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SUMMARY

The modeling of Micro- and NanoElectroMechanical Systems (MEMS and NEMS) re-

quires new computational techniques that can deal efficiently with geometric complexity

and scale dependent effects that may arise. With reduced feature sizes comes increasing

coupling of physical phenomena and increasingly noncontinuum behavior, often requiring

models based on molecular descriptions and/or first principles. Furthermore, noncontin-

uum effects are often localized to small regions of (relatively) large systems—precluding

the global application of microscale models due to computational expense. Multiscale

modeling couples efficient continuum solvers with detailed microscale models to provid-

ing accurate and efficient models of complete systems.

This thesis presents the development of multiscale modeling techniques for nonequilib-

rium microscale gas phase phenomena, especially thermally driven microflows. The three

necessary components for multiscale modeling are 1. an efficient and accurate microscale

model, 2. a similarly capable continuum models, and 3. a coupling scheme. The direct

simulation Monte Carlo (DSMC) is one of the prevalent techniques for modeling rarefied

gas dynamics. However, as a probabilistic particle based method it is (computationally) or-

ders of magnitude more expensive than continuum solvers. Furthermore, microscale flows

are typically low-speed, requiring extremely large numbers of samples to reduce statisti-

cal noise. A recent enhancement to the DSMC is the Information Preserving DSMC (IP-

DSMC), which seeks to accelerate the solution by preserving certain macroscopic quanti-

ties within each simulation molecule. Transport of mass, momentum, and energy depends

on particle motion and collisions and certain fluxal quantities. Although the IP-DSMC has

performed well on a number of problems, it has been unable to adequately model flow
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fields arising from certain nonequilibrium phenomena. Much of the research of this thesis

focuses on improving the performance (speed and accuracy) of the microscale model and

has resulted in the Octant Splitting Information Preserving DSMC (OSIP-DSMC) method

for simulating low-speed and thermally driven rarefied gas flows. The method is able to

recover previously unavailable information from the preserved quantities and the micro-

scopic velocities allowing for efficient simulation of the flow fields induced by nonequilib-

rium systems, including effects such as thermal transpiration. The OSIP-DSMC provides

an efficient method to explore rarefied gas transport phenomena which may lead to a greater

understanding of these phenomena and new concepts for how these may be utilized in prac-

tical engineering systems. Multiscale modeling will be demonstrated utilizing the OSIP-

DSMC for the microscale model and a 2D BEM solver for the continuum (heat transfer)

model. Coupling will utilize a modified Alternating Schwarz coupling, wherein the micro-

scopic and continuum models overlap within the continuum region. The solution of each

is used in turn to generate the boundary conditions of the other, alternating until steady

state is reached and the solutions within the overlapping region are found to be compatible

within some tolerance. Thermal Sensing Atomic Force Microscopy (TSAFM) provides an

interesting application for the modeling techniques developed in this thesis. TSAFM re-

lies on gas phase heat transfer between heated cantilever probes and the scanned surface to

determine the scan height, and thus the surface topography. Accurate models of the heat

transfer phenomena are required to correctly interpret scan data. This thesis presents results

demonstrating the effect of subcontinuum heat transfer on TSAFM operation and explores

the mechanical effects of the Knudsen Force on the heated cantilevers.
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CHAPTER I

INTRODUCTION

The past few decades have seen tremendous interest and growth in the area of MicroElectro-

Mechanical Systems (MEMS). By leveraging the mature bulk and surface micromachining

technologies developed for the large scale batch fabrication of microelectronics, it has be-

come possible to economically fabricate microscale systems composed of electrical and

mechanical subsystems. MEMS devices have become common in a number of consumer

and industrial applications, including air bag sensors, optical displays, and a growing as-

sortment of pressure and chemical sensors. The push for ever-decreasing size leads natu-

rally to nanotechnology (and NanoElectroMechanical Systems or NEMS). As with MEMS,

nanofabrication techniques may be additive: building up features from molecules or atoms

(bottom-up), or subtractive: where small features are formed by removing material from

larger ones (top-down), or a combination of both.

1.1 The Need For Multiscale Modeling

Despite the considerable activity in the development of microsystems, commercial growth

has not met expectations. One factor inhibiting growth is the limited ability to perform

system level modeling. At small length scales physical effects (mechanical, thermal, elec-

trostatic, magnetic, etc.) are often tightly coupled, requiring highly detailed multiphysics

solvers. Often analysis tools based on macroscale continuum models may be applied to

microscale phenomena, but this is not generally the case. At small scales, not only can

there be a breakdown of the continuum assumptions, but the manifestation or importance

of many physical phenomena may change, e.g., gravity, may be negligible at small scales,

while macroscopically insignificant forces such as electrostatic and Van der Waal’s forces
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become dominant. So with scaling there are changes in the coupling, magnitude, and man-

ner of physical phenomena.

Future growth in MEMS (and especially NEMS), will require accurate and efficient

tools and techniques for system level modeling and design. A major obstacle is that non-

continuum effects begin to be manifest at these small scales: conservation laws are al-

ways valid, but gradients (of strain, pressure, density, temperature, etc.) may become very

sharp—to the point that their scale of length approaches the order of the mean free paths,

or intermolecular/interatomic spacing. As such, the constitutive laws upon which conven-

tional continuum methods (Navier-Stokes, Hooke’s Law, etc.) are based are no longer

applicable and methods based on the underlying molecular (or particle nature) must be

used. At even smaller length scales, the concept of gradient may become meaningless in

what may be truly discontinuous media.

In many micro/nanosystems, subcontinuum regions are often adjacent to (relatively)

large regions where the continuum description remains valid. Global application of par-

ticle methods would be prohibitively expensive—with even a small problem capable of

exhausting the world’s computing power. This may be compounded further by complex

system geometries and the poorly characterized properties of micro/nanomaterials. This

work will seek to develop accurate and efficient multiscale modeling tools applicable to the

modeling and design of systems involving micro/nanoscale gas phase thermal transport.

1.2 Thermal Sensing Atomic Force Microscopy (TSAFM)

One of the motivations for this research, and its focus on rarefied gas dynamics, is the Ther-

mal Sensing Atomic Force Microscope (TSAFM). The TSAFM is one of many scanning

probe microscopy variants and is closely related to conventional Atomic Force Microscopy

(AFM). The AFM has become one of the key tools for the production and characterization

of nanoscale features and devices. The AFM was introduced in 1986 by researchers at

IBM [14] and generally consists of a micromachined cantilever beam with a very sharp tip
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1-1(a): Atomic Force Microscope system
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1-1(b): Thermal Sensing Atomic Force Micro-
scope

Figure 1-1: Schematics of Conventional and Thermal Sensing Atomic Force Microscopy
Systems

(radius of curvature on the order of 50 nm). The cantilever may be scanned, or rastered,

across a sample in either contact or “tapping” mode, usually by means of a piezoelectric

stage. As the tip interacts with the scanned surface topography the flexible AFM cantilever

deflects. The prevalent scheme for detecting the deflection of the beam is optical; utilizing

a laser emitter-detector pair [65] (see Figure 1-1(a)). Sub-nanometer three-dimensional to-

pographic scans are possible with Atomic Force Microscopy—allowing individual atoms

to be resolved (and even manipulated).

Thermal Sensing AFM builds on the principles of AFM but uses the heat transfer from

a heated cantilever to sense the proximity to the substrate (see Figure 1-1(b)). As the

heated cantilever is scanned across a nanofeatured surface, the gap between the cantilever

and the substrate changes. If the gap becomes larger, the effective thermal resistance in-

creases, resulting in a higher steady state temperature for a given heating power. Simi-

larly, a smaller gap enhances heat transfer and reduces the steady state temperature. Heat

generation and temperature measurement may be purely electrical and integrated in the

device—eliminating the need for cumbersome optical detection of cantilever deflection
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1-2(a): Scanning Electron Micro-
graphs (SEM) of TSAFM cantilever
and (inset) tips (Courtesy Dr. William
King)

1-2(b): SEM of Millipede (TSAFM) cantilever array [46].

Figure 1-2: TSAFM Applications

and enabling the development of arrays of TSAFM cantilevers. Such arrays may provide

increased scan rates and are being developed for high density data storage applications

(see Figure 1-2(a) and 1-2(b)) [105, 53]. While the sharp tip is needed to establish contact

with the scanned surface, previous studies have determined that the heat transfer through

the tip contributes little to sensing and is only important in data writing, i.e., melting and

forming nano-indentations in a polymer substrate [8]. Sensing is accomplished as follows:

a) a driving potential, V , is applied to the beam inducing a current and Joule heating in the

cantilever; b) the system reaches steady state in terms of temperature, electrical resistance

(temperature dependent), induced current, I, and heat flux (temperature and gap depen-

dent); c) from the measured current, the temperature of the cantilever may be obtained, as

well as the power input (P = IV); d) finally, models can be used to interpret the measured

current to calculate the distance between the cantilever and the scanned surface.

The main heat transfer paths involved in TSAFM operation are illustrated in Figure 1-3:

(1) solid state conduction along the cantilever, (2) gas phase conduction to the substrate,

and (3) gas phase conduction to the environment.
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Figure 1-4: Flow regimes and applicable models as distinguished by Knudsen’s Number
(Kn = λ/L) [17]

As gas phase heat transfer between the cantilever and the surface is the key to the opera-

tion of the TSAFM, it is important that this be well characterized. However, the small scan

height—typically less than 1 µm—may result in noncontinuum behavior. The mean free

path, λ, of the working gas (air, etc.) at atmospheric pressure is on the order of 100 nm,

resulting in a Knudsen Nnumber,Kn > 0.1. As such, the flow regime of the gas phase

phenomena in the region between the beam and the surface will likely be categorized as

transitional or free molecular. Modeling rarefied flows requires detailed models that con-

sider the molecular nature of the gas. However, the computational expense associated with
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detailed models is significantly greater than the continuum approaches. Figure 1-4 presents

a number of modeling techniques for fluid dynamics and the flow regimes in which they

are suitable. The half-space above the TSAFM may be accurately modeled by a contin-

uum (Navier-Stokes) or a molecular (MD, DSMC, BTE) model, while the region below the

cantilever requires a molecular model.

Furthermore, the solid phase heat transfer within the sharp tip is another multiscale

problem; the cantilever and the root of the tip may considered as a continuum, while the

relatively few atoms near the end of tip cannot. As mentioned previously, solid phase

heat conduction has been found to contribute little to the scanning mode and will therefore

not be considered in this thesis, but further illustrates the interesting challenges of micro-

and nano-scale modeling involving multiple scales and physical phenomena. Currently

TSAFM scans are interpreted using continuum based models [53]. Preliminary studies,

included in this thesis (see Chapter 5), have found that the TSAFM sensitivity is strongly

affected by noncontinuum heat transfer phenomena [66, 67].

1.3 Goals and significance of this Research

In general, modeling techniques based on molecular models or first principles are valid at

large and small scales. Practically, they are limited by computational expense to small scale

simulations. On the other hand, the mature and highly efficient continuum techniques are

inappropriate for any regions where noncontinuum effects may be manifest. The obvious

solution then is to use the appropriate models for the appropriate regions (and regimes) of

length scales. The difficulty comes in efficiently modeling the small subcontinuum regions

and coupling this with the continuum to provide a valid and efficient modeling technique.

The primary goals to be accomplished by this research are:

• Develop efficient numerical techniques for simulating low-speed subcontinuum gas

phase flows
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• Coupling the developed subcontinuum techniques with continuum techniques to ad-

dress the issues discussed previously

• Apply these techniques to model the TSAFM and identify the effects of subcon-

tinuum heat transfer, as well as other noncontinuum phenomena that may impact

TSAFM operation (including the Knudsen force [59, 84, 85, 86]).

• Explore other interesting thermally driven microscale flows including Thermal tran-

spiration which has application in microscale pumping and propulsion [4, 69, 75, 76,

104].

At the start of this research, the most significant aspect appeared to be the development

of coupling techniques that could be used with existing micro- and macroscale models,

based on methods reported in the literature. The Information Preserving DSMC method

(see Chapter 3) was selected for microscale modeling. However, after implementing this

method it soon became apparent that it was incapable of correctly modeling nonequilibrium

thermally driven flows. However, the superior efficiency of the Information Preserving

method and its considerable success with other noncontinuum flows make it very attractive,

and therefore worthy of further investigation.

The primary significance of this work is the theoretical and practical development of

an enhanced IP-DSMC technique for nonequilibrium thermally driven flows. This method,

the Octant Splitting IP-DSMC (OSIP-DSMC), is capable of capturing complex thermally

driven flows, including thermal creep effects. This provides an efficient method for mod-

eling the behavior of rarefied gases in the presence of thermal loads. Furthermore, the

method should be equally applicable to other nonequilibrium situations, and gracefully de-

generates to correctly model lower dimensional flow problems and those without strong

nonequilibrium behavior.

As an efficient and smooth method, the OSIP-DSMC may be coupled with continuum

solvers. In this work, the OSIP-DSMC will be coupled with a BEM Laplace solver to
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explore the behavior of the gas surrounding a heated cantilever, as in a TSAFM system.

Observable in these simulations are a static pressure difference, or Knudsen force, between

the top and bottom surfaces of the beam, as well as the two dimensional heat transfer

through the rarefied gas. This will be compared to simplified 1D simulations

1.4 Thesis Outline

The organization for this thesis, including brief descriptions of each chapter, will be as

follows:

Chapter 2: Kinetic Theory A review of the kinetic theory of gases and related numerical

methods, including a review of multiscale modeling techniques

Chapter 3: Microscale Modeling A presentation of the

microscale modeling techniques that will be developed and used in this research.

A state of the art Information Preserving DSMC implementation will be described,

and examples of the capabilities and deficiencies of the IP-DSMC presented. The

theoretical and practical development of an enhanced IP-DSMC method, the Octant

Splitting IP-DSMC will be presented, and shown to efficiently model a number of

thermally driven flows.

Chapter 4: Macroscale Modeling A brief argument for using the Boundary Element

Method as the continuum solver coupled to the OSIP-DSMC and a brief description

of the BEM.

Chapter 5: Multiscale Modeling Describing the coupling of the OSIP-DSMC and the

BEM using a modified Alternating Schwartz coupling. A simplified model using a

macromodel for the subcontinuum heat transfer and simplified geometry is used to

evaluate the sensitivity of a TSAFM system over a wide range of scan heights and op-

erating powers. The results of a coupled OSIP-DSMC/BEM simulation of a TSAFM
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cantilever are compared to the simplified results and the effect of the Knudsen Force

is observed.

Chapter 6: Additional Thermally Driven Flows This chapter presents the results of OSIP-

DSMC simulations of a number of additional thermally driven flows.

Chapter 7: Summary and Conclusions
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CHAPTER II

KINETIC THEORY

The concept that matter is composed of discrete atoms or molecules dates to the time of

the ancient Greeks. However, the proof, formal description, and general acceptance of the

molecular/atomic nature of matter are products of the late 19th and 20th centuries. Science

has now discovered not only molecules and atoms, but the myriad of subatomic particles—

and where the “bottom” truly lies is still being explored. This discrete world is almost

entirely invisible; as we experience matter and physical phenomena as local averages of

underlying microscopic quantities. This chapter presents an overview of the molecular

kinetic theory of gases and several related numerical approaches.

2.1 The Kinetic Theory of Gases

The kinetic theory of gases, developed in the late 19th century, largely due to the work of

Maxwell and Boltzmann, seeks to describe the microscopic behavior of gases and from this

to understand macroscopic thermophysical flow properties.

The basic assumptions are that: 1. molecules behave as idealized spheres with some

molecular diameter, d, and mass, m (a common model is the Hard Sphere model which

uses a fixed d), 2. molecules move randomly (although an ordered motion may be superim-

posed on the molecular chaos), 3. molecules obey classical Newtonian dynamics—ballistic

motion, acceleration in response to external forces, etc., and 4. interactions between mole-

cules are negligible except during collisions (near-field and quantum mechanical effects are

neglected). Although science has found the true nature of atoms and molecules to be far

more complex, the kinetic theory of gases admirably describes the behavior of many real
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gas flows. Based on these assumptions, mathematical and numerical models describing the

behavior of gases in terms of macroscopic quantities and loads may be developed.

Prior to presenting some of these models, it is important to define a number of charac-

teristic lengths and flow regimes. The assumption that the intermolecular interactions are

negligible except during collisions requires that the intermolecular spacing be significant,

the average of which, δ, is related to the density, ρ, of the gas by

δ =

(
ρ

m

)1/3
= n1/3 (2.1)

where the number density, n = ρ/m, is the number of molecules per unit volume and m is

the mass of a single molecule (ρ is the conventional density, mass per unit volume). As

the molecules move and interact with one another, the average distance between collisions

is called the mean free path, λ. For a hard sphere gas this may be calculated as λ =
(√

2πd2n
)−1

, or more generally as

λ =

√
πµ

2p

(
2kBT

m

)1/2

(2.2)

where kB=1.3806505 × 10−23 is the Boltzmann constant and p, T , and µ are, respectively,

the pressure, temperature and coefficient of viscosity of the gas.

Finally, the so-called “characteristic length”, L may be defined in terms of the geometry,

but often is more accurately defined in terms of the local flow gradients, e.g. for a density

gradient,

L =
ρ

dρ/ dx
(2.3)

Figure 2-1 illustrates how these may be used to identify flow regimes [17]. The ratio

δ/d is a measure of the fraction of space occupied by molecules. If δ/d < 7 then the gas

should be considered dense, and molecules will be strongly affected by the many molecules

around them. If however δ/d is large, then the molecules occupy little of the space and the

gas is considered dilute. Molecules in a dilute gas are unlikely to be affected by any more

than one other molecule at a time, thus collisions in a dilute gas are assumed to be binary.
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The ratio of L/δ gives some sense of the number of molecules occupying a region of

interest. Large L/δ, e.g., L/δ > 100, indicate that a sizeable number of molecules occupy

the region and that statistical fluctuations may be neglected. (The approximate number of

molecules corresponding to this limit is (L/δ)3 or 1 × 106).

Finally, the Knudsen number Kn is defined as the ratio of the mean free path to the

characteristic length, or Kn = λ/L. For very small Kn the microscopic effects become less

important, and in the limit as Kn → 0 the flow may be considered inviscid and can be de-

scribed by the Euler Equations. With increasing Kn the effect of boundary interactions be-

comes more important on the flow until around Kn = 0.1 the continuum assumptions break

down (see Section 2.2.2 for further explanation of this breakdown). For large Knudsen

number (Kn > 10), intermolecular collisions are extremely rare, and boundary interactions

dominate the behavior of the gas in what is termed free molecular flow. In intermediate
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or transition flows (where 0.1 < Kn < 10) the influence of boundary interactions are of

similar order to intermolecular interactions.

2.2 Microscopic Approaches

A large Knudsen number, and the accompanying breakdown of the continuum description,

may be the result of a large mean free path, i.e., a highly dilute gas, or small characteristic

lengths—even in dense gases. Thus the kinetic theory of gas, and the related methods, are

equally applicable to large- and small-scale systems within the appropriate flow regimes.

The following will review some of the techniques that have been developed to accurately

model the microscopic behavior of rarefied gases. These may be divided into two main

categories: mathematical models and direct simulation models.

2.2.1 Mathematical Model: Boltzmann Equation

One of the pioneers of the kinetic theory, James Clerk Maxwell, proposed a velocity distri-

bution function f0(c, x, t) to describe the behavior of an equilibrium gas. This distribution

provides the probability of a particle having a given velocity at a given location and time.

The general form of this Maxwellian distribution in three dimensions (neglecting spatial

and transient variations) is

f0
(
c′
)

=
β3

π3/2 exp
(
−β2c′2

)
(2.4)

where β = (2RT )−1/2 is the reciprocal of the most probable velocity cmp.

In general, macroscopic quantities may be obtained from a distribution function f , by

integrating to obtain the averages or moments of the distribution:

Q =

∞∫

−∞

Q f (c) dc (2.5)

The Boltzmann Equation expresses the change in a distribution function with respect to

time and space.

∂

∂t
(n f ) + c · ∂

∂x
(n f ) + F · ∂

∂c
(n f ) =

∞∫

−∞

4π∫

0

n2 (
f ? f ?1 − f f1

)
crσ dΩ dc1 (2.6)
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where the first term on the left hand side is associated with the time rate of change of

the distribution, the second is associated with the effect of spatial gradients, and the third

the effect of external forces (F). The term on the right hand side is the collision integral

or operator and is associated with changes resulting from collisions of molecules. The

assumptions involved in the Boltzmann Equation are: 1. the gas is dilute, which leads to

the next two assumptions, 2. that collisions are binary, and 3. assumed to be instantaneous

events at a fixed location in physical space, finally 4. the molecular motion is assumed to

be in a state of chaos, This final assumption allow the two particle distribution function de-

scribing the relative velocities of collision pairs to be approximated by the product of two

single particle distributions. The moments of the Boltzmann Equation result in the Boltz-

mann Transport (or Transfer) equations for the collision invariants—quantities unchanged

by collisions—of mass, momentum, and energy:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0 (2.7)

∂

∂t

(
ρv j

)
+

∂

∂xi

(
ρviv j + pi j

)
= ρFi (2.8)

∂

∂t

[
ρ

(
1
2

v2 + e
)]

+
∂

∂xi

[
ρvi

(
1
2

v2 + e
)

+ pi jv j + qi

]
= ρFivi (2.9)

where vi = ci is the macroscopic velocity component, pi j is the pressure tensor, qi is the

heat flux vector and e represents internal energy modes (vibrational and rotational). These

equations, also known as the conservation equations, could also have been deduced from

first principles.

Direct evaluation of the Boltzmann equation for simulating rarefied flows requires con-

siderable computing power and is possible only for simple flows and geometries as it re-

quires the formulation and evaluation of the time and spatial evolution of the distribution

function and the collision integral terms [17, 93]. Direct approaches have usually utilized

Monte Carlo integration techniques to evaluate the collision integral. Simplifying meth-

ods, including the BGK, or BKW (Bhatnagar, Gross & Krook [12], and Welander [109])

model for the collision operator allowed simpler solution of the Boltzmann Equation. Other
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methods, including the H and S models serve a similar purpose [93]. The BGK model for

a distribution f takes the form of

∂ f
∂t

+ c · ∂
∂x

( f ) + F · ∂
∂c

( f ) = Acρ ( fe − f ) (2.10)

where Ac is a constant such that Acρ provides the collision frequency, independent of c,

and fe is a local Maxwellian with ρ, c0, and T derived from f as its parameters. Recent

work by Sone, Ohwada, Aoki, and others have demonstrated efficient methods utilizing

the Boltzmann Transport Equations and have applied these to a number of interesting 2D

flows [97, 98, 6, 7]. In many cases the linearized Boltzmann equation is used in conjunc-

tion with the simplified collision model [98, 93]. Other methods based on the Boltzmann

Equation include the Lattice Boltzmann which utilizes a lattice on which particle distri-

butions are allowed to travel and interact at nodes. The BGK model is often used for the

collision, or relaxation, operations. Most Lattice Boltzmann implementations are based on

the Chapman-Enskog expansion and are able to recover the behavior of the Navier-Stokes

equations, while providing a flexible and efficient discretization and solution method [63].

2.2.2 Navier-Stokes Equations

Before leaving the mathematical models it is important to present the Chapman Enskog

distribution and discuss its significance. The Chapman-Enskog distribution is an expansion

of the Maxwell distribution and represents a slight perturbation from equilibrium. This

may be expressed simply as

f = f0Γ = f0 (1 + Φ1) (2.11)

where Γ = (1 + Φ1) is the perturbation expansion, or more precisely

f = f0

(
1 − 4Kβ2

5nkB

(
β2c′2 − 5/2

)
c′ · ∂ ln T

∂r
− 4µβ4

ρ
c′0c′ :

∂c0

∂r

)
(2.12)

The Chapman-Enskog distribution may be manipulated to yield the following relation-

ships relating the shear stresses and heat fluxes to the macroscopic quantities:

τi j = µ

(
∂vi

∂x j
+
∂v j

∂xi

)
− 2

3
δi jµ

∂vk

∂xk
(2.13)
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and

qi = −K
∂T
∂xi

(2.14)

which may be substituted into the conservation equations, Equations (2.7)-(2.9) producing

a closed set of equations for continuum fluid dynamics—the Navier-Stokes equations [17,

24]. Thus the applicability of the Navier-Stokes equations is subject to the same limits

as the Chapman-Enskog distribution, namely that the gradients, ∂T
∂xi

and∂c0
∂x , on which the

perturbation is based be small. Conventionally this limit is expressed in terms of the Knud-

sen Number and requires that Kn < 0.1 for the Chapman-Enskog and the Navier-Stokes

equations to be valid. The validity of the Navier-Stokes equations may be extended slightly

to near-continuum flows by the addition of “slip” boundary conditions. The Burnett equa-

tions, a more complicated extension of the Chapman-Enskog distribution, may also extend

the validity of the Navier-Stokes equations.In any case, the Navier-Stokes equations are the

basis of most continuum computational fluid dynamics simulation techniques, utilizing a

variety of numerical discretization and solution methods, including finite element (FEM)

and finite volume (FVM)methods.

2.2.3 Direct Simulation: Molecular Dynamics

Due to the difficulties involved in evaluating the mathematical models, a number of physi-

cally based, or direct simulation, models have also been proposed. The first of these is the

Molecular Dynamics method, or MD. Molecular Dynamics simulates a set of molecules,

subject to a number of rules that describe the behavior of the molecules and their interac-

tions each other, boundary conditions, and body forces. For example, one simple model

would consist of a hard sphere gas obeying Newtonian physics and could equally describe

a simple gas—or a game of billiards.

The set of simulation molecules must be generated with some set of initial conditions:

positions, velocities, etc., based on macroscopic quantities and random numbers. The sim-

ulation then proceeds by moving the particles and evaluating their interactions based on
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the prescribed set of rules. For a hard sphere gas, intermolecular interactions occur only

when the particle trajectories intersect. Molecular Dynamics may also be applied to dense

gases, liquids, and solids by using more elaborate models that evaluate intermolecular po-

tentials (e.g., Lenard-Jones potential). Although the initial state is randomly generated, the

subsequent operation of a Molecular Dynamics simulation is entirely deterministic.

The principal difficulty in applying the MD to rarefied gas dynamics is the extreme

computational expense. Consider that within one cubic micrometer of air at standard tem-

perature and pressure there are over 25 million molecules. This allows only very small

quantities of gas to be modeled—usually insufficient for macroscopic significance. How-

ever, the MD is extremely useful in modeling dense media, where smaller samples may

indeed yield important insight.

2.2.4 Direct Simulation Monte Carlo

Dr. Graeme A. Bird proposed the direct simulation Monte Carlo method (DSMC) in 1963

as an efficient means of modeling high-speed, high-altitude aerodynamic flows [16, 17].

Over the years the method has been improved and is now used routinely for macroscopic

and microscopic simulations [18, 80]. Furthermore, it has been proven to be a solution of

the Boltzmann transport equation (BTE) [9, 73], and has been used to model complex gas

flows involving single and multiple species of monatomic and polyatomic gases [17, 80,

18], and recently dense gases [39] and even granular media [71].

The method relies on two main assumptions: 1. The gas is dilute and 2. the gas is in

a state of molecular chaos. The first condition requires that the intermolecular spacing δ

is much larger than the effective diameter d of the molecule, i.e., δ � d. As previously

discussed, this leads to the assumption that the intermolecular collisions are all binary (or

that the number involving more than two particles are extremely insignificant). The second

condition allows collisions to be treated as a function of the product of two single particle
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distributions ( f (x1, c1) f (x2, c2)), rather than the more complex—and often intractable—

two particle distribution ( f (x1, c1x2, c2)). This then provides a workable means of deter-

mining the average number of collision pairs. If the probable number of collisions may be

determined a priori and the molecules are in a state of molecular chaos, then collisions may

be treated probabilistically. Therefore, instead of tracking particle trajectories (or evaluat-

ing or potential interaction), the motion and collisions may be decoupled. This allows for

a small set of simulation molecules to be used: each representing a much larger number of

real molecules and whose pre- and post-collision behavior reflects the statistical behavior

of the real molecules. The description of the DSMC method included in this chapter is

drawn primarily from Bird’s classic text on the subject [17].

The basic operation of the DSMC is as follows (also refer to the flowchart in Figure 2-

2):

1. Simulation molecules are initialized with spatial distributions and velocities based

on the macroscopic density, temperature, and velocity of the initial conditions

2. New molecules are inserted at inlets of open systems

3. Molecules are moved based on an Euler step (x(t+∆t) = x(t) + ∆tv), with time step ∆t

4. Molecules are sorted into computational cells and subcells

5. The number of candidate collision pairs from each cell is determined and these are se-

lected (using subcells to increase likelihood of collision pairs being near neighbors).

Collision is evaluated and (if the collision occurred) the post-collision behavior is

calculated.

6. Macroscopic quantities are sampled from molecules

Although the DSMC is far more efficient than Molecular Dynamics for rarefied flow

simulations, it remains quite intensive. This is due to the still considerable number of
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Figure 2-2: Flowchart of DSMC steps

simulations particles necessary for accurate modeling and the large number of samples re-

quired to obtain statistically valid results. Low-speed flows present additional challenges

as the thermal velocities of the simulation molecules are much greater than the stream ve-

locities of interest. This causes significant statistical fluctuations in sampling and requires

large numbers of samples to obtain valid results. As such the computational expense of a

DSMC simulation for low-speed flows may be orders of magnitude greater than a compa-

rable high-speed flow simulation. Recently, a number of enhancements have been made to

improve the efficiency of the DSMC by reducing statistical scatter. One such method is the

Information Preserving DSMC, which will be discussed and extended in Chapter 3.
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2.2.5 Microscopic Sampling

In a mathematical model of a gas, conventional macroscopic quantities may be obtained

from the distribution function by evaluating the moments of the distribution; see Eq. (2.5).

However, in particle methods, as in the real gas, the molecules, and their distributions are

discrete and conventional averages are used. The formulation for the various macroscopic

quantities in terms of microscopic quantities are presented in Table 2-1 [17], where micro-

scopic averaging of a quantity Q is defined as:

Q =
1
N

N∑

i=1

Q (2.15)

These are equally applicable to real, DSMC, and MD molecules with the exception that

each DSMC molecule represents a large number of real molecules, necessitating the inclu-

sion of the effective number, FN , in the definition of the density and any terms involving

the density, thus ρ =
∑

FNmi/Ω. In continuum models, the microstates are never directly

assessed, but the relationships between the various macroscopic quantities are based on the

constitutive laws; see Equations (2.13)-(2.14).

2.2.6 Gravity and Thermally Driven Flows

Throughout this study the effect of gravity will be neglected. This is a common assumption

in microscale simulation and gas dynamics and may be justified by considering that the

force of gravity scales with the volume, whereas most other forces of interest are due to

surface effects (pressure, shear, electrostatic force, etc.). At small scales surface effects

tend to dominate, as the surface to volume ratio increases. Consequently, in this thesis the

term “thermally driven flow” never refers to buoyancy driven natural convection, but rather

to flows driven by thermal stresses. Omitting gravity not only simplifies the analysis, but

serves to isolate the phenomena of interest.

The kinetic theory of gases provides a theoretical understanding of the nature of gases,

especially under rarefied conditions. A number of methods have been developed to model
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Table 2-1: Microscopic Sampling Definitions

Quantity Equation

Number Density n = N/Ω ≈ FN N/Ω

Density ρ =
∑

mi/Ω = nm ≈ FN Nm/Ω

Stream Velocity c0i = ci

Thermal or “Peculiar” Velocity c′i = ci − c0i

Translational Temperature 3RTtr/2 = c′2/2 =
(
c2 − c2

0

)

Pressure Tensor pi j = nmc′ic
′
j = ρ

(
cic j − c2

0

)
/2

Scalar Pressure p = nmc′2/3 = ρ
(
c2 − c2

0

)
/3

Shear Stress τi j =
(
nmc′ic

′
j − δi j p

)

Heat Flux (εint is the
non-translational energy
associated with internal degrees
of freedom)

qi = 1
2nmc′2c′i + nεintc′i

= 1
2

(
ρ
(
c2ci − c2ci

)
− 2pi jci

)
+ n (εintci − εintc0i)

real gases based on the kinetic theory. The DSMC is perhaps the most flexible and widely

used for modeling a range of complex micro- and macroscale systems—from the space

shuttle to micro thrusters. Coupling the DSMC with a continuum model is complicated

by large statistical scatter, which is exacerbated at extremely small length scales and low

speeds. The following chapter will discuss enhancements to the DSMC to reduce this

scatter, including the IP-DSMC and a significant contribution of this research, the Octant

Splitting IP-DSMC.

2.3 Multiscale Techniques

The need for accuracy and efficiency in the modeling of systems that span various length

scales and flow regimes leads logically to multiscale modeling, wherein various models

are used only where they are appropriate for the scale and physics and coupled in some

manner to form a global model. The commercial and technical possibilities of micro- and
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nanoelectromechanical systems have motivated considerable research addressing the mul-

tiscale simulation and design challenges inherent in such systems. Various methods have

been presented for modeling the behavior of solids, liquids, and gases, including: concur-

rent coupling of length scales of Rudd and Broughton [89], the Quasicontinuum method

of Shenoy et al. [95], and multiscale modeling of laser ablation (coupling MD and DSMC

for solid, liquid and gas phase modeling) [117, 118]. Some more general frameworks for

multiscale modeling have also been proposed e.g., the Equation Free Multiscale Method

of Kevrekidis and associates [51] and the Heterogeneous Multiscale Method of E and En-

gquist [30]. The following will review a number of the proposed methods and coupling

schemes and suitable for rarefied gas dynamics and identify the method that will be ex-

plored in this thesis.

2.4 Coupling Criteria

In many cases where multiscale modeling is undertaken, the individual modeling tech-

niques are mature: Finite Element, Finite Difference, etc. for continuum and Molecular

Dynamics or DSMC for noncontinuum modeling. As such, the coupling scheme is often

the primary focus. A necessary condition for any coupling scheme is that the models to be

coupled be consistent within the coupling region. This of course requires that coupling be

performed in a continuum region (or near-continuum with appropriate “slip” conditions).

It then remains to: a) select (or develop) appropriate and efficient models for the micro-

and macroscopic phenomena of interest; b) identify what quantities are to be matched and

where; c) provide a means for the sampling of macroscopic quantities and the generation

of microscopic distributions.

In general, molecular models involve very small timescales, large numbers of mole-

cules, and—due to the statistical and/or stochastic nature—large sample sets. Techniques

to improve the efficiency while maintaining accuracy of the microscale models have re-

ceived considerable attention in the literature and will be the subject of Chapter 3.
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2-3(a): Schwarz Coupling 2-3(b): Marshak Condition

2-3(c): AMAR Coupling

Figure 2-3: Coupling schemes

Although quite expensive, macroscopic quantities such as temperature, pressure, and

velocity can be sampled directly from the microscale models. The return path is more

difficult: particles to be inserted into the microscale model must be generated from some

(perhaps unknown) distribution functions to reflect the macroscopic properties of the con-

tinuum model. Some techniques have been developed based on the BGK solution of the

Boltzmann Transport Equation coupled with a Navier-Stokes Finite Difference discretiza-

tion which avoid the need to generate particles, but still require an approximation not only

of the particle distributions, but of the collision operator [78].

A variety of coupling schemes have been proposed, either specifically for multiscale

modeling, or as derivatives of conventional domain decomposition schemes (wherein the

domain is decomposed into smaller regions for improved computational efficiency and/or

parallelism, usually involving the same modeling technique for all sub-domains). The fol-

lowing review will present a number of multiscale modeling efforts in rarefied dynamics.
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One method that is quite intuitive, and has seen considerable attention, and success is

the Alternating Schwarz Coupling (or simply Schwarz Coupling). Generally this method

utilizes overlapping regions, Ω1 and Ω2 that correspond to the continuum and subcontinuum

models (see Figure 2-3(a)). Coupling is accomplished by 1. solving each region, e.g., Ω1,

subject to the boundary conditions on Γ1, 2. applying this solution to the overlapped portion

of the boundary, Γ2, of the second region, Ω2, 3. and repeating steps 1 and 2 for each region

in turn, until the solutions on the boundary of the overlapped region, Ω1 ∩ Ω2, converge.

In the case of incompressible and/or steady flows, there is a unique solution within the

overlapping region, thus ensuring that all quantities, gradients, and fluxes at the interface

are correct.

Schwarz coupling was first applied to gas phase multiscale modeling by Aktas and

Aluru as a means of coupling the Finite Cloud Method (FCM) and DSMC to model fluid

flow through microfilters [1, 2]. They point out that Schwarz coupling can be accomplished

with non-overlapping boundaries and Neumann (or Robin) boundary conditions, but this

was not done to avoid estimating derivatives of flow quantities.

In the implementation of Aktas and Aluru, particle velocities were selected from the

Maxwellian distribution. In a similar study utilizing Schwarz coupling for multiscale

DSMC-Navier Stokes simulations, Wijesinghe and Hadjiconstantiou point out the impor-

tance of selecting the correct microscopic distribution function, which for most nonequi-

librium continuum/near-continuum flows will be the Chapman-Enskog distribution [111,

112]. Sampling particle velocities from the Chapman-Enskog distribution is slightly more

expensive than using the Maxwellian, but not prohibitive (see Section 5-10) [37]. They

also present an extension of the Schwarz coupling method to unsteady flow, wherein the

solution found for a given point in time is used as the initial state for the next time step and

treating each time step as a quasi-steady state [112].

Hash and Hassan compared a number of different coupling schemes for Navier-Stokes

and Monte Carlo simulations including: 1. the Marshak condition, 2. the extrapolation of
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flow properties, 3. the extrapolation of net fluxes, and 4. the use of asymptotic values of the

solution of the linear kinetic half-space problem. Of these schemes, the second was found

to have excessive error, and the last is similar to the Marshak condition but is only necessary

for problems with severe translational non-equilibrium. Of the remaining methods, the

Marshak condition was determined to be preferable—offering consistent performance and

accuracy [45]. The Marshak condition requires the conservation of fluxes at the interfaces.

Flux conservation is accomplished by calculating the half-fluxes and equating their sum

to the net flux (obtained from the continuum solution). The half flux leaving the DSMC

region is a simple sum of the quantities transported by particles leaving the DSMC region.

The half flux entering the DSMC region from the continuum region can be calculated based

on the chosen distribution (Chapman-Enskog). The result is a set of equations that can be

solved to obtain the boundary condition properties to be applied in the following iteration

step (see Figure 2-3(b)) [45].

A similar scheme has been utilized by Sun et al. [102] to couple DSMC and finite

volume method models in a time stepping solver (i.e., the fluxal quantities are integrated to

obtain the temperature, pressure, etc. for the next step). Although they suggest the Marshak

(non-overlapping) conditions as a possibility, they determine that generating particles at the

interface may lead to instability and inaccuracy in high speed flows or in flows which result

in cells with few particles. As an alternative, they suggest an overlapping method with

buffer and reservoir cells. At each DSMC time step, particles are generated in the reservoir

cells. The buffer cells improve the quality of the generated particles by allowing them to

interact with each other, and particles that have recently left the DSMC simulation domain,

prior to entering the DSMC simulation. Only the particles that are within the main DSMC

cells contribute to the solution. The fluxal quantities of the DSMC replace those of the

continuum finite volume method (FVM) cells in the solution. The continuum solutions

for the temperature, velocity, density (or pressure) and heat flux at the locations of the

reservoir cells are used to generate particles from the Chapman-Enskog distribution (see
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Section 5-10). As a further enhancement, an Information Preserving DSMC method (see

Chapter 3) is used to reduce the statistical scatter and computational expense that would

otherwise dominate low-speed flows (as are common in MEMS and NEMS flows)(see [32,

22, 100, 108]).

Garcia, et al. [38] and Wijesinghe, et al. [110] describe an adaptive mesh and algorith-

mic refinement (AMAR) method which automatically refines the continuum (FVM) anal-

ysis mesh and when necessary switches to a DSMC solver. In this method each successive

refinement overlays the coarser mesh it replaces and its fluxal quantities (that will be used

for time stepping, similar to the method of Sun et al.). When non-continuum conditions

are detected (i.e., mesh refinement reaches a specified limit) within a region, DSMC cells

are generated with particle distributions influenced by the overlaying continuum solution.

Buffer cells are used to generate particles at each DSMC time step with distributions based

on an interpolation of the solutions of the current and next continuum time steps. After

iterating the DSMC solution for enough microscale time steps to equal the continuum time

step of the overlaying continuum grid, the DSMC solution then replaces the continuum

solution in the affected region. The accuracy of the coupling is further enhanced by “re-

fluxing,” wherein the fluxal quantities due to particles leaving or entering the DSMC region

(from the buffer cells) are used to calculate corrections for the continuum elements adjacent

to the DSMC region.

Similar efforts utilizing flux matching schemes are presented by O’Connell and Thomp-

son (MD-continuum solution for fluid systems) [77]; Flekkøy (general hybrid model us-

ing Navier-Stokes and Lennard-Jones MD for combined particle and continuum dynam-

ics) [34]; Delgado-Buscalioni and Coveney (whose work follows Flekkøy but extended to

unsteady flows and emphasizes the need for coupling to depend on fluxes and not merely

matching boundary) [28]; and Bourgat et al. [20] and Le Tallec and Mallinger [57] who

couple Navier-Stokes and Boltzmann solvers for modeling the reentry of high altitude ve-

hicles via half fluxes (they also suggest friction as a coupling method).
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2.4.1 Discussion

The above methods may be classified as flux matching or state matching, the former (Mar-

shak condition, etc.) explicitly conserve fluxal quantities of mass, momentum, and energy,

while the latter (e.g., Schwarz coupling) can only ensure fluxal conservation after conver-

gence. Whether the method needs to be explicitly flux conserving appears to be problem

dependent. Wijesinghe and Hadjiconstantinou discuss the applicability of different cou-

pling schemes to different classes of problems and note that flux matching schemes are

often implemented in unsteady solvers but then used to solve steady state problems, an ap-

proach that is usually less efficient than a steady solver using state matching. They feel that

the choice of coupling scheme should depend on the flow physics—avoiding the expense

of a flux matching unsteady solver if it is not needed—and not, as they put it, “researcher

bias”. However, the balance of computational and development costs may be best achieved

by a scheme that is generally applicable to steady and unsteady flows.

2.5 Approach

For rarefied gas dynamics, the obvious choice, in terms of accuracy and flexibility, is the

direct simulation Monte Carlo. As the targeted applications of this thesis are low-speed—

specifically thermally driven flow—it is assumed that the flow velocities within continuum

regions of the domain are very small. In the absence of bulk flow, it may be possible to

avoid the complexity of a full Navier-Stokes model, and focus instead on conduction as

the dominant heat transfer mechanism. This allows a Laplace solver to be used for the

continuum modeling. As such, this thesis will explore the applicability of the Boundary

Element Method (BEM) for modeling the continuum heat transfer in the gas. The inter-

est for this is based on the efficiency of the BEM and its ability to simulate infinite and

semi-infinite domains and its efficiency in coupling with DSMC. Based on these assump-

tions, it seems logical to use a state matching scheme, specifically the Alternating Schwarz
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Coupling, with modifications to ensure that particles are generated from the appropriate

(Chapman-Enskog) distribution.

Although low-speed flows seem to have simplified the treatment of continuum model-

ing and coupling, they present a significant challenge for microscale modeling. As such,

the IP-DSMC will be used for the non-continuum gas phase dynamics. Initially it was

thought that this method would adequately describe the noncontinuum behavior of ther-

mally driven flows, but, as will be shown in Chapter 3, in its present form it is incapable

of capturing many of the phenomena of interest to this research. Chapter 3 will present not

only a detailed description of the IP-DSMC, but the derivation of an enhanced model for

detailed analysis of thermally driven flows.
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CHAPTER III

MICROSCALE MODELING

This chapter presents the motivation and theoretical description of the Information Preserv-

ing DSMC as well as GT-DSMC, a parallel object oriented implimentation of the method.

A number of different flows will be studied to explore the capabilities of the IP-DSMC

leading to the formulation of further enhancements that greatly extend the method.

3.1 Low-Speed Flows

Particle methods, such as the DSMC are, in general, accurate for rarefied flows at both

the macroscale and microscale. However, these simulations require considerable compu-

tational effort, frequently involving many millions of simulation molecules. The compu-

tational effort depends not only on problem size, but on the flow conditions. As shown

in Figure 2-1, microscale flows may involve significant statistical fluctuations due to the

small number of particles contained within the computational domain. Furthermore, low-

speed flows are quite common—from stationary to 10’s of m/s—particularly when ther-

mally driven. Microscale systems involving high-speed flows do exist, including micro-

turbines [35] and read-write heads on standard hard drives [3, 25] and the method devel-

oped here are equally applicable. Low-speed flows present additional challenges in DSMC

modeling as a very large number of samples must be taken to obtain statistically signif-

icant averages of the macroscopic quantities. This may be quantified: first consider that

simulation (and real) molecules have velocities on the order of the average thermal speed

c′ =
√

8 R T/π (for Argon at room temperature c′ ≈ 400 m/s), where R is the species

specific gas constant. Hadjiconstantinou, et al. provide a formulation for determining the

number of samples, M, necessary to obtain valid statistical samples to a given degree of
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precision [42]. For the macroscopic velocity this may be calculated as

M =
1

γA2
cN0Ma2E2

u
(3.1)

where Ac is the acoustic number (Ac = 1 for a dilute gas), γ is the specific heat ratio, N0

is the number of particles in the cell, Ma = |c|/ais the Mach number (a =
√
γkBT0/m)

and Eu is the desired fractional error. Keeping a fixed number of molecules and number of

samples, the fractional error in the density would be approximately

Eρ =
1√

M N0

1
Ac

(3.2)

and for temperature

ET =
1√

M N0

√
kB

cV
(3.3)

(For an ideal gas cv = 3 kB/2.) Based on these equations, if a maximum error of 1% were

desired from a simulation of Argon at 423 K flowing at 10 m/s using an average of 100

simulation particles per computational cell, then 88,000 independent samples would be

required. Errors in density, temperature, and pressure would be 3.3%, 2.8%, and 4.3%,

respectively. If now the stream velocity, c0, were 1 m/s, 8 × 106 samples are needed to

achieve the same resolution for the velocity (The increased number of samples does how-

ever reduce the error for the other quantities to below 1%). Thermally driven flows may

have even lower speeds, requiring a prohibitive number of samples. Low-speed flows also

complicate the treatment of open boundaries which may require special treatment for inlets

and outlets [74, 88, 114, 115, 116].

3.2 Information Preserving DSMC

A number of techniques have been proposed to address the computational expense associ-

ated with DSMC simulation of low-speed flows [82, 83], but one of the most successful is

the Information Preserving DSMC (IP-DSMC) [31]. In this method, certain macroscopic
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quantities are “preserved” along with the microscopic velocities used in the DSMC simula-

tions. These preserved quantities are then transported by particle movement and modified

by boundary interactions, particle collisions, and fluxal modifications.

The initial implementations of the IP-DSMC preserved only the macroscopic veloc-

ity and explicitly assumed isothermal flow conditions [31, 22]. Since then, a number of

models have been suggested to extend the method to non-isothermal flows by using modi-

fied collision diameters [32] and additional energy terms [21, 100]. For flows with greater

non-linearities, the IP-DSMC was further enhanced by using kinetic fluxes for the mass,

momentum, and energy fluxes, but results were not entirely satisfactory [94, 107]. How-

ever, many of these innovations have been somewhat ad hoc in their formulations, although

attempts at a formal theory have been made [99, 100].

3.2.1 Preservation of Macroscopic Quantities

At a minimum, a scheme such as the IP-DSMC must satisfactorily reflect the macroscopic

state corresponding to the ensemble of the microscopic states of the underlying real mole-

cules. The DSMC satisfies this by using a small set of simulation molecules, each of which

is a representative molecule of a larger set of real molecules (see Figure 3-1(c)) that have

been “grouped” in some fashion (see Figure 3-1(b)). Thus the DSMC molecule is the sin-

gle representative of a larger group, but has no information regarding the ensemble other

than the number of molecules it represents. Throughout the simulation, each simulation

molecule obeys the same physics that the real molecules are assumed to obey, although

collisions are determined in a probabilistic manner. The IP-DSMC constitutes an attempt

to capture and preserve the information present in the larger set of “real” molecules that

are ignorantly represented by the DSMC molecule (see Figure 3-1(d)). In other words, a

DSMC molecule carries only information regarding its own position and velocity, whereas

the IP-DSMC supplements this with information regarding the average behavior of the en-

semble. Although the true microscopic states of the individual “real” molecules are not
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3-1(a): Collection of molecules 3-1(b): Grouping of molecules

3-1(c): Representative (DSMC) molecules
(black) and the groups of real molecules they
represents

3-1(d): Preserved average quantities (velocity,
temperature, etc.) of the real molecules repre-
sented by simulation molecules

Figure 3-1: Theoretical interpretation of DSMC and IP-DSMC simulation molecules

accessible, the macroscopic flow quantities are, and may be used to initialize the IP mol-

ecules. As the molecules move (with the DSMC velocity) they transport these quantities,

propagating them by both movement and collisions.

The accuracy of the method will depend heavily on the choice of preserved quantities

and the manner in which they are updated. As previously noted, the “microscopic average”

for sampling a macroscopic quantity Q from the microscopic is

Q =
1

Nµ

Nµ∑

i=1

Qi (3.4)

where Nµ is the total number of real molecules in a control volume. Consider now that

these are grouped into N sets of Nµ/N molecules, the quantities for each of these groups
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could be sampled by a “local average”:

{Q} =
N
Nµ

Nµ/N∑

i=1

Qi (3.5)

Now the “group average” samples the local averages, hopefully recovering the same quan-

tity as the microscopic average.

〈Q〉 =
1
N

N∑

i=1

Qi (3.6)

The first preserved quantity of interest, as illustrated by the preceding error analysis, is

velocity. The microscopic average yields the expected result

c =
1

Nµ

Nµ∑

i=1

ci = c0 (3.7)

If we now define the IP velocity Vi to be the preserved average of the group of real mole-

cules represented by the i-th particle.

Vi ≡ {c j} =
N
Nµ

Nµ/N∑

j=1

c j (3.8)

Sampling the IP Velocities, we find that if the individual IP Velocities do indeed represent

the local averages, then it is possible to recover the true stream velocity.

〈Vi〉 =
1
N

N∑

i=1

Vi =
1
N

N∑

i=1


N
Nµ

Nµ/N∑

j=1

c j

 =
1

Nµ

N∑

i=1

Nµ/N∑

j=1

c j =
1

Nµ

Nµ∑

i=1

ci = c0 (3.9)

This was the basis of the early IP-DSMC [31, 22], but used alone requires that isothermal

flow conditions be assumed. If temperature is now considered, the microscopic average

yields
3
2

R Ttr =
1
2

c′2 =
1
2

(
c2 − c2

0

)
(3.10)

33



where c′ ≡ c−c0. Likewise, the IP temperature may be defined in terms of the local average

as

3
2

R TIP,i ≡ 1
2
{c′′′2} (3.11)

=
1
2
{(c − Vi)2}

=
1
2
{c2 − 2c · V + V2}

=
1
2

(
{c2} − 2{c} · V + V2

)

=
1
2

(
{c2} − V2

)
) (3.12)

where c′′′ ≡ c − V is the thermal velocity relative to the IP velocity and the following

equations demonstrate that temperature can indeed be preserved correctly by this choice of

preserved quantities (V, TIP).

3
2

R TIP =
3
2

R 〈TIP,i〉 + 1
2
〈V ′2〉 (3.13)

=
1
2
〈{c2} − V2〉 + 1

2
〈(V − c0)2〉

=
1
2
〈{c2} − V2 + V2 − 2V · c0 + c2

0〉

=
1
2
〈{c2}〉 − c2

0

=
1
2

(
c2 − c2

0

)
(3.14)

or

TIP =
1

3 R

(
c2 − c2

0

)
=

1
3 R

c′2 (3.15)

The microscopic definition of scalar pressure is

p =
1
3
ρ
(
c′x2 + c′y2 + c′z2

)
=

1
3
ρc′2 (3.16)

which, as expected, is related to the temperature (Ideal Gas law), and shows that the scalar

pressure may be preserved correctly by this set of preserved quantities.

Pip = ρIP R TIP (3.17)
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Thus far, the preserved quantities—including the preserved density ρIP which will be

discussed later—are all collision invariants, meaning that when two (or more) particles are

involved in a collision, the mass, center of mass momentum, and energy are conserved, i.e.,

N∑

i=1

m?
i =

∑
mi (3.18)

1
N

N∑

i=1

m?
i c?i =

1
N

N∑

i=1

mici (3.19)

1
N

N∑

i=1

[
1
2

m?
i c?i

2
+ ε?

]
=

1
N

N∑

i=1

[
1
2

mici
2 + ε

]
(3.20)

where the superscript ? indicates post-collision quantities and ε represents the internal en-

ergy (rotational or vibrational—for a monatomic gas ε ≡ 0). If the preserved quantities can

be limited to collision invariants this will greatly simplify the requirements for the collision

and transport models. However, for complete modeling of flow conditions, the pressure (or

stress) tensor and the heat flux are needed.

The stress or pressure tensor is defined as

σ = ρc′c′ = ρcc − ρc′0c′0 (3.21)

= ρ



c′xc′x c′xc′y c′xc′z

c′yc′x c′yc′y c′yc′z

c′zc′x c′zc′y c′zc′z


= ρ



cxcx cxcy cxcz

cycx cycy cycz

czcx czcy czcz


− ρ



c0xc0x c0xc0y c0xc0z

c0yc0x c0yc0y c0yc0z

c0zc0x c0zc0y c0zc0z


(3.22)

Looking at a single term c′ic
′
j = cic j − c0ic0 j, one may observe that the second term on the

right hand side is readily available in terms of the preserved quantities (c0ic0 j = 〈Vi〉〈V j〉).
However, the remaining term cannot be recovered from direct sampling of the preserved

velocity and temperature. Consequently, the viscous shear (τ ≡ τi j = −
(
ρc′ic

′
j − δi j p

)
) is

not preserved either.
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The heat flux is defined as

qi =
1
2
ρc′2c′i + nεintu′ (3.23)

=
1
2
ρ(c − c0)2 (ci − c0i)

=
1
2
ρ
(
c jc j − 2c jc0 j + c0 jc0 j

)
(ci − c0i)

=
1
2
ρ
(
c jc jci − 2c jc0 jci + c0 jc0 jci − c jc jc0i + 2c jc0 jc0i − c0 jc0 jc0i

)

=
1
2
ρ
[
c jc jci − c jc jc0i − 2

(
cic jc0 j − c0ic jc0 j

)
+ c0 jc0 j (ci − c0i)

]

=
1
2

[
ρ
(
c2ci − c2c0i

)
− 2pi jc0 j

]
(3.24)

where εint represents the internal energy of the molecules (εint ≡ 0 for monatomic gases).

c0ic2 is preserved by a combination of the preserved velocity and temperature. The remain-

ing terms cannot be expressed in terms of the current set of preserved quantities, requiring

the currently unavailable pressure tensor and an additional term c2ci. Although these quan-

tities are not available via direct sampling, they are both transport quantities, i.e., the pres-

sure tensor represents the average momentum flux and the heat flux represents the average

energy flux. More specifically, pi j is j-th component of momentum transported in the i-th

dimension per unit area, and qi is the energy transported in the i-th dimension per unit area.

As such it may be possible to recover this information from a combination of the preserved

data and the transport formulation which will be addressed in the following section.

3.2.2 Transport

In addition to correctly representing the macroscopic state, the IP-DSMC must also cor-

rectly represent the transport of mass, momentum, and energy. A number of attempts, some

more formal than others, have been made to develop a correct set of transport equations for

the IP-DSMC, and thus a means of updating the preserved quantities of density, velocity

and temperature as the flow progresses. One formulation relied on an “additional” energy

(or temperature) carried by each particle[99, 100] to reflect the discrepancy between the

average energy of a particle within a stationary distribution (E = 3 kB T/2) and the average
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energy of a particle from such a distribution that crosses an interface (E = 2 kB T ). In this

method, particles leaving a cell “borrowed” a certain amount of thermal energy from the

particles remaining in the cell. This “additional energy” was then carried and eventually

added to the particle’s temperature. Momentum updates were based, in an ad hoc fashion,

on the macroscopic pressure gradient obtained from sampling the IP data. This method

demonstrated considerable success for a number of cases, including high-speed and ther-

mal Couette flow, and flow around a micro-airfoil [100, 99]. Later works sought to extend

the method to non-equilibrium systems by utilizing kinetic flux equations [94, 108].

Recently Sun and Boyd [101] presented a formulation for the transport of preserved

quantities derived from the Boltzmann Transport Equation (BTE). The Boltzmann transport

equation states that the time rate of change of a quantity Q may be expressed in terms of

the gradient of the transport of the quantity and the effect of collisions on the quantity, i.e.,

∂

∂t
Q + ∇ ·

(
cQ

)
= ∆

[
Q
]

(3.25)

where ∆
[
Q
]

is the collision integral (or operator) for the transported quantity and ∆
[
Q
]
≡ 0

for collision invariants. Applying the BTE to the collision invariants of mass, momentum,

and energy one obtains:

∂

∂t
(nm) + ∇ · (nmc

)
= ∆ [nm] (3.26)

∂

∂t
(nmc) + ∇ · (nmcc

)
= ∆

[
nmc

]
(3.27)

∂

∂t

(
1
2

nmc2

)
+ ∇ ·

(
1
2

nmcc2

)
= ∆

[
1
2

nmc2

]
(3.28)

(3.29)

From the transport equations Sun and Boyd derived a set of so-called “Correlation Coef-

ficients” for momentum and energy transport [101]. Beginning with mass transport, the

derivations are as follows:
∂

∂t
(ρ) = −∇ · (ρc

)
+ ∆

[
ρ
]

(3.30)
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which may be expressed in terms of the preserved velocity V = c = c0

∂

∂t
(ρ) = −∇ ·

(
ρV

)
+ collision (3.31)

As the mass transport depends only on the average cell velocity, it can be preserved as a

cell quantity.

The transport equation for momentum is

∂

∂t
(
ρc

)
= −∇ · (ρcc

)
+ ∆

[
ρc

]
(3.32)

Sun and Boyd then made the following substitution cc = (c′′′ + V) (c′ + c0) and simplified

to obtain
∂

∂t

(
ρV

)
+ ∇ ·

(
ρVc

)
= −∇ ·

(
ρc′′′c′

)
+ ∆

[
ρc

]
(3.33)

or, after recognizing that the movement of the particles with the microscopic (DMSC)

velocities accounts for the quantity Vc,

∂

∂t

(
ρV

)
+ movement = −∇ ·

(
ρc′′′c′

)
+ collision (3.34)

From the cited work, it appears that cc may be replaced by either c′′′c′ + Vc or c′c′′′ + cV.

However, during the present work, it has become apparent that the order is important and

that the choice made by Sun and Boyd is incorrect. The correct formulation should be

∂

∂t

(
ρV

)
+ ∇ ·

(
ρcV

)
= −∇ ·

(
ρc′c′′′

)
+ ∆

[
ρc

]
(3.35)

and
∂

∂t

(
ρV

)
+ movement = −∇ ·

(
ρc′c′′′

)
+ collision (3.36)

The physical interpretation of this is that the transport of any preserved quantities in the

i-th dimension due to the particle motion depends on the microscopic or DSMC velocity

ci. Thus, the movement term must be ciV j and for consistency the remaining term will be

c′ic
′′′
j .

Finally the transport equation for energy (assuming a monatomic gas) is

∂

∂t

(
1
2
ρ c2

)
= −∇ ·

(
1
2
ρcc2

)
+ ∆

[
1
2
ρc2

]
(3.37)
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From Eq. (3.12) c2 = V2 + 3 R T , which may be used to obtain

∂

∂t

(
1
2
ρ
(
V2 + 3 R T

))
+ ∇ ·

(
1
2
ρc

(
V2 + 3 R T

))

= ∇ ·
(
1
2
ρc′

(
V2 + 3 R T − c2)

)
+ ∆

[
1
2
ρc2

]
(3.38)

or

∂

∂t

(
1
2
ρ
(
V2 + 3 R T

))
+ movement = ∇ ·

(
1
2
ρc′

(
V2 + 3 R T − c2)

)
+ collision (3.39)

The collision terms are retained only as a reminder that collisions are part of the method.

Likewise, the “movement” terms are treated by the movement of the simulation molecules.

In both the momentum and energy transport equations, the remaining terms on the RHS

are the correlation coefficients. Sun and Boyd proposed two models to evaluate the corre-

lation coefficients: The Local Thermal Equilibrium (LTE) and the Flux Splitting methods.

Both of these are based on the assumption that the real molecules represented by each

simulation molecule follow some distribution as a function of the preserved temperatures

and velocities and that actual distribution of the cell may be described in terms of these

separate distributions. The distribution for each simulation molecule may be integrated to

obtain the average quantities necessary for the correlation coefficients. The LTE model

assumes that each molecule is in local thermal equilibrium, i.e., that it can be described by

an equilibrium (Maxwellian) distribution

fLT E =
β3

π3/2 e−β
2(c−V)2

(3.40)

where V is the preserved velocity of the current molecule, and β = (2 R T )−1/2 is a function

of the preserved temperature of the molecule (β is the inverse of the most probable velocity

i.e., β = 1/cmp). In practice, Sun and Boyd found the LTE method to be inadequate for

modeling even 1D thermal Couette flow.

The Flux Splitting method seeks to include certain non-equilibrium characteristics of

the flow. Instead of treating each molecule as an equilibrium distribution, the molecules
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and their correlation coefficients are split based on their microscopic (DSMC) velocities,

treating each particle as a half-Maxwellian in the splitting direction. Upon further analysis

of the Flux Splitting method Sun and Boyd recognized that the earlier “Additional Energy”

method [100, 99] is a special case of the Flux Splitting method. The splitting of the correla-

tion coefficients splits the flux in each dimension into positive or negative flux with respect

to some splitting velocity (usually the stream velocity, c0). The correlation coefficients for

each molecule are then evaluated over the velocity half-space designated by the splitting

direction. The correlation coefficients for all the particles in each splitting group are then

averaged over the particles in each group and these split averages are added together to

form the complete correlation coefficients:

Qk =

∑
i δ

(
ci,k > ak

) #
ck>ak

Qk fLT E,i dc

∑
i δ

(
ci,k > ak

) +

∑
i δ

(
ci,k < ak

) #
ck<ak

Qk fLT E,i dc

∑
i δ

(
ci,k < ak

) (3.41)

Equations 3.42 and 3.43 summarize the Flux Splitting correlation coefficients for mo-

mentum and energy flux, respectively, where “
k±” represents a change of sign dependent on

the splitting direction: positive for ck > ak and negative for ck < ak. Similarly, “
k∓” repre-

sents the opposite relationship (
(

k∓
)

= −
(

k±
)
). The limits of integration are from (−∞ → ∞)

for the non-splitting directions (perpendicular to the splitting direction) and from (ak → ∞)

for positive splitting (ck > ak) and from (−∞ → ak) for negative splitting.

c′k c′′′j =
β3

π3/2

$

ck≷ak

(ck − c0k)
(
c j − Vk

)
e−β

2(c−V)2
dc

=



(
1

k±erf(β (Vk−ak))
)

4 β2

k∓ (c0 j−a j)e−β2(Vk−ak)2

2
√
π β

, j = k

0, j , k
(3.42)

(
V2 + 3 R T − c2) c′k| =

β3

π3/2

$

ck≷ak

(
V2 + 3 R T − c2

)
(ck − c0k) e−β

2(c−V)2
dc

= −R T Vk

(
1

k± erf (β (Vk − ak))
)

k∓ e−β
2(Vk−ak)2

2
√
π β

[R T − (Vk + ak) (c0k − ak)] (3.43)
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Sun and Boyd do not discuss sampling techniques for shear and heat flux in the cited

work, but earlier studies do present “particle counting” techniques, wherein the momentum

and energy of simulation particles are sampled when crossing cell interfaces [99]. These

take the form of:

τi j =

∑
m

(
V in

x,i − Vex
x, j

)

∆t∆A
(3.44)

qi =

∑(
1
2mV2

i + 3
2k

(
Ti + Ta,i

)in −
(

1
2mV2

j + 3
2k

(
T j + Ta, j

))ex)

∆t∆A
(3.45)

where Ta,i and Ta, j are the additional temperatures for the particles, the superscripts in and

ex refer to particles entering and exiting the cell, ∆t is the time step, and ∆A is the area of

the cell face.

However, one may observe that the correlation coefficients may be used as part of the

sampling technique. Consider the definition of the pressure tensor given in Table 2-1:

σ = ρcc − ρc′0c′0 (3.46)

and from Eq. (3.35)

ρcc = ρcV + ρc′c′′′ (3.47)

Thus the complete pressure tensor may be reconstructed by sampling the mixed (DSMC

and IP-DSMC) quantity

cV =
1
N

∑
cV (3.48)

and combining this with the correlation coefficient, yielding

σ = ρcV + ρc′c′′′ − ρc′0c′0 (3.49)

The averages shown here are over all the particles in each computational cell in a given

time step and may then be accumulated to form the time ensemble averages of the macro-

scopic quantities. The erroneous form of the momentum correlation coefficient (c′′′c′) was

identified during the formulation of this sampling technique.
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In a similar manner, the heat flux may be constructed from sampled quantities, the

correlation coefficients, and the now complete pressure tensor

qi =
1
2

[
ρ
(
cic2 − c0ic2

)
− 2pi jc0 j

]
(3.50)

=
ρ
[(

c
(
V2 + 3 R T

) − c′
(
V2 + 3 R T − c2)) − c0i

(
V2 + 3 R T

)]

2
− pi jc0 j (3.51)

where

c
(
V2 + 3 R T

)
=

1
N

∑
c
(
V2 + 3 R T

)
(3.52)

and
(
V2 + 3 R T

)
=

1
N

∑(
V2 + 3 R T

)
(3.53)

Thus all of the usual macroscopic quantities have either been preserved directly or re-

covered by sampling mixed DSMC/IP-DSMC and correlation coefficient quantities. There

are a number of implicit assumptions that should be noted:

• Preserving the scalar temperature, TIP, assumes that the velocity distributions of the

particles represented by the IP molecule are isotropic, i.e., Tx = Ty = Tz

• The Maxwellian distributions, albeit split into half-spaces, are consistent with the

previous assumption

• Each IP particle represents an equilibrium distribution, but the individual particles are

not necessarily in equilibrium with each other. Furthermore, the velocity distribution

of the cell cannot, in general, be described by the Maxwellian distribution.

3.2.3 Modification Step: Finite Volume Method

Most IP-DSMC methods have utilized a Finite Volume Method update scheme to apply

the effects of transport quantities, e.g., early models applied the effect of pressure gradients

to accelerate the molecules [22, 94, 100]. The Finite Volume Method provides a conser-

vative integral form of the (differential) transport equations. The FVM formulation for a
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differential equation of the form

∂

∂t
(Q) = −∇ · (F(x, c, t)) (3.54)

may be derived by integrating both sides of the equation over the control volume Ω.

∫

Ω

∂

∂t
(Q) dΩ = −

∫

Ω

∇ · (F(x, c, t)) dΩ (3.55)

Recognizing that ∂Q/∂t is independent of the volume integration and applying Green’s

theorem to the RHS:

∂

∂t
(Q)

∫

Ω

dΩ = −
∮

S

(F(x, c, t)) · ndS (3.56)

∂

∂t
(Q) = − 1

Ω

∮

S

(F(x, c, t)) · ndS (3.57)

Discretizing the LHS, and multiplying both sides by ∆t, one obtains the general FVM

formulation in terms of the surface integral on the RHS:

∆Q
∆t

= − 1
Ω

∮

S

(F(x, c, t)) · ndS (3.58)

∆Q = −∆t
Ω

∮

S

(F(x, c, t)) · ndS (3.59)

For the Cartesian rectilinear cells used in this study, the RHS may be expressed in terms of

the surface areas of the cell faces and their outward normals (in lower dimensions the cells

still have an effective volume and surfaces), yielding:

∆Q = −∆t
Ω


D∑

i=1

(F(x, c, t)|+ − F(x, v, t)|−)i S i

 (3.60)

where D is the dimensionality of the simulation, S i is the surface area of the cell face in the

i-th dimension, and the remaining terms represent the value of the function F(x, v, t) at the

top and bottom surfaces (+ and −) with respect to the i-th dimension. We can now discretize

the LHS in time, assume that the modification is uniformly applied, i.e., ∆Q = ∆Qi for each
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particle, and apply this to the transport coefficients:

ρt+∆t − ρt = −∆t
Ω


D∑

i=1

((
ρV i

)
|+ −

(
ρV i

)
|−
)

i
S i

 (3.61)

(ρV)t+∆t − (ρV)t = −∆t
Ω


D∑

i=1

((
ρ c′′′i c′

)
|+ −

(
ρc′′′i c′

)
|−
)

i
S i

 (3.62)


ρ
(
V2 + 3RT

)

2


t+∆t

−

ρ
(
V2 + 3RT

)

2


t

=

∆t
Ω



D∑

i=1



(
1
2
ρ
(
V2 + 3RT − c2) c′i

)
|+

−
(
1
2
ρ
(
V2 + 3RT − c2) c′i

)
|−


i

S i



(3.63)

As the IP quantities are all sampled at the cell centroid, some sort of interpolation

scheme is needed to approximate the quantities at the cell interfaces. A QUICK (Quadratic

Upstream Interpolation for Convective Kinematics) scheme is used for the interpolations

for mass transport. This technique, borrowed from conventional FVM practice, avoids

non-physical oscillations, or wiggles, that may arise from simpler schemes, e.g., Central

Difference [58]. QUICK uses a three point quadratic interpolation with the points chosen

based on the stream (flow velocity) direction. In the following formula, the quantities for

the downstream and the two upstream cells are identified by the subscripts “D”, “U”, and

“UU”, respectively. Thus at each face, the flow direction is used to determine which cells

are upstream and downstream, and the interpolation is

Q =
1
8

(−QUU + 6QU + 3QD) (3.64)

A further enhancement, which insures that the quantities used in the interpolation

are monotonic, is the UMIST (Upstream Monotonic Interpolation for Scalar Transport)

scheme [60] which contains the QUICK update but reverts to a purely upstream update

44



if the quantities are not monotonic. This is the scheme currently implemented in the GT-

DSMC.

r =
ρU − ρUU

ρD − ρU
(3.65)

ρ f ace =



ρU + (ρD − ρU) min
(
r,

(
1
8 + 3

8r
)
,
(

3
8 + 1

8r
)
, 1

)
if monotone

ρU otherwise
(3.66)

V f ace =
VU + VD

2
(3.67)

Where the min function may also be expressed as a function of r

min
(
r,

(
1
8

+
3
8

r
)
,

(
3
8

+
1
8

r
)
, 1

)
=



r if 0 < r ≤ 0.2

1
8

+
3
8

r if 0.2 < r ≤ 0.5

3
8

+
1
8

r if 0.5 < r ≤ 5

1 if r > 5

(3.68)

3.2.4 Particle Modification

The result of the Finite Volume Method is a modification ∆Q = Qt+∆t−Qt, for the preserved

quantities of density, velocity, and temperature, where the ∆Q comes from the right hand

sides of Equations (3.61)-(3.63). The density is preserved and updated on a cell basis:

ρt+∆t = ρt + ∆ρ (3.69)

The others quantities are applied to each particle. In practice, the ideal updates in Equa-

tions (3.62) and (3.63) may lead to numerical instability and non-physical values due to

statistical fluctuations. Consequently, a modified form that replaces the densities ρt and
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ρt+∆t with the mass represented by the particles in the cell is used, thus.

(V)t+∆t = (V)t − ∆t
NFNm


D∑

i=1

((
ρ c′′′i c′

)
|+ −

(
ρc′′′i c′

)
|−
)

i
S i

 (3.70)

(T )t=∆t = (T )t +
1

3R

((
V2

)t −
(
V2

)t+∆t
)

(3.71)

+
2∆t

3RNFNm



D∑

i=1



(
1
2
ρ
(
V2 + 3RT − c2) c′i

)
|+

−
(
1
2
ρ
(
V2 + 3RT − c2) c′i

)
|−


i

S i



The first step then is to update the density of the cell, followed by the velocities of

each particle in the cell. This new velocity is then used along with the FVM to update

the temperature in Eq. (3.72), balancing kinetic and thermal energy. During these updates,

it is possible (especially in highly rarefied flows) for the momentum modification to be

quite large. This may result in a negative preserved temperature—which is physically and

numerically inadmissible. In order to correct such cases, the updates must be checked for

validity. If the resulting temperature is negative, then the first step is to convert some of the

kinetic energy of the particle into thermal energy. This thermalization is accomplished by

setting the particle velocity to some fraction of its current value i.e., V? = αV. The kinetic

energy associated with this can then be converted to thermal energy:

T?
t+∆t = Tt+∆t +

1
3R

(
V2 − V?2

)
(3.72)

The total momentum of the cell must be preserved, therefore the velocity that is ther-

malized must be distributed to all of the particles, requiring an additional update step, as

follows:

(V)C = Vt+∆t +
1
N

V? (3.73)

(T )C = (T )t+∆t +
1

3R

((
V2

)t+∆t −
(
V2

)C
)

(3.74)

where the superscript C indicates the corrected values. This may need to be repeated, if

subsequent corrections fail, but usually not more than 20 times. In some cases, particu-

larly in modeling free molecular flows, particles may develop large preserved velocities,
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relative to the average cell velocity, and consequently have low preserved temperatures (in

effect, the IP-DSMC is reverting to the DSMC). In such cases, it may be advantageous to

thermalize all the particles within a cell. Such conditions may be detected by comparing

the average preserved temperature of the particles within a cell (T = Ti) to the preserved

temperature of the cell, which includes the peculiar kinetic energy Tc = Ti +1/3R(V2
i −V

2
).

A cutoff of Tc/T > 1.005

3.2.5 Collision Model

The transport of real and preserved quantities also depends on intermolecular interactions

or collisions. A number of ad hoc IP collision models of post-collision interchange of

preserved quantities have been proposed in the literature, all relying on the DSMC for the

selection of the collision pairs. The earliest collision model (for isothermal flows) simply

conserved the center of mass IP momentum [31, 32]

V′′1 =
V′1 + V′2

2
(3.75)

V′′2 =
V′1 + V′2

2
(3.76)

This leads to quickly convergent velocity fields, but was inadequate for non-isothermal

flows—as this model converts all relative velocity components to thermal energy. One

proposed solution was to modify the collision cross-sections used in the DSMC simula-

tions [32]. This required modifying the underlying DSMC as well, which is undesirable.

Sun proposed a phenomenological collision model, which converts a portion of the relative

kinetic energy into thermal energy, based on a number of fitted parameters and the deflec-

tion angle, χ of the DSMC molecules [99, 100] (post-collision quantities are indicated by
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superscript ?):

V?
1 =

1 + Cµ cos χ
2

V1 +
1 −Cµ cos χ

2
V2 (3.77)

V?
2 =

1 −Cµ cos χ
2

V1 +
1 + Cµ cos χ

2
V2 (3.78)

T?
1 =

1 + Cκ cos χ
2

T1 +
1 −Cκ cos χ

2
T2 +

(
1 −C2

µ cos2 χ
)

4 ξ R
‖V1 − V2‖2 (3.79)

T?
2 =

1 −Cκ cos χ
2

T1 +
1 + Cκ cos χ

2
T2 +

(
1 −C2

µ cos2 χ
)

4 ξ R
‖V1 − V2‖2 (3.80)

where ξ is the number of degrees of freedom for the gas species (3 for monatomic gas), Cµ

and Cκ are parameters chosen to provide the best results for simulations of 1D high-speed

and thermal Couette flow, respectively. The deflection angle is calculated from the DSMC

velocities as

cos χ =
cr · c?r
‖cr‖‖c?r ‖

=
(c1 − c2) ·

(
c?1 − c?2

)

‖c1 − c2‖‖c?1 − c?2 ‖
(3.81)

Improvements to the collision models would do much for the acceptance of the IP-DSMC.

However, Sun’s model, presented in Eqs. (3.78)-Eq. (3.81), has performed well in this au-

thor’s experience and will used in this study. For Argon gas, the collision parameters are

Cµ = −0.18, and Cκ = 1.28.

3.2.6 Treatment of Boundary Conditions

Boundary conditions require special treatment in the IP-DSMC. In the DSMC solid bound-

aries may be treated quite simply by resetting the velocity of the particle to reflect the

accommodation coefficient (α), temperature (Tw), and velocity (Vw) of the surface, thus

c? = αcd + (1 − α) cs (3.82)

where the superscripts ?, d, and s refer to the assigned post-collision velocity, diffuse

velocity, and specular velocity, and α is the accommodation coefficient of the surface (α = 1

is fully diffuse and α = 0 is specular).
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Alternatively, one may use an acceptance rejection scheme, wherein a uniform ran-

dom number, Ru is selected for each interacting particle and compared to the accommoda-

tion coefficient. If Ru > α then the particle-wall interaction is treated as specular, other-

wise the velocity is assigned as a diffuse interaction. This study will only consider fully-

accommodating and specular walls although the numerical tools developed as part of this

research are capable of more general conditions, implementing the first method for treating

partially accommodating boundaries.

If specular or partially accommodating walls are used, the specular velocity is identical

to the incident velocity except the velocity component normal to the surface is reversed and

the diffuse velocity is sampled from a half-Maxwellian such that the normal component of

velocity is

c⊥ =
√

2RTw

√
− log (1 − Ru) + Vw,⊥ (3.83)

and the tangential components are

c|| =
√

RTRn + Vw,|| (3.84)

where Rn is a normally distributed random variable.

The preserved temperature and velocity are set equal to the boundary quantities as fol-

lows

V? = αVw + (1 − α) V s (3.85)

T? = αTw + (1 − α)T s (3.86)

where T s is the temperature of the particle prior to the interaction.

However, the boundary also plays a rôle in the FVM updates. In order to maintain

numerical stability, the correlation coefficients at the boundary should be extrapolated from

the interior, rather than calculated directly from the wall properties. Currently a three point

linear extrapolation is used:

Qw =
1
3

(4Q0 + Q1 − 2Q2) (3.87)
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where the subscripts 0, 1, and 2 of the quantity Q designate the first, second, and third cells

adjacent to the wall w, i.e., W | 0 | 1 | 2. Although they do not directly contribute to the

updates, the boundaries continue to directly affect the flow via the particle interactions. In

the case of specular walls (α = 0) the tangential components of momentum correlation

coefficients and the energy transfer correlation coefficients vanish. The normal component

of the momentum correlation coefficient should be set equal to the negative of the normal

component in the adjacent cell,

Open boundary conditions require the generation of particles. The simplest form of

an open boundary condition is a period case, wherein particles leaving one side of the

simulation are reinserted at the other side with no changes to their properties, only their

position. Inlet and outlet boundary conditions are also common, especially in high-speed

flows, where the stream velocity is larger than the thermal velocity. In such flows, it may be

assumed that the number of molecules migrating against the flow to either exit by the inlet

or enter by the outlet are negligible. As such the flow conditions, temperature, velocity,

and pressure, may be used to assign the number of particles introduced at the inlet and

their velocities (sampled from either a Maxwellian or Chapman-Enskog distribution). The

number of new molecules introduced at the inlet of a high-speed flow may be calculated as

follows

N = p/(kBT )AVin∆t (3.88)

where A is the area of the inlet, Vin is the velocity at the inlet, and ∆t is the time step.

Particles leaving the simulation at the outlet are removed from the simulation (this treats

the outlet as a vacuum).

More complicated are pressure boundary conditions for low-speed flows. In these flows,

molecules are likely to migrate against the bulk flow. As such, molecules are allowed to

exit via the inlet, and a certain number of molecules must be introduced at the outlet. A

number of different techniques have been proposed to approximate the number and proper-

ties of these “back flow” molecules [74, 33, 22, 114, 100], however the IP treatment greatly
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simplifies the issue by reducing the statistical scatter. The outlet velocity and temperature

may then be used with a prescribed outlet pressure to calculate the number of molecules to

be injected into the system, as in Eq. (3.88). The DSMC properties of these inserted mole-

cules may then be assigned as before, using the outlet pressure, temperature, and velocity

(the last two being sampled from the interior IP quantities). The IP quantities of all inserted

particles (at the inlet and outlet) are set equal to these quantities. For these boundaries, and

especially when the system is to be coupled, reservoir cells are used. In each time par-

ticles are generated to populate the cell, approximating the current density of the cell (as

prescribed or sampled from the interior). Any particles that leave the cell during the time

step are allowed to enter the computational domain, otherwise particles are removed from

the simulation. This removes the complexity (and possible error) of approximating a priori

the number of particles crossing the interface, as this will no longer follow the simple rela-

tionship used for high-speed flows in Eq. (3.88). Although a Maxwellian distribution may

be used for the generation of particles, the consensus in the literature is that a Chapman-

Enskog distribution should be used, and is used for the open boundary conditions used in

this study. The details of this will be presented in Section 5-10.

As with solid boundaries, the correlation coefficients need to be extrapolated to the

boundaries, with the exception that the exterior pressure is used to calculate the density

if the flow is directed into the domain, and the extrapolated pressure used if the flow is

directed out of the domain. This allows the boundary to serve as either an inlet or outlet (in

a similar way the density used in generating particles should also reflect the flow direction).

3.2.7 Summary of IP-DSMC Operation

At this time there are no known stability criteria for the IP-DSMC, although there are

some recommendations based on practical experience. Although the underlying DSMC

method is inherently stable, the finite volume method update used in the IP-DSMC can

introduce instability. As mentioned previously, an upstream method is required for the
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density update to avoid non-physical “wiggles” in the solution. Although not physically

admissible, such behavior is a valid numerical solution. Catastrophic instabilities may arise

if any particle is assigned a negative temperature, which is both physically and numerically

inadmissible. Often this may be ameliorated by “thermalizing” the particles velocity or by

borrowing thermal energy from other particles. It appears that negative temperatures arise

when particles are assigned velocities much higher than the stream velocity. This occurs

most in highly rarefied flows—especially in the free molecular regime. In these cases,

it appears that the fluctuations in the number and properties of particles in adjacent cells

leads to steep gradients of the correlation coefficients. The momentum update based on

these may then impart a large acceleration. Over many time steps particles may reach high

velocities (on the order of the DSMC velocities). At best this will cause the IP-DSMC to

perform little better than the DSMC, and at worst will lead to negative temperatures. By

using a larger number of particles in the IP-DSMC than would be require for a conventional

DSMC simulation (e.g. 100 or so as suggested by Sun [99]) these fluctuations can be

reduced, improving stability.

Another issue affecting stability is the representation of the density in the momentum

and energy updates. As previously mentioned the mathematically correct densities (of the

current and previous time step) should be replaced by the density corresponding to the

number of particles within the cell. For many transitional flows either method has been

observed to function in a stable manner, however for near-continuum flows small pertur-

bations may be amplified in an unstable manner as they propagate through the simulation.

The IP-DSMC theory would greatly benefit from a careful study of stability, using both

practical and mathematical analysis to develop a stability criteria for the IP method. Fu-

ture work should also consider the method of averaging the correlation coefficients, as the

current technique tends to have difficulty with highly rarefied flows.

The cells sizes and time steps used in the IP-DSMC should follow the selection criteria

for the DSMC, namely that cells should be smaller than the mean free path (nominally λ/3)
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and time steps should be selected to ensure that an average particle will require multiple

time steps to traverse a cell [43]. One reason for this is that in order for the IP method to

work, a fully functional DSMC simulation is required. If the DSMC does not accurately

model the flow, then good results from the IP-DSMC cannot be expected At times com-

putational expense may necessitate larger cell sizes, but these may blur some of the flow

features. In this study the time step is selected such that a particle moving at the most

probable velocity (of an equilibrium distribution at the average temperature of the simu-

lation) will require five time steps to traverse a cell. One additional consideration is that

samples should be statistically significant. Due to the small time steps over which particles

move and the relatively few collisions occurring during this time (for many flows), sam-

pling should only be performed periodically. Most of the simulations in this study sample

every 12 time steps.

The basic steps in the IP-DSMC method, and the underlying DSMC are:

1. Initialize particles (DSMC: position and velocity), (IP-DSMSC: temperature, veloc-

ity)

2. Move particles (with DSMC velocity), evaluate boundary interactions (DSMC and

IP-DSMC)

3. Insert particles at open boundaries (DSMC and IP-DSMC), use IP quantities in de-

termining number of particles and their properties

4. Sort particles into cells and subcells (DSMC)

5. Select collision pairs and evaluate collisions (DSMC and IP-DSMC)

6. Evaluate correlation coefficients (IP-DSMC)

7. Modify preserved information based on FVM and correlation coefficients

(IP-DSMC)
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8. Sample DSMC and IP-DSMC data

Steps 2–6 are repeated for each timestep, while 6 will be preformed periodically to build

up time ensemble samples.

3.3 GT-DSMC

The current research utilizes GT-DSMC, an object oriented parallel DSMC/IP-DSMC sim-

ulation code developed by the author and associates in C++. GT-DSMC uses uniform rec-

tilinear Cartesian cells to simplify the implementation and focus on the issues involved in

Information Preservation techniques and multiscale modeling. This is compatible with the

simple, and largely rectilinear, micro- and nano-scale geometries targeted by this research.

The methods developed during this research and implemented in GT-DSMC can be applied

to more general cell discretizations including unstructured meshes.

Care has been taken to maintain portability and the code has been developed and ex-

ecuted on MS Windows and Linux workstations and SGI supercomputers. On the latter

two platforms, OpenMP has been used to parallelize the operation for Symmetric Multi-

Processor (SMP) architectures. Figure 3-2 presents a screen capture showing the main user

interface. The graphical user interface utilizes FLTK (www.fltk.org), a cross platform

GUI toolkit, and provides an easy means of setting simulation parameters and output op-

tions, as well as allowing pausing of simulations. Alternatively a command line interface

is also provided and is used for interactive and non-interactive command line execution.

The BOOST serialization library (www.boost.org) has been used to store the runtime

state for restarting simulations, allowing for simulations to be stopped and continued at

a later time, or restarted in the event of system crashes. This is particularly useful on

the Georgia Tech HPC SGI systems, as these limit simulation times to 24 CPU hours—

requiring simulations to be restarted frequently.
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Figure 3-2: Screen capture of GT-DSMC graphics user interface (GUI)

In terms of object orientation, the fundamental physical entities: particles and bound-

aries, as well as computational cells are implemented as classes. Each particle is instanti-

ated as a class with methods that modify or query the particle’s properties. Likewise, cells

contain buffered lists of particles that can be operated on and sampled. These buffered lists

avoid constant allocation-deallocation of memory as particles are passed between cells, and

in the parallel processing, between processors.

55



Figure 3-3: Schematic for High Speed Couette Flows

Finally, a source of random numbers, or at least a source of good pseudo-random

numbers (PRN), is required to perform any stochastic simulation. GT-DSMC utilizes the

Mersenne Twister MT 19937 algorithm designed by Matsumoto and Nishimura. This al-

gorithm provides for fast generation of high quality pseudo-random numbers with a period

of 219937 − 1 and high dimensional equidistribution, and is considered the current state of

the art for PRN generation [68]. The specific C++ MT library was developed by Richard

J. Wagner and is available at http://www-personal.engin.umich.edu/~wagnerr/

MersenneTwister.html.

3.4 Validation of the IP-DSMC Method

Sun and Boyd have demonstrated that the Flux Splitting IP-DSMC performs well for shock

front and thermal Couette flow problems [101]. Furthermore, as a superset of the Addi-

tional Energy method, it should perform well on any problem for which that method was

successful [100, 99], including high speed Couette flow. The following simulations serve as

a validation of the current implementation of the Flux Splitting IP-DSMC—comparing the

IP-DSMC to published results and to the underlying DSMC—and explore the capabilities

of the method.
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3.4.1 High-Speed Couette Flow

The Couette flow problem consists of a flow between two parallel (or coaxial) surfaces

as shown in Figure 3-3. Two velocity differences will be considered: ∆V = 300 m/s and

1000 m/s, with Argon gas at an initial temperature of 273 K and pressure of 0.5277 Pa,

which corresponds to a number density of 1.4 × 1020. These simulations will be compared

to Bird’s DSMC simulations [17]. The simulation domain is divided into 100 cells (with

10 subcells per cell for the selection of collision pairs).

Figures 3-4–3-11 present the results of these simulations, and one may observe very

good agreement between the DSMC, IP-DSMC, and reference solutions. The reduced

scatter in the GT-DSMC data is due in part to a larger number particles per cell than used

by Bird—and hence a larger samples set. Furthermore, the number of samples was large

to provide a good comparison between the current implementation of the DSMC and the

IP-DSMC directly. In all cases, the IP-DSMC provides smooth results at far fewer sam-

ples (usually a few thousand) than required by the DSMC. Figure 3-11 presents plots not

available in Bird’s text, but he does mention that the maximum temperature was 438 K.

Finally, The shear stress profiles may be observed to be consistent with each other (DSMC

and IP-DSMC).

3.4.2 Thermal Couette Flow

One of the simplest nonequilibrium flows is thermal Couette flow, consisting again of

two parallel plates, except with a temperature, rather than a velocity, differential. Similar

DSMC simulations, based on a Hard Sphere model will be used later in this thesis to de-

velop a simplified model of the TSAFM system. Sun and Boyd presented results of thermal

Couette flow simulations based on the DSMC and the Flux Splitting IP-DSMC spanning a

wide range of flow conditions, Kn = 0.01 → 100 with T1 = 373 K and T2 = 173 K [101]

that will be used for comparison.
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Figure 3-4: High-Speed Couette Flow (300 m/s): Velocity Profile
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Figure 3-5: High-Speed Couette Flow (300 m/s): Temperature Distribution

The simulation domain is divided into 100 cells, except for the dense (Kn = 0.01) sim-

ulation, where 300 cells are required to have adequately sized cells. Again excellent agree-

ment is observed for the temperature distributions. The heat flux is compared to DSMC and

Additional Energy IP-DSMC simulations from and earlier paper by Sun and Boyd [100].

(The large scatter visible in the DSMC solution of the Kn = 0.01 illustrates the challenges

involved modeling in low speed with the DSMC, as the Kn = 0.01 simulation has three

times as many particles, a smaller mean free path, and therefore a smaller timestep, so time
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Figure 3-6: High-Speed Couette Flow (300 m/s): Shear Profile
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Figure 3-7: High-Speed Couette Flow (300 m/s): Heat Flux Profile

near continumm simulation is quite expensive. As such it was stopped when the IP-DSMC

had acquired sufficient samples for smooth results

In previous IP-DSMC studies of thermal Couette flow, only the temperature profile and

the heat transfer have been reported. It is interesting to note that slight variations in the

temperature and density profiles in (see Figures 3-13 and 3-15(a)) may result in signifi-

cant pressure differences between the IP-DSMC and the DSMC, although the magnitude

remains comparable, as shown inf Figure 3-15(b).
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Figure 3-8: High-Speed Couette Flow (300 m/s): Density Distribution
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Figure 3-9: High-Speed Couette Flow (1000 m/s): Velocity Profile

Because of the wide range of heat flux values the average heat flux for each simulation

are tabulated in Table 3-1. Numerical values are not available from the published reference.

3.4.3 Thermal Transpiration

The preceding simulations have attempted to validate the current implementation (and the

Flux Splitting Method) for 1D flows. Before applying the method to coupled simulations,

it is important to validate its behavior for more complex flows. One of the many interesting
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Figure 3-10: High-Speed Couette Flow (1000 m/s): Heat Flux Profile
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Figure 3-11: High-Speed Couette Flow (1000 m/s)

Figure 3-12: Schematic for thermal Couette flows
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Figure 3-13: Thermal Couette Temperature Profiles for Kn = 0.01, 0.1, 1, 10, 100; circles:
DSMC, line: IP-DSMC
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Figure 3-14: Thermal Couette flow: Heat flux profiles for Kn = 0.01, 0.1, 1, 10, 100;
circles: DSMC, line: IP-DSMC

Table 3-1: Average heat flux of thermal Couette flow simulations

Knudsen Number Current IP Current DSMC
100 −0.0075 −0.0066
10 −0.078 −0.0637
1 −0.5397 −0.5126
0.1 −2.1396 −2.1266
0.01 −3.1617 −3.2180
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Figure 3-15: Thermal Couette Flow: Density and Pressure Profiles for Kn = 0.01, 0.1, 1,
10, 100; circles: DSMC, line: IP-DSMC

phenomena that may manifest in rarefied gas flows is thermal transpiration. Thermal tran-

spiration arises from the interaction of a rarefied gas with a surface with spatially varying

temperatures (although similar flows may be induced by nonuniform temperature gradi-

ents away from a surface [49, 55]). A great deal of attention has been given to this (and

the related phenomena of thermal creep, Knudsen Force, and the radiometric force): theo-

retically [11, 98], computationally [19, 79, 75], and experimentally [5]. Recently thermal

transpiration MEMS systems for micropumping [4, 69, 103, 104] and micropropulsion [76]

have been developed.

As molecules of the gas impinge on a surface they carry with them a certain amount

of momentum. The speed of a particle will (on average) be proportional to the square

root of the temperature of the region, or surface, it has last interacted with (surface or

intermolecular collisions). In the case of rarefied gas flows, molecule may have traveled

a significant distance from the previous point of interaction. As such, molecules coming

from hotter regions of the gas will impart a greater tangential momentum to the surface than

will molecules arriving from colder regions. On average, particles leaving the surface will

have no net tangential, or shear, momentum. Thus the net exchange of momentum with
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the surface will exert a tangential traction on the gas opposite the temperature gradient and

resulting in a creep flow along the surface from cold to hot [50, 61, 98]. This then becomes

the driving force for thermal creep, thermal transpiration and the radiometric effect. If the

system is a channel or capillary, then the effect of thermal transpiration will be to pump

molecules from the cold to the hot end until the pressure increases sufficiently at the hot

end to counter the effect of thermal transpiration. If the channel connects two reservoirs,

then pumping will continue as long as the temperature difference is maintained. In the

case of the radiometric effect, the temperature difference between the two sides of a vane

induces a flow from the cold (white) side to the hot (black) side—and is predominantly an

edge effect. Recently, this understanding has led several researchers to design systems that

maximize the edge effect by utilizing perforated surfaces [84, 90].

As with previous simulations, the IP-DSMC requires the DSMC to work, therefore, in

these simulations the DSMC results will be used for comparison. Furthermore, a method

proposed by Sharipov for calculating the pressure ratio due to thermal transpiration in 2D

microchannels provides a second comparison [91, 92]. This method is based on a linearized

S-model solution of the Boltzmann Transport Equations and assumes that the channel is

long in comparison to the width, so that the end effects may be neglected and that the tem-

perature gradient be small. The pressure ratio may be obtained by balancing the pressure

driven and thermal creep flows. As the channel simulated here is short, and is a sealed

system involving corners, there will be some non-idealities not accounted for in Sharipov’s

model.

The geometry for the thermal transpiration simulation consists of a 2D microchannel,

5 µm in length with and 1 µm wide. A temperature gradient is prescribed along the length of

the walls varying linearly from 273 K to 573 K. The working gas is Argon and the DSMC

and IP-DSMC simulation molecules are initialized such that the pressure is uniform and

1 atm. The channel is divided into 200 computational cells along the length and 40 cells

along the width.
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Figure 3-16: Pressure distribution from DSMC and Flux Splitting IP-DSMC

Figure 3-16 presents the results of these simulations, comparing the DSMC and IP-

DSMC and Sharipov’s solution. The simulation was allowed to run 96000 time steps. At

this point sampling was begun until 7000 samples were accumulated (to ensure statisti-

cal significance there are 12 time steps between each sample). Although the temperature

profiles agree very well (not shown), the IP-DSMC predicts a nearly uniform pressure

along the length of the channel (see Figure 3-16), and essentially zero flow. Meanwhile,

the DSMC exhibits a significant pressure difference of approximately 4 kPa, which corre-

sponds well with Sharipov’s solution (≈ 3 kPa pressure difference). From these results, it is

evident that the Flux Splitting method does not adequately capture the behavior of thermal

transpiration or related phenomena.
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3.5 Thermal Transpiration: Postmortem

In order to understand why the Flux Splitting IP-DSMC fails, one must carefully consider

the conditions in the real gas, and how and what the IP-DSMC preserves. The 1D thermal

Couette flow will be useful in the following discussion.

Consider a 1D thermal Couette flow where the working gas may be considered to be a

continuum. Energy is transported in a diffusive manner, e.g., molecules move very small

distances relative to the domain before interacting with other molecules. Furthermore,

these collisions are frequent. Thus, in any small region of the flow, one may assume that

the gas molecules are in a quasi-equilibrium and may be described by a single equilibrium

(or Maxwellian) distribution.

f (c) =
β3

π3/2 e−β
2(c−c0)2

(3.89)

recalling that in a stationary gas, c0 = 0 and c′ = c. Consider now that the gas is rarefied

such that collisions are infrequent, e.g., free molecular flow. In this case the molecules can

no longer be considered to be in equilibrium with each other, and in the complete absence

of intermolecular collisions they are in fact equilibrated with the last surface with which

they interacted. Thus, in the free molecular limit, the flow is bimodal, with two modes,

or classes, of particles, each in equilibrium with the surface from which they were last

emitted. The average speed of each of these classes normal to the surfaces is

cH =

∞∫
−∞

∞∫
−∞

∞∫
0

cx fH dc′x dc′y dc′z

∞∫
−∞

∞∫
−∞

∞∫
0

fH dc′x dc′y dc′z

=
1√
πβH

=

√
2 R TH

π
(3.90)

cC =

∞∫
−∞

∞∫
−∞

∞∫
0

cx fC dc′x dc′y dc′z

∞∫
−∞

∞∫
−∞

∞∫
0

fC dc′x dc′y dc′z

=

√
2 R TC

π
(3.91)

(3.92)
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(The average tangential velocity is zero). In steady state, mass conservation requires

the net mass flux at any cross section to be zero, thus

ρHcH = ρCcC (3.93)

nHm

√
2 R TH

π
= nCm

√
2 R TC

π
(3.94)

nH

nC
=
ρH

ρC
=

√
TC

TH
(3.95)

In the IP-DSMC, the underlying DSMC model behaves in the same manner as the real

gas, i.e., characterized by a bi-modal distribution of velocities. One of the primary ob-

jectives of the IP-DSMC is to reduce statistical scatter, particularly in the sampling of the

velocity. As such, the update scheme modifies all particle velocities within a computa-

tional cell equally, blurring any modality in the preserved velocities. Furthermore, follow-

ing a particle-surface interaction, the preserved velocity of the particle is reset to reflect the

velocity of the wall and not its temperature. The preserved temperature is set as a func-

tion of the surface temperature, fulfilling the rôle of preserving the thermal components of

velocity.

As a result of the manner in which the velocity is updated, the average preserved veloc-

ity of the simulation molecules within a computational cell approaches the expected stream

velocity (zero). However, if the molecules are “colored” such that “red” and “blue” mole-

cules have recently interacted with the hot and cold surfaces, respectively, then the average

preserved velocities of the separate classes will also be zero—not
√

2 R Tw/π. Tempera-

ture modality is preserved (Ti = Tw), but the velocity modality is not and must in fact be

sacrificed in order to reduce statistical scatter.

So how does this effect the Flux Splitting method with respect to the thermal transpira-

tion problem? Consider the momentum correlation coefficient tensor (see Eq. (3.42)) for a
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Figure 3-17: Diagram of particles classified into quadrants based on microscopic velocities
(arrows) and showing the quadrants of velocity space for integrations

simulation molecule with temperature T and preserved velocity equal to the stream/split-

ting velocity V = a = c0

c′c′′′ =



R T/2 0 0

0 R T/2 0

0 0 R T/2


(3.96)

The purpose of the momentum correlation coefficient is to capture the momentum transport

not preserved by the IP velocity. From Eq. (3.96), it is apparent that the Flux Splitting

preserves the transport of momentum normal to an interface, but does not preserve the

shear components.

Having identified this characteristic, it is now possible to revisit the 2D thermal tran-

spiration case. Consider a small control volume adjacent to the lower bound of a 2D mi-

crochannel with a prescribed temperature gradient, T (x = 0) = TC and T (x = L) = TH.
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Assuming rarefied flow conditions, molecules entering the control volume from the left,

will tend to be “colder”, i.e., have lower velocities than those entering from the right. Fur-

thermore, molecules moving down (cy < 0) are more likely to have traveled farther since

their last interaction with either a surface or other molecules, than are those with cy > 0,

which have probably recently interacted with the lower bound at some nearby location.

As the temperature gradient exists principally in the x-direction (most cross sections have

nearly uniform temperatures), it should be appropriate to classify the particles in one of four

classes designated by the direction of motion in two dimensions as shown in Table 3-2.

Table 3-2: 2D Particle Splitting Directions

Class x-direction y-direction
SE cx < 0 cy < 0
SW cx > 0 cy < 0
NE cx < 0 cy > 0
NW cx > 0 cy > 0

From the above arguments regarding the distance traveled, the following inferences may

be made: 1. particles moving SW tend to have traveled from a region of higher temperature

(located to the NE) and will thus have higher velocities on average than particles in the

NW class. 2. Similarly, particles moving in the in SE direction are likely to be slower than

particles moving in the NE direction. Thus we observe that there is (at least) a four-way

modality to the system. A logical step would then be to treat each of these four classes, or

modes, separately and then add up their contributions. This then leads to a Quadrant Split-

ting method in two dimensions and a general Octant Splitting method in three dimensions.

Although it may seem more complex at this point, the following derivation will treat the

3D Octant Splitting Method.
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3.6 Octant Splitting Method Correlation Coefficients

In the Flux Splitting method, each dimension of the velocity space was split into two half-

spaces, and the halves summed to obtain the correlation coefficients for that dimension, i.e.,

to calculate c′ic
′′′
1 , c′ic

′′′
2 , c′ic

′′′
3 the velocity space in the ith-dimension is split. In effect, each

particle participates in D half-spaces—one for each dimension. Participating in multiple

half-spaces does not cause a problem in the Flux Splitting method because of the way the

correlation coefficients are averaged, and the fact that the off-diagonal terms of the Flux

Splitting correlation coefficient are zero. Conversely, in the Octant Splitting method, it

is assumed that the particles and the velocity space will be split uniquely into one and

only one octant. Correlation coefficients may then be evaluated by performing the same

integrations as before, but with limits of integration that reflect the octant splitting, i.e.,

integration over eighth-Maxwellians (or more generally for the 2D splitting directions in

D-dimensional space):

Q =

2D∑

j=1



∑
i

δ (ζ) β3

π3/2

∫
ζz

∫
ζy

∫
ζx

Q exp
(
−β2 (c − V)2

)
dc


i j∑

i {δ (ζ)}i j


(3.97)

where ζ is the splitting vector

ζ =



cx ≷ ax

cy ≷ ay

cz ≷ az


(3.98)

and δ (ζ) classes each molecule into one of the Octants. The limits of integration for each of

the three integrals directions are from −∞ → ai for a negative split in the ith-direction and

from ai → ∞ for a positive split in the ith-direction, and similarly for the other directions.

After performing the integrations for all splitting directions, the many terms of the Octant
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Splitting Correlation Coefficients may be summarized as follows:

c′ic
′′′
i =

(
1

J± erf
(
β

(
V j − a j

))) (
1

K± erf (β (Vk − ak))
)

×


R T

(
1

I± erf (β (Vi − ai))
)

8
I± (ai − c0i) e−β

2(Vi−ai)2

8
√
π β

 (3.99)

c′ic
′′′
j |i, j =

(
J±
) e−β

2(V j−a j)2

8
√
πβ

(
1

K± erf (β (Vk − ak))
)

×
(Vi − c0i)

(
1

I± erf (β (Vi − ai))
)

I± e−β
2(Vi−ai)2

√
πβ

 (3.100)

Notice that the tensor c′ic
′′′
j is not necessarily symmetric.

The correlation coefficient for energy transport may be obtained in a similar, albeit

lengthy, manner:
(
V2 + 3 R T − c2) c′i = Ei − E j − Ek (3.101)

where

Ei =

(
1

J± erf
(
β

(
V j − a j

))) (
1

K± erf (β (Vk − ak))
)

×

−
Vi R T

(
1

I± erf (β (Vi − ai))
)

4
I± ((c0i − ai) (Vi + ai) − R T ) e−β

2(Vi−ai)2

8
√
π β

 (3.102)

and E j and Ek can be expressed in terms of the momentum correlation coefficients:

E j =

(
J±
) (

V j + a j

) e−β
2(V j−a j)2

8
√
πβ

(
1

K± erf (β (Vk − ak))
)

×
(Vi − c0i)

(
1

I± erf (β (Vi − ai))
)

I± e−β
2(Vi−ai)2

√
π β



=
(
V j + a j

)
c′ic
′′′
j (3.103)

Ek =

(
K±
)

(Vk + ak)
(
1

J± erf
(
β

(
V j − a j

))) e−β
2(Vk−ak)2

8
√
πβ

×
(Vi − c0i)

(
1

I± erf (β (Vi − ai))
)

I± e−β
2(Vi−ai)2

√
π β



= (Vk + ak) c′ic
′′′
k (3.104)
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As stated previously, the Octant Splitting Method, or OSIP-DSMC, is a general form

for 3D simulations. If the simulation is to be of lower dimensionality then some simplifying

substitutions may be made, for example for a 2D simulations in the x-y plane: a. the expo-

nential terms in degenerate dimensions vanish, e.g., e−β
2(Vz−az)2

= 0, and b. terms involving

the erf are replaced by 2, i.e., (1 ± erf (β (Vz − az))) = 2 . This results in a Quadrant Split-

ting method (QSIP-DSMC). Similarly, for 1D simulations the equations degenerate further

(with y being the degenerate dimension) to recover the 1D Flux Splitting Method of Sun

and Boyd [101]. Further degeneration (to zero-dimension) recovers what has been termed

the Local Thermal Equilibrium Model [101]—which provides insight into the inadequacy

of the LTE method, as it could only be of value for purely (and thus uninteresting) equilib-

rium situations. The intent of the Flux Splitting method, and of the new Octant Splitting

method is to improve the ability of the IP-DSMC to model non-equilibrium systems while

maintaining the reduced scatter in sampled quantities. Such systems often exhibit modality

in the particle behavior, due to rarefaction or strong gradients (as in shock flow). In an

equilibrium gas, the molecular distributions are isotropic, and thus any splitting of fluxes

would be symmetric. Consequently, the Octant method, either by choice of the analyst, or

as a result of the flow conditions may degenerate to the lower forms (QSIP, FS, or LTE). For

consistency and to accentuate the general form, the higher order splitting methods, Quad-

rant and Octant, will be referred to simply as the Octant Splitting method, or OSIP-DSMC.

Consider now a particle whose microscopic velocity c is such that it is moving in a

NE direction and whose preserved velocity matches the stream velocity (Vi = V = c0).

The Quadrant Splitting momentum correlation coefficient for this molecule is for the NE

direction:

c′ic
′′′
j =



R T
4

1
4πβ2 0

1
4πβ2

R T
4 0

0 0 R T
4


=



R T
4

R T
2π 0

R T
2π

R T
4 0

0 0 R T
4


(3.105)
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Notice that for such a particle, the terms above degenerate diagonal components, i.e.,

c′ic
′′′
j , where j > i and i is a degenerate dimension and j is not (e.g., the third column in

Eq. (3.105)) vanish due to degeneracy; whereas rows to the left of such terms (i > j, e.g.,

bottom row (3.105)) vanish due to the velocity flow assumptions V = a = c0 and not

because they are not constrained by degeneracy.

Now consider three additional particles with preserved velocities also equal to the

stream velocity but classed in each of the other splitting directions. The correlation co-

efficients may now be evaluated over the quadrants into which these molecules are split

and added to obtain the complete correlation coefficient tensor for this simplified four par-

ticle system:

c′ic
′′′
j =



R T
4 −R T

2π 0

−R T
2π

R T
4 0

0 0 R T
4


NW

+



R T
4

R T
2π 0

R T
2π

R T
4 0

0 0 R T
4


NE

+



R T
4

R T
2π 0

R T
2π

R T
4 0

0 0 R T
4


S W

+



R T
4 −R T

2π 0

−R T
2π

R T
4 0

0 0 R T
4


S E

(3.106)

=



R (T NE+T NW +T S W +T S E)
4

R (T NE−T NW+T S W−T S E)
2π 0

R (T NE−T NW +T S W−T S E)
2π

R (T NE+T NW+T S W +T S E)
4 0

0 0 R (T NE+T NW +T S W +T S E)
4


NE

(3.107)

As may be seen, the Octant Splitting method introduces new terms in the momentum corre-

lation coefficient tensor that may provide a mechanism to recover shear from the preserved

thermal energy, even in the case of stationary flow.

If the distribution of particle temperatures within a cell is such that TS W = TNW > TS E =

TNE (a bimodal distribution in the x-direction and uniform in y) then the shear terms vanish.

This is in fact a manifestation of degeneracy due to the symmetry in the y- and z-directions

reducing the QSIP-DSMC to the 1D Flux Splitting Method. Likewise for a similar system

with a gradient in the y-direction but uniform in x. If however, the gradient is diagonal,
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e.g. TS W > TS E = TNW > TNE, then there will be a net shear component. As previously

discussed, the thermal transpiration problem exhibits multiple modalities, which should

Octant Method will attempt to capture.

The same thermal transpiration simulation as previously discussed was repeated with

the Octant Splitting Method, producing very good results. Figure 3-18(a) presents the

OSIP-DSMC velocity field for this simulation which exhibits a recirculatory flow pattern.

This is comparable to that obtained from the DSMC presented in Figure 3-18(b) (note the

significant scatter remaining in the DSMC as compared with the OSIP-DSMC). Further-

more a static pressure gradient is developed and the pressures at either end of the channel

are found to be within 1% of the DSMC solution (see Figure 3-24). Prior to presenting

additional thermal transpiration simulations using the OSIP-DSMC (see Section 3.7.1) an-

other aspect of the Octant Method must be addressed.

3.6.1 The Split Box Problem and the Impact of Coordinate Systems

An important aspect of the OSIP-DSMC was uncovered by applying the method to an

interesting thermally driven flow identified by Aoki, et al. [7]. The simulation domain

consists of a square region with a discontinuous temperature distribution such that one half

of the boundary is maintained at T1 = 200 K and the other at T2 = 400 K, as illustrated

in Figure 3-19. Hereafter, this geometry will be referred to as the “Split Box” problem.

Figure 3-20(a) presents the velocity field obtained from the BGK solution of the Boltzmann

Transport Equation by Aoki et al. for the lower half of the system with Kn = 0.2. The

velocities are normalized relative to the most probable velocity, i.e., ξ = c/(2RT1)1/2. The

most striking feature of this problem is the induced circular flow creating a vortex pattern.

The maximum velocity occurs near the discontinuity.

Applying the OSIP-DSMC to this problem yields the surprising flow field presented in

Figure 3-20(b) which exhibits two vorticular patterns (note, the DSMC flow field behaved

as expected, see Figure 3-29(a)). In light of the excellent agreement obtained in modeling
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Figure 3-19: Boundary conditions for Split Box problem

thermal transpiration and the correct behavior of the underlying DSMC, this results seems

quite mysterious. The explanation (and solution) may be identified by first returning to the

correlation coefficient tensor. Using the same assumptions as before, the simplified form of

the complete correlation coefficient tensor Eq. (3.107) may be used. A net shear will only

arise in the absence of horizontal or vertical symmetry. From the published solution (and

the DSMC solution) it is obvious that a net shear exists and is driving the flow—but in the

case of the OSIP-DSMC, the wrong flow. Now consider the eigenvectors of the momentum

correlation coefficients (recalling that this tensor is related to the stress tensor), clearly these

will always be oriented at 45◦ from the global coordinate system (GCS) (although for flows

where V , a = c0 there will generally be a small deviation). Consequently, the principal

stresses (or pressure components) will also be oriented at 45◦ degrees from the global CS.

This would seem to be a limitation of the method, and indeed affects all of the flux splitting

IP Methods.

Recalling that the flux splitting methods seek to preserve the modality of the flow, it

is logical—and in this case obvious—that the choice of coordinate system is not arbitrary,

and that the global coordinate system is often a poor choice. This then requires that a

natural local coordinate system (LCS) be chosen reflecting the flow conditions. As the

76



3-20(a): Velocity Field for Kn = 0.2

3.75e-007
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1.25e-007

0

1e-0067.5e-007

5e-007

5e-0072.5e-0070

0.02

3-20(b): Octant Method simulation of Temperature Discontinuity without transforma-
tion to local coordinate system

Figure 3-20: Comparison of Velocity fields from BGK soluton for Kn = 0.2 and OIP-
DSMC (Global CS)

modality to be preserved and exploited is usually associated with a temperature difference,

or gradient, a logical choice would be for the LCS to be aligned with the iso-lines of tem-

perature or—more generally and conveniently—the heat flux vector, q. Figure 3-21 shows

the iso-lines and heat flux vectors for the Split Box problem, and a strong curvature near

the discontinuity is clear.
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Figure 3-21: Split Box temperature contour plot (20 K iso-lines) and heat flux vectors

The heat flux vector, q, for each computational cell is sampled periodically and is thus

available for this purpose and will reflect changes in the flow conditions (in practice a

weighted average of q is used until steady state is reached, then the steady state value is

used). From q the local coordinate system may be constructed and the correlation coeffi-

cients evaluated as follows1.

1. Identify the local coordinate system: x^ =
q
‖q‖ and y� = Rz,90x^ (where Rz,90 rotates

90◦ counter-clockwise about the z-axis). In two dimensions y^ = y� and z^ = z. In

three dimensions z� = x^ × y^, z^ = z�
z� and y^ = z^ × x^

2. Construct the rotation matrix, R =
[
x^, y^, z^

]

3. Transform the stream velocity and splitting velocity into the new coordinate system,

i.e., c^0 = RT c0 and a^0 = RT a0

4. Transform the DSMC and IP velocities for each particle into the new coordinate

system

1The choice of the directions orthogonal to q i.e., y^ and z^, in three dimensions is currently considered
arbitrary. This is an area that deserves further study.
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5. Determine the splitting direction within the new coordinate system and calculate the

correlation coefficients
(
c′ic
′′′
j

)^
and

(
c′i

(
V2 + 3 R T − c2))^ and average these as in

Eq. (3.97)

6. Return the complete correlation coefficients to the global coordinate system: c′ic
′′′
j =

R
(
c′c′′′

)^
RT and c′i

(
V2 + 3 R T − c2) = R

(
c′i

(
V2 + 3 R T − c2))^

Steps 4 and 5 are repeated for every particle within the computational cell, where as the re-

maining steps need only be performed once per timestep. Figure 3-22 presents a flowchart

of the complete Octant IP-DSMC method.

The excellent performance simulating thermal transpiration is easily explained by ob-

serving that other than very small regions near the corners, the heat flux and temperature

profile predicted by the IP-DSMC are essentially aligned with the global coordinate system

(see Figure 3-23).

3.7 Thermally Driven Flow Simulation Results

As previously noted, the 1D Octant IP Method is identical to the Flux Splitting method,

therefore, its performance will be the same for any of the 1D flows. The following 2D

flows explore the effects of thermally induced flow and the ability of the Octant Splitting

IP Method to efficiently capture these phenomena.

3.7.1 Thermal Transpiration

The effect of thermal transpiration is known to increase as the Knudsen number increases,

reaching a maximum value in the free molecular case, where the ideal pressure ratio of

P1

P2
=

√
T1

T2
(3.108)

will be achieved. Two additional microchannels have been modeled with widths of 100 nm

and 20 nm. For improved initial conditions (closer to the final state) Sharipov’s solution

is used for the initial pressure distribution (rather than the continuum solution of uniform
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Figure 3-22: Flowchart of OSIP-DSMC operations

pressure). The resulting pressure distributions from the OSIP-DSMC, DSMC, and BTE

are presented in Figure 3-24. Considering the nonidealities in the short channels and the

degree of scatter in the DSMC, these are in excellent agreement with each other. For the

narrower channels, the recirculatory flow was not evident, but may be observed in the 1 µm

wide channel (see Figure 3-18). Sharipov’s solution does not provide information regarding

the velocity distribution in the flow field, but one may compare the DSMC and OSIP-

DSMC solutions and observe that both display recirculatory flow. The maximum velocities

predicted by the DSMC are roughly double those predicted by the OSIP-DSMC. However,

if we consider the average velocity profile along the channel (excluding the region near

the ends) and separate the x- and y-components, we can obtain a clearer comparison of the
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Figure 3-23: Thermal transpiration temperature contour plot (50 K iso-lines, starting at
300 K) and heat flux vectors

DSMC and OSIP-DSMC, as shown in Figure 3-25. The DSMC still displays some scatter,

but the similarities in the velocity profiles are apparent. Additional samples would further

improve the DSMC results but were not performed at this time.

3.7.2 Temperature Discontinuity: Split Box

Returning to the Split Box problem, the Kn = 0.2 simulation was repeated. Figure 3-26

presents the velocity distribution for this flow, which is comparable in its magnitude and

distribution to that reported by Aoki, et al. (see Figure 3-20(a)) and the DSMC solution.

Figure 3-27 presents a visualization of the correlation coefficients, more precisely the shear

components:

τcc
i j = c′i c

′′′
j − δi j

1
3

c′i c
′′′
i (3.109)
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Figure 3-24: Summary pressure distributions for 5 µm long channels comparing DSMC,
OSIP, and Sharipov’s BTE solutions.

plotted as row vectors (τcc
i1 , τcc

i2 , τcc
i3 ). Physically, this may be difficult to interpret as it is

the gradients of the correlation coefficients that contribute to the particle modifications, but

it does illustrate the effect of the local coordinate system. However, due to the rôle of the

correlation coefficients in the pressure (or stress) tensor (see Eq. (3.49)), the correlation

coefficient is very closely related to the stress tensor, as may be seen in Figure 3-28 which

plots the OSIP-DSMC correlation coefficients and shear stress as scalars (in the manner of

Von Mises stress):

σ′ =

√(
σxx − σyy

)2
+

(
σyy − σzz

)2
+ (σzz − σxx) + 6

(
τ2

xy + τ2
yz + τ2

zx

)

2
(3.110)
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Figure 3-25: Velocity distributions across the 1 µm wide channel (averaged over the length
of the channel from 0.5 µm to 4.5 µm)
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3-26(a): OSIP-DSMC
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Figure 3-26: Simulation of Split Box problem Kn = 0.2, T1 = 200 K and T2 = 400 K.
Scale vectors indicates maximum scaled velocities

Figure 3-29 presents another Split Box solution for Kn = 0.1. A number of additional

flow simulations are presented in Chapter 6.
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Figure 3-27: Shear components of momentum correlation coefficients for the Split Box
problem

3.8 Summary

The IP-DSMC is a very attractive method due to the greatly reduced scatter in sampled

quantities. This comes at a price, as a number of assumptions must be made, and as has

been seen, certain flow characteristics may be obscured. The Flux Splitting formalized

the IP-DSMC method and sought to improve the ability of the IP-DSMC to model non-

equilibrium flows by accounting for flow modality. However, the splitting technique used

in the Flux Splitting method was still insufficient to recapture contributions to shear com-

ponents hidden within the preserved temperature by the method. The Octant Splitting

IP-DSMC is a significant advance in the IP-DSMC theory and provides a valuable tool

for modeling low-speed rarefied gas dynamics, particularly those resulting from thermal

stresses.
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3-28(a): OSIP-DSMC Correlation Coefficients (effective stress)

3-28(b): OSIP-DSMC stress (effective)

Figure 3-28: Simulation of Split Box problem Kn = 0.2, T1 = 200 K and T2 = 400 K.
Scale vectors indicates maximum scaled velocities
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3-29(a): DSMC Velocity Field for Kn = 0.1

3-29(b): OIP-DSMC Velocity Field for Kn = 0.1

Figure 3-29: Comparison of Velocity fields from DSMC (a), and OIP-DSMC (b). Kn = 0.1

87



CHAPTER IV

MACROSCALE MODELING

4.1 Boundary Element Method

There are many different numerical techniques which may be used to solve the differen-

tial equations with which continuum phenomena are described, including finite difference,

finite element, finite volume, etc.. Most such method are domain methods, requiring the

domain of interest to be discretized in order to form the system of equations. The boundary

element method (BEM) provides an alternative: by using the integral form of the gov-

erning equations. As a result of the integral formulation the technique operates on the

boundary and the problem order is reduced by one—e.g., from 3D to 2D—consequently

the resulting systems of linear equations are also reduced in size [10]. As such, it is par-

ticularly well suited to problems with infinite or semi-infinite domains. Such problems are

quite common in problems of fluidics, heat transfer, electromagnetics. In such problems

the boundaries of interest are very small in comparison to the domain, therefore the BEM

mesh will be very small, as opposed to domain methods (FEM, FDM, FVM, etc.) which

require meshing a large region of the domain and possibly the use of special elements to

approximate the infinite domain. Although the solution of the BEM formulation is only

for the boundary elements, the solution at any point within the domain may be calculated

as a continuous function of the boundary solution as a post-processing step. The principal

drawbacks of the BEM are the difficulty encountered in performing kernel integrations and

the fact that systems of equations (although smaller) are fully dense. Kernel integrations

often require special treatment for the singular integrals that arise. A number of acceler-

ations techniques have been proposed to reduce the expense of setting up and solving the

dense systems [72, 87].
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Many of the previous studies of multiscale modeling of gas phase phenomena have con-

sidered channel flow, for which the domain methods may be preferable for continuum mod-

eling. However, many MEMS and NEMS systems operate within what may be considered

to be a semi-infinite domain, with small systems fabricated on the surface of (relatively)

large surfaces open to an even larger environment. For such problems, the BEM provides a

highly efficient continuum modeling technique. To the author’s knowledge it has not been

been applied to multiscale micro/nanoscale gas phase modeling.

4.2 Constant Element BEM Formulation

The steady state solution of heat conduction and the electrical field can both be described

by the Laplace equation.

∇2u = 0 (4.1)

The following is a brief review of the Direct BEM formulation for 2D heat transfer

problems. This research uses both Direct and Indirect formulations as needed (the Indirect

BEM is easier to implement and offers some advantages for treating exterior problems).

The Direct BEM utilizes the physically significant quantities of potential (temperature) and

flux throughout, whereas the Indirect BEM uses non-physical quantities which are then

transformed back to the quantities of interest.

The Direct BEM Integral formulation for the Potential Problem given by

p(ξ) =

∫

S

[
p(x)F(x, ξ) − q(x)G(x, ξ)

]
dS (x) +

∫

V
ψ(x)G(x, ξ) dV(x) (4.2)

where the 2D kernel, or Green’s, functions are

G(x, ξ) = − 1
2πk

ln r (4.3)

F(x, ξ) =
(x − ξ)ini(x)

2πr2 =
yini(x)
2πr2 (4.4)

and x designated the “load” (or “source”) point and ξ the “field” (or “evaluation”) point,

yi = ξi − xi, r2 = yiyi, [96], k is the heat transfer coefficient of the medium, and q is the heat
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flux. In this study k is calculated using (5.4). Integration is with respect to x and for this

case, the second integral on the RHS vanishes as there are no interior sources or sinks. As

constant elements will be used, Eq. (4.2) may be rewritten as:

∮

S
p(x)F(x, ξ) dS (x) =

1
2

p(ξ0) +

∫

S
p(x)F(x, ξ0) dS (x) (4.5)

which leads to the discretized Boundary Integral formulation for constant elements

1
2

p(ξm
0 ) =

N∑

n=1

pn
∫

∆S
F(xn, ξm

0 ) dS (x) −
N∑

n=1

qn
∫

∆S
G(xn, ξm

0 ) dS (x) (4.6)

This may now be cast as a matrix problem

1
2

pm =
(
F̄nm

)
pn −

(
Ḡnm

)
qn (4.7)

(Fnm) pn − (Gnm) qn = 0 (4.8)

Fs p−Gsq = 0 (4.9)

where the matrices Fs and Gs are populated by the kernel integrations, and the vectors p

and q are the potentials (temperatures) and fluxes at the boundary elements. For mixed

boundary conditions, entries in the two system matrices are interchanged to form the right

and left hand sides and the system may be solved numerically. Eq. (4.2) may now be used

to calculate the temperature at any point ξ interior to the domain. The fluxes interior may

be calculated from

q (ξ) =

∫

S

[
p(x)H(x, ξ) − q(x)F(x, ξ)

]
dS (x) +

∫

V
ψ(x)F(x, ξ) dV(x) (4.10)

where the kernel function H is given by

H(x, ξ) =
k

2πr2

(
2yiy j

r2 − δi j

)
ni(x)n j(ξ) (4.11)

Kernel integrations may be either numerical or for special cases (as for the constant valued

elements used in this research) analytic.
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4.3 Summary

The BEM provides an efficient modeling technique for certain physical problems, by re-

ducing the dimensionality of the problem by one. It will be used in the next chapter as a

novel and efficient technique for multiscale modeling of rarefied gas dynamics.
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CHAPTER V

MULTISCALE MODELING OF A TSAFM

CANTILEVER

The goal of Multiscale modeling is to utilize the most efficient models that are applicable

to the various flow regimes of interest and couple these to obtain a solution for the over

flow. In this chapter a detailed OSIP-DSMC/BEM coupled model for the heat transfer

and thermally driven flow will be developed and evaluated. However, prior to introducing

the coupled model, the development and results of a preliminary modeling effort will be

presented. This will provides a point of comparison for the full coupled model.

5.1 Preliminary Modeling: TSAFM Sensitivity

The following sections describing the preliminary model are extracts from a paper entitled

“The impact of subcontinuum gas conduction on topography measurement sensitivity using

heated atomic force microscope cantilevers,” by the current author and Drs. Wenjing Ye

and William P. King. This work has been published in the Journal Physics of Fluids [67] .

5.1.1 Introduction

The scanning probe microscope is likely the most widely used scientific instrument for

nanometer-scale sensing and manipulation. It has had profound effect on the metrology

and fabrication of microelectronics and microelectromechanical systems—with the ability

to measure [14] and modify [113] nanometer-scale surface features and characteristics. In

atomic force microscopy (AFM), a cantilever probe having a tip of near-atomic sharpness

is scanned across a nanostructured surface as a sensor detects the vertical tip position. Var-

ious methods have been developed to detect the motion of or forces on the probe tip as it
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Figure 5-1: Diagram of TSAFM Operation. A heated cantilever is scanned across a nanos-
tructured surface (a). As the proximity changes, the thermal resistance changes (b).

follows the surface contours including laser illumination with optical detection [14], inte-

grated piezoresistors [44], and current tunneling [15]. Thermal Sensing Atomic Force Mi-

croscopy (TSAFM) is a recent development in scanning probe microscopy that has arisen

from the use of AFM heater-cantilevers for high density read/write data storage [106, 13].

In TSAFM, the temperature of a heated cantilever probe is governed by heat flux from the

cantilever to the nearby substrate, and can therefore measure proximity between the can-

tilever and the surface over which it scans. The cantilevers are made from electrically active

doped silicon to allow resistive heating and monitoring of temperature-dependent electri-

cal resistance. Imaging requires only electrical signals to and from the cantilever. This

removes the need for optical access, simplifies the system, and enables the implementation

of heater cantilever arrays capable of parallel operation.

Although similar in many ways to conventional AFM systems, a description of the

form and function of TSAFM systems serves to clarify the motivation and the direction

of this study. The AFM heater-cantilever sensor is an electrically conductive V-shaped

microcantilever with a sharp tip, as shown in Figure 5-1. The tip is typically 500 nm high

with a nominal radius of curvature at the point of 20 nm. In operation, the cantilever

is biased with an electrical voltage resulting in resistive heating near the cantilever tip,

reaching thermal equilibrium with the environment within 1 ms [52, 27]. The localized

heating is due to nonuniform impurity doping: low doping concentrations near the tip

result in high electrical resistance while high doping in the legs produces lower resistance.
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This heating affects the temperature-dependent electrical resistivity of the cantilever. As the

heated cantilever tip is scanned across a nanostructured surface, the tip follows the surface

contours such that the distance between the heater platform and the surface changes. This

alters the thermal impedance between the cantilever and the substrate and consequently the

steady-state temperature profile and the electrical resistance of the cantilever. Thus, the

proximity to the surface can be sensed via the temperature-dependent electrical resistance.

Correct interpretation of the cantilever temperature signal and the rational design of

cantilevers for improved sensing require accurate models of the heat transfer. Prior mod-

eling efforts have used both analytical and finite difference formulations and considered

steady-state and transient cantilever heating [52, 27, 26] although only two have consid-

ered reading sensitivity [52, 27]. All have assumed continuum gas phase heat transfer. The

cantilever-substrate distance is governed by the height of the tip, nominally 500 nm. Sensi-

tivity increases for decreasing tip height. Under standard atmospheric conditions in which

heater cantilevers are usually operated, the gas molecular mean free path λ is approximately

64 nm [50]. For a separation of g = 500 nm the Knudsen number is Kn = λ/g ≈ 0.13 ,

which indicates that the flow is in the transition regime. Smaller gaps will approach free

molecular flow. Improved heat transfer modeling is thus required to predict the behavior of

heater cantilevers within these noncontinuum flow regimes. This paper describes the inves-

tigation of subcontinuum gas phase heat transfer on the behavior of heated AFM cantilevers

and seeks to improve the design of heater cantilevers operated in the range of Kn ∼ 0.1 − 1.

5.1.2 Heat Transfer Modeling

The V-shaped cantilever is modeled as a rectangular beam with the heater platform located

at its center. Figure 5-2 shows the one dimensional conservative finite difference model

used to evaluate heat transfer and to predict the temperature profile along the cantilever. The

finite difference formulation accounts for the heat generation within each element (qgen,i)

with the heat transfer along the cantilever (qi−1, and qi+1), to the environment (qe,i), and to
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Figure 5-2: Diagram of Thermal Sensing Atomic Force Microscope (TSAFM) finite dif-
ference model showing nodes, temperatures, heat generation (qgen,i), and heat transfer (with
paths qi−1 and qi+1 along the cantilever, qe,i to the environment and qs,i to the surface) used
in the formulation. The region immediately below the cantilever must be considered as
subcontinuum due to the small air gap, g.

the surface (qs,i) as illustrated in Figure 5-2 and considers continuum and noncontinuum gas

phase heat transfer. Prior studies [52, 106, 27, 26, 64] have shown that conduction through

the tip and radiative heat transfer may be neglected. For gaps smaller than ∼ 10 nm, near-

field radiative effects may become significant [70, 36]. Thus, the dominant mode of heat

transfer is gas phase conduction. A conduction shape factor [47] combines qe,i and qs,i,

such that the total continuum gas phase heat transfer per unit length (W/m) to the surface

and environment is

q′s,i + q′e,i = S kc (TB − TE) = S kc∆T −→ S =
qs,i + qe,i

kc∆T
(5.1)

where kc is the continuum heat transfer coefficient (W/m-K), and TB and TE are the beam

and the ambient temperatures (K), respectively.

A 2D finite element analysis (FEA) determines the shape factor for a given cross sec-

tion geometry and separation gap. The FEA model consists of a rectangular body with
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cross section width, w, and thickness, t, parallel to a surface (substrate) at a distance g, em-

bedded in a semi-infinite medium, as in Figure 5-2. The body is maintained at a uniform

temperature TB, whereas the substrate is maintained at TE, and the medium has uniform

thermal properties. Shape factors are calculated for each combination of beam geometry

and separation distance used in this study. Meshes were refined for the smallest separation

geometry until a converged solution was obtained, and this level of refinement was then

maintained for subsequent shape factor calculations. The conductance per unit length of

the cantilever can thus be expressed as G′ = kcS , where kc is the continuum heat transfer

coefficient.

Previous studies assumed the temperature to be uniform across the cantilever with the

Biot number, Bi � 1 , and good a agreement between modeling and measurement was

observed. Here we confirm this to be appropriate for the present study. The Biot number,

Bi = he f f Lc/ks , compares the thermal conductance of the gas and the cantilever. First,

consider the “convective” coefficient he f f (W/m2-K) which is defined as

q′ = S kc∆T = 2 (w + t) he f f ∆T −→ he f f =
S kc

2 (w + t)
(5.2)

where w and t are the cantilever width and thickness and kc is the conductive heat trans-

fer coefficient for the gas. The following values provide an upper bound for he f f : kc ∼
0.04 W/m-K (approximate value for Argon at 1600 K, see Eq. (5.4)), S ≈ 2000 (corre-

sponding to a gap of 5 nm), w = 10 µm, and t = 200 nm, yielding he f f ≈ 4 × 106 W/m2-K.

The heat transfer coefficient, ks, of the silicon cantilever is approximately 80 W/m-K and

Lc = Ac/P = wt/(2(w + t)) will be used for the characteristic length. The resulting Biot

number, Bi ≈ 0.005, is quite small, indicating that the uniform temperature distribution in

the cross section is appropriate.

The shape factor accounts for the continuum gas phase heat transfer from the cantilever

and a correction must be made to include subcontinuum effects. In the finite element simu-

lations for the shape factor it has been observed that the heat flux in the region immediately
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beneath the cantilever is essentially uniform and one dimensional except for a small “fring-

ing” region near the edge of the cantilever. If the assumption is made that the heat transfer

in the region immediately beneath the cantilever is in fact one dimensional, then an ap-

proximate correction to the thermal conductance may be made by replacing the effective

1D continuum conductance (G′ = kcw/g, under the beam) with the corresponding subcon-

tinuum conductance,

G′ = q′/∆T = kc

(
S − w

g

)
+ ke f f

w
g

(5.3)

where ke f f is the effective subcontinuum conduction heat transfer coefficient, for which an

accurate model is provided as described below. As a check, a second set of shape factors,

S ′, was calculated that excluded the region beneath the cantilever, i.e., considered only the

heat transfer from the top and side. This was then corrected by adding the effective 1D

shape factor for the region under the beam (S c = S ′ + w/g). This was found to agree with

the normal (continuum) shape factor to within 3% for all geometries. At a minimum, the

assumption of 1D heat transfer requires that the gap and cantilever thickness both be small

compared to the width of the cantilever—which is the case for all geometries in this study.

5.1.3 Subcontinuum Heat Transfer

Two different techniques were used to evaluate the one dimensional subcontinuum heat

transfer for the region immediately beneath the cantilever: Direct simulation Monte Carlo

(DSMC) and a kinetic theory based macromodel.

5.1.3.1 DSMC

The DSMC code is implemented in C++ and provides user selectable dimensionality for 1D,

2D, or 3D simulations and implements the major collision models: Hard Sphere (HS), Vari-

able Hard Sphere (VHS), and Variable Soft Sphere (VSS). The Hard Sphere model treats

the molecules as elastic particles with constant cross diameters [17]. The Hard Sphere

molecular diameter and mass of Argon are d = 3.63 × 10−10 m, and 66.3 × 10−27 kg. The

Variable Hard Sphere [17] and Variable Soft Sphere [17, 56] models were developed to
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more accurately simulate the temperature-dependence of the viscosity of real gases. How-

ever for Argon and the temperature range typically encountered in TSAFM operation, the

Hard Sphere model would provides slightly improved efficiency with little loss of accu-

racy [41].

DSMC simulations were performed for a wide range of temperature differences and

gaps to obtain the effective heat transfer coefficient for each case. The subcontinuum re-

gion was treated as one dimensional, and the computational domain divided into 100 cells

spanning the gap (∆x = L/100) with each cell initially containing 100 particles and the time

steps set to ensure that particles would require approximately five time steps to traverse a

cell. This meets recommended criteria for minimizing the truncation error associated with

the DSMC method [43] as follows: 1. the cells were smaller than the mean free path, specif-

ically for all gaps, where λ is the average value for the undisturbed gas and 2. the time step

was much smaller than the mean free time (∆t = (∆x/5c0) < λ/ (7c0), where c0 =
√

2 R T ).

Between 100,000 to 300,000 iterations were performed for each simulation to ensure that

steady-state was achieved and that statistical noise was minimized. Furthermore, four in-

dependent runs were averaged together to further improve the final results. The normalized

standard deviation of the effective heat transfer coefficients for these independent simula-

tions was less than 1%. This can be further reduced by increasing the number of particles

per cell and/or the number of samples as the statistical error is inversely proportional to the

square root of the number of particles per cell and the number of samples [41].

5.1.3.2 Macromodel

Although the DSMC provides considerable insight into the behavior of rarefied gases, re-

vealing characteristics that might not be observable otherwise, it is computationally expen-

sive. One way to overcome this obstacle is to perform a large number of simulations over a

wide range of possible conditions and then interpolate these results for use in the cantilever
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heating model. However, an analytic equation capable of describing the subcontinuum heat

transfer would be advantageous.

The proposed macromodel first considers the limiting cases of continuum and free

molecular heat transfer, which correspond to Kn � 1 and Kn � 1 respectively. From

kinetic theory, the effective heat transfer coefficient, defined as ke f f ≡ q′′L/ (TH − TL),

of a continuum gas bounded by parallel surfaces maintained at temperatures TL and TH

(TH > TL) can be written as:13

k =
15 (9γ − 5) kB

128d2

√
kBTe f f ,c

πm
(5.4)

where γ is the specific heat ratio, cp/cv ( γ = 5/3 for monatomic species), kB is Boltz-

mann’s constant, Te f f ,c = (TH + TL)/2 is the effective, or average, temperature and d and m

are the effective molecular diameter and mass of the gas, respectively [50].

The free molecular heat flux for the same surfaces can be evaluated as [40]:

q′′f m ≈ αnkB

√
kB

2 πm

(
γ + 1
γ − 1

) √
THTL√

TL +
√

TH
(TH − TL) (5.5)

where α is the accommodation coefficient of the walls which is assumed to be α = 1 in this

study, i.e., fully accommodating and n is the number density of the gas (n = ρ/m ). The

heat flux is independent of separation which is consistent with the collisionless nature of

the free molecular regime.

A macrorule may be formed by applying Matthiessen’s Rule, which has long been used

to treat length scale dependent effects in electrical and thermal resistance [54, 23], resulting

in the following form:

ke f f =
k?

l

(
1
l

+
1
L

)−1

(5.6)

Where L, l, and k? represent the macroscopic and microscopic length scales and the ref-

erence heat transfer coefficient, respectively. At this point in the derivation, these quantities

are undetermined. In the continuum limit it is assumed that L � l, therefore

ke f f = lim
L�l

k?

l

(
1
l

+
1
L

)−1

→ k? (5.7)
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From which it is obvious that k? must equal k. A reasonable choice of the macroscopic

length scale, L, in this 1D problem is the separation gap, g. To identify the microscopic

length scale, consider the heat flux in the free molecular limit, g � 1. The macromodel

gives

q′′ ≈ lim
g�l

k
l

(
1
l

+
1
g

)−1
∆T
g
→ k

l
(g)

∆T
g

=
k
l
∆T =

k
l

(TH − TL) (5.8)

Equating this to Eq. (5.5) and solving for l, one has

l =
1√

2nd2

15
√

2 (9γ − 5) (γ − 1)
√

TH + TL

(√
TH +

√
TL

)

128α (γ + 1)
√

THTL
(5.9)

The kinetic definition of the mean free path[in general the mean-free path—as a func-

tion of the number density n—is dependent on the gas state (temperature, pressure, etc.);

in this study the average number density and mean-free path of the gas at standard tem-

perature and pressure are used], λ =
(√

2π nd2
)−1

, can be identified in this equation after

multiplying the numerator and denominator by π, allowing it to be reduced to

l = λ


15π
√

2 (9γ − 5) (γ − 1)
√

TH + TL

(√
TH +

√
TL

)

128α (γ + 1)
√

THTL

 = λC (5.10)

Where the coefficient C is now defined as

C =
15π
√

2 (9γ − 5) (γ − 1)
√

TH + TL

(√
TH +

√
TL

)

128α (γ + 1)
√

THTL
(5.11)

Based on these results the final form of the macrorule is

ke f f =
k
λC

(
1
λC

+
1
g

)−1

=
k
λ

(
1
λ

+
C
g

)−1

(5.12)

Eq. (5.12), should now account for the effects of the length scale, surface accommo-

dation, and temperature on the effective heat transfer coefficient. Figure 5-3 shows the

resulting effective heat transfer coefficient, ke f f , for a number of gaps ranging from 10 nm

to 1 µm as predicted by the DSMC and macromodel. The working gas is Argon with an

average density of 1.78 kg/m3 and the boundaries are fully accommodating with a tem-

perature difference ∆T = 300 K (TL = 273 K). The bounds of the simulation regime
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Figure 5-3: The effective heat transfer coefficient, ke f f , of argon as modeled by the DSMC,
kinetic theory macromodel, continuum and free molecular models, for the case of ρ =

1.78 kg/m3, TH = 573 K, TL = 273 K, and a range of separation gaps.

correspond to Kn � 1 and Kn � 1. In light of the excellent agreement of the macrorule

with the DSMC simulations the macro rule is used for all further subcontinuum modeling

in this study. An alternative formulation based on the Smoluchowski equation [29] may be

manipulated to obtain Eq. (5.12). However, Eq. (5.12) provides additional insight into the

length scale dependence of the heat transfer coefficient. Denpoh also explored the effect

that the accommodation coefficient has on the heat transfer [29].

5.1.4 Subcontinuum Thermal Conductance of TSAFM FDM Element

It is possible to use the effective subcontinuum heat transfer coefficient ke f f to explore the

subcontinuum thermal conductance in the framework of the finite difference model. The
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Figure 5-4: The thermal conductance (per unit length), G′ , evaluated using continuum and
subcontinuum models. The subcontinuum conductance is plotted for a number of temper-
atures (300, 500, 750, and 1000 K, with TL = 273 K) whereas the continuum conductance
is plotted for TH = 300 K only.

thermal conductance per unit length, G′ , for an element may be calculated by substitut-

ing the value of ke f f into Eq. (5.3). Figure 5-4 shows values of G′ over a range of gaps

from 10 nm to 500 nm, with w = 10 µm and t = 200 nm. Figure 5-4 also shows the

uncorrected continuum conductivity. From these results we conclude that subcontinuum

heat transfer effects must be included in order to correctly model TSAFM behavior for

cantilever-substrate distances less than 200 nm.

102



Table 5-1: Table 1. TSAFM Cantilever Design Parameters

Parameter Millipede Design 2
Leg Length 50 µm 50 µm
Leg Width 10 µm 10 µm
Leg Thickness 200 nm 200 nm
Leg Doping 1 × 1020 cm−3 1 × 1020 cm−3

Heater Length 10 µm 20 µm
Heater Width 5 µm 10 µm
Heater Thickness 200 nm 200 nm
Heater Doping 1 × 1018 cm−3 1 × 1018 cm−3

5.1.5 Results and Discussion

The finite difference model, which includes the embedded subcontinuum model, can now

be used to simulate TSAFM operation, including the steady-state temperature profile and

electrical response. The electrical resistivity, which affects the heat generation term (qgen,i),

has a well characterized dependence on doping concentration and temperature [48]. This

dependence is highly non-linear and thus requires an iterative solution technique to obtain

the steady-state temperature profile and electrical resistance. Table 5-1 presents the design

parameters for two cantilever designs: the data storage cantilever known in the literature

as “Millipede” and an alternate design 2. The purpose for design 2 is to investigate the

effect on the sensitivity of increasing the heater area without altering the room-temperature

electrical resistance. Sensitivity is defined as the change in measured voltage resulting from

a change in the air gap (∆V/∆g). Predictions were made for cantilever operation over a

range of separation gaps and heating currents. The finite difference model is implemented

in MATLAB and the meshes, which are symmetric about the center of the heater, consist of

200 elements for the leg and 50 elements for the heater. Mesh refinement was determined

by a convergence study. A 5 nm perturbation to the gap calculates the sensitivity, which

is approximated as S ≈ (V (g + ∆g) −V (g)) /∆g. Total computation time for the two

designs was approximately 10 hours on an AMD Athlon XP 1900 (1.6 GHz).
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Figure 5-5: Sensitivity response surface and constant temperature curves for the Millipede
design.

Figure 5-5 shows the sensitivity response surface for the Millipede design as a func-

tion of cantilever-substrate gap height and cantilever heating power. Superimposed on this

surface are constant temperature lines representing the maximum predicted temperature at

the cantilever tip for each operational point. In general, sensitivity increases as the gap

decreases. As a function of power, the sensitivity increases until it reaches a ridge of

maximum sensitivity, beyond which the sensitivity then drops off sharply to a trough of

minimum sensitivity followed by a second region of increasing sensitivity. These features

tend to coincide with the constant temperature lines. To understand this behavior it is nec-

essary to consider the electrical resistivity, ρe , and the absolute value of its temperature

derivative, |∂ρe/∂T | , as plotted in Figure 5-6 as functions of temperature for the doping

concentrations used in this study. Comparing Figures 5-5 and 5-6, it becomes apparent that

the sensitivity has a strong correlation with the temperature derivative of the resistivity. In
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Figure 5-6: Cantilever electrical resistivity as a function of cantilever maximum tempera-
ture for the doping concentrations used in the Millipede and Design 2 designs.

Figure 5-5 the sensitivity increases with increasing power until the temperature approaches

750 K. This corresponds to the increasing derivative of the resistivity for the lightly doped

(1018 cm−3) heater region shown in Figure 5-6. Beyond this point the sensitivity falls off

sharply, reaching a local minima at around 900 K, again corresponding well with the tem-

perature at which the slope of the resistivity changes sign and |∂ρe/∂T | reaches a minimum,

at around 850 K. The slight discrepancy in these temperatures is likely due to the highly

doped region playing a larger role in the sensitivity around these temperatures. The sen-

sitivity and |∂ρe/∂T | then increase again with increasing temperature. However, this may

be considered infeasible as in operation the temperature should not exceed 750 K to avoid

thermal damage and power consumption should not exceed 3 mW.

Figure 5-7 shows the response of design 2. A similar response is predicted, albeit with

a higher maximum sensitivity and higher power consumption. Constant temperature lines
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Figure 5-7: Sensitivity response surface and constant temperature curves for design 2.

are associated with similar features in both response surfaces, e.g., the ridge of maximum

sensitivity at approximately 770 K and the trough at around 900 K, confirming the strong in-

fluence of the doping concentration on TSAFM sensitivity. Figure 5-7 shows that a higher

maximum sensitivity is predicted for design 2 than that of the Millipede design. How-

ever, this is offset by increased power consumption. Again, the goal of design 2 was to

explore the effect of quadrupling the surface area of the heater while preserving the room-

temperature electrical and solid state thermal resistances along the length of the cantilever.

Increasing the surface area increases the thermal conductance to the substrate and envi-

ronment by up to a factor of four in the region near the heater. For simplicity, consider

a 1D analysis of a heater region at a uniform temperature TH in thermal equilibrium with

the substrate and environment at TL and thermally insulated from the legs. The total heat
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transfer (or energy exchange) rate, q is proportional to the surface area

q = AKTH ,TL,g (TH − TL) (5.13)

where KTH ,TL,g is a proportionality term that lumps all the heat transfer terms and is a func-

tion of TH, TL, and g. The heat generation may be approximated as qgen ≈ V2/RT , where

V is the measured voltage and RT is the temperature-dependent electrical resistance of the

heater. Balancing the generation and the heat transfer (qgen = q), solving forV (V =
√

qRT

), and differentiating with respect to the gap, we obtain an expression for the sensitivity:

∂V
∂g

=
∂

∂g

√
ART KTH ,TL,g (TH − TL) (5.14)

For this analysis, assume that the heating power can be adjusted such that ∂T/∂g = 0,

and therefore ∂RT/∂g . Comparing the two designs, with the surface area being the only

change, the change in the sensitivity will be bounded by the ratio

(
∂V1
∂g1

)
(
∂V2
∂g2

) =


√

A1RT
(
TH,1 − TL,1

) ∂
∂g1

√
KTH,1TL,1g1

g1



√

A2RT
(
TH,2 − TL,2

) ∂
∂g2

√
KTH,2TL,2g2

g2


(5.15)

This now provides insight into the behavior of the two designs. Figures 5-8 and 5-9

plot the sensitivity vs. heating power and temperature vs. power for a number of constant

gaps (10, 50, 100, 250, and 500 nm). The 2D log-log scales provide a more detailed and

quantitative view of the target operational region (heating power less than 3 mW). Within

this region the models predict slightly better performance from the Millipede design than

the design 2 at any given power level. So, although larger heaters may provide higher max-

imum sensitivity, the trade-off of increased power consumption may actually reduce the

sensitivity within the desired operational region. The thermal time constant may also be

affected adversely. From a design standpoint, the behavior of the sensitivity is dominated

by the temperature-dependent resistivity, which depends upon the doping type and concen-

tration used in the cantilever legs and heater. Further research could explore this parameter

in conjunction with geometries that may alter the electrical resistance.

107



10
0

10
1

10
1

10
2

10
3

10
4

10
5

Power (mW)

Se
ns

iti
vi

ty
 (µ

V
/n

m
)

Gap =    10 nm
Gap =    50 nm
Gap =   100 nm
Gap =   250 nm
Gap =   500 nm

200

300

400

500

600

700

800

900

1000

1100

1200

T
em

pe
ra

tu
re

 (
K

)

Figure 5-8: Plot of sensitivity and maximum temperature for selected air gap distances
over a range of cantilever heating powers for the Millipede design.

5.1.6 Summary and Conclusion of Preliminary Model

From this model, it becomes clear that the subcontinuum heat transfer can have a profound

impact on the sensitivity and operating conditions of the TSAFM and must be considered

in modeling and design. The one-dimensional subcontinuum models, DSMC and macro-

model, are in good agreement from free molecular to continuum limits, allowing the sim-

pler (and far more efficient) macromodel to be used in the analysis. Although this model

provides insight into these effects, 2D (or even 3D) models are needed to rigorously ac-

count for fringing regions neglected in this study. Furthermore, this simplified model does

not account for mechanical phenomena that may manifest in the operation of the TSAFM
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Figure 5-9: Plot of sensitivity and maximum temperature for selected air gap distances
over a range of cantilever heating powers for design 2.

and similar systems. The coupled OSIP-DSMC-BEM model presented in the next sections

will seek to do this.

5.2 Multiscale Modeling of a TSAFM Cantilever

Although simplified to function within the FDM framework, the model described in the

preceding section did include many of the factors affecting TSAFM operation such as:

Joule heating and non-uniform temperature distribution along the length of the cantilever.

The balance of this chapter presents the development of a coupling scheme for the OSIP-

DSMC and BEM models and its application to the multiscale modeling of the TSAFM.
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Figure 5-10: Coupling Scheme for multiscale modeling of a TSAFM cantilever

This model will include many of the effects that are neglected in the FDM model, but will

not be as exhaustive with regards to characterization of system operation or sensitivity.

The method developed here is may be applied to many thermally driven systems, but the

specific analysis geometry will be described at this point and referred in the course of the

development. The computational domain consists of a 2D cross of the TSAFM cantilever,

surrounding gas, and substrate as shown in Figure 5-11. The cantilever will be treated as

if part of a close packed array (with 10 µm spacing) to allow doubly symmetric boundary

conditions in the x-direction. The substrate will be maintained at 273 K and the analysis

domain is treated as an open system with an ambient pressure of 1-atm. and a reference

temperature of 273 K at some distant point. The dimensions of the TSAFM cantilever are

10 µm wide and 500 nm thick with a scan height (gap) of 500 nm and will be maintained

at 573 K.
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5.3 Coupling Scheme

The OSIP-DSMC and BEM are efficient numerical techniques for modeling at the appro-

priate length scales. This efficiency is relative, however, as the OSIP-DSMC requires a

computational effort many orders of magnitude greater than does the BEM. As such, it

should ideally be used as sparingly as possible, while still providing the desired accuracy.

The proposed method for coupling these, and thus reducing the expense associated with

the subcontinuum modeling, is the Alternating Schwarz coupling. As previously discussed,

this method requires an overlapping boundary, as shown in Figure 5-10. The size and lo-

cation of this region must be determined based on both computational expense and the

appropriateness of the different models to various locations within the flow. Furthermore,

particles must be allowed escape and new particles generated at the open boundary at the

top of the domain. The consensus in the literature is that the Chapman-Enskog distribution

(seeSection 2.2.2) should be used for the generation of particles at a coupled boundary,

rather than the simpler Maxwellian [17, 45, 111, 112]. As this method will be used in this

thesis, and plays a rôle in determining the coupling region, the following brief description

of the acceptance-rejection scheme, as proposed by Garcia [37], is included.

1. Given τi j and qi, find B ≡ max
(
‖τ?i j‖, ‖q?i ‖

)
, where t?i j and q?i are the dimensionless

viscous shear tensor and heat flux vector, respectively.

q?i = − κ
P

(
2m
kT

)1/2 dT
dxi

(5.16)

τ?i j =
µ

P

(
∂vi

∂x j
+
∂v j

∂xi
− 2

3
∂vk

∂xk

)
(5.17)

2. Set amplitude parameter A = 1 + 30B.

3. Draw Ctry from the Maxwell-Boltzmann Distribution f0 (C), i.e. Ctry,i = Rn/
√

2,

where Rn is a normally distributed random variable with mean zero and unity stan-

dard deviation.
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Figure 5-11: 2D TSAFM analysis domain

4. Accept Ctry if ARu ≤ Γ
(
Ctry

)
, where Ru is a uniform variate in [0, 1) and

Γ (C) = 1 +
(
qxCx + qyCy + qzCz

) (2
5

C2 − 1
)

−2
(
τxyCxCy + τCxCz + τyzCyCz

)

−τxx

(
C2

x −C2
z

)
− τyy

(
C2

y −C2
z

)
(5.18)

else go to step 3.

5. Generated particle velocity is c = (2kBT/m)1/2 Ctry +v, where v is the stream velocity.

Particles will be generated in the reservoir cells (see Figure 5-10) and the number of

particles generated will be determined from the current density of that region of the analysis

domain. For the problem at hand, it may be safely assumed (and later shown) that the heat

flux is the dominant factor in generating particles.
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The breakdown of the Chapman-Enskog distribution may be as quantified by the break-

down parameter B which has just defined in terms of the dimensionless heat flux and

shear stress. It is recommended that for the Chapman-Enskog distribution to be valid that

B < 0.1. Thus for a thermally driven system, the degree of breakdown may be expressed

solely in terms of the dimensionless heat flux:

B = |q?i | =
∣∣∣∣∣∣∣
qi

P

(
2m
kT

)1/2
∣∣∣∣∣∣∣ (5.19)

and the coupling should be performed in a region which satisfies this criteria with respect

to the breakdown parameter contours as shown in Figure 5-12(a). Figure 5-12(b) presents

the temperature contours from the continuum BEM simulation of the TSAFM geometry

and Figure 5-13 plots the breakdown parameter for this same simulation (for a region of

space 10 µm × 5 µm) and a proposed coupling region removed from regions where the

breakdown parameter is high. A further limitation of the coupling may come from the

assumption that the flow is stationary, as required by the BEM for diffusive rather than

advective heat transfer

From preliminary simulations, it appears that the region shown here is reasonable for

coupling. This region begins 3.8 µm above the lower bound of the simulation and extends

for 1 µm spanning the entire width of the analysis domain. At this time the coupling is kept

simple and no attempts have been made to “fit” the coupling region to the contours of the

breakdown parameter. A few additional cells are needed beyond the upper bound of the

coupling region for the reservoir and buffer cells.

Now that the coupling method and region have been identified the coupled simulation

will proceed as follows:

1. Perform continuum (BEM) simulation for the entire analysis domain to obtain break

down parameter, initial temperature profile, and heat flux

2. Assuming a pressure equilibrium with the environment and that the density may be

described by the ideal gas law ρ = P/RT , initialize the subcontinuum domain, setting
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5-12(a): BEM solution for the breakdown parameter B for the TSAFM
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Figure 5-12: Coupling preliminaries

cell temperatures, densities, and generating appropriate particles (Maxwellian may

be used here)
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Figure 5-13: Break down parameter contours and proposed coupling region for multiscale
TSAFM simulation

3. Perform N iterations of the OSIP-DSMC, using the temperature and heat flux solu-

tion from the continuum solution at the location of the reservoir cells to generate new

particles. Particles leaving the subcontinuum region are removed from the simula-

tion. At this time, N = 1200 timesteps which corresponds to 100 sample steps

4. Assign boundary conditions and the heat transfer coefficient for the continuum model

using the current sampled temperature from OSIP-DSMC at the bottom edge of the

coupled region

5. Perform the BEM simulation and post process to obtain new temperature and heat

flux distributions for the reservoir cells

6. Repeat steps 3–5 until a sufficient number of time steps such that the OSIP-DSMC

domain may be assumed to have reached stead state. Begin time ensemble sampling

of OSIP-DSMC and continue repeating steps 3–5
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7. Monitor convergence of BEM solutions and OSIP-IP, until acceptably converged

Despite the smoother results of the OSIP-DSMC, the method will still exhibit some fluctu-

ations, so the convergence should have a reasonable tolerance.

The OSIP-DSMC domain for the TSAFM is subdivided into 10,000 computational

cells (100×100) with an average of 100 particles per cell, for an initial population of

1,000,000 simulation molecules. The simulation was executed in parallel on an dual pro-

cessor ATHLON MP 1900. The total execution time was approximately 70 hours and

required over 700 MB of memory. Sampling of thte DSMC and OSIP-DSMC quantities

began after 24000 time steps, corresponding to 0.14 µs of simulated time. The simulation

proceeded for an additional 7900 sample steps, for a total of 118800 time steps (0.688 µs),

at which time the simulation was considered converged and stopped. The runtime state has

been saved allowing the simulation to be restarted at a later time if desired.

During the simulation, the convergence was monitored by 1. observing the OSIP-

DSMC velocity field (to be compatible with the stationary flow assumption of the BEM),

2. comparing the BEM temperature distributions within the coupled domain with succes-

sive BEM solutions (every 100 OSIP-DSMC sample steps) and with the OSIP-DSMC solu-

tion, and 3. observing the convergence of the heat flux. Additionally the pressure acting on

the TSAFM cantilever was monitored to identify the presence of Knudsen forces. The sim-

ulated velocity distributions for the OSIP-DSMC and DSMC are plotted in Figure 5-18.

A thermally driven recirculatory flow can be observed near the edge of the beam (see

Figure 5-19 for a detailed view) with a maximum velocity of 1.12 m/s. The maximum ve-

locity within the coupling region is is 0.2173 m/s with an average magnitude of 0.1289 m/s.

Although not stationary, the advective heat transfer will be small in comparison to the total

heat transfer.

Figure 5-14 present the convergence of the BEM solutions. This compares the aver-

age and the maximum magnitude of the difference between the temperature field between

successive BEM simulations. As can be seen, these converge very quickly after sampling
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Figure 5-14: Convergence of BEM Temperature Solutions

has begun. Prior to the start of sampling, the boundary conditions applied to the BEM will

fluctuate with the variations in the OSIP-DSMC, whereas after sampling has begun these

quickly settle down.

The convergence of the temperature distribution within the coupling region, comparing

the BEM and the OSIP-DSMC temperatures, is perhaps the key measure of convergence.

The the compatibility of these solutions guarantees that both the models have reached the

same solution within the overlap. Figure 5-15 the “Average |∆T |,” or the average of the

absolute value of the error between the two solutions over the 2000 cells in the coupling

region, as well as the minimum and maximum observed errors at each time step. Again

there are fluctuations prior to sampling, but this settles quickly, to a roughly steady average

error of 1 K. Compared to the magnitude of the temperatures within this region, these

differences are quite small (less than 1% error). Future simulations should be careful to
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Figure 5-15: Convergence of Temperature Coupling Error

observe the behavior of the BEM as a macroscale model, as some of these discrepancies

may be due to the assumptions of a stationary flow (purely diffusive heat transfer) and a

constant heat transfer coefficient. Throughout the simulation the temperature distribution

has evolved and the coupling scheme has resulted in consistently good agreement between

the two models. The change in the temperature distribution is most clear in the comparison

of the initial (continuum) solution, with the OSIP-DSMC temperature distribution at the

final iteration as presented in Figures 5-16(a) and 5-16(b).

Figure 5-17 plots the convergence of the heat flux and Knudsen force. The heat flux is

of immediate interest to the performance of the TSAFM, as well as a test for convergence.

After the start of sampling the heat flux converges very quickly to nearly constant values.

This rapid convergence would seem to indicate that shorter simulations could be used if

the heat flux were the primary interest—as in a sensitivity analysis. The total heat flux per
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Figure 5-16: Comparison of the initial and final temperature distributions for the coupled
TSAFM simulation

unit length of the beam predicted by the OSIP-DSMC model is 84.46 W/m, as shown in

Table 5-2. This is comparable to the DSMC flux prediction, although additional samples

would be needed to have greater confidence in the DSMC value. The third column presents

the continuum solution from the BEM solver for the current geometry (this uses the heat
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Figure 5-17: Convergence of Flux and Knudsen Force

transfer coefficient, k, defined in Eq. (5.4)). The method used to develop the macromodel

presented in Section 5.1.3.2 may be used to modify this solution by removing the contribu-

tion from the 1D continuum heat transfer immediately beneath the beam (q′c = kw/g) and

replacing it with the subcontinuum heat transfer, q′ = ke f f w/g. The results of this modi-

fication are shown in column 4. The contributions from the top and sides are comparable,

but there is a significant discrepancy between the subcontinuum contributions, resulting in

a 22% greater total heat flux. Reexamining the macromodel, the cause of this has been

found. Whereas the continuum heat transfer coeffient depends only on the intrinsic gas

properties and the temperature, the subcontinuum heat transfer coefficient also depends on

density. The 1D DSMC simulations used in the development of the preliminary model

treat the domain as a sealed volume, bounded by infinitely large parallel surfaces. The
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Table 5-2: TSAFM Heat Flux Comparison

Coupled Coupled
OSIP-DSMC DSMC Macro Model Macro Model

Solver Solver Continuum (273) (423)
Bottom (W/m) 68.43 72.92 123.15 81.73 69.34

Top (W/m) 10.83 11.67 10.25
22.16 22.16

Side (W/m) 5.20 5.58 8.51
Total (W/m) 84.46 90.17 141.91 103.84 91.56
% Difference — 6.62 67.23 22.37 7.90

simulations were then initialized with a density of 1.78 kg/m3, corresponding to Argon at 1

atm. and 273 K. As the simulations progressed, the simulated gas responded to the applied

thermal loads—but the average denity of the system remained the same. For the sealed

1D systems this is appropriate. The development of the macromodel remained consistent

with this assumption and a constant density of 1.78 kg/m3 was specified. Recognizing now

that a 2D simulation, as well as real systems, are not sealed, it would seem appropriate

to make the density a function of the ambient pressure and the probable temperature in

the subcontinuum region. The density corresponding to these conditions, (1 atm. and the

average temperature, 423 K) is 1.15 kg/m3, and the resulting heat flux for the system is

91.56 W/m—a significantly better approximation. With this change, it appears that the

macromodel should be able to provide rapid assessment of the heat transfer characteristics

of a TSAFM cantilever with considerable accuracy.

The Knudsen force is an interesting subcontinuum effect related to thermal transpi-

ration, and thermal creep. The Knudsen force manifests when a heated object is in close

proximity (relative to the mean free path) to a cool surface. Recently a number of researches

have taken an interest in the phenomenon as it can effect AFM systems, altering their op-

eration [85, 86, 59]. Experiments done by Passian et al. have shown that the Knusen force,

like many such effects has maximum effect in the transition regime. The current simula-

tion models a device operating in the transition regime, and predicts that a Knudsen force,
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resulting from a static pressure differential of approximately 200 Pa will be present (see

Figure 5-17). The distribution of this pressure differential can be observed in Figure 5-21.

The pressure distributions of the OSIP-DSMC and DSMC do not match (although both

predict a Knudsen Force, but the current DSMC quantities predict a much higher value of

nearly 1 kPa). The DSMC results seems to indicate the presence of a pressure gradient

under the beam, such that the pressure is highest at the bottom surface of the beam and

decreases closer to the underlying surface. In the authors experience, obtaining smooth

results for pressure from the DSMC often requires large number of samples, but should

be undertaken in the future in order to validate the OSIP-DSMC results. The effect of

this Knudsen force predicted by the OSIP-DSMC would be a 2 milli-Newton/m distributed

load. If we assume that the TSAFM behaves as an ideal cantilever and that the pressure

differntial is uniform under the entire length of the beam, then the total displacement may

be calculated as:

y =
KFwL4

8EI
(5.20)

where KF is the Knudsen force (or pressure differential), w = 10 µm is the width of the

beam, L is the length, E is Youngs modulus, and I is the moment of inertia (for a rectangular

cross section I = wh3/12 where h is the beam thickness. Assuming that E = 165 GPa and

the length L = 150 µm, the total deflection would be on the order of 3.5 nm—a deflection

that could adversely affect the resolution of a TSAFM system. Furthermore, smaller (or

perhaps larger) scan heights may induce stronger Knudsen Force effects.

The shear stress distribution (seeFigure 5-22) is again plotted as equivalent Von Mises

stresses. Four features are particularly noteworthy in observing the OSIP-DSMC and

DSMC shear stress results: 1. both models have a similar distribution of shear stresses

near the edge of the beam, which result from the thermally driven flow; 2. the magnitude of

these shear stresses is considerably different, probably indicating the inadequate number of

samples for the DSMC; 3. there are regions of elevated shear stresses adjacent to the sur-

face of the beam in both models, but the magnitude is again higher in the DSMC simulation
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results; and 4. most of the domain, particularly the coupling region, is characterized by low

shear stresses, supporting the assumption that the breakdown parameter for this problem

should be the dimensionless heat flux.

5.4 Summary

Two models for simulating the behavior of the TSAFM have been developed in this chapter:

a simplified model capable of rapid assessments for evaluating overall system performance

and sensitivity, and a detailed multiscale 2D simulation coupling the BEM and the OSIP-

DSMC. After recognizing and correcting the faulty assumption in the treatment of the

density in the 1D model, the two models agree quite well in terms of total heat transfer

from the TSAFM to the surface and environment. The detailed model provides great insight

to the effects of thermal stresses on the gas flow, inducing a thermal driven flow near the

edge of the beam and a pressure differential between the gap beneath the beam and the

exterior, resulting in a net pressure difference of approximately 200 Pa. This give rise to

what is known as the Knudsen force effect, and calculations here have shown that they are

substantial enough to adversely affect TSAFM operation. The next chapter will present

additional exploration of the Knudsen force as well other novel thermally driven flows.
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5-18(a): OSIP-DSMC

5-18(b): DSMC

Figure 5-18: TSAFM Velocity Distribution
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Figure 5-19: Detail of OSIP-DSMC Velocity Distribution near beam edge
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5-20(a): OSIP-DSMC

5-20(b): DSMC

Figure 5-20: TSAFM Heat Flux
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5-21(a): OSIP-DSMC

5-21(b): DSMC

Figure 5-21: TSAFM Pressure Distribution
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5-22(a): OSIP-DSMC

5-22(b): DSMC

Figure 5-22: TSAFM Shear Distribution
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CHAPTER VI

ADDITIONAL THERMALLY DRIVEN FLOWS

The Octant Splitting Information DSMC is an exciting tool for exploring thermally driven

flows. Many flows that are of interest for theoretical and practical reasons have been diffi-

cult to model. This chapter will briefly introduce a number of additional thermally driven

flows that may be studied with the OSIP-DSMC.

6.1 Knudsen Force

The following is a preliminary effort to study the Knudsen force without requiring large

coupled simulations, as used in the previous chapter. An improved understanding of the

mechanism and the magnitude of this phenomenon as a function of beam geometry, tem-

perature, and pressure would be of use to researchers in the fields of MEMS and NEMS as

well as the various scanning probe microscopy techniques. In order to simplify the anal-

ysis, a sealed rectangular region will be used, in this case 5 µm × 2.0 µm. The left hand

side will be treated as symmetric, with 0.25 µm thick beam extending 3 µm into the domain

from this side. In this simulation the beam is suspended 250 nm above the lower bound,

leaving 1.5 µm above and 2.0 µm on the side. Although is is possible that Knudsen force

effects develop on the top and bottom of the beam, this simplified model may still provide

considerable insight.

The boundaries are maintained at 273 K and a small temperature difference of 30 K is

applied to the beam. Four different initial pressures are used: 0.25, 0.5, 1, and 2 atm. each

initialized using the continuum temperature distribution and the ideal gas law. Figure 6-1

presents the IP pressure and velocity distributions for the 1 atm simulation. The pressure

difference is clearly discernable, with region immediately beneath the beam at the highest
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Figure 6-1: Knudsen force simulation pressure and velocity distributions

pressure. The lowest pressure occurs just past the end of the beam near the lower bound of

the domain. The pressure above the beam is higher than that in the remaining space to the

right of the beam, indicating the upper region is also experiencing a Knudsen force affect.

The velocity distribution again predicts an impinging flow on the edge of the beam that

recirculates above and below the beam, with the highest velocities immediately below the

end of the beam.

Table 6-1 presents the results from these four simulations. It is surprising to find that

the predicted Knudsen forces are of nearly the same magnitude. The reason for this—and

whether this is entirely physical—needs to be determined. However, it may be useful to

compare these results to the measurements reported by Passian, et al. [84]. In their work

a microscale cantilever beam (see Figure 6-2) is fabricated and illuminated by a laser to

produce a temperature rise. The deflection of the beam may be monitored via capacitance

measurements. The beam is then placed in a vacuum chamber that may be filled with

different species of gas at different pressures. For comparison, their results for Argon may

be extracted, as shown in Figure 6-3. These results and those of the current simulations
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Figure 6-2: “Crookes Cantilever used in Knudsen Force study by Passian et al. [84]
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Figure 6-3: Experimental data of Knudsen force for the “Crookes” cantilever [84]
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may be non-dimensionalized as the pressure ratio χ

χ =
Pb

Pt
=

KF + P
P

(6.1)

and plotted with respect to the corresponding Knudsen number at each point. Comparing

these reveals that both follow a similar trend of increasing pressure ratio with increasing

Knudsen number, but the current simulation predicts much higher pressure ratios. This

may be due in part to the dissimilar geometries used, or may indicate unresolved issues

in the simulation technique. In any case, further studies will be performed, perhaps using

geometries that are compatible with such experiments.

Table 6-1: Summary of 5 µm × 2 µm Knudsen force simulations

Initial Pressure Pressure on Pressure Knudsen Force
Initial Pressure Bottom (Pa) on Top (Pa) (Pa)

0.25 atm 25368 25278 90.0
0.5 atm 50696 50600 96
1 atm 101361 101261 100
2 atm 202820 202712 108

As an additional observation, the velocity distribution in each of these simulations be-

haved much as in the TSAFM simulation, with a thermally driven current impinging on the

edge of the beam. Due to the closed system a recirculatory flow develops above and below

the edge of the beam in each of simulation. Future work will include additional Knudsen

force simulations consisting of similar closed geometries. The parameters of beam width,

gap, temperature, and initial pressure will be varied to map out the effect of the Knudsen

Force

6.2 Crookes Radiometer

Perhaps the most familiar—and yet often misunderstood—effect of rarefied gas dynamics

is the Crookes Radiometer. The effect was first observed by Fresnel, and then studied
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Figure 6-4: Pressure ratio comparison of with Knudsen force experiments of Passian et
al..

extensively by Crookes, beginning in 1873 [61]. The familiar form of a radiometer consists

of a set of light-weight vanes mounted on a spindle and blackened on alternating sides.

These are located inside a partially evacuated space, such that the radially arranged vanes

are free to rotate and may be exposed to light. Under exposure to radiation, the vanes begin

to turn with the rotation in the direction of the light colored side of the vanes. For more than

50 years the cause of this behavior was debated, involving efforts by Maxwell, Knudsen,

and Einstein [61]. It turns out that although there are a number of effects that contribute

to this behavior, the dominant one is the same thermal creep effect that leads to thermal

transpiration and the Knudsen force. Basically, the gradient across the edges of the vane

from the hot (blackened) side the cold (white) side induces a creep flow from the cold to
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the hot side. As a result of the conservation of momentum, the vanes are pushed along,

opposite the movement of the gas—and thus the light side precedes the dark side.

Two recent papers have each explored the radiometric effect by experiments and nu-

merical simulations using the DSMC [62, 81]. The experiments in both studies identified

the Knudsen number range from Kn = 0.1–0.3 as the optimal operating range. Both stud-

ies then included DSMC simulations of simplified radiometer geometry. In the paper by

Ota, et al. a 300 K temperature difference is assigned to each 0.1 mm thick blade, where

as Lu implements a 600 K temperature difference! These unrealistically high tempera-

tures are needed to drive a flow of sufficient magnitude to be captured by the DSMC with a

reasonable computational expense. Although no data is given on the actual temperature dif-

ferences arising in the experiments, the results of both experiments are surprisingly similar,

despite very different geometries. The observed rotational rates in reported by Lu ranged

from 10 to 50 rads/s for the 20 mm vane system and from 20 to 70 rads/s for the 10 mm

system. Ota et al., report rotation rates for their 1 mm vane system for Argon between 15

and 18 rps and additionally the torque for a stationary radiometer is reported.

As a first step in applying the OSIP-DSMC to the problem of the radiometer, a single

microvane was modeled with a length of 0.8 µm within a sealed domain 2.04 microns by

1.6 microns and a temperature difference of 7 K (TC = 273 K, TH = 280 K). The pressure

was initialized at 5 kPa. Figure 6-5 presents results for this simulation after 3400 samples

showing the velocity and temperature distributions are superposed to accentuate the thermal

creep that drives the radiometric effect (seeFigure 6-5(a)). The maximum velocity is less

than 0.1 m/s, which, given the small temperature gradient is not surprising. The pressure

distribution in Figure 6-5(b) and exhibits a pressure differential, albeit on the order of 4 Pa.

To obtain this resolution from the DSMC would require thousands of times more samples—

and months of computing time.

For a direct comparison with experimental results, a full model with four vanes, based

on the geometry reported in [62], using 20 mm long vanes is simulated (see Figure 6-6).
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6-5(a): Temperature and Velocity

6-5(b): Pressure Distribution

Figure 6-5: Results for a single vane Crookes Radiometer
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The working gas is Argon at an initial pressure of 0.2 Pa and uniform temperature of 273 K.

A 7 K temperature difference is applied to the alternate faces of the radiometer. The ve-

locity and temperature distribution for this simulation after 48000 time steps are presented

in Figure 6-7(a) and the pressure distribution in Figure 6-7(b). The maximum velocity is

0.117 m/s, which if the outer edge of the vanes were moving at that speed would be a rota-

tional rate of 0.7 rotations per second, or 4.68 rads/s. This is an order of magnitude lower

than the experimental results, and requires the assumption that the vanes would move at the

same speed as the maximum observed velocity. However, the true temperature difference

in the experimental system is unknown. It would be very useful to instrument a radiome-

ter vane such that the actual temperature difference could be obtained and used in future

simulations.

However, allowing the simulation to continue reveals that there may be additional prob-

lems with the OSIP-DSMC. The results from the cited papers tend exhibit velocity fields

that have maximum values near the extreme ends of the vanes. An addition simulation was

performed using a larger 100 K temperature difference and allowed to run for 240000 time

steps, accumulating 18000 samples. (Note, that the orientation of the hot and cold sides

has been reverse.) At this larger temperature difference and number of samples, the DSMC

flow field is recognizable and corresponds well with those reported in the cited works.

The OSIP-DSMC exhibited a very different distribution, with the flow occurring princi-

pally near the axis—at the interior edge of the vanes (see Figure 6-8). The flow around the

extreme edges is quite small. Furthermore the pressure difference, which was present at

earlier stages in the simulation has reversed—with a lower pressure on the hot side of the

vanes. It appears that, as was the case with the Split Box problem, that the radiometer has

uncovered another aspect of the method that may be improved. This will be addressed in

future work. One possible explanation may be that the heat flux vector may not be the ideal

choice for determining the local coordinate system.
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Figure 6-6: Schematic diagram of radiometer simulation domain

6.3 Temperature Discontinuity: Thermal Cavity

As a final exercise, consider a variation on the Split Box that consists of a closed square

region. The temperature on three of the sides are equal (in this case Tc = 200 K) and

the fourth has a temperature twice a great. The simulation was performed for two initial

pressures: 1 atm. and 0.1 atm. The geometry is 1 µm × 1 µm with the hot wall being on

the left side. Only the lower half of the system is modeled using a 40 × 20 array of cells.

The velocity distributions are presented in Figure 6-9. The DSMC velocity for the 1 atm.

simulation (see Figure 6-9(a)) is beginning to exhibit a flow pattern after 12600 samples,

while the OSIP-DSMC has already full developed. For the case of 0.1 atm. no organized

flow was apparent in the DSMC.

6.4 Summary

Although these were only briefly discussed at this point, these problems illustrate a variety

of thermally driven flows and demonstrate the difficulties involved in using the conventional
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6-7(a): Velocity and Temperature Distributions

6-7(b): Pressure Distribution

Figure 6-7: Radiometer Simulation with 20 mm vanes and 7 K temperature difference
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6-8(a): DSMC velocity distribution

6-8(b): OSIP-DSMC velocity distribution

Figure 6-8: Radiometer simulation with 100 K temperature difference
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6-9(a): DSMC Velocity 1 atm

6-9(b): OSIP-DSMC Velocity 1 atm

Figure 6-9: Comparison of Velocity Fields for Thermal Cavities (1 µm × 1 µm, T1 = 400 K
and T2 = 200 K)
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Figure 6-10: Velocity Fields for Thermal Cavities (1 µm × 1 µm, T1 = 400 K and T2 =

200 K, 0.1 atm.)

DSMC, as well as some weaknesses that will need to be addressed in the OSIP-DSMC.

The OSIP-DSMC remains a significant advancement in the modeling of rarefied gases, as

it efficiently models many low-speed flows while retaining certain flow characteristics lost

by other methods.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

The continued progression toward the development of increasingly smaller micro- and

nanoscale systems requires accurate and efficient modeling techniques. This is compli-

cated by the effect of scaling, as physical phenomena may manifest differently or with

different importance at various length scales. The kinetic theory of gas dynamics is use-

ful in describing the behavior of rarefied flows, as may be present in macroscale flows at

low pressures and micro- and nanoscale flows at moderate pressures. However, numerical

methods, such as the DSMC, that are suitable for modeling general rarefied flow condi-

tions and geometries tend to be computationally intensive. The main objective of this study

was to develop efficient numerical modeling techniques for thermally driven rarefied gas

phase flows. Initially the intended focus was to implement existing methods, as reported in

the literature, and explore coupling techniques to develop suitable multiscale methods for

thermally driven flows.

The IP-DSMC was an attractive method for modeling subcontinuum flows, as it greatly

reduces the statistical scatter that complicates DSMC modeling of low-speed flows. How-

ever, upon implementing the method, it became apparent that it was inadequate for the de-

sired goals of this research. The focus of this study shifted to enhancing the IP-DSMC and

has resulted in the formal derivation of the Octant Splitting IP-DSMC. The prior state-of-

the-art Flux Splitting IP-DSMC method of Sun and Boyd [101] provided a formal basis for

the treatment of fluxal transport, or correlation coefficients. Information Preserving DSMC

methods seek to reduce statistical scatter by preserving macroscopic quantities associated
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with the underlying behavior of the real gas, particularly velocity components and temper-

ature. As such, the preserved velocities tend to be smoothed, with much of the random

kinetic energy converted to preserved thermal energy. Velocity modalities, as may arise

in many non-equilibrium flows, are thus destroyed by the method, although temperature

modalities may remain. The Flux Splitting correlation coefficients do capture the effect of

the thermal energy on the normal components of momentum (as a pressure effect), but are

incapable of extracting shear components. Thus information regarding shear components

of momentum in a modal system tend to be converted to thermal energy and are lost with

regards to momentum transport.

The Octant Splitting Method provides a means of recapturing normal and shear compo-

nents of momentum from a non-equilibrium flow. Furthermore, with the correct choice of

natural coordinates, it appears to be an accurate and efficient method suitable for modeling

general geometries and flows. The theoretical basis of the method is enhanced by the fact

that it degenerates gracefully to recover lower order Quadrant Splitting, Flux Splitting, and

Local Thermal Equilibrium methods, either by choice of the analyst or naturally in response

to the current flow conditions. This allows the method to operate seamlessly over a wide

range of flow conditions, equilibrium and non-equilibrium. The method has been applied

to a number of non-equilibrium thermally driven flows, including: thermal transpiration,

thermal discontinuities, Knudsen force cantilever, and the Crookes radiometer.

Preliminary studies early in this research led to the development of a kinetic theory

based macromodel. This model was applied to the TSAFM system and used to map out the

operational space of two TSAFM designs. This work confirmed the suspicion that subcon-

tinuum heat transfer significant affects on the behavior of TSAFM systems, and should be

included in future design and analysis efforts. Once the OSIP-DSMC was complete, a cou-

pled BEM/OSIP-DSMC model of a 2D TSAFM cantilever cross section was constructed

using the Alternating Schwarz coupling method. The results of this simulation provide in-

sight into the magnitude of the Knudsen force effect on the TSAFM system and uncovered
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a flaw in the macromodel that was readily fixed. This correction allows the macromodel to

provide a very good approximation of the total heat transfer, without the expense of the full

2D coupled simulation.

7.2 Impact

The investigation of efficient numerical methods has led to a number of significant contri-

butions which include:

• First and foremost, the careful derivation and implementation of the Octant Splitting

IP-DSMC is the most significant contribution. This method enables the simulating a

variety of flow conditions, but most notably low-speed thermally driven flows

• The derivation of improved theory-based sampling techniques for the stress tensor

and heat flux that are consistent with the kinetic theory and the numerical method to

provide a full set of preserved macroscopic quantities.

• The development of an efficient macromodel that is valid over the entire Knudsen

range describing the heat transfer from a heated cantilever to a surface and the sur-

rounding atmosphere.

• The development of a multiscale simulation technique coupling the new OSIP-DSMC

and a BEM solver, which appears to be the first use of the BEM in a multiscale rar-

efied gas simulation technique.

• An investigation of TSAFM operation including: system and sensitivity character-

ization that accounts for subcontinuum heat transfer and a detailed 2D multiscale

model based on the OSIP-DSMC that provides insight into the effect of the thermal

flows induced by the TSAFM operation
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7.3 Recommendations for Future Work

The work in the present study should be extended through additional research to address a

number of limitations and to explore further enhancements and applications:

• A careful study of all aspects of the OSIP-DSMC method should be undertaken to

identify formal criteria for aspects that remain ad hoc including: the collision model,

weighting of correlation coefficients, and treatment of boundary conditions in the IP

updates

• The OSIP-DSMC should be extended to include other gas species and mixtures.

Currently the OSIP-DSMC has only been used to model Argon, although it should

be extensible to other gas species and even mixtures

• Additional simulations should be performed to further validate the method, in par-

ticular to identify the cause of the non-physical behavior observed in the radiometer

simulations

• A thorough study of the Knudsen force should be performed, evaluating the effects

of ambient pressure, temperature difference, beam geometry, and gap height. This

will be of use to a large number of researchers involved MEMS and Scanning Probe

Microscopy technologies.

• As a practical measure, the GT-DSMC code base should be updated to include the

ability to use non-uniform, non-structured meshes, as this would allow greater flexi-

bility in modeling

• The issues affecting stability should be explored mathematically and practically to

provide guidelines and stability criteria for the method, and perhaps further improve-

ments
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