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SUMMARY

My doctoral research dissertation focuses on two aspects of functional data

analysis (FDA):

• FDA under spatial interdependence (Chapters 1 and 2)

• FDA for multi-level data (Chapters 3 and 4)

Functional data analysis (FDA) is a branch of statistics that offers exploratory

and inferential methodology for random functions varying over a continuum. The

continuum is often time, but may also be spatial location, wavelength, probability

among others. In functional data analysis, data are discrete observations sampled

from the random functions. The field of functional data analysis has already provided

a series of competitive approaches, but they are generally limited to the assumption

of independence between functionals. This assumption is rather restrictive in many

research fields such as biological sciences (e.g. fMRI, microarray), climatology science

(e.g. rainfall measurements across different stations), industrial engineering (e.g.

performance analysis of spatially-distributed enterprises), public health (e.g. disease

outbreak monitoring), and many others. The first part of my dissertation (Chapter 1

and Chapter 2) focuses on developing modelling and inference procedure for functional

data under spatial dependence. The methodology introduced in this part is motivated

by a research study on inequities in accessibility to financial services.

In the first chapter, I present a novel model-based method for clustering random

time curves or functions which are spatially interdependent. A cluster consists of

time functions which are similar in shape. The time functions are decomposed into

spatial global and time-dependent cluster effects using a semi-parametric model. We

also assume that the clustering membership is a realization from a Markov random
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field. Under these model assumptions, we borrow information across curves from

nearby locations resulting in enhanced estimation accuracy of the cluster effects and

of the cluster membership. In a simulation study, we assess the estimation accuracy

of our clustering algorithm under a series of settings: small number of time points,

high noise level and varying dependence structures. Over all simulation settings,

the spatial-functional clustering method outperfoms existing model-based clustering

methods. In the case study presented in this chapter, we focus on estimates and

classifies service accessibility patterns varying over a large geographic area (California

and Georgia) and over a period of 15 years. The focus of this study is on financial

services but it generally applies to any other service operation.

Chapter 2 introduces an association analysis of space-time varying processes,

which is rigorous, computational feasible and implementable with standard software.

We introduce general measures to model different aspects of the temporal and spa-

tial association between processes varying in space and time. Using a nonparametric

spatiotemporal model, we show that the proposed association estimators are asymp-

totically unbiased and consistent. We complement the point association estimates

with simultaneous confidence bands to assess the uncertainty in the point estimates.

In a simulation study, we evaluate the accuracy of the association estimates with

respect to the sample size as well as the coverage of the confidence bands. In the

case study in this chapter, we investigate the association between service accessibil-

ity and income level. The primary objective of this association analysis is to assess

whether there are significant changes in the income-driven equity of financial service

accessibility over time and to identify potential under-served markets.

In the second part of the thesis (Chapters 3 and 4), I discuss novel statistical

methodology for analyzing multilevel functional data including a clustering method

based on a functional ANOVA model and a spatio-temporal model for functional data

with a nested hierarchical structure.
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In Chapter 3, I introduce and compare a series of clustering approaches for mul-

tilevel functional data. For brevity, I present the clustering methods for two-level

data: multiple samples of random functions, each sample corresponding to a case and

each random function within a sample/case corresponding to a measurement type. A

cluster consists of cases which have similar within-case means (level-1 clustering) or

similar between-case means (level-2 clustering). Our primary focus is to evaluate a

model-based clustering to more straightforward hard clustering methods. The clus-

tering model is based on a multilevel functional principal component analysis. In a

simulation study, we assess the estimation accuracy of our clustering algorithm under

a series of settings: small vs. moderate number of time points, high noise level and

small number of measurement types. We demonstrate the applicability of the cluster-

ing analysis to a real data set consisting of time-varying sales for multiple products

sold by a large retailer in the U.S.

The last chapter briefly presents my ongoing research project on developing a

statistical model for estimating temporal and spatial associations of a series of time-

varying variables with an intrinsic nested hierarchical structure. This work has a

great potential in many real applications where the data are areal data collected from

different data sources and over geographic regions of different spatial resolution.
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CHAPTER I

CLUSTERING RANDOM CURVES UNDER SPATIAL

INTERDEPENDENCE

1.1 Introduction

Due to an increasing number of applications with a very large number of random

(time) functions, data reduction methods such as clustering play an important role

in Functional Data Analysis (FDA). The literature on functional data clustering is

divided into hard and model-based methods. Examples of hard clustering methods

are Hastie et al. (2000); Bar-Joseph et al. (2002); and Serban (2008). Examples of

model-based clustering are James and Sugar (2003); Fraley and Raftery (2002); and

Wakefield et al.(2002). Although there are many competitive approaches to clustering

functional data, they are generally limited to the assumption of independence between

curves. However, there are many case studies including our motivating application

where this assumption does not hold - the service accessibility functions are spatially

interdependent since each function corresponds to a census tract. It is important to

account for interdependence not only to enhance the estimation accuracy of the cluster

patterns and of the cluster membership by borrowing information across dependent

curves but also to allow estimation of the underlying dependence. Recent research

in clustering functional data has considered spatial interdependence in the cluster

membership (Blekas et al., 2007, Shi and Wang, 2008) or within-cluster dependence

(Booth et al., 2008).

In contrast to the existing approaches for clustering functional data under spatial

interdependence, the method introduced in this chapter models the spatial interde-

pendence in the joint distribution of the functional data and the cluster membership,
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and therefore, it allows for both within- and between-cluster interdependence. It is

important to assume both within- and between-spatial interdependence because the

spatial interdependence extends beyond the cluster membership. Moreover, the clus-

tering method is based on a semi-parametric model that allows estimation of both

global temporal-spatial effects as well as cluster effects. Lastly, we propose a compu-

tationally efficient method by employing a low-rank approximation to reduce the size

of the dependence matrix. Clustering is commonly used as a tool for summarizing a

large number (more than 1000) of functional profiles, and therefore, computational

efficiency is crucial in clustering spatially interdependent functional data since the

dependence matrix tends to be very large.

We cluster multiple time functions observed with error:

Yij = fsj
(tij) + σεεij, j = 1, . . . , S, (1)

where fsj
(t) is the time function corresponding to location sj and (t1,j, . . . , tT,j) are

the observed time points for this time function. Additionally, sj for j = 1, . . . , S

are spatial units from a d-dimensional spatial domain. In the model-based clustering

framework, the complete data are (Yj, Zj), j = 1, . . . , S where Yj = (Y1j, . . . , YTj)

and Zj’s are missing latent variables defining the cluster membership. We refer to

our modeling procedure as the Functional-Spatial Clustering Model (FSCM).

A first contribution of the clustering method in this chapter is decomposing the

time functions fsj
(t) for j = 1, . . . , S into global and cluster effects which summarize a

large number of spatially-dependent curves to meaningful summaries including spatial

trends and summary temporal patterns. The decomposition is

fsj
(t) = µ(t) + τ(sj) + µ0,j + µZ(sj)(t). (2)

The global temporal effect µ(t) is separable from the global-spatial effect τ(s) to

simplify the interpretation of the spatial-temporal global pattern. The cluster effects

are conditional on the cluster membership Zj = Z(sj), j = 1, . . . , S. The cluster
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trends are spatially-scaled deviations from the overall trend µ(t). The spatial-global

effect τ(s) accounts for spatial variations. The parameters µ0,j for j = 1, . . . , S are

curve-specific deviations from the spatial global pattern; µk(t), k = 1, . . . , C are time-

dependent cluster effects and we constrain their sum to be equal to zero -
∑C

k=1 µk(t) =

0. These offset parameters ensure clustering by shape regardless of scale. In Section

1.2.1, we expand on the spatial-functional clustering model.

The second contribution of this chapter is that our model assumes (Yj, Zj) for j =

1, . . . , S spatially correlated; that is, both the latent variables Zj, j = 1, . . . , S and the

conditional observations Yj|Zj, j = 1, . . . , S are spatially dependent, which further

specifies the spatial dependence structure for the joint data (Yj, Zj), j = 1, . . . , S.

Under the spatial dependence of the joint data, we borrow information across curves

corresponding to nearby locations yet maintaining local resolution. In Section 1.2.2,

we describe the distribution assumptions and provide insights into the computational

and estimation challenges under these assumptions.

The third contribution of this chapter is an estimation procedure which allows

clustering a large number of time functions (S large). There are two computational

challenges that we address in Section 1.3.

To assess the advantages and limitations of the spatial-functional clustering method,

we illustrate our methodology with simulated data (Section 3.6). In the simulation

study, we investigate a range of model scenarios with varying noise levels and spatial

correlation structures to compare the spatial-functional clustering introduced in this

chapter to existing model-based clustering methods.

One motivating application of our method in this chapter is to analyze the ac-

cessibility and the equitable distribution of financial services. Research in service

accessibility has emerged as economic and social equity advocates recognized that

where people live influences their opportunities for economic development, access to

quality healthcare, and political participation (Blackwell and Treuhaft, 2008; Frumkin

3



et al., 2004; Lee and Rubin, 2007; Morland et al., 2002). In this chapter, we leverage

new statistical methods for estimating and describing service accessibility trends that

can be used to inform about potential business opportunities as well as about the ex-

tent of service distribution inequities. Inequity in service accessibility results in site

configurations with significant concentrations of service sites in some geographic areas

(served markets) and virtually no service sites in others (unserved or under-served

markets), even though current and potential customers are present in both.

Many existing studies have analyzed the accessibility and the equitable distribu-

tion of various services but they are limited to small geographic areas such as towns

and only one year of data (Graves, 2003; Larson, 2003; Moore et al., 2006; Morland

et al., 2002; Small and McDermott, 2006; Talen, 2001; Talen and Anselin, 1998).

One primary challenge in analyzing service accessibility over a large geographic area

with inference at a high resolution level and a long period of time is estimation and

characterization of a large number of time-varying accessibility curves/functions. For

example, in this chapter we measure service accessibility in California and Georgia

at the census tract level over 15 years; this results in 7115 accessibility functions in

California and 1624 in Georgia. To prevail over this challenge, we propose using a

clustering method to reduce the information content of geographically and temporally

varying data to meaningful global spatial-temporal trends as well as summary local

temporal trends that reveal the prevalent changes in service accessibility in a given

geographic space. The focus of this study is on the distribution of financial services

but the service accessibility framework applies generally to other services both public

(e.g. education) and private (e.g. food stores).

1.2 Functional Spatial Clustering Model

In model-based clustering, the underlying assumption is that the complete data are

bivariate variables (Yj, Zj) for j = 1, . . . , S where Yj = {Yij}i=1,...,T are realizations

4



from a multivariate distribution with mean vector µj and covariance Σj, and the

cluster membership Zj is a latent variable (Fraley and Raftery, 2002). A common

estimation method for model-based clustering is the Estimation-Maximization algo-

rithm where at the Estimation step, we impute or predict the cluster membership

Z = (Z1, . . . , ZS) and at the Maximization step, we estimate the parameters specify-

ing the conditional distribution of Yj|Z, j = 1, . . . , S. Therefore, we need to specify

the conditional distribution Yj|Z, j = 1, . . . , S and the distribution of the latent vari-

able Z which in turn, specifies the distribution of the complete data. In the existing

approaches to model-based clustering, Yj|Z, j = 1, . . . , S are assumed conditionally

independent and the clustering membership Zj, j = 1, . . . , S are also assumed inde-

pendent. In this chapter, we relax these assumptions to spatial dependence. In Section

1.2.1, we introduce a functional model for the conditional distribution of Yj|Z, and in

Section 1.2.2, we describe a locally-dependent Markov model for the latent variable

Z = {Zj}j=1,...,S.

1.2.1 Functional Model for Conditional Distribution

Given the cluster membership {Z1 = z1, . . . , ZS = zS} with z1, . . . , zS ∈ {1, . . . , C}
(C is the number of clusters), we assume that Yij|Zj follows a multivariate distribution

with a functional representation

Yij|(Zj = k) = µ(ti) + τ(sj) + µ0,j + µk(ti) + σ2
εεij (3)

where µ(t) is the global mean, τ(s) is the smooth spatial variation, µ0,j is a curve-

specific offset parameter and µk(t) is the cluster trend. The errors are assumed

independent and identically distributed. In our estimation algorithm, we first estimate

µ(ti) and then estimate the other model components from the demeaned data, Yij −
µ(ti). Therefore, without loss of generality, we take µ(t) = 0.

The spatial dependence in our model comes from two sources: 1. The spatial
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level-shifts τ(sj), which account for global spatial variations regardless of the cluster-

ing membership; and 2. The cluster memberships Zi which are spatially dependent

- locations close together are more likely to be in the same cluster. We model the

temporal functionality in our data through the global effect µ(t), which is the over-

all time trend; and the cluster shape functions µk(t). In this chapter, we assume

that the classes of functions where µk(t) and τ(s) lie are (separable) Hilbert spaces,

µk(t) ∈ Hk, k = 1, . . . , C, and respectively, τ(s) ∈ HS. Following the functional

representation in a reproducing-kernel Hilbert space (Wahba, 1990), we decompose

the cluster patterns and the spatial trend according to

µk(t) =

p∑
ν=1

φT,ν(t)βk,ν +
T∑

i=1

KT (t, ti)uk,i and τ(s) =

q∑
ν=1

φS,ν(s)αν +
S∑

j=1

KS(s, sj)wj (4)

where the p basis functions {φT,1, . . . , φT,p} span Hk
0 and KT (t, ti) is the reproduc-

ing kernel for the space Hk
1 , and therefore, the Hilbert space Hk decomposes into

Hk = Hk
0 ⊕ Hk

1 with Hk
1 ⊥ Hk

0 . Similarly, we represent HS = HS
0 ⊕ HS

1 where

{φS,1, . . . , φS,q} span HS
0 and KS(s, si) is the reproducing kernel for HS

1 . Under this

model formulation, the estimation of the offset parameters µ0,j and of the functions

µk(t), k = 1, . . . , C and τ(s) is equivalent to solving a penalized least squares problem

1

S

1

T

T∑
i=1

S∑
j=1

‖Yij − τ(sj)− µ0,j − µk(ti)‖2 +
C∑

k=1

λk‖P⊥µk‖+ λS‖P⊥τs‖ (5)

where ‖P⊥µk‖ = ukKT u′k with KT = {KT (ti1 , ti2)}i1,i2=1,...,T penalizing the shape

of the kth cluster pattern and ‖P⊥τs‖ = wKSw′ with KS = {KS(si1 , si2)}i1,i2=1,...,S

penalizing the shape of the spatial global effect. λk is the smoothing parameter for

µk(t), which controls the trade-off between goodness-of-fit and the departure of the

estimate from the space Hk
0 . λs is the smoothing parameter for τ(s).

1.2.2 Markov Model for the Cluster Membership

We assume that the clustering configuration Z = (Z1 = Z(s1), . . . , ZS = Z(sS)) is a

realization of a locally-dependent Markov random field (MRF) which is a stochastic
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process with the Markov property. Under the Markov assumption, the probability

that the sith spatial unit belongs to kth cluster depends on the states of its nearest

neighbors where a state is defined by the cluster membership but it is conditionally

independent of any other spatial units. Following the current literature on MRF

modelling, we model the probability mass function P (Zj = zsj
) = p(zsj

) with Gibbs

distribution. This distribution originates from statistical physics where it is used to

model the states of atoms and molecules, and later on, was adopted by statisticians to

model Markov Random Fields. The probability mass function for Gibbs distribution

is defined as

p(zsj
= k) = πsj ,k =

1

Nsj
(ψ)

exp(Usj ,k(ψ)) (6)

where Usj ,k(ψ) =
∑

si∈∂sj
ψI(zsi

= k) is called the energy function. Large values

of Usj
(ψ) correspond to spatial patterns with large spatially connected sub-areas

belonging to the same cluster. Small values of Usj
(ψ) correspond to spatial patterns

that do not display any sort of spatial organization. Nsj
(ψ) is a normalizing constant

called the partition function and ∂sj is a prescribed neighborhood of the sjth spatial

unit for which we apply k−nearest neighbors to define the neighborhood structure.

The probability mass function depends on ψ called the interaction parameter. The

larger ψ is, the more extensive the spatial dependence of cluster membership Z is.

The value ψ = 0 corresponds to the uniform distribution on the configuration space.

One difficulty in this formulation is that the normalizing constant depends on

the scale parameter ψ. Because of this dependence, we do not have a closed form

expression for the likelihood function when ψ is a parameter. In the HMRF literature

(Besag, 1986, Archer and Titterington, 2002), this difficulty is overcome by assuming

local dependence on each spatial unit si, i.e., si only depends on its neighbors ∂si.

Thus the joint distribution of Z1, . . . , ZS can be approximated by a pseudo-likelihood
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function,

f(z1, . . . , zS) ≈
S∏

j=1

f(zsj
|z∂sj

; ψ). (7)

In addition to the difficulty of estimating ψ, computational challenges arise in recover-

ing the cluster membership Z1, . . . , ZS because of the spatial dependence between the

Yj|Z. To the best of our knowledge, in all relevant work, the Yj|Z are assumed con-

ditionally independent for computational feasibility although this is one of the most

contested assumptions (see Besag, 1986 and the following discussions; Archer and

Titterington 2002; and the references therein). Because we allow for a global-spatial

effect, our model relaxes this assumption to spatial dependence.

1.3 Computational Challenges

Following the functional model in (3) and the global and cluster effects decomposition

in (4), we rewrite the model in a vector-matrix form

Y |Z = Iµ0 + XT β + BT u + XSα + BSw + σ2
εε (8)

• Y is a vector consisting of all observations stacked in the following order Y =

(Y ′
1 , . . . , Y

′
S)′ = (Y11, . . . , YT1; Y12, . . . , YT2; . . . Y1S, . . . , YTS)′;

• µ0 = (µ0,1, . . . , µ0,S)′; and β = (β′1, . . . , β
′
K)′ with βk = (βk1, . . . , βkp)

′;

• u = (u′1, . . . , u
′
K)′ with uk = (uk,1, . . . , uk,T )′; α = (α1, . . . , αq)

′ and w =

(w1, . . . , wS)′.

The design matrices are I = (IS⊗1T ), XT = E⊗ΦT with ΦT = {φT,ν(ti)}i=1,...,T ;ν=1,...,p

for the cluster effects, and XS = ΦS ⊗ 1T , with ΦS = {φS,ν(sj)}j=1,...,S;ν=1,...,q for

the spatial-global trend. The kernel matrices are BT = E ⊗KT and BS = KS ⊗ 1T .

Moreover, E = {δ(zj = k)}j=1,...,S;k=1,...,C is an indicator matrix.

Under this model formulation, solving the penalized least squares problem in (5)

is equivalent to estimating the model parameters µ0, β, u and α by minimizing

1

S

1

T
‖Y − Iµ0 −XT β −BT u−XSα−BSw‖2 +

C∑

k=1

λku
′
kKT uk + λsw

′KSw (9)
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One computational challenge in fitting the functional model is that the estimation

algorithm involves operations with the kernel matrix KS which takes a large amount

of CPU time and memory storage. A second challenge is the selection of the smooth-

ing parameters λk, k = 1, . . . , C and λS. A common method for obtaining smoothing

parameters is by Generalized Cross Validation (GCV) (Wahba 1990). However, ap-

plying GCV to our model involves a high-dimensional optimization problem, which

is computational infeasible. We address these two computational challenges in this

section.

1.3.1 Low Rank Approximation of KS

In our model fitting, we need to perform linear algebra operations with a high-

dimensional full rank (S-by-S) kernel matrix KS which requires operations of compu-

tational complexity O(S3). To reduce the computational cost, we propose reducing

the dimensionality of the kernel matrix KS by a low-rank (S-by-J , J ¿ S) ap-

proximation K̃S. We minimize the penalized least squares problem in (9) using the

approximated K̃S instead of the full rank kernel matrix KS. The optimal choice of

K̃S will result in minimum possible smoothing perturbation.

There are several approaches for finding a low rank approximation K̃S. One

possibility is to define K̃S on a coarse grid with locations κ = (κ1, . . . , κJ) (known as

’knots’) superimposed on the domain of the original locations s = (s1, . . . , sS). The

resulting low-rank approximation of KS is K̃S = {KS(si, κj)}i=1,...,S;j=1,...,J . Another

alternative is using the empirical orthogonal functions (Wikle and Cressie, 1999).

In this chapter, we use the method by Wood (2003) where we define K̃S = KSUJ

and K̂S = (UJK̃S)′ where the columns of UJ are the J eigenvectors corresponding to

the largest J absolute eigenvalues from the eigen-decomposition of KS = UDU ′ where

D is a diagonal matrix of eigenvalues of KS and U is a matrix whose ith column is

the eigenvector corresponding to di,i, the ith diagonal element of D.
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Under low-rank approximation, the penalized least square problem becomes

1

S

1

T
‖Y − Iµ0 −XT β −BT u−XSα− B̃SwJ‖2 +

C∑

k=1

λku
′
kKT uk + λsw

′
JK̂SwJ (10)

where B̃S = K̃S ⊗ 1T and wJ is a vector of length J related to w by w = UJwJ .

Because of the low-rank approximation, we will obtain an approximated estimator

for the spatial effect τ(s). This approximated estimator is accurate when KSw−K̃SwJ

in the model fit and w′KSw−wJK̂SwJ in the penalty term ‖P⊥τs‖ are small. Wood

(2003) proved that constructing K̃S using the truncated eigenvectors minimizes the

change of the model fit and the shape of the smooth function simultaneously.

1.3.2 Smoothing Parameters

To obtain a solution of the penalized least squares problem in (9), we write the

proposed model in an equivalent mixed effects model (Ruppert, Wand and Carroll,

2003). We first re-scale our data and rewrite the model as

Y |Z = Xθ + Bb + ε (11)

where θ = (µ′0, β
′, α′)′ and b = (u′, w′

J)′. The design matrices are X =

[
I XT XS

]
,

and B =

[
BT B̃S

]
. Then the solution of minimizing the penalized likelihood (10)

is the solution of the system of linear equations

X ′Xθ + X ′Bb = X ′Y

B′Xθ + (B′B + V )b = B′Y

where V = diag(STλ1KT , . . . , STλCKT , STλsK̂S).

It follows that the spline smoothing model is equivalent to a linear mixed model.

If we apply Cholesky factorization, KT = HT H ′
T and K̂S = HSH ′

S, the model (11)

becomes

Y |Z = Xθ + Hγ + ε (12)
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where θ is a vector of fixed effects and γ is a vector of random effects and distributed

as N(0, Γ) with Γ = diag(σ2
1IT , . . . , σ2

CIT , σ2
sIJ) and the design matrix of the random

effects is H =

[
E ⊗HT H̃S ⊗ 1T

]
with H̃S = K̃S(H ′

S)−1. The solution to the above

penalized smoothing model is equivalent to solving a normal equation



X ′X X ′H

H ′X H ′H + σ2
εΓ

−1







θ

γ


 =




X ′Y

H ′Y




where the smoothing penalties are λk = σ2
ε

TSσ2
k

and λs = σ2
ε

TSσ2
s
.

1.4 Model Estimation and Selection

1.4.1 Estimation Algorithm

A modified EM algorithm is applied to estimate the model parameters

Θ = (µ0, β1, . . . , βC , α, σ2
ε , ψ) and predict the cluster membership by maximizing the

the complete likelihood,

L(Θ) = f(Y, γ, Z; µ0, θ, σ
2
ε , σ

2
s , σ

2
1, . . . , σ

2
C , ψ) =

f(Y |γ, Z; µ0, θ, σ
2
ε) · f(γ|Z; σ2

s , σ
2
1, . . . , σ

2
C) · f(z1, . . . , zS; ψ). (13)

where the joint likelihood f(z1, . . . , zS; ψ) is approximated by the psuedo-likehood 7.

The E-step of the EM algorithm consists of finding the conditional expectation

of (13) given the observed data Y and the current parameter estimates. The M-step

updates the parameters Θ by maximizing the expectation of the likelihood function

(13). The constraint on the cluster fixed effects (β1 + . . . + βC = 0) ensures identifia-

bility of the model parameters. The details of the E and M iterative steps in the EM

estimation algorithm can be found in the Appendix A.

1.4.2 Select The Number of Clusters

One difficulty in unsupervised classification or clustering is that the number of clusters

is unknown. The problem of identifying the number of clusters is equivalent to a model
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selection problem. AIC is a common likelihood-based model selection criterion. When

the model under consideration contains random effects, it is not straightforward what

likelihood function to use in defining AIC. Vaida and Blanchard (2005) discussed this

issue by defining two variations of AIC - marginal AIC (mAIC) and conditional AIC

(cAIC) for mixed-effects model selection. Following their arguments, if only the

fixed effects contain information about the number of clusters, mAIC should be used.

For mAIC = −2logf(y|θ̂) + 2(# of parameters), f(y|θ̂) is the marginal likelihood

corresponding to the model

Y = Xθ + ε, ε ∼ N(0, HΓH ′ + σ2
εIST )

and the number of parameters is the sum of the fixed effects and the number of

parameters specifying the random effects. On the other hand, if the model selection

involves both the fixed effects and random effects, conditional AIC (cAIC) should be

used. For cAIC = −2logf(y|θ̂, γ) + 2(# of parameters), f(y|θ̂, γ) is the conditional

likelihood corresponding to the model

Y = Xθ + Hγ + ε, ε ∼ N(0, σ2
εIST )

and the number of parameters is the effective degrees of freedom.

Our model formulation is different from Vaida and Blanchard (2005) in that there

are two multivariate random variables to condition on Y , the latent variable Z and the

random effects γ and therefore, the conditional AIC does not apply. If we were to use

the marginal likelihood as defined above, we would integrate out γ which incorporates

information about the clustering. Instead we consider the joint likelihood in (13) to

select the number of clusters. Following the notation by Vaida and Blanchard (2005),

we define the AIC variant with joint likelihood as jAIC = −2logf(y, γ, Z) + 2df

where df is a function of C.
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1.5 Simulation

In this simulation study, our primary objective is to assess the prediction accuracy of

cluster membership under a series of spatial interdependence structures and varying

noise levels. We compare our method with two other existing model-based clustering

methods: Mclust (Fraley and Raftery, 2002) and Fclust (James and Sugar, 2003)

In our simulation model, the cluster shapes µzj
(t) and spatial scaling function τ(s)

are generated using different basis functions and kernels from the ones in our estima-

tion procedure described in Section 1.2.1. The objective is to assess that the proposed

estimation method provides accurate estimates of the clustering membership, cluster

patterns and spatial dependence under different model specifications.

1.5.1 Simulation Set-up

We generated a synthetic data with six clusters of curves from the functional model

Yij(tij) = τ(sj) + µzj
(tij) + σ2

εεij, with tij = (i− 1)/(T − 1), i = 1, . . . , T, j = 1, . . . , S(14)

Functional Model for Conditional Distribution. We simulate the time-dependent

cluster patterns from

µzj
(tij) =

5∑
ν=1

(θzj ,ν + γj,ν)bν(tij)

where zj ∈ {1, . . . , 6} is the cluster membership of the jth curve (C = 6 clus-

ters), bν(t), ν = 1, 2, . . . , 5 are cosine basis functions and θzj
= (θzj1, . . . , θzj5) are

the first five coefficients obtained from the Fourier decomposition of the functional

patterns in Figure 1 (a) to (f) (shown in red). We add the random disturbances

γj ∼ N(0, σ2
γI), σ2

γ = 0.1 to the coefficients θzj
to slightly distort the functional pat-

terns. In this study, we consider T = 10. We simulate the global spatial pattern

from

τ(sj) =

q∑
ν=1

ανφS,ν(sj) +
S∑

i=1

γiKS(‖si − sj‖)
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where φS,ν(sj) is defined in Section 1.2.1, αν = (0.1, 0.1)′ and γi ∼ N(0, σ2
s) with

σ2
s = 1 or 10. We simulate the spatial dependence using the Matérn covariance

matrix

KS(‖si − sj‖) = σ2
s

1

Γ(ρ)

(
φ‖si − sj‖

2

)ρ

2Bρ(φ‖si − sj‖).

Matérn class of functions provides correlation surfaces with a wide range of smooth-

ness levels controlled through the parameter ρ (see Matérn, 1986). The range param-

eter φ defines the extent of spatial dependence. Bρ is the modified Bessel function of

the second kind of order ρ > 0. In our simulation, we use Matérn covariance matrix

of order ν = 2
3

and range parameter φ = 0.1 maxi,j ‖si − sj‖ = 14.67.

We generate µzj
(t) using a Fourier basis and τ(s) using Matérn kernel and estimate

them using the decomposition (4) with a thin plate splines basis.

Markov Model for the Cluster Membership. The spatial units s1, . . . , sS with S =

8454 are the centroids of the census tracts in five southeastern state - Florida, Georgia,

South Carolina, North Carolina and Tennessee. The cluster membership (zs1 , . . . , zsS
)

is generated from the Gibbs distribution described in Section 1.2.2 with ψ = 0.5 or

ψ = 0.9. In Figure 2, we present the maps of the spatial distribution of Z for ψ = 0.5

and ψ = 0.9. Following HMRF methodology, the cluster membership of a site sj is

sampled from a multinomial distribution with proportion parameters (πsj ,1, . . . , πsj ,C)

where πsj ,k is the Gibbs distribution defined in Equation (6).

Simulation settings. We investigate the estimation accuracy of the cluster mem-

bership and of the dependence structure by varying three model parameters:

1. Spatial Dependence of Z controlled by the hyperparameter ψ. The larger ψ is,

the more extensive the spatial dependence of cluster membership Z is.

2. Conditional Spatial Dependence controlled by σ2
s . In our study, cov(Yi|Z) =

σ2
sKSK ′

S + σ2
εIS where Yi = (Yi1, . . . , YiS)′ is the vector of S locations at ith time

point. Given σ2
εIS, the Conditional Spatial Dependence is strong when σ2

s is large.

3. Noise level controlled by σ2
ε .
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Table 1: Model Settings: Spatial Dependence(Left), Conditional Spatial Depen-
dence(Middle), Noise Level(Right)

ψ = 0.5
σ2

s = 1 σ2
s = 10

σ2
ε = 10 Weak; Weak; High Weak; Strong; High

σ2
ε = 50 Weak; Weak; Low Weak; Strong; Low

ψ = 0.9
σ2

s = 1 σ2
s = 10

σ2
ε = 10 Strong; Weak; High Strong; Strong; High

σ2
ε = 50 Strong; Weak; Low Strong; Strong; Low

Table 1 lists eight scenarios derived from combining the three factors above.

Number of clusters. We applied jAIC to all eight settings in Table 1 with C ranging

from 1 to 10 clusters; for all cases, the minimum value for jAIC is attained at C = 6

clusters as initially simulated, validating jAIC as a criterion for selecting the number

of clusters.

1.5.2 The Accuracy of the Cluster Membership Estimation

In our synthetic example, because we have the true clustering membership, we can

assess the accuracy of the clustering prediction for the method introduced in this

chapter and other existing methods using a clustering/classification error. We mea-

sure the clustering error using the Rand index (Rand, 1971), which is the fraction of

all misclustered pairs of curves. Let C = {f1, . . . , fS} denote the set of true curves,

Ĉ = {f̂1, . . . , f̂S} denote the set of estimated curves, and T and T̂ denote the true

and estimated clustering maps, respectively. Rand index is defined by

R(C, Ĉ) =

∑
r<s I(Tk(fr, fs) 6= T̂k(fr, fs))

(N
2 )

.

Therefore, the Rand index is low when there are only few misclustered curves. We

compute the Rand index for FSCM, Mclust, Fclust.

Table 2 compares the Rand index under a series of simulation settings described

in the previous section. We summarize our findings as follows:
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Table 2: Rand index for the clustering membership, FSCM, Mclust, Fclust

ψ = 0
σ2

s = 1 σ2
s = 10

σ2
ε = 10 0.45%, , 11.5% 7.63%, , 11.9%

σ2
ε = 50 11.1%, , 14.4% 14.6%, , 17.3%

ψ = 0.5
σ2

s = 1 σ2
s = 10

σ2
ε = 10 0.34%, 0.35%, 11.7% 0.39%, 0.46%, 9.95%

σ2
ε = 50 8.13%, 13.56%, 14.5% 8.21%, 14.5%, 18.3%

ψ = 0.9
σ2

s = 1 σ2
s = 10

σ2
ε = 10 0.24%, 0.381%, 7.05% 0.21%, 0.47%, 8.42%

σ2
ε = 50 6.83%, 12.55%, 14.36% 5.17%, 9.63%, 17.2%

1. FSCM outperforms both Mclust and Fclust under all experimental settings.

We find that the cluster membership prediction accuracy improves significantly.

• Under strong spatial correlation in the cluster membership Z controlled by ψ.

• Under strong conditional spatial correlation controlled by σ2
s (keep σ2

ε fixed).

2. When the noise level (controlled by σ2
ε) is high, we observe a less accurate

clustering estimation over all three methods. However, the clustering error for FSCM

is lower under strong dependence implying that assuming spatial dependence enhances

the prediction accuracy of the cluster membership by borrowing information across

curves in the nearby locations.

Spatial Dependence of the Clustering Membership. The spatial dependence of the

cluster membership Z = (Z1, . . . , ZS) is modelled from a Markov Random Field where

Z = (Z1, . . . , ZS) follows the Gibbs distribution. The hyperparameter ψ in Gibbs

distribution determines the extension of the spatial correlation. In our simulation

study, we examine the cluster estimation accuracy for two different values of this

hyperparameter (ψ = 0.5 and ψ = 0.9). Table 3 lists the estimated value of ψ for

all eight settings. The results show that the estimated values are close to the true

values.
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Table 3: Simulation study: estimation of the Gibbs parameter ψ

ψ = 0 ψ = 0.5 ψ = 0.9
σ2

s = 1 σ2
s = 10 σ2

s = 1 σ2
s = 10 σ2

s = 1 σ2
s = 10

σ2
ε = 10 -0.011 0.21 0.43 0.43 0.85 0.85

σ2
ε = 50 -0.028 0.22 0.46 0.51 0.87 0.88

The Estimation Accuracy of Functional-Spatial Pattern. In Figure 1, we present the

true cluster patterns along with the estimated cluster patterns under one simulation

setting (large noise level and strong dependence). We also compare the simulated

τ(s) to the estimated spatial-global pattern. Our method accurately recovers the

simulated time functions and spatial patterns. In Figure 3 and 4, we also provide

the cluster trends and the curves assigned to each of the six clusters for the two

comparative methods, Mclust and Fclust. The cluster patterns identified using Mclust

are similar to the patterns estimated using the method introduced in this chapter with

the exception that for Mclust, Clusters 1 and 6 have similar patterns. On the other

hand, Fclust fails to identify the cluster trends.

1.6 Classification of Service Accessibility

1.6.1 Preliminaries

Data Source. The location data for financial services were acquired from the Federal

Deposit Insurance Corporation (FDIC). In our study we use data starting from 1994

to 2009. We geocoded the site addresses of the FDIC-insured service providers using

ArcView - a GIS software provided by ESRI.

Accessibility Measure. One of the main challenges in measuring service acces-

sibility is defining the distance of the residents of a community or small geographic

area to the sites in a service network: given the space occupied by a community U

and the service locations in the network, S = {s1, . . . , sn}, define this distance as

d(U,S). In this research, we quantify d(U,S) using a sampling procedure: 1. Sample
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the geographic space of the neighborhood U and obtain the neighborhood locations:

u1, . . . , uB (B is the number of samples); and 2. Compute d(U,S) as a summary of

the street-network distances between the sample locations in U and all neighboring

sites in the network S: d(ub, si) for b = 1, . . . , m and i = 1, . . . , n. In contrast to the

existing methods for computing d(U,S) (Talen 1996, 1998, 2001; Lovett et al. 2002),

this sampling technique assumes that neighborhoods occupy uneven geographic areas

varying in size and shape.

In this chapter, we measure the accessibility from a community U to the network

S as a summary of the street-network distances {d(ub, si)}b=1,...,B;i=1,...,n by modifying

the accessibility measures discussed in Talen and Anselin (1998). Specifically, we use

the travel cost to measure how much a person in a given neighborhood U is required

to travel to a service site and compute the distance of neighborhood to a service

network as the average travel cost across individual sampling locations in year t,

Y (U, t) =
1

B

B∑

b=1

(
1

n

n∑
i=1

[d(ub, si)I(ti ≤ t)I(d(ub, si) ≤ ε)]

)
(15)

where I(ti ≤ t) = 1 if the site si has been opened before or at time t, and zero

otherwise; and I(d(ub, si) ≤ ε) = 1 if the distance between the sampling location

ub is within an ε distance from the site si. The threshold ε measures the maximum

proximity value for accessibility. In our implementation, we averaged the street-

network distance to the closest three sites.

Dividing the geographic space into contiguous spatial units Us, s = 1, . . . , S, where

each spatial unit corresponds to a neighborhood (e.g. census tract), the accessibility

measures vary across the geographic space: Y (Us, t) = Ys(t).

We apply the clustering method introduced in this chapter to service accessibility

curves, Ys(t) s = 1, . . . , S, separately for two states, California and Georgia. Using the

jAIC criteria for selecting the number of clusters, we identify 9 clusters for California.

For Georgia, the AIC values decrease smoothly without a significant change up to

maximum of ten clusters. By inspecting the clustering trends for various numbers of
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clusters, we concluded that seven clusters capture the prevalent accessibility patterns

in Georgia.

In the next section, we discuss a series of plots which summarize the spatial and

temporal accessibility patterns. In this chapter, we included the global patterns

along with the cluster trends and their mapping to the geographic space. Additional

figures are included in the Appendix B - the distribution of the accessibility curves

by cluster and the clustering provided by the two comparison methods - Fclust and

Mclust. When interpreting the figures in this chapter, one has to bear in mind that

large values for the accessibility measure (high travel cost) correspond to low access

to financial service.

1.6.2 Discussion

Using demographics and neighborhood classifications provided by ESRI - Sourcebook

America, we describe the demographic and economic profile of each service accessi-

bility cluster for California and Georgia. We contrast the trends across clusters and

comment on their ethnic composition as it is one of the most cited characteristics in

service distribution inequities. We also point out potential business opportunities for

service providers.

Global time-varying trends. We first highlight that the global accessibility

to financial services hasn’t changed significantly for California but it has increased

slightly for Georgia from 1994 to 2006 but deteriorate again after 2007 possibly due

to the financial crisis (Figures 5 (a) and 6 (a)). The average global accessibility over

the period under study (1994-2009) is twice higher in California than in Georgia.

California. Cluster 3 consists of more than 83% of the total number of commu-

nities in California. For this cluster, the financial service accessibility cluster trend

is approximately flat. Therefore, more than 83% of the communities in California

have experience insignificant change in their access to financial services in the past
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15 years although some are under-served whereas many others are over-served. By

simply overlapping the green color in Figure 5 (d) (cluster 3) to red color in Fig-

ure 5 (c) (low accessibility), a financial service provider may identify many of these

under-served communities; augmented attention to these communities will not only

enhance the equity of financial service distribution but will also open new investment

opportunities to service providers.

The communities that form clusters 1, 4, 8 and 9 feature very low accessibility

to financial services. Cluster 9 have experienced a sharp increase in accessibility

(decrease in the travel cost) with a peak in 1997 followed by a sharp decrease. On

the other hand, cluster 8 has experienced and increase in accessibility until 1997

followed by no significant change afterwards. The census tracts in cluster 8 are near

National Forests (Klamath, Modoc and San Bernardino) and some regions in Los

Angeles. Many of the communities in cluster 9 are located near the National Parks

of California (Death Valley, Mojave and surrounding regions of National Forests) and

some regions in Los Angels. The change in service accessibility in 1997 may have been

caused by the tropical storms that hit northern California from late December 1996 to

early January 1997. The Klamath National Forest experienced its worst flood since

1974. This may have been accompanied by the 1997 Asian economic crisis in Los

Angels. The changes in financial service accessibility are much smoother for cluster

1 and 4 than those for cluster 8 and 9.

The ethnic/racial composition of the communities in clusters 1 and 4 are similar

to the overall demographic trends in California; on the other hand, communities in

cluster 8 have predominantly white population whereas many communities in cluster

9 have large Hispanic population. Moreover, the average income level is significantly

higher for communities in clusters 1 and 4 as compared to those in clusters 8 and

9. We therefore conclude that the demographic profile is not a significant driving

factor for changes in financial service accessibility for the communities in these four
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clusters. Particulary, since the communities in clusters 1 and 4 are under-served with

a decreasing access to financial services, they offer notable business opportunities for

service providers.

The communities in clusters 5 and 6 feature medium accessibility to financial ser-

vices along with high income level, medium-high population density and ethnic/racial

diversity similar to the overall diversity trend in California. The communities in

these two clusters have very similar demographic profiles. Following the ACORN

classification provided by ESRI (http://www.caci.co.uk/acorn/), the demographic

composition in these 17 communities extends to prosperous baby boomers, thriving

immigrants, southeastern families, successful suburbanites among others. For these

communities, the access to financial services has increased over the past 15 years -

a more sluggish increase for cluster 5 although with higher population density than

cluster 6. The communities in these two clusters are examples of thriving communi-

ties for which the increase in access to financial services has matched the economic

opportunities.

The communities in clusters 2 and 7 feature medium-low accessibility to finan-

cial services, medium income level and medium population density. Communities in

cluster 2 have higher hispanic population than the overall percentage in California

whereas some communities in cluster 7 have higher white population percentage. Al-

though the overall access to financial services is lower for cluster 2 than for cluster

7, the time-varying trend in cluster 2 is a slow decrease in accessibility with a slight

increase in the most recent years whereas the time-varying trend in cluster 7 is a sharp

increase in accessibility. Therefore, although the communities in these two clusters

present similar economic potential they have experienced different access to financial

services over the past 15 years - a lower access of the communities in cluster 2 also

with a higher hispanic population. Similar to clusters 1 and 4, the communities in

cluster 2 are potential opportunity markets for financial service providers.
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Georgia. Cluster 2 consists of more than 65% of the communities in Geor-

gia. This cluster consists of rural and urban communities, and varying demographic

profiles. Similarly to California, a large number of communities in Georgia have

experienced insignificant change in accessibility to financial services.

The communities in clusters 1, 6 and 7 generally have very low accessibility to

financial services (under-served). Cluster 1 and 7 feature low density population and

low income whereas cluster 6 features medium density population, medium income

and predominant white population. The accessibility has increased for cluster 6 but

decreased in cluster 1; the accessibility for communities in cluster 7 has experienced

multiple changes over the past 15 years ending in an accessibility slightly higher than

in 1994.

The communities in clusters 3, 4 and 5 have medium accessibility to financial

services although the demographic profiles is medium income and medium-high den-

sity population. Over the past 15 years, for all three clusters, the access to financial

services has increased with a sharper increase for cluster 5. Following the ACORN

classification provided by ESRI, the demographic composition in these communities

extends to middle class, young frequent movers and rural industrial workers. All three

clusters have a higher percentage of white population as compared to the overall eth-

nic/racial composition in Georgia; communities in cluster 5 have predominant white

population.

1.7 Conclusions

The spatial-functional clustering method in this chapter is a means for summarizing

the spatial global and time-dependent cluster effects of a large number of spatially-

dependent functionals. An alternative method to summarizing the global and local

trends in a spatial-temporal process is to fit a spatial-temporal model and analyze the

spatial changes over multiple maps that vary with time and the temporal changes that
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vary with space. However, this approach is tedious as it requires contrasting multiple

maps and multiple time profiles. On the other hand, the proposed clustering method

offers readily interpretable summaries of the temporal changes in the spatial-temporal

process.

From a methodological point of view, one important aspect of our clustering model

is that it allows for spatial dependence in the complete data (Y, Z). Under this

assumption, the spatial and temporal trends are accurately estimated by borrowing

information across curves in the nearby locations. In our simulation study, we found

that accounting for spatial dependence results in enhanced prediction accuracy of the

cluster membership under sparse temporal grid and under low noise level, a difficult

statistical setting.

Another aspect of our clustering model is that it is computationally efficient. In

the estimation model, we overcame two computational challenges in clustering a large

number of spatially-dependent curves: we employ a low-rank approximation of the

large kernel matrix and we allow automatic estimation of a large number of penalty

parameters by estimating an equivalent linear mixed-effects models.

In our motivating application, describing financial service accessibility in Califor-

nia and Georgia, we find that over a period of 15 years, there have been a small

number of communities in California that have increasing access to financial services

(about 12%) matching the increase in their economic potential. For most of the other

communities, there have been an insignificant or downward change. That is, the

inequities in 1994 have perpetuated into 2009; in fact, these inequities may have ac-

centuated due to a significant shift in demographics throughout California. One the

other hand, Georgia have faced more changes than California but for the worse. A

large percentage of communities have lower accessibility to financial services in 2009

than in 1994; for 65% of these communities the decrease is low in magnitude and for

a small number of communities (3%), the decrease is significant. Noteworthy, most
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of the communities in Georgia that have experienced an increase in financial service

accessibility (22%) have a higher percentage of white population.

We applied two other clustering methods to the service accessibility curves, Mclust

and Fclust. These two comparative approaches are commonly employed in clustering

multivariate data. The clustering provided by these two methods assign the flat

accessibility curves throughout all clusters; therefore, most of the cluster patterns

are flat without significant differences between clusters. On the other hand, FCSM

assigns most constant curves in one cluster and discovers many more meaningful

patterns than the comparative methods.

Other potential applications of the clustering approach in this chapter extend to

marker segmentation by clustering demand measured at varying site locations as well

as performance analysis of a service enterprise that is spatially distributed where the

performance may be measure as the sales divided by the site size.
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Figure 1: Simulation setting: σ2
s = 1, σ2

ε = 10, ψ = 0.9. (a) to (f) are the functional
pattern where the red line the true cluster pattern µk(t) ; the grey lines are simulated
data, Y (t) according to the equation 14 and the black line is the cluster pattern µ̂k(t)
estimated using FSCM. (g) and (h) are the true and simulated (using our method)
spatial effects.
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Figure 2: The distribution of the cluster membership generated from Gibbs distribu-
tion with ψ = 0.5 and ψ = 0.9
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Figure 3: Simulation study: cluster pattern estimated by ’mclust’
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Figure 4: Simulation study: cluster pattern estimated by ’fclust’
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Figure 5: California: Temporal and spatial trends for the travel cost used to measure
the accessibility of communities to financial services.
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Figure 6: Georgia: Temporal and spatial trends for the travel cost used to measure
the accessibility of communities to financial services.
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CHAPTER II

ASSOCIATION ANALYSIS OF SPACE-TIME VARYING

PROCESSES: A FUNCTIONAL APPROACH

2.1 Introduction

In the existing literature, association analysis between two processes extends to time-

varying random functions (Heckman and Zamar, 2000; Wang et al, 2000), spatial

processes (Lee, 2001; Maruca and Jacquez, 2002; Huang and Zhang, 2006) and time-

dependent processes observed longitudinally (He et a., 2004; Dubin and Müller, 2005;

Zhou et al., 2008).

In this chapter, we discuss an association analysis for space-time varying pro-

cesses. We introduce methods for estimating the temporal association at varying

spatial locations (space-varying association) and the spatial association at varying

time points (time-varying association) between two processes observed with mea-

surement error. For example, one ad-hoc approach for estimating temporal as-

sociation is to view the two processes as time-varying functions (X(s, t) = Xs(t)

and Y (s, t) = Ys(t)) and estimate the association using a functional data analysis

(FDA) approach. Using FDA, we would first smooth out the time-varying func-

tions Xs(t) and Ys(t), and for each spatial location s, estimate the association at s

as the correlation or standardized inner product of the detrended smooth curves -

ρ(s) = cor
{

X̂s(t)− µ̂X(t), Ŷs(t)− µ̂Y (t)
}

. A similar approach may be employed for

spatial association varying in time - ρ(t) = cor
{

X̂t(s)− τ̂X(s), Ŷt(s)− τ̂Y (s)
}

.

One primary limitation of the approach described above is that the smoothing

step ignores the spatial (temporal) dependence; i.e. Xs(t) are spatially interdepen-

dent time-varying functions and Xt(s) are temporally interdependent space-varying
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functions. Dependence across functions induces data redundancy which translates

into a smaller effective number of degrees of freedom than that number of observa-

tions. This will lead to under-estimation of the variability in the data, which in turn,

will result in under-smooth association estimates.

In the existing research, the standard approach for estimating the association

between two space-time varying processes is to isolate coupled modes of variability

between time series or between multivariate spatial processes. Techniques such as

combined PCA, maximum covariance analysis (MCA) or canonical correlation anal-

ysis (CCA) are common practice (see Bretherton et al., 1992; Storch and Zwiers,

1999; Salim et al 2005 and the references therein). In these methods, two space-time

varying processes Xij = X(sj, ti) and Yij = Y (sj, ti) observed discretely at m time

points and n spatial locations are decomposed as

Xij =
K∑

k=1

ukjαki and Yij =
K∑

k=1

vkjβki

using single-value decomposition, for example. Further, Uk = (uk1, . . . , ukn) and Vk =

(vk1, . . . , vkn) are used to explore the spatial association whereas Ak = (αk1, . . . , αkm)

and Bk = (βk1, . . . , βkm) are used to explore the temporal association. Time-varying

association is measured by the maximum correlation coefficients between the vec-

tors Ak and Yi called left heterogeneous association and between the vectors Xi and

Bk called right heterogeneous association. Similarly, for space-varying association.

Therefore, the output consists of multiple right and left time-varying patterns de-

scribing the spatial association and multiple right and left space-varying patterns

describing the temporal association. Although these exploratory tools are common

practice, they have a series of limitations:

• The output consists of multiple time-varying and space-varying association pat-

terns; their interpretation could be tedious and challenging when a large number

of canonical components are needed to explain the total variability. Moreover, the

number of components/patterns needs to be optimally selected to fully describe the
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association between the two space-time varying processes.

• If the processes are slowly varying in space and/or time, we would expect that

the spatial components Uk, Vk and the temporal components Ak, Bk have some degree

of smoothness. An alternative approach is to take into account the time-functionality

by allowing αki = αk(ti) and βki = βk(ti) to be time-varying functions and to take

into account the space-functionality by allowing ukj = uk(sj) and vkj = vk(sj) to be

space-varying functions. Salim et al. (2005) address this challenge using a regular-

ized version of the maximum covariance analysis. To model the spatial dependence,

they assume a non-stationary conditional autoregressive model to model the spatial

dependence ignoring the time-dependence.

• When the number of time points is much smaller than the number of space

points, the existing methods may fail to provide space-varying association estimates

due to the computational instability under the setting of large dimensionality but

small sample size. Similarly, when the number of space points is much larger than

the number of time points, these methods may fail to estimate the time-varying

association.

• Finally, the existing association methods for space- and time-varying processes

are exploratory in nature without a theoretical and inferential foundation.

The primary contribution of this chapter is an association analysis for space-

time varying processes that overcomes these limitations. Our proposed association

analysis is based on a spatiotemporal model taking into account the space- and time-

functionality in the data. The association measures are rigorously defined, compu-

tational feasible, implementable with standard software and they allow estimation

of both contemporaneous and lagged association. Finally, we accompany these mea-

sures with asymptotic properties and confidence band estimates which may be used

to assess the accuracy of the association estimates.

Denote X(s, t) and Y (s, t) with s ∈ S and t ∈ T two space-time processes observed
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with error. We assume that T and S are two different Lebesgue measurable domains

with no comparable coordinate units. To simplify our presentation, we will introduce

the association analysis assuming S is a geographic space and T is a time domain

but the method applies to general S and T .

For studying the association between two processes X(s, t) and Y (s, t), we define

two inner products: <,>S=
∫

dws is the inner product between two functions over the

space domain S with respect to a measure dws = ws(s)ds where ws(s) is a nonnegative

weight function with < 1, 1 >S=
∫

ws(s)ds = 1. Similarly, define <,>T =
∫

dwt =
∫

wt(t)dt is the inner product between two functions over the temporal domain T . A

simple choice for the weight functions is wt(t) = 1
Length(T )

I[T ] and ws(s) = 1
Area(S)

I[S].

We focus on global and local association measures:

• The global temporal association at lag η is defined as

ρgT,η = ρT (µx(t), µy(t + η)) =
< µx(t), µy(t + η) >T
‖µx(t)‖T ‖µy(t + η)‖T

where µx(t) and µy(t) are global smoothed temporal trends of the two processes.

• The global spatial association at lag δ is defined as

ρgS,δ = ρS(τx(s), τy(s + δ)) =
< τx(s), τy(s + δ) >S
‖τx(s)‖S‖τy(s + δ)‖S

where τx(s) and τy(s) are global smoothed spatial trends of the two processes.

• The time-varying association at temporal lag η is defined as

ρ(t, t + η) =< f ∗x(s, t), f ∗y (s, t + η) >S . (16)

• The spatial-varying association at spatial lag δ is defined as

ρ(s, s + δ) =< f ∗x(s, t), f ∗y (s, t + η) >T (17)

where f ∗x(s, t) is standardized smoothed version of X(s, t) such that ‖f ∗x(s, t)‖T =

‖f ∗x(s, t)‖S = 1 and < f ∗x , 1 >T =< f ∗x , 1 >S= 0; similarly for f ∗y (s, t). We expand on

these association measures in Section 2.3.
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The time-varying correlation measure reveals the spatial association of the two

processes X and Y at varying time points. On the other hand, the space-varying

association measure reveals the temporal correlation of the two processes at varying

locations in the space domain.

We estimate the time-varying and space-varying correlation measures by first pro-

jecting the two processes X(s, t) and Y (s, t) in L2(S × T ) into a finite space of di-

mensionality nS ×mT . Specifically, we decompose the two processes using a tensor

product decomposition




X(s, t) =
∑∞

k=0

∑∞
l=0 γX

k,lφl(t)ψk(s) + εx(s, t)

Y (s, t) =
∑∞

k=0

∑∞
l=0 γX

k,lφl(t)ψk(s) + εy(s, t).
(18)

where {φl(t), l = 0, 1, . . .} and {ψk(s), k = 0, 1, . . .} are basis of functions in L2(T )

and respectively, in L2(S). The error terms εx(s, t) and εy(s, t) are assumed indepen-

dent. The space-time tensor product decomposition has been previously reviewed by

Kyriakidis and Journel (1999) and applied to various case studies (Wood, 2006 and

Clarke et al., 2006). Generally, we cannot estimate more parameters than the number

of degrees of freedom, thus we actually estimate the projection onto the first mT ≤ m

temporal and nS ≤ n spatial basis of functions (m is the number of observation time

points and n is the number of the observation space points). The smoothness of the

fitted spatial-temporal surface depends on nS and mT .

There are two alternatives to control the smoothness of the estimated surfaces.

One alternative is to optimally select nS << n and mT << m and use ordinary

least squares to estimate the model coefficients. This approach introduces modeling

bias and it requires solving a two-dimensional optimization problem since we need

to select mT and nS simultaneously. A second alternative is to use nS and mT large

enough to reduce the modeling bias but control smoothness by penalizing the model

coefficients γ’s. Ruppert (2002) empirically suggests that after the minimum neces-

sary number of spline basis functions (nS and mT in our notation) has been reached,
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the modelling bias is quite small and it can be ignored. Because we use penalized

instead of ordinary least squares procedure to estimate the model coefficients, this

second approach introduces shrinkage bias. Li and Ruppert (2008) derive theoretical

results for the shrinkage bias for penalized splines estimation under the assumption

of ignorable modeling bias. The existing theoretical results apply to one-dimensional

functions only. In this chapter, we provide asymptotic properties for the shrinkage

bias of the model coefficients under the tensor product spatiotemporal model using

penalized splines with different spatial and temporal smoothing parameters (Wood,

2006).

Using the finite tensor product decomposition, we can equivalently express the

association measures in terms of the coefficients γX
kl and γY

kl for k = 1, . . . , ns and

l = 1, . . . , mT . Using the asymptotic properties of the estimated model coefficients,

we show that the estimators of the time- and space-varying association measures are

asymptotically unbiased and consistent under large m and n (in-fill asymptotics).

Leveraging the new statistical methodology introduced in this chapter, we study

the accessibility to financial services for the state of Georgia in the U.S. Histori-

cally, income level has been one of the main drivers of inequities in service acces-

sibility. In response to discriminatory practices against low-income neighborhoods,

a practice known as redlining, the U.S. regulatory body amended financial service

providers through the Community Reinvestment Act (1977) to meet the needs of

all demographic groups, including low-income population. To investigate whether

the inequities in financial service accessibility have weaken over time, we estimate

the time-varying association between service accessibility measured by an utilization-

adjusted travel cost and the income level. A decrease towards zero of the time-varying

association will indicate decreased income-based inequities in financial service acces-

sibility over time. On the other hand, service providers are particularly interested in

identifying service delivery markets in which the accessibility and the income level

36



move in the opposite direction - either an area of economic growth but with reduced

service accessibility or an area of economic decline but potentially overserved. The

map of space-varying association allows identifying such markets since it estimates

the temporal association at various geographic locations.

The article is organized as follows. Section 4.2 introduces the nonparametric model

decomposition for the spatio-temporal processes and the asymptotic properties of this

model. Section 2.3 provides the estimation approach for the association measures

as well as their asymptotic properties. We illustrate our association measures with

simulated data in Section 3.6 to investigate the accuracy of the association estimators.

In Section 2.5 we apply the association analysis introduced in this chapter to study

the association between service accessibility and income level. Section 2.6 concludes

the chapter. Some technical details and proofs are deferred to the Appendix.

2.2 General Model

In this section we introduce a nonparametric modeling procedure for spatiotemporal

processes and we discuss its asymptotic properties. This model is further used in

deriving the association measures discussed in Section 2.3.

We observe a realization of the process Y (s, t) at discrete spatial and temporal

points: Y (sj, ti) = Yij, with sj ∈ S and ti ∈ T for j = 1, . . . , n, i = 1, . . . , m. We

model the spatiotemporal process Y (s, t) using the following tensor product decom-

position

Yij = f(sj, ti) + εij, j = 1, . . . , n, i = 1, . . . ,m (19)

f(s, t) =

nS∑

k=0

mT∑

l=0

γk,lφl(t)ψk(s) (20)

where {φ0(t), φ1(t), . . .} and {ψ0(s), ψ1(s), . . .} are basis of functions in L2(T ) and

respectively, in L2(S). The error terms εx(s, t) and εy(s, t) are assumed indepen-

dent. One has to bear in mind, that although the tensor-product basis functions are

separable, the decomposition of Y (s, t) is not.
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The smoothness level of the decomposition in (20) is controlled by nS and mT .

Various methods have been proposed for selection of the optimal smoothness level

including cross-validation to minimize the mean square error (the bias and variance

trade-off) and penalization of the coefficients (Rice, 2004; Ramsay and Silverman,

2005; and the references therein). In this chapter, we pursue the later method since

it is less computational expensive; that is, we adopt a penalized regression approach

allowing for separate smoothing penalties for the spatial and temporal dimensions

since space and time are incomparable units. Note that the use of the tensor product

basis of functions facilitates the separation of the smoothing penalties in time and

space dimensions.

2.2.1 Penalized Regression

Let fs|ti(s) (=f(s, ti)) be a function of s with ti held constant, and ft|sj
(t) (=f(sj, t))

a function of t with sj held constant defined as follows

fs|ti(s) =

nS∑

k=0

αk,iψk(s), αk,i =

mT∑

l=0

γklφl(ti) = Φ′
iγk

ft|sj
(t) =

mT∑

l=0

βl,jφl(t), βl,j =

nS∑

k=0

γklψk(sj) = Ψ′
jγl

where Φ′
i = (φ0(ti), φ1(ti), . . . , φmT

(ti))
′ and Ψ′

j = (ψ0(sj), ψ1(sj), . . . , ψnS
(sj))

′; γl =

(γ0,l, . . . , γnS ,l)
′ and γk = (γk,0, . . . , γk,mT

)′.

Following Wood (2006), a natural way of measuring wiggliness of f(s, t) is to use

the additive penalty

J(f) = λs

∫

t

Js(fs|t)dt + λt

∫

s

Jt(ft|s)ds

where the penalty functions Js(fs|ti) and Jt(ft|sj
) control the smoothness of the con-

ditional functions ft|sj
(t) and respectively, fs|ti(s); and λs and λt are smoothing pa-

rameters. This penalty can be further approximated by

J(fst) ≈ λs

m∑
i=1

htiJs(fs|ti) + λt

n∑
j=1

hsj
Jt(ft|sj

)
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with ht and hs are constants of proportionality related to the spacing of the ti and

sj. Denote αi = (α1,i, . . . , αnS ,i)
′ and βj = (β1,j, . . . , βmT ,j)

′. It follows that αi =

(Φi ⊗ InS
)γ = Φ̃iγ and βj = (ImT

⊗Ψj)γ = Ψ̃jγ. Using the approximation above, we

can re-write the penalty function as

J(fst) ≈ λsht

m∑
i=1

γ′Φ̃iBsΦ̃iγ + λths

n∑
j=1

γ′Ψ̃jBtΨ̃jγ = λsγ
′B̃sγ + λtγ

′B̃tγ.

where Bs and Bt are penalty matrices depending on the definition of the penalty

functions Js(·) and Jt(·). Incorporating ht and hs into the smoothing parameters, we

estimate γ by solving the following objective function

min
γ

m∑
i=1

n∑
j=1

‖Yij −Bijγ‖2 + γ′(λsB̃s + λtγ
′B̃t)γ where Bij = Ψj ⊗ Φi. (21)

2.2.2 Estimation

In this section, we discuss various alternatives to estimation of the nonparametric

model discussed in the previous section. Under penalized regression, the coefficients γ

are unknown deterministic parameters and are estimated by minimizing the penalized

least squares sum in equation (21).

An emerging popular approach is to cast the penalized regression model into

a mixed effects model. Under the mixed effects model, f(s, t) becomes a random

function. The main advantage of estimating the penalized coefficients under the

equivalent mixed effects model is that the smoothing parameters are automatically

updated using the estimates of the variance components of the random effects and

random errors. Although the representation of the penalized regression as a mixed

model is well established (see e.g., Ruppert et al., 2003), most of the literature in

this area has relied on the use of function bases which naturally separate into some

components identifiable as fixed effects, and others as random effects.

However, the tensor product model (20) doesn’t follow this particular separation
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into fixed and random effects. Recently, a reparamerization strategy has been sug-

gested (Fahrmeir et al., 2004; Wood, 2006) to decompose the vector of regression

coefficients γ into an unpenalized part (the fixed effects) and a penalized part (the

random effects). In our model notation, this reparameterization strategy assumes that

the modified penalty matrix λsB̃s + λtB̃t is rank deficient. When the penalty matrix

is full rank, this reparametrization reduces to a random coefficient model because all

the γs are effectively penalized, thus random effects.

Apart from the frequentist perspective, the penalized regression approach is equiv-

alent to a Bayesian model where γ is assumed random with prior distribution specified

by the penalty function (Silverman, 1985; Wahba, 1990; Fahrmeir et al, 2004). Under

the Bayesian framework and the assumption of normality, the posterior likelihood is

equivalent to the the penalized least squares objective function in (21). The concep-

tual difference is that the solution to the objective function in (21), the penalized

estimator γ̂ = (B′B + λsB̃s + λtB̃t)
−1B′Y , is the Best Linear Unbiased Predictor

(BLUP) of γ under the penalized regression and the MAP (maximum a posteriori)

estimator under the Bayesian framework (Silverman, 1985) when γ are assumed to

have an ’almost’ normal prior distribution

f(γ) ∼ exp[−1

2
γ′(B̃s/τ

2
s + B̃t/τ

2
t )−1γ],

where τs and τt are parameters controlling the dispersion of the prior. It follows that

the negative log-posterior distribution is

− log f(γ|Y ) ∝ (Y −Bγ)′(Y −Bγ) + γ′(σ2/τ 2
s B̃s + σ2/τ 2

t B̃t)
−1γ.

Compared with the penalized objective function (21), when the smoothing parameter

λs = σ2/τ 2
s and λt = σ2/τ 2

t , the penalized estimator is equivalent to the MAP esti-

mator. We will use this model equivalence in deriving approximate credible intervals

for the association measures in Section 2.3.3.
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2.2.3 Asymptotics

In our theoretical study, we assume that the model (20) is the true model, i.e., nS and

mT are the intrinsic dimensionality of the processes and there is no model bias; or

although the model is not true, i.e., we estimate infinite dimensional functions using

finite number of basis functions nS and mT , the modeling bias is ignorable when nS

and mT is large enough. Therefore, in this section, we only asymptotic properties for

the shrinkage bias of the penalized estimator of γ under the following assumptions.

A.1: The smoothing bases for the temporal and spatial domains are knots-based

φl(ti) = KT (ti − κT
l ), ψk(sj) = KS(sj − κS

k )

where KT and KS are temporal and respectively, spatial kernels, and κT
1 , . . . , κT

mT
and

κS
1 , . . . , κS

nS
are the knots spanning the temporal and spatial domains.

A.2: The number of time points and the number of the spatial points are large:

m −→∞ and n −→∞ under regularly observed space and time domains or the max-

imum distance between any two design points tends to zero under irregular sampled

domains (in-fill asymptotics).

A.3: The distance between any two temporal-knots and any two spatial-knots are

bounded from above: |κT
l −κT

l′ | > dT and ‖κS
k −κS

k′‖ > dS; where dT and dS are away

from zero.

Under assumption A.1, the number of temporal and spatial knots control the

roughness of the fit of the model, and therefore, they need to be selected optimally.

One method to overcome the knots selection problem is to impose constrains on the

effects αk,i and βl,j,

m∑
i=1

nS∑

k=1

α2
i,k < C1,

n∑
j=1

mT∑

l=1

β2
j,l < C2 for some choice of C1 and C2.
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The penalized least squares problem then becomes

min
γ

m∑
i=1

n∑
j=1

‖Yij − (Ψi ⊗ Φi)γ‖2 + λs

m∑
i=1

γ′Φ̃′
iΦ̃iγ + λt

n∑
j=1

γ′Ψ̃′
jΨ̃jγ

and therefore, the penalty matrices Bs and Bt are identity matrices.

Theorem 1. Under assumptions A.1-A.3, we have

(a.) The penalized estimator γ̂ = (B′B + λsB̃s + λtB̃t)
−1B′Y is biased with bias

B(γ̂) = −[I + (λsB̃
−1
s + λtB̃

−1
t )−1]−1γ.

• As the temporal sample size m →∞, B(γ̂) → −λsB̃
−1
s γ.

• As the spatial sample size n →∞, B(γ̂) → −λtB̃
−1
t γ

• As both m →∞ and n →∞, B(γ̂) → 0

(b.) The variance of the penalized estimator is

V[γ̂] = σ2
ε (B

′B + λsB̃s + λtB̃t)
−1B′B(B′B + λsB̃s + λtB̃t)

−1.

• As the temporal sample size m →∞, V(γ̂) → σ2
ε [B

′B + 2λsB̃s + λ2
s(B̃sB̃)−1

t ]−1.

• As the spatial sample size n →∞, V(γ̂) → σ2
ε [B

′B + 2λtB̃t + λ2
t (B̃tB̃)−1

s ]−1.

• As both m →∞ and n →∞,V(γ̂) → σ2
ε (B

′B)−1.

According to Theorem 1, as the sample size m → ∞ or n → ∞, the bias of γ̂

decrease while the variance of γ̂ increase. As both m → ∞ and n → ∞, the bias

goes to zero and the variance tends to the ordinary least squares variance which is

the variance under no penalization.

2.3 Association Analysis

In this section, we introduce global as well as time-varying and space-varying as-

sociation estimators for spatial-temporal processes X(s, t) and Y (s, t) with s ∈ S
and t ∈ T . The association estimators are derived using the model decomposition

described in Section 4.2. Define



X(s, t) = fX(s, t) + εX(s, t), fX(s, t) =
∑nS

k=0

∑mT

l=0 γX
k,lψk(s)φl(t)

Y (s, t) = fY (s, t) + εY (s, t), fY (s, t) =
∑nS

k=0

∑mT

l=0 γY
k,lψk(s)φl(t).

(22)
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2.3.1 Estimation

We define the association measures using the standardized versions f ∗X(s, t) and

f ∗Y (s, t) of fX and fY . Ignoring the index X and Y , the standardized function f ∗(s, t)

is

f ∗(s, t) =
f̆(s, t)− R̆s

‖f̆(s, t)− R̆s‖T
,

where f̆(s, t) = f(s, t)− < f(s, t), 1 >S and R̆s =< f̆(s, t), 1 >T . The same stan-

dardization applies when we first subtract the spatial trend, f̄(s, t) = f(s, t)− <

f(s, t), 1 >T , and then subtract the temporal scaling factor R̄t =< f̄(s, t), 1 >S .

For {1, φ1(t), . . . , φmT
(t)} and {1, ψ1(s), . . . , ψnS

(s)} orthonormal bases spanning

T and S respectively, we define three scaling terms as follows

• The space-varying scaling factor < f(s, t), 1 >T = β0,s = γ0,0 +
∑nS

k=1 γk,0ψk(s);

• The time-varying scaling factor < f(s, t), 1 >S= α0,t = γ0,0 +
∑L

l=1 γ0,lφl(t);

• The static scaling factor << f(s, t), 1 >S , 1 >T =<< f(s, t), 1 >T , 1 >S= γ0,0.

The detrended and scaled function becomes

f̆(s, t)− R̆s = f̄(s, t)− R̄s =

mT∑

l=1

nS∑

k=1

γk,lψk(s)φl(t)

Following these derivations, the association measures defined as the angle between

two standardized surfaces become

• Global temporal association:

ρgT =
< µx(t), µy(t) >T
‖µx(t)‖T ‖µy(t)‖T =

∑L
l=1 γX

0,lγ
Y
0,l√{∑L

l=1(γ
X
0,l)

2
} {∑L

l=1(γ
Y
0,l)

2
} .

where µ·(t) =< f·(s, t), 1 >S −γ·0,0 are temporal global trends.

• Global spatial association:

ρgS =
< τx(s), τy(s) >S
‖τs(s)‖S‖τy(s)‖S =

∑K
k=1 γX

k,0γ
Y
k,0√{∑K

k=1(γ
X
k,0)

2
}{∑K

k=1(γ
Y
k,0)

2
} .

where τ·(s) =< f·(s, t), 1 >T −γ·0,0 are spatial global trends.
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• Local spatial association (time-varying association):

ρ(t, t + η) =< f ∗X(s, t), f ∗Y (s, t + η) >S (23)

=

∑nS

k=1

{∑mT

l=1 γX
k,lφl(t)

}{∑mT

l=1 γY
k,lφl(t + η)

}
√∑K

k=1

{∑L
l=1 γX

k,lφl(t)
}2

√∑K
k=1

{∑L
l=1 γY

k,lφl(t + η)
}2

• Local temporal association (space-varying association):

ρ(s, s + δ) =< f ∗X(s, t), f ∗Y (s + δ, t) >T (24)

=

∑mT

l=1

{∑nS

k=1 γX
k,lψk(s)

}{∑nS

k=1 γY
k,lψk(s + δ)

}
√∑L

l=1

{∑K
k=1 γX

k,lψk(s)
}2

√∑L
l=1

{∑K
k=1 γY

k,lψk(s + δ)
}2

Plugging in the estimates of γ discussed in Section 2.2.2, we get the estimated

measures ρ̂(s) and ρ̂(t). We note here that the formulas described above are derived

under the assumption of orthonormal and orthogonal (after some rescaling) bases of

functions over both the time domain T and the space domain S. While for one-

dimensional classes of functions there are many orthogonal bases, for two- and higher

dimensional spaces, non-orthogonal bases of functions have been used. Under non-

orthogonality, the association measures do not have explicit formula, and thus we

have to evaluate them by numerical integration. This approximation relies on the

assumption of densely sampled domains.

2.3.2 Asymptotics

Using the asymptotic properties of the penalized estimator of γ, we derive the asymp-

totic properties of ρ̂(t, t + η) and ρ̂(s, s + δ) described in Theorem 2. The proof is in

Appendix B.

Theorem 2: Under the assumptions A.1-A.3, ρ̂(t, t + η) and ρ̂(s, s + δ) are

asymptotically unbiased as n →∞ and m →∞

E[ρ̂(t, t + η)] → ρ(t, t + η), and E[ρ̂(s, s + δ)] → ρ(s, s + δ).
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Using the notation Dt = (∂ρ(t,t+η)
∂γkl

, k = 0, . . . , nS; l = 0, . . . ,mT )′ and Ds =

(∂ρ(s,s+δ)
∂γkl

, k = 0, . . . , nS; l = 0, . . . , mT ), the variances of the association estimators

are approximately

V[ρ̂(t, t + η)] → Dx′
t σ2

ε,x(B
′B)−1Dx

t + Dy′
t σ2

ε,y(B
′B)−1Dy

t ,

V[ρ̂(s, s + δ)] → Dx′sσ2
ε,x(B

′B)−1Dx
s + Dy′sσ

2
ε,y(B

′B)−1Dys.

The asymptotic results in Theorem 2 state that the association estimates are asymp-

totically unbiased. Moreover, the variance estimates of the association measures

depend on the error variance of the two processes and the first order derivatives of

the association measures; therefore, these variance estimates cannot be used in as-

sessing the accuracy of the association estimates unless we replace the true values

with their corresponding estimates. Instead, in this chapter, we assess the accuracy

of the association estimates using Monte Carlo simulations as described in the next

section.

2.3.3 Interval Estimation

In this section, we provide interval estimates for the association measures by simu-

lating from the posterior distribution in a Bayesian context (Silverman, 1985). Since

the association measures, ρ(t) = GT (γx, γy; t) and ρ(s) = GS(γx, γy; s), are nonlinear

functions of γx and γy, their posterior distributions are intractable. A commonly used

approach to approximate the posterior cumulative distribution function FT (g; t) and

FS(g; s) for GT and GS is using sampling techniques (Silverman, 1985; Wood, 2006).

First, simulate the random vectors γ∗x,b and γ∗y,b, b = 1, . . . , B from their posterior

distribution

γ|Y ∼ N(γ̂, σ2(B′B + λsB̃s + λtB̃t)
−1),

and then compute the approximated empirical distributions FT and FS as

F̂T (g; t) =
1

B

B∑

b=1

I(GT (γ∗x,b, γ
∗
y,b; t) ≤ g)
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where I(·) is the indicator function. The Bayesian confidence intervals of ρ(t) and

ρ(s) are obtained from the quantiles of this distribution.

Since a simulated sample may have large ranks at some time/spatial points and

small ranks at others, we instead estimate simultaneous 1−α confidence bands using

the algorithm proposed by Mandela and Betensky (2008) by ranking each sample

according to the time/spatial points which are most discrepant from the pointwise

medians and then using these ranks to define the simultaneous confidence interval.

2.4 Simulation

Simulation Setting. We generate the penalized effects γx
k,l and γx

k,l from the stan-

dard normal distribution but correlated to induce cross-correlation between X and

Y

cov(γx
k,l, γ

y
k′,l′) =





0.5, k = k′ and l = l′;

0, k 6= k′ or l 6= l′.

The time points and spatial points are equally spaced. We simulate Xij = X(sj, ti)

and Yij = Y (sj, ti) using

Xij =

nS∑

k=1

mT∑

l=1

γx
k,lφl(ti)ψk(sj), Yij =

nS∑

k=1

mT∑

l=1

γy
k,lφl(ti)ψk(sj)

where φ(ti) = (φ0(ti), φ1(ti), . . . , φL(ti)) form an orthonormal basis,

φ(ti) = {1,
√

2 sin(2πti),
√

2 cos(2πti),
√

2 sin(4πti),
√

2 cos(4πti), . . .}

and ψ(si) = (ψ0(si), . . . , ψmS(si)) are constructed through tensor products of η(si,1) =

(η0(si,1), η1(si,1), . . . , ηK1(si,1)) and ϕ(si,2) = (ϕ0(si,2), ϕ1(si,2), . . . , ϕK2(si,2)),

ψ(si) = η(si,1)⊗ ϕ(si,2)

where η(si,1) and ϕ(si,2) are both sine-cosine bases. Then the resulting spatial basis

is a set of orthonormal basis spanning [0, 1]× [0, 1]. The error term is simulated from

normal distribution N(0, σ2
ε ). To control the noise level, we generate σ2

ε proportional

to the mean square of Yij.
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The true temporal and spatial correlation are computed from (23) and (24) since

we use orthonormal bases to generate X(s, t) and Y (s, t). However, we use the ap-

proximate versions to estimate the association measures ρ̂(t, t+τ) and ρ̂(s, s+δ) since

in our estimation procedure, we use non-orthogonal basis of functions; specifically,

we use the knots-based cubic regression spline for temporal domain and we use low-

rank thin plate spline truncated using eigen-decomposition for spatial domain (Wood

2006).

Accuracy. We evaluate the accuracy of the correlation estimates using Average

Squared Error for the time-varying correlation measure (ASEt) and for the space-

varying correlation measure (ASEs) defined as follows

ASEt =
1

m

m∑
i=1

[ρ(ti, ti)− ρ̂(ti, ti)]
2 , ASEs =

1

n

n∑
j=1

[ρ(sj, sj)− ρ̂(sj, sj)]
2 .

The true temporal and spatial correlation are computed from (23) and (24) since

we use orthonormal bases to generate the spatial-temporal local trends X(s, t) and

Y (s, t). However, we use the numerical intergration to estimate the cross-correlation

measures ρ̂(t, t + τ) and ρ̂(s, s + δ) since in our estimation procedure, we use cubic

regression spline and thin plate spline which do not result in orthonormal bases.

In the tables below, we report the average ASEt and ASEs over 100 simulation

runs. We summarize our findings as follows:

• Table 4 provides the accuracy of the association estimates for varying number

of spatial and temporal design points. The results indicate that accuracy improves

when the number of spatial/temporal points increases. This empirical study supports

our asymptotic results.

• Table 5 shows the accuracy of the association estimates compared to the ad-hoc

estimates ignoring the spatial dependence described in the Introduction section. The

results indicate that accuracy improves when we account for the spatial dependence

in the data.
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Table 4: Accuracy of the local association estimates for the simulation model with
varying number of temporal points m and spatial points n. The correlation measures
are estimated using nS = 25 and mT = 5 (ASEt × 10−4, ASEs × 10−2)

.

n=100 n=400 n=900
m=10 (33.5, 5.09) (8.59, 2.72) (5.26, 1.96)
m=20 (17.0, 3.26) (5.74, 2.10) (3.51, 1.75)
m=30 (12.9, 2.62) (4.97, 1.88) (2.66, 1.66)
m=50 (7.38, 1.92) (3.21, 1.77) (2.32, 1.60)

Table 5: Compare accuracy (ASEs×10−2) of our space-varying correlation estimates
(Left) with estimates which ignore the spatial dependence (Right).

n=100 n=400 n=900
m=10 (5.09,28.8) (2.72,27.3) (1.96,27.8)
m=20 (3.26,21.0) (2.10,24.2) (1.75,24.4)
m=30 (2.62,21.6) (1.88, 20.8) (1.66,22.7)
m=50 (1.92,19.7) (1.77,19.0) (1.60,20.0)

• Table 6 presents the coverage probability of 95% simultaneous confidence interval

for varying number of spatial and temporal points. The results suggests that the

simultaneous confidence interval has a reasonable coverage probability.

2.5 Service Accessibility and Income Level

Historically, income level has been one of the main drivers of inequities in service

accessibility. Due to uncertainties in customer economic potential and the most of-

ten lack of infrastructure, low and medium income neighborhoods have not received

sufficient attention from service providers to match their needs (PolicyLink, 2008).

In response to this common practice, Community Reinvestment Act (1977) has been

Table 6: Coverage probability of 95% simultaneous confidence intervals (B = 500).

n=100 n=400
m=10 96.48%, 95.49% 97.16%, 95.84%
m=20 98.04%, 96.31% 97.19%, 94.11%
m=30 98.05%, 96.25% 96.19%, 92.01%
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established to ensure extent of financial services to under-served communities, specif-

ically communities with low and medium income level. To this end, this research

study assesses how the configuration of the financial service accessibility has changed

in the past years for communities at all income levels.

Specifically, we estimate the association between income and service accessibility

varying from one community to another and from one year to another. Although the

change in this association is almost insignificant within a one year period, we would

expect that under adherence to Community Reinvestment Act, this association has

moved towards zero over the past years. Because of data scarcity, we only investigate

the association between financial service accessibility and income level starting with

1996 to 2006. For brevity of the presentation, we focus on one state in the U.S.,

Georgia. However, the proposed methodology also applies to larger number of time

points and larger geographic spaces.

2.5.1 Data Description

Service Location Data. The service site data in this study were acquired from

the Federal Deposit Insurance Corporation (FDIC). The FDIC database provides

address information about all regulated financial services but to use these addresses

in geospatial data analysis and mapping, we first geocoded them into point locations,

latitude and longitude, using the ArcGIS (ESRI) software.

Demographics Data. We use the population counts and per capita income data

acquired from Sourcebook America - ESRI. These data are electronically released each

year starting with 1996 to present. In this research, we use the census tract database

since census tracts are used as proxy for communities. According to the Bureau

of Census, census tracts are delineated with local input, and intended to represent

neighborhoods. Since the boundaries of census tracts are updated by the Census

Bureau every ten years (1980, 1990, 2000, 2010), our dataset includes a change of
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boundaries. Bureau of Census provides the so called ’relationship files’ to document

the revisions of the 1990 to 2000 census tract boundaries. We therefore map the data

collected before 1999 to 2000 boundaries using the information in these relationship

files.

GIS Network Data. In service research, the distance between a service site and

its customers is commonly evaluated using the Euclidean or the Manhattan distance

between the centroid of the neighborhood and the location of the closest service site.

GIS road network data allows including more realistic route distances. For example,

Talen (1998, 2001) uses the street-network distance to compute the distance between

the centroid of the neighborhood and the site location. Lovett et al.(2002) use road

distance and travel time by car. In this research, we use the street-network distance.

We acquired highway data as well as a TIGER street-detailed network for Georgia.

We evaluated the street network distances based on both networks; we found that

both provide similar distance values.

2.5.2 Service Accessibility

In this chapter, we measure service accessibility as the distance from an area or a

community to a network of service sites within a geographic area also called travel

cost. The travel cost is scaled to take into account the population per service rate at a

specific location resulting into a ’utilization’ adjusted measure for service accessibility.

Population Rate. We acquired population counts at the community (census

tract) level which can be used to estimate the population rate varying over a contin-

uum, the spatial domain under study (e.g. Georgia). Specifically, given the popula-

tion counts and the boundaries of the contiguous areas forming the complete spatial

domain we can further dis-aggregate the population counts into point-level data as-

suming that the population are uniformly distributed within each area or community.

The assumption of uniformity is not realistic but it is reasonable as soon as the areal
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units are small compared to the complete domain. Using methods for estimating the

rate of point spatial processes, e.g. Kernel smoothing (Diggle, 1985), we can obtain

a population rate estimate at any location. Denote this estimate P (s), s ∈ S.

Distance to a Network of Services. One of the main challenges in measur-

ing service accessibility is defining the distance of the residents of a community or

small geographic area to the sites in a service network: given the space occupied by a

community U and the service locations in the network, S = {s1, . . . , sn}, define this

distance as d(U,S). In the research works so far, the distance of a neighborhood to

a network of sites (d(U,S)) is calculated as the distance between the centroid of the

region U and the sites in the nearby locations in the service network (Lovett et al.,

2002, Talen, 1998, Talen, 2001). We quantify d(U,S) using a sampling procedure:

1. Sample the geographic space of the neighborhood U and obtain the neighborhood

locations: u1, . . . , uB (B is the number of samples); and 2. Compute d(U,S) as a

summary of the street-network distances between the sample locations in U and all

neighboring sites in the network S: d(ub, si) for b = 1, . . . , m and i = 1, . . . , n. In con-

trast to the existing methods for computing d(U,S), this sampling technique assumes

that neighborhoods occupy uneven geographic areas varying in size and shape.

In this research chapter, we measure the accessibility from a community U to

the network S as a population-adjusted summary of the street-network distances

{d(ub, si)}b=1,...,B;i=1,...,n by modifying the travel cost measure discussed in Talen and

Anselin (1998) to adjust for the need at a particular location and to incorporate

the proposed distance to a network of services using the sampling technique above.

Specifically, we use the travel cost to measure how much a person at a location

in a given neighborhood U is required to travel to a service site and compute the

accessibility of a neighborhood to a service network in year t,

Y (U, t) =
1

B

B∑

b=1

(
T (ub, t)

βW (ub, t)
)

(25)

where T (ub, t) is the travel cost at the sample location ub measured as the average
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street-network distance to the closest K service sites available at time t (in our study,

K = 3), W (ub, t) is the a population-based weight (in our study, it is equal to the

population rate divided by the service rate) at location ub and β is a distance disutility

parameter. In most of accessibility studies β is arbitrarily selected to be equal to 2.

In this chapter, we estimate β by linear regression: log(W (ub, t)) ∼ − log(T (ub, t)).

In contrast to the existing research, in this chapter, the distance to a network of

services varies not only with space but also with time. It is important to capture

the temporal variations because both the demographic composition and the service

network configuration change over time. The global time-dependent accessibility

trends reflect the overall progress of the equity in service accessibility.

Dividing the geographic space into contiguous spatial units Us, s = 1, . . . , S

or communities, where each spatial unit corresponds to a neighborhood (e.g. cen-

sus tract), the accessibility measure varies across the geographic space and time:

Y (Us, t) = Y (s, t) defines the space- and time-dependent accessibility process.

2.5.3 Summary of the Results and Findings

Data Transformation. Because of the normality assumption, we transform both

the accessibility measure (utilization-adjusted travel cost) and the income using the

log-transformation. In this analysis, we only present our findings using this transfor-

mation.

Canonical Correlation Analysis. In the introduction, we briefly describe

the existing common approach for estimating association patterns between two spa-

tiotemporal processes. After scaling the processes to mean zero as suggested by

Bretherton et al., (1992), this approach involves decomposing each process in a

linear combination of variables with maximum covariance (Maximum Covariance

Analysis - MCA) or correlation (Canonical Correlation Analysis - CCA). That is,

given two processes observed discretely X = {X(sj, ti) = Xij}i=1,...,m;j=1,...,n and
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Y = {Y (sj, ti) = Yij}i=1,...,m;j=1,...,n find the first pair of spatial and temporal patterns

1. U1 and V1 with U1 = Xα1 and V1 = Y β1 to maximize cov(U1, V1) or cor(U1, V1)

over all choices of α1 and β1 (S-mode); or

2. α1 and β1 with α1 = XU1 and β1 = Y V1 to maximize cov(α1, β1) or cor(α1, β1)

over all choices of U1 and V1 (T-mode).

The second pair of spatial and temporal patterns is obtained similarly but under

the constrain that they are orthogonal on the first pair.

In Figure 7, we show the first pair of spatial patterns for service accessibility and

income. We use the CCA method under T-mode to obtain these patterns. The first

pair of spatial patterns captures the global income trend with higher income levels in

urban Georgia and lower income levels in rural Georgia and it captures a contrasting

accessibility trend from the overall global trend with low access to financial services

in urban areas especially the metropolitan Atlanta. Intuitively, we would expect that

the first pair of spatial patterns would resemble more the global trends of observed

processes as they explain the largest percentage of the total variance (25.5%); however,

this is not the case for the accessibility process.

The time-varying association measures are as follows. The time-varying associ-

ation between the accessibility spatial pattern provided by the first component and

the observed income process is shown in red and the time-varying association be-

tween the income spatial pattern provided by the first component and the observed

accessibility process is shown in green. The latter time-varying association is more

meaningful than the former since it reveals the association between the accessibility

process and the global income trend; the low negative association implies that high

income is associated with high access to services and low income is associated with

low access but at a low association level. Note that this finding is only based on the

association between one component of the income level and the accessibility process

which explains a small percentage of the total variability. Based on this analysis alone
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we cannot conclude that there are inequities in financial service accessibility.

Although association techniques such as MCA and CCA are widely used in cli-

matology studies, the interpretation of the results is not straightforward. There are

multiple patterns describing the association modes and they are not all meaningful in

the context of our application data. The first five components explain about 67% of

the total variance. Moreover, because of the large discrepancy between the number of

space points and time points, the S-mode association failed to provide the estimates

for the space-varying association. In conclusion, using the MCA/CCA approach we

cannot address the questions in our study.

Functional-based Association Analysis: Model Specifications. There are

several specifications that may impact the accuracy of the association measure esti-

mates - the selection of the spatial and temporal bases of functions and the selection

of mT and nS.

In our implementation, we used cubic regression (knots-based) for the temporal

basis and eigen-decomposition based low-rank thin plane spline for the spatial basis

(Wood, 2006). We compared the association estimates for other bases of functions; the

estimates do not change significantly for other bases. The association estimates are

more accurate when using orthogonal basis because they have close form expressions;

however, spatial domain bases of functions are commonly non-orthogonal.

We generally selected a small number of temporal basis functions (mT ≤ 5) since

we have a small number of time points; the association measures change insignificantly

for various values of 5 ≤ mT ≤ 8. However, the association patterns vary with the

number of spatial basis functions, nS. For small nS, the space-varying association is

very smooth. Ruppert (2002) empirically suggests that after a minimum nS has been

reached, the modelling bias is small. On the other hand, the shrinkage bias decreases

with n and m as provided my our theoretical results. Therefore, we can only control

the modeling bias by using a large enough nS; note that in our application nS can be

54



as large as n = 1600. In contrast, the larger nS is, the more expensive the computation

is. Consequently, we need to select nS for an optimal trade-off between controlling

the modeling bias and the computational feasibility. To select nS, we use a residual-

based analysis approach suggested by Wood (2006). The steps in the residual-based

procedure are as follows: (i) fit the model and extract the deviance residuals; (ii) fit

an equivalent model to the residuals using a substantially increased nS to see if there

is a significant spatial pattern in the residuals that could potentially be explained

by a larger nS. We performed this residual analysis for various numbers of spatial

knots (50 ≤ nS ≤ 400). We found that for nS = 300 and higher the residuals have

insignificant spatial pattern left.

In the following summary, our findings are based on association measures esti-

mated using mT = 5 and nS = 250. Our inference is based on 95% simultaneous

confidence bands.

Association Analysis: Figures. To analyze the association between service

accessibility and income level using the proposed association analysis we investigated

the global association along with the global trends, the time-varying association along

with simultaneous confidence bands, the space-varying association, and the lagged

time-varying association for the state of Georgia and the metropolitan Atlanta. In

this manuscript, we included the visual displays for the global spatial trends (Figure

8) to be compared to the 1st patterns in CCA, and the time-varying and space-varying

association estimates (Figure 9).

Remark: We interpret these plots as follows. Large values of the utilization-adjusted

travel cost correspond to low access to the network of financial services. For example,

negative association between the utilization-adjusted travel cost and the income level

corresponds to positive association between access to financial services and income

level.

Time-varying (Spatial) Association: Findings. In order to assess the equity
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of service accessibility with respect to income we need to take into account two com-

ponents, the association between the global spatial trends (τx(s) and τy(s)) and the

time-varying association (Figure 9) between the two processes.

The global spatial association is equal to −0.188 in Georgia and −0.804 in the

metropolitan Atlanta area. This suggests that there is a positive low association be-

tween income level and access to financial service overall Georgia but a positive high

association in Atlanta. In turn this implies significant inequities in service accessibil-

ity with respect to income in Atlanta but not overall Georgia. The primary reasoning

behind this rather large difference in the global association estimates for Georgia

and Atlanta is that Georgia is predominantly rural with low income population but

medium to high access to financial services measured using the population-adjusted

travel cost. On the other hand, the metropolitan Atlanta consists of mixed income

population with mixed levels of urbanization and ethnicity. Atlanta is an example of

the classical post World War II sprawl: the movement of jobs, people, investment,

and infrastructure far from metropolitan regions leaving inner-city communities iso-

lated and under-served while consuming unsustainable amounts of resources. High

inequities with respect to income level therefore may be a consequence of this urban-

ization movement.

The time-varying association is close to zero while the confidence band includes

the zero line (except for a change around 2001 which may be an artifact due to the

change of boundaries). This suggests that the spatial association between service

accessibility and income level has changed insignificantly over the period 1996-2006.

On the other hand, the time-varying association for Atlanta alone is negative but

reaching zero towards the end of the time period. We interpret this association

pattern as a decrease in inequities of the financial service accessibility with respect

to income level in the Atlanta area although the global association is rather high

corresponding to high inequities. The simultaneous confidence band is much wider
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than for Georgia since we base our estimates on a smaller number of spatial points;

it is mainly below the zero line implying a negative association throughout the years

1996-2006.

Because both the income level and the change in service site configuration change

smoothly over time, the lagged (lag =1-2 years) time-varying association for Geor-

gia and Atlanta (not shown here) resemble the contemporaneous association (lag=0).

This implies that the change in income level will not bring higher access to services in

immediate years; reversely, an increase or decrease in access to financial services will

have a delayed effect if any on the income level. The study of the time-varying asso-

ciation suggests that a longer period of time may be necessary to observe significant

changes in the equity of financial services with respect to income.

Space-varying Association: Findings. The space-varying association between

adjusted travel cost and income level is neither positive (blue) nor negative (red). Par-

ticularly, areas of positive association between travel cost and income level (negative

association between access to services and income level) correspond to two trends:

markets that experience increase in economic potential over the years but lag in ac-

cess to financial services and markets that face economic decline but with constant

or increasing access to services. For example, south Atlanta, Macon and Savannah,

the association is predominantly negative where the access to financial services is also

low. These are potential areas of growth that lag in service accessibility.

We note here that the simultaneous confidence band derived for the space-varying

association measure is rather wide because of the large error variance and small m.

Thus the estimates of the space-varying association are not precise; the inference

based on confidence bands warrants us in making strong statements based on this

association estimate.
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2.6 Conclusions and Further Considerations

In this chapter, we introduce a means for summarizing global and local association

patterns between random processes which co-evolve over time and space. The asso-

ciation analysis in this chapter allows borrowing information across time and space

resulting in more accurate estimates than using ad-hoc approaches which ignore the

functionality in the data. We show in the simulation study in Section 3.6 that the

estimation error is larger when using the ad-hoc approaches as compared to the as-

sociation measures introduced in this chapter.

We applied the association measures introduced in this chapter to summarize the

spatial and temporal association between per capita income and service accessibil-

ity observed at the census tract level in the state of Georgia with a focus on the

metropolitan Atlanta. The data are observed irregularly over the geographic space

and the number of spatial design points is large. Therefore, the association analysis

applies to irregular designs as well as to densely sampled space and time domains,

common challenges in analysis of spatio-temporal data.

The primary objectives in our case study is to describe the temporal association

between the two processes allowing identification of potential new markets for service

delivery and to assess the equity of the financial service accessibility with respect to

the income level. We find that urban areas including Atlanta particularly its southern

communities, Macon and Savannah in Georgia have experienced increasing economic

potential measured by the income level but low access to financial services; these

areas are potential candidates for new delivery markets.

From the time-varying association analysis, we conclude that there are low in-

equities overall Georgia which is predominantly rural with low population density

but significant inequities in the metropolitan Atlanta which features mixed income

levels and high population density. Importantly, our findings are based on an accessi-

bility measure which accounts for the utilization level of the financial services through
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a population-based adjustment. Without this utilization-based adjustment, our find-

ings would have changed. Thus, our equity evaluation depends on the definition of

the accessibility measure. In this chapter, we advance the study of the vertical equity

which accounts for the expected utilization of a service.

Within our case study, we also compare our approach with existing association

methods based on maximum correlation analysis. This approach decomposes the as-

sociation between two space-time varying processes into multiple outputs (spatial and

temporal patterns, space and time-varying association measures) which are difficult to

interpret. Moreover, this approach fails to provide estimates for the space-varying as-

sociation measure because there is a large discrepancy between the number of spatial

locations and the number of time points.

Finally, we complement our association measures with an understanding of their

asymptotic properties and with inference based on confidence bands. From our the-

oretical results, we learn that the association estimates are asymptotically unbiased

and consistent as soon as n and m are large. In our application, the number of time

points m is small which in turn leads to low accuracy estimates for the space-varying

association measure. To improve the accuracy of this association estimate we rec-

ommend using a larger number of time points when available. Our simulation study

shows a significant increase in the accuracy of the association estimates for m ≥ 20.
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Figure 8: Global spatial trends for Georgia and Atlanta.
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Figure 9: Time-varying measure of the spatial association and space-varying measure
of the temporal association for the state of Georgia and the metropolitan Atlanta.
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CHAPTER III

MULTI-LEVEL FUNCTIONAL CLUSTERING ANALYSIS

3.1 Introduction

Due to an increasing number of applications requiring analysis of a large number

of observed random functions, exploratory tools such as unsupervised or supervised

clustering play an important role in uncovering prevalent patterns among the ob-

served random functions. Specific applications include gene expression profiling from

microarray studies (Hastie et al., 2000; Bar-Joseph et al., 2002; Wakefield et al., 2002;

Serban and Wasserman, 2005; Booth et al., 2008), clustering subjects by their spinal

bone mineral density (James and Sugar, 2003), and summarizing the market value

trends for manufacturing companies (Serban, 2009) among others.

Functional clustering methods group into hard and soft (model-based) methods.

Hard clustering divides the set of functions to be clustered into a partition of non-

overlapping subsets according to a similarity measure (e.g. Euclidean distance or

correlation). In hard clustering, an observed random function will be assigned to one

and only one cluster. On the other hand, in soft clustering, the underlying assumption

is that the observed random functions are realizations from a mixture process where

the mixture weights are the cluster probabilities. The cluster membership is not fixed

as in hard clustering but random following a multinomial distribution. Examples of

hard clustering methods are by Hastie et al. (2000), Bar-Joseph et al. (2002); Serban

and Wasserman (2005); Chiou and Li (2008). Examples of model-based clustering

are by James and Sugar (2003); Fraley and Raftery (2002); Wakefield et al.(2002)

and Booth, Casella & Hobert (2008).

In the clustering literature so far, the data are assumed to be observed only at one
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level. That is, observe random functions Xi(t) for i = 1, . . . , I where a clustering is a

hard or soft division of the index set I = {1, 2, . . . , I} into a partition of K subsets. In

this chapter, we pursue a more complex problem: clustering data observed at multi-

levels. For simplicity, we will focus on two-level data, but the proposed methods

extend to more than two levels. Particularly, the statistical problem is to cluster

Xij(t) for j = 1, . . . , J and i = 1, . . . , I where j indexes the measurement type and i

indexes the case type; that is, for each case (e.g. subject, product or gene), we observe

J random functions each corresponding to a different measurement. The underlying

model is functional ANOVA

Xij(t) = α(t) + βj(t) + Yi(t) + Wij(t) + εij(t) (26)

where α(t) and βj(t) for j = 1, . . . , J are fixed functional means specifying the overall

trend, and respectively, between-measurement functional trends. For simplicity, we

assume α(t) = 0 and βj(t) = 0; when non-zero, we can use standard nonparametric

methods to estimate them. Under this framework, there are two problems that we

pose:

• Clustering by similarity of within-case means (at level 1): two cases i1 and i2 are

in the same cluster if their within-case means Yi1(t) and Yi2(t) are similar in shape.

• Clustering by similarity of between-case deviations (at level 2): two cases i1 and

i2 are in the same cluster if their corresponding deviations from the within-case means,

{Wi1j}j=1,...,J and {Wi2j}j=1,...,J , are dynamically similar or they move together over

time.

The first clustering problem could be simply carried out by estimating the within-

case means Yi(t) using nonparametric methods and cluster the smooth means using

functional clustering algorithms. In this chapter, we call this method the level-1 naive

approach. A second modeling alternative is to decompose the functional ANOVA

model following the multilevel functional principal component analysis (MFPCA)
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introduced by Di et al. (2008) and Di and Crainiceanu (2010) and cluster the level-

1 estimated scores using common clustering methods such as k-means, hierarchical

clustering and others. We call this method the level-1 hard clustering approach. The

third approach is model-based clustering using the MFPCA decomposition. We call

this method the level-1 model-based clustering approach.

The second clustering problem can be reduced to estimation of the correlation

between two samples of random functions and cluster based on the correlation esti-

mates. For example, apply the dynamical correlation analysis introduced by Dubin

and Müller (2005) to each case pair {Wi1j}j=1,...,J and {Wi2j}j=1,...,J to obtain a cor-

relation value ρi1,i2 and further apply hierarchical or other distance-based clustering

to the correlation values {ρi1,i2}i1=1,...,I;i2=1,...,I . However, this approach assumes large

J and large number of time points, assumption that does not hold in many applica-

tions. Instead, we can apply the MFPCA approach to the multilevel data and cluster

the level-2 estimated scores. We call this level-2 hard clustering approach. Simi-

larly to level-1 clustering, an alternative approach is model-based using the MFPCA

decomposition. We call this method the level-2 model-based clustering approach.

In this chapter, we discuss advantages and disadvantages of these functional clus-

tering approaches and validate their performance within a simulation study. We point

out here that one underlying advantage of the model-based approach is that it pro-

vides a natural framework for inference on the cluster means and imputed cluster

memberships, and it allows incorporating information about the dependence between

functions at various levels. However, a drawback is that it is computational inten-

sive as estimation of the model-based clustering is often based on a Expectation-

Maximization algorithm.

The rest of the chapter is organized as follows. In Section 3.2, we review the

ANOVA functional model and its decomposition using the MFPCA approach. We will

continue in Section 3.3 with the description of a series of hard clustering approaches
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and in Section 3.4 with the presentation of the model-based clustering method. An

important aspect of unsupervised clustering is that the number of clusters is un-

known. Under the clustering model described in Section 3.5, we discuss a selection

method for the number of clusters in Section 3.5. We assess the performance of the

clustering approaches discussed in this chapter within a simulation study in Section

3.6 and within a case study in Section 3.7. Some technical details are deferred to the

Appendix.

3.2 Multi-level Functional Model

Let {Xij(t), j = 1, . . . , J} be a group of random functions observed over a continuous

variable t for the ith case with i = 1, . . . , I (I is the number of cases). For each

experimental case, we observe a set of J random functions, which are functional

observations resulting from different types of measurement. Generally, the number of

cases I (I >> 100’s) is large whereas the number of measurements per subject J is

small (J ∼ 2− 5).

In this chapter, the underlying model is a functional ANOVA model

Xij(t) = α(t) + βj(t) + Yi(t) + Wij(t) + εij(t) (27)

where t ∈ T (T is the functional domain). For brevity of the model description, we

assume α(t) = 0 and βj(t) = 0. Assuming unknown functional effects, we employ a

nonparametric decomposition of the model

Xij(t) =

N1∑
s=1

ξi,sφ
(1)
s (t) +

N2∑
r=1

ζij,rφ
(2)
r (t) + εij(t) (28)

where {ξi,s}s=1,...,N1 and {ζij,r}r=1,...,N2,j=1,...,J are the level-1 and level-2 unconditional

scores for the ith case. In this chapter, we use the term ’unconditional’ in contrast

to the term ’conditional’ which refers to conditionality on the cluster membership

variable in the clustering model. In this chapter, we assume

A.1 E(ξi,s) = 0, V ar(ξi,s) = τ
(1)
s for any case i and E(ξi,s1ξi,s2) = 0 for s1 6= s2.
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A.2 {φ(1)
s (t), s = 1, 2, . . .} is an orthogonal basis in L2(T ).

A.3 E(ζij,r) = 0, V ar(ζij,r) = τ
(2)
j,r and E(ζij,r1 , ζij,r2) = 0 for any case i and any

measurement type j and for r1 6= r2.

A.4 {φ(2)
r (t), r = 1, 2, . . .} is an orthogonal basis in L2(T ).

A.5 {ξi,s, s = 1, 2, . . .} are uncorrelated with {ζij,r, r = 1, 2, . . .}.
There are various approaches for estimating functional ANOVA. Recent methods

include Bugli and Lambert (2006), who assume that the bases of functions in A.2 and

A.4 are fixed and estimate the scores using penalized splines; Di et al. (2008) and Di

and Crainiceanu (2010), who base their estimation procedure on functional principal

component analysis, and Kaufman and Sain (2010), who pursue a fully Bayesian

approach. An advantage of employing the MFPCA approach is its computational

efficiency; the bases of functions are functional principal components which allow

reducing the functional space to a lower dimensional space than when fixing the

bases of functions as proposed by Bugli and Lambert (2006). Moreover, it applies

to both densely observed as well as sparse data, which is an important aspect in

functional data analysis. To this end, our clustering model is based on the MFPCA

decomposition.

Remark: We note here that assumption A.3 is more restrictive in the MFPCA

implementation. Specifically, MFPCA assumes that V ar(ζij,r) = τ
(2)
r ; that is, the

variances do not vary with the measurement type j. However, as we will discuss in

Section 3.4, the model based clustering is subject to the more general assumption A.3

when the cluster means vary with the measurement type. We will expand on this

comment later in the text.
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3.3 Alternative Clustering Approaches

3.3.1 Level-1 Clustering

In this section, we describe two alternative approaches to clustering by similarity

of within-case means; they are both hard clustering approaches. Generally, in hard

clustering, the underlying assumption is that the set of cases to be clustered I =

{1, 2, . . . , I} is divided into a partition of K subsets, {C1, . . . , CK} with Ck1 ∩ Ck2 = ∅
for any k1 and k2. Two cases are in the same cluster if they are similar according

to a similarity measure (e.g. Euclidean distance, correlation). When the objective

is to cluster random functions by shape regardless of scale, the similarity measure

is often the correlation between two functions. One common approach to clustering

functional data is to first project the functional data from the functional space to

a finite dimensional space using nonparametric decompositions, and cluster based

on similarity of the transform coefficients. James and Sugar (2003) dubbed this

approach as filtering. Clustering functions by shape using the correlation measure in

the functional domain is equivalent to clustering the transform coefficients using the

Euclidean distance in the transform domain (Serban and Wasserman, 2005).

For multi-level functional data, a naive clustering approach is to first decompose

the random functions using an orthogonal basis of functions {ψ1(t), ψ2(t), . . .}:

Xij(t) =
∞∑

p=1

θp,ijψp(t) = Ψ(t)θ′ij

where θij = (θ1,ij, θ2,ij, . . .) is the vector of coefficients of the random functions ob-

served for case i in the transform domain. Since we observe the random functions at a

finite number of time points, we need to truncate the summation in the decomposition

above. That is, estimate up to Pi coefficients where Pi < ∞. In the model formula-

tion above, Pi controls the smoothness of the estimated within-case mean Yi(t), and

therefore, its selection will impact the accuracy of the estimated cluster memberships.

Bugli and Lambert (2006) proposed using a large Pi = P to reduce the modeling bias
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but penalize the influence of the coefficients - penalized spline smoothing. Further,

we cluster the estimated mean coefficients θ̂i = 1
J

∑J
i=1 θ̂ij using common clustering

approaches for multivariate data (e.g. hierarchical clustering, k-means).

For densely observed random functions, we expect that this approach will perform

reasonably well since the coefficients θij are accurately estimated - θ̂ij are asymptot-

ically unbiased and consistent. On the other hand, under sparse design (i.e. each

random function is observed at a small number of design points), the coefficients θij

are inaccurately estimated which in turn, will result in inaccurate clustering mem-

bership estimation.

We overcome this difficulty by employing an estimation method which allows

borrowing strength across within-case measurements to improve the accuracy of the

estimated coefficients for individual cases. Our proposed algorithm for clustering at

level 1 is:

1. Apply MFPCA to impute the scores at level 1: ξ̂i,s.

2. Apply a multivariate clustering algorithm to the estimated scores ξ̂i,s where the

similarity measure is the Euclidean distance (d(i1, i2) = ||ξ̂i1 − ξ̂i2||2 for i1, i2 ∈ I).

This algorithm is equivalent to clustering the within-case means Yi(t) by shape

regardless of scale, or, more precisely, clustering by correlation in the functional space.

By borrowing strength across measurements, the clustering membership is more ac-

curately estimated than for the naive approach as supported by our simulation study

(see Section 3.6).

3.3.2 Level-2 Clustering

Clustering by similarity of between-case deviations reduces to estimation of a simi-

larity measure for within-case deviations {Wi1j}j=1,...,J and {Wi2j}j=1,...,J . For large

J and densely sampled time domain, one such measure is the dynamical correlation

for multivariate longitudinal data by Dubin and Müller (2005). However, it is rarely
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the case that we will have available a large number of measurements J per each case

observed at a large number of time points. Because of this limitation, we propose a

MFPCA-based approach as follows

1. Apply MFPCA to impute the scores at level 2: ζ̂ij,r.

2. Apply a multivariate clustering algorithm to the estimated coefficients ζ̂ij,r.

The similarity measure is the average

d(i1, i2) =
J∑

j=1

||ζ̂i1j − ζ̂i2j||2.

3.4 Model-based Clustering

An alternative approach to the hard clustering methods is to borrow strength across

random functions within the same cluster (James and Sugar, 2003) to improve the

estimation accuracy of the transform coefficients and the cluster memberships. In this

section, we introduce a model-based clustering approach which combines both ideas

- borrowing strength across random functions within the same cluster and within the

same case.

In model-based clustering, the underlying assumption is that the complete data

are bivariate variables (Xi, Zi) for i = 1, . . . , I where Xi are case-specific realizations

from a multivariate distribution and the cluster membership Zi is a latent variable

(Fraley and Raftery, 2002). A common estimation method for model-based clustering

is the Estimation-Maximization algorithm where at the Estimation step, we impute

or predict the cluster membership Z = (Z1, . . . , ZI) along with estimation of the

cluster weights π1, . . . , πK , and at the Maximization step, we estimate the parameters

specifying the conditional distribution of Xi|Zi, i = 1, . . . , I. Therefore, we need

to specify the conditional distribution Xi|Zi, i = 1, . . . , I and the distribution of

the latent variable Zi, which in turn, specify the distribution of the complete data.

The cluster membership of the ith case Zi follows a multinomial distribution with

proportion parameters π1, . . . , πK where K is the number of clusters. Xi|Zi = k, i =
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1, . . . , I are commonly assumed conditionally independent following a distribution

with cluster mean µk(t) and covariance function Σk(t, t
′).

Using a similar framework for clustering multilevel data, we assume that the

complete data are (Xij, Z
(1)
i , Z

(2)
i ) for i = 1, . . . , I and j = 1, . . . , J where Z

(1)
i and Z

(2)
i

are latent variables specifying the clustering membership at level 1, and respectively,

at level 2. We assume:

• The cluster membership Z
(1)
i of the ith case has a multinomial distribution with

proportion parameters π
(1)
1 , . . . , π

(1)
C1

where C1 is the number of clusters at level 1.

• The cluster membership Z
(2)
i of the ith case has a multinomial distribution with

proportion parameters π
(2)
1 , . . . , π

(2)
C2

where C2 is the number of clusters at level 2.

Level-1 Clustering. For clustering at level 1, we assume C2 = 1 but C1 ≥ 1.

Therefore, the joint data are (Xij, Z
(1)
i ). However, to model the distribution of the

joint data we need to specify the conditional distribution of Xi|Z(1)
i . Following the

unconditional distribution of Xi in (27), the conditional distribution is:

Xij(t)|(Z(1)
i = k) =

N1∑
s=1

νi,s,kφ
(1)
s (t) +

N2∑
r=1

ζij,rφ
(2)
r (t) + εij(t) with (29)

νi,k = (νi,1,k, . . . , νi,N1,k)
′ ∼ N(µk, Λ

(1)
k )

ζij = (ζij,1, . . . , ζij,N2)
′ ∼ N(0, Λ

(2)
j )

where µk = (µ1,k, . . . , µN1,k)
′ and Λ

(1)
k is a N1 × N1 diagonal matrix with diagonal

elements λ
(1)
k = (λ

(1)
1,k, . . . , λ

(1)
N1,k)

′. Under this conditional model, the conditional scores

νi,s,k = (ξi,s|Z(1)
i = k) for k = 1, . . . , C1 are assumed independent with conditional

mean µs,k and conditional variance λ
(1)
s,k. Here ξi,s for i = 1, . . . , I and s = 1, . . . , N1

are the unconditional scores at level 1 with a distribution following assumption A.1.

For this model, the scores at level 2 are unconditional of the clustering latent variable

Z(1), and therefore, their distribution follows the assumption A.3.
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From the conditional and unconditional models, we derive

0 = E(ξi,s) = E(E(ξi,s|Z(1)
i )) =

C1∑

k=1

π
(1)
k E(νi,s,k) =

C1∑

k=1

π
(1)
k µs,k (30)

τ (1)
s = V(ξi,s) =

C1∑

k=1

π
(1)
k (λ

(1)
s,k + µ2

s,k)− (

C1∑

k=1

π
(1)
k µs,k)

2 =

C1∑

k=1

π
(1)
k (λ

(1)
s,k + µ2

s,k)(31)

It follows that the clustering model at level 1 (Model 1) is




Xij(t) =
∑N1

s=1 ξi,sφ
(1)
s (t) +

∑N2

r=1 ζij,rφ
(2)
r (t) + εij(t)

ξi,s|(Z(1)
i = k) ∼ N(µs,k, λ

(1)
s,k)

Z
(1)
i ∼ Multinomial(1; π

(1)
1 , . . . , π

(1)
C1

)

ζij,r ∼ N(0, λ
(2)
j,r ) indep. of ξi,s,k, Z

(1)
i

(32)

subject to the constrain
∑C1

k=1 π
(1)
k µs,k = 0 by (30). We note that the relationship

between conditional and unconditional variances in equation (31) does not impose a

constraint.

Under this clustering set up, the kth cluster mean is

E(Xij(t)|Z(1)
i = k) = E(Yi(t)|Z(1)

i = k) =

N1∑
s=1

µs,kφ
(1)
s (t).

Level-2 Clustering. For clustering at level 2, we assume C1 = 1 but C2 ≥ 1.

Therefore, the joint data are (Xi, Z
(2)
i ) and the conditional distribution of Xi|Z(2)

i is:

Xij(t)|(Z(2)
i = k) =

N1∑
s=1

ξi,sφ
(1)
s (t) +

N2∑
r=1

δij,r,kφ
(2)
r (t) + εij(t) with (33)

ξi = (ξi,1, . . . , ξi,N1)
′ ∼ N(0, Λ(1))

δij,k = (δij,1,k, . . . , δij,N2,k)
′ ∼ N(ηjk, Λ

(2)
j,k)

where ηjk = (ηj,1,k, . . . , ηj,N2,k)
′ and Λ

(2)
jk is an N2×N2 diagonal matrix with diagonal

elements λ
(2)
jk = (λ

(2)
j,1,k, . . . , λ

(2)
j,N2,k)

′. Under this conditional model, the conditional

scores at level 2, δij,r,k = (ζij,r|Z(2)
i = k), are assumed independent with conditional

mean ηj,r,k and conditional variance τ
(2)
j,r,k for k = 1, . . . , C2. Here ζij,r’s are the un-

conditional scores in the unconditional model (28) assumed independent with mean
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zero (E(ζij,r) = 0) and constant variance across cases (V(ζij,r) = τ
(2)
j,r ) as provided in

assumption A.3.

From the conditional and unconditional models, we derive

0 = E(ζi,s) = E(E(ζi,s|Z(2)
i )) =

C2∑

k=1

π
(2)
k E(δi,s,k) =

C2∑

k=1

π
(2)
k ηs,k (34)

τ
(2)
j,r = V(ζij,r) =

C2∑

k=1

π
(2)
k (λ

(1)
j,r,k + η2

j,r,k)− (

C2∑

k=1

π
(2)
k ηj,r,k)

2 =

C2∑

k=1

π
(2)
k (λ

(1)
j,r,k + η2

j,r,k)(35)

Similar to the clustering model at level 1, the clustering model at level 2 (Model

2) is 



Xij(t) =
∑N1

s=1 ξi,sφ
(1)
s (t) +

∑N2

r=1 ζij,rφ
(2)
r (t) + εij(t)

ζij,r|(Z(2)
i = k) ∼ N(ηj,k, Λ

(1)
j,k)

Z
(2)
i ∼ Multinomial(1; π

(2)
1 , . . . , π

(2)
k )

ξi,s ∼ N(0, τ
(1)
s ) indep. of ζij,r,k, Z

(2)
i

(36)

subject to the constraint
∑C2

k=1 π
(2)
k ηj,r,k = 0 by (34). On the other hand, the rela-

tionship between unconditional and conditional variances in equation (35) does not

imposes a constraint but it requires that the unconditional variances vary with the

measurement type when ηjk also vary with the measurement type leading to assump-

tion A.3 in Section 3.2. However, MFPCA as introduced by Di et al. (2009) does

not allow for the eigenvalues at level-2 to vary with the measurement type. For this

reason, the estimated level-2 scores will provide lower accuracy clustering for larger

number of measurement types J ; this observation is supported in our simulation

study.

Under this clustering set up, the kth cluster trend for the jth condition is

E(Xij(t)|Z(2)
i = k) = E(Wij(t)|Z(2)

i = k) =

N2∑
r=1

ηj,r,kφ
(2)
r (t).

The formulation of the level-1 and level-2 joint clustering model is provided in the

Appendix along with the estimation method that applies not only to the joint model

but also to the reduced models discussed in this section.
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3.5 Model Selection

The clustering models described in the previous section depend on a series of param-

eters which are assumed fixed: C1, C2, N1 and N2. We identify two model selection

problem (1) Selecting the number of eigenfunctions which explain a large percentage

of the variability between cases (selecting N1) and within cases (selecting N2); and

(2) Selecting the number of clusters at level 1 (selecting C1) and/or the number of

clusters at level 2 (selecting C2). We can select N1 and N2 using the unconditional

model (MFPCA). Di et al. (2008) and Di and Crainiceanu (2010) discuss various

alternative methods for selection of the number of basis functions and we follow their

direction.

There are several existing methods for estimating the number of unknown clus-

ters for model-based clustering (Fraley and Raftery, 2002; Sugar and James, 2003).

Since our clustering algorithm is model-based, the problem of identifying the number

of clusters is equivalent to a model selection problem since each number of clus-

ters corresponds to a different model. Consequently, we will focus our attention on

likelihood-based approaches.

Common variable selection methods, such as the Akaike information criterion

(AIC), and Bayesian information criterion (BIC) have been employed for estimating

the number of clusters (Fraley and Raftery, 2002). Both criteria select the number of

clusters which minimizes the objective function of the form

−2 log L(Ψ) + 2J(C1, C2)

where log L(Ψ̂) is the log likelihood of observed data which measures the lack of fit.

In our multi-level clustering model,

log L(Ψ) =
I∑

i=1

C1∑

k=1

C2∑

k′=1

π
(1)
k π

(2)
k′ log f(Xi; µk, ηk′ , Λ

(1)
k , Λ

(2)
k′ , σ2).

The second term 2J(C1, C2) is the penalty term that measures the complexity of the
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model. For AIC, 2J = 2d and 2J = (log I)d for BIC where d = 2C1K1 + 2C2K2 −
K1 −K2 + C1 + C2 − 1 is the number of parameters.

Many authors (for example, Koehler and Murphee, 1988) observed that mod-

els selected using AIC tend to overfit as AIC prefers larger models. In the model-

based clustering context, this translates into overestimation of the number of clusters

(Soromenho, 1933; Celeux and Soromenho, 1996). Alternatively, the likelihood cor-

rection using BIC selects more parsimonious models. Consequently, BIC selection

criteria has been often used in model-based clustering (Fraley and Raftery, 1998).

Lereoux (1992) has shown that BIC does not underestimate the true number of com-

ponents, asymptotically.

Indeed, in our simulation studies (not reported here), we have assessed the number

of clusters for various settings and with the number of clusters ranging from 2 to 10.

Similarly to past research, BIC most often correctly identifies the number of clusters

whereas AIC overestimates the number of clusters in average adding 2 additional

clusters from the true clustering.

3.6 Simulation Studies

3.6.1 Level-1 Clustering

The first objective of this research is to assess the accuracy of the clustering mem-

bership under two comparative settings: 1. Sparse vs. dense sampling design; and 2.

Naive vs. hard vs. soft clustering.

We generate samples of functions from the joint model (Xi, Z
(1)
i ) described in

Section 3.4. Specifically, we generate Z
(1)
i , the clustering membership, from multino-

mial distribution with fixed cluster weights π
(1)
1 , . . . , π

(1)
C1

across all simulations. For

simplicity, we choose C1 = 2 with π
(1)
1 = 1/3 and π

(1)
2 = 2/3.

We simulate for I = 100 cases with N1 = 4 eigenfunctions at level 1 and N2 = 4

eigenfunctions at level 2. The conditional variances at level 1 are generated according
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to the two different settings:

• Equal conditional variances across clusters: λs,k = 0.9s−1 for k = 1, . . . , C1; and

• Varying conditional variances across clusters: λs,k = 22(k−s)−1.

The unconditional variances (true eigenvalues) at level 2 are τjr = j+1
22r . The

conditional means at level 1 are µ1 = (3, 2, 1, 0) and µ2 = (−1.5,−1,−0.5, 0) selected

such that
∑C1

k=1 π
(1)
k µs,k = 0. The eigenfunctions are

Φ(1)(t) = (
√

2 sin(2πt),
√

2 cos(2πt),
√

2 sin(4πt),
√

2 cos(4πt))

Φ(2)(t) = (1,
√

3(2t− 1),
√

5(6t2 − 6t + 1),
√

7(20t3 − 30t2 + 12t− 1).

Note that the basis of function at level 2 is mutually non-orthogonal. The noise level

is σ = 2. We vary the number of maximum observations per random function, m =

4, 6, 10, 15 and the number of measurement types per case, J = 2, 3, 4, 5. We expect

higher accuracy of the clustering membership with a larger number of observations

and a larger number of repeated measurements when m small.

In our simulation example, because we have the true clustering membership, we

can assess the accuracy of the clustering prediction for the method introduced in this

chapter and other existing methods using a clustering/classification error.

We measure the clustering error using Rand index (Rand, 1971), which is the

fraction of all misclustered pairs of functions. Let C = {f1, . . . , fS} denote the set of

true functions, Ĉ = {f̂1, . . . , f̂S} denote the set of estimated functions, and T and T̂

denote the true and estimated clustering maps, respectively. Rand index is defined

by

R(C, Ĉ) =

∑
r<s I(Tk(fr, fs) 6= T̂k(fr, fs))

(N
2 )

.

Therefore, the Rand index is low when there are only few misclustered functions.

We report the estimation accuracy of the clustering membership under the as-

sumption of hard clustering for varying number of maximum number of design points

per function (N) and maximum number of repeated measurements per case (J). We
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compare the naive clustering and MFPCA clustering approaches discussed in Section

?? to the model-based clustering approach discussed in Section 3.4. In the tables

below, we denote with ∗ simulations in which the naive clustering algorithm was

computationally unstable; these are settings in which m is small.

Tables 7 and 8 provide the 1-Rand index for clustering data generated as described

above; the Rand index is used to assess the clustering accuracy. Tables 9 and 10

provide the relative mean square error (RMSE) for the clustering patterns calculated

as

RMSE =
1

C1

C1∑

k=1

∫
T (µk(t)− µ̂k(t))

2 dt∫
T µ2

k(t) dt
.

The values reported for the Rand index and mean squared errors are averages over the

100 simulations. The RMSE is used to assess the accuracy of the clustering patterns.

We brief the estimation accuracy results as follows:

• There is a significant improvement in estimation accuracy for both the cluster-

ing membership and clustering patterns from the naive approach to MFPCA-based

clustering;

• For equal conditional variances, the MFPCA-based and model-based clustering

methods perform similarly whereas for varying conditional variances, a more realistic

setting, the model based clustering performs better uniformly over all settings;

• As J and m increase, the clustering estimation accuracy increases; when compar-

ing m = 10 to m = 15 there is little gain in the estimation accuracy which indicates

that the extra number of observations per random functions will not add much to

the accuracy for this simulation setting. On the other hand, an increase in J leads

to more significant increase in estimation accuracy.

3.6.2 Level-2 Clustering

To assess the clustering performance of our model-based method at level 2, we sim-

ulate C2 = 2 clusters with π
(2)
1 = 1/3 and π

(2)
2 = 2/3. The true eigenfunctions are
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Table 7: Equal variance: Rand index for the clustering membership at level 1: Naive
Approach|Hard Clustering|Soft Clustering

m = 4 m = 6
J = 2 * | 0.083 | 0.097 * | 0.054 | 0.054
J = 3 * | 0.068 | 0.070 0.127 | 0.038 | 0.040
J = 4 * | 0.056 | 0.047 0.093 | 0.037 | 0.037
J = 5 0.182 | 0.045 | 0.045 0.077 | 0.038 | 0.047

m = 10 m = 15
J = 2 0.086 | 0.041 | 0.029 0.057 | 0.028 | 0.018
J = 3 0.061 | 0.028 | 0.034 0.035 | 0.026 | 0.023
J = 4 0.040 | 0.028 | 0.036 0.029 | 0.023 | 0.017
J = 5 0.037 | 0.023 | 0.035 0.025 | 0.017 | 0.027

Table 8: Varying variance: Rand index for the clustering membership at level 1:
Naive Approach|Hard Clustering|Soft Clustering

m = 4 m = 6
J = 2 * | 0.106 | 0.061 0.190 | 0.090 | 0.039
J = 3 * | 0.092 | 0.052 0.110 | 0.091 | 0.036
J = 4 0.170 | 0.072 | 0.026 0.105 | 0.054 | 0.024
J = 5 0.114 | 0.070 | 0.039 0.071 | 0.067 | 0.022

m = 10 m = 15
J = 2 0.100 | 0.089 | 0.025 0.082 | 0.075 | 0.018
J = 3 0.070 | 0.057 | 0.016 0.092 | 0.089 | 0.029
J = 4 0.056 | 0.052 | 0.023 0.061 | 0.071 | 0.028
J = 5 0.061 | 0.091 | 0.035 0.068 | 0.075 | 0.025

Table 9: Equal variance: RMSE for the clustering patterns at level 1: Naive
Approach|Hard Clustering|Soft Clustering

m = 4 m = 6
J = 2 * | 0.0822 | 0.0934 * | 0.0404 | 0.0535
J = 3 * | 0.0546 | 0.0772 0.170 | 0.037 | 0.05
J = 4 * | 0.0486 | 0.0559 0.11 | 0.032 | 0.047
J = 5 0.19 | 0.043 | 0.055 0.055 | 0.029 | 0.066

m = 10 m = 15
J = 2 0.085 | 0.028 | 0.03 0.046 | 0.021 | 0.023
J = 3 0.048 | 0.022 | 0.045 0.025 | 0.020 | 0.027
J = 4 0.031 | 0.026 | 0.046 0.020 | 0.021 | 0.023
J = 5 0.025 | 0.020 | 0.047 0.018 | 0.017 | 0.042
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Table 10: Varying variance: RMSE for the clustering patterns at level 1: Naive
Approach|Hard Clustering|Soft Clustering

m = 4 m = 6
J = 2 * | 0.087 | 0.076 0.329 | 0.071 | 0.043
J = 3 * | 0.05 | 0.058 0.120 | 0.073 | 0.042
J = 4 0.177 | 0.063 | 0.039 0.11 | 0.047 | 0.037
J = 5 0.12 | 0.059 | 0.057 0.069 | 0.062 | 0.036

m = 10 m = 15
J = 2 0.13 | 0.066 | 0.032 0.097 | 0.057 | 0.022
J = 3 0.075 | 0.047 | 0.025 0.085 | 0.075 | 0.042
J = 4 0.052 | 0.038 | 0.035 0.061 | 0.054 | 0.038
J = 5 0.048 | 0.064 | 0.051 0.066 | 0.083 | 0.029

the same as in the previous section and the unconditional variances (true eigenval-

ues) at level 1 are λs,k = 0.9s−1. The conditional means at level 2, ηj,k, are selected

such that
∑C2

k=1 π
(2)
k ηj,k = 0. Since in our simulations we compare the accuracy with

J = 2, 3, 4, 5, the conditional means for the cluster 1 are as follows

η1,1 = (4, 3, 2, 1), η2,1 = (4,−3, 2,−1), η3,1 = (4,−3,−2, 1),

η4,1 = (−4, 3,−2, 1), η5,1 = (−4,−3,−2,−1)

and the means for the cluster 2 are

η1,2 = (−2,−1.5,−1,−0.5), η2,2 = (−2, 1.5,−1, 0.5), η3,2 = (−2, 1.5, 1,−0.5),

η4,2 = (2,−1.5, 1,−0.5), η5,2 = (2, 1.5, 1, 0.5).

The conditional variances at level 2 are λjr,k =
akj

2(2(r−1)) where akj is a scaling constant

randomly generated from Unif(0.5, 1.5) (varying across clusters and across replicates

within each case).

Tables 11 and 12 provide the accuracy of the clustering membership measured by

the Rand index and the accuracy of the clustering patterns measured by the mean

square error for the simulation setting above. Note that we don’t show the results

for equal level-2 conditional variances as this is not a realistic assumption because of

the constraint given by (35). We brief the estimation accuracy results as follows:
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Table 11: Rand Index for the clustering membership at level 2: Hard Clustering|Soft
Clustering

m = 4 m = 6 m = 10 m = 15
J = 2 0.149 | 0.090 0.073 | 0.035 0.005 | 0.003 0.001 | 0.000
J = 3 0.468 | 0.202 0.478 | 0.177 0.475 | 0.143 0.470 | 0.093
J = 4 0.468 | 0.071 0.474 | 0.079 0.481 | 0.098 0.473 | 0.091
J = 5 0.461 | 0.182 0.464 | 0.165 0.477 | 0.116 0.469 | 0.114

Table 12: RMSE for the clustering patterns at level 2: Hard Clustering|Soft Clustering

m = 4 m = 6 m = 10 m = 15
J = 2 1.232 | 1.284 1.268 | 1.276 1.242 | 1.243 1.248 | 1.235
J = 3 1.234 | 1.221 1.202 | 1.193 1.213 | 1.208 1.208 | 1.252
J = 4 1.170 | 1.094 1.198 | 1.184 1.223 | 1.187 1.253 | 1.124
J = 5 1.307 | 1.213 1.342 | 1.260 1.271 | 1.325 1.186 | 1.207

• As J increases, the clustering membership accuracy improves significantly for

the model-based clustering approach as compared to the hard-clustering on the es-

timated level-2 MFPCA scores. One reason for this significant improvement is that

the MFPCA approach assumes equal conditional variances of the scores whereas the

model-based clustering does not (assumption A.3).

• An increase in m does not improve the accuracy of the clustering membership

estimated using the MFPCA-based hard clustering approach but it does improve the

accuracy for the model-based clustering.

• The accuracy of the model-based clustering also decreases as J increases; this

is because the initial clustering membership for the model-based clustering method

is based on the MFPCA estimated level-2 scores.

• Although the clustering membership is not accurately estimated by the hard

clustering approach as compared to the model-based approach, the RMSE of the

clustering patterns is comparable for both methods. Therefore, both methods capture

the clustering patterns equally well but they provide different clustering memberships.
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3.7 Case Study

Sales forecasting plays a fundamental role in retail business strategy. Accurate sales

forecasting can help a retail provider make appropriate decisions on inventory man-

agement as well as provide valuable input to the company’s operating and financial

planning systems. For perishable goods, accurate forecasting results in decreased loss

due to over- or under-supplying. Sales demand data may show high variation or may

be insufficient to construct reliable forecast models at the individual product level.

Recent retail sales forecasting methods have taken advantage of the intrinsic hi-

erarchy of product categorizations. The hierarchical structure extends from category

of products to multiple stores. When forecast demand at the detailed level (single

product, single store, single week level) is of primary interest, retailers commonly

forecast sales in a higher aggregation level because detailed forecasting can be more

difficult than aggregated forecasting. An important difficulty in aggregate forecasting

is identifying a meaningful categorization.

To this end, we apply the clustering approach introduced in this chapter to a

database of product sales from a large retailer in the U.S. The sales for each product

are aggregated at the geographic region to overcome the sparsity of the sales. Specif-

ically, we observe monthly count sales of I products within J geographic regions:

Xij(t) where the t is the month index varying over a period of 2 years (i.e. m = 24).

Although the data are discretely observed since the number of counts is large we use

the variance stabilization transformation
√

Xij + 3/8 and apply the clustering algo-

rithm under the assumption of normality. The extension of the clustering algorithm

to count data will be discussed elsewhere.

The objective of this study is to obtain a clustering of products by similarity in

sales across geographic regions. The clustering of products may be used in conjunc-

tion with forecasting methods that allow borrowing information across products to

enhance the prediction accuracy.
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Remarks: right now we are still waiting for the data and will complete the analysis

once the data are in hands.

3.8 Discussions

In this chapter, we introduce a means for clustering functional data with an intrinsic

hierarchical structure; the clustering algorithm identifies groups of functions which

are similar in their within- or/and between random trends. The underlying clustering

(hard or soft) begins with the specification of a model using functional principal com-

ponent analysis and either clusters the resulting estimated scores using common hard

clustering or updates the estimated scores assuming a clustering model. The estima-

tion procedure for the latter approach is iterative and therefore more computational

expensive.

From our simulation studies, we find that clustering by similarity of within-case

means at level-1 using either of the two approaches will provide similar results as

soon as there is not a significant difference in within-cluster variability across clusters.

Therefore, the extra computational cost incurred by updating the scores using the

clustering model will be worth when the variability across functions assigned to the

same cluster will largely vary from one cluster to another. If the number of cases

to be clustered is not large (I ∼ 100 − 1000), we advice in proceeding with the

model-based clustering as the additional computational cost is not great. On the

other hand, for large I either a more computational efficient implementation of the

model-based clustering method should be considered or simply the application of the

hard clustering approach with the understanding of its shortcomings.

Clustering by similarity of between-case deviations at level 2 is more difficult as it

pools information across multiple functions simultaneously. The hard clustering ap-

proach using the estimated scores from MFPCA provides inaccurate clustering as J ,
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the number of measurements, increases. This may primarily be because of the restric-

tive assumption that the eigenvalues do not vary with the measurement type. After

updating the scores using the clustering model, the accuracy of the estimated clus-

ter membership improves significantly however not so the accuracy of the estimated

cluster patterns. The reason for poor estimation of the cluster patterns regardless of

the clustering approach is the estimation inaccuracy of the eigen-functions provided

by the MFPCA approach. One way to overcome this problem is to update the eigen-

function within a more complex clustering model or to assume fixed eigen-functions

from a known basis of functions (James et al., 2000). These alternative methods will

be discussed elsewhere.

83



CHAPTER IV

FUTURE WORK: A MULTILEVEL SPACE-TIME

AUTOREGRESSIVE MODEL

4.1 Introduction

In many real applications, the data are areal data collected over geographic regions

such as states, counties or census tracts and thus with an intrinsic hierarchical struc-

ture. Often, the variables of interest come from different data sources observed at

different spatial resolution. In this chapter, our focus is on developing a statistical

model for estimating temporal and spatial associations of a series of time-varying

variables observed at different spatial resolution levels to a primary response variable

observed at the highest spatial resolution level. Specifically, we observe a response

variable Yij,k,t at the kth census tract in the jth county and ith state and at the time

point t. We also observe multiple predictor variables at varying geographic levels:

Xij,k,t at the census tract level, Ri,j,t at the county level and Zi,t at the state level.

Importantly, we are not only interested in contemporaneous associations but also in

spatial and temporal lagged associations often referred to as Granger causal effects.

Our underlying objective is to simultaneously estimate and make inference on

• Autoregressive spatial-temporal associations:

Yij,k,t ∼ Yij,∂δ1
k,t−l1 .

• Autoregressive spatial-temporal associations at lower spatial resolutions:

Yij,k,t ∼ Yi,∂δ2
j,k,t−l2 , Y∂δ3

i,j,k,t−l3 .

• Exogenous lagged and concurrent spatial-temporal associations:

Yij,k(t) ∼ Xij,∂δ1
k,t−l1 , Xi,∂δ2

j,k,t−l1 , X∂δ3
i,j,k,t−l1 , Ri,∂δ2

j,t−l2 , R∂δ1
i,j,t−l2 , Z∂δ3

i,t−l3
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for δ1, δ2, δ3 ≥ 0, and l1, l2, l3 ≥ 0. In the lagged spatial associations above, ∂δ1k is

the index of the δ1-closest census tract from the kth census tract, ∂δ2j is the index

of the δ2 -closest counties from the jth county and ∂δi
i is the index of the δ3-closest

state from the ith state.

To study the association between variables observed at different resolution levels,

one alternative is to use techniques in the literature of ’Change of Support Prob-

lem’ (COSP) to bring all variables to a homogeneous resolution level or support.

Alternative approaches in COSP have been reviewed by Gottway and Young (2002).

Challenges arising in the application of these techniques to our statistical model are

multiple. First, the variables in our study are not only varying with space but also

with time. Second, we have multiple predictors at varying resolutions levels that

require undergoing a change of support. Third, we estimate various associations (e.g.

lagged vs. concurrent, spatial vs. temporal). Therefore, the application of COSP ap-

proaches prior to modeling the underlying associations will lead to a computationally

complex approach with intricate and difficult to assess modeling biases due to the

disaggregation effect. To sidestep the difficulties arising from changing the support

of one or more predictor variables, we introduce a multilevel autoregressive model in

which spatial and temporal associations are modelled at each spatial resolution level.

Our methodological contribution is two fold. First, we introduce a multilevel au-

toregressive model which allows estimation of spatial-temporal concurrent and lagged

effects of the response variable itself as well as of exogenous variables which are ob-

served at various spatial resolution levels. importantly, autoregressive spatial effects

enter the model not only at the highest resolution level at which the response variable

is observed but also at the lower resolution levels.

Second, in order to assess the significance of the autoregressive and exogenous

spatial-temporal effects we investigate the classical boosting method for variable se-

lection in the context of the more complex modeling framework in this paper. In this
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chapter, we use boosting as the basis for our model selection method because it can

be extended to the multilevel autoregressive model discussed in this paper and it does

not require orthogonality between the variables to be selected.

The endpoint of the statistical model developed in this paper is to infer a multi-

level graphical model describing the Granger causality of a series of predictors which

are observed at various spatial resolutions to a space-time varying response variable.

Granger causality (Granger 1969) developed by the Nobel prize winning economist,

Clive Granger, is a statistical concept of causality that is based on prediction. Accord-

ing to Granger causality, if the past values of a variable X contain information that

helps predict Y beyond the information contained in past values of Y alone, then X

is said to Granger-cause Y . In the time series literature, Granger causality has been

mainly focused in temporal causality effects. An important contribution of this work

is that the resulting graphical model will not only describe temporal causal effects

but also spatial causal effects. In many applications such as the accessibility study

in this paper, the accessibility at a certain location will not only be influenced by the

past activities within the local area but also those of the neighboring/surrounding

regions.

4.2 The Model

The observed data are:

• Sampling spatial units: census tracts (s1, . . . , sK1) which are nested in counties

(u1, . . . , uK2) which in turn are nested in states (v1, . . . , vK3).

• An underlying response variable that varies in space and time: Yijk,t = Yij(sk, t)

where sk is a census tract in county uj and state vi.

• Predictor variables observed at the census tract level: Xijk,t = Xij(sk, t) where

sk is a census tract in county uj and state vi.

• Predictor variables observed at the county level: Rij,t = Ri(uj, t) where uj is a
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Table 13: Multi-level space-time autoregressive model

Spatio-temporal autoregressive Spatio-temporal casual
Census Tract Yij,∂dk,t−l Xij,∂dk,t−l

County µY
i,∂dj,t−l Ri,∂dj,t−l, µ

X
i,∂dj,t−l

State µY
∂di,t−l X∂di,t−l, µ

X
∂di,t−l, µ

R
∂di,t−l

county within the state vi.

• Predictor variables observed at the state level: Zi,t = Z(vi, t).

The model we investigate is:

Yijk,t =

D1y∑

d=0

L1y∑

l=1

αY
dlYij,∂dk,t−l +

D1x∑

d=0

L1x∑

l=0

αX
dlXij,∂dk,t−l +

L2y∑

l=1

µY
ij,t−l +

L2x∑

l=1

µX
ij,t−l + εijk,t

where µY
ij,t−l and µX

ij,t−l are county-level random effects decomposed as follows

µY
ij,t−l =

D2y∑

d=1

βY
dlµ

Y
i,∂dj,t−l +

D2r∑

d=0

βR
dlRi,∂dj,t−l + µY

i,t−l + µR
i,t−l + ηY

ij,t−l

µX
ij,t−l =

D2x∑

d=1

βX
dl µ

X
i,∂dj,t−l + µX

i,t−l + ηX
ij,t−l

where, in turn, µY
i,t−l, µR

i,t−l and µX
i,t−l are state-level random effects further decom-

posed

µY
i,t−l =

D3y∑

d=1

γY
dlµ

Y
∂di,t−l +

D2z∑

d=0

γZ
dlZ∂di,t−l + µY

t−l + µZ
t−l + ξY

i,t−l

µX
i,t−l =

D3x∑

d=1

γX
dl µ

X
∂di,t−l + µX

t−l + ξX
i,t−l

µR
i,t−l =

D3r∑

d=1

γR
dlµ

R
∂di,t−l + µR

t−l + ξR
i,t−l

Finally, µY
t−l ∼ N(0, σ2

y,l), µZ
t−l ∼ N(0, σ2

z,l), µX
t−l ∼ N(0, σ2

x,l) and µR
t−l ∼ N(0, σ2

r,l)

are random coefficients accounting for the unexplained variability at the lth lag. The

error terms in the model are:

• εijk,t assumed independently and identically distributed with mean 0 and vari-

ance σ2
1;

87



• ηY
ij,t−l and ηX

ij,t−l assumed independent with standard deviances σY
2 , and respec-

tively, σX
2 ; and

• ξY
i,t−l, ξX

ij,t−l and ξR
i,t−l assumed independent with standard deviances σY

3 , σX
3 ,

and respectively, σR
3 .

The parameters to be estimated are:

• Level 1: αY
dl and αX

dl as well as the error standard deviation σ1;

• Level 2: βY
dl , βX

dl and βR
dl as well as the error standard deviations, σY

2 and σX
2 ;

• Level 3: γY
dl , γX

dl , γR
dl and γZ

dl as well as the error standard deviations, σY
3 , σX

3 ,

and σR
3 .

This is still an on-going research work and I will continue working on it.
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APPENDIX A

FITTING ALGORITHM OF SPATIAL CLUSTERING

MODEL

The details of the E and M iterative steps in the modified EM estimation algorithm

are provided below:

E-step In the E-step, we need to calculate the conditional expectation of L(Θ),

given the observed data Y .

Q(Θ) = E[− log L(Θ)|Y ] = −E[log f(Y |Z)]− E[log f(γ)]− E[log f(z1, . . . , zS)]

≈ −E[log f(Y |Z)]− E[log f(γ)]−
S∑

j=1

E[log f(zsj
|z∂sj

; ψ)]

=
1

2

S∑
j=1

C∑

k=1

zjk[T log σ2
ε +

1

σ2
ε

S∑
j=1

‖Yj − 1T µ0,j − ΦT βk −XS,jα−HT E(uk|Y )−HS,jE(wJ |Y )‖2]

+
1

2

C∑

k=1

[T log σ2
k + E(u′kuk|Y )/σ2

k] +
1

2
[J log σ2

s + E(w′
JwJ |Y )/σ2

s ]−
S∑

j=1

C∑

k=1

zjk log(πjk)

where XS,j = ΦS,j⊗1T and HS,j = H̃S,j⊗1T ; XS,j and H̃S,j are the jth row of ΦS and

H̃. We use the pseudo-likelihood 7 to approximate the joint likelihood f(z1, . . . , zS).

The predicted cluster membership zjk = E[zsj
= k|Yj] =

πjkf(Yj |zsj )
∑C

k=1 πjkf(Yj |zsj )
. In this

chapter, we define πjk defined through the Gibbs distribution as in the Equation 6,

and thus we perform a hard clustering in the each iteration. We predict Zj = k if

zjk = E[zsj
= k|Yj] is maximized among all the k.

In addition to reconstructing the cluster membership, at the E-step, the random

effects γ = (u′1, . . . , u
′
C , w′

J)′ are also predicted from the conditional distribution γ|Y
given by

N((σ2
εΓ

−1 + H ′H)−1H ′ (Y − Iµ0 −XT β −XSα) , (Γ−1 + H ′H/σ2
ε)
−1).
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M-step The parameters µ0, β1, . . . , βC , α, σ2
ε are estimated by maximizing the expec-

tation of the likelihood function f(Y |γ, Z; µ0, β1, . . . , βC , α, σ2
ε). The constraint on the

cluster fixed effects (β1+ . . .+βC = 0) ensures identifiability of the model parameters.

The estimates of curve-specific offset parameters are

µ̂0,j =
1

T

T∑
i=1

[
Yij −

p∑
ν=1

φT,ν(ti)β̂zsj ,ν −
q∑

ν=1

φS,ν(sj)α̂ν −
T∑

m=1

{HT}i,mûzsj ,m −
J∑

n=1

{H̃S}j,nŵJ,n

]

β̂1, . . . , β̂C are estimated by solving a Lagrange multiplier problem,

min
β1,...,βC ,λ

S∑
j=1

‖Yj − 1T µ̂0,j − ΦT βzj
−XS,jα̂−HT ûzj

− H̃S,jŵJ‖2 + λ(β1 + . . . + βC)

where λ is the Lagrange multipier. The estimates of the spatial fixed effects are

α̂ =
1

T
(Φ′

SΦS)−1

S∑
j=1

Φ′
S

(
Yj − 1T µ̂0,j − ΦT β̂zsj

−HT ûzsj
− H̃S,jŵJ

)
.

Denote ε = Y−Iµ0−XT β−XSα−Hγ, the variance component of the measurement

error is estimated by

σ̂2
ε =

1

ST
E[ε′ε|Y, Z] =

1

ST
ε̂′ε̂ +

1

ST
trace[Hcov(γ|Y, Z)H ′].

The variance components of the random effect γ are estimated by maximizing the

expectation of f(γ|Y, Z; σ2
1, . . . , σ

2
K , σ2

s). We derive that

σ̂2
k =

1

T
E[u′kuk|Y, Z] =

1

T
trace[cov(uk|Y, Z)] +

1

T
û′kûk,

σ̂2
s =

1

J
E[w′

JwJ |Y, Z] =
1

J
trace[cov(wJ |Y, Z)] +

1

J
ŵ′

JŵJ .

The interaction parameter ψ in the Gibbs distribution 6 is computed through maxi-

mizing the pseuodo-likehhood.

E[f(z1, . . . , zS)|Y ] ≈
S∏

j=1

E[f(zsj
|z∂sj

; ψ)]

It does not have an explicit formula; we use a numeric approach to estimate this

parameter.
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APPENDIX B

SERVICE ACCESSIBILITY CLUSTERING:

COMPARATIVE PLOTS

In this section, we complement our discussion about the service accessibility cluster-

ing in California and Georgia with two sets of comparative plots. The first set of

plots shows the accessibility curves assigned to clusters as identified with the method

introduced in this paper. Each figure corresponds to one cluster and the highlighted

red line is the cluster mean. Similarly, the second set of plots shows the accessibility

curves assigned to clusters generated by the comparative clustering method. We ap-

plied the Fclust method after re-scaling the curves to cluster by shape regardless of

scale.

From the set plots for California, we conclude:

• The clustering method introduced in this paper assigns most of the flat curves

in cluster 3 which consists of about 83% of the accessibility curves. The rest of the

clusters have defined patterns with no overlapping patterns across clusters. (Figure

10)

• The comparative clustering method, Mclust, assigns a large percentage of the

flat curves throughout all clusters. Subsequently, most of the cluster patterns are flat

without significant differences between clusters. (Figure 11)

• Because of numerical instability, we could not obtain the cluster patterns for

California using Fclust.

• The Rand index R(C̃, Ĉ) is about 0.575 where C̃ is the Mclust clustering mem-

bership and Ĉ is the FSCM clustering membership.
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From the set plots for Georgia, we conclude:

• The clustering method introduced in this paper assigns most of the flat curves in

cluster 2 which consists of about 83% of the accessibility curves. The cluster patterns

are similar for Clusters 5 and 6, and for Clusters 2 and 4. (Figure 12)

• The comparative clustering method, Mclust, assigns a large percentage of the

flat curves throughout all clusters. Subsequently, most of the cluster patterns are flat

(except Cluster 1) without significant differences between clusters. The accessibility

functions are approximately uniformly spread over the 7 clusters. (Figure 11)

• The comparative clustering method, Fclust, discovers similar patterns to FSCM

but smoother. Similarly, the largest cluster consists of the constant curves with a

small number of curves assigned to the other 6 clusters. The cluster patterns are

similar for Clusters 1 and 2, for Clusters 3 and 4, and for Clusters 6 and 7. The

outlying cluster 7 provided by FCSM is not discovered by Fclust (Figure 14)

• The Rand index R(C̃, Ĉ) is about 0.413 when C̃ is the Mclust clustering mem-

bership and it is about 0.161 when C̃ is the Fclust clustering membership.
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Figure 10: California: µk(t) for 9 Clusters provided by FSCM
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Figure 11: California: µk(t) for 9 Clusters provided by Mclust.
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Figure 12: Georgia: µk(t) for 7 Clusters provided by FSCM
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Figure 13: Georgia: µk(t) for 7 Clusters provided by MClust.
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Figure 14: Georgia: µk(t) for 7 Clusters provided by Fclust.
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APPENDIX C

PROOF OF THEOREM 1

Denote Mt = 1
m

Φ′Φ and Ms = 1
n
Ψ′Ψ, then

{Mt}l,l′ =
1

m

m∑
i=1

φl(ti)φl′(ti), {Ms}k,k′ =
1

n

n∑
j=1

ψl(sj)ψk′(sj).

In order to show the asymptotic result in Theorem 1, we first need the following

proposition.

Proposition 1. Under the assumption (A.1), (A.2) and (A.3), the elements of

M−1
T and M−1

S are bounded.

Proof:

We show the stated results for the matrix Ms. Applying the eigen-decomposition

Ms = QΛQ′, then M−1
s = QΛ−1Q′ where Λ is the diagonal matrix of the eigenvalues

λ1, . . . , λnS
and Q is the unitary matrix where its kth column qk is the correspond-

ing eigenvector of λk. Since the kk′th element of Ms is mS
kk′ = 1

n

∑n
j=1 KS(‖sj −

κS
k‖)KS(‖sj − κS

k′‖), we find that the difference between two elements within the

same row of matrix Ms is bounded

mS
kk1
−mS

kk2
=

1

n

n∑
j=1

KS(‖sj − κS
k‖)[KS(‖sj − κS

k1
‖)−KS(‖sj − κS

k2
‖)]

Under (A.2), when n is large, we approximate the sum using the Riemann integral

mS
kk1
−mS

kk2
≈

∫

S
KS(‖s− κS

k‖)[KS(‖s− κS
k1
‖)−KS(‖s− κS

k2
‖)]ds

We apply first order Taylor expansion on KS(‖s− κS
k‖) at 0 as the follows,

KS(‖s− κS
k‖) =

ps∑
p=0

1

p!
K

(p)
S (0)(‖s− κS

k‖)p + o((‖s− κS
k‖)ps).
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Then

|mS
kk1
−mS

kk2
| ≈ |

∫

S
KS(‖s− κS

k‖)
ps∑

p=1

1

p!
K

(p)
S (0)[(‖s− κS

k1
‖)p − (‖s− κS

k2
‖)p]ds|

≤
∫

S
|KS(‖s− κS

k‖)
ps∑

p=1

1

p!
K

(p)
S (0)[(‖s− κS

k1
‖)p − (‖s− κS

k2
‖)p]|ds

≤
∫

S
|KS(‖s− κS

k‖)|
ps∑

p=1

| 1
p!

K
(p)
S (0)[(‖s− κS

k1
‖)p − (‖s− κS

k2
‖)p]|ds

≤
∫

S
|KS(‖s− κS

k‖)|
ps∑

p=1

1

p!
K

(p)
S (0)‖κS

k1
− κS

k2
‖)p|ds

=

ps∑
p=1

1

p!
K

(p)
S (0)‖κS

k1
− κS

k2
‖)p

∫

S
KS(‖s− κS

k‖)ds

Therefore, as ‖κS
k1
− κS

k2
‖ → 0, it follows that mkk1 − mkk2 → 0. This implies

that under ‖κS
k1
− κS

k2
‖ → 0, the k1th and k2th columns are asymptotically linearly

dependent, and therefore, the rank of the matrix Ms is reduced by 1. Furthermore,

under ‖κS
k1
− κS

k2
‖ → 0, the smallest eigenvalue of Ms goes to 0 and the largest

eigenvalue of M−1
s goes to infinity. Consequently, under (A.3) when ‖κS

k1
−κS

k2
‖ > d(S)

with d(S) away from zero, the eigenvalues of Ms are finite.

Moreover, |{M−1
s }k,k′ | = |∑nS

j=1

qkjqk′j
λj

| ≤ 1
minj λj

|∑nS

j=1 qkjqk′j| and by Cauchy-

Schwarz inequality, |∑nS

j=1 qkjqk′j|2 ≤
∑nS

j=1 q2
kj

∑nS

j=1 q2
k′j = 1. The equality

∑nS

j=1 q2
kj

∑nS

j=1 q2
k′j = 1 holds because Ms = 1

n
Ψ′Ψ is a positive definite matrix, and thus Q is

a unitary matrix. Furthermore, |{M−1
s }k,k′| ≤ 1

minj λj
. Under the assumption (A.1),

(A.2) and (A.3), since the smallest eigenvalue of Ms, minj λj is finite, there exists a

constant M1 > 0 such that |{M−1
s }k,k′| ≤ M1.

Similar arguments apply to {M−1
t }l,l′ , i.e., there exists a constant M2 > 0 such

that |{M−1
t }l,l′| ≤ M2 This concludes the proof of this proposition.

Proof of Theorem 1:
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The mean of the penalized estimates is

E(γ̂) = [(Ψ′Ψ⊗ Φ′Φ + λs(InS
⊗ Φ′Φ) + λt(Ψ

′Ψ⊗ ImT
)]
−1

(Ψ⊗ Φ)′E(Y )

= [(nMs ⊗mMt + λs(InS
⊗mMt) + λt(nMs ⊗ ImT

)]−1 (Ψ⊗ Φ)′(Ψ⊗ Φ)γ

= [(nMs ⊗mMt + λs(InS
⊗mMt) + λt(nMs ⊗ ImT

)]−1 (nMs ⊗mMt)γ

=

[
Ms ⊗Mt +

1

n
λs(InS

⊗Mt) +
1

m
λt(Ms ⊗ ImT

)

]−1

(Ms ⊗Mt)γ

=

[
I +

1

n
λs(InS

⊗Mt)(Ms ⊗Mt)
−1 +

1

m
λt(Ms ⊗ ImT

)(Ms ⊗Mt)
−1

]−1

γ

=

[
I +

1

n
λs(M

−1
s ⊗ ImT

) +
1

m
λt(InS

⊗M−1
t )

]−1

γ

Therefore, the mean of γ̂ is E(γ̂) = (I + λsB̃
−1
s + λtB̃

−1
t )−1γ and the bias is B(γ̂) =

E(γ̂)− γ = [(I + λsB̃
−1
s + λtB̃

−1
t )−1 − I]γ.

Applying Sherman-Morrison-Woodbury formula, we have

B(γ̂) = −[I + (λsB̃
−1
s + λtB̃

−1
t )−1]−1γ

= −{I + [
1

n
λs(M

−1
s ⊗ ImT

) +
1

m
λt(InS

⊗M−1
t )]−1}−1γ

When the temporal sample size m goes to infinity, we get

B(γ̂) = −{I + m[
m

n
λs(M

−1
s ⊗ ImT

) + λt(InS
⊗M−1

t )]−1}−1γ

= − 1

m
{ 1

m
I + [

m

n
λs(M

−1
s ⊗ ImT

) + λt(InS
⊗M−1

t )]−1}−1γ

→ − 1

m
{[m

n
λs(M

−1
s ⊗ ImT

) + λt(InS
⊗M−1

t )]−1}−1γ

= − 1

m
[
m

n
λs(M

−1
s ⊗ ImT

) + λt(InS
⊗M−1

t )]γ

= −[
1

n
λs(M

−1
s ⊗ ImT

) +
1

m
λt(InS

⊗M−1
t )]γ

→ − 1

n
λs(M

−1
s ⊗ ImT

)γ = −λsB̃sγ

Similarly, as the spatial sample size n goes to infinity, we get

B(γ̂) → − 1

m
λt(InS

⊗M−1
t )γ = −λtB̃tγ
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When both m and n go to infinity, we get

B(γ̂) = −{I + mn[mλs(M
−1
s ⊗ ImT

) + nλt(InS
⊗M−1

t )]−1}−1γ

= − 1

mn
{ 1

mn
I + [mλs(M

−1
s ⊗ ImT

) + nλt(InS
⊗M−1

t )]−1}−1γ

→ − 1

mn
[mλs(M

−1
s ⊗ ImT

) + nλt(InS
⊗M−1

t )]γ

= −[
1

n
λs(M

−1
s ⊗ ImT

) +
1

m
λt(InS

⊗M−1
t )]γ → 0

The variance of the penalized estimates γ are

V(γ̂) = σ2
ε (B

′B + λsB̃s + λtB̃t)
−1B′B(B′B + λsB̃s + λtB̃t)

−1

= σ2
ε [(mnMs ⊗Mt + λsm(IK ⊗Mt) + λt(nMs ⊗ IL)]−1 (mnMs ⊗Mt)

[(mnMs ⊗Mt + λsm(IK ⊗Mt) + λt(nMs ⊗ IL)]−1

= σ2
ε

[
IKL +

1

n
λsM

−1
s ⊗ IL +

1

m
λtIK ⊗M−1

t

]−1

[(mnMs ⊗Mt + λsm(IK ⊗Mt) + λt(nMs ⊗ IL)]−1

= σ2
ε [mnMs ⊗Mt + 2mλsIK ⊗Mt + 2nλtMs ⊗ Il +

m

n
λ2

sM
−1
s ⊗Mt

+ 2λsλtIKL +
n

m
λ2

t Ms ⊗M−1
t ]−1

As the temporal sample size m goes to infinity, we get

V(γ̂) = σ2
ε

1

m
[nMs ⊗Mt + 2λsInS

⊗Mt + 2
n

m
λtMs ⊗ ImT

+
1

n
λ2

sM
−1
s ⊗Mt +

2

m
λsλtInSmT

+
n

m2
λ2

t Ms ⊗M−1
t ]−1

→ σ2
ε

1

m
[nMs ⊗Mt + 2λsInS

⊗Mt +
1

n
λ2

sM
−1
s ⊗Mt]

−1

= σ2
ε [nmMs ⊗Mt + 2mλsInS

⊗Mt +
m

n
λ2

sM
−1
s ⊗Mt]

−1

= σ2
ε [B

′B + 2λsB̃s + λ2
sB̃sB̃

−1
t ]−1

Similarly, as the spatial size n goes to infinity, we have

V(γ̂) → σ2
ε [B

′B + 2λtB̃t + λ2
t B̃tB̃

−1
s ]−1
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As both m and n go to infinity, we have

V(γ̂) = σ2
ε

1

mn
[Ms ⊗Mt +

2

n
λsIK ⊗Mt +

2

m
λtMs ⊗ Il

+
1

n2
λ2

sM
−1
s ⊗Mt +

2

mn
λsλtIKL +

1

m2
λ2

t Ms ⊗M−1
t ]−1

→ σ2
ε

1

mn
[Ms ⊗Mt]

−1 = σ2
ε (B

′B)−1
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APPENDIX D

PROOF OF THEOREM 2

Proof: We apply first order Taylor expansion on ρ̂(t, t+η) at γx
k,l and γy

k′,l′ as follows

ρ̂(t, t + η) = ρ(t, t + η) +
∑

k

∑

l

∂ρ(t, t + η)

∂γx
kl

(γ̂kl
x − γx

kl) +
∑

k′

∑

l′

∂ρ(t, t + η)

∂γy
k′l′

(γ̂y
k′l′ − γy

k′l′)

(37)

E[ρ̂(t, t + η)]− ρ(t, t + η) =
∑

k

∑

l

∂ρ(t, t + η)

∂γx
kl

B[γ̂x
kl] +

∑

k′

∑

l′

∂ρ(t, t + η)

∂γy
k′l′

B[γ̂y
k′l′ ]

From Theorem 1, we know that as m →∞ and n →∞, E[γ̂k,l]− γk,l → 0 and thus

E[ρ̂(t, t + η)] → ρ(t, t + η).

Similarly, we can derive E[ρ̂(s, s + δ)] → ρ(s, s + δ).

Given the equations (37), the variances of ρ̂(t, t + η) is approximately

V[ρ̂(t, t + η)] ≈ V[ρ(t, t + η) +
∑

k

∑

l

∂ρ(t, t + η)

∂γx
kl

(γ̂x
kl − γx

kl) +
∑

k′

∑

l′

∂ρ(t, t + η)

∂γy
k′l′

(γ̂y
k′l′ − γy

k′l′)]

= V[
∑

k

∑

l

∂ρ(t, t + η)

∂γx
kl

γ̂x
kl +

∑

k′

∑

l′

∂ρ(t, t + η)

∂γy
k′l′

γ̂y
k′l′ ]

= V[
∑

k

∑

l

∂ρ(t, t + η)

∂γx
kl

γ̂x
kl] + V[

∑

k′

∑

l′

∂ρ(t, t + η)

∂γy
k′l′

γ̂y
k′l′ ]

= Dx′
t V(γ̂x)Dx

t + Dy′
t V(γ̂y)Dy

t

where Dt = (∂ρ(t,t+η)
∂γkl

, k = 0, . . . , nS; l = 0, . . . , mT )′. As m →∞ and n →∞,

V[ρ̂(t, t + η)] → Dx′
t σ2

ε,x(B
′B)−1Dx

t + Dy′
t σ2

ε,y(B
′B)−1Dy

t .

Similarly, V[ρ̂(s, s+δ)] → Dx′
s σ2

ε,x(B
′B)−1Dx

s +Dy′
s σ2

ε,y(B
′B)−1Dy

s where Ds = (∂ρ(s,s+δ)
∂γkl

, k =

0, . . . , nS; l = 0, . . . , mT )′.
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APPENDIX E

ESTIMATION ALGORITHM FOR MULTI-LEVEL

FUNCTIONAL CLUSTERING MODEL

In this appendix, we describe the estimation algorithm for the clustering model pa-

rameters in Model 1 and Model 2. For this we join the two models in a more general

model which assumes that there is clustering at both levels. Based on the deriva-

tions under level-1 clustering and level-2 clustering models, we generalize to allow for

simultaneous clustering at level 1 and 2. The general clustering model becomes:




Xij(t) =
∑N1

s=1 ξi,sφ
(1)
s (t) +

∑N2

r=1 ζij,rφ
(2)
r (t) + εij(t)

νi,s,k = ξi,s|(Z(1)
i = k) ∼ N(µs,k, λ

(1)
s,k) and Z

(1)
i ∼ Multinomial(1; π

(1)
1 , . . . , π

(1)
C1

)

δij,r,k = ζij,r|(Z(2)
i = k) ∼ N(ηj,k, Λ

(1)
j,k) and Z

(2)
i ∼ Multinomial(1; π

(2)
1 , . . . , π

(2)
C2

)

(38)

under two constraints 



∑C1

k=1 π
(1)
k µs,k = 0

∑C2

k=1 π
(2)
k ηj,r,k = 0

We denote the following set of parameters

θZ(1) = (π
(1)
1 , . . . , π

(1)
C1

) specifying the distr. of Z(1)

θZ(2) = (π
(2)
1 , . . . , π

(2)
C2

) specifying the distr. of Z(2)

θξ = {λ(1)
s,k, µs,k}s=1,...,N1 specifying the distr. of ξi,s|(Z(1) = k) for k = 1, . . . , C1

θζ = {λ(2)
j,s,k, ηj,r,k}r=1,...,N2 specifying the distr. of ζij,r|(Z(1) = k)

for k = 1, . . . , C1, j = 1, . . . , J

Remark: For the particular cases C1 = 1 or C2 = 1, the general model reduces to

the clustering models for level 1 (C2 = 1) and to the clustering models for level 2
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(C1 = 1) because of the two constrains. Specifically, when C1 = 1, the constraint

becomes π
(1)
1 µ1,k = 0 and since π

(1)
1 = 1 then µ1,k = 0 and λ

(1)
s,k = τ

(1)
s . Similarly, for

C2 = 1, the constraints imply that η1,k,j = 0 for j = 1, . . . , J and λ
(2)
j,r,k = τ

(2)
r,j .

The estimation algorithm for the general model is a two-step (EM) iterative pro-

cedure to maximize the likelihood of the observed likelihood

L(θZ(1) , θZ(2) , θξ, θζ , σ
2) =

∏I
i=1

∑C1

k=1 π
(1)
k

∑C2

k′=1 π
(2)
k′ f(Xi; θξk

, θζk′ , σ
2)

where Xi ∼ N(Φ
(1)
i µk + Φ

(2)
i ηk′ , σ

2IJN).

The EM algorithm converges to the global maximum of the observed likelihood

L(θZ(1) , θZ(2) , θξ, θζ , σ
2) by iteratively imputing the latent variables in the E-step and

maximizing the expectation of the likelihood of the complete data conditional on the

observed data in the M-step. Briefly, the EM algorithm for our clustering model is

• At the E-step, impute the latent variables Z(1), Z(2), ξ and ζ given the parameter

estimates based on the conditional expectation of the complete likelihood

LC(θZ(1) , θZ(2) , θξ, θζ , σ
2) =

f(X|Z(1), Z(2), ξ, ζ)f(ξ|Z(1))f(ζ|Z(2))f(Z(1))f(Z(2)) =

∏I
i [f(Xi|ξi, ζi, Z

(1)
i , Z

(2)
i ; σ2)f(ξi|Z(1)

i ; θξ)f(ζi|Z(2)
i ; θζ)f(Z

(1)
i ; θZ(1))f(Z

(2)
i ; θZ(2))].

• At the M-step, estimate the model parameters by maximizing the conditional

expectation of the complete likelihood E[LC(θZ(1) , θZ(2) , θξ, θζ , σ
2|X1, . . . , XI ].

Initialization. Because this in an iterative algorithm, we need first to input initial

estimates for the model parameters. Using MFPCA, we obtain initial estimates for

the unconditional scores ξi,s and ζij,r and initial estimates for their variances τ
(1)
s and

τ
(1)
j,r , respectively. The MFPCA will also provide the set of eigenfunctions describing

the spectral decomposition of the between and within covariance functions. In the

estimation algorithm, we assume the eigenfunctions at levels 1 and 2 are fixed and
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denote

Φ
(1)
ij,m = (φ

(1)
1 (tij,m), . . . , φ

(1)
N1

(tij,m))′ for m = 1, . . . , nij(N1 × 1)

Φ
(1)
ij = (Φ

(1)
ij,1, . . . , Φ

(1)
ij,nij

)′ for j = 1, . . . , J(nij ×N1)

Φ
(1)
i = (Φ

(1)′
i1 , . . . , Φ

(1)′
iJi

)′ for i = 1, . . . , I(Jnij ×N1)

Φ
(2)
ij,m = (φ

(2)
1 (tij,m), . . . , φ

(2)
N2

(tij,m))′ for m = 1, . . . , nij(N2 × 1)

Φ
(2)
ij = (Φ

(2)
ij,1, . . . , Φ

(2)
ij,nij

)′ for j = 1, . . . , J(nij ×N2)

Φ
(2)
i = diag(Φ

(2)
i1 , . . . , Φ

(2)
iJi

) for i = 1, . . . , I(Jnij × JN2)

where tij,1, . . . , tij,m are the observation time points of case i and measurement j for

i = 1, . . . , I and j = 1, . . . , J .

Estimation. The estimation algorithm is described using the following data-

vector and unconditional model parameters notations:

• Observation for case i and measurement j at time tij,m: Xij,m = Xij(tij,m) for

m = 1, . . . , nij.

• Vector of observations for case i and measurement j: Xij = (Xij,1, . . . , Xij,nij
)′

for j = 1, . . . , J .

• Vector of all observations for case i: Xi = (X ′
i1, . . . , XiJ)′ for i = 1, . . . , I.

• Vectors of unconditional scores ξi = (ξi,1, . . . , ξi,N1)
′ and

ζi = (ζi1,1, . . . , ζi1,N2 , . . . , ζiJ,1, . . . , ζiJ,N2)
′.

Following these notations, the unconditional multi-level model becomes

Xi = Φ
(1)
i ξi + Φ

(2)
i ζi + εi.

106



We estimate the model parameters by maximizing the expectation of the log-

likelihood for (Xi, Z
(1)
i , Z

(2)
i , ξi, ζi) with i = 1, . . . , I.

lC(θZ(1) , θZ(2) , θξ, θζ , σ
2) = −2 log LC(θZ(1) , θZ(2) , θξ, θζ , σ

2)

= −2
I∑

i=1

[log f(Xi|Z(1)
i , Z

(2)
i , ξi, ζi; σ

2) + log f(ξi|Z(1)
i ; θξ)

+ log f(ζi|Z(2)
i ; θζ) + log f(Z(1)i ; θZ(1)) + log f(Z

(2)
i ; θZ(2))]

=
I∑

i=1

C1∑

k=1

Z
(1)
ik

C2∑

k′=1

Z
(2)
ik′ [nijJ log(σ2) + ‖Xi − Φ

(1)
i νik − Φ

(2)
i δik′‖2/σ2]

+
I∑

i=1

C1∑

k=1

Z
(1)
ik [log |Λ(1)

k |+ (ξi − µk)
′Λ(1),−1

k (ξi − µk)]

+
I∑

i=1

C2∑

k′=1

Z
(2)
ik′ [

Ji∑
j=1

(log |Λ(2)
jk′|+ (ζij − ηjk′)

′Λ(2),−1
jk′ (ζij − ηjk′))]

−2
I∑

i=1

[

C1∑

k=1

Z
(1)
ik log(π

(1)
k ) +

C2∑

k′=1

Z
(2)
ik′ log(π

(2)
k′ )]

We estimate based on the complete likelihood using the EM algorithm.

E-step Compute the conditional expectation of the complete likelihood given

Q(θZ(1) , θZ(2) , θξ, θζ) = E[l(θZ(1) , θZ(2) , θξ, θζ , σ
2)|Xi]:

• Compute E[z
(1)
ik |Xi] and E[Z

(2)
ik |Xi].

ẑ
(1)
ik = E[Z

(1)
ik |Xi] = Pr(Z

(1)
ik = 1|Xi)

(∗) =
f(Z

(1)
ik = 1, Xi)

f(Xi)
=

∑C2

k′=1 f(Xi, Z
(1)
ik = 1, Z

(2)
ik′ = 1)∑C1

k=1

∑C2

k′=1 f(Xi, Z
(1)
ik = 1, Z

(2)
ik′ = 1)

=

∑C2

k′=1 f(Xi|Z(1)
ik = 1, Z

(2)
ik′ = 1)Pr(Z

(1)
ik = 1)Pr(Z

(2)
ik′ = 1)∑C1

k=1

∑C2

k′=1 f(Xi|Z(1)
ik = 1, Z

(2)
ik′ = 1)Pr(Z

(1)
ik = 1)Pr(Z

(2)
ik′ = 1)

=
π

(1)
k

∑C2

k′=1 π
(2)
k′ f(Xi|Z(1)

ik = 1, Z
(2)
ik′ = 1)∑C1

k=1 π
(1)
k

∑C2

k′=1 π
(2)
k′ f(Xi|Z(1)

ik = 1, Z
(2)
ik′ = 1)

where Xi|(Z(1)
ik = 1, Z

(2)
ik′ = 1) ∼ N(Φ

(1)
i µk + Φ

(2)
i ηjk′ , Φ

(1)
i Λ

(1)
k Φ

(1)′
i + Φ

(2)
i Λ

(2)
jk′Φ

(2)′
i +

σ2IJnij
). The equality (*) is because of the assumption that (z

(1)
i1 , . . . z

(1)
iC1

) ∼
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Multinomial(1, π
(1)
1 , . . . , π

(1)
C1

) and (z
(2)
i1 , . . . z

(2)
iC2

) ∼ Multinomial(1, π
(2)
1 , . . . , π

(2)
C2

). Sim-

ilarly, we derive

ẑ
(2)
ik′ = E(Z

(2)
ik′ |Xi) = E(Z

(2)
ik′ = 1|Xi) = Pr(Z

(2)
ik′ = 1|Xi)

=
π

(2)
k′

∑C1

k=1 π
(1)
k f(Xi|Z(1)

ik = 1, Z
(2)
ik′ = 1)∑C2

k=2 π
(2)
k′

∑C1

k=1 π
(1)
k f(Xi|Z(1)

ik = 1, Z
(2)
ik′ = 1)

• Compute the first and second moments of νik ≡ (ξi|Z(1)
ik = 1) and δik′ ≡

(ζi|Z(2)
ik′ = 1) conditional on the observed data Xi.

The first conditional moments are

ν̂ik = E[ξi|Z(1)
ik = 1, Xi] =

C2∑

k′=1

ẑ
(2)
ik′E[ξi|Z(1)

ik = 1, Z
(2)
ik′ = 1, Xi],

δ̂ik′ = E[ζi|Z(2)
ik′ = 1, Xi] =

C1∑

k=1

ẑ
(1)
ik E[ζi|Z(1)

ik = 1, Z
(2)
ik′ = 1, Xi],

and the second conditional moments are

ˆνν ′ik = E[ξiξ
′
i|Z(1)

ik = 1, Xi] =

C2∑

k′=1

ẑ
(2)
ik′E[ξiξ

′
i|Z(1)

ik = 1, Z
(2)
ik′ = 1, Xi],

δ̂δ′ik′ = E[ζiζ
′
i|Z(2)

ik′ = 1, Xi] =

C1∑

k=1

ẑ
(1)
ik E[ζiζ

′
i|Z(1)

ik = 1, Z
(2)
ik′ = 1, Xi].

These moments can be calculated using the distributions of the conditional scores

ξi|(Z(1)
ik = 1, Z

(2)
ik′ = 1, Xi) ∼

N(µk + (Λ
(1),−1
k + Φ

(1)′
i D−1Φ

(1)
i )−1D−1(Xi − Φ

(1)
i µk − Φ

(2)
i ηk′), (Λ

(1),−1
k + Φ

(1)′
i D−1Φ

(1)
i )−1),

ζi|(Z(1)
ik = 1, Z

(2)
ik′ = 1, Xi) ∼

N(ηk′ + (Λ
(2),−1
k′ + Φ

(2)′
i F−1Φ

(2)
i )−1F−1(Xi − Φ

(1)
i µk − Φ

(2)
i ηk′), (Λ

(2),−1
k′ + Φ

(2)′
i F−1Φ

(2)
i )−1)

where D = Φ
(2)
i Λ

(2)
k′ Φ

(2)′
i + σ2Inij

and F = Φ
(1)
i Λ

(1)
k Φ

(1)′
i + σ2Inij

. ηk = (η′1k′ , . . . , η
′
Jk′)

′

and Λ
(2)
k = diag(Λ

(2)
1k′ , . . . , Λ

(2)
Jk′).

M-step Estimate the parameters θZ(1) , θZ(2) , θξ, θζ and σ2 by maximizing the

expectation of the complete likelihood given Xi.
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• Estimate the parameters θZ(1) and θZ(1) by maximizing E[lC(θZ(1) ; Z(1))|X] and

E[lC(θZ(2) ; Z(2))|X] subject to the constrains
∑C1

k=1 π
(1)
k = 1 and

∑C2

k′=1 π
(2)
k′ = 1. The

estimates are

π̂
(1)
k =

1

I

I∑
i=1

ẑ
(1)
ik and π̂

(2)
k′ =

1

I

I∑
i=1

ẑ
(2)
ik′ .

• Estimate the parameters θξ by maximizing E[lC(θξ; ξ)|Z(1), X] subject to the

constrains
∑C1

k=1 π
(1)
k µk = 0. We solve this optimization problem using Lagrange mul-

tiplier

min
µk,λξ

C1∑

k=1

I∑
i=1

ẑ
(1)
ik E[log |Λ(1)

k |+ (ξi − µk)
′Λ(1),−1

k (ξi − µk)|Z(1)
ik = 1, Xi] + λµ(

C1∑

k=1

π
(1)
k µk)

where λµ is the Lagrange multiplier. The location estimates are

µ̂k =
1

n
(1)
k

(
I∑

i=1

ẑ
(1)
ik ν̂ik − π

(1)
k Λ

(1)
k λµ)

where n
(1)
k =

∑I
i=1 Z

(1)
ik and λµ = (

∑C1

k=1 π
(1)
k Λ

(1)
k )−1

∑C1

k=1

∑I
i=1 Z

(1)
ik ξik. The variance

components are

λ̂
(1)
k =

1

n
(1)
k

I∑
i=1

ẑ
(1)
ik diag(E[(ξi − µk)(ξi − µk)

′|Z(1)
ik = 1, Xi])

=
1

n
(1)
k

I∑
i=1

ẑ
(1)
ik diag(E[ξi − µk|Z(1)

ik = 1, Xi]E[ξi − µk|Z(1)
ik = 1, Xi]

′

+Cov[ξi − µk|Z(1)
ik = 1, Xi])

=
1

n
(1)
k

I∑
i=1

ẑ
(1)
ik diag((ν̂ik − µk)(ν̂ik − µk)

′ + Cov[ξi|Z(1)
ik = 1, Xi])

• Similarly, we estimate the parameters θζ by maximizing E[lC(θζ ; ζ)|Z(2), X] sub-

ject to the constrains
∑C2

k′=1 π
(2)
k′ ηjk′ = 0. The Lagrange multiplier problem is as follows

min
ηjk′ ,λζ

C2∑

k′=1

I∑
i=1

ẑ
(2)
k′ E[log |Λ(2)

jk′ |+ (ζij − ηjk′)
′Λ(2),−1

jk′ (ζij − ηjk′)|Z(2)
ik′ = 1, Xi] + λη(

C2∑

k′=1

π
(2)
k′ ηjk′)

where λη is the Lagrange multiplier. The estimates are

η̂jk′ =
1

n
(2)
k′

(
I∑

i=1

ẑ
(2)
ik′ δ̂ij,k′ − π

(2)
k′ Λ

(2)
jk η)
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where n
(2)
k =

∑I
i=1 ẑ

(2)
ik′ and λη = (

∑C2

k′=1 π
(2)
k′ Λ

(2)
jk′)

−1
∑C2

k′=1

∑I
i=1 ẑ

(2)
ik′ δ̂ij,k′ . The vari-

ance components are

λ̂
(2)
k′ =

1

n
(2)
k′

I∑
i=1

ẑ
(2)
ik′ diag(E[(ζi − ηk′)(ζi − ηk′)

′|Z(2)
ik′ = 1, Xi])

=
1

n
(2)
k

I∑
i=1

ẑ
(2)
ik diag(E[ζi − ηk′|Z(2)

ik′ = 1, Xi]E[ζi − ηk′|Z(2)
ik = 1, Xi]

+Cov[ζi − ηk|Z(2)
ik′ = 1, Xi])

=
1

n
(2)
k

I∑
i=1

ẑ
(2)
ik diag((δ̂ik′ − η̂k′ ])(δ̂ik′ − η̂k′)

′ + Cov(ζi|Z(2)
ik′ = 1, Xi)]

where Cov[ξi|Z(1)
ik = 1, Xi]) = ˆνν ′ik − ν̂ikν̂

′
ik and Cov[ζi|Z(2)

ik′ = 1, Xi]) = δ̂δ′ik′ −
δ̂ik′ δ̂

′
ik′ .

• The final step is to estimate the variance of random error σ by maximizing

E[lC(σ2)|Z(1), Z(2), ξ, ζ, X]. Denote the sample size N =
∑I

i=1

∑J
j=1 nij, then the

estimate is

σ̂2 =
1

N

I∑
i=1

C1∑

k=1

ẑ
(1)
ik

C2∑

k′=1

ẑ
(2)
ik′E[(Xi − Φ

(1)
i νik − Φ

(2)
i δik′)

′(Xi − Φ
(1)
i νik − Φ

(2)
i δik′)

|Xi, Z
(1)
ik = 1, Z

(2)
ik′ = 1]

=
1

N

I∑
i=1

C1∑

k=1

ẑ
(1)
ik

C2∑

k′=1

ẑ
(2)
ik′ {(Xi − Φ

(1)
i ν̂i,kk′ − Φ

(2)
i δ̂i,kk′)

′(Xi − Φ
(1)
i ν̂i,kk′ − Φ

(2)
i δ̂i,kk′)

+trace(Cov[Xi − Φ
(1)
i νik − Φ

(2)
i δik′|Z(1)

k = 1, Z
(2)
k′ = 1, Xi])}

=
1

N

I∑
i=1

C1∑

k=1

ẑ
(1)
ik

C2∑

k′=1

ẑ
(2)
ik′ {(Xi − Φ

(1)
i ν̂i,kk′ − Φ

(2)
i δ̂i,kk′)

′(Xi − Φ
(1)
i ν̂i,kk′ − Φ

(2)
i δ̂i,kk′)

+trace(Φ
(1)
i Cov[ξi|Z(1)

k = 1, Z
(2)
k′ = 1, Xi]Φ

(1)′
i + Φ

(2)
i Cov[ζik|Z(1)

k = 1, Z
(2)
k′ = 1, Xi]Φ

(2)′
i

+2Φ
(1)
i Cov[ξi, ζi|Z(1)

k = 1, Z
(2)
k′ = 1, Xi]Φ

(2)′
i )}

where ν̂i,kk′ = E[ξi|Z(1)
ik = 1, Z

(1)
ik′ = 1, Xi], δ̂i,kk′ = E[ζi|Z(1)

ik = 1, Z
(1)
ik′ = 1, Xi]

and Cov[ξi, ζi|Z(1)
k = 1, Z

(2)
k′ = 1, Xi] = −Λ

(1)
k Φ(1)′(Φ(1)Λ

(1)
k Φ(1)′ + Φ(2)Λ

(2)
k′ Φ(2)′ +

σ2Inij
)−1Φ(2)Λ

(2)
k′ .
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