is damped even at T = 0. However, Landau damping is subdominant and the real part

of the pole dominates for small momenta. In addition, quasiparticle excitations are fully

gapped when µℓ6=0 < 0, and thus, the Goldstone mode is not damped. Therefore, the pole

contribution to Ωfluct
ℓ6=0 comes from the Goldstone mode for all couplings. In addition, there

is also a branch cut representing the continuum of two particle scattering states, but the

contribution from the Goldstone mode dominates at sufficiently low temperatures.

It is also illustrative to analyze the eigenvectors of F̃−1
ℓ (q) in the amplitude-phase rep-

resentation corresponding to small Wℓ,mℓ
(q) mode




ρℓ,mℓ
(q)

θℓ,mℓ
(q)


 =




−i
Bℓ,mℓ,mℓ

Aℓ,mℓ,mℓ

Wℓ,mℓ
(q)

1


 . (2.83)

Notice that, when Bℓ,mℓ,mℓ
→ 0 the amplitude and phase modes are not mixed.

Next, I discuss the dispersion of collective modes in the weak and strong coupling limits,

where the expansion coefficients are analytically tractable for a fixed (ℓ, mℓ) state.

2.5.2 Weak Coupling (BCS) Regime

The s-wave (ℓ = 0, mℓ = 0) weak coupling limit is characterized by the criteria µ0 > 0 and

µ0 ≈ ǫF ≫ |∆0,0|. The expansion of the matrix elements to order |q|2 and w2 is performed

under the condition [w, |q|2/(2M)] ≪ |∆0,0|. Analytic calculations are particularly simple

in this case since all integrals for the coefficients needed to calculate the collective mode

dispersions are peaked near the Fermi surface. I first introduce a shell about the Fermi

energy |ξ0(k)| ≤ wD such that ǫF ≫ wD ≫ ∆0(kF), inside of which one may ignore the 3D

density of states factor
√

ǫ/ǫF and outside of which one may ignore ∆0(k). In addition,

I make use of the nearly perfect particle-hole symmetry, which forces integrals to vanish

when their integrands are odd under the transformation ξ0(k) → −ξ0(k). For instance, the

coefficient that couple phase and amplitude modes vanish (B0,0,0 = 0) in this limit. Thus,

there is no mixing between phase and amplitude fields in weak coupling, as can be seen by

inspection of the fluctuation matrix F̃0(q).

For ℓ = 0, the zeroth order coefficient is

A0,0,0 =
N(ǫF)

4π
, (2.84)
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and the second order coefficients are

Ci,j
0,0,0 =

Qi,j
0,0,0

3
=

N(ǫF)v2
F

36|∆0,0|2
δi,j , (2.85)

D0,0,0 =
R0,0,0

3
=

N(ǫF)

12|∆0,0|2
. (2.86)

Here, vF = kF/M is the Fermi velocity and N(ǫF) = MVkF/(2π2) is the density of states

per spin at the Fermi energy.

In weak coupling, since B2
ℓ,mℓ,mℓ

≪ Aℓ,mℓ,mℓ
Rℓ,mℓ,mℓ

, the sound velocity is simplified to

Ci,j
ℓ,mℓ

≈ [Qi,j
ℓ,mℓ,mℓ

/Aℓ,mℓ,mℓ
] for any ℓ. Using the coefficients above in Eq. (2.80), for ℓ = 0,

I obtain

C0,0 =
vF√

3
(2.87)

which is the well known Anderson-Bogoliubov relation. For ℓ 6= 0, the expansion coefficients

require more detailed and lengthy analysis, and therefore, I do not discuss here. On the

other hand, the expansion coefficients can be calculated for any ℓ in the strong coupling

BEC regime, which is discussed next.

2.5.3 Strong Coupling (BEC) Regime

The strong coupling limit is characterized by the criteria µℓ < 0, |µℓ| ≪ ǫ0 = k2
0/(2M) and

|ξℓ(k)| ≫ |∆ℓ(k)|. The expansion of the matrix elements to order |q|2 and w2 is performed

under the condition [w, |q|2/(2M)] ≪ |µℓ|. The situation encountered here is very different

from the weak coupling limit, because one can no longer invoke particle-hole symmetry

to simplify the calculation of many of the coefficients appearing in the fluctuation matrix

F̃ℓ(q). In particular, the coefficient Bℓ,mℓ,m
′
ℓ
6= 0 indicates that the amplitude and phase

fields are mixed. Furthermore, Pℓ,mℓ,m
′
ℓ

= 0 , since this coefficient reduces to the order

parameter equation in this limit.

For ℓ = 0, the zeroth order coefficient is

A0,0,0 =
κ|∆0,0|2
8π|µ0|

, (2.88)

the first order coefficient is

B0,0,0 = κ, (2.89)
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and the second order coefficients are

Ci,j
0,0,0 = Qi,j

0,0,0 =
κ

4M
δi,j , (2.90)

D0,0,0 = R0,0,0 =
κ

8|µ0|
, (2.91)

where κ = N(ǫF)/(32
√

|µ0|ǫF ).

Using the expressions above in Eq. (2.80), I obtain the sound velocity

C0,0 =

( |∆0,0|
32M |µ0|π

) 1
2

= vF

√
kFa0

3π
. (2.92)

Notice that the sound velocity is very small and its smallness is controlled by the scattering

length a0. Furthermore, in the theory of weakly interacting dilute Bose gas, the sound

velocity is given by CB,0 = 4πaB,0nB,0/M
2
B,0. Making the identification that the density of

pairs is nB,0 = n0/2, the mass of the pairs is MB,0 = 2M and that the Bose scattering

length is aB,0 = 2a0, it follows that Eq. (2.92) is identical to the Bogoliubov result CB,0.

Therefore, my result for the fermionic system represents in fact a weakly interacting Bose

gas in the strong coupling limit. A better estimate for aB,0 ≈ 0.6a0 can be found in the

literature [138, 63, 139, 140], by taking into account higher order processes. This is also the

case when I construct the TDGL equation in Section 2.7.2.

For ℓ 6= 0, the zeroth order coefficient is

Aℓ6=0,mℓ,mℓ
=

15φ̂ℓκ̃

2ǫ0
√

π
|∆ℓ,mℓ

|2γℓ,{mℓ}, (2.93)

the first order coefficient is

Bℓ6=0,mℓ,m
′
ℓ
=

φℓκ̃√
π

δmℓ,m
′
ℓ
, (2.94)

and the second order coefficients are

Ci,i
ℓ6=0,mℓ,m

′
ℓ

= Qi,i
ℓ6=0,mℓ,m

′
ℓ

=
φℓκ̃

4M
√

π
δmℓ,m

′
ℓ
, (2.95)

D1,mℓ,m
′
ℓ

= R1,mℓ,m
′
ℓ
=

3κ̃

8
√

ǫ0|µ1|
δmℓ,m

′
ℓ
, (2.96)

Dℓ>1,mℓ,m
′
ℓ

= Rℓ>1,mℓ,m
′
ℓ
=

3φ̄ℓκ̃

4
√

πǫ0
δmℓ,m

′
ℓ
, (2.97)
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where κ̃ = N(ǫF)/(32
√

ǫ0ǫF ), φℓ = Γ(ℓ − 1/2)/Γ(ℓ + 1), φ̄ℓ = Γ(ℓ − 3/2)/Γ(ℓ + 1) and

φ̂ℓ = Γ(2ℓ − 3/2)/Γ(2ℓ + 2). Here Γ(x) is the Gamma function, and γℓ,mℓ
is an angular

averaged quantity defined in App. A.2.

In strong coupling, since B2
ℓ,mℓ,mℓ

≫ Aℓ,mℓ,mℓ
Rℓ,mℓ,mℓ

, the sound velocity is simplified to

Ci,j
ℓ,mℓ

≈ [Aℓ,mℓ,mℓ
Qi,j

ℓ,mℓ,mℓ
/B2

ℓ,mℓ,mℓ
]1/2 for any ℓ. Using the expressions above in Eq. (2.82),

for ℓ 6= 0, I obtain

Ci,i
ℓ6=0,mℓ

=

(
15γℓ,{mℓ}|∆ℓ,mℓ

|2φ̂ℓ

8Mφℓǫ0

) 1
2

(2.98)

= vF

(
20γℓ,{mℓ}

√
πφ̂ℓ

φ2
ℓ

kF

k0

) 1
2

. (2.99)

Therefore, the sound velocity is also very small and its smallness is controlled by the inter-

action range k0 through the diluteness condition i.e. (k0/kF )3 ≫ 1, for ℓ 6= 0. Notice that,

the sound velocity is independent of the scattering parameter for ℓ 6= 0.

Now, I turn my attention to a numerical analysis of the phase collective modes during

the evolution from weak coupling BCS to strong coupling BEC limits.

2.5.4 Evolution from BCS to BEC Regime

I focus only on s-wave (ℓ = 0, mℓ = 0) and p-wave (ℓ = 1, mℓ = 0) cases, since they may be

the most relevant to current experiments involving ultracold atoms.

 0.2
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1/(kFa0)
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Figure 2.14: Plot of Goldstone (sound) velocity (C0,0)r = C0,0/vF versus interaction
strength 1/(kFa0) for k0 ≈ 200kF. For ℓ = 0 pairing, I show that the evolution of sound
velocity is analytic for all interaction strengths.
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In Fig. 2.14, I show the evolution of C0,0 as a function of 1/(kFa0) for s-wave case.

The weak coupling Anderson-Bogoliubov velocity C0,0 = vF/
√

3 evolves continuously to the

strong coupling Bogoliubov velocity C0,0 = vF

√
kFa0/(3π). Notice that the sound velocity

is a monotonically decreasing function of 1/(kFa0), and the evolution across µ0 = 0 is a

crossover.
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Figure 2.15: Plots of Goldstone (sound) velocity (Cx,x
1,0 )r = Cx,x

1,0 /vF (solid squares) and

(Cz,z
1,0)r = Cz,z

1,0/vF (hollow squares) versus interaction strength 1/(k3
Fa1) for k0 ≈ 200kF. The

inset zooms into the unitarity region. For ℓ = 1 pairing, I show that the sound velocity
is anisotropic (isotropic) in the BCS (BEC) side, and the evolution of sound velocity is
non-analytic when µ1 changes from positive values in the BCS side to negative values in
the BEC side as a function of interaction strength.

In Fig. 2.15, I show the evolution of Ci,j
1,0 as a function of 1/(k3

Fa1) for p-wave case.

Notice that Ci,i
1,0 is strongly anisotropic in weak coupling, since Cx,x

1,0 = Cy,y
1,0 ≈ 0.44vF and

Cz,z
1,0 =

√
3Cx,x

1,0 ≈ 0.79vF, thus reflecting the order parameter symmetry. In addition, Ci,i
1,0

is isotropic in strong coupling, since Ci,i
1,0 = vF

√
3kF/(2πk0) ≈ 0.049vF for k0 ≈ 200kF,

thus revealing the secondary role of the order parameter symmetry in this limit. The

anisotropy is very small in the intermediate regime beyond µ1 < 0. Notice also that,

Cz,z
1,0 is a monotonically decreasing function of 1/(k3

Fa1) in BCS side until µ1 = 0, where

it saturates. However, Cx,x
1,0 = Cy,y

1,0 is a nonmonotonic function of 1/(kFa1)
3, and it also

saturates beyond µ1 = 0. Therefore, the behavior of Ci,i
1,0 reflects the disapperance of nodes

of the quasiparticle energy E1(k) as µ1 changes sign.
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These collective excitations may contribute significantly to the thermodynamic poten-

tial, which is discussed next.

2.5.5 Corrections to Ωsp
ℓ due to Collective Modes

In this section, I analyze corrections to the saddle point thermodynamic potential Ωsp
ℓ due

to low energy collective excitations. The evaluation of bosonic Matsubara frequency sums

in Eq. (2.24) leads to Ωfluct
ℓ → Ωcoll

ℓ , where

Ωcoll
ℓ =

∑

q

′{
Wℓ(q) +

2

β
ln [1 − exp(−βWℓ(q))]

}
(2.100)

is the collective mode contribution to the thermodynamic potential. Here, Wℓ(q) is the

dispersion of the collective mode defined in Eqs. (2.80) and (2.82) for the ℓ = 0 and ℓ 6= 0

cases, respectively. The prime on the summation indicates that a momentum cutoff is

required since a long wavelength and low frequency approximation is used to derive the

collective mode dispersion. Notice that the first term in Eq. (2.100) contributes to the

ground state energy of the interacting Fermi system. This contribution is necessary to

recover the ground state energy of the effective Bose system in the strong coupling limit as

discussed in Sec 2.4.7.

The corrections to the saddle point number equation N coll
ℓ = −∂Ωcoll

ℓ /∂µℓ are due to

the zero point motion (N zp
ℓ ) and thermal excitation (N te

ℓ ) of the collective modes

N zp
ℓ = − ∂

∂µℓ

∑

q

′
Wℓ(q), (2.101)

N te
ℓ = −

∑

q

′∂Wℓ(q)

∂µℓ
nB[Wℓ(q)]. (2.102)

Here nB(x) = 1/[exp(βx) − 1] is the Bose distribution. For ℓ = 0, the last equation can be

solved to obtain N te
0 = −6(∂C0,0/∂µ0)ζ(4)T 4/(π2C2

0,0), which vanishes at T = 0. Here ζ(x) is

the Zeta function. Similarly, N te
ℓ6=0 has a power law dependence on T , and therefore, vanishes

at T = 0 since the collective modes are not excited. N zp
ℓ gives small contributions to the

number equation in weak and strong couplings, but may lead to significant contributions in

the intermediate regime for all ℓ. The impact of N zp
ℓ on the order parameter and chemical

potential in the intermediate regime may require a careful analysis of the full fluctuation

contributions [132].

64



Until now, I discussed the evolution of superfluidity from the BCS to the BEC regime

at zero temperature. In the rest of this chapter, I analyze the evolution of superfluidity

from the BCS to the BEC limit at finite temperatures.

2.6 BCS to BEC Evolution near T = Tc,ℓ

In this section, I concentrate on physical properties near critical temperatures T = Tc,ℓ.

To calculate Tc,ℓ, the self-consistency (order parameter and number) equations have to be

solved simultaneously. At T = Tc,ℓ, then ∆ℓ,mℓ
= 0, and the saddle point order parameter

equation Eq. (2.38) reduces to

MV
4πk2ℓ

0 aℓ
=

∑

k

Γ2
ℓ(k)

[
1

2ǫ(k)
− tanh[ξℓ(k)/(2Tc,ℓ)]

2ξℓ(k)

]
. (2.103)

This expression is independent of mℓ since the interaction amplitude λℓ depends only on ℓ.

Similarly, the saddle point number equation reduces to

N sp
ℓ =

∑

k,s

nF[ξℓ(k)], (2.104)

where nF(x) = 1/[exp(βx) + 1] is the Fermi distribution. Notice that the summation over

spins (s) is not present in the SHS case. It is important to emphasize that the inclusion

of Nfluct
ℓ around Tℓ = Tc,ℓ is essential to produce the qualitatively correct physics with

increasing coupling, as discussed next.

2.6.1 Gaussian Fluctuations

To evaluate the gaussian contribution to the thermodynamic potential, I sum over the

fermionic Matsubara frequencies in Eq. (2.24), and obtain the action

Sfluct
ℓ = β

∑

q,mℓ,m
′
ℓ

Λ†
ℓ,mℓ

(q)L−1
ℓ,mℓ,m

′
ℓ

(q)Λℓ,m′
ℓ
(q), (2.105)

where L−1
ℓ,mℓ,m

′
ℓ

(q) = (F−1
ℓ,mℓ,m

′
ℓ

)11 is the element of the fluctuation propagator given by

L−1
ℓ,mℓ,m

′
ℓ

(q) =
δmℓ,m

′
ℓ

4πV−1λℓ
−

∑

k

1 − nF(ξ+) − nF(ξ−)

ξ+ + ξ− − ivj
Γ2

ℓ (k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂). (2.106)

This is the generalization of the ℓ = 0 case to ℓ 6= 0, where ξ± = ξℓ(k ± q/2). From Sfluct
ℓ ,

I obtain the thermodynamic potential Ωgauss
ℓ = Ωsp

ℓ + Ωfluct
ℓ , where Ωsp

ℓ is the saddle point
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contribution with ∆ℓ(k) = 0, and

Ωfluct
ℓ = − 1

β

∑

q

ln det[Lℓ(q)/β] (2.107)

is the fluctuation contribution.

I evaluate the bosonic Matsubara frequency (ivj) sums by using contour integration,

and determine the branch cut and pole terms. I use the phase shift

ϕfluct
ℓ (q, w) = Arg[detLℓ(q, ivj → w + i0+)] (2.108)

to replace detLℓ(q) in Eq. (2.107), leading to

Ωfluct
ℓ = −

∑

q

∫ ∞

−∞

dw

π
nB(w)ϕ̃fluct

ℓ (q, w), (2.109)

where ϕ̃fluct
ℓ (q, w) = ϕfluct

ℓ (q, w) − ϕfluct
ℓ (q, 0) and nB(x) = 1/ [exp(βx) − 1] is the Bose

distribution. Notice that, this equation is the generalization of the s-wave (ℓ = 0) case [41,

44] for ℓ 6= 0. Furthermore, the phase shift can be written as ϕ̃fluct
ℓ (q, w) = ϕ̃sc

ℓ (q, w) +

ϕ̃bs
ℓ (q, w), where

ϕ̃sc
ℓ (q, w) = ϕ̃ℓ(q, w)Θ(w − w∗

q), (2.110)

is the branch cut (scattering) and ϕ̃bs
ℓ (q, w) is the pole (bound state) contribution. Here,

Θ(x) is the Heaviside function, w∗
q = wq−2µℓ with wq = |q|2/(4M) is the branch frequency

and µℓ is the fermionic chemical potential.

The branch cut (scattering) contribution to the thermodynamic potential becomes

Ωsc
ℓ = −

∑

q

∫ ∞

−∞

dw

π
nB(w)ϕ̃sc

ℓ (q, w). (2.111)

For each q, the integrand is nonvanishing only for w > w∗
q since ϕ̃sc

ℓ (q, w) = 0 otherwise.

Thus, the branch cut (scattering) contribution to the number equation N sc
ℓ = −∂Ωsc

ℓ /∂µℓ

is given by

N sc
ℓ =

∑

q

∫ ∞

0

dw

π

[
∂nB(w̃)

∂µℓ
− nB(w̃)

∂

∂µℓ

]
ϕ̃ℓ(q, w̃), (2.112)

where w̃ = w + w∗
q.
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When aℓ < 0, there are no bound states above Tc,ℓ and N sc
ℓ represents the correction

due to scattering states. However, when aℓ > 0, there are bound states represented by poles

at w < w∗
q. The pole (bound state) contribution to the number equation is

Nbs
ℓ = −

∑

q

nB[Wℓ(q)]ηℓ[q,Wℓ(q)], (2.113)

where Wℓ(q) corresponds to the poles of L−1
ℓ (q) and

ηℓ[q,Wℓ(q)] = Res
{∂ det L−1

ℓ [q,Wℓ(q)]/∂µℓ

det L−1
ℓ [q,Wℓ(q)]

}
(2.114)

is the residue. Heavy numerical calculations are necessary to find the poles as a function of q

for all couplings. However, in sufficiently strong coupling, when nF(ξ±) ≪ 1 in Eq. (2.106),

the pole (bound state) contribution can be evaluated analytically by eliminating λℓ in favor

of the two-body bound state energy Ẽb,ℓ in vacuum. Notice that, Ẽb,ℓ is related to the

Eb,ℓ obtained from the T-matrix approach, where multiple scattering events are included.

However, they become identical in the dilute limit.

A relation between λℓ and Ẽb,ℓ can be obtained by solving the Schroedinger equation

for two fermions interacting via a pairing potential V (r). After Fourier transforming from

real to momentum space, the Schroedinger equation for the pair wave function ψ(k) is

2ǫ(k)ψ(k) +
1

V
∑

k′

V (k,k′)ψ(k′) = Ẽbψ(k). (2.115)

Using the Fourier expansion of V (k,k′) given in Eq. (2.113) and choosing only the ℓth

angular momentum channel, I obtain

1

λℓ
=

1

V
∑

k

Γ2
ℓ(k)

2ǫ(k) − Ẽb,ℓ

. (2.116)

This expression relates Ẽb,ℓ < 0 to λℓ in order to express Eq. (2.119) in terms of binding

energy Ẽb,ℓ < 0. Notice that, this equation is similar to the order parameter equation in

the strong coupling limit (µℓ < 0 and |µℓ| ≫ Tc,ℓ), where

1

λℓ
=

1

V
∑

k

Γ2
ℓ(k)

2ǫ(k) − 2µℓ
. (2.117)

Therefore, µℓ → Ẽb,ℓ/2 as the coupling increases.
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Substitution of Eq. (2.116) in Eq. (2.114) yields the pole contribution which is given by

Wℓ(q) = wq + Ẽb,ℓ −2µℓ, and the residue at this pole is ηℓ[q,Wℓ(q)] = −2
∑

mℓ
. Therefore,

the bound state contribution to the phase shift in the sufficiently strong coupling limit is

given by

ϕ̃bs
ℓ (q, w) = πΘ(w − wq + µB,ℓ), (2.118)

which leads to the bound state number equation

Nbs
ℓ = 2

∑

q,mℓ

nB[wq − µB,ℓ], (2.119)

where µB,ℓ = 2µℓ − Ẽb,ℓ ≤ 0 is the chemical potential of the bosonic molecules. Notice that,

Eq. (2.119) is only valid for interaction strengths where µB,ℓ ≤ 0. Thus, this expression can

not be used over a region of coupling strengths where µB,ℓ is positive.

2.6.2 Critical Temperature and Chemical Potential

To obtain the evolution from BCS to BEC, the total number equation [Eqs. (2.104), (2.112)

and (2.119)]

Nℓ ≈ Ngauss
ℓ = N sp

ℓ + N sc
ℓ + Nbs

ℓ (2.120)

and order parameter [Eq. (2.103)] equations have to be solved self-consistently for Tc,ℓ and

µℓ. First, I analyze the number of unbound, scattering and bound fermions as a function

of the scattering parameter for the s-wave (ℓ = 0) and p-wave (ℓ = 1) cases.

In Fig. 2.16, I plot different contributions to the number equation as a function of

1/(kFa0) for the s-wave (ℓ = 0, mℓ = 0) case. Notice that, N sp
0 (Nbs

0 ) dominates in weak

(strong) coupling, while N sc
0 is the highest for intermediate couplings. Thus, all fermions are

unbound in the strictly BCS limit (not shown in the figure), while all fermions are bound

in the strictly BEC limit.

In Fig. 2.17, I present plots of different contributions to the number equation as a

function of 1/(k3
Fa1) for the p-wave (ℓ = 1, mℓ = 0) case. Notice also that, N sp

1 (Nbs
1 )

dominates in weak (strong) coupling, while N sc
1 is the highest for intermediate couplings.

Thus, again all fermions are unbound in the strictly BCS limit, while all fermions are bound

in the strictly BEC limit.
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Figure 2.16: Fractions of unbound F sp
0 = N sp

0 /N0, scattering F sc
0 = N sc

0 /N0, bound
F bs

0 = Nbs
0 /N0 fermions at T = Tc,0 versus 1/(kFa0) for k0 ≈ 200kF. For ℓ = 0 pairing, I

show that all fermions are unbound (bound) in the BCS (BEC) limit, while the scattering
contribution dominates in the intermediate region.

Therefore, the total fluctuation contribution N sc
ℓ +Nbs

ℓ is negligible in weak coupling and

N sp
ℓ is sufficient. However, the inclusion of fluctuations is necessary for strong coupling to

recover the physics of BEC. However, in the vicinity of the unitary limit [1/(k2ℓ+1
F aℓ) → 0],

my results are not quantitatively strictly applicable and should be regarded as qualitative

only.

Next, I discuss the chemical potential and critical temperature. In weak coupling, I

introduce a shell about the Fermi energy |ξℓ(k)| ≤ wD, such that µℓ ≈ ǫF ≫ wD ≫

Tc,ℓ. Then, in Eq. (2.103), I set tanh[|ξℓ(k)|/(2Tc,ℓ)] = 1 outside the shell and treat the

integration within the shell as usual in the BCS theory. In strong coupling, I use that

min[ξℓ(k)] = |µℓ| ≫ Tc,ℓ and set tanh[ξℓ(k)/(2Tc,ℓ)] = 1. Therefore, in strictly weak and

strong coupling, the self-consistency equations are decoupled, and play reversed roles. In

weak (strong) coupling the order parameter equation determines Tc,ℓ (µℓ) and the number

equation determines µℓ (Tc,ℓ).

In weak coupling, the number equation Nℓ ≈ N sp
ℓ leads to

µℓ ≈ ǫF (2.121)
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Figure 2.17: Fractions of unbound F sp
1 = N sp

1 /N1, scattering F sc
1 = N sc

1 /N1, bound
F bs

1 = Nbs
1 /N1 fermions at T = Tc,1 versus 1/(k3

Fa1) for k0 ≈ 200kF. For ℓ = 1 pairing, I
show that all fermions are unbound (bound) in the BCS (BEC) limit, while the scattering
contribution dominates in the intermediate region.

for any ℓ. In strong coupling, the order parameter equation leads to

µ0 = − 1

2Ma2
0

, (2.122)

µℓ6=0 = −
√

π

Mk2ℓ−1
0 aℓφℓ

, (2.123)

where φℓ = Γ(ℓ− 1/2)/Γ(ℓ + 1) and Γ(x) is the Gamma function. This calculation requires

a0k0 > 1 for ℓ = 0, and k2ℓ+1
0 aℓφℓ > (ℓ + 1)

√
π for ℓ 6= 0 for the order parameter equation

to have a solution with µℓ < 0. Furthermore, I assume |µℓ| ≪ ǫ0 = k2
0/(2M) to obtain

Eqs. (2.122) and (2.123). Notice that, µℓ = Eb,ℓ/2 in this limit.

On the other hand, the solution of the order parameter equation in weak coupling is

Tc,0 =
8

π
ǫF exp

[
γ − 2 +

π

2

kF

k0
− π

2kF|a0|

]
, (2.124)

Tc,ℓ ∼ ǫF exp

[
tℓ

(
k0

kF

)2ℓ−1

− π

2k2ℓ+1
F |aℓ|

]
, (2.125)

where γ ≈ 0.577 is the Euler’s constant, t1 = π/4 and tℓ>1 = π2ℓ+1(2ℓ − 3)!!/ℓ!. These

expressions are valid only when the exponential terms are small. Therefore, they suggest

that the range of BCS to unitarity region in terms of 1/(2k2ℓ+1
F |aℓ|) is of order 1 for ℓ = 0

and of order (k0/kF)2ℓ−1 for ℓ 6= 0. In strong coupling, the number equation Nℓ ≈ Nbs
ℓ
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leads to

TTHS
c,ℓ =

2π

MB,ℓ

[
nℓ∑

mℓ
ζ(3/2)

] 2
3

=
0.218

(
∑

mℓ
)

2
3

ǫF, (2.126)

where MB,ℓ = 2M is the mass of the bosonic molecules. Here, nℓ = k3
F/(3π2) is the density

of fermions. For THS Fermi gases, I conclude that the BEC critical temperature of s-wave

superfluids is the highest, and this temperature is reduced for higher angular momentum

states. However, for SHS Fermi gases

T SHS
c,ℓ6=0 =

2π

MB,ℓ

[
nℓ∑

mℓ
ζ(3/2)

] 2
3

=
0.137ǫF

(
∑

mℓ
)

2
3

. (2.127)

where nℓ = k3
F/(6π2) and ζ(x) is the Zeta function. Here, the summation over mℓ is over

degenerate spherical harmonics involved in the order parameter of the system, and can be at

most
∑

mℓ
= 2ℓ+1. For SHS states, I conclude that the BEC critical temperature of p-wave

superfluids is the highest, and this temperature is reduced for higher angular momentum

states.

For completeness, it is also possible to relate aℓ and Tc,ℓ when the chemical potential

vanishes. When µℓ = 0, the solution of the number equation Eq. (2.120) is highly non-trivial

and it is difficult to find the value of the scattering parameter a∗ℓ at µℓ = 0. However, the

critical temperature in terms of a∗ℓ can be found analytically from Eq. (2.103) as

(
Tc,ℓ

ǫF

)ℓ+ 1
2

=
π/(k2ℓ+1

F a∗ℓ )

(2 − 2−ℓ+ 3
2 )Γ(ℓ + 1

2)ζ(ℓ + 1
2)

. (2.128)

to order Tc,ℓ/ǫ0, where ǫ0 = k2
0/(2M) ≫ Tc,ℓ. Notice that, this relation depends on k0 only

through a∗ℓ .

On the other hand, if temporal fluctuations are neglected, the solution for T0,ℓ from

the saddle point self-consistency equations is |Ẽb,ℓ| = 2T0,ℓ ln
[
3
√

π(T0,ℓ/ǫF)3/2/4
]

and µℓ =

Ẽb,ℓ/2 which leads to

T0,ℓ ∼
|Ẽb,ℓ|

2 ln
(
|Ẽb,ℓ|/ǫF

) 3
2

. (2.129)

up to logarithmic accuracy. Therefore, T0,ℓ grows without bound as the coupling increases.

Within this calculation, the normal state for T > T0,ℓ is described by unbound and non-

degenerate fermions since ∆ℓ(k) = 0 and |µℓ|/T0,ℓ ∼ ln(|Ẽb,ℓ|/ǫF)3/2 ≫ 1. Notice that the
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saddle point approximation becomes progressively worse with increasing coupling, since the

formation of bound states is neglected.

I emphasize that, there is no phase transition across T0,ℓ in strong coupling. However,

this temperature is related to the pair breaking or dissociation energy scale [44]. To see this

connection, I consider the chemical equilibrium between nondegenerate unbound fermions

(f) and bound pairs (b) such that

b(↑↓) ↔ f(↑) + f(↓) (2.130)

for THS singlet states and

b(↑↑) ↔ f(↑) + f(↑) (2.131)

for SHS triplet states.

Notice that T0,ℓ is sufficiently high that the chemical potential of the bosons and the

fermions satisfy |µb| ≫ T and |µf | ≫ T at the temperature T of interest. Thus, both

the unbound fermions (f) and molecules (b) can be treated as classical ideal gases. The

equilibrium condition µb = 2µf for these non-degenerate gases may be written as

T ln

[
nb

(
2π

MbT

)3/2
]
− Ẽb,ℓ = 2T ln

[
nf

(
2π

MfT

)3/2
]

, (2.132)

where nb (nf) is the boson (fermion) density, Mb (Mf) is the boson (fermion) mass, and

Ẽb,ℓ is the binding energy of a bosonic molecule. The dissociation temperature above which

some fraction of the bound pairs (molecules) are dissociated, is then found to be

Tdissoc,ℓ ≈
|Ẽb,ℓ|

ln
(
|Ẽb,ℓ|/ǫF

) 3
2

, (2.133)

where I dropped a few constants of order unity. Therefore, the logarithmic term is an

entropic contribution which favors broken pairs and leads to a dissociation temperature

considerably lower than the absolute value of binding energy |Ẽb,ℓ|. The analysis above

gives insight into the logarithmic factor appearing in Eq. (2.129) since T0,ℓ ∼ Tdissoc,ℓ/2.

Thus, T0,ℓ is essentially the pair dissociation temperature of bound pairs (molecules), while

Tc,ℓ is the phase coherence temperature corresponding to BEC of bound pairs (bosonic

molecules).
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Figure 2.18: Plots of (a) critical temperature Tr = Tc,0/ǫF and (b) chemical potential µr =
µ0/ǫF versus interaction strength 1/(kFa0) at T = Tc,0 for k0 ≈ 200kF. For ℓ = 0 pairing, I
show that the critical transition temperature grows from an exponential dependence in the
BCS limit to a saturation in the BEC limit, while the mean field temperature characterizing
the formation of pairs grows without limit.

In Fig. 2.18(a), I show Tc,0 for the s-wave (ℓ = 0, mℓ = 0) case. Notice that Tc,0 grows

from an exponential dependence in weak coupling to a constant in strong coupling with

increasing interaction. Furthermore, the mean field T0,0 and gaussian Tc,0 are similar only

in weak coupling, while T0,0 increases without bound as T0,0 ∼ 1/[(Ma2
0)| ln(kFa0)|] in strong

coupling. When µ0 = 0, I also obtain analytically Tc,0/ǫF ≈ 2.15/(kFa∗0)
2 from Eq. (2.128).

The hump in Tc,0 around 1/(kFa0) ≈ 0.5 is similar to the those in Ref. [44], and might be

an artifact of the approximations used here. Thus, a more detailed self-consistent numerical

analysis is needed to determine if this hump is real.

In Fig. 2.18(b), I show µ0 for the s-wave case, where it changes from ǫF in weak coupling

to Eb,0/2 = −1/(2Ma2
0) in strong coupling. Notice that, µ0 at Tc,0 is qualitatively similar

to µ0 at T = 0, however, it is reduced at Tc,0 in weak coupling. Furthermore, µ0 changes

sign at 1/(kFa0) ≈ 0.32.

In Fig. 2.19(a), I show Tc,1 for the p-wave (ℓ = 1, mℓ = 0) case. Tc,1 grows from an

exponential dependence in weak coupling to a constant in strong coupling with increasing
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Figure 2.19: Plots of (a) critical temperature Tr = Tc,1/ǫF and (b) chemical potential µr =
µ1/ǫF versus interaction strength 1/(k3

Fa1) at T = Tc,1 for k0 ≈ 200kF. For ℓ = 1 pairing, I
show that the critical transition temperature grows from an exponential dependence in the
BCS limit to a saturation in the BEC limit, while the mean field temperature characterizing
the formation of pairs grows without limit.

interaction. For completeness, I present the limiting expressions

Tc,1 =
8

π
ǫF exp

[
γ − 8

3
+

πk0

4kF
− π

2k3
F|a1|

]
, (2.134)

Tc,1 =
2π

MB,1

[
n1

ζ(3/2)

] 2
3

= 0.137ǫF, (2.135)

in the weak and strong coupling limits, respectively. Furthermore, the mean field T0,1

and gaussian Tc,1 are similar only in weak coupling, while T0,1 increases without bound as

T0,1 ∼ 1/[(Mk0a1)| ln(k2
Fk0a1)|] in strong coupling. When µ1 = 0, I also obtain analytically

Tc,1/ǫF ≈ 1.75/(k3
Fa∗1)

2/3 from Eq. (2.128). The hump in the intermediate regime is similar

to the one found in fermion-boson model [128]. But to determine if this hump is real, it

may be necessary to develop a fully self-consistent numerical calculation.

In Fig. 2.19(b), I show µ1 for the p-wave case, where it changes from ǫF in weak coupling

to Eb,1/2 = −1/(Mk0a1) in strong coupling. Notice that, µ1 at Tc,1 is both qualitatively

and quantitatively similar to µ1 at T = 0. Furthermore, µ1 changes sign at 1/(k3
Fa1) ≈ 0.02.

For any given ℓ, mean field and gaussian theories lead to similar results for Tc,ℓ and

T0,ℓ in the BCS regime, while they are very different in the BEC side. In the latter case,

T0,ℓ increases without bound, however, the gaussian theory predicts in a constant critical
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temperature which coincides with the BEC temperature of bosons. Notice that the tem-

perature region between the pair formation Tc,ℓ and the pair condensation T0,ℓ for ℓ = 0

state is much larger than ℓ 6= 0 states since T0,ℓ6=0 grows faster than T0,ℓ6=0. Furthermore,

similar humps in Tc,ℓ around 1/(k2ℓ+1
F aℓ) = 0 are expected for any ℓ as shown for the s-wave

and p-wave cases, however, whether these humps are physical or not may require a fully

self-consistent numerical approach.

As shown in this section, the frequency (temporal) dependence of fluctuations about the

saddle point is crucial to describe adequately the bosonic degrees of freedom that emerge

with increasing coupling. In the next section, I derive the TDGL functional near Tc,ℓ to

emphasize further the importance of these fluctuations.

2.7 Time-Dependent Ginzburg-Landau (TDGL) Functional near Tc,ℓ

My basic motivation here is to investigate the low frequency and long wavelength behavior

of the order parameter near Tc,ℓ. To study the evolution of the time-dependent Ginzburg-

Landau (TDGL) functional near Tc,ℓ, I need to expand the effective action Seff
ℓ in Eq. (2.14)

around ∆ℓ,mℓ
= 0 leading to

Seff
ℓ = Ssp

ℓ + Sgauss
ℓ +

β

2

∑

{qn,mℓn}

bℓ,{mℓn}({qn})Λ†
ℓ,mℓ1

(q1)Λℓ,mℓ2
(q2)

Λ†
ℓ,mℓ3

(q3)Λℓ,mℓ4
(q1 − q2 + q3). (2.136)

Here, Λℓ,mℓ
(q) is the pairing fluctuation field.

I first consider the static part of L−1
ℓ,mℓ,m

′
ℓ

(q), and expand it in powers of qi to get

L−1
ℓ,mℓ,m

′
ℓ

(q, 0) = aℓ,mℓ,m
′
ℓ
+

∑

i,j

ci,j
ℓ,mℓ,m

′
ℓ

qiqj

2M
+ .... (2.137)

Next, I consider the time-dependence of the TDGL equation, where it is necessary to expand

L−1
ℓ,mℓ,m

′
ℓ

(0, ivj) − L−1
ℓ,mℓ,m

′
ℓ

(0, 0) in powers of w after analytic continuation ivj → w + i0+.

In the x = (x, t) representation, the calculation above leads to the TDGL equation

∑

mℓ2


aℓ,mℓ1

,mℓ2
−

∑

i,j

ci,j
ℓ,mℓ1

,mℓ2

∇i∇j

2M

+
∑

mℓ3
,mℓ4

bℓ,{mℓn}(0)Λ†
ℓ,mℓ3

(x)Λℓ,mℓ4
(x) − idℓ,mℓ1

,mℓ2

∂

∂t


Λℓ,mℓ2

(x) = 0, (2.138)

75



which is the generalization of the TDGL equation to higher momentum channels of THS

singlet and SHS triplet states. Notice that, for THS triplet states, there may be extra gradi-

ent mixing textures and fourth order terms in the expansion [131], which are not discussed

here. All static and dynamic expansion coefficients are presented in Appendix A.2. The

condition det aℓ = 0 with matrix elements aℓ,mℓ1
,mℓ2

is the Thouless criterion, which leads

to the order parameter equation given in Eq. (2.103). The coefficient ci,j
ℓ,mℓ1

,mℓ2
reflects a

major difference between ℓ = 0 and ℓ 6= 0 cases. While ci,j
0,0,0 = c0,0,0δi,j is isotropic in space,

ci,j
ℓ6=0,mℓ1

,mℓ2
is anisotropic, thus characterizing the anisotropy of the order parameter. The

coefficient bℓ,{mℓn}(0) is positive and guarantees the stability of the theory. The coefficient

dℓ,mℓ1
,mℓ2

is a complex number. Its imaginary part reflects the decay of Cooper pairs into

the two-particle continuum for µℓ > 0. However, for µℓ < 0, imaginary part of dℓ,mℓ1
,mℓ2

vanishes and the behavior of the order parameter is propagating reflecting the presence of

stable bound states.

Next, I present the asymptotic forms of aℓ,mℓ1
,mℓ2

; bℓ,{mℓn}(0); ci,j
ℓ,mℓ1

,mℓ2
and dℓ,mℓ1

,mℓ2

which are used to recover the usual Ginzburg-Landau (GL) equation for BCS superfluids in

weak coupling and the Gross-Pitaevskii (GP) equation for a weakly interacting dilute Bose

gas in strong coupling.

2.7.1 Weak Coupling (BCS) Regime

The weak coupling BCS regime is characterized by µℓ > 0 and µℓ ≈ ǫF ≫ Tc,ℓ. For any

given ℓ, I find the following values for the coefficients

aℓ,mℓ1
,mℓ2

= κw
ℓ ln

(
T

Tc,ℓ

)
δmℓ1

,mℓ2
, (2.139)

bℓ,{mℓn}(0) = 7γℓ,{mℓn}
κw

ℓ ζ(3)

8T 2
c,ℓ

(
ǫF
ǫ0

)ℓ

, (2.140)

ci,j
ℓ,mℓ1

,mℓ2
= 7αi,j

ℓ,mℓ1
,mℓ2

κw
ℓ ǫFζ(3)

4π2T 2
c,ℓ

, (2.141)

dℓ,mℓ1
,mℓ2

= κw
ℓ

(
1

4ǫF
+ i

π

8Tc,ℓ

)
δmℓ1

,mℓ2
, (2.142)

where κw
ℓ = N(ǫF)(ǫF/ǫ0)

ℓ/(4π) with N(ǫF) = MVkF/(2π2) is the density of states per

spin at the Fermi energy. Here δmℓ1
,mℓ2

is the Kronecker delta, and αi,j
ℓ,mℓ1

,mℓ2
and γℓ,{mℓ}
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are angular averaged quantities defined in App. A.2. Notice that the critical transition

temperature is determined by det aℓ = 0.

In the particular case, where only one of the spherical harmonics Yℓ,mℓ
(k̂) is dominant

and characterizes the order parameter, I can rescale the pairing field as

Ψw
ℓ,mℓ

(x) =

√
bℓ,{mℓ}(0)

κw
ℓ

Λℓ,mℓ
(x) (2.143)

to obtain the conventional TDGL equation [141]

[
−εℓ + |Ψw

ℓ,mℓ
|2 −

∑

i

(ξGL
ℓ,mℓ

)2i∇2
i + τGL

ℓ,mℓ

∂

∂t

]
Ψw

ℓ,mℓ
= 0. (2.144)

Here, εℓ = (Tc,ℓ −T )/Tc,ℓ with |εℓ| ≪ 1, (ξℓ,mℓ
)2i (T ) = ci,i

ℓ,mℓ,mℓ
/[2Maℓ,mℓ,mℓ

] = (ξGL
ℓ,mℓ

)2i /εℓ is

the characteristic GL length and τℓ,mℓ
= −idℓ,mℓ,mℓ

/aℓ,mℓ,mℓ
= τGL

ℓ,mℓ
/εℓ is the characteristic

GL time.

In this limit, the GL coherence length is given by kF(ξGL
ℓ,mℓ

)i = [7αi,i
ℓ,mℓ,mℓ

ζ(3)/(4π2)]1/2(ǫF/Tc,ℓ),

which makes (ξGL
ℓ,mℓ

)i much larger than the interparticle spacing k−1
F . There is a major differ-

ence between ℓ = 0 and ℓ 6= 0 pairings regarding (ξGL
ℓ,mℓ

)i. While ci,j
0,0,0 = c0,0,0δi,j is isotropic,

ci,j
ℓ6=0,mℓ1

,mℓ2
= ci,i

ℓ,mℓ1
,mℓ2

δi,j is in general anisotropic in space (see App. A.2). Thus, (ξGL
0,0 )i

is isotropic and (ξGL
ℓ6=0,mℓ

)i is not.

Furthermore, τGL
ℓ,mℓ

= −i/(4ǫF) + π/(8Tc,ℓ) showing that the dynamics of Ψw
ℓ,mℓ

(x) is

overdamped reflecting the continuum of fermionic excitations into which a pair can decay. In

addition, there is a small propagating term since there is no perfect particle-hole symmetry.

As the coupling grows, the coefficient of the propagating term increases while that of the

damping term vanishes for µℓ ≤ 0. Thus, the mode is propagating in strong coupling

reflecting the stability of the bound states against the two particle continuum.
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2.7.2 Strong Coupling (BEC) Regime

The strong coupling BEC regime is characterized by µℓ < 0 and ǫ0 = k2
0/(2M) ≫ |µℓ| ≫

Tc,ℓ. For ℓ = 0, I find the following coefficients

a0,0,0 = 2κs
0

(
2|µ0| − |Ẽb,0|

)
, (2.145)

b0,{0}(0) =
κs

0

8π|µ0|
, (2.146)

ci,j
0,0,0 = κs

0δi,j , (2.147)

d0,0,0 = 2κs
0, (2.148)

where κs
0 = N(ǫF)/(64

√
ǫF|µ0|). Similarly, for ℓ 6= 0, I obtain

aℓ6=0,mℓ1
,mℓ2

= 2κs
ℓφℓ

(
2|µℓ| − |Ẽb,ℓ|

)
δmℓ1

,mℓ2
, (2.149)

bℓ6=0,{mℓn}(0) = 15γℓ,{mℓn}
κs

ℓφ̂ℓ

2ǫ0
, (2.150)

ci,j
ℓ6=0,mℓ1

,mℓ2
= κs

ℓφℓδmℓ1
,mℓ2

δi,j , (2.151)

dℓ6=0,mℓ1
,mℓ2

= 2κs
ℓφℓδmℓ1

,mℓ2
, (2.152)

where κs
ℓ6=0 = N(ǫF)/(64

√
πǫFǫ0). Here φℓ = Γ(ℓ−1/2)/Γ(ℓ+1) and φ̂ℓ = Γ(2ℓ−3/2)/Γ(2ℓ+

2), where Γ(x) is the Gamma function. Notice that, ci,j
ℓ6=0,mℓ1

,mℓ2
is isotropic in space for

any ℓ. Thus, the anisotropy of the order parameter plays a secondary role in the TDGL

theory in this limit.

In the particular case, where only one of the spherical harmonics Yℓ,mℓ
(k̂) is dominant

and characterizes the order parameter, I can rescale the pairing field as

Ψs
ℓ,mℓ

(x) =
√

dℓ,mℓ,mℓ
Λℓ,mℓ

(x), (2.153)

to obtain the conventional Gross-Pitaevskii (GP) equation

[
−µB,ℓ + Uℓ,mℓ

|Ψs
ℓ,mℓ

|2 − ∇2

2MB,ℓ
− i

∂

∂t

]
Ψs

ℓ,mℓ
= 0 (2.154)

for a dilute gas of bosons. Here, µB,ℓ = −aℓ,mℓ,mℓ
/dℓ,mℓ,mℓ

= 2µℓ − Ẽb,ℓ is the chemical po-

tential, MB,ℓ = Mdℓ,mℓ,mℓ
/ci,i

ℓ,mℓ,mℓ
= 2M is the mass, and Uℓ,mℓ

= bℓ,{mℓ}(0)/d2
ℓ,mℓ,mℓ

is the repulsive interactions of the bosons. I obtain, U0,0 = 4πa0/M and Uℓ6=0,mℓ
=
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240π2√πφ̂ℓγℓ,{mℓ}/(Mφ2
ℓk0) for ℓ = 0 and ℓ 6= 0, respectively. Notice that the mass of

the composite bosons is independent of the anisotropy and symmetry of the order param-

eter for any given ℓ. However, this is not the case for the repulsive interactions between

bosons, which explicitly depends on ℓ.

For ℓ = 0, U0,0 = 4πaB,0/MB,0 is directly proportional to the fermion (boson) scattering

length a0 (aB,0), where aB,0 = 2a0 is the boson-boson scattering lenth. A better estimate

for aB,0 ≈ 0.6a0 can be found in the literature [138, 63, 139, 140], by taking into account

higher order processes. While for ℓ 6= 0, Uℓ,mℓ
is a constant (independent of the scattering

parameter aℓ) depending only on the interaction range k0 and the particular (ℓ, mℓ) state.

For a finite range potential, nB,ℓUℓ,mℓ
is small compared to ǫF, where nB,ℓ = nℓ/2 is the

density of bosons. In the ℓ = 0 case nB,0U0,0/ǫF = 4kFa0/(3π) is much smaller than unity.

For ℓ 6= 0 and even, nB,ℓUℓ,mℓ
/ǫF = 80

√
πφ̂ℓγℓ,{mℓ}/φ2

ℓ (kF/k0). In the case of SHS states

where ℓ 6= 0 and odd, nB,ℓUℓ,mℓ
/ǫF = 40

√
πφ̂ℓγℓ,{mℓ}/φ2

ℓ (kF/k0). The results for higher

angular momentum channels reflect the diluteness condition (kF/k0)
3 ≪ 1.

To calculate (ξGL
ℓ,mℓ

)i in the strong coupling limit, I need to know ∂µℓ/∂T evaluated

at Tc,ℓ (see below). The temperature dependence of µℓ in the vicinity of Tc,ℓ can be ob-

tained by noticing that µB,ℓ = ñ(T )Uℓ,mℓ
, where ñ(T ) = nB,ℓ

[
1 − (T/Tc,ℓ)

3/2
]
. This leads to

kF(ξGL
ℓ,mℓ

)i = [π2/(2MkFUℓ,mℓ
)]1/2 in the BEC regime. Using the asymptotic values of Uℓ,mℓ

,

I obtain kF(ξGL
0,0 )i = [π/(8kFa0)]

1/2 for ℓ = 0 and kF(ξGL
ℓ6=0,mℓ

)i =
[
φ2

ℓ/(480
√

πγℓ,{mℓ}φ̂ℓ)
]1/2

(k0/kF)1/2

for ℓ 6= 0. Therefore, (ξGL
ℓ,mℓ

)i is also much larger than the interparticle spacing k−1
F in this

limit, since kFa0 → 0 for ℓ = 0 and k0 ≫ kF for any ℓ.

2.7.3 Ginzburg-Landau Coherence Length versus Average Cooper Pair Size

In the particular case, where only one of the spherical harmonics Yℓ,mℓ
(k̂) is dominant and

characterizes the order parameter, I can define the GL coherence length as (ξℓ,mℓ
)2i (T ) =

ci,i
ℓ,mℓ,mℓ

/(2Maℓ,mℓ,mℓ
). An expansion of the parameters aℓ,mℓ,mℓ

and ci,i
ℓ,mℓ,mℓ

in the vicinity

of Tc,ℓ leads to

(ξℓ,mℓ
)2i (T ) ≈ (ξGL

ℓ,mℓ
)2i

Tc,ℓ

Tc,ℓ − T
, (2.155)
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where the prefactor is the GL coherence length and given by

(ξGL
ℓ,mℓ

)2i =
ci,i
ℓ,mℓ,mℓ

2MTc,ℓ

[
∂aℓ,mℓ,mℓ

∂T

]−1

T=Tc,ℓ

. (2.156)

The slope of the coefficient aℓ,mℓ,mℓ
with respect to T is given by

∂aℓ,mℓ,mℓ

∂T
=

∑

k

[Yℓ(k)

2T 2
+

∂µℓ

∂T

( Yℓ(k)

2Tξℓ(k)
− Xℓ(k)

ξ2
ℓ (k)

)]
Γ2

ℓ(k)

8π
. (2.157)

Here Xℓ(k) and Yℓ(k) are defined in App. A.2. Notice that, while ∂µℓ/∂T vanishes at Tc,ℓ

in weak coupling, it plays an important role in strong coupling. Furthermore, while (ξGL
ℓ,mℓ

)i

representing the phase coherence length is large compared to interparticle spacing in both

BCS and BEC limits, it should have a minimum near µℓ ≈ 0.

The prefactor (ξGL
ℓ,mℓ

)i of the GL coherence length must be compared with the average

Cooper pair size ξpair
ℓ defined by

(ξpair
ℓ )2 =

〈Zℓ(k)|r2|Zℓ(k)〉
〈Zℓ(k)|Zℓ(k)〉 = −〈Zℓ(k)|∇2

k|Zℓ(k)〉
〈Zℓ(k)|Zℓ(k)〉 , (2.158)

where Zℓ(k) = ∆ℓ(k)/[2Eℓ(k)] is the zero temperature pair wave function [117]. In the

BCS limit, ξpair
ℓ is much larger than the interparticle distance k−1

F since the Cooper pairs

are weakly bound. Furthermore, for µℓ < 0, I expect that ξpair
ℓ is a decreasing function

of interaction for any ℓ, since Cooper pairs become more tightly bound as the interaction

increases. Next, I compare (ξGL
ℓ,mℓ

)i and ξpair
ℓ for s-wave (ℓ = 0) and p-wave (ℓ = 1) states.

In Fig. 2.20, a comparison between (ξGL
0,0 )i and ξpair

0 is shown for s-wave (ℓ = 0, mℓ = 0).

ξpair
0 changes from kFξpair

0 = [eγ/
√

2π](ǫF/Tc,0) in the BCS limit to kFξpair
0 = [ǫF/(2|µ0|)]1/2 =

kFa0/
√

2 in the BEC limit as the interaction increases. Here γ ≈ 0.577 is the Euler’s con-

stant. Furthermore, when µ0 = 0, I obtain kFξpair
0 =

√
7[Γ2(1/4)/

√
π]1/3/4 ≈ 1.29, where

Γ(x) is the Gamma function. Notice that, ξpair
0 is continuous at µ0 = 0, and monotoni-

cally decreasing function of 1/(kFa0) with a limiting value controlled by a0 in strong cou-

pling. However, (ξGL
0,0 )i is a non-monotonic function of 1/(kFa0) having a minimum around

1/(kFa0) ≈ 0.32 (µ0 = 0). It changes from kF(ξGL
0,0 )i = [7ζ(3)/(12π2)]1/2(ǫF/Tc,0) in the

BCS to kF(ξGL
0,0 )i = [π/(8kFa0)]

1/2 in the BEC limit as the coupling increases, where ζ(x)

is the Zeta function. Notice that, (ξGL
0,0 )i grows as 1/

√
kFa0 in strong coupling limit.
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Figure 2.20: Plots of GL coherence length kFξGL
0,0 (solid squares), and zero temperature

Cooper pair size kFξpair
0,0 (hollow squares) versus interaction strength 1/(kFa0) at T = Tc,0

for k0 ≈ 200kF. For ℓ = 0 pairing, compared to the interparticle distance, I show that both
Cooper pair size and GL coherence length are large in the BCS limit, and while Cooper
pair size continue to decrease as a function of interaction strength, the GL coherence length
increases after having a minimum in the intermediate region. Notice that the evolution of
Cooper pair size is analytic for all interaction strengths.

In Fig. 2.21, a comparison between (ξGL
1,0 )z and ξpair

1 is shown for p-wave (ℓ = 1, mℓ = 0).

Notice that, ξpair
1 is nonanalytic at µ1 = 0, and is a monotonically decreasing function of

1/(k3
Fa1) with a limiting value controlled by kF/k0 in strong coupling. This nonanalytic

behavior is associated with the change in E1(k) from gapless (with line nodes) in the BCS to

fully gapped in the BEC side. However, (ξGL
1,0 )z is a non-monotonic function of 1/(k3

Fa1) hav-

ing a minimum around 1/(k3
Fa1) ≈ 0.02 (µ1 = 0). It changes from kF(ξGL

1,0 )x = kF(ξGL
1,0 )y =

kF(ξGL
1,0 )z/

√
3 = [7ζ(3)/(20π2)]1/2(ǫF/Tc,1) in the BCS to kF(ξGL

1,0 )i = [πk0/(36kF)]1/2 in the

BEC limit as the coupling increases. Notice that, ξGL
1,0 saturates in strong coupling limit

reflecting the finite range of interactions.

It is important to emphasize that (ξGL
ℓ,mℓ

)z shown in Figs. (2.20) and (2.21) is only

qualitative in the intermediate regime around unitarity 1/(k2ℓ+1
F aℓ) = 0 since my theory

may not be strictly applicable in that region, but it converges and provides a good qualitative

interpolation between BCS and BEC regimes.
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Figure 2.21: Plots of GL coherence length kF(ξGL
1,0 )z (solid squares), and zero temperature

Cooper pair size kFξpair
1,0 (hollow squares) versus interaction strength 1/(k3

Fa1) at T = Tc,1

for k0 ≈ 200kF. For ℓ = 1 pairing, compared to the interparticle distance, I show that both
Cooper pair size and GL coherence length are large in the BCS limit, and while Cooper pair
size continue to decrease as a function of interaction strength, the GL coherence length grovs
and saturates after having a minimum in the intermediate region. Notice that the evolution
of Cooper pair size is non-analytic when µ1 changes from positive values in the BCS side
to negative values in the BEC side as a function of interaction strength. Furthermore, GL
coherence length is anisotropic in the BCS limit, which becomes isotropic only in the BEC
limit (not shown).

2.8 Summary

In this chapter, I extended the s-wave (ℓ = 0) functional integral formalism to finite angular

momentum ℓ including two hyperfine states (THS) pseudo-spin singlet and single hyperfine

states (SHS) pseudo-spin triplet channels. I analyzed analytically superfluid properties of

dilute Fermi gases in the ground state (T = 0) and near critical temperatures (T ≈ Tc,ℓ)

from the weak fermion attraction BCS limit to the strong fermion attraction BEC limit

as a function of scattering parameter (aℓ) for arbitrary ℓ. However, I presented numerical

results only for THS s-wave and SHS p-wave symmetries which may be relevant for current

experiments involving atomic Fermi gases. The main results of this chapter are as follows.

First, I analyzed the low energy scattering amplitude within a T-matrix approach. I

found that bound states occur only when aℓ > 0 for any ℓ. The energy of the bound states

Eb,ℓ involves only the scattering parameter a0 for ℓ = 0. However, another parameter

related to the interaction range 1/k0 is necessary to characterize Eb,ℓ for ℓ 6= 0. Therefore,

all superfluid properties for ℓ 6= 0 depend strongly on k0 and aℓ, while for ℓ = 0 they depend

82



strongly only on a0 but weakly on k0.

Then, I discussed the order parameter, chemical potential, quasiparticle excitations,

momentum distribution, atomic compressibility, ground state energy, collective modes and

average Cooper pair size at T = 0. There I showed that the evolution from BCS to BEC

is just a crossover for ℓ = 0, while the same evolution for ℓ 6= 0 exhibits a quantum

phase transition characterized by a gapless superfluid on the BCS side to a fully gapped

superfluid on the BEC side. This transition is a many-body effect and takes place exactly

when chemical potential µℓ6=0 crosses the bottom of the fermion band (µℓ6=0 = 0), and is best

reflected as non-analytic behavior in the ground state atomic compressibility, momentum

distribution and average Cooper pair size.

Lastly, I discussed the critical temperature, chemical potential, and the number of un-

bound, scattering and bound fermions at T = Tc,ℓ. I found that the critical BEC tem-

perature is the highest for ℓ = 0. I also derived the time-dependent Ginzburg-Landau

functional (TDGL) near Tc,ℓ and extracted the Ginzburg-Landau (GL) coherence length

and time. I recovered the usual TDGL equation for BCS superfluids in the weak fermion

attraction BCS limit, whereas in the strong fermion attraction BEC limit I recovered the

Gross-Pitaevskii (GP) equation for a weakly interacting dilute Bose gas. The TDGL equa-

tion exhibits anisotropic coherence lengths for ℓ 6= 0 which become isotropic only in the

BEC limit, in sharp contrast to the ℓ = 0 case, where the coherence length is isotropic

for all interaction strengths. Furthermore, the GL time is a complex number with a larger

imaginary component for µℓ > 0 reflecting the decay of Cooper pairs into the two parti-

cle continuum. However, for µℓ < 0 the imaginary component vanishes and Cooper pairs

become stable above Tc,ℓ.

In summary, the BCS to BEC evolution in higher angular momentum (ℓ 6= 0) states

exhibit quantum phase transitions and is much richer than in conventional ℓ = 0 s-wave

systems, where there is only a crossover. Signatures of this quantum phase transition can

be found in measurable quantities such as momentum distribution, atomic compressibility,

collective excitations, etc. as discussed in this chapter. These ℓ 6= 0 states might be found

not only in atomic Fermi gases, but also in nuclear (pairing in nuclei), astrophysics (neutron
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stars) and condensed matter (high-Tc and organic superconductors) systems.

In addition, similar topological quantum phase transitions with much richer phase di-

agram occur in two-species fermion mixtures with mass and population imbalance as dis-

cussed in the next chapter.
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CHAPTER III

TWO-SPECIES FERMION MIXTURES WITH MASS AND

POPULATION IMBALANCE

In the previous chapter, I analyzed zero and nonzero orbital angular momentum pairing

effects, and show that a quantum phase transition occurs for nonzero angular momentum

pairing, unlike the s-wave case where the BCS to BEC evolution is just a crossover. I

showed that this quantum phase transition was topological in its nature, characterized by

a gapless superfluid on the BCS side to a fully gapped superfluid on the BEC side. Several

quantum phase transitions with much richer phase diagram also occur in two-component

fermion mixtures with different masses and/or different populations as discussed next in

this chapter.

3.1 Introduction

Major experimental breakthroughs have been made recently involving one-species trapped

fermions (6Li) in two hyperfine states with different populations. The superfluid to normal

phase transition and the vortex state [76], as well as phase separation between paired and

unpaired fermions [77] were identified as a function of population imbalance and scattering

parameter. These studies are important extensions of the so-called BCS to BEC evolution

for equal populations, which were studied via the use of Feshbach resonances [71, 72, 73, 75].

In contrast with the crossover physics found in the symmetric case (equal masses and

equal spin populations) [37, 38, 41, 44, 110], these experiments [76, 77] have demonstrated

the existence of phase transitions between normal and superfluid phases, as well as phase

separation between superfluid (paired) and normal (excess) fermions as a function of pop-

ulation imbalance [111, 112, 143, 144]. These one-species experiments with population

imbalance are ideal candidates for the observation of uniform and non-uniform superfluid

phases, which may be present not only in atomic, but also in nuclear (pairing in nuclei),
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astrophysics (neutron stars), and condensed matter (superconductors) systems. Follow-

ing these experiments, the problem of fermion superfluidity with population imbalance

has been revisited recently in several theoretical works in continuum and trapped sys-

tems [145, 146, 147, 148, 149, 150, 151].

Arguably one of the next frontiers of exploration in cold Fermi gases is the study of

asymmetric two-component fermion superfluidity (unequal masses, and equal or unequal

populations) in two-species fermion mixtures from the BCS to the BEC limit. Earlier

works on two-species fermion mixtures with unequal masses were limited to the BCS

regime [152, 153, 154]. However, very recently, the evolution from BCS to BEC was pre-

liminarily addressed in homogenous systems as a function of population imbalance and

scattering length especially for 6Li and 40K mixtures as well as other mixtures including

6Li and 87Sr or 40K and 87Sr [155, 156, 157]. In addition, the superfluid phase diagram of

trapped systems at unitarity was also analyzed as a function of population imbalance and

mass anisotropy [158] (see also Ref. [159]).

In this chapter, I study the BCS to BEC evolution of asymmetric two-component fermion

superfluids as a function of scattering parameter, population imbalance and mass anisotropy.

My main results are as follows.

For homogeneous systems, I analyze the ground state saddle point phase diagrams for

two-species fermion mixtures as a function of scattering parameter, mass anisotropy and

population imbalance. I identify regions corresponding to normal, uniform or non-uniform

superfluid phases, and discuss topological quantum phase transitions in the BCS, unitarity

and BEC limits. I derive the Ginzburg-Landau theory near the critical temperature, and

show that it describes a dilute mixture of weakly interacting paired and unpaired fermions

in the BEC limit. I also derive the zero temperature low frequency and long wavelength

collective excitation spectrum for zero population imbalance, and recover the Bogoliubov

relation for weakly interacting dilute bosons in the BEC limit. In addition, I describe

analytically phase separation boundaries of the resulting Bose-Fermi mixture of paired

fermions and unpaired fermions in the BEC limit. Lastly, I discuss the effects of harmonic

traps and the resulting density profiles of paired and unpaired fermions in the BEC regime.
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Furthermore, in the BEC limit, I analyze the exact superfluid phase diagram of two-

species dilute Fermi-Fermi mixtures with equal or unequal masses. I first calculate the

exact boson-fermion scattering length as a function of mass anisotropy, and then construct

the exact phase diagrams. In addition to the normal and uniform superfluid phases, I

find two different non-uniform phase separated (PS) states: (1) phase separation between

pure unpaired (excess) and pure tightly paired fermions (molecular bosons), and (2) phase

separation between pure excess fermions and a mixture of excess fermions and molecu-

lar bosons. For equal mass mixtures, the results for the phase boundary between phase

separation and uniform superfluid phases is quantitative agreement with the saddle point

results, however, there are important qualitative and quantitative differences for unequal

mass mixtures showing the importance of fluctuations.

For optical lattices, I used an attractive Fermi-Hubbard Hamiltonian to describe fermion

mixtures, and obtain the ground state phase diagram consisting of normal, phase-separated

and coexisting superfluid/excess-fermions, and insulating regions as a function of interac-

tion strength and density of fermions. I show that when molecular bosons are formed (in

the strong attraction limit), they interact with each other strongly and repulsively. Fur-

thermore, when there are excess fermions, the resulting system corresponds to a strongly

interacting (repulsive) mixture of molecular bosons and fermions, in sharp contrast with

homogenous systems where the resulting boson-fermion mixture is weakly interacting. This

result is a direct manifestation of the Pauli exclusion principle in the lattice case, since each

molecular boson consists of two fermions, and more than one identical fermion on the same

lattice site is not allowed. Lastly, several insulating phases appear in the strong attraction

limit depending on fermion filling fractions. For instance, I find a molecular Bose-Mott

insulator (superfluid) for molecular filling fraction equal to (less than) one when fermion

filling fractions are identical, which is in qualitative agreement with a recent experiment

from MIT [87]. Furthermore, when the filling fraction of one type of fermion is one and

the filling fraction of the other is one-half (corresponding to molecular boson and excess

fermion filling fractions of one-half), I also find either a phase-separated state consisting of

a Fermi-Pauli insulator (FPI) of the excess fermions and a molecular Bose-Mott insulator

87



(BMI) or a Bose-Fermi checkerboard (BFC) phase depending on the tunneling anisotropy.

The rest of this chapter is organized as follows. After introducing the Hamiltonian in

Section 3.2, I introduce the imaginary-time functional integration formalism in Section 3.3,

and obtain the self-consistency (order parameter and number) equations. In Section 3.4, I

discuss the evolution from BCS to BEC superfluidity at zero temperature within the saddle

point approximation, and analyze the order parameter, chemical potential, quasiparticle

excitation spectrum and momentum distribution. In addition, I obtain the ground state

phase diagrams by analyzing the stability of the saddle point solutions. In Section 3.5,

I discuss gaussian fluctuations near the critical temperature to derive the time-dependent

Ginzburg-Landau (TDGL) equations, and at zero temperature to obtain the low energy

collective excitations. In addition, I discuss the effects of harmonic traps on the density

profile of paired and unpaired fermions at zero temperature. In Section 3.6, I discussed

corrections to the ground state phase diagrams which are beyond the saddle point approx-

imation in the BEC regime. Then, I analyzed the superfluid and insulating phases of mass

and population imbalanced fermion mixtures in Section 3.7. A summary of my conclusions

is given in Section 3.8. Lastly, I present in Appendices B.1, B.5, and B.3 the elements

of the inverse fluctuation matrix, and their low frequency and long wavelength expansion

coefficients at zero and finite temperatures.

3.2 Two-Species Hamiltonian

To describe a dilute two-species Fermi gas in three dimensions, I start from the Hamiltonian

(~ = 1)

H =
∑

k,σ

ξk,σa†k,σak,σ +
∑

k,k′,q

U(k,k′)b†k,qbk′,q, (3.1)

where the pseudo-spin σ labels both the type and hyperfine states of atoms represented

by the creation operator a†k,σ, and by the pair creation operator b†k,q = a†
k+q/2,↑a

†
−k+q/2,↓.

Here, ξk,σ = ǫk,σ−µσ, where ǫk,σ = k2/(2mσ) is the energy and µσ is the chemical potential

of the fermions.

Notice that, to describe mass and population imbalanced fermion mixtures, I allow for

the fermions to have different masses mσ and different populations controlled by independent
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chemical potentials µσ. The attractive fermion-fermion interaction U(k,k′) can be written

in a separable form as

U(k,k′) = −gΓ∗
kΓk′ , (3.2)

where g > 0. For the s-wave symmetry discussed, Γk = 1 for k < k0 and Γk = 0 for k > k0,

where k0 is an ultraviolet cut-off for the s-wave interaction. This cutoff is eliminated in

the following sections, when I express the interaction strength g in terms of the s-wave

scattering length aF . It is important to emphasize that my final results depend only on aF

and are independent of the specific value of k0.

3.3 Functional Integral Formalism

In this section, I extend the functional integral formalism to describe two-species fermion

mixtures with mass and population imbalance. My generalized formalism and results reduce

to the usual expressions when fermion masses and populations are equal.

3.3.1 Effective Action

In the imaginary-time functional integral formalism (β = 1/T and unit kB = 1) [99], the

partition function for the Hamiltonian in Eq. (3.1) can be written as

Z =

∫
D[a†, a]e−S[a†,a], (3.3)

where S is the action, given by

S =

∫ β

0
dτ


∑

k,σ

a†k,σ(τ)
∂

∂τ
ak,σ(τ) + H(τ)


 . (3.4)

Here, τ is the imaginary time and a†k,σ(τ) and ak,σ(τ) are Grassmann variables [100, 124].

The Hamiltonian can be rewritten in the form

H(τ) =
∑

k,σ

ξk,σa†k,σ(τ)ak,σ(τ) − g
∑

q

B†
q(τ)Bq(τ), (3.5)

where I define the operator Bq(τ) =
∑

k Γ(k)bk,q(τ). I first introduce the Nambu spinor

ψ†(p) = (a†p,↑, a−p,↓), where p = (k, iwℓ) denotes both momentum and fermionic Matsubara

frequency wℓ = (2ℓ + 1)π/β, and use the Hubbard-Stratonovich transformation [125, 126]

egB†(q)B(q) =

∫
D[Φ†, Φ]e

−
Φ†(q)Φ(q)

g
+[B†(q)Φ(q)+h.c.]

(3.6)
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to decouple the fermionic degrees of freedom at the expense of introducing the bosonic

complex field Φ(q). Here, q = (q, ivℓ) denotes both momentum and bosonic Matsubara

frequency vℓ = 2πℓ/β. I write

Φ(q) = ∆0δq,0 + Λ(q), (3.7)

where ∆0 is the τ -independent saddle point and Λ(q) is the τ -dependent fluctuation.

Performing a Gaussian integration over the fermionic degrees of freedom and an expan-

sion of S to quadratic order in Λ(q), I obtain the gaussian effective action

SGauss = S0 +
β

2

∑

q

Λ̄†(q)F−1(q)Λ̄(q), (3.8)

the vector Λ̄†(q) is such that Λ̄†(q) = [Λ†(q), Λ(−q)]. Here, the saddle point action is given

by

S0 = β
|∆0|2

g
−

∑

p

Tr ln[Gsp(p)/β]−1, (3.9)

where (Gsp)−1(p) is the inverse fermion propagator, and

∆k = ∆0Γk. (3.10)

is the order parameter. The matrix (Gsp)−1(p) is defined by

(Gsp)−1(p) =




iwℓ − ξk,↑ ∆k

∆∗
k iwℓ + ξk,↓


 . (3.11)

Furthermore, the vector Λ̄†(q) is the order parameter fluctuation field and F−1(q) is the

inverse fluctuation propagator. The matrix elements of F−1(q) are given by

F−1
1,1(q) =

1

g
− 1

β

∑

p

Gsp
↑,↑(

q

2
+ p)Gsp

↓,↓(
q

2
− p)|Γk|2, (3.12)

F−1
1,2(q) =

1

β

∑

p

Gsp
↑,↓(

q

2
+ p)Gsp

↑,↓(
q

2
− p)|Γk|2. (3.13)

Notice that F−1
2,1(q) = (F−1

1,2)
∗(q) and F−1

2,2(q) = F−1
1,1(−q). These matrix elements are de-

scribed further in appendix B.1. The fluctuation term in the action leads to a correction to

the thermodynamic potential, which can be written as ΩGauss = Ω0 +Ωfluct with Ω0 = S0/β

and

Ωfluct =
1

β

∑

q

ln det[F−1(q)/β]. (3.14)
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The action and thermodynamic potentials defined above are used to derive the self-consistency

equations, as discussed next.

3.3.2 Self-consistency Equations

The saddle point condition δS0/δ∆∗
0 = 0 imposed on Eq. (3.9) or the relation

∆k′ = − 1

β
lim
τ→0

∑

p

U(k,k′)Gsp
↑,↓(p) exp(iwℓτ) (3.15)

leads to an equation for the order parameter

1

g
=

∑

k

|Γk|2
2Ek,+

Xk,+, (3.16)

where Xk,± = (Xk,1 ±Xk,2)/2 with Xk,s = tanh(βEk,s/2). Notice that, at low temperatures

T ≈ 0, θ(−Ek,s) = limβ→∞Xk,s, where θ(x) is the Heaviside function. Here, Ek,± =

(Ek,1 ± Ek,2)/2 and ξk,± = (ξk,↑ ± ξk,↓)/2 = k2/(2m±) − µ±, where

Ek,1 = (ξ2
k,+ + |∆k|2)1/2 + ξk,−, (3.17)

Ek,2 = (ξ2
k,+ + |∆k|2)1/2 − ξk,− (3.18)

are the quasiparticle and negative of the quasihole energies respectively, m± = 2m↑m↓/(m↓±

m↑) and µ± = (µ↑±µ↓)/2. Notice that m+ is twice the reduced mass of the ↑ and ↓ fermions,

and that the equal mass case corresponds to |m−| → ∞. As usual, I eliminate g in favor of

the scattering length aF via the relation

1

g
= −m+V

4πaF
+

∑

k

|Γk|2
2ǫk,+

, (3.19)

where V is the volume and ǫk,± = (ǫk,↑ ± ǫk,↓)/2.

The order parameter equation has to be solved self-consistently with number equations

Nσ = −∂Ω/∂µσ which have two contributions Nσ = N0,σ + Nfluct,σ. The first term N0,σ =

−∂Ω0/∂µσ or the relation

N0,σ =
γσ

β
lim
τ→0

∑

p

Gsp
σ,σ(p) exp(iγσwℓτ) (3.20)

leads to the saddle point contribution, and is given by

N0,σ =
∑

k

(
1 − γσXk,−

2
− ξk,+

2Ek,+
Xk,+

)
. (3.21)
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Here, γ↑ = +1 and γ↓ = −1. Similarly, the second term Nfluct,σ = −∂Ωfluct/∂µσ leads to

the fluctuation contribution, and is given by

Nfluct,σ = − 1

β

∑

q

∂[detF−1(q)]/∂µσ

detF−1(q)
. (3.22)

While the saddle point contribution is sufficient for a semi-quantitative analysis at zero

temperature (T ≈ 0), inclusion of the fluctuation contribution is necessary to recover BEC

physics at finite temperatures (T → Tc).

When populations of the pseudo-spin components are balanced (N↑ = N↓), the results

for |∆0| and µ+ (µ− is irrelevant in this case) in the m↑ 6= m↓ case can be obtained from

the results for |∆0| and µ in the m = m↑ = m↓ case via the substitution of m → m+.

However, when populations of the pseudo-spin components are imbalanced (N↑ 6= N↓), I

need to solve all three self-consistency equations, since population imbalance is achieved

when either Ek,1 or Ek,2 is negative in some regions of momentum space, as discussed next.

3.4 Saddle Point Results

At low temperatures T ≈ 0, the saddle point self-consistency (order parameter and number)

equations are sufficient to describe qualitatively the evolution of superfluidity from the BCS

to the BEC limit. In this section, I analyze the amplitude of the order parameter |∆0|

and chemical potentials µσ as a function of scattering parameter 1/(kF,+aF ), population

imbalance

P =
N−

N+
=

N↑ − N↓

N↑ + N↓
, (3.23)

and mass anisotropy mr = m↑/m↓. Here N± = (N↑ ± N↓)/2 and k3
F,± = (k3

F,↑ ± k3
F,↓)/2.

Because of the parabolic dispersion relation, the density of ↑ fermions is n↑ = k3
F,↑/(6π2)

and the density of ↓ fermions is n↓ = k3
F,↓/(6π2). Here, the Fermi momenta kF,↑ and kF,↓

are determined from the Fermi energies ǫF,σ = k2
F,σ/(2mσ). Therefore,

n = n↑ + n↓ =
k3

F,+

3π2
, (3.24)

which is the total fermion density.

Using the notations described in the preceeding paragraph, I can solve the self-consistency

Eqs. (3.16), (3.19) and (3.21). For instance, in Fig. 3.1, I plot self-consistent solutions of
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|∆0|, µ+ and µ− (in units of ǫF,+) at T = 0 for two cases: (a) as a function of 1/(kF,+aF )

when P = 0.5 (or N↑ = 3N↓) and (b) as a function of P when 1/(kF,+aF ) = 0 (or on

resonance).
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Figure 3.1: Plots of |∆0|, µ+ and µ− (units of ǫF,+) for m↑ = 0.15m↓ (a) as a function
of 1/(kF,+aF ) when P = 0.5 and (b) as a function of P when 1/(kF,+aF ) = 0. (c) Plots of
|∆0|, µ+ and µ− (in units of ǫF,+) as a function of mr, when P = 0.5 and 1/(kF,+aF ) = 0
(unitarity limit). Notice the presence of small cusps in |∆0| and µ+ which signal a topological
quantum phase transition discussed below. These cusps are more pronounced for higher |P |
(not shown), but are best seen in these figures at small grazing angles.

In Fig. 3.1(a), the BCS µ± ≈ (ǫF,↑ ± ǫF,↓)/2 changes continuously to the BEC |µ±| →

|ǫb|/2, where

ǫb = − 1

m+a2
F

(3.25)

is the binding energy which follows from

1

g
=

∑

k

|Γk|2
2ǫk,+ − ǫb

. (3.26)
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Since P > 0 and the ↑ fermions are in excess, all ↓ fermions pair to form N↓ bosons and

the remaining ↑ fermions are unpaired. The amplitude |∆0| evolves continuously from the

BCS to the BEC limit with a cusp around 1/(kF,+aF ) ≈ −0.27. This cusp in |∆0| is more

pronounced for higher |P | and signals a quantum phase transition discussed below.

In Fig. 3.1(b), I show (on resonance) that |∆0| = 0 (normal phase) for P < −0.61,

where µ+ ≈ 0.64ǫF,+ and µ− ≈ 0.28ǫF,+. I notice that the evolution of |∆0|, µ+ and µ− as

a function of P is non-analytic when |P | → 0, and also signals a quantum phase transition

discussed below. I obtain similar results when m↑ = m↓, where the plot is symmetric around

P = 0. Therefore, this quantum phase transition may be studied in current experiments

involving only one-species of fermions [76, 77].

In Fig. 3.1(c), I show self-consistent solutions of |∆0|, µ+ and µ− (in units of ǫF,+) as

a function of mr when P = 0.5 and 1/(kF,+aF ) = 0. Here, ǫF,± = k2
F,±/(2m±). With

increasing mass anisotropy (or decreasing mr), I find that both |∆0| and µ+ increase until

mr ≈ 0.4. However, further decrease in mr beyond mr ≈ 0.4 leads to a saturation of both

|∆0| and µ+ with a small cusp in both quantities. The cusp is best seen in Fig. 3.1(c) at

small grazing angles. Therefore, the evolution from mr = 1 to mr → 0 is non-analytic

when mr ≈ 0.4, and the evolution is not a crossover. These cusps in |∆0| and µ+ are more

pronounced for higher |P |, and they signal a topological quantum phase transition discussed

below. Notice that, for P = 0, the evolution of |∆0| and µ+ is analytic for all mr, and the

evolution is just a crossover.

Next, I discuss the stability of uniform superfluidity using two criteria [111, 160, 161,

162, 163]: positive definite compressibility matrix κ(T ) and positive definite superfluid

density matrix ρ(T ).

3.4.1 Stability of Uniform Superfluidity

In order to analyze the phase diagram at T = 0, I solve the saddle point self-consistency

(order parameter and number) equations for all P and mr for a set of 1/(kF,+aF ), and check

the stability of saddle point solutions for the uniform superfluid phase using two criteria.

The first criterion requires that the compressibility matrix κ(T ) is positive definite,
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where the elements of κ(T ) are

κσ,σ′(T ) = − ∂2Ω0

∂µσ∂µσ′
. (3.27)

This criterion is related (identical) to the condition that the curvature

∂2Ω0

∂∆2
0

=
∑

k

|∆k|2
(
Xk,+

E3
k,+

− β
Yk,+

2E2
k,+

)
. (3.28)

of the saddle point thermodynamic potential Ω0 with respect to the saddle point parameter

∆0 needs to be positive [161, 163]. Here, Yk,± = (Yk,↑±Yk,↓)/2 with Yk,s = sech2(βEk,s/2).

Notice that, at low temperatures T ≈ 0, δ(Ek,s) = limβ→∞ βYk,s/4 where δ(x) is the delta

function. When at least one of the eigenvalues of κ(T ), or the curvature ∂2Ω0/∂∆2
0 is

negative, the uniform saddle point solution does not correspond to a minimum of Ω0, and a

non-uniform superfluid phase is favored. I would like to mention that the positivity of the

compressibility matrix guarantees the stability of the minima of the free energy in connection

with a particular choice of symmetry or functional form of the order parameter. Within

this restriction, when the compressibility becomes negative the free energy changes from a

minimum to a maximum. In the present case, I restricted myself only to order parameters

with zero center of mass (CM) momentum. However, if one is interested in a different class

of superfluid states such that the order parameter describes a Cooper pair with finite CM

momentum, then one needs to compare energies, and two separate energy calculations are

necessary: one for the zero-CM-momentum case and the other for the finite-CM-momentum

[Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)] case [163, 164, 165]. However, in this chapter, I

study only the stability of the zero-CM-momentum case.

The second criterion requires the superfluid density matrix ρ(T ) to be positive definite,

where the elements of ρ(T ) are defined by

ρi,j(T ) =
1

β

∑

p

{Tr[Gsp(p)M̃]δi,j + kikjTr[Gsp(p)Gsp(p)]}, (3.29)

where M̃ is a diagonal mass matrix with elements M̃i,j = γσmσδi,j with γ↑ = 1 and γ↓ = −1,

and δi,j is the Kronecker delta. After the evaluation of the fermionic Matsubara frequency,

I obtain

ρij(T ) = (m↑N↑ + m↓N↓)δi,j −
β

2

∑

k

kikjYk,+. (3.30)
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When at least one of the eigenvalues of ρ(T ) is negative, a spontaneously generated gradient

of the phase of the order parameter appears, leading to a non-uniform superfluid phase.

Notice that the ρ(T ) matrix is reducible to the scalar

ρ0(T ) = m↑N↑ + m↓N↓ −
β

6

∑

k

k2Yk,+, (3.31)

in the s-wave case.

Eventhough, I use these two criteria, I have found that the compressibility criterion is the

most restrictive over the entire phase space explored. This indicates that non-uniform phases

with spontaneously generated phase gradients are not present. The non-uniform phases that

can be obtained using the dominant compressibility criterium correspond to phase separated

(PS) states, where normal and superfluid states do not mix. However, allowing for Cooper

pairs to have CM momenta produces FFLO phases [164, 165] near the BCS regime, and

allows for the possibility of generalized FFLO phases with several wavevectors close to

unitarity. However, I have not performed these calculations in connection with generalized

FFLO states, and thus limited myself only to the stability of the zero CM momentum

(uniform) superfluid states. In addition, I did not specifically consider the phase boundary

between FFLO and PS since it was shown that the standard FFLO phases exist only a very

small region on the BCS side of the phase diagram [112].

Before discussing ground state phase diagrams, I would like to add an additional criterion

to fine tune the classification of the various phases that emerge as a result of unequal masses,

interactions, and population imbalance. For this purpose I discuss next, the quasiparticle

excitation spectrum and its connection to topological quantum phase transitions.

3.4.2 Topological Quantum Phase Transitions

The excitation spectrum of quasiparticles is determined by energies Ek,1 and Ek,2 defined in

Eq. (3.17). Using these relations, one can identify surfaces in momentum space where these

energies have zeros, indicating that the quasiparticle excitation spectrum changes from a

gapped to a gapless phase, with a corresponding change in the momentum distribution as

well. These changes in the Fermi surfaces of quasiparticles are topological in nature. Thus,
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I identify topological quantum phase transitions associated with the disappearance or ap-

pearance of momentum space regions of zero quasiparticle energies when either 1/(kF,+aF ),

P , and/or mr is changed. These topological transitions are shown as dotted lines in Figs. 3.4

through 3.7.

These phases are characterized by the number of zeros of Ek,1 and Ek,2 (zero energy

surfaces in momentum space) such that I) Ek,1 has no zeros and Ek,2 has only one, and II)

Ek,1 has no zeros and Ek,2 has two zeros. I first define B± = m↑µ↑ ± m↓µ↓ to establish

general constraints on the magnitude |∆0| of the order parameter for the s-wave pairing in

the presence of population imbalance. The zeros of Ek,s occur at real momenta

k2
± = B+ ± (B2

− − 4m↑m↓|∆0|2)1/2 (3.32)

provided that the following conditions

|∆0|2 <
|B−|2

4m↑m↓
, B+ ≥ 0 (3.33)

|∆0|2 < −µ↑µ↓, B+ < 0 (3.34)

are satisfied. Notice that, the Fermi sea of the lower quasiparticle band is a sphere of radius

k+ in phase I, and is a spherical shell k− ≤ k ≤ k+ in phase II, and the transition from

phase II to I occurs when k− → 0. The superfluid has gapless quasiparticle excitations

in both phases I and II, when there is population imbalance, e.g., N↑ 6= N↓. I illustrate

these cases in Figs. 3.2(b) and 3.2(c), respectively, for N↑ > N↓. The case of no population

imbalance P = 0 (N↑ = N↓) corresponds to case III, where Ek,1 and Ek,2 have no zeros

and are always positive, and thus the superfluid has always gapped quasiparticle excitations

which is shown in Fig. 3.2(a). In these figures, the parameters used are (a) |∆0| = 0.495ǫF,+,

µ+ = 0.779ǫF,+ and µ− = 0.0; (b) |∆0| = 0.811ǫF,+, µ+ = 0.167ǫF,+ and µ− = 1.162ǫF,+,

and (c) |∆0| = 0.499ǫF,+, µ+ = 0.751ǫF,+ and µ− = 0.633.

The transitions among phases I, II and III indicate a change in topology in the lowest

quasiparticle band, similar to the Lifshitz transition in ordinary metals [136] and non-swave

superfluids [135, 116, 117, 123, 129]. The topological transition here is unique, because it

involves an s-wave superfluid, and could be potentially observed for the first time through
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Figure 3.2: Schematic plots of Ek,1 (thin lines) and Ek,2 (thick lines) versus k for (a)
phase III, (b) phase I, and (c) phase II. Here, Ek,s and k are in units of ǫF,+ and kF,+,
respectively. The transitions among phases I, II and III indicate a change in topology in the
lowest quasiparticle band, and they are characterized by the number of zeros of Ek,1 and
Ek,2 (zero energy surfaces in momentum space) such that (a) in phase III, Ek,1 and Ek,2

have no zeros; (b) in phase I, Ek,1 has no zeros and Ek,2 has only one; and (c) in phase II,
Ek,1 has no zeros and Ek,2 has two zeros.

the measurement of the momentum distribution or thermodynamic properties. Notice that

the topological transition occurs without changing the symmetry of the order parameter as

the Landau classification demands for ordinary phase transitions. However, thermodynamic

signatures of the topological transition are present at low temperatures in the compress-

ibility, specific heat, superfluid density, etc., because the quasiparticle excitation spectrum

changes dramatically. The temperature dependence of the quasiparticle contributions to

these properties are exponentially activated [∼ exp(−Eg/T )] for the gapped phase (III), or

have a power law behavior (with different powers of T ) in the gapless phases (I and II).
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Figure 3.3: Corresponding plots of momentum distributions nk,↑ (thin lines) and nk,↓

(thick lines) are shown in (a) phase III, (b) phase I and (c) phase II. For momentum space
regions where Ek,1 > 0 and Ek,2 > 0, the corresponding momentum distributions are equal
nk,↑ = nk,↓. However, when Ek,1 > 0 and Ek,2 < 0, then nk,↑ = 0 and nk,↓ = 1. Notice that
the zero of nk,↑ is slightly shifted upwards from the zero of nk,↓, for better visualization.

The zero temperature momentum distributions

nk,σ =
1 − γσXk,−

2
− ξk,+

2Ek,+
Xk,+ (3.35)

for phases I and II are extracted from Eq. (3.21). For momentum space regions where

Ek,1 > 0 and Ek,2 > 0, the corresponding momentum distributions are equal nk,↑ = nk,↓.

However, when Ek,1 > 0 and Ek,2 < 0, then nk,↑ = 0 and nk,↓ = 1. I illustrate these

cases in Figs. 3.3(a), 3.3(b) and 3.3(c) for parameters of Figs. 3.2(a), 3.2(b) and 3.2(c),

respectively. Notice that the zero of nk,↑ is shifted slightly upwards to distinguish it from

nk,↓ in the regions of momentum space where nk,↑ = nk,↓. Although this topological tran-

sition is quantum (T = 0) in nature, signatures of the transition should still be observed at
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finite temperatures within the quantum critical region, where the momentum distributions

are smeared out due to thermal effects. Although the primary signature of this topolog-

ical transition is seen in the momentum distribution, the isentropic κS or isothermal κT

compressibilities and the speed of sound cs would have a cusp at the topological transition

line similar to that encountered in |∆0| (see Fig. 3.1) as a function of the mass anisotropy

mr. The cusp (discontinuous change in slope) in κS , κT or cs gets larger with increasing

population imbalance.

Having discussed the finer topological classification of possible superfluid phases, I take

all the criteria together (positive compressibility, positive curvature of thermodynamic po-

tential, positive superfluid density, and topological character) to present next the resulting

ground state phase diagrams.

3.4.3 Saddle Point Phase Diagrams

Based on all the previous criteria, I construct the the P versus 1/(kF,+aF ) phase diagram for

the mass ratios: m↑ = m↓ (mr = 1) for equal mass mixtures and m↑ = 0.15m↓ (mr = 0.15)

for 6Li and 40K mixture. In addition, I construct the P versus mr phase diagram for seven

sets of interaction strengths: 1/(kF,+aF ) = −2, −1 and −0.25 on the BCS side shown in

Fig. 3.5; 1/(kF,+aF ) = 0 at unitarity shown in Fig. 3.6; and 1/(kF,+aF ) = 0.25, 1 and 2

on the BEC side shown in Fig. 3.7. In these diagrams, the ↑ (↓) label always corresponds

to lighter (heavier) mass such that lighter (heavier) fermions are in excess when P > 0

(P < 0). Notice that this choice spans all possible population imbalances and mass ratios.

In Figs. 3.4 through 3.7, I indicate the regions of normal (N), and uniform (U) or

non-uniform (NU) superfluid phases. The black squares indicate the transition line that

separates topological phases I and II. In all phase diagrams, phase I (II) always appears to

the left (right) of the dotted lines for P > 0, while phase I (II) always appears to the right

(left) of the dotted lines for P < 0.

The normal phase is characterized by a vanishing order parameter (∆0 = 0), while the

uniform superfluid phase is characterized by ρ0(0) > 0 and ∂2Ω0/∂∆2
0 > 0. The non-uniform

superfluid phase is characterized by ρ0(0) < 0 and/or ∂2Ω0/∂∆2
0 < 0, and it should be of the
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Figure 3.4: Phase diagram of P = (N↑ − N↓)/(N↑ + N↓) versus 1/(kF,+aF ) for (a) equal
(m↑ = m↓) and (b) unequal masses (m↑ = 0.15m↓). I show normal (N), non-uniform (NU)
or uniform (U) superfluid phases. The dotted and P = 0 lines separate topologically distinct
regions. In b) the U phase also occurs for P < 0 when 1/(kF,+aF ) > 4.8 (not shown).

FFLO-type having one wavevector modulation only near the BCS limit [164, 165], although

closer to unitarity, I expect the non-uniform phase to be substantially different from the

FFLO phases either having spatial modulation that would encompass several wavevectors

or presenting complete phase separation between paired and unpaired fermions. However,

from numerical calculations, the superfluid density criterion seems to be weaker for all

parameter space and the non-uniform superfluid phase is characterized by ∂2Ω0/∂∆2
0 <

0, which indicates possible phase separation, since at least one of the eigenvalues of the

compressibility matrix κσ,σ′ also becomes negative. Therefore, for homogeneous systems,

paired (superfluid) fermions and unpaired (excess) fermions coexist in the uniform superfluid

regions, but are phase separated in non-uniform superfluid regions, such that the topological

transition from phase I to phase II may not be accessible. However, in a harmonic trap with

a large superfluid region at the center, the topological phases should be observable since the

central region is essentially a “uniform superfluid” with the excess fermions at the edge [129].

The peculiar momentum distribution of different topological phases would be smeared out

by the trapping potential, but their marked signatures should still be present. Furthermore,

these topological phases may be accessible in trapped systems at finite temperature [166],

or in optical lattices [167].

As shown in Fig. 3.4(a), when m↑ = m↓, the phase diagram is symmetric around P = 0.

101



A continuous quantum phase transition occurs from the NU to the N phase beyond a critical

population imbalance on the BCS side. In addition, a discontinous transition from the NU

to the U phase of topological type (I) also occurs. In contrast, as shown in Fig. 3.4(b),

when m↑ = 0.15m↓, the phase diagram is asymmetric around P = 0,having a larger stability

region for uniform superfluidity when the population N↑ of lighter fermions is larger than the

population N↓ of heavier fermions. A continuous quantum phase transition occurs from the

NU to the N phase beyond a critical population imbalance on the BCS side. Furthermore,

it is found that the U phase has a larger stability region when light fermions are in excess,

and that a discontinuous transition from the NU to the U phase occurs. The U phase

also exists for P < 0 when 1/(kF,+aF ) > 4.8 (not shown). Lastly, one of the topological

quantum phase transitions (dotted lines) is very close to the NU/U boundary for P > 0 in

contrast to the equal mass case. This line indicates a change in quasiparticle Fermi surface

topology from type (I) to type (II), and may lie in the U region when m↑/m↓ < 0.15.

Next I discuss the P versus mr phase diagram for seven sets of interaction strengths:

1/(kF,+aF ) = −2, −1 and −0.25 on the BCS side shown in Fig. 3.5; 1/(kF,+aF ) = 0 at

unitarity shown in Fig. 3.6; and 1/(kF,+aF ) = 0.25, 1 and 2 on the BEC side shown in

Fig. 3.7.

As shown in Fig. 3.5(a) and 3.5(b), I find a small region of uniform superfluidity on

the BCS side only when the mass anisotropy is small and the lighter fermions are in excess

(P > 0). Thus, to probe the largest amount of phases on the BCS side, mixtures consisting

of 6Li and 40K (mr ≈ 0.15) or 6Li and 87Sr (mr ≈ 0.07) are good candidates. In the rest of

the phase diagram, I find a quantum phase transition from the non-uniform superfluid to

the normal phase beyond a critical population imbalance for both positive and negative P .

The phase space of uniform superfluidity expands while that of the normal phase shrinks

with increasing interaction strength as shown in Figs. 3.5(b) and 3.5(c).

This general trend continues into the unitarity limit [1/(kF,+aF ) = 0] as shown in

Fig. 3.6. Since this limit is theoretically important as well as experimentally accessible,

it is useful to analyze the phase diagram as a function of population imbalance and mass

anisotropy. Notice that Fermi mixtures corresponding to mass ranges 0 < mr < 0.23, like

102



-1

-0.5

 0

 0.5

 1

 0  0.25  0.5  0.75  1

P

mr

(a)

N

N

NU

-1

-0.5

 0

 0.5

 1

 0  0.25  0.5  0.75  1

P

mr

(a)

-1

-0.5

 0

 0.5

 1

 0  0.25  0.5  0.75  1

P

mr

(b)

N

N

NU
NU

U

-1

-0.5

 0

 0.5

 1

 0  0.25  0.5  0.75  1

P

mr

(b)

-1

-0.5

 0

 0.5

 1

 0  0.25  0.5  0.75  1

P

mr

(c)

N

N

NU

NU
U

-1

-0.5

 0

 0.5

 1

 0  0.25  0.5  0.75  1

P

mr

(c)

Figure 3.5: Phase diagram of P = (N↑ −N↓)/(N↑ + N↓) versus mr = m↑/m↓ on the BCS
side when (a) 1/(kF,+aF ) = −2 (b) 1/(kF,+aF ) = −1 and (c) 1/(kF,+aF ) = −0.25. I show
normal (N), uniform (U) or non-uniform (NU) superfluid phases. The dotted line separates
topologically distinct superfluid phases. For P > 0 topological phase I (II) corresponds to
the region to the left (right) region of the dotted line, and for P < 0 the topological phase
is always of type II.

6Li and 87Sr (mr ≈ 0.07) and 6Li and 40K (mr ≈ 0.15) have phase diagrams which are

qualitatively different from those corresponding to mass ratios 0.23 < mr < 0.45 like 6Li

and 25Mg (mr ≈ 0.24) and 6Li and 2H (mr ≈ 0.33), since a topological transition line may

be accessible in the second range. Furthermore, only NU and N phases are accessible at

unitarity for Fermi mixtures in the range of mass ratios 0.45 < mr < 1 like 40K and 87Sr

(mr ≈ 0.64) or any equal mass mixtures. Notice that the results for the case of equal masses

(mr = 1) are in close agreement with recent MIT experiments [76] in a trap. At unitarity,

my non-uniform superfluid to normal state boundary occurs at P ≈ ±0.73, and the MIT

group obtains P ≈ ±0.70(4) for their superfluid to normal boundary. This agreement is
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Figure 3.6: Phase diagram of P = (N↑ − N↓)/(N↑ + N↓) versus mr = m↑/m↓ at the
unitarity limit when 1/(kF,+aF ) = 0. I show normal (N), uniform (U) or non-uniform (NU)
superfluid phases. The dotted line separates topologically distinct superfluid phases. For
P > 0 topological phase I (II) corresponds to the region to the left (right) region of the
dotted line, and for P < 0 the topological phase is always of type II.

perhaps coincidental, since my calculations do not include the trapping potential, while the

experiments do. In recent Monte Carlo calculations [168] the population imbalance for the

homogeneous system at the disappearance of superfluidity is P = 0.44. However when the

trap is considered the Monte Carlo method leads to P = 0.77. However, it is not presently

clear why the finite-sized Monte Carlo results and my thermodynamic calculations differ by

a factor of 1.66 for the superfluid to normal phase boundary at unitarity.

Additional increase of interaction strength beyond unitarity on the BEC side leads

to further expansion (shrinkage) of the uniform superfluid (normal) region as shown in

Fig. 3.7(a) and 3.7(b). When heavier fermions are in excess (P < 0), a uniform superfluid

phase is not possible for any mass anisotropy until a critical interaction strength is reached.

The critical interaction strength corresponds to 1/(kF,+aF ) ≈ 0.8 for mr = 1. Further

increase of interaction strength towards the BEC limit [1/(kF,+aF ) > 1], leads to further

expansion (shrinkage) of the uniform (non-uniform) superfluid region as shown in Fig. 3.7(c),

and only the uniform superfluid phase exists in the extreme BEC limit [1/(kF,+aF ) ≫ 1]

even for P < 0 (not shown).

Having discussed the ground state phase diagrams, I present next fluctuation effects

beyond the saddle point approximation.
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Figure 3.7: Phase diagram of P = (N↑ − N↓)/(N↑ + N↓) versus mr = m↑/m↓ on the
BEC side when (a) 1/(kF,+aF ) = 0.25, (b) 1/(kF,+aF ) = 1 and (c) 1/(kF,+aF ) = 2. I show
normal (N), uniform (U) or non-uniform (NU) superfluid phases. The dotted lines separate
topologically distinct superfluid phases. In (a) phase I (II) corresponds to the region to the
left (right) of the dotted line, and for P < 0 phase is always of type II. In (b) phase I (II)
corresponds to the region to the right (left) of the dotted line, and for P > 0 the phase is
always of type I. In (c) the entire superfluid region corresponds to phase I.

3.5 Gaussian Fluctuations

In this section, I discuss the (gaussian) fluctuation effects around the saddle point solutions

at finite and zero temperatures. Near the critical temperature (T ≈ Tc) I discuss the time-

dependent Ginzburg-Landau (TDGL) equation, and at zero temperature (T = 0) I analyse

the collective phase (or Goldstone) mode as well as the effects of harmonic trap in the BEC

limit, which are discussed next.
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3.5.1 Time-Dependent Ginzburg-Landau (TDGL) Equation near Tc

My basic motivation here is to investigate the low frequency and long wavelength behavior

of the order parameter near Tc where ∆0 = 0, and derive the TDGL equation [44]. The

TDGL equations can be obtained from the GL action

SGL = SGauss + S4, (3.36)

where SGauss is the Gaussian effective action of Eq. (3.8) with ∆0 = 0 and S4 = b|Λ(x)|4/2.

Here, b is a four-point Green’s function defined in Appendix B.

The quadratic part of the Ginzburg-Landau action can be obtained from a long wave-

length, small frequency expansion of SGauss when the order parameter vanishes (∆0 = 0).

In this case, F−1
1,2(q) = 0 and F−1

1,1(q) = L−1(q), where

L−1(q) =
1

g
−

∑

k

1 − nf (ξq/2+k,↑) − nf (ξq/2−k,↓)

ξq/2+k,↑ + ξq/2−k,↓ − ivℓ
|Γk|2,

where nf (ξ) = 1/[exp(βξ) + 1] is the Fermi distribution.

Minimization of the action SGL leads to the TDGL equation

a + b|Λ(x)|2 −

∑

i,j

cij

2
∇i∇j − id

∂

∂t


Λ(x) = 0 (3.37)

in the real space x = (x, t) representation. Notice that these equations are nothing but the

Euler-Lagrange equations for the field Λ(x) appearing in SGL.

Expressions for the coefficients a, b, cij and d are presented in appendix B.3. The

condition a = 0 corresponds to the Thouless criterion, and the coefficient of the nonlinear

term is positive (b > 0) guaranteeing the stability of the effective theory. The kinetic

energy coefficient cij is an effective inverse mass tensor which reduces to a scalar c in the

s-wave case. The time-dependent coefficient d is a complex number, and its imaginary part

reflects the decay of Cooper pairs into the two-particle continuum for µ+ > 0. However, for

µ+ < 0, the imaginary part of d vanishes and the behavior of the order parameter Λ(x) is

propagating reflecting the presence of stable (long lived) bound states.

Since a uniform superfluid phase is more stable in the BEC side, I calculate analytically

all coefficients in the BEC limit where |µ±| ∼ |ǫb|/2 ≫ Tc. I obtain a = a1 + a2 =
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−V m2
+(2µ+ − ǫb)aF /(8π) + V m+nea

2
F , b = b1 + b2 = V m3

+a3
F /(16π) − V m2

+(∂ne/∂µe)a
4
F ,

c = V m2
+aF /[8π(m↑ + m↓)], and d = V m2

+aF /(8π). Here, e labels the excess type of

fermions and ne is the density of unpaired fermions. Through the rescaling

Ψ(x) =
√

dΛ(x), (3.38)

I obtain the equation of motion for a dilute mixture of weakly interacting bosons and

fermions

−µBΨ(x) +
[
UBB|Ψ(x)|2 + UBF ne(x)

]
Ψ(x) − ∇2Ψ(x)

2mB
− i

∂Ψ(x)

∂t
= 0, (3.39)

with bosonic chemical potential µB = −a1/d = 2µ+ − ǫb, mass mB = d/c = m↑ + m↓, and

repulsive boson-boson UBB = V b1/d2 = 4πaF /m+ and boson-fermion UBF = V a2/(dne) =

8πaF /m+ interactions. This procedure also yields the spatial density of unpaired fermions

given by

ne(x) = [a2/d + b2|Ψ(x)|2/d2]/UBF

= ne − UBF (∂ne/∂µe)|Ψ(x)|2. (3.40)

Since ∂ne/∂µe > 0 the unpaired fermions avoid regions where the boson field |Ψ(x)| is large.

Thus, in a harmonic trap, the bosons condense at the center and the unpaired fermions tend

to be at the edges. Notice that, Eq. (3.39) reduces to the Gross-Pitaevskii equation for equal

masses with P = 0 [44], and to the equation of motion for equal masses with P 6= 0 [146].

Next, I recall the standard definitions of the interactions in terms of the scattering

lenghts UBB = 4πaBB/mB and UBF = 4πaBF /mBF , where mB is the mass of the bosons

and mBF = 2memB/(mB + me) is twice the reduced mass of a boson of mass mB and an

excess fermion of mass me. Combining these definitions with the results for UBB and UBF

in terms of the fermion-fermion scattering length aF , I can directly relate the boson-boson

scattering parameter

aBB =
mB

m+
aF =

[
1 +

m↑

2m↓
+

m↓

2m↑

]
aF (3.41)

and the boson-fermion scattering parameter

aBF =
2mBF

m+
aF =

4mBme

m+(mB + me)
aF (3.42)
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to aF . Notice that these expressions reduce to aBB = 2aF and aBF = 8aF /3 for equal

masses [44, 146]. A better estimate for aBB can be found in the literature [63].

Since the effective boson-fermion system is weakly interacting, the BEC temperature is

Tc =
2π

mB

[
nB

ζ(3/2)

]2/3

, (3.43)

where ζ(x) is the Zeta function and nB = (n − ne)/2.

Notice that, the effective total number equation for the boson-fermion mixture can be

written as

N ≈
∑

k

nf (ξk,e) + 2
∑

q

nb

[ |q|2
2mB

− µ̃B

]
, (3.44)

where nb(ε) = 1/[exp(βε)−1] is the Bose distribution and µ̃B → 0− includes also the Hartree

shift. In the limit when Tc → 0, I obtain the critical chemical potential for unpaired fermions

at the normal-to-stable uniform superfluid boundary as given by

µe = 22/3(m+/me)ǫF,+, (3.45)

where e = (↑, ↓) labels excess type of atoms. Since, µ+ → ǫb/2 in this limit, the critical

chemical potential imbalance is given by µ− = γe[−ǫb/2 + 22/3(m+/me)ǫF,+], where ǫb =

−1/(m+a2
F ) is the binding energy, and γ↑ = +1 and γ↓ = −1.

This concludes my analysis for the homogenous mixture of two types of ultra-cold

fermions at finite temperatures. Next I discuss collective excitations at zero temperature.

3.5.2 Sound Velocity at Zero Temperature

In order to obtain the collective mode spectrum, I use the effective action defined in Eq. (3.8)

and express

Λ(q) =
λ(q) + iθ(q)√

2
(3.46)

in terms of the amplitude λ(q) and phase θ(q) fields, respectively. Using the matrix elements

of F−1 defined in Eqs. (3.12) and (3.13) and described in appendix B.1, I can obtain the

matrix elements of the fluctuation matrix in the rotated basis (λ(q), θ(q)). The diagonal

elements of the fluctuation matrix in the rotated basis become M−1
λ,λ(q) = [F−1

1,1 + F−1
1,2 +

F−1
2,1 + F−1

2,2]/2 and M−1
θ,θ(q) = [F−1

1,1 − F−1
1,2 − F−1

2,1 + F−1
2,2]/2, while the off-diagonal elements

become M−1
λ,θ(q) = i[F−1

1,1 − F−1
1,2 + F−1

2,1 − F−1
2,2]/2 with M−1

θ,λ(q) = (M−1
λ,θ)

∗(q).
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The collective modes are found from the poles of the fluctuation matrix M(q) determined

by the condition

detM−1(q) = 0, (3.47)

when the usual analytic continuation ivℓ → w + i0+ is performed. The easiest way to get

the phase collective modes is to integrate out the amplitude fields to obtain a phase-only

effective action. To obtain the long wavelength dispersions for the collective modes at T = 0,

I consider |P | → 0 or kF,+ = kF,↑ = kF,↓ limit, and expand the matrix elements of F−1(q)

to second order in |q| and w to get M−1
λ,λ(q) = A + C|q|2 − Dw2, M−1

θ,θ(q) = Q|q|2 − Rw2

and M−1
λ,θ(q) = iBw, such that

M−1(q, w) =




A + C|q|2 − Dw2 iBw

−iBw Q|q|2 − Rw2


 .

The expansion coefficients are given in the Appendix B.3. Thus, there are two branches

for the collective excitations, but I focus only on the lowest energy one correponding to the

Goldstone mode with dispersion w(q) = v|q|, where

v =

√
AQ

AR + B2
(3.48)

is the speed of sound. Extra care is required when P 6= 0 since Landau damping causes

collective excitations to decay into the two-quasiparticle continuum even for the s-wave

case, since gapless fermionic (quasiparticle) excitations are present (see Fig. 3.2).

The BCS limit is characterized by the criteria µ+ > 0 and µ+ ≈ ǫF,+ ≫ |∆0|. The

expansion of the matrix elements to order |q|2 and w2 is performed under the condition

[w, |q|2/(2m+)] ≪ |∆0|. The coefficient that couples phase and amplitude fields vanish

(B = 0) in this limit. Thus, there is no mixing between the phase and amplitude modes.

The zeroth order coefficient is A = D, and the second order coefficients are C = Q/3 =

DvF,↑vF,↓/(36|∆0|2), and D = R/3 = D/(12|∆0|2). Here, vF,σ = kF,σ/mσ is the Fermi

velocity and D = m+V kF,+/(2π2) is the density of states per spin at the Fermi energy.

Thus, I obtain

v =

√
vF,↑vF,↓

3
=

√
v↑v↓, (3.49)
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with vσ = vF,σ/
√

3, which reduces to the Anderson-Bogoliubov relation when the masses

are equal.

 0

 0.2

 0.4

 0.6

 0  0.25  0.5  0.75  1

v

mr

 0

 0.2

 0.4

 0.6

 0  0.25  0.5  0.75  1

v

mr

Figure 3.8: Sound velocity v (in units of vF,+ = kF,+/m+) versus mr for 1/(kF,+aF ) = −1
(solid line), 1/(kF,+aF ) = 0 (solid squares) and 1/(kF,+aF ) = 1 (hollow squares). Here,
populations are equal (P = 0).

On the other hand, the BEC limit is characterized by the criteria µ+ < 0 and ξk,+ ≫

|∆0|. The expansion of the matrix elements to order |q|2 and w2 is performed under the

condition [w, |q|2/(2m+)] ≪ |µ+|. The coefficient B 6= 0 indicates that the amplitude and

phase fields are mixed. The zeroth order coefficient is A = κ|∆0|2/(2|µ+|), the first order

coefficient is B = κ, and the second order coefficients are C = Q = κ/[2(m↑ + m↓)] and

D = R = κ/(8|µ+|), where κ = D/(32
√

|µ+|ǫF,+). Thus, I obtain

v =
|∆0|√

4(m↑ + m↓)|µ+|
=

√
v↑v↓ (3.50)

with vσ =
√

2πnσaF /m2
σ. Notice that the sound velocity is very small and its smallness

is controlled by the scattering length aF . Furthermore, in the theory of weakly interacting

dilute Bose gas, the sound velocity is given by vB =
√

4πaBBnB/m2
B. Making the identifi-

cation that the density of pairs is nB = n+, the mass of the bound pairs is mB = m↑ + m↓

and that the Bose scattering length is

aBB =
mB

m+
aF =

[
1 +

m↑

2m↓
+

m↓

2m↑

]
aF , (3.51)

vB reduces to the well known Bogoliubov relation when the masses are equal. Therefore,

the strongly interacting Fermi gas with two species can be described as a weakly interacting
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Bose gas at zero temperature as well as at finite temperatures [155]. Notice that aBB

reduces to aBB = 2aF for equal masses [110] in the Born approximation. A better estimate

for aBB can be found in the literature [63, 139, 140].

In Fig. 3.8, I show the sound velocity as a function of the mass ratio mr for three

values of the scattering parameter 1/(kF,+aF ) = −1, 0 and 1 corresponding to the BCS

side [1/(kF,+aF ) = −1], unitarity [1/(kF,+aF ) = 0], and to the BEC side [1/(kF,+aF ) = 1].

Notice that the speed of sound could be measured for a given mr using similar techniques

as in the single species case mr = 1 [72].

This concludes my analysis of collective excitations in the continuum mixture for two

types of fermions at zero temperature. I discuss next the effective field theory between

paired and unpaired fermions.

3.5.3 Weakly Interacting Paired and Excess Fermions at Zero Temperature

In this section, I concentrate on the BEC regime, where the paired and unpaired (excess)

fermions can be described by a mixture of molecular bosons and fermions. In this limit, the

resulting equation of motion is identical to Eq. (3.39) near the critical temperature, except

that all parameters are evaluated at zero temperature. Thus, at low temperatures the

system continues to behave as a dilute mixture of weakly interacting bosons (formed from

paired fermions) and unpaired fermions, and can be described by the free energy density

F(x) = E(x) − µene(x) − µB|Ψ(x)|2, (3.52)

where the energy density is

E(x) = KB + KF +
1

2
UBB|Ψ(x)|4 + UBF ne(x)|Ψ(x)|2.

Here, KB is the kinetic energy density of bosons (assumed to be much smaller than all the

other energies) and KF is the kinetic energy density of fermions. Averaging these energy

densities over the spatial coordinates F =
∫

dxF(x)/V leads to a ground state average free

energy density

F =
1

2
UBBn2

B + UBF nenB +
3

5
ǫF,ene − µene − µBnB,
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where ne (nB) is the average density of fermions (bosons), and ǫF,e is the fermi energy of

the excess fermions. Using the positivity of the Bose-Fermi compressibility matrix κα,β =

∂µα/∂nβ, where α, β = e, B, one can show that bosons and fermions phase separate when

the condition

ne ≥
4π

3

(
π

me

)3 (
UBB

U2
BF

)3

(3.53)

is satisfied [171].

Using the boson-boson and boson-fermion interactions UBB = 4πaBB/mB and UBF =

4πaBF /mBF , the scattering paramaters indicated in Eqs. (3.41) and (3.42), as well as the

relations |P | = ne/n, n = n↑+n↓ = k3
F,+/(3π2) and nB = (n−ne)/2, then phase separation

occurs when

|P | ≥ 1

2

(π

8

)3
(

m+/me

kF,+aF

)3

. (3.54)

Here e labels excess type of fermions, and me is the mass of the unpaired fermions, and m+

is twice the reduced mass of the ↑ and ↓ fermions. This expression is quantitatively correct

in its region of validity, i.e., when 1/(kF,+aF ) ≫ 1, however, it still gives semi-quantitative

results for 1/(kF,+aF ) & 2. For instance, in the case of an equal mass mixture, this expres-

sion would suggest that the resulting Bose-Fermi mixture is uniform when 1/(kF,+aF ) > 2.5

for |P | → 0.5, and when 1/(kF,+aF ) > 3.2 for |P | → 1. From the numerical calculations I

find 1/(kF,+aF ) > 1.9 for |P | → 0.5, and when 1/(kF,+aF ) > 2.4 for |P | → 1.

The analytic expression given in Eq. (3.54) may be used as a guide for the boundary

between phase separation (non-uniform) and the mixed phase (uniform) for any mixture

of fermions. In particular, this relation serves as an estimator for the phase boundary for

future experiments performed in the BEC limit of unequal mass fermions with population

imbalance. This relation can be rewritten in terms of the mass ratio mr = m↑/m↓ by

realizing that the ratio m+/me = 2mr/(1 + mr) when ↓ (heavier) fermions are in excess,

and that m+/me = 2/(1 + mr) when ↑ (lighter) fermions are in excess. Thus, when ↓

(heavier) fermions are in excess, the critical polarization below which phase separation

(non-uniform phase) occurs is

P
(1)
c,↓ = −1

2

(
π

4kF,+aF

)3 (
mr

1 + mr

)3

, (3.55)
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while, when ↑ (lighter) fermions are in excess, the critical polarization above which phase

separation (non-uniform phase) occurs is

P
(1)
c,↑ = +

1

2

(
π

4kF,+aF

)3 (
1

1 + mr

)3

. (3.56)

Notice that in the equal mass (mr = 1) case P
(1)
c,↓ = −P

(1)
c,↑ as required by symmetry.

In addition, I can also describe analytically a finer structure of non-uniform (phase

separated) superfluid phases deep into the BEC regime. For a weakly interacting Bose-

Fermi mixture, the phase separated region consists of two regions: PS(1), where there

is phase separation between pure fermions and pure bosons (tightly paired fermions), and

PS(2), where there is phase separation between pure fermions and a mixture of fermions and

bosons (tighly bound fermions). Following the method of Ref. [171], I obtain analytically

the condition

ne ≥
1125π4

128m4
e

U3
BB

U6
BF

− 5

4

UBB

UBF
nB, (3.57)

for the transition from the PS(2) to the PS(1) phase.

Using the effective boson-boson (UBB) and effective boson-fermion UBF interactions, I

can rewrite this relation as

|P | ≥ 8

11

(
15π

64

)3 (
m+/me

kF,+aF

)3

− 5

11
, (3.58)

where I used nB = (n−ne)/2 as the boson density and |P | = ne/n. These phase boundaries

can also be expressed in terms of mr and 1/(kF,+aF ) as follows. When ↓ (heavier) fermions

are in excess, the critical polarization below which the transition from PS(2) to PS(1) occurs

is

P
(2)
c,↓ = − 1

11

(
15π

16kF,+aF

)3 (
mr

1 + mr

)3

+
5

11
, (3.59)

while, when ↑ (lighter) fermions are in excess, the critical polarization above which the

transition from PS(2) to PS(1) occurs is

P
(2)
c,↑ = +

1

11

(
15π

16kF,+aF

)3 (
1

1 + mr

)3

− 5

11
. (3.60)

Notice that in the equal mass (mr = 1) case P
(2)
c,↓ = −P

(2)
c,↑ as required by symmetry.
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Figure 3.9: Phase diagram of |P | = |N↑ − N↓|/(N↑ + N↓) versus (m+/me)/(kF,+aF )
in the BEC limit. I show the uniform superfluid (U) phase where paired and unpaired
fermions coexist, and the phase separated non-uniform superfluid phases PS(1) and PS(2).
The PS(1) region labels phase separation between pure unpaired (excess) and pure tightly
paired fermions (bosons), while the PS(2) region labels phase separation between pure
unpaired (excess) fermions and a mixture of unpaired and tightly paired fermions.

In Fig. 3.9, I show phase diagram of uniform and non-uniform superfluidity as a function

of population imbalance |P | and (m+/me)/(kF,+aF ), which is strictly valid in the BEC limit

when 1/(kF,+aF ) ≫ 1. In this figure, I show the uniform superfluid (U) phase where tightly

paired and unpaired fermions coexist, and phase separated (non-uniform) superfluid (PS)

phases. The PS(1) region labels phase separation between pure unpaired (excess) and pure

tightly paired fermions (bosons), while the PS(2) region labels phase separation between

pure unpaired (excess) fermions and a mixture of unpaired and tightly paired fermions. The

phase boundary between U and PS(2) phases is determined from Eq. (3.54), and the phase

boundary between PS(2) and PS(1) phases is determined from Eq. (3.58). For a fixed mass

anisotropy mr, when |P | is large, I find phase transitions from PS(1) to PS(2) to U phase

as the interaction strength 1/(kF,+aF ) increases as shown in Fig. 3.10. However, when

|P | is small, I find a direct phase transition from the PS(1) to the U phase as 1/(kF,+aF )

increases. Notice that the phase diagrams given in Fig. 3.10 are very similar to the ones

given in Fig. 3.4, with the added refinement of the non-uniform superfluid phases PS(1)

and PS(2).

In Fig. 3.11, I show the phase diagram of population imbalance P versus mass anisotropy
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Figure 3.10: Phase diagram of P = (N↑ −N↓)/(N↑ + N↓) versus 1/(kF,+aF ) for (a) equal
masses when m↑ = m↓, and (b) unequal masses when m↑ = 0.15m↓ in the BEC side. I
show normal(N), uniform superfluid (U) and phase separated non-uniform superfluid phases
PS(1) and PS(2).

mr = m↑/m↓ in the BEC limit when (a) 1/(kF,+aF ) = 3 and (b) 1/(kF,+aF ) = 4. I indicate

the uniform superfluid (U) phase where paired and unpaired fermion coexist, and phase

separated non-uniform superfluid phases PS(1) and PS(2). The phase boundary between

U and PS(2) phases is determined from Eq. (3.55) when P < 0, and from Eq. (3.56) when

P > 0. In addition, the phase boundary between PS(2) and PS(1) phases is determined

from Eq. (3.59) when P < 0, and PS(1) phase does not exist when P > 0. Notice that these

phase diagrams are very similar to the one given in Fig. 3.7(c), with the added refinement

of the non-uniform superfluid phases PS(1) and PS(2). For a fixed interaction strength

1/(kF,+aF ), when |P | is large, I find phase transitions from PS(1) to PS(2) to U phase as

the mass anisotropy mr increases. However, when |P | is small, I find a phase transition

from the PS(1) to the U phase as mr increases.

To summarize, I studied analytically the structure of non-uniform (phase separated)

superfluid phases in the BEC regime. However to understand experiments on ultracold

atoms, I need to consider the trapping potential, which is discussed next.

3.5.4 Effects of a Trapping Potential

For simplicity, I approximate the trapping potential by an isotropic harmonic function where

the potential energy is Vσ(x) = ασ|x|2/2 such that the local chemical potentials are given
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Figure 3.11: Phase diagram of P = (N↑ − N↓)/(N↑ + N↓) versus mr = m↑/m↓ in the
BEC limit when (a) 1/(kF,+aF ) = 3 and (b) 1/(kF,+aF ) = 4. I show the uniform superfluid
(U) phase where paired and unpaired fermion coexist, and phase separated non-uniform
superfluid phases PS(1) and PS(2).

by

µσ(x) = µσ − 1

2
ασ|x|2. (3.61)

Here, ασ is proportional to the trapping frequency of the σ type fermion, which is typically

different for each kind of atom. In general, it is quite difficult to make completely isotropic

traps and harmonic traps are typically elongated such that

Vσ(x) =
ασ,x

2
x2 +

ασ,y

2
y2 +

ασ,z

2
z2 (3.62)

with ασ,x = ασ,y ≫ ασ,z. However, the same qualitative behavior occurs in the elongated or

spherically symmetric (isotropic) traps, and I confine myself for simplicity to the isotropic

case. When experimental data becomes available and all the numbers are known, one can

revisit this problem for detailed comparison between theory and experiment.

Again, I confine the discussion to the BEC regime, and obtain the equation of motion

for a dilute mixture of weakly interacting bosons and fermions at zero temperature

− µBΨ(x) +
[
UBB|Ψ(x)|2 + UBF ne(x)

]
Ψ(x)

+ [V↑(x) + V↓(x)]Ψ(x) − ∇2Ψ(x)

2mB
= i

∂Ψ(x)

∂t
, (3.63)

where the spatial density of unpaired fermions is

ne(x) = nex(x) − UBF
∂nex(x)

∂µe
|Ψ(x)|2. (3.64)

116



These results are quite similar to the case of equal masses [146]. Notice that setting Vσ = 0

reduces the problem to the free space case discussed in the previous subsection. Here,

ne(x) =
1

V

∑

k

nf [ǫk,e − µe(x)] , (3.65)

where nf (ε) = 1/[exp(βε) + 1] is the Fermi distribution. In the BEC limit when aF → 0+,

I can approximate the local density of unpaired fermions as

ne(x) ≈ 1

V

∑

k

nf

[
ǫk,e − µe(x) + UBF |Ψ(x)|2

]
, (3.66)

which at zero temperature leads to

ne(x) =
1

6π2
{2me [µe(x) − UBF nB(x)]}3/2. (3.67)

Notice that the density of bosons at zero temperature is given by

nB(x) = |Ψ(x)|2. (3.68)

Therefore, I need to solve Eq. (3.63) self-consistently with the number of unpaired (excess)

Ne =
∫

dxne(x) and paired (bound) Nbf = 2
∫

dxnB(x) fermions such that the total number

of fermions is N = Ne + Nbf .
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Figure 3.12: (a) Density nσ(|x|) of fermions (in units of k3
F,+), and (b) density of molecular

bosons nB(|x|) (hollow circles) and unpaired fermions ne(|x|) (solid circles) versus trap
radius |x|/|x|TF . Here P = 0.5 and 1/(kF,+aF ) = 2. In (b), I also compare nB(|x|) for
P = 0 when 1/(kF,+aF ) = 2 (crosses).

Next I solve the self-consistency equations for a 6Li and 40K mixture (mr = 0.15) within

the Thomas-Fermi (TF) approximation, where the kinetic energy term in Eq. (3.63) is
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neglected. This leads to coupled equations for the density of paired and unpaired fermions

nB(x) ≈ µB − V↑(x) − V↓(x) − UBF ne(x)

UBB
. (3.69)

In the numerical analysis, I choose for convenience α↑ = α↓ = α, 1/(kF,+aF ) = 2 and P =

0.2, 0.5 and 0.8. However, in a more realistic case α↑ 6= α↓ = α, since atoms with different

masses may experience different trapping potentials due to their different polarizabilities.
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Figure 3.13: Density of molecular bosons nB(|x|) (hollow circles) and unpaired fermions
ne(|x|) (solid circles) versus trap radius |x|/|x|TF for (a) P = 0.2, and (b) P = 0.8 when
1/(kF,+aF ) = 2.

In Fig. 3.12(a), I show the density nσ(|x|) of σ type fermion (in units of k3
F,+) as a

function of |x|/|x|TF , where |x|TF is the TF radius defined by ǫF,+ = k2
F,+/(2m+) =

α|x|2TF /2. I also scale the total number of fermions with

N =
k3

F,+|x|3TF

24
. (3.70)

I find that the density of ↑ and ↓ fermions are similar close to the center of the trapping

potential, while most of the excess fermions are close to the edges. In Figs. 3.12(b) and 3.13,

I show the density of molecular bosons nB(|x|) = [n(|x|) − ne(|x|)]/2 as well as unpaired

fermions ne(|x|) = n↑(|x|) − n↓(|x|). In both figures, I find a clear indication of phase

separation between paired and unpaired fermions. In Fig. 3.12(b), I also compare the total

density of fermions n(|x|) for the same parameters when the populations are balanced N↑ =

N↓. When P 6= 0, the total local density of fermions at the center of the trap is reduced in

comparison to the P = 0 case for the same fermion scattering parameter, since the unpaired
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fermions are pushed away from the center of the trap due to UBF . These findings for unequal

masses are similar to previous results on equal mass mixtures [146, 147, 148, 149, 150, 151].

However, in Figs. 3.12(b) and 3.13(a), I find three regions within the TF approximation

and parameters used. For instance, in Fig. 3.12(b), (i) bosons only for |x| ≤ 0.23|x|TF ; (ii)

bosons and excess fermions for 0.23|x|TF < |x| ≤ 0.45|x|TF ; and (iii) excess fermions only

for |x| > 0.45|x|TF . While in Fig. 3.13(b), I find two regions within the TF approximation

and parameters used. (i) bosons and excess fermions for 0 ≤ |x| ≤ 0.35|x|TF ; and (ii) excess

fermions only for |x| > 0.35|x|TF .

Lastly, for the parameters used, the harmonic trap tends to favor phase separation into

a PS(1)-type phase where one has almost pure fermion and almost pure boson regions. This

is simply because the excess fermions feel effectively a repulsive trapping potential at the

center of the trap, while they feel an attractive trapping potential towards the edges of the

trap, as can be directly shown from Eqs. (3.67) and (3.69). In a harmonic trap it may be

still possible to realize the PS(2)-type phase where one has an almost pure fermion region

and an almost pure mixed phase of bosons and fermions, provided that good control over

the trapping potentials is possible [172].

Having concluded discussion of saddle point ground state phase diagrams and the effects

of a trapping potential, I present next the exact ground state phase diagrams in the BEC

limit.

3.6 Phase Diagrams in the BEC Limit beyond the Born Approximation

In this section, I use the effective weakly interacting Bose-Fermi mixture description to

analyze the superfluid phase diagram beyond the Born approximation for two-species dilute

Fermi-Fermi mixtures with equal and unequal masses in the BEC limit. I first calculate the

exact boson-fermion scattering length as a function of mass anisotropy and then construct

the phase diagrams. My main results are as follows. In addition to the normal and uniform

superfluid phases, I find two different non-uniform phase separated (PS) states: (1) a phase

separation between pure unpaired (excess) and pure tightly paired fermions (molecular

bosons), and (2) a phase separation between pure excess fermions and a mixture of excess

119



fermions and molecular bosons. For equal mass mixtures, the improved results for the

PS(2) to U phase boundary is quantitatively in agreement with the previous saddle-point

or mean-field results, however, there are important qualitative and quantitative differences

for unequal mass mixtures showing the larger effects of fluctuations in the latter case.

3.6.1 Weakly Interacting Molecular Bosons and Fermions

In the BEC limit, I showed in Section 3.5 that Fermi-Fermi mixtures behave as a dilute

mixture of weakly interacting molecular bosons (formed from paired fermions) and unpaired

excess fermions. Using the positive definiteness of the Bose-Fermi compressibility matrix

κi,j = ∂µi/∂nj , where {i, j} ≡ {B, F}, I find that molecular bosons and excess fermions

phase separate when the condition nF ≥ 4π4U3
BB/(3m3

F U6
BF ) is satisfied [171]. Defining

the boson-boson and boson-fermion interaction strengths UBB = 4πaBB/mB and UBF =

4πaBF /mBF as well as the relations |P | = nF /n and n = k3
F,+/(3π2) where kF,+ is the

Fermi momentum, phase separation occurs when

|P | ≥ π3γ3
Bm6

BF

16β6
F m3

Bm3
F

λ3. (3.71)

Here aF , aBB = γBaF and aBF = βF aF are the fermion-fermion, boson-boson and boson-

fermion scattering lengths where γB and βF are constants, λ = 1/(kF,+aF ) is the interaction

strength, mB = m↑ + m↓ is the mass of the molecular bosons, mBF = 2mBmF /(mB + mF )

is twice the reduced mass of a molecular boson and an excess fermion, and mF is the mass

of the excess-type fermions.

In addition, I can also describe analytically a finer structure of non-uniform phase sepa-

rated superfluid phases. For a weakly interacting Bose-Fermi mixture, the phase separation

consists of two regions [171]: (I) PS(1) where there is phase separation between pure ex-

cess fermions and pure molecular bosons, and (II) PS(2) where there is phase separation

between pure excess fermions and a mixture of excess fermions and molecular bosons. I

obtain analytically the condition nF ≥ 1125π4U3
BB/(128m4

F U6
BF ) − 5UBBnB/(4UBF ) for

the transition from the PS(2) to the PS(1) phase. Using the definitions of boson-boson and
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boson-fermion interactions, I can rewrite this relation as

|P |
(

1 − 5γBmBF

8βF mB

)
≥ 3375π3γ3

Bm6
BF

8192β6
F m3

Bm3
F

λ3 − 5γBmBF

8βF mB
, (3.72)

where γB = aBB/aF , βF = aBF /aF and λ = 1/(kF,+aF ).

The analytic expressions given in Eqs. (3.71) and (3.72) are exact in their region of

validity, i.e., when 1/(kF,+aF ) ≫ 1, however, they may still give semi-quantitative results

for 1/(kF,+aF ) & 1. Therefore, these expressions may be used as a guide for the boundary

between phase separated (non-uniform) and the mixed (uniform) phases for any mixture of

fermions. In particular, they serve as an estimator for the phase bounday for future exper-

iments performed in the BEC limit for unequal mass fermions with population imbalance.

In order to make quantitative predictions for future experiments, I need to know the

exact boson-boson and boson-fermion scattering lengths as a function of mass anisotropy.

While I calculated the boson-boson and boson-fermion scattering lengths within the Born

approximation in Section 3.5.1, it is known that one needs to go beyond this approximation

to calculate the exact scattering lengths [170]. This is true even for equal mass mixtures,

that is

aBB = 0.60aF , aBF = 1.18aF (exact), (3.73)

aBB = 2.00aF , aBF = 2.67aF (Born), (3.74)

are the exact and the Born approximation values. For my purposes, I need to calculate the

exact values for aBB and aBF as a function of mass anisotropy as discussed next.

3.6.2 Boson-Boson and Boson-Fermion Scattering Length

For equal mass mixtures, a diagrammatic approach has been recently used to calculate

exact values for aBB and aBF [139, 140], and the results are in agreement with earlier

works [169, 170]. Next, I generalize this approach and analyze only the boson-fermion

scattering length of three fermions when two of the fermions have different mass from the

third one.

This problem was first solved by Skorniakov and Ter-Martirosian in the context of
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Figure 3.14: Diagrammatic representation of the integral equation for the boson-fermion
scattering t-matrix TBF

k (p, p0), where the single lines represent the σ-type fermion propa-
gators, and the double lines represent the dressed molecular boson propagators. Notice that
the first diagram on the right represents a fermion exchange process, and all other possible
processes are included in the second diagram.

nuclear physics when all three fermions had the same mass [169]. The diagrammatic rep-

resentation for the equation of the boson-fermion scattering t-matrix TBF
k (p, p0) is shown

in Fig. 3.14, where wF = k2/(2mF ) and wB = k2/(2mB) are the kinetic energies for the

excess-type fermions and molecular bosons, respectively, and ǫb = −1/(m↑↓a
2
F ) < 0 is the

binding energy of the ↑- and ↓-type fermions. Here, m↑↓ = 2m↑m↓/(m↑ + m↓) is twice the

reduced mass of the ↑- and ↓-type fermions. In this figure, single lines represent the σ-type

fermion propagators given by

G0,σ(k, w) =
1

w − wσ + µσ + i0+
, (3.75)

where wσ = k2/(2mσ) is the energy and µσ is the chemical potential of the σ-type fermions.

Similarly double lines represent the dressed molecular boson propagators given by

D0(k, w) =
4π

m
3/2
↑↓

1

|ǫb|1/2 − (wB − w − µ↑ − µ↓ − i0+)1/2
, (3.76)

which is derived in Appendix B.4. Notice that, on the right hand side of Fig. 3.14, the

first diagram represents a fermion exchange process, and all other (infinitely many) possible

processes are included in the second diagram. In the following, I set µσ = 0 since all of the

calculations are performed for three-body interactions in vacuum.

Therefore, in the analytical form, the t-matrix TBF
k (p, p0) satisfies the following integral
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equation

TBF
k (p, p0) = − G0,F (k + p, wB − wF + ǫb + p0)

−
∑

q,q0

D0(q, wB + ǫb + q0)G0,F (−q, wF − q0)

TBF
k (q, q0)G0,−F (p + q, wB − wF + ǫb + p0 + q0), (3.77)

where I used (− ↑) ≡↓ and vice versa. On the right hand side, I can sum over frequency q0

by closing the integration contour in the upper half-plane, where TBF
k (q, q0) and D0(q, wB+

ǫb + q0) are analytic functions of q0. Since this integration sets q0 = k2/(2mF )− q2/(2mF ),

I set p0 = k2/(2mF )− p2/(2mF ) in order to have the same frequency dependence for the t-

matrix on both sides [140]. Since I are interested in zero-range low energy s-wave scattering,

I average out the angular dependences of k and p. When k → 0, the resultant equation is

the generalized integral equation for the boson-fermion scattering and it is given by

m↑↓a
BF
0 (p)/mBF

a−1
F + (m↑↓p2/mBF + a−2

F )1/2
=

1

p2 + a−2
F

− mB

2πmF

∫ ∞

0

dq

qp
ln

(
q2 + 2mF qp/mB + p2 + a−2

F

q2 − 2mF qp/mB + p2 + a−2
F

)
aBF

0 (q). (3.78)

Here, I define the boson-fermion scattering length

aBF
k (p) =

mBF

m
3/2
↑↓

[
|ǫb|1/2 +

(
p2 − k2

mBF
− ǫb

)1/2
]

TBF
k (p) (3.79)

with its full momentum dependence. The integral equation given above as well as the

scattering length expression reduces to the well-known identities for equal masses, i.e. when

m↑ = m↓ = m. Notice that, only the fermion exchange process is taken into account in the

Born approximation, and neglecting the second term on the right hand side of Eq. (3.78)

leads to aBF
0 (0) = 2(mBF /m↑↓)aF which is consistent with my previous results given in

Section 3.5.1. However, I need to include both terms in order to find exact boson-fermion

scattering length.

Next, I solve Eq. (3.78) numerically for aBF
0 (p) as a function of mass anisotropy m↑/m↓,

and exact results for aBF
0 (0) as well as the Born approximation values are shown in Fig. 3.15(a).

In the diagrams, I choose ↑ (↓) to label lighter (heavier) fermions such that lighter (heavier)
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Figure 3.15: In (a), boson-fermion scattering length aBF
0 (0)/aF versus mass anisotropy

m↑/m↓ is shown when lighter ↑-type (hollow circles) or heavier (solid circles) ↓-type fermions
are in excess. In (b), boson-boson scattering length aBB(0)/aF versus mass anisotropy
m↑/m↓ is shown.

fermions are in excess when F ≡↑ (F ≡↓). This choice spans all possible mass ratios. I

find that while aBF
0 (0) = 1.179aF when m↑ = m↓, aBF

0 (0) decreases (increases) from this

value with increasing mass anisotropy when the lighter (heavier) fermions are in excess. In

addition, in the limit of m↑/m↓ → 0, while aBF
0 (0) → aF when the lighter fermions are in

excess, aBF
0 (0) diverges when the heavier fermions are in excess. Notice also that the Born

approximation values for aBF
0 (0) are not in agreement with the exact values for any mass

anisotropy.

In Fig. 3.15(b), I present exact results for aBB(0) which are extracted from Ref. [170],

together with the Born approximation values aBB(0) = (mB/m↑↓)aF which is derived

in Section 3.5.1 as a function of mass anisotropy m↑/m↓. I again find that the Born

approximation values for aBB(0) are not in agreement with the exact values for any mass

anisotropy. Since I now have the exact values for the boson-boson as well as the boson-

fermion scattering lengths, I analyze next the superfluid phase diagrams of two-species

Fermi-Fermi mixtures in the BEC limit.

3.6.3 Superfluid Phase Diagrams in the BEC Limit

As discussed in the introduction, atomic gases of fermionic 6Li, 40K, 87Sr, and 171Yb atoms

have been cooled down below their Fermi degeneracy temperatures, and the superfluid
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properties of two-component mixtures of the same atom species have been intensely an-

alyzed [76, 77, 111, 112]. Anticipating future experiments, I analyze in this section the

superfluid phase diagrams of two-species fermion mixtures. The boson-boson and boson-

fermion scattering lengths for some of the possible mixtures are given in Table 3.1. Among

these possibilities, next I confine the analysis to a population imbalanced mixture of 6Li

and 40K atoms where m↑ = 0.15m↓.

Table 3.1: Exact boson-boson (aBB) and boson-fermion (aBF ) scattering lengths for a list
of two-species Fermi-Fermi mixtures. Here, aB↑ (aB↓) corresponds to excess-type of ↑ (↓)
fermions.

↑ ↓ m↑/m↓ aBB/aF aB↑/aF aB↓/aF
6Li 6Li 1.000 0.599 1.179 1.179
6Li 40K 0.150 0.695 1.010 1.984
6Li 87Sr 0.068 - 1.003 2.512
6Li 171Yb 0.035 - 1.001 3.023
40K 87Sr 0.460 0.599 1.064 1.411
40K 171Yb 0.234 0.629 1.022 1.723
87Sr 171Yb 0.508 0.599 1.073 1.374

In Fig. 3.16, I show phase diagrams of uniform and non-uniform superfluidity as a func-

tion of population imbalance P = (N↑−N↓)/(N↑+N↓) and interaction strength 1/(kF,+aF )

for equal mass mixtures when m↑ = m↓ and for unequal mass mixtures when m↑ = 0.15m↓.

In the diagrams, I choose ↑ (↓) to label lighter (heavier) fermions such that lighter (heavier)

fermions are in excess when P > 0 (P < 0). Although these diagrams are strictly valid in the

BEC limit when 1/(kF,+aF ) ≫ 1, they may be qualitatively correct when 1/(kF,+aF ) & 1.

In Fig. 3.16, I show the uniform superfluid (U) phase where tightly paired and unpaired

fermions coexist, and phase separated (non-uniform) superfluid (PS) phases. The PS(1)

region labels phase separation between pure excess fermions and molecular bosons, while

the PS(2) region labels phase separation between pure excess fermions and a mixture of

excess fermions and molecular bosons. It is important to emphasize that the possibility of a

PS(1) region has not been proposed before for the population imbalanced fermion mixtures.

The phase boundary between U and PS(2) phases is determined from Eq. (3.71), and the

phase boundary between PS(2) and PS(1) phases is determined from Eq. (3.72). For a fixed
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mass anisotropy, when |P | is large, I find phase transitions from PS(1) to PS(2) to U phase

as the interaction strength 1/(kF,+aF ) increases. However, when |P | is very small, I find a

phase transition from the PS(1) to the U phase as 1/(kF,+aF ) increases.
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Figure 3.16: Phase diagram of P = (N↑ −N↓)/(N↑ + N↓) versus 1/(kF,+aF ) for (a) equal
masses when m↑ = m↓, and (b) unequal masses when m↑ = 0.15m↓ in the BEC side. I
show normal(N), uniform superfluid (U) and phase separated non-uniform superfluid phases
PS(1) and PS(2).

It is also important to emphasize that these phase diagrams include fluctuation correc-

tions beyond the mean-field approach in the BEC limit since I use the exact boson-boson

and boson-fermion scattering lengths. The improved results for equal mass mixtures for

the PS(2) to U phase boundary is quantitatively in agreement with the previous saddle-

point or mean-field results [111, 112] shown in Fig. 3.4(a), however, there are important

qualitative and quantitative differences for unequal mass mixtures shown in Fig. 3.4(b),

showing the larger effects of fluctuations in the latter case. In addition, the presence of a

trapping potential tends to favor PS(2) type phase separation [76], however, it may be still

possible to realize the PS(2) phase provided that good control over the trapping potentials

is possible [77].

Having concluded the analysis of two-species fermion mixtures with mass and popu-

lation imbalance in continuum and trapped systems, next I analyze mass and population

imbalanced fermion mixtures in optical lattices, which is one of the next research frontiers

in ultracold atomic Fermi gases.
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3.7 Mass and Population Imbalanced Fermion Mixtures in Optical Lat-
tices

In a very recent paper, the MIT group produced preliminary experimental evidence for

superfluid and insulating phases of ultracold 6Li atoms in optical lattices [87]. This last

experiment overcame some earlier difficulties of producing Fermi superfluids in optical lat-

tices from an atomic Fermi gas or from molecules of Fermi atoms [88, 84, 85, 86]. Unlike

in homogeneous or harmonically trapped systems, optical lattices offer an enormous degree

of control since phase diagrams may be studied as a function of atom transfer energy tσ

between adjacent lattice sites, on-site atom-atom interactions g, filling fraction nσ, lattice

dimensionality D and tunnelling anisotropy η = t↓/t↑, where σ labels the type of fermion

state.

Arguably, mixtures of two-hyperfine states of the same type of Fermi atoms or mixtures

of two different types of Fermi atoms loaded into optical lattices are one of the next frontiers

in ultracold atom research because of their richer phase diagrams and greater tunability.

Thus, I analyze next the ground state phase diagram containing normal, phase-separated

and coexisting superfluid/excess-fermions, and insulating regions as a function of interaction

strength and density of fermions.

My main results are as follows. By using an attractive Fermi-Hubbard Hamiltonian

to describe fermion mixtures in optical lattices, I show that when fermion-fermion (Bose)

molecules are formed, they interact with each other strongly and repulsively. Furthermore,

when there are excess fermions, the resulting system corresponds to a strongly interacting

(repulsive) mixture of bosons and fermions in the molecular limit, in sharp contrast with

homogenous and trapped systems where the resulting Bose-Fermi mixtures are weakly inter-

acting as discussed in Secs. 3.5.3 and 3.5.4. This result is a direct manifestation of the Pauli

exclusion principle in the lattice case, since each Bose molecule consists of two fermions,

and more than one identical fermion on the same lattice site is not allowed. Lastly, several

insulating phases appear in the strong attraction limit depending on fermion filling frac-

tions. For instance, I find a molecular Bose-Mott insulator (superfluid) for molecular filling

fraction equal to (less than) one when fermion filling fractions are identical, which is in
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qualitative agreement with the MIT experiment [87]. Furthermore, when the filling fraction

of one type of fermion is one and the filling fraction of the other is one-half (correspond-

ing to molecular boson and excess fermion filling fractions of one-half), I also find either

a phase-separated state consisting of a Fermi-Pauli insulator (FPI) of the excess fermions

and a molecular Bose-Mott insulator (BMI) or a Bose-Fermi checkerboard (BFC) phase

depending on the tunneling anisotropy η.

3.7.1 Lattice Hamiltonian

To describe mixtures of fermions loaded into optical lattices, I start with a single-band

Fermi-Hubbard Hamiltonian in momentum space

H =
∑

k,σ

ξk,σa†k,σak,σ − g

2

∑

k,k′,q,σ

b†k,q,σbk′,q,σ, (3.80)

with an on-site attractive interaction g > 0. Here, the pseudo-spin σ labels the trapped

hyperfine states of a given species of fermions, or labels different types of fermions in a two-

species mixture, where a†k,σ is the fermion creation operator and b†k,q,σ = a†
k+q/2,σa†−k+q/2,−σΓ∗

k

is the pair creation operator. The factor Γk is the symmetry of the pairing interaction,

and it is Γk = 1 for the s-wave interaction considered in this manuscript. In addition,

ξk,σ = ǫk,σ − µ̃σ describes the nearest neighbor tight-binding dispersion ǫk,σ = 2tσθk with

µ̃σ = µσ − VH,σ and

θk =
∑

i={x,y,z}

[1 − cos(kiac)], (3.81)

where tσ is the tunelling matrix element, µσ is the chemical potential and VH,σ is a possible

Hartree energy shift.

Notice that, I allow fermions to be of different species through tσ, and to have different

populations controlled by independent µ̃σ. Furthermore, unlike recent work of BCS pairing

of fermions in optical lattices [173, 174], I discuss the evolution from BCS to BEC pairing

and the emergence of insulating phases. I ignore multi-band effects since a single-band

Hamiltonian may be sufficient to describe the evolution from BCS to BEC physics in optical

lattices [175]. However, these effects can be easily incorporated into the theory.

For the Hamiltonian given in Eq. (3.80), the saddle point order parameter equation is
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given by

1

g
=

1

M

∑

k

1 − f(Ek,1) − f(Ek,2)

2Ek,+
|Γk|2, (3.82)

where M is the number of lattice sites, f(x) = 1/[exp(x/T ) + 1] is the Fermi function,

Ek,s = (ξ2
k,+ + |∆k|2)1/2 + γsξk,− is the quasiparticle energy when γ1 = 1 or the negative

of the quasihole energy when γ2 = −1, and Ek,± = (Ek,1 ± Ek,2)/2. Here, ∆k = ∆0Γk

is the order parameter and ξk,± = ǫk,± − µ̃±, where ǫk,± = 2t±θk with t± = (t↑ ± t↓)/2

and µ̃± = (µ̃↑ ± µ̃↓)/2. Notice that, the symmetry between quasiparticles and quasiholes

is broken when ξk,− 6= 0. The order parameter equation has to be solved self-consistently

with number equations

N↑ =
∑

k

[
|uk|2f(Ek,1) + |vk|2f(−Ek,2)

]
, (3.83)

N↓ =
∑

k

[
|uk|2f(Ek,2) + |vk|2f(−Ek,1)

]
, (3.84)

where |uk|2 = (1 + ξk,+/Ek,+)/2, and |vk|2 = (1 − ξk,+/Ek,+)/2. The number of σ-type

fermions per lattice site is given by

0 ≤ nσ =
Nσ

M
≤ 1. (3.85)

Thus, when n↑ 6= n↓, I need to solve all three self-consistency equations, since population

imbalance is achieved when either Ek,1 or Ek,2 is negative in some regions of momentum

space, as discussed next.

3.7.2 Saddle Point Phase Diagrams

In order to analyze the ground state phase diagrams, I solve Eqs. (3.82) and (??) as a

function of interaction strength g, population imbalance and total filling fraction

−1 ≤ P =
n↑ − n↓

n↑ + n↓
≤ 1, (3.86)

0 ≤ F =
n↑ + n↓

2
≤ 1, (3.87)

respectively, and consider two sets of tunneling ratios η = t↓/t↑ as follows. The case of

η = 1 (tσ = t) is shown in Fig. 3.17, and the case of η = 0.15 is shown in Fig. 3.18. While

η = 1 corresponds to one-species (two-hyperfine-state) mixture such as 6Li or 40K, η = 0.15
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corresponds to a two-species mixture (one-hyperfine-state of each type of atom) such as 6Li

and 40K.
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Figure 3.17: Phase diagrams for a one-species (6Li or 40K) mixture of two-hyperfine
states with η = 1: (a) n↑ versus n↓, and (b) P versus F , for g = 5t and g = 10t. The
normal regions (outside the “football” boundaries) and coexistence of superfluidity with
excess fermions (CSE) and/or phase separation (PS) (inside the “football” boundaries) are
indicated. The CSE/PS (normal) region expands (shrinks) with increasing attraction.

In the phase diagrams shown in Figs. 3.17 and 3.18, I indicate the regions of normal

(N) phase where |∆0| = 0, and group together the regions of coexistence of superfluidity

and excess fermions (CSE) and/or phase separation (PS), where |∆0| 6= 0. When F ≪ 1,

the phase diagrams are similar to the homogenous case analyzed in Section 3.4.3, and the

P versus F phase diagram is symmetric for equal tunnelings as shown in Fig. 3.17(b), and

is asymmetric for unequal tunnelings having a smaller normal region when the lighter band

mass fermions are in excess as shown in Fig. 3.18(b). Here, I do not discuss separately the

CSE and PS regions since they have already been discussed in homogeneous and harmoni-

cally trapped systems in Secs. 3.4.3 and 3.5.4, and experimentally observed [76, 77]. Thus,

I concentrate next on the emergence of insulating phases which are present only in optical

lattices.

In Figs. 3.17 and 3.18, the lines AB (0 < n↑ < 1; n↓ = 0) and ED (n↑ = 0; 0 < n↓ < 1)

correspond to normal σ-type Fermi gases for all interactions, while points B (n↑ = 1, n↓ = 0)

and D (n↑ = 0, n↓ = 1) correspond to a Fermi-Pauli (band) insulator since there is only one

type of fermion in a fully occupied band. The only option for additional fermions (↑ in case
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Figure 3.18: Phase diagrams for a two-species (6Li and 40K) mixture of two-hyperfine
states with η = 0.15: (a) n↑ versus n↓, and (b) P versus F , for g = 5t and g = 10t. The
normal regions (outside the “football” boundaries) and coexistence of superfluidity with
excess fermions (CSE) and/or phase separation (PS) (inside the “football” boundaries) are
indicated. The CSE/PS (normal) region expands (shrinks) with increasing attraction.

B and ↓ in case D) is to start filling higher energy bands if the optical potential supports it,

otherwise the extra fermions are not trapped. For the case where no additional bands are

occupied we label the corresponding phase diagram regions as ‘Inaccessible’ in Figs. 3.17(b)

and 3.18(b), since either n↑ > 1 or n↓ > 1 in these regions.

In addition, the population balanced line 0C ends at the special point C, where n↑ =

n↓ = 1. This point is a Fermi-Pauli (band) insulator for weak attraction since both fermion

bands are fully occupied, and a Bose-Mott Insulator (BMI) in the strong attraction limit,

since at each lattice site there is exactly one molecular boson (consisting of a pair of ↑ and

↓ fermions) which has a strong repulsive on-site interaction with any additional molecular

boson due to the Pauli exclusion principle.

Furthermore, for very weak fermion attraction, lines BC (n↑ = 1, 0 < n↓ < 1) and DC

(0 < n↑ < 1, n↓ = 1) correspond essentially to a fully polarized ferromagnetic metal (or half-

metal), where only the fermion with filling fraction less then one can move around. However,

when the fermion attraction is sufficiently strong these lines describe insulators, as molecular

bosons and excess fermions are strongly repulsive due to the Pauli exclusion principle. The

crosses in Figs. 3.17 and 3.18 at points n↑ = 1, n↓ = 1/2 or n↑ = 1/2, n↓ = 1 indicate the case

where the molecular boson filling fraction nB = 1/2 and the excess fermion filling fraction
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is ne = 1/2. At these high symmetry points, molecular bosons and excess fermions tend to

segregate, either producing a domain wall type of phase separation with a molecular Bose-

Mott insulator (BMI) and a Fermi-Pauli insulator (FPI) region or a checkerboard phase

of alternating molecular bosons and excess fermions (BFC). A two dimensional schematic

diagram of these two phases are shown in Fig. 3.19(a).
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Figure 3.19: (a) On top is the schematic diagram for the Bose-Fermi checkerboard (BFC)
phase, and at the bottom is the Bose-Mott insulator/Fermi-Pauli insulator (BMI/FPI)
phase separation, and (b) nearest neighbor boson-boson interaction (VBB) versus nearest
neighbor boson-fermion interaction (VBF ) phase diagram. In (a), F and B represent un-
paired and paired fermions, respectively.

The strong attraction limit in optical lattices brings additional physics which is not

present in homogenous or purely harmonically trapped systems, and deserves special at-

tention. However, before I analyze this limit, I would like to make two quick remarks.

First, the phase diagram characterized by normal, non-normal (CSE or PS), and insulating

regions may be explored experimentally by tuning the ratio g/t+, total filling fraction F ,

and population imbalance P as done in harmonic traps [76, 77]. Second, topological phases

characterized by the number (I and II) of simply connected zero-energy surfaces of Ek,σ

may lie in the stable region of CSE, unlike in the homogeneous case where the topological

phase II always lies in the phase separated region for all parameter space as discussed in

Section 3.4.3. Next, I analyze the strong attraction (molecular) limit, since it reveals several
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additional phases which are only present in optical lattices.

3.7.3 Strong Attraction (Molecular) Limit

First, I derive a time dependent Ginzburg-Landau theory involving molecular bosons and

excess fermions near the critical temperature Tc of the possible superfluid phase leading to

a + b|Λ(x)|2 −

∑

i,j

ci,j

2
∇i∇j − id

∂

∂t


Λ(x) = 0 (3.88)

in the x = (x, t) representation. Here, Λ(x) is the fluctuation of the order parameter around

its saddle point value |∆0| = 0, and the expansion coefficients are given in Appendix B.5.

For the s-wave symmetry considered, in the strong attraction (molecular) limit |µ̃+| ≈

|ǫb|(1−pe)/2 ≫ 2Dt+, I obtain a = a1+a2 = −[2µ̃+−ǫb(1−pe)]/[g2(1−pe)]+pe/[g(1−pe)],

b = b1+b2 = 2/[g3(1−pe)
2]−(∂pe/∂µ̃e)/[g2(1−pe)], ci,j = cδi,j with c = 4a2

ct↑t↓/[g3(1−pe)
2],

and d = 1/[g2(1−pe)]. Here, ǫb = −g is the binding energy defined by 1/g =
∑

k 1/(2ǫk,+−

ǫb), and e (−e) labels the excess (non-excess) type of fermions and pe = |n↑ − n↓| is the

number of unpaired fermions per lattice site.

Through the rescaling Ψ(x) =
√

dΛ(x), I obtain the equation of motion for a mixture

of bound pairs (molecular bosons) and unpaired (excess) fermions

−µBΨ(x) +
[
UBB|Ψ(x)|2 + UBF pe(x)

]
Ψ(x) − ∇2Ψ(x)

2mB
− i

∂Ψ(x)

∂t
= 0, (3.89)

with pair chemical potential µB = −a1/d = 2µ̃+−ǫb(1−pe), mass mB = d/c = g/(4a2
ct↑t↓),

and repulsive pair-pair UBB = b1a
3
c/d2 = 2ga3

c and pair-fermion UBF = a2a
3
c/(dpe) = ga3

c

interactions. This procedure also yields the spatial density pe(x) ≥ 0 of unpaired fermions

pe(x) = [a2/d + b2|Ψ(x)|2/d2]/UBF , (3.90)

= pe − ga3
c(∂pe/∂µe)(1 − pe)|Ψ(x)|2. (3.91)

In contrast with homogeneous or harmonically trapped systems, the boson-boson and boson-

fermion interactions are strongly repulsive due to the important role played by the Pauli

exclusion principle in the lattice. This role is discussed next, where I analyze some aspects

of the phase diagram in the strong attraction limit in terms of an effective Bose-Fermi

mixture.
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3.7.4 Effective Lattice Bose-Fermi Action

In the limit of strong attractions between fermions g/t+ ≫ 1, I obtain an effective Bose-

Fermi lattice action

Seff
BF =

∫ β

0
dτ

[
∑

i

(f †
i ∂τfi + b†i∂τ bi) + KF + KB + HBF + HBB

]
, (3.92)

where KF and KB of the effective Hamiltonian are given by

KF = −µF

∑

i

f †
i fi − tF

∑

〈i,j〉

f †
i fj , (3.93)

KB = −µB

∑

i

b†ibi − tB
∑

〈i,j〉

b†ibj , (3.94)

which are the kinetic part of the excess fermions and molecular bosons, respectively. While

HBF and HBB of the effective Hamiltonian are given by

HBF = UBF

∑

i

f †
i fib

†
ibi, (3.95)

HBB = UBB

∑

i

b†ibib
†
ibi, (3.96)

which are the interaction between molecular bosons and excess fermions, and two molecular

bosons, respectively.

The total number of fermions is fixed by the constraint n = 2nB + pe, where nB =

NB/M is the number of bosons per lattice site. The important parameters of this effective

Hamiltonian are the excess fermion transfer energy tF = te, the molecular boson transfer

energy tB = 2t↑t↓/g, the boson-fermion effective repulsion UBF = g and the boson-boson

effective repulsion UBB = 2g. Notice that, on-site interactions UBB and UBF become

infinite (hard-core) when g → ∞ as a manifestation of the Pauli exclusion principle. In

addition, there are weak and repulsive nearest neighbor boson-boson VBB ∝ (t2↑ + t2↓)/g

and boson-fermion VBF ∝ t2e/g interactions. These repulsive interactions in optical lattices

lead to several insulating phases, depending on fermion filling fractions. In the following

analysis, I discuss only two high symmetry cases: (a) n↑ = n↓; and (b) n↑ = 1 and n↓ = 1/2

or n↑ = 1/2 and n↓ = 1.

In case (a) indicated as point C in Figs. 3.17, 3.18 and 3.20 where pe = 0, the effective

Hamiltonian reduces to a molecular Bose-Hubbard Hamiltonian with the molecular Bose
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Figure 3.20: The filling fractions n↑ versus n↓ phase diagram in the strong attraction
limit (g/t+ → ∞), indicating the coexisting of superfluid and excess fermions (CSE) phase,
and several insulating phases including Fermi-Pauli (FPI), Bose-Fermi checkerboard (BFC),
Bose-Mott (BMI), and BMI/FPI phase separation.

filling fraction nB = n/2 = F , thus leading to a molecular BMI when nB = 1 beyond

a critical value of UBB. The critical value U c
BB needed to attain the BMI phase can be

estimated using the approach of Ref. [176] leading to U c
BB = 3(3 +

√
8)tB, which can

be translated in terms of the underlying fermion parameters as gc = 4.18
√

t↑t↓. The

prefactor should be regarded only as a lower bound estimate of the critical value where the

superfluid-to-insulator transition occurs, since the effective Hamiltonian is only valid in the

g ≫ t+ limit. Thus, these results suggest the existence of a superfluid-to-insulator transition

occuring at gc. The existence of this molecular boson insulating phase which is realized only

in optical lattices may have already been observed in the very recent experiments of fermions

in optical lattices [87].

In case (b) indicated as crosses in Figs. 3.17, 3.18 and 3.20, the ground state of the

effective molecular-boson/excess-fermion system corresponds to either a checkerboard phase

of alternating bosons and fermions or to a phase separated BMI/FPI system depending on

the ratio VBB/VBF . The checkerboard phase shown in Fig 3.19(a) is favored when VBB >

2VBF , leading to the phase diagram of Fig. 3.19(b). At the current level of approximation, I
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find that when t↑ = t↓ phase separation is always favored, however when ↑ (↓) fermions are in

excess the checkerboard phase is favored when t↓ >
√

3t↑ (t↓ < t↑/
√

3). This result is quite

interesting since phase separation gives room for the observation of a checkerboard phase

if the tunneling ratio η can be controlled experimentally in optical lattices. Furthermore,

this checkerboard phase present in the lattice case is completely absent in homogeneous or

harmonically trapped systems as discussed in Section 3.4.3.

3.8 Summary

In this chapter, I analyzed the phase diagram of ultra cold mixtures of two types of fermions

(e.g., 6Li and 40K; 6Li and 87Sr; or 40K and 87Sr) from the BCS to the BEC limit as a func-

tion of scattering parameter, population imbalance, and mass anisotropy. At zero temper-

ature, in addition to the standard superfluid phase, I found phase separated or coexisting

superfluid/excess fermion phases depending on the population imbalance and scattering

parameter. The phase diagram of population imbalance versus scattering parameter is

asymmetric for unequal masses, having a larger stability region for uniform superfluidity

when the lighter fermions are in excess. This result is in sharp contrast with the symmetric

phase diagram for equal masses.

In addition, I discussed topological quantum phase transitions associated with the dis-

appearance or appearance of momentum space regions of zero quasiparticle energies when

either the scattering parameter or population imbalance are changed. These quantum phase

transitions are reflected in the momentum distribution as well as in thermodynamic prop-

erties, however they seem to lie in the non-uniform region of the phase diagram, but may

survive at the center of a harmonic trap. Furthermore this phase may be observable at

finite temperatures in trapped systems [166], or in optical lattices, but requires further

investigation.

I also analyzed gaussian fluctuations around the saddle point order parameter both at

finite and zero temperatures. Near the critical temperature, I derived the Ginzburg-Landau

equation, and showed that it describes a dilute mixture of composite bosons (tightly bound

fermions) and excess (unpaired) fermions in the BEC limit. At zero temperature, I obtained
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analytically the dispersion of collective excitations in the BCS and BEC limits, and described

numerically the evolution of the sound velocity from the BCS to the BEC regime for zero

population imbalance. In addition, I discussed analytically how phase separation between

paired fermions and excess fermions emerges at zero temperature in the BEC limit. I

discussed the effects of harmonic trapping potential, and concluded that phase separation

between paired and unpaired fermions is favored even in the BEC limit.

In addition, I used an effective weakly interacting Bose-Fermi mixture description to an-

alyze the superfluid phase diagram of two-species dilute Fermi-Fermi mixtures with equal

or unequal masses in the strong fermion attraction limit. I first calculated the exact boson-

fermion scattering length as a function of mass anisotropy, and then constructed the exact

phase diagram. In addition to the normal (N) and uniform (U) superfluid phases, I found

two different non-uniform phase separated (PS) states: (1) phase separation between pure

unpaired (excess) and pure tightly paired fermions (molecular bosons), and (2) phase sepa-

ration between pure excess fermions and a mixture of excess fermions and molecular bosons.

For equal mass mixtures, the results for the PS(2) to U phase boundary is quantitatively in

agreement with the previous saddle-point or mean-field results, however, there are impor-

tant qualitative and quantitative differences for unequal mass mixtures showing the larger

effects of fluctuations in the latter case.

Finally, I analyzed the ground state phase diagram of fermion mixtures in optical lattices

as a function of interaction strength, fermion filling factor, and tunneling parameters. In

addition to standard superfluid, phase separated or coexisting superfluid/excess fermion

phases, I found several insulating phases including a molecular Bose-Mott insulator (BMI),

a Fermi-Pauli (band) insulator (FPI), a phase separated BMI/FPI mixture, and a Bose-

Fermi checkerboard phase depending on fermion filling fractions. All of these additional

phases make the physics of Fermi mixtures much richer than those of atomic bosons or

Bose-Fermi mixtures in optical lattices, and of harmonically trapped fermions. Lastly, the

molecular BMI phase discussed here has been preliminarily observed in a very recent MIT

experiment [87], opening up the experimental exploration of the rich phase diagram of

fermion mixtures in optical lattices in the near future.
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In summary, the BCS to BEC evolution in two-species fermion mixtures with mass

and/or population imbalance exhibits several quantum phase transitions, and are much

richer than conventional (mass and population balanced) s-wave systems, where there is

only a crossover. Signatures of these quantum phase transition can be found in measurable

quantities such as momentum distribution, atomic compressibility, collective excitations etc.

as discussed in this chapter.
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CHAPTER IV

CONCLUSIONS AND OUTLOOK

In this thesis, I focused on the evolution from Bardeen-Cooper-Schrieffer (BCS) to Bose-

Einstein condensation (BEC) evolution in ultracold superfluid Fermi gases as a function

of interaction strength. The tuning of attractive interactions permits the ground state of

the system to evolve from the weak fermion attraction (BCS) limit of loosely bound and

largely overlapping Cooper pairs to the strong fermion attraction limit of tightly bound

small bosonic molecules which undergo BEC. This evolution is accompanied by anomalous

behavior of many superfluid properties, and reveals several quantum phase transitions.

4.1 Conclusions

The systems analyzed in Chapter II corresponds to zero and nonzero orbital angular momen-

tum fermion pairing, and in Chapter III corresponds to mixtures of two types of fermions

with mass and population imbalance in continuum, trap and lattice models.

In Chapter II, I extended the s-wave (ℓ = 0) functional integral formalism to finite

angular momentum ℓ including two-hyperfine-state (THS) pseudo-spin singlet and single-

hyperfine-state (SHS) pseudo-spin triplet channels. I obtained analytically superfluid prop-

erties of dilute Fermi gases in the ground state (T = 0) and near their critical temperatures

(T ≈ Tc,ℓ) from the weak fermion attraction (BCS) to the strong fermion attraction BEC

limit as a function of the scattering parameter (aℓ) for arbitrary ℓ. However, I presented

numerical results only for THS s-wave and SHS p-wave symmetries which may be relevant

for current experiments involving atomic Fermi gases. The main results of Chapter II are

as follows.

First, I analyzed the low energy scattering amplitude within a T-matrix approach. I

found that bound states occur only when aℓ > 0 for any ℓ. The energy of the bound states

Eb,ℓ involves only the scattering parameter a0 for ℓ = 0. However, another parameter

related to the interaction range 1/k0 is necessary to characterize Eb,ℓ for ℓ 6= 0. Therefore,
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all superfluid properties for ℓ 6= 0 depend strongly on k0 and aℓ, while for ℓ = 0 they depend

strongly only on a0 but weakly on k0.

Then, I discussed the order parameter, chemical potential, quasiparticle excitations,

momentum distribution, atomic compressibility, ground state energy, collective modes and

average Cooper pair size at T = 0. There I showed that the evolution from BCS to BEC

is just a crossover for ℓ = 0, while the same evolution for ℓ 6= 0 exhibits a quantum phase

transition characterized by a gapless superfluid on the BCS side to a fully gapped superfluid

on the BEC side. This transition is a many body effect and takes place exactly when the

chemical potential µℓ6=0 crosses the bottom of the fermion band (µℓ6=0 = 0), and is best

reflected as a non-analytic behavior in the ground state atomic compressibility, momentum

distribution and average Cooper pair size.

I also discussed the critical temperature, chemical potential, and the number of unbound,

scattering and bound fermions at T = Tc,ℓ. I found that the critical BEC temperature is the

highest for ℓ = 0. I also derived the time-dependent Ginzburg-Landau functional (TDGL)

near Tc,ℓ and extracted the Ginzburg-Landau (GL) coherence length and time. I recovered

the usual TDGL equation for BCS superfluids in the weak fermion attraction (BCS) limit,

whereas in the strong fermion attraction (BEC) limit, I recovered the Gross-Pitaevskii (GP)

equation for a weakly interacting dilute Bose gas. The TDGL equation exhibits anisotropic

coherence lengths for ℓ 6= 0 which become isotropic only in the BEC limit, in sharp contrast

to the ℓ = 0 case, where the coherence length is isotropic for all interaction strengths.

Furthermore, the GL time is a complex number with a larger imaginary component for

µℓ > 0 reflecting the decay of Cooper pairs into the two particle continuum. However, for

µℓ < 0 the imaginary component vanishes and Cooper pairs become stable above Tc,ℓ.

Having concluded that a quantum phase transition occurs for nonzero angular momen-

tum pairing unlike the ℓ = 0 case where the BCS to BEC evolution is just a crossover, in

Chapter III I discussed several quantum phase transitions in two-species fermion mixtures

with mass and population imbalance.

In Chapter III, I analyzed the phase diagram of ultra cold mixtures of two types of

fermions (e.g., 6Li and 40K; 6Li and 87Sr; or 40K and 87Sr) from the BCS to the BEC
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limit as a function of scattering parameter, population imbalance, and mass anisotropy in

continuum, trap and lattice models. The main results of Chapter III are as follows.

At zero temperature, in addition to the standard superfluid phase, I found phase sepa-

rated or coexisting superfluid/excess fermion phases depending on the population imbalance

and the scattering parameter. The phase diagram of population imbalance versus scattering

parameter is asymmetric for unequal masses, having a larger stability region for uniform

superfluidity when the lighter fermions are in excess. This result is in sharp contrast with

the symmetric phase diagram for equal masses.

I also discussed topological quantum phase transitions associated with the disappear-

ance or appearance of momentum space regions of zero quasiparticle energies when either

the scattering parameter or population imbalance are changed. These quantum phase tran-

sitions are reflected in the momentum distribution as well as in thermodynamic properties,

however they seem to lie in the non-uniform region of the phase diagram, but may sur-

vive at the center of a harmonic trap. Furthermore this phase may be observable at finite

temperatures in trapped systems, or in optical lattices, and requires further investigation.

Then, I analyzed gaussian fluctuations around the saddle point order parameter both

at finite and zero temperatures. Near the critical temperature, I derived the Ginzburg-

Landau equation, and showed that it describes a dilute mixture of composite bosons (tightly

bound fermions) and excess (unpaired) fermions in the BEC limit. At zero temperature,

I obtained analytically the dispersion of collective excitations in the BCS and BEC limits,

and showed numerically the evolution from the BCS to BEC regimes in the case of zero

population imbalance. In addition, I discussed analytically how phase separation between

paired fermions and excess fermions emerges analytically at zero temperature in the BEC

limit. Furthermore, I discussed the effects of harmonic trapping potential, and concluded

that phase separation between paired and unpaired fermions is favored even in the BEC

limit.

I also used an effective weakly interacting Bose-Fermi mixture description to analyze the

superfluid phase diagram of dilute Fermi mixtures od two types of fermions with equal or

unequal masses in the BEC limit. I first calculated the exact boson-fermion scattering length
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as a function of mass anisotropy, and then constructed the phase diagram. In addition to

the normal (N) and uniform (U) superfluid phases, I found two different non-uniform phase

separated (PS) states: (1) phase separation between pure unpaired (excess) and pure tightly

paired fermions (molecular bosons), and (2) phase separation between pure excess fermions

and a mixture of excess fermions and molecular bosons. For equal mass mixtures, results for

the PS(2) to U phase boundary are in quantitative agreement with previous saddle-point

or mean-field results, however, there are important qualitative and quantitative differences

for unequal mass mixtures showing the larger effects of fluctuations in the latter case.

In addition, I analyzed the ground state phase diagram of fermion mixtures in optical

lattices as a function of interaction strength, fermion filling factor, and tunneling param-

eters. In addition to standard superfluid, phase separated or coexisting superfluid/excess

fermion phases, I found several insulating phases including a molecular Bose-Mott insulator

(BMI), a Fermi-Pauli (band) insulator (FPI), a phase separated BMI/FPI mixture, and

a Bose-Fermi checkerboard phase depending on fermion filling fractions. All these addi-

tional phases make the physics of Fermi mixtures much richer than those of atomic bosons

or Bose-Fermi mixtures in optical lattices, and of harmonically trapped fermions. Lastly,

the molecular BMI phase discussed here has been preliminarily observed in a very recent

MIT experiment [87], opening up the experimental exploration of the rich phase diagram

of fermion mixtures in optical lattices in the near future.

To conclude, the BCS to BEC evolution in higher angular momentum (ℓ 6= 0) states

and in mixtures of two types of fermions with mass and/or population imbalance exhibit

several quantum phase transitions, and are much richer than the conventional (mass and

population balanced) ℓ = 0 s-wave systems, where there is only a crossover. Signatures of

these quantum phase transition can be found in measurable quantities such as momentum

distribution, atomic compressibility, collective excitations, etc. as discussed in this thesis.

In both problems presented in Chapters II and III, I tried to provide a comprehensive

analysis. However, descriptions of these problems are still incomplete, and can be further

studied in several ways as discussed next.
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4.2 Outlook

The nonzero angular momentum, and mass or population imbalanced superfluidity might

be found not only in atomic Fermi gases, but also in nuclear (pairing in nuclei), astro-

physics (neutron stars) and condensed matter (high-Tc and organic superconductors) sys-

tems. Therefore, it is important and necessary to extend the analysis given in this thesis

as follows.

For instance, in Chapter II, I discussed pseudo-spin singlet pairing in two-hyperfine-state

systems and pseudo-spin triplet pairing in single-hyperfine-state systems, but the analysis of

pseudo-spin triplet pairing can be extended to two-hyperfine-state systems. While I do not

expect to find different physics with regards to the topological quantum phase transitions

discussed, the pseudo-spin triplet pairing in two-hyperfine-state systems is more relevant to

condensed and nuclear matter.

In Chapter II, I also discussed only the BCS to BEC evolution in homogenous systems,

and did not consider the effects of a trapping potential. The natural next step is to include

trapping effects in the description of nonzero angular momentum superfluidity of ultracold

Fermi gases, and calculate the momentum distribution, density profile, etc. In contrast to

isotropic properties found for the ℓ = 0 s-wave case, such quantities are expected to be

anisotropic in the BCS limit with much richer features for the ℓ 6= 0 systems.

There are also several ways to extend the analysis of two-species fermion mixtures with

mass and population imbalance. For instance, in Chapter III, I discussed only the ground

state (zero temperature) phase diagrams, but it is certainly important to construct phase

diagrams at finite temperatures. This is especially crucial for quantitative understanding

of current experiments, which are conducted at low but finite temperatures.

In Chapter III, I discussed briefly the possibility of non-uniform FFLO-type superfluid-

ity [164, 165], but did not really calculate the phase boundaries for such pairing. While this

phase exists in a very narrow region for equal mass mixtures [112], it is expected to exist

in a larger region for unequal mass mixtures. The FFLO phase was proposed more than

forty years ago, but convincing evidence has not been found in standard condensed mat-

ter systems. The possible observation of such unconventional superfluid phase with mass
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and population imbalanced fermion mixtures in traps or optical lattices might provide the

missing evidence, and needs to be further analyzed both theoretically and experimentally.

Furthermore, in Chapter III, I used the Thomas-Fermi (or local density) approximation

(TFA) to analyze the effects of a trapping potential on the density profiles. While TFA

is known to be a good approximation for systems with large number of fermions, a fully

self-consistent Bogoliubov-de Gennes (BdG) calculation is necessary to understand better

current experiments, and to make quantitative predictions for future experiments.

As a final remark, it is worth emphasizing that ultracold Fermi gases has been very

fruitful for the understanding of novel superfluid phases across different branches of physics,

ranging from condensed matter and nuclear to atomic and molecular physics. I believe that

this field will continue to flourish over the next several years, and that it will open doors to

study new and exotic phenomena.
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APPENDIX A

LONG-WAVELENGTH AND LOW-FREQUENCY EXPANSION FOR

CHAPTER II

I used the following expansion coefficients in Chapter 2 for analyzing the Gaussian fluc-

tuations at zero and finite temperatures to derive the collective mode spectrum and the

time-dependent Ginzburg-Landau equations, respectively.

A.1 Expansion Coefficients at T = 0

In this appendix, I obtain the expansion coefficients necessary to calculate the collective

modes at T = 0 from the rotated fluctuation matrix F̃−1
ℓ (q) expressed in the amplitude-

phase basis. In the long wavelength (|q| → 0), and low frequency limit (w → 0) the

condition

{w,
qiqj

2M
} ≪ min{2Eℓ(k)}, (A.1)

is used. While there is no Landau damping and a well defined expansion is possible for

ℓ = 0 case for all couplings, extra care is necessary for ℓ 6= 0 when µℓ > 0 since Landau

damping is present.

In all the expressions below I use the following simplifying notation ξ̇i
ℓ = ∂ξℓ(k +

q/2)/∂qi, ξ̈i,j
ℓ = ∂ξℓ(k + q/2)/(∂qi∂qj), ∆̇i

ℓ = ∂∆ℓ(k + q/2)/∂qi and ∆̈i,j
ℓ = ∂2∆ℓ(k +

q/2)/(∂qi∂qj), which are evaluated at q = 0.

The coefficients necessary to obtain the matrix element (F̃−1
ℓ,mℓ,m

′
ℓ

)11 are

Aℓ,mℓ,m
′
ℓ
=

δmℓ,m
′
ℓ

4πV−1λℓ
−

∑

k

ξ2
ℓ

2E3
ℓ

Γ2
ℓ (k)Yℓ,mℓ

(k̂)Y ∗
ℓ,m′

ℓ
(k̂), (A.2)

corresponding to the (q = 0, w = 0) term,

Ci,j
ℓ,mℓ,m

′
ℓ

=
∑

k

ξℓ(k)

4E7
ℓ (k)

{
ξ̈i,j
ℓ E2

ℓ (k)
[
ξ2
ℓ (k) − 2∆2

ℓ (k)
]
+ 3∆̈i,j

ℓ E2
ℓ (k)ξℓ(k)∆ℓ(k)

+ 5ξ̇i
ℓξ̇

j
ℓ∆

2
ℓ (k)ξ2

ℓ (k) + ∆̇i
ℓ∆̇

j
ℓξℓ(k)

[
ξ2
ℓ (k) − 4∆2

ℓ (k)
]

+ (ξ̇i
ℓ∆̇

j
ℓ + ξ̇j

ℓ ∆̇
i
ℓ)∆ℓ(k)

[
2∆2

ℓ (k) − 3ξ2
ℓ (k)

] }
Γ2

ℓ (k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂), (A.3)
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corresponding to the qiqj term, and

Dℓ,mℓ,m
′
ℓ
=

∑

k

ξ2
ℓ (k)

8E5
ℓ (k)

Γ2
ℓ(k)Yℓ,mℓ

(k̂)Y ∗
ℓ,m′

ℓ
(k̂), (A.4)

corresponding to the w2 term. Here δmℓ,m
′
ℓ

is the Kronecker delta.

The coefficients necessary to obtain the matrix element (F̃−1
ℓ,mℓ,m

′
ℓ

)22 are

Pℓ,mℓ,m
′
ℓ
=

δmℓ,m
′
ℓ

4πV−1λℓ
−

∑

k

1

2Eℓ(k)
Γ2

ℓ (k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂), (A.5)

corresponding to the (q = 0, w = 0) term,

Qi,j
ℓ,mℓ,m

′
ℓ

=
∑

k

1

4E5
ℓ (k)

{
ξ̈i,j
ℓ E2

ℓ (k)ξℓ(k) + ∆̈i,j
ℓ E2

ℓ (k)∆ℓ(k) + 3ξ̇i
ℓξ̇

j
ℓ∆

2
ℓ (k)

+ 3∆̇i
ℓ∆̇

j
ℓξ

2
ℓ (k) − 3(ξ̇i

ℓ∆̇
j
ℓ + ξ̇j

ℓ ∆̇
i
ℓ)ξℓ(k)∆ℓ(k)

}
Γ2

ℓ(k)Yℓ,mℓ
(k̂)Y ∗

ℓ,m′
ℓ
(k̂), (A.6)

corresponding to the qiqj term, and

Rℓ,mℓ,m
′
ℓ
=

∑

k

1

8E3
ℓ (k)

Γ2
ℓ(k)Yℓ,mℓ

(k̂)Y ∗
ℓ,m′

ℓ
(k̂), (A.7)

corresponding to the w2 term.

The coefficients necessary to obtain the matrix element (F̃−1
ℓ,mℓ,m

′
ℓ

)12 is

Bℓ,mℓ,m
′
ℓ
=

∑

k

ξℓ(k)

4E3
ℓ (k)

Γ2
ℓ (k)Yℓ,mℓ

(k̂)Y ∗
ℓ,m′

ℓ
(k̂), (A.8)

corresponding to the w term.

A.2 Expansion Coefficients near T = Tc,ℓ

In this Appendix, I perform a small q and ivj → w + i0+ expansion near Tc,ℓ, where I

assumed that the fluctuation field Λℓ,mℓ
(x, t) is a slowly varying function of x and t.

The zeroth order coefficient L−1
ℓ,mℓ,m

′
ℓ

(0, 0) is diagonal in mℓ and m′
ℓ, and is given by

aℓ,mℓ,m
′
ℓ
=

δmℓ,m
′
ℓ

4π

[
V
λℓ

−
∑

k

Xℓ(k)

2ξℓ(k)
Γ2

ℓ(k)

]
, (A.9)

where Xℓ(k) = tanh [βξℓ(k)/2]. The second order coefficient M∂2L−1
ℓ,mℓ,m

′
ℓ

(q, 0)/(∂qi∂qj)

evaluated at q = 0 is given by

ci,j
ℓ,mℓ,m

′
ℓ

=
1

4π

∑

k

{ [ Xℓ(k)

8ξ2
ℓ (k)

− βYℓ(k)

16ξℓ(k)

]
δmℓ,m

′
ℓ
δi,j

+ αi,j
ℓ,mℓ,m

′
ℓ

β2k2Xℓ(k)Yℓ(k)

16Mξℓ(k)

}
Γ2

ℓ(k), (A.10)
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where Yℓ(k) = sech2[βξℓ(k)/2] and the angular average

αi,j
ℓ,mℓ,m

′
ℓ

=

∫
dk̂k̂ik̂jYℓ,mℓ

(k̂)Y ∗
ℓ,m′

ℓ
(k̂). (A.11)

Here, dk̂ = sin(θk)dθkdφk, k̂x = sin(θk) cos(φk), k̂y = sin(θk) sin(φk) and k̂z = cos(θk).

In general, αi,j
ℓ,mℓ,m

′
ℓ

is a fourth order tensor for fixed ℓ. However, in the particular case

where only one of the spherical harmonics Yℓ,mℓ
(k̂) is dominant and characterizes the order

parameter, αi,j
ℓ,mℓ,m

′
ℓ

= αi,j
ℓ,mℓ,mℓ

δmℓ,m
′
ℓ

is diagonal in mℓ and m′
ℓ. In this case, I use Gaunt

coefficients [177] to show that αi,j
ℓ,mℓ,mℓ

is also diagonal in i and j leading to αi,j
ℓ,mℓ,m

′
ℓ

=

αi,i
ℓ,mℓ,mℓ

δmℓ,m
′
ℓ
δi,j .

The coefficient of fourth order term is approximated at qn = 0, and given by

bℓ,{mℓn}(0) =
γℓ,{mℓn}

4π

∑

k

[ Xℓ(k)

4ξ3
ℓ (k)

− βYℓ(k)

8ξ2
ℓ (k)

]
Γ4

ℓ (k), (A.12)

where the angular average

γℓ,{mℓn} =

∫
dk̂Yℓ,mℓ1

(k̂)Y ∗
ℓ,mℓ2

(k̂)Yℓ,mℓ3
(k̂)Y ∗

ℓ,mℓ4
(k̂). (A.13)

To extract the time-dependence, I expand Qℓ,mℓ,m
′
ℓ
(ivj) = L−1

ℓ.mℓ,m
′
ℓ

(q = 0, ivj)−L−1
ℓ,mℓ,m

′
ℓ

(0, 0)

in powers of w after the analytic continuation ivj → w+i0+. I use the relation (x±i0+)−1 =

P(1/x) ∓ iπδ(x), where P is the principal value and δ(x) is the Delta function, to obtain

Qℓ,mℓ,m
′
ℓ
(ivj) = −

δmℓ,m
′
ℓ

4π

[
∑

k

Xℓ(k)

4ξ2
ℓ (k)

Γ2
ℓ (k) − iπ

∑

k

Xℓ(k)δ[2ξℓ(k) − w]Γ2
ℓ(k)

]
(A.14)

Keeping only the first order terms in w leads to Qℓ,mℓ,m
′
ℓ
(w+ i0+) = −dℓ,mℓ,m

′
ℓ
w+ ..., where

dℓ,mℓ,m
′
ℓ
=

δmℓ,m
′
ℓ

4π

[
∑

k

Xℓ(k)

4ξ2
ℓ (k)

Γ2
ℓ(k) + i

πβ

8
N(ǫF)

√
µℓ

ǫF
Γ2

ℓ(µℓ)Θ(µℓ)

]
(A.15)

is also diagonal in mℓ and m′
ℓ. Here N(ǫF) = MVkF/(2π2) is the density of states per spin

at the Fermi energy, Γ2
ℓ(x) = (ǫ0x

ℓ)/(ǫ0 + x)ℓ+1 is the interaction symmetry in terms of

energy and Θ(x) is the Heaviside function.
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APPENDIX B

LONG-WAVELENGTH AND LOW-FREQUENCY EXPANSION FOR

CHAPTER III

I used the following expansion coefficients in Chapter 3 for analyzing the Gaussian fluc-

tuations at zero and finite temperatures to derive the collective mode spectrum and the

time-dependent Ginzburg-Landau equations, respectively.

B.1 Inverse Fluctuation Propagator

In this Appendix, I present explicitly the elements of the inverse fluctuation propagator

F−1(q). The diagonal matrix element of F−1(q) is given by

F−1
1,1 =

1

g
+

∑

k

{
v2

q

2
−k

u2
q

2
+k

nf (Eq

2
−k,1) − nf (Eq

2
+k,1)

ivℓ + Eq

2
−k,1 − Eq

2
+k,1

− u2
q

2
−k

v2
q

2
+k

nf (Eq

2
−k,2) − nf (Eq

2
+k,2)

ivℓ − Eq

2
−k,2 + Eq

2
+k,2

+ u2
q

2
+k

u2
q

2
−k

1 − nf (Eq

2
+k,1) − nf (Eq

2
−k,2)

ivℓ − Eq

2
+k,1 − Eq

2
−k,2

− v2
q

2
+k

v2
q

2
−k

1 − nf (Eq

2
−k,1) − nf (Eq

2
+k,2)

ivℓ + Eq

2
−k,1 + Eq

2
+k,2

}
|Γk|2 (B.1)

and the off-diagonal matrix element of F−1(q) is given by

F−1
1,2 =

∑

k

uq

2
+kvq

2
+kuq

2
−kvq

2
−k

{nf (Eq

2
−k,1) − nf (Eq

2
+k,1)

ivℓ + Eq

2
−k,1 − Eq

2
+k,1

−
nf (Eq

2
−k,2) − nf (Eq

2
+k,2)

ivℓ − Eq

2
−k,2 + Eq

2
+k,2

−
1 − nf (Eq

2
+k,1) − nf (Eq

2
−k,2)

ivℓ − Eq

2
+k,1 − Eq

2
−k,2

+
1 − nf (Eq

2
−k,1) − nf (Eq

2
+k,2)

ivℓ + Eq

2
−k,1 + Eq

2
+k,2

}
|Γk|2 (B.2)

where u2
k = (1 + ξk,+/Ek,+)/2 and v2

k = (1− ξk,+/Ek,+)/2, and nf (x) = 1/[exp(βx) + 1] is

the Fermi distribution.

For the s-wave case considered in this manuscript, a well defined low frequency and

long wavelength expansion is possible in two limits: (I) at zero temperature (T = 0) when
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population imbalance is zero P = 0 such that the Fermi functions in Eqs. (B.1) and (B.2)

vanish, and (II) near the critical temperature (T ≈ Tc) where |∆0| → 0 such that vq

2
±k

(when ξq

2
±k,+ > 0) and uq

2
±k (when ξq

2
±k,+ < 0) in Eqs. (B.1) and (B.2) vanish. Other

than these two limits, there is Landau damping which causes the collective modes to decay

into the two quasiparticle continuum.

B.2 Expansion Coefficients at T = 0

In this Appendix, I perform a small q and ivℓ → w + i0+ expansion of the effective action

at zero temperature (T = 0). From the rotated fluctuation matrix M−1 expressed in the

amplitude-phase basis, I can obtain the expansion coefficients necessary to calculate the

collective modes. I calculate the coefficients only for the case of zero population imbalance

P = 0, as extra care is needed when P 6= 0 due to Landau damping. In the long wavelength

(|q| → 0), and low frequency (w → 0) limits the condition {w, qiqj(2m+)} ≪ min{2Ek,+},

is used.

The coefficients necessary to obtain the matrix element M−1
λ,λ(q) are

A =
∑

k

|∆0|2
2E3

k,+

(B.3)

corresponding to the (q = 0, w = 0) term,

C =
∑

k

[
ξk,+

E2
k,+ − 3|∆0|2
8m+E5

k,+

−
(

E2
k,+ − 10|∆0|2

m2
+

+
10|∆0|4
m2

+E2
k,+

+
E2

k,+ − |∆0|2
m2

−

)
k2

24E5
k,+

]
(B.4)

corresponding to the |q|2 term, and

D =
∑

k

E2
k,+ − |∆0|2

8E5
k,+

(B.5)

corresponding to the w2 term.

The coefficients necessary to obtain the matrix element M−1
θ,θ(q) are

Q =
∑

k

[
ξk,+

8m+E3
k,+

−
(

E2
k,+ − 3|∆0|2

m2
+

+
E2

k,+

m2
−

)
k2

24E5
k,+

]
(B.6)
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corresponding to the |q|2 term, and

R =
∑

k

1

8E3
k,+

(B.7)

corresponding to the w2 term.

The coefficient necessary to obtain the matrix element M−1
λ,θ(q) is

B =
∑

k

ξk,+

4E3
k,+

(B.8)

corresponding to the w term. These coefficients can be evaluated in the BCS and BEC

limits, and are given in Section 3.5.2.

B.3 Expansion Coefficients near T = Tc

In this Appendix, I derive the coefficients a, b, cij and d of the time dependent Ginzburg-

Landau theory described in Eq. (3.37). I perform a small q and ivℓ → w + i0+ expansion

of the effective action near the critical temperature (T ≈ Tc), where I assume that the

fluctuation field Λ(x, t) is a slowly varying function of x and t.

The zeroth order coefficient L−1(0, 0) is given by

a =
1

g
−

∑

k

Xk,+

2ξk,+
|Γk|2 (B.9)

where Xk,± = (Xk,↑ ± Xk,↓)/2 and Xk,σ = tanh(βξk,σ/2).

The second order coefficient ∂2L−1(q, 0)/(∂qi∂qj) evaluated at q = 0 is given by

ci,j =
∑

k

[(
Xk,↑Yk,↑

m2
↑

+
Xk,↓Yk,↓

m2
↓

)
β2kikj

32ξk,+

+

(
2kikjC−

m−ξk,+
− δi,jC+

)
β

16ξk,+

+

(
δi,j

2m+
− kikj

m2
−ξk,+

)
Xk,+

4ξ2
k,+

]
|Γk|2, (B.10)

where C± = (Yk,↑/m↑±Yk,↓/m↓)/2, and Yk,σ = sech2(βξk,σ/2). Here, δi,j is the Kronecker

delta.

The coefficient of the fourth order term is approximated by its value at q = 0,

b =
1

β

∑

p

Gsp
↑,↑(p)Gsp

↓,↓(p)Gsp
↑,↑(p)Gsp

↓,↓(p)|Γk|4

=
1

β

∑

k,wℓ

|Γk|4
(iwℓ − ξk,↑)2(iwℓ + ξk,↓)2

(B.11)
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and evaluation of the fermionic Matsubara frequency sum leads to

b =
∑

k

(
Xk,+

4ξ3
k,+

− βYk,+

8ξ2
k,+

)
|Γk|4. (B.12)

The time-dependent coefficient has real and imaginary parts, and for the s-wave case is

given by

d = lim
w→0

∑

k

Xk,+

[
1

4ξ2
k,+

+ iπ
δ(2ξk,+ − w)

w

]
|Γk|2 (B.13)

where δ(x) is the Delta function.

B.4 Renormalized Interaction Strength and Molecular Boson Propaga-
tor

In this Appendix, I derive first the relation between the fermion-fermion interaction strength

and the fermion-fermion scattering length, and later the renormalized molecular boson

propagator corrected by the fermion loops in the BEC limit.

B.4.1 Renormalized Interaction Strength

The scattering t-matrix of two fermions, TFF
q , can be calculated by summing up the di-

agrams shown in Fig. B.1. In the diagrammatic representation for the fermion-fermion

scattering t-matrix TFF
q , single lines represent σ-type fermion propagators. The scattering

length is proportional to the t-matrix at zero momentum, and given by

TFF
0 =

4πaF

m↑↓
, (B.14)

where aF is the fermion-fermion scattering length, and m↑↓ is twice the reduced mass of ↑-

and ↓-type fermions.

The bubble diagrams shown in Fig. B.1 form a geometric series, which can be summed

to give

−g − g2Π(0, 0) − g3Π2(0, 0) − ... = −g
∞∑

n=0

[gΠ(0, 0)]n

= − g

1 − gΠ(0, 0)

= TFF
q . (B.15)
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(F)

+

+

+

...

(−F)

(F)

(F)

(−F) (−F)

(−F) (−F)

(−F)

(−F)

(−F)

(−F)

(F)
(F)

(F)

(F)

(F)

(F)

p’+q/2
p+q/2

−p+q/2

p+q/2

−p’+q/2
−p+q/2

Figure B.1: Diagrammatic representation for the fermion-fermion scattering t-matrix
TFF
q , where single lines represent σ-type fermion propagators.

Here, Π(0, 0) corresponds to the bubble diagram when q = 0, and given by

Π(0, 0) =
∑

p

G0,↑(p)G0,↓(−p), (B.16)

where G0,σ(k, iwj) = 1/[iwj − ǫk,σ + i0+] is the σ-type fermion propagator in vacuum

(µσ = 0). After performing the fermionic Matsubara frequency summation, Eq. (B.15)

leads to

1

g
= −m↑↓V

4πaF
+

∑

k

1

ǫk,↑ + ǫk,↓
, (B.17)

which provides the relation between the fermion-fermion interaction strength g and the

fermion-fermion scattering length aF for short-range s-wave interactions.

B.4.2 Renormalized Molecular Boson Propagator

The calculation of renormalized molecular boson propagator corrected by the fermionic

loops is very similar to the calculation of renormalized fermion-fermion interactions, and

can be calculated by summing up the diagrams shown in Fig. B.2. In the diagrammatic

representation of the renormalized molecular boson propagator D0(q, ivj) corrected by the

fermionic loops, single lines represent σ-type fermion propagators, double thin lines repre-

sent unrenormalized molecular boson propagators, and the double thick line represents the

renormalized molecular boson propagator.
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(−F)

+

(F)
(b) (b)

(b)(b)(b)
(F)

(−F) (−F)

(F)

(B) (b)

q q q q

qq q

p+q/2
−p+q/2

p+q/2 p’+q/2
−p+q/2 −p’+q/2

=

+

+ ...

Figure B.2: Diagrammatic representation of the renormalized molecular boson propagator
D0(q, ivj) corrected by the fermionic loops, where single lines represent σ-type fermion
propagators, double thin lines represent unrenormalized molecular boson propagators, and
the double thick line represents the renormalized molecular boson propagator.

The bubble diagrams shown in Fig. B.2 also form a geometric series, which can be

summed to give

−g − g2Π(q, ivj) − g3Π2(q, ivj) − ... = −g
∞∑

n=0

[gΠ(q, ivj)]
n

= − g

1 − gΠ(q, ivj)

= D0(q, ivj) (B.18)

Here, Π(q, ivj) corresponds to the bubble diagram, and given by

Π(q, ivj) =
∑

p

G0,↑(p + q/2)G0,↓(−p + q/2), (B.19)

where G0,σ(k, iwj) = 1/[iwj − ǫk,σ + µσ + i0+] is the σ-type fermion propagator. After

performing the fermionic Matsubara frequency and the momentum summations, and using

Eq. (B.17) in Eq. (B.18) leads to

D0(q, ivj) =
4π

m
3/2
↑↓

1

|ǫb|1/2 − [|q|2/(2mB) − ivj − µ↑ − µ↓ − i0+]1/2
, (B.20)

which provides the renormalized molecular boson propagator. Here, ǫb = −1/(m↑↓a
2
F ) is

the binding energy, and mB = m↑ + m↓ is the molecular mass.
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B.5 Expansion Coefficients near T = Tc for Optical Lattices

In this Appendix, I derive the coefficients a, b, cij and d of the time dependent Ginzburg-

Landau theory described in Section 3.7.3. I perform a small q and ivℓ → w+ i0+ expansion

of the effective action near the critical temperature (T ≈ Tc), where I assume that the

fluctuation field Λ(x, t) is a slowly varying function of x and t.

The zeroth order coefficient L−1(0, 0) is given by

a =
1

g
− 1

M

∑

k

Xk,+

2ξk,+
|Γk|2 (B.21)

where Xk,± = (Xk,↑ ± Xk,↓)/2 and Xk,σ = tanh(βξk,σ/2).

The second order coefficient ∂2L−1(q, 0)/(∂qi∂qj) evaluated at q = 0 is given by

ci,j =
a2

c

M

∑

k

[(
Xk,↑Yk,↑t

2
↑ + Xk,↓Yk,↓t

2
↓

)
sin(kiac) sin(kjac)

β2

8ξk,+

+

(
4t− sin(kiac) sin(kjac)C−

ξk,+
− 2δi,j cos(kiac)C+

)
β

8ξk,+

+

(
2t+ cos(kiac)δi,j −

4t2− sin(kiac) sin(kjac)

ξk,+

)
Xk,+

4ξ2
k,+

]
|Γk|2, (B.22)

where C± = (Yk,↑t↑ ± Yk,↓t↓)/2, and Yk,σ = sech2(βξk,σ/2). Here, δi,j is the Kronecker

delta.

The coefficient of the fourth order term is approximated by its value at q = 0, and given

by

b =
1

M

∑

k

(
Xk,+

4ξ3
k,+

− βYk,+

8ξ2
k,+

)
|Γk|4. (B.23)

The time-dependent coefficient has real and imaginary parts, and for the s-wave case is

given by

d = lim
w→0

1

M

∑

k

Xk,+

[
1

4ξ2
k,+

+ iπ
δ(2ξk,+ − w)

w

]
|Γk|2 (B.24)

where δ(x) is the Delta function.
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