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SUMMARY 

Long-lived plasma cells are a key component of serological memory encoded by the 

adaptive immune response. To date, prior studies of these cell types have largely assessed 

plasma cells as one homogenous population. The Lee Lab at Emory University provided 

strong evidence for the presence of subpopulations of plasma cells in the bone marrow and 

peripheral blood. In this work, I analyze six of these populations: pops 2, 3, and 5 in the 

peripheral blood and pops A, B, and D in the bone marrow sampled from live human 

donors.  Whole-transcriptome analysis of these six flow-sorted plasma cell populations is 

compared within and across tissue within this study.  Further, I present 4 possible models 

of development of these plasma cells based on the results. Finally, I performed a single-

cell RNA sequencing analysis of the long-lived plasma cells (popD) and present evidence 

for the possibility of subpopulations of this cell type. This work describes many 

mechanisms of molecular development of long-lived plasma cells, some of which have 

been experimentally validated by Dr. Doan Nguyen as a result of these analyses, however, 

further experimental validation is required to validate all findings in this work.  
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INTRODUCTION 

1.1 Immune System 

Our primary defense against foreign agents is the immune system. This protection is 

enacted by the two arms of the immune system, innate and adaptive, through the 

elimination of pathogens and immune surveillance. While the innate immune response is 

immediate and responsive to a wide variety of antigens, the adaptive arm provides an 

antigen-specific response and long-lasting immunity. Plasma cells and memory B-cells 

play key roles in the program of long-lived immunity. {Shi et al (2015); Jourdan et al 

(2011); Halliley et al (2015)} 

As illustrated in Figure 1.1, after differentiation from hematopoietic stem cells in the 

bone marrow, naïve B-cells travel through the peripheral blood into secondary lymph 

organs (such as the lymph node and spleen) where, upon binding to antigen, they are 

activated.  Activated B-cells then either form short-lived plasmablasts, for an immediate 

(though weak) immune response, or proliferate in a lymphoid germinal center to form 

plasma cells and memory B-cells. The plasma cells secrete copious amounts of antibody, 

either while remaining in the secondary lymph organ or after migrating back to the bone 

marrow. Antibody production in the marrow by these long-lived plasma cells continues 

well after the initial infection is cleared, allowing for rapid detection of previously 

encountered antigens, thereby conferring long-lived immunity.{Halliley et al (2015)} 
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Figure 1.1. Progression from Naïve B-cells to Long-Lived Plasma Cells. Naïve B-cells 
leave the marrow and move to the germinal center where they are exposed to antigen and 
become activated. These activated B-cells develop into memory B-cells and plasmablasts, the 
latter of which is a precursor population to pops2, 3, and 5. In this study, I propose that these 
cell populations enter the marrow and develop into bone marrow plasma cell populations 
popA, popB, and popD (long-lived plasma cells). 
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1.2 Adaptive vs. Innate 

Upon infection, the innate immune system of an individual is activated. Unlike the 

adaptive immune system, the innate immune system is fully developed and present since 

birth. The effector molecules of the innate immune system target a range of highly-

conserved motifs presented by many pathogenic microbes. This non-specific recognition 

of one of these motifs by an innate immune cell triggers a series of signaling pathways, 

including inflammatory pathways. This plays a dual role: 1) to keep the infection in check 

until the generation of the adaptive immune system, 2) priming the activation of the 

adaptive immune system.{Trezise et al (2018); Tellier et al (2018); Tellier et al (2017); Shi 

et al (2015); Nutt et al (2015)} 

Unlike the innate immune system, a key characteristic of the adaptive immune 

system is antigen-specific recognition. B- and T-lymphocytes, the major classes of adaptive 

immune cells, recognize antigens through functional receptors on their surface. The 

receptors on T-cells are non-soluble. Innate immune cells, known as antigen-presenting 

cells, present foreign antigens to T-cells.  The antigen-specific immune response is 

manifested through a lock-and-key process of receptors seeking matching antigens. This is 

made possible through the high diversity of B- and T-cell receptors which occurs prior to 

exposure to antigen.  Once a T-cell recognizes an antigen, it becomes activated and 

undergoes clonal selection and expansion. {Trezise et al (2018);Tellier et al (2018);Tellier 

et al (2017);Shi et al (2015);Nutt et al (2015)} 

A similar process occurs for B-cells. Unlike T-cells, naïve B-cells transverse the 

peripheral blood system from the bone marrow to various primary lymphoid organs where 
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they are exposed to antigen. Once a B-cell receptor matches antigen, like T-cells, clonal 

selection and expansion occurs. During this process, further mutation to the receptor 

occurs, known as somatic hypermutation, which allows for increased binding affinity to 

the antigen after clonal selection. Additionally, once a naïve B-cell is activated and 

develops into a plasma cell, unlike T-cells, it can secrete soluble antibodies which play a 

key role in immune surveillance. Due to the adaptive immune system’s ability to 

distinguish between self- and non-self, adaptation to infection (specificity), and immune 

memory, manipulation of this arm of the system has been the subject of many 

studies.{Trezise et al (2018);Tellier et al (2018);Tellier et al (2017);Shi et al (2015);Nutt 

et al (2015)} 

 

1.3 Development of B-cells 

The cellular components of both the innate and adaptive immune systems derive 

from the same hematopoietic stem cells (HSCs). This progenitor cell-type differentiates 

into myeloid cells, which further develop into innate immune cells, and into lymphoid cells, 

which differentiate into the adaptive immune cells including T-cells and B-cells. Both of 

these cell types originate from HSCs in the bone marrow. T-cells then migrate to the 

thymus to differentiate and mature, whereas B-cells engage in antigen-independent 

differentiation into naïve B-cells. They then migrate to a secondary lymphoid organ where 

they engage in antigen-dependent differentiation once they recognize antigen presented to 

them in germinal vesicles.{Trezise et al (2018);Tellier et al (2018);Tellier et al (2017);Shi 

et al (2015);Nutt et al (2015)} 



 5 

1.4 Immunological Memory 

The resolution of an infection marks the clearance of the pathogens that triggered the 

immune response. This occurs along with death of the majority of effector cells involved 

in the immune response, through neglect and apoptosis. The remnants of these apoptosed 

immune cells are cleared by phagocytosis. While most effector cells are disposed of in this 

manner, some of these cells are the precursors for plasma cells and memory cells. {Tellier 

et al (2018); Tellier et al (2017); Shi et al (2015);  Peperzak et al (2013); Nutt et al (2015); 

Kallies et al (2010); Corcoran et al (2016); Corcoran et al (2015)} 

Memory response in the immune system is characterized by the activation of memory 

cells that formed during the primary response, to aid in the resolution of reinfection by a 

previously encountered pathogen. Memory responses encapsulate secondary responses, 

tertiary responses, and so forth, based on the number of exposures to the antigen. The 

property of the memory response that enables this is the B-lymphocyte’s ability to persist 

in the absence of the antigen that triggered the primary response. While most of these 

memory cells are in a resting state, typically a small percentage of these cells are dividing. 

The benefit of these memory cells over the naïve response is that, due to clonal expansion 

and affinity maturation during the primary response, the antibodies produced by the 

memory response have had time to develop a much higher affinity for the antigen, 

rendering future memory responses much more effective.{Tellier et al (2018);Tellier et al 

(2017);Shi et al (2015); Peperzak et al (2013);Nutt et al (2015);Kallies et al 

(2010);Corcoran et al (2016); Corcoran et al (2015)} 
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1.5 Plasma Cells 

1.5.1 Overview of previous plasma cell gene expression analyses 

In addition to memory B cells, plasmablasts can also differentiate into plasma cells, 

also known as antibody secreting cells (ASC). Unlike memory B-cells, plasma cells are 

terminally differentiated and hence they have ceased proliferation. These plasma cells 

migrate to the bone marrow where they increase antibody synthesis and immunoglobulin 

secretion. The differentiation of mature B-cells into antibody secreting plasma cells is 

known to be governed by a set of transcription factors. Amongst these are PAX5, BACH2, 

BCL6, PU.1, SPIB, ETS1, IRF8, IRF4, BLIMP1, and XBP1. The expression of PAX5, 

BACH2, and BCL6 plays a role throughout B-cell development, however in all three cases, 

expression in mature B-cells prevents some of the ASC differentiation programs. BACH2 

is regulated by PAX5 and is not expressed in ASCs. Further, BACH2 targets BLIMP1 

which also plays a significant role in ASC differentiation. BCL6 also enforces repression 

of BLIMP1, so, like BACH2 and PAX5, down-regulation of BCL6 is required for ASC 

differentiation. PU.1, IRF8, and SPIB are also downregulated in ASCs due to their 

contribution in maintaining the B-cell state. ETS1 must also be downregulated in order to 

allow for the development of ASCs because it plays a role in terminal differentiation, PAX5 

expression, and inhibition of BLIMP1. BLIMP1 is one of the main drivers of ASC 

differentiation which promotes the B-cell terminal differentiation and downregulates other 

promoters of B-cell programs. IRF4 plays a role both in the maintenance the B-cell 

programs as well as the promotion of ASC differentiation. While it interacts with ASC 

differentiation repressors such as the IRF4-ETS complex and PU.1 in low concentrations, 

it promotes ASC differentiation when it is highly expressed. XBP1, in contrast, does not 
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affect differentiation into ASC but plays a key role in the unfolded protein response and 

ER stress in the context of promotion of ER remodeling. Additionally, mTOR pathways 

have been shown to compensate for partial loss of XBP1.{ Zhang et al (2009); Tellier et al 

(2018); Shi et al (2015); Nutt et al (2015); Klein et al (2008); Kassambara et al (2015); 

Jourdan et al (2011); Chatterjee et al (2007); Rawstron et al (2006); Klein et al (2003);  

Good et al (2009) ; Mei et al (2015)} 

There have been numerous studies exploring differential gene expression analysis 

between the various stages of development from B-cells to plasma cells. One particular 

direction of our transcriptomic analysis that has not previously been pursued is our focus 

on antibody secreting cells (pops2, 3, 5), short-lived plasma cells (popsA and B), and popD 

plasma cells which have be previously proven to present a long-lived phenotype.  This 

contrasts with most previous studies that consider plasma cells as a single cell type. Many 

of these studies, additionally, focus on microarray analysis rather than RNASeq as with my 

work. {Halliley et al (2015)} 

Goode 2009 and Jourdan 2011 both pursued microarray analysis in order to profile 

gene expression during the progression of B-cell differentiation. Good 2009 focused on 

Naïve B-cells, IgM memory cells, isotype-switched memory, and switched memory B-

cells harvested from the spleens of human cadavers. Additionally, this study focused on 

the differential gene expression of TNSF, SLAM, TLF, and TACI genes across those cell 

types. Jourdan 2011 focused on human cell lines using microarray analysis to compare 

preplasmablasts, B-cells, plasmablasts, and plasma cells. They also utilized cultured media 

to determine factors that promote differentiation in the context of cell cycle and Ig 

secretion.  The cells from our study came from the peripheral blood and bone marrow of 
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living human donors. As previously stated, we used whole transcriptome RNASeq analysis 

to perform an unsupervised gene expression analysis across peripheral blood and bone 

marrow plasma cell subtypes. While we also used cultured media to determine which 

features promote survival and differentiation into the long-lived phenotype, unlike Jourdan, 

our focus was not specifically on cell cycle and number of cell divisions. Rather, the focus 

of my thesis is on characterizing differentially regulated pathways across plasma cell types. 

{Jourdan et al (2011);Good et al (2009) } 

Klein 2013 and Mei 2015 studied lymph nodes, tonsils, peripheral blood, and bone 

marrow using microarray analysis. Both of these studies considered subsets of cells defined 

by specific cell surface markers. Klein 2013 uses CD20, CD38, and CD138 expression to 

define their cell types and determine the differentiation patterns and transcription factors 

that contribute from preplasmablasts to memory cells to plasma cells, including splice 

variants. Further, they used cultured media to activate various cell types. Mei 2015, on the 

other hand, used the presence of CD19 to distinguish plasma cell types in the marrow. They 

noted that since CD19+ plasma cells (which would include our popA and popB cell types) 

have PB ASCs as their precursors and that, due to upregulation of gene expression of 

survival signatures, CD19- could be the long-lived phenotype for plasma cells; however, 

they did not explicitly prove that CD19- is the long-lived plasma cell as in Halliley 2015. 

Additionally because of the use of this single cell marker, they lost the granularity and 

nuance of the gene expression that I will describe in our comparative analysis of long-lived 

PCs with SLPCs and ASCs.{Klein et al (2003); Mei et al (2015)} 

Kassambara 2015 attempted to address cross-study discrepancies in documenting 

the genomic atlas of B-cell differentiation. Their study focused on human bone marrow 
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microarray analysis of the different stages of differentiation of B-cells from GC B-cells to 

bone marrow plasma cells, via a meta-analysis of publicly available gene sets. However, 

they based their entire analysis on 10,000 genes and attempted to determine the specific 

gene signatures that characterize these cells types within the context of only 9303of the 

genes that appeared to be differentially expressed.  {Kassambara et al (2015)} 

Nutt 2015 performed a whole transcriptome RNASeq analysis of murine splenic 

follicular B cells, marginal zone B cells, splenic peripheral blood cells, splenic plasma 

cells, B1 cells, and bone marrow plasma cells. They reported on exon level gene 

expression. Additionally, they attempted to determine developmental distance between cell 

types using “leading fold change,” a metric which utilizes only the top 500 differentially 

expressed genes between two populations.  They attempted to correlate these differences 

in expression with the number of cell divisions between each stage and their relative 

epigenetic differences. {Tellier et al (2017);Nutt et al (2015)} 

Our study reports primarily on gene-level expression in order to avoid inaccuracies 

in inference of isoform abundance from exon-level analysis that inevitably arise with 

current analytical tools. Further, rather than using only the top 500 differentially expressed 

genes, I considered all significantly differentially expressed genes in my analysis. My 

differential expression analysis is primarily focused on differences between cell types 

rather than number of cell divisions. A future direction will be to include epigenetic 

modifications into our analysis in determining differences between cell types.  

Previous studies have been extensively conducted on the transcriptomic analysis of 

long-lived plasma cells and their precursors. The primary limitations of these previous 
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studies include the focus on specific pre-determined genes in a supervised bottom-up 

processing of the transcriptome, focus on cell types that were not clearly determined to be 

long-lived plasma cells, use of mouse models rather than living human donors, as well as 

other more nuanced discrepancies. In this study, my collaborators in the Lee laboratory at 

Emory University used CD19, CD39, and CD138, cell surface markers that were 

previously experimentally proven to demarcate the long-lived plasma cell phenotype, to 

cell sort peripheral blood ASCs and bone marrow plasma cells from living, healthy, human 

donors into six subsets: pop2, pop3, pop5, and popA, popB, and popD. I describe the use 

of unsupervised, top-down processing to perform differential gene expression analysis and 

gene set enrichment analysis on whole transcriptome RNASeq data to determine the cell-

type specific signatures of each cell type, the ontological relationships between these PB 

ASCs and BM LLPCs, and functional inferences of the different biophysical and 

biochemical capacities of the different plasma cell populations. 

1.5.2 Peripheral Blood Antibody Secreting Cells 

In 2016, the F.E. Lee lab at Emory University characterized five sub-populations of 

antibody-secreting cells (ASCs) that circulate in the peripheral blood (pop1 - pop5), and 

four that are resident in the bone marrow (popA-popD). The three cell surface markers that 

identify these nine subsets in the blood and marrow are CD19, CD38, and CD138 and are 

all implicated in functional differentiation of plasma cells as well. CD19 is a differentiation 

marker for B-cells generally{Ishikawa et al (2002)}, whereas CD38 and CD138 are 

plasma-cell specific.{Rawstron et al (2006); Medina et al (2002); Mei et al (2015)}. CD138 

encodes Syndecan, a cell-cell adhesion protein that is required to maintain the localization 

of terminally differentiated cells within the marrow. {Aref et al (2003);Bayer-Garner et al 
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(2001);Halliley et al (2015);Rawstron et al (2006)}. CD38 encodes a cell surface 

glycoprotein with roles in cell adhesion, signal transduction, and calcium signaling.  

{Rawstron et al (2006);Medina et al (2002);Halliley et al (2015); Mei et al (2015) } 

Halliley 2015 described a preliminary transcriptomic signature of these cell-sorted (on 

CD19, CD38, and CD138) cell types in the marrow. This thesis builds on their foundation 

by generating functional inferences of the different biophysical and biochemical capacities 

of the different plasma cell populations. {Halliley et al (2015)} 

1.5.3 Bone Marrow Plasma Cells 

Of the four bone marrow populations, popA, popB, popC, and popD, Halliley et al (2015) 

characterized 3 sub-populations with respect to their long-lived PC phenotype. The results 

demonstrated that popD showed specificity to viral antigens (such as measles) to which the 

individual had not been exposed in multiple decades, suggesting that some cells in this 

population had existed in the marrow for that extended period of time. This was not found 

to be true for pops A and B. Additionally, the VH repertoire of this cell population was not 

dominated by any particular clone, nor were there strong clonal ties to any of the other 

populations, which also suggests that these popD cells had not been generated recently. 

These pieces of evidence led to the conclusion that popD are long-lived plasma cells. 

{Halliley et al (2015)} 

1.5.4 Connections between Antibody-Secreting Cells and Plasma Cells 

In Nguyen 2017, circulating antibody-secreting cell (ASC) plasma cell populations 

(pop2, pop3, and pop5) were further investigated for their role in vaccine responses. 
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Peripheral blood ASCs were identified based on the levels of CD38, CD27, and CD19 

detected on particular cell types. Discussing the heterogeneity of post-vaccine ASC 

populations, they argued that, counter to established models, both CD19+ and CD19- ASCs 

contribute to the vaccine response. This suggests that the CD19- populations could either 

be newly created ASCs, or long-lived plasma cells (LLPCs) released from the marrow. 

While peripheral blood ASCs  have been proposed as possible precursors to LLPCs in the 

bone marrow, due to lack of functional characterization of these cell types in both the blood 

and marrow, the ontological relationships between these PB ASCs and BM LLPCs was 

unknown. {Halliley et al (2015);Nguyen et al (2018)} 

1.5.5 Four Models 

The parallels in the cell surface markers used to define the BM and PB subsets gives 

rise to the parsimonious hypothesis that ASCs in the peripheral blood are the precursors of 

their cell surface marker homologues in the BM.  Alternatively, these plasma cells subsets 

could have quite different relationships across peripheral blood and bone marrow.   
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Table 1.1. Six Populations of Peripheral Blood ASCs and Bone Marrow Plasma Cells and 
their Parallel Cell Surface Marker Presentation. Table 1 shows the six blood and marrow 
populations of plasma cells and their cell surface marker expression: CD19, CD38, CD138. 
Each of the pairs have parallel patterns of these three markers: (1) pops 2 and A, (2) pops 3 and 
B, and (3) pops 5 and D. 

Three alternative models are represented in Figure 1.2. Models 2 and 3 are incorporate 

the inference that pop3 appear to be derived from pop2 in the blood (Nguyen et al, 2018).  

Model 4 allows for the possibility that the PB and BM populations are independently 

derived in the two compartments.  In Chapter 3, I compare the relative gene expression 

across the different types of plasma cells and different tissues. Similarity of profiles or 

pathway regulation across tissues types or based on cell surface markers illuminates the 

likely ontological relationship between the cell types.  

 

1.6 Transcriptomic Analysis 

Transcriptomic analysis by bulk RNASeq is commonly used in gene expression 

analysis, where mRNA is sequenced from a very large number (“bulk”) of cells. The 

sequenced RNA is then mapped back to the coding regions within the genome by a process 

known as short read alignment. The relative levels of reads across samples are normalized  
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Figure 1.2. Four Models of Development of Long-Lived Plasma Cells and their 
Precursors. These are four potential models of development of long-lived plasma cells from 
peripheral blood and germinal center precursors. (1) Model 1 presents a germinal center 
precursor that eventually develops into peripheral blood antibody secreting cells (pops 2, 3, and 
5), which subsequently enter the marrow and become their counterpart (based on parallel cell 
surface markers, Table 1) bone marrow plasma cell populations (pops A, B, and D, 
respectively). (2) Model 2 shows the GC precursor population develops into pops 2, 3, or 5. Of 
these three populations, pop2 enters the marrow and becomes popA or remains in the 
peripheral blood and develops into pop3. In the marrow, popA either apoptoses or develops 
into popB. PopB, as a transitional population, also either apoptoses or develops into popD. (3) 
Model 3 is similar to Model 2, however, it is pop3 as popB enters the marrow rather than pop2. 
At this stage, popB either apoptoses, or develops into popA or popD. (4) Model 4 is the 
independent precursor model which presents the null hypothesis that these 6 populations arise 
independently from each other. 

to their library sizes using software such as EdgeR, and then converted to the log2 scale to 

facilitate statistical assessment of differential gene expression across experimental 

conditions. Additionally, gene expression can be ranked and assessed for gene set 

enrichment within particular pathway sets that are relatively upregulated or downregulated 

across experimental conditions and cell types.  

 

1.7 Normalization and Differential Expression Analysis 

Further normalization to remove or adjust for batch or experimental conditions can 

be performed using supervised normalization of microarray data (SNM). {Mecham et al 

(2010)}. This method utilizes modelling of genomic data in the context of study-specific 

biological variables and adjustment variables. The biological variables describe the 

variability in the data that is the target of the study and should be preserved (i.e. cell type, 

cell population, etc.). The adjustment variables are the variables that capture variability due 

the “experimental or biological setting” and can be removed, usually if they are technical 

such as a batch effect, or fit as a covariate, for example if they are a known biological effect 
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such as gender that influence the data but are not of primary interest. Normalization in this 

way uses information across all genes to make the adjustments, so is more accurate than 

simply including the factors in each individual gene model. {Law et al (2016);Nikolayeva 

et al (2014);Robinson et al (2010);Varet et al (2016)} 

1.8 Gene Set Enrichment Analysis 

With increasing amounts of gene expression data, an ongoing challenge is the 

interpretation of this data in a biological context. Gene set enrichment analysis is a tool 

developed by the Broad Institute that provides one method for the analysis and 

interpretation of gene expression data within the context of pre-defined gene sets. These 

gene sets were created based on similar biological meaning, function, chromosomal 

location, or regulation of molecular processes. The principle behind GSEA is to determine 

whether the genes in a particular pre-defined gene set are mostly upregulated or 

downregulated or if the members of this gene set are interspersed throughout the ordered 

expression profile of the study. The former would indicate that the gene set (or pathway) 

shows a coordinated pattern of expression that differentiates the samples of interest.  

{Mootha et al (2003);Subramanian et al (2005)}. 

In order to evaluate the significance of the enrichment, GSEA calculates an 

enrichment score that determines how many genes in the pre-defined pathway are 

overrepresented in the ranked expression profiles at the top or the bottom (most expressed 

or least expressed genes). This method is executed by iterating through the ranked gene list 

and increasing the value of a statistic when a gene in the pathway of interest is encountered 

and decreasing the value of the statistic when a gene that is not in the pathway is 
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encountered. The enrichment score returned is based on the maximum value of the statistic 

over the course of the entire “walk”. This statistic is based on the weighted Kolmogorov–

Smirnov-like statistic. {Mootha et al (2003);Subramanian et al (2005)} 

Once this statistic is determined, the statistical significance of the enrichment score 

is determined by the use of multiple permutations after randomization of the data and 

recalculating the enrichment score for the randomized data. This permutation and 

recalculation is performed 1000 times. The resultant p-value is based on the distribution of 

enrichment scores observed in the permutations. Finally, this set of significance values is 

adjusted for multiple hypothesis testing by 1) normalizing the enrichment score for each 

pre-defined gene set to account for the varying number of genes in each set, 2) determining 

the false discovery rate for each of the normalized enrichment scores by comparing the 

observed and null distributions for the normalized enrichment scores. These two values, 

the normalized enrichment score and the calculated false discovery rate, are both used to 

determine which pathways are included as significantly differentially regulated across 

conditions. {Mootha et al (2003);Subramanian et al (2005)} 

In this thesis, analyses with purified populations of each of the six cell types (pop2, 

pop3, pop5, popA, popB, and popD) was performed, including differential gene expression 

analysis across the BM and PB tissues as well as between the cell types. Gene set 

enrichment analysis (GSEA) was performed to determine which pathways are up- and 

down- regulated across these cell types.  The pathways of interest were drawn from public 

knowledge databases such as the MSigDB and BioCarta, PantherDB, and KEGG. {Mootha 

et al (2003);Subramanian et al (2005)}  
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1.9 Proteomics 

The environmental microniche of the LLPC is hypothesized to play a significant role 

in the differentiation of these plasma cells via signaling from the cell types in the bone 

marrow, including mesenchymal stromal cells (MSCs), osteoclasts, and osteoblasts. The 

Lee group at Emory have created an in vitro system that partially replicates this BM 

environment and supports the long-lived phenotype using the secretome created by 

mesenchymal stromal cells. Irradiated MSCs have been shown to generate greater amounts 

of exosomes than non-irradiated MSC and appear to support higher survival of co-cultured 

plasma cells. In order to assess which proteins directly secreted by the MSCs (i.e. the MSC 

secretome) as well as the proteins output by MSCs via their exosomes, Ronghu Wu’s group 

at Georgia Tech used mass spectrometry to assess the presence of the proteins in each of 

these fractions. In Chapter 2, I describe how the proteomic profiles were matched to 

transcriptomic data of genes with which they potentially interact, allowing for further 

interpretation.  {Nguyen et al (2018)} 

In short, mass spectrometry ionizes the components of a sample (such as the proteins 

or peptides in a secretome) and sorts these by their mass-to-charge ratio (m/z). The 

individual signatures of these molecules are then identified by correlating their spectra to 

those of known molecules. {Aebersold et al (2003)}. A limitation of proteomics is that it 

is not comprehensive, so the absence of detection does not necessarily imply absence of a 

protein from the sample. That is, some proteins could be present at such low levels that 

given the amount of sample, they would be undetected by the mass spectrometer.  
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However, when a protein is present in the secretome or exosome samples, particularly 

when its receptor is significantly differentially expressed between different populations of 

plasma cells (SLPC vs. LLPC), this lends itself as stronger evidence of the role of that 

protein and its candidate pathways, thereby elucidating the role of the extracellular 

environment in the development and differentiation of LLPC. {Halliley et al 

(2015);Nguyen et al (2018);Nguyen and Lewis et al (2018)}  

 

1.10 Single-Cell RNA Sequencing 

Nguyen 2017 provided a cell-surface marker-based assessment of heterogeneity in the 

plasma cell populations in the blood. Further investigation into the heterogeneity of these 

plasma cells at the whole transcriptome level in both the PB and BM bears consideration 

and can be assessed using single cell RNASeq (scRNASeq). Unlike bulk RNAseq, 

scRNASeq allows a more discerning analysis of the cell-to-cell differences in gene 

expression, since bulk RNASeq analysis is unable to resolve contributions of multiple sub-

cell types to the signal present in the “bulk” of cells. In Chapter 4, I characterize 

transcriptomes generated using the SmartSeq2 method to generate full-length single cell 

cDNA libraries. The single-cell data was clustered using canonical correlation analysis 

which determines association between two variables by measuring the canonical covariates 

that capture the variability within and across both variables. After clustering, the gene 

expression data was pooled across cells, to minimize variability of lower-expressed genes. 

Further, pooling allowed us to analyze the scRNASeq data using standard bulk RNASeq 
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methods, overcoming over-dispersion and drop-out of low-abundance transcripts. 

{Chambers et al (2018);Sharma et al (2018);Wallrapp et al (2018)} 

 

1.11 Scope of Thesis 

Lack of granular understanding of the biochemical properties of the plasma cells (PC) in 

peripheral blood and bone marrow has impeded the study of diseases characterized by 

plasma cell dyscrasia. Since PC are responsible for the maintenance of serological memory, 

the recent insight that they cannot be understood as a single population has implications 

for analysis of their contribution to disease as well as healthy immune function. We 

consequently here describe comparative whole-transcriptome analysis of three populations 

(pop2, pop3, and pop5) from flow-sorted PC preparations from peripheral blood of five 

donors, and for three populations (popA, popB, and popD) of flow-sorted PC preparations 

from bone marrow of four donors. 

1.11.1 Peripheral Blood Antibody Secreting Cells 

Whole transcriptomic analysis of peripheral blood Pops 2, 3, and 5 highlights 

differences among these three sub-populations across multiple pathways. Especially of 

interest is that pops 2 and 3 are more similar to each other to the exclusion of pop5 to the 

extent that pop2 and pop3 cluster within individual.  Further, Pops 2 and 3 show some 

genes that are upregulated in BM pops, again to the exclusion of pop5. 

1.11.2 Comparison of BM Plasma Cells to PB Antibody Secreting Cells 
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Comprehensive assessment of the transcriptional capacities of the PC populations 

highlights differences among the sub-populations across multiple pathways, and allows us 

to contrast models for the order of differentiation of the PC sub-populations with popB and 

pop3 as precursors, or as transitional cell types.  Although popA and pop2 may be 

considered to be short-lived (SLPC) and popD and pop5 as long-lived (LLPC), the 

transcriptomes of these peripheral blood and bone marrow cells are notably different, 

implying independent differentiation rather than the blood as the source of the 

differentiated bone marrow PC sub-types.  

Further, LLPC showed a strong hypoxic signature and its metabolic signatures 

differed from SLPC and ASC. LLPC also showed differential expression of androgen and 

estrogen response pathways. This analysis showed that ontologically PB and BM are 

different. We have developed 4 models of development for plasmablast precursor to 

peripheral blood populations (2, 3, and 5) to bone marrow populations (A, B, and D).   

Research reported in this Chapter has been published in Nguyen, D.C., Garimalla, 

S., et al. (2018) Factors of the bone marrow microniche that support human plasma cell 

survival and immunoglobulin secretion.  Nature Commumications 9: 3698, with the first 

two authors making joint contributions. 

1.11.3 Single Cell RNASeq Analysis of Lupus and Healthy B-cells 

I performed single-cell RNASeq analysis of two individuals (one healthy, and one 

lupus) of popD and naïve B-cells. The 246 popD cells and 36 naïve B-cells from each 

individual were sequenced using the SmartSeq protocol at ~1 million reads per cell, 

allowing for great depth of sequenced reads. The data was provided by Dr Steven Bossinger 
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at the Yerkes Genome Core, in collaboration with the Lee lab at Emory.  I created a 

modified method of analysis through use of Seurat and scran to pool the reads within 

Seurat-generated clusters based on canonical correlation analysis, and then conducted 

differential gene expression analysis on these pooled sets. I describe specific pathways, 

including oxidative phosphorylation, antigen processing and presentation, and specific 

immunoglobulins that are significantly differentially expressed between lupus and healthy 

cells. Due to lack of power (2 individuals), it is difficult to determine if the results of the 

differential expression between individuals or due to disease. 
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CHAPTER 2 

PERIPHERAL BLOOD ANTIBODY SECRETING CELLS  

The primary goal of this study is to characterize the transcriptomes of long-lived 

plasma cells (LLPCs) and their potential precursors to ascertain the molecular basis of their 

physiological differences. The discovery of this long-lived cell type in the bone marrow 

and its role in long-lived immunity occurred in 2015. In conjunction with this discovery, 

three populations of peripheral blood (PB) antibody-secreting cells (ASC) were isolated 

and determined to be potential precursor populations based on parallel cell surface markers 

(Table 1). While Halliley 2015 conducted a gene expression analysis of bone marrow 

plasma cells, thus far, an in-depth analysis of the transcriptional properties of the PB-

specific ASCs as LLPC precursors has not been performed. {Tipton et al (2018);Halliley 

et al (2015)} 

2.1 Introduction 

Both ASCs and plasmablasts (PMBs) contribute to significant antibody production 

during infection, despite both of these cell types being relatively rare. While PMBs are 

especially prominent in numbers during the initial stages of primary or secondary immune 

response (arising from memory B-cells in the case of the latter), they are relatively short-

lived cell types. ASCs, on the other hand, are plasma cells that arise from activated B-

cells.{Tellier et al (2018);Tellier et al (2017);Nguyen and Lewis et al (2018);Nguyen et al 

(2018);Halliley et al (2015)} 

While some cursory analyses of ASC transcriptional programs have been conducted, 

they have largely performed on murine models. Even those studies that have been 
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considered within the context of naturally occurring ASCs from the human immune system 

did not assess ASCs as individual populations (such as pops1-5) but rather as a bulk 

population of cells. { Zhang et al (2009); Tellier et al (2018); Shi et al (2015); Nutt et al 

(2015); Klein et al (2008); Kassambara et al (2015); Jourdan et al (2011); Chatterjee et al 

(2007); Rawstron et al (2006); Klein et al (2003);  Good et al (2009) ; Mei et al (2015)}. 

Subsequently, the results of these studies have largely been in determining ASC signatures 

that separate them from other B-cell subsets.{Tellier et al (2018);Tellier et al (2017);Shi et 

al (2015);Nguyen and Lewis et al (2018);Nguyen et al (2018);Kassambara et al 

(2015);Halliley et al (2015)} 

One such tool that has been developed for this purpose is GenomicScape that 

provides a unique transcriptomic signature for various stages of development and 

differentiation of B-cells from naïve B-cells to terminally differentiated plasma cells. 

{Kassambara et al (2015)} These studies have converged on ASC-specific transcription 

factors that are associated with the differentiation process of ASCs: IRF4, Blimp-1, and 

XBP1. All three of these factors have been implicated in the differentiation of B-cells into 

ASCs. IRF4 has been determined to be necessary for the survival of ASCs. Blimp1 has 

been suggested to play a role in the migration of ASCs from the lymph organs where they 

develop. XBP1 plays a key role in ASC secretion. Blimp1, in conjunction with IRF4, has 

been shown to be essential for regulation of ASC metabolism. In addition to XBP1, Blimp1 

is also key in the unfolded protein response in ASCs. {Halliley et al (2015);Shi et al 

(2015);Chatterjee et al (2007);Kassambara et al (2015);Klein et al (2008);Rawstron et al 

(2006);Klein et al (2003); Good et al (2009); Mei et al (2015) } 
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Integrins (especially ITGß7), sphingosine-1-phosphate-receptor-1 (S1PR1), 

CXCR4, and VLA4, are all required, at various stages, for the egress of ASCs from the 

secondary lymph organs in which they arise, as well as for homing to the bone 

marrow.{Nutt et al (2015);Tellier et al (2017);Tellier et al (2018)}  

As the primary role of the ASCs is to produce copious amounts of antibody, much 

of its cell organization and energy are devoted to this function. The ER, as well as the golgi 

apparatus, increase dramatically to accommodate this high protein production. The 

unfolded protein response (UPR) and autophagy are both key in the management of 

physiological stress. The UPR manages endoplasmic reticulum (ER) stress during phases 

of high protein production. Without effective curtailing of this physiological stress by the 

UPR, the cell may apoptose. {Shi et al (2015);Nutt et al (2015);Tellier et al (2017);Tellier 

et al (2018)} 

Autophagy, especially via mTOR signaling, is also involved in the management of 

ER stress by restraining ER growth and providing further energy to the cell for protein 

production. Energy for protein production in ASCs is derived largely from glycolysis (as 

evidenced by increase in GLUT1 in ASCs) and fatty acid metabolism, which the shift in 

preferred metabolism thought to be a hallmark of the long-lived phenotype. {Whitehead et 

al (2016);Patergnani et al (2013)}  

The survival of ASCs has been associated with genes such as BCMA, APRIL, and 

Mcl-1, and SDC1 (or CD138).  However, a clear, granular understanding of the 

mechanisms involved in the longevity of ASCs has been elusive, thus far. A large reason 

for this could be the basic assumption that these cell types should be considered as one 
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homogenous group during analysis. In doing so, the transcriptomic signal associated with 

subsets of ASCs would have been undetectable. This has prevented a more thorough 

assessment and understanding of the development of ASCs and their potential role as 

precursors of long-lived plasma cells. {Shi et al (2015);Nutt et al (2015);Tellier et al 

(2018);Klein et al (2003); Good et al (2009); Mei et al  (2015); Nguyen et al (2018);Nguyen 

and Lewis et al (2018)} 

2.2 Materials and Methods 

FastQ files representing peripheral blood samples were retrieved from Doan Nguyen 

in the Lee lab at Emory. {Nguyen et al (2018)}. Paired end 100bp reads were mapped to 

the reference human genome hg38, using STAR {Dobin et al (2013)} to generate bam files.  

HTseq {Anders et al (2015)} was then used to assess read counts at the gene level.  The 

peripheral blood samples were analyzed as single-end reads with approximately 25 million 

reads.  The mapped libraries were then normalized accounting for differences in size and 

dispersion using the default parameters of EdgeR for gene abundance levels as TMM. 

{Robinson et al (2010);Nikolayeva et al (2014)}.  Read counts were converted to the log 

base 2 scale and principal component variance analysis (PCVA) in JMP-Genomics (version 

8.0) was used to assess the contributions of Individual, Batch, Cell Population, and Tissue 

to the weighted average variance explained by the principal components. Batch was 

removed in order to maximize the contrasts across the populations, and I elected to use 

remove the batch effect using the SNM (supervised normalization of microarray) method 

with Cell Population as the Biological variable and Batch as the adjustment variable with 

the Rm=True option.  {Mecham et al (2010)} 
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For differential expression analysis, I then set a lower threshold for inclusion of genes 

in the analysis of 3 log2 units, selected by plotting the coefficient of variance against 

average abundance. Lower-abundance features were removed for all downstream analyses 

as the high variance and small sample size is likely to lead to false positives.  Differences 

among cell populations were assessed by general linear modeling on a gene by gene basis 

using JMP v8.0.  Gene expression was visualized by hierarchical clustering using 

standardization of each gene across individuals and Ward’s method to weight the 

correlations, using JMP Genomics.  

Gene set enrichment analysis was conducted using the Broad Institute’s GSEA pre-

ranked program. {Subramanian et al (2005); Liberzon et al (2011); Liberzon et al (2015)}. 

The t-statistic was used as the user-input rank for this analysis and it was run against the 

hallmark pathways of GSEA. The GSEA pre-ranked program analyzes this user input list 

by organizing the genes by rank. The algorithm then iterates through the list, adding to the 

enrichment score of a gene set when a gene within that gene set is encountered; and 

subtracting from the enrichment score whenever a gene that is not within the gene set is 

encountered. The enrichment score that is reported by GSEA is the maximum value of the 

enrichment score across the entire iteration. Since the enrichment score is affected by the 

gene set size, the normalized enrichment score is calculated by dividing the calculated 

enrichment score by the mean of the enrichment scores of multiple permutations of the 

dataset (in this study, 1000 permutations were used). {Subramanian et al (2005);Liberzon 

et al (2011); Liberzon et al (2015)}. 

The GSEA was run against Hallmark gene sets in the MSigDB resource. These gene 

sets are generated by computing the overlaps of other gene sets in the MSigDB gene sets 
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to define biological states that have been well-characterized. In using these gene sets, 

redundancy and noise is minimized in the GSEA analysis. Further, these Hallmark gene 

sets provide the “founder” gene sets from which they were compiled for further analysis or 

individual pathways. The radar plot analysis in both Chapters 2 and 3 is based on these 

founder gene sets from which the Hallmark gene set analysis is derived. These founder 

pathways were further highlighted within the Hallmark gene sets that were determined to 

be significantly differentially regulated across subsets of cell types. {Subramanian et al 

(2005);Liberzon et al (2011);Liberzon et al (2015)}. 

The first principal component of the genes in each pathway was used to visualize the 

overall regulation of the gene set. The sign of the PC does not necessarily signify that the 

associated pathway is up- or down-regulated as principal component analysis (PCA) 

simply evaluates covariance, and hence is blind to whether genes are up- or down-

regulated.  Furthermore, activators and repressors can be regulated in either direction, so 

systems modeling must be used to infer the likely consequence of differential expression 

in any given pathway – but in most cases appropriate mathematical models are not yet 

available. Three further potential issues arise in use of this method of portraying the 

regulation of these gene sets using the first PC: (1) the PC1 captures less than 20% of the 

variance of the gene sets, (2) the sign of the PC1 arbitrarily flips when computed in R, (3) 

the PC1 is dominated by the signal from a subset the genes and thus does not accurately 

represent the overall gene expression of the gene set. To address these issues, we only 

presented gene sets for which the first principal component captures at least 45% of the 

variance, verified the direction of the PC, and compared the most highly contributing genes 
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of each PC1.  Nevertheless, PCA is a powerful approach to representing coordinated 

regulation of genes in pathways. 

 

 

2.3 Results 

While the Lee Lab identified five populations of PB ASCs (pops1-5), pops 1 and 4 

are extremely rare and transitional and we were not able to isolate adequate numbers of 

these cells to further analyze them. The remaining three populations of interest in the blood 

included pop2, pop3, and pop5.  

Analysis of the transcript abundance measures of 674 genes that are significantly 

differentially expressed between these three populations is shown in Figure 2.1A. The 

overall structure of the dendrogram shows pop2 (light blue) and 3 (dark blue) clustering 

together (Fig 2.1A, Box1) within individual to the exclusion of pop5 (Fig 2.1A, Box2). 

There are 50 genes that are significantly (p < 0.05, FDR < 0.05) differentially expressed 

between pops 2 and 3. Between pops 2 and 5, 529 genes are significantly differentially 

expressed. Between pops 5 and 3, there are 432 significantly differentially expressed genes.  

These relationships are confirmed by the principal components analysis in Fig 2.1B.  The 

first principal component explains 56.61% of the variance which separates pop5 from pops 

2 and 3. The second principal component, explaining approximately 7% of the variance, 

captures the differences between pops 2 and 3.  
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Figure 2.1. Analysis of Differentially Expressed Genes between Pop2, Pop3, and Pop5. (A) 
Two-way hierarchical clustering of 674 genes that are significantly (FDR < 0.05, p < 0.05) 
differentially expressed genes between any two of the three antibody-secreting cell populations 
(pop2, pop3, pop5). Box 1 encompasses the genes that are upregulated in pop2 and pop3 in 
comparison with pop5. Box 2 encompasses the genes that are upregulated in pop5 compared to 
pops 2 and 3. Pop2 and pop3 are more similar to each other than to pop5, clustering mostly 
within individual. (B) Principal component analysis of these differentially expressed genes 
shows that the first principal component captures 56.61% of variation. PC1 separates out pops 
2 and 3 from pop5. PC2, which captures 6.98% of the variation, separates out pop2 and pop3.  
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Further analysis of these genes was conducted through gene set enrichment analysis 

(GSEA).  GSEA (Figure 2.2) highlights the molecular differences between the three 

populations from the peripheral blood. The abbreviations for these gene sets and their full 

names are displayed in Table 1.1. Figure 2.2A shows the two-way hierarchical clustering 

of the first principal components of each of these significantly differentially expressed 

(nominal p-value < 0.05, FDR < 0.05) gene sets between pops 2, 3, and 5.  The PC1 of 

each of the 30 pathways (x-axis) is displayed for each of the three ASC populations (y-

axis). In concordance with Fig 2.2A, the gene set enrichment patterns of pops 2 and 3 are 

extremely similar to one another to the exclusion of pop5. However, enrichment in a 

particular gene set does not necessarily equate to upregulation of the pathway due to the 

fact that inhibitors and activators are not differentiated from one another in the enrichment 

analysis. 

These same 30 gene sets are shown in Figure 2.2B as bubble plots that compare the 

normalized enrichment score of each pathway across all pairwise comparisons of the three 

peripheral blood ASC populations. Enrichment scores provide a representation of the bias 

toward up- or down-regulation of all of the genes in the pathway. They can be used to 

polarize the PC signs, which are arbitrarily assigned wherever there are similar numbers of 

genes in each direction.  In these plots, the enrichment score is on the x-axis with the size 

of the point being directly associated with the negative log p-value of each gene set. The 

gene sets that show enrichment in pop2 in comparison to pop3 and pop5 falls broadly under 

cell cycle and proliferation (E2F Targets, G2M Checkpoint, Mitotic Spindle, Myc Targets 

V1 and V2). While no pathways are uniquely enriched in pop3, there are two gene sets that 

are upregulated in pop3 as compared to pop2: Hypoxia, and TNFA Signaling.  
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Figure 2.2. Significantly Differentially Regulated Pathways between Pop2, Pop3, and 
Pop5. (A) This is the two-way hierarchical cluster of the first principal component (%VE > 45) 
of 30 pathways (nominal p-value < 0.05, FDR < 0.05) that were significantly differentially 
regulated between pops 2, 3, and 5 based on the Broad Institute preranked gene set enrichment 
analysis. (B) This bubble plot of the normalized enrichment score of each of the 30 pathways 
(from 3A) show the normalized enrichment score of each pathway within each of the two-way 
comparisons of pops 2, 3, and 5. The size of each bubble is directly correlated with the 
negative log nominal p-value of each pathway. The x-axis shows the normalized enrichment 
score of the each of two-way comparisons of pops 2, 3, and 5. The color the bubbles is a 
spectrum between each of the two populations, trending closer to the color of denoting the 
population as the enrichment score increases. The abbreviations for these gene sets and their 
full names are displayed in Table 2. 

Pop5 shows enrichment in comparison with pop2 and pop2 in gene sets that fall 

broadly under the category of inflammation (IL6-JAK-STAT3, IFNα Response, IFNG 

Response, and TNFα Signaling) as well as PI3K-AKT-MTOR pathway. 

There is some discordance between the Figure 2.2A and 2.2B for 12 pathways: 

Allograft Rejection, Coagulation, Complement, DNA Repair, Heme Metabolism, IFNG 

Response, Mitotic Spindle, MTORC1 Signaling, Peroxisome, Spermatogenesis, UV 

Response Up, and Xenobiotic Metabolism. Potential reasons for this discrepancy is 

described in the previous section (Chapter2, Section 2.2: Materials and Methods). Further 

analysis of these pathways presents the expression of the genes driving the first principal 

component of these pathways (shown in Figure 2.2A) in contrast with the accompanying 

gene expression for each population for all genes within the gene set. The latter of these 

was used in the analysis of the weighted enrichment score for each pathway (Figure 2.2B). 

While the hierarchical clusters of the genes driving PC1 show very clear patterns across 

populations within each gene set, it is apparent from the expression patterns of all of the 

genes within each gene set that differential regulation and enrichment of genesets is not as 

straightforward as the PC1 expression presents which leads to discrepancies between the 

two presentations of gene set enrichment (Appendix Figures 1 and 2). In such cases of 
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discrepancy, normalized enrichment score is used for interpretation of the enrichment of 

these pathways. 

Of these 30 pathways, six pathways were noteworthy due to their purported role in 

ASC survival: Apoptosis, ECM, Hypoxia, Cell Cycle, TNFα Signaling, and UPR. In order 

to explore these pathways further, I plot the normalized expression values of differentially 

expressed genes in the form of radar plots in Figure 2.3.   

In the apoptosis pathway (Figure 2.3A), pop5 shows the highest expression for five 

of the seven differentially expressed genes as compared to pop2 and pop3 which each 

present the highest expression for one gene (CASP3 and PARP2, respectively). Pop5 shows 

the highest expression for TNFRSF1A, FAS, MAPK3, PI3KCD, and NFKBIA within the 

apoptosis pathway (Figure 2.3A).  

The Extracellular Membrane Interaction pathway (ECM, Fig 2.3B), shows pops 3 

and 5 presenting the highest expression of SDC1, a known survival factor in ASCs, to the 

exclusion of pop2. Pop2 shows highest expression in the CHAD gene, involved in cell 

adhesion, and ITGB1, an ASC migration marker, as compared to pops 3 and 5. Pop3 

presents highest expression in LAMC1, which has been implicated in a variety of biological 

roles including migration, differentiation, and adhesion, as compared to pops2 and 5.  
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Figure 2.3. Differential Gene Expressed for Apoptosis, ECM, Hypoxia, Cell Cycle, TNFA, 
and UPR Pathways for Pop2, Pop3, and Pop5. These are radar plots of selected pathways 
(apoptosis (A), extracellular matrix interactions (B), hypoxia (C), cell cycle (D), TNF alpha 
(E), and unfolded protein response (F)) and the standardized least square means for the 
significantly (p < 0.05, FDR < 0.05) differentially expressed genes within them across 
populations 2, 3, and 5. Pop2 is shown in light blue, pop3 is shown in dark blue, and pop5 is 
shown in green.  
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Figure 2.3C also shows that hypoxia was most enriched in pop5. In this plot, pop5 

has the highest expression of the three populations in MAPK3, which plays a role in 

inhibition of autophagy, and PIK3CD, which is necessary for authophagy. Pop2 presents 

the highest expression of the remaining four DEGs: LDHA, PRKCB, CYBB, and MTOR; 

the former three of which all are implicated in the inhibition of autophagy. MTOR, 

however, is part of the mTORC signaling pathway which is used to modulate ER stress 

during protein production. Pop3 does not significantly differentially express these four 

genes as compared to pop2.  

Within the cell cycle pathway (Figure 2.3D), popD shows the highest expression 

for TGFB1 and YWAH. Pop2 and 3 have comparable expression for the remaining six 

genes: E2F5, CDK6, CCND2, ATR, MAD2L1, and ANAPC5. Pop5 is significantly lower 

than pop2 and 3 for these remaining six genes. In the TNFA pathway (Fig 2.3E), popD is 

significantly higher than pops2 and 3 for eight genes: MAPK3, NFKBIA, CEBPB, 

TNFRSF1A, PIK3CD, JUNB, FAS, and RIPK3. Pop2 present the highest expression of the 

three populations in three genes: CREB1, DNM1L, and CASP3; the latter two of these is 

associated with apoptosis.  

As previously described, UPR is necessary for the management of physiological 

ER stress in the ASC to accommodate its primary function of high antibody production. In 

the absence or ineffectiveness of the UPR, the cell apoptoses. Figure 2.3F shows the 

differentially expressed genes (DEG) in UPR across all pairwise comparisons of the three 

ASC populations. While pops2 and 3 have nearly comparable levels of most of the 

differentially expressed genes, pop5 has conspicuously low expression of all of the DEGs 

within this pathway. 
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2.4 Discussion 

ASCs have been characterized in numerous studies in both human and murine 

models. All of these analyses, however, have treated ASCs as one homogenous population 

and were unable to establish granular understanding of functional mechanisms and 

ontogenic relationships of these cells. In this study, I have conducted a transcriptomic 

analysis of three subsets of these cell types to further elucidate their role in the rise of long-

lived plasma cells.  

While cell-sorted whole RNASeq profiling is insufficient to fully determine the 

relationships between these three cell types and their functional consequences therein, I 

discuss specific aspects of the processes relevant for cell survival, ER stress, and autophagy 

in the context of each cell type. Further I infer relationships between pops 2, 3, and 5 based 

on this analysis. 

When ASCs are analysed as a group, the transcriptomic signal of individual 

populations becomes impossible to determine. In this work, we see that there are significant 

differences between three of, at least, five subpopulations of ASCs in the peripheral blood. 

Figure 2.1 shows that two of these populations (pop2 and pop3) are more similar to each 

other, at least transcriptomically, than to the third population (pop5). While it is possible 

that transcriptomic profiling of pops 1 and 4 might have shed further light on the 

relationship between these populations, their rare and transient nature made their collection 

impossible for the purposes of this study.  

Figure 2.2 further establishes the similarity of pops 2 and 3 to the exclusion of pop5. 

Principal component analysis of the Hallmark pathways especially shows the stark 
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differences in function that is likely to derive from differential gene expression. 

Interestingly, pop5 is especially enriched for many inflammatory pathways. This could be 

indicative of preparation of this cell type for apoptosis, for example as is suggested by in-

depth individual pathway analysis of the apoptosis and UPR pathways (Fig 2.3A and 2.3B). 

As previously discussed, the primary function of ASCs is antibody production. As 

compared to its precursors, ASCs have enlarged ER and Golgi to accommodate this 

demand. This massive demand for protein production places significant stress on the ER 

and the cell which is modulated by the UPR and apoptosis pathways. Both the gene set 

enrichment analysis and individual gene-level analyses show that the UPR for pop5 is 

comparatively downregulated, which presumably means that there is reduced requirement 

for protection against ER stress in this population. 

These results are contrary to the Model 1 which posits that each ASC cell type 

migrates to the marrow to give rise to the bone marrow plasma cell that presents the parallel 

pattern of cell surface markers (Table 1). Since pop5 has the same cell surface marker 

presentation as popD which has been determined to present the long-lived phenotype in 

the marrow, it might have been expected to have the highest relative demand for protein 

production. One possibility is that pop5 is completely independent of pops2 and 3 (Figure 

1.2, Model 4). Another possibility is that while pop2 and pop3 still maintain the potential 

to develop into the long-lived phenotype, pop5 is a subset of cells that are in a pre-apoptotic 

stage due to their inability to tolerate the ER stress.  

Another interesting finding from the GSEA is that the hypoxia and the TNFA 

signalling gene sets are both similarly enriched in pops 3 and 5 in comparison with pop2. 

This is unusual considering how similarly pops2 and 3 are to one another in other gene sets 
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as compared with pop5. Long-lived plasma cells in the marrow have to subsist in the 

hypoxic marrow environment. Under the assumption that ASCs are precursors to bone 

marrow plasma cells, enrichment of the hypoxia gene set is expected. Similarly, TNFA 

signalling is associated with upregulation of other plasma cell survival pathways including 

MAPK signalling, NFKB signalling, and PI3K-AKT signalling. This would be consistent 

with pop2 being the precursor population to pop3. Both of these populations are still 

healthy ASCs with managed-ER stress and an active UPR; pop5, in contrast, does not. 

Another possibility is as pop3 begins differential regulation of certain pathways to prepare 

it for entry into the bone marrow, the ER stress for some of these pop3 cells might exceed 

management by the unfolded protein response resulting in impairment of several gene sets, 

including UPR; subsequently, these pop3 that are unable to manage ER stress assume the 

pop5 identity by these cells as a pre-apoptotic stage.{Patergnani et al (2013);Liu et al 

(2012);Klein et al (2003)}. 

Many of the pathways that are enriched in pop2 compared to pops 3 and 5 are 

specific for cell cycle and proliferation. Antibody-secreting cells, like other plasma cells, 

are known to be terminally differentiated cells. Consequently, the enrichment of these 

pathways in pop2 could be an artefact of transition from a proliferating precursor into the 

ASC phenotype, further suggesting that pop2 is the precursor population to pop3.  
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2.5 Conclusion 

The findings, in conjunction, suggest that pops2 and 3 are closely related cell types 

that represent healthy, viable ASCs that continue to maintain the potential for the long-

lived phenotype. The enrichment of proliferation pathways in pop2 suggest that it is a 

precursor to pop3 which begins to downregulate these pathways and upregulate hypoxia 

and TNFA signalling, in preparation for entry into the marrow space. However, during this 

time, if the autophagic and UPR stress response are unable to manage the additional stress 

of these transcriptional shifts, the ASC transitions into pop5, a pre-apoptotic stage. 

However, this hypothesis cannot be fully verified through whole transcriptome profiling 

alone. Further experiments will have to be performed to verify these conclusions.  
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CHAPTER 3 

COMPARISON OF BONE MARROW PLASMA CELLS TO 

PERIPHERAL BLOOD ANTIBODY SECRETING CELLS 

3.1 Introduction 

Understanding of the pathological mechanisms responsible for diseases characterized 

by plasma cell dyscrasia has been hampered by lack of a granular understanding of the 

biochemical properties of the contributing cells. Multiple studies have suggested widely 

varying behavior of plasma cells, and Halliley 2015 provided strong evidence that bone 

marrow plasma cells (PC) should not be understood to be a single population. Since plasma 

cells are responsible for the maintenance of serological memory, this insight has 

implications for analysis of the contributions of PC to disease as well as to healthy immune 

function. {Halliley et al (2015);Bayer-Garner et al (2001);Aref et al (2003)}. 

Four sub-populations of bone marrow plasma cells can be distinguished by the 

cellular differentiation surface markers CD19, CD38, and CD138, and are referred to as 

popA, popB, popC, and popD. {Halliley et al (2015)}. Similarly defined sub-populations 

are observed in peripheral blood (discussed in chapter 2), where they are referred to as 

pop1, pop2, pop3, pop4 and pop5. Of these, we have been able to assess the cell-sorted 

whole transcriptomes by RNASeq for the six most abundant populations: popA, popB, 

popD, pop2, pop3, and pop5, based on the CD antigens shown in Table 1. These plasma 

cell subsets were previously distinguished using analysis of their immunoglobulin VH 

repertoires, additional flow cytometry, and preliminary transcriptome analysis. {Halliley 
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et al (2015)}. However, the potential contributions of specific aspects of gene expression 

to functional differences among these subpopulations was not described.  

The three CD markers themselves are implicated in functional differentiation as well. 

CD38, like CD138, is a plasma cell marker which distinguishes PC from other leukocytes. 

{Rawstron et al (2002);Medina et al (2002);Medina et al (2002)}. CD19 is a differentiation 

marker for B-cells and its differential expression suggests a role in differentiation of pop2, 

pop3, popA, and popB. {Ishikawa et al (2002)}. CD138 is known to be a cell-cell adhesion 

marker, which is required to maintain localization of cells within the bone 

marrow.{Moreaux et al (2009);Jourdan et al (1998);Gokden et al (2006);Bayer-Garner et 

al (2001);Bayer-Garner et al (2002);Bayer-Garner et al (1999);Bayer-Garner et al 

(2001);Bayer-Garner et al (2004);Bayer-Garner et al (2004);Bayer-Garner et al 

(2001);Aref et al (2003)}.  

There has been extensive research conducted on plasma cell development and 

differentiation. Prior studies often focused on plasma cells in the spleen, gut, lymph nodes 

and bone marrow. Additionally, a majority of these studies focused on specific processes 

of the differentiation program. {Mei et al (2015); Zhang et al (2009);Rawstron et al 

(2006);Klein et al (2008);Kassambara et al (2015); Good et al (2009);Klein et al 

(2003);Chatterjee et al (2007);Jourdan et al (2011);Nguyen et al (2018);Mecham et al 

(2010);Robinson et al (2010);Shi et al (2015)} 

 The follow-up analysis of RNASeq data described in this Chapter provides a more 

comprehensive assessment of the transcriptional capacities of the plasma cell populations, 

not only in bone marrow but also in peripheral blood.  The objectives are first to 
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characterize the differences in physiological capacities of the different PC sub-types, 

particularly as they relate to short-and long- lifespans and to their survival and 

differentiation in the hypoxic environment in bone marrow; second to evaluate whether 

sub-types defined by the same cell surface markers in the two compartments are 

homologous or more likely to be independently differentiated, and third to contrast four 

models for the differentiation of PC, with PopB/Pop3 as precursors of the other sub-types, 

or as transitional states between PopA and PopD or Pop2 and Pop5.  It is concluded that 

the short-and long-lived subtypes are probably independently generated in the two 

compartments, with a precursor relationship as the more likely model. 

3.2 Materials and Methods 

3.2.1 Short Read Mapping and Gene Expression Quantification 

FastQ files samples of peripheral blood samples and bone marrow samples were retrieved 

from Jessica Halliley and Doan Nguyen of the Lee lab at Emory. {Nguyen and Lewis et al 

(2018);Nguyen et al (2018);Halliley et al (2015)}. Paired end 100bp reads were mapped to 

the reference human genome hg38, using STAR {Dobin et al (2013)} to generate bam files.  

HTseq {Anders et al (2015)}was then used to assess read counts at the gene level.  The 

bone marrow samples were paired-end and contained 80 millions reads. For cross-tissue 

analyses, the bone marrow samples were reduced to just the forward read to facilitate more 

direct comparison with the single-end peripheral blood samples which has approximately 

25 million reads each.  The mapped libraries were then normalized accounting for 

differences in size and dispersion using the default parameters of EdgeR for gene 

abundance levels as TMM. {Robinson et al (2010);Nikolayeva et al (2014)}.  Read counts 
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were converted to the log base 2 scale and principal component variance analysis (PCVA) 

in JMP-Genomics (version 8.0) was used to assess the contributions of Individual, Batch, 

Cell Population, and Tissue to the weighted average variance explained by the first 3 PCs. 

Since Batch explained 53% of the variance, in order to maximize the contrasts across the 

populations, I elected to remove the batch effect using the SNM (supervised normalization 

of microarray) method {Mecham et al (2010)} with Cell Population as the Biological 

variable and Batch as the adjustment variable with the Rm=True option.   

For differential expression analysis, I then set a lower threshold for inclusion of genes 

in the analysis of 3 log2 units, selected by plotting the coefficient of variance against 

average abundance as described in chapter 2.  Differences among cell populations were 

assessed by general linear modeling on a gene by gene basis using JMP v8.0.  Gene 

expression was visualized by hierarchical clustering using standardization of each gene 

across individuals and Ward’s method to weight the correlations, using JMP Genomics.  

GSEA was performed as described in Chapter 2. 

3.2.2 Proteomics Data Analysis 

Fastq sequence files for the cell-sorted populations of 4 to 6 subjects were aligned to 

hg38 using STAR and HTSeq was used to generate gene-level counts which where 

normalized for library size and outlier transcript abundance with the TMM procedure in 

EdgeR as in Chapter 2.  Resultant TMM were log2-transformed for each sample. Analysis 

of variance (ANOVA) was performed on these transcript abundance measures, contrasting 

the three ASC populations and three PC populations, retaining all genes at FDR < 0.05. 

From the original 17,640 genes, 2,558 were found to be significantly differentially 
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expressed between blood ASC and BM LLPC. Of these 2,558 genes, 556 were shown to 

be potential interacting partners for the 91 BM MSC secretome proteins using HIPPIE. 

{Alanis-Lobato et al (2017)}. These 556 genes were then standardized to account for 

difference in levels of expression across genes and hierarchically clustered using Ward’s 

method in JMP Genomics (version 8.0). Furthermore, all potential PPI (protein-protein 

interactors) of YWHAZ and FN-1 (436 and 430, respectively) resulted in 126 overlapping 

potential PPI (of which 31 potential PPI are differentially expressed between blood ASC 

and BM LLPC). For both the set of 556 DEG and 126 overlapping genes, gene set 

enrichment analysis (GSEA) was performed using the t-statistic (derived from comparison 

of each gene between each pair of ASC populations) to rank genes, and pre-ranked gene 

set sets significantly enriched for high or low expression with FDR < 0.05 were deemed to 

be dysregulated between the two tissues. The expression of the standardized least-square-

means (SLSM) for each gene in each gene set was then used to compute PC1 for the gene 

set, and these values were hierarchically clustered again using Ward’s method in JMP 

Genomics. 

I used the JMP software version 8 to conduct an analysis of variance (ANOVA) using 

a 5% false discovery rate to consider the interactions effects of treatment to analyze the 

data. Models were fit with day and treatment as fixed effects and significance of full model 

was reported. 
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3.3 Results 

3.3.1 Differential Gene Expression Analysis of Bone Marrow Plasma Cells 

Beginning with the bone marrow compartment, analysis of the transcript abundance 

measures of 2266 genes that are significantly differentially expressed between the three 

bone marrow sub-types (popA, popB, and popD) is shown in Figure 3.1A. The overall 

structure of the dendrogram shows each of the three populations forming a distinct cluster 

in which popB appears to be intermediate.  These relationships are confirmed by the 

principal components analysis in Fig 3.1B.  Approximately 923 genes are shared as 

differentially expressed by pop B and popD as compared to 359 genes shared by popB and 

popA. These patterns are consistent with popB being a precursor that differentiated into 

the other two types, or with popB being transitional between popA and popD, though it is 

possible that all 3 pops have independent origins with shared genes in common with a 

progenitor cell type (Figure 2, Models 1 and 4).  

GSEA (Figure 3.2) provides insight into the molecular differences between all three 

populations, remarkably highlighting most of the same gene sets as in the peripheral blood, 

though with different patterns with respect to the PC populations. However, enrichment in 

a particular gene set does not necessarily equate to upregulation of the pathway, due to the 

fact that inhibition and activation is not differentiated from one another in the enrichment 

analysis. Figure 3.2A shows the two-way hierarchical clustering of the first principal 

components of each of these significantly differentially expressed (nominal p-value < 0.05, 

FDR < 0.05) gene sets between these three populations.  The PC1 of each of the 32 

pathways (x-axis) is displayed for each of the three populations (y-axis), pops A-D. In 
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concordance with analyses presented in Fig 3.1A, the gene set enrichment patterns of popA 

and popD are opposite to each other with popB appearing transitional between the two 

populations.   
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Figure 3.1. Analysis of Differentially Expressed Genes between PopA, PopB, and PopD. 
(A) Two-way hierarchical clustering of 2265 genes that are significantly (FDR < 0.05, p < 
0.05) differentially expressed genes between any two of the three bone marrow plasma cell 
populations (popA, popB, popD). The samples cluster within population. Box 1 encompasses 
the genes that are upregulated in popA (yellow). Box 2 encompasses the genes that are 
upregulated in popB (red). Box 3 encompasses the genes that are upregulated in popD (brown). 
PopA and popD present opposite expression profiles with popB presenting an intermediate 
expression profile between pops A and D. (B) Principal component analysis of these 
differentially expressed genes shows that the first principal component captures 56.37% of 
variation. PC1 separates out all three bone marrow populations from one another. 

To further elucidate the enrichment of these gene sets in Figure 3.2A, I recapitulated 

them in Figure 3.2B, by displaying enrichment scores on the x-axis with size of the point 

being directly associated with the negative log p-value of each gene set. The gene sets that 

show enrichment in popA in comparison to popB and popD falls broadly under 

inflammation (Allograft Rejection, Interferon Alpha Response, Interferon Gamma 

Response, and Reactive Oxygen Species), cell cycle and proliferation (DNA Repair, G2M 

Checkpoint, MYC Targets V1, and Mitotic Spindle), energy metabolism (Fatty Acid 

Metabolism, and Oxidative Phosphorylation), and MTOR pathways (MTORC1 Signaling 

and PI3K-AKT-MTOR).   Note that In some cases, the enrichment shown in figure 3.2B 

does not match up with the PC1 patterns shown in 3.2A (for example with inflammatory 

response) because the genes that most contribute to PC1 are a subset of the genes that 

contribute to the normalized enrichment score and present a slightly different regulation 

pattern across the three populations in PC1. 

As in Chapter 2, some pathways show discrepancy between the Figure 3.2A and 

3.2B for 8 pathways: Apoptosis, Fatty Acid Metabolism, Hypoxia, IL2-STAT5, IL6-JAK-

STAT3, P53, Reactive Oxygen Species, and Unfolded Protein Response. Some possible 

reasons for this discrepancy are described in Chapter2, Section 2.2: Materials and Methods. 

Additional analysis of these 8 pathways is presented in Appendix Figures 3 and 4. As is 
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discussed in Chapter 2, Section 2.3: Results, while the hierarchical clusters of the genes 

driving PC1 show very clear patterns across populations within each gene set, it is apparent 

from the expression patterns of all of the genes within each gene set that differential 

regulation and enrichment of gene sets has more nuance based on the weighted ranked 

enrichment score which presents the discrepancies between the two presentations of gene 

set enrichment (Appendix Figures 3 and 4). As previously discussed, in such cases of 

discrepancy, normalized enrichment score is used for interpretation of the enrichment of 

these pathways. 

PopD shows enrichment in comparison with popB and popA in gene sets that fall 

broadly under the category of cell-cell adhesion and survival (Apical Surface, Epithelial 

Mesenchymal Transition, Hypoxia, and Myogenesis), sex hormones (Androgen Respose, 

Estrogen Response Early, and Estrogen Response Late), and signaling (TGF-b Signaling, 

TNF-a Signaling, and UV Response Down). There are no pathways that are uniquely 

enriched in popB in comparison to pops A and D.  

Out of these 32 gene sets, I focused on six pathways of interest to further elucidate 

some of these functions (Figure 3.3). Each plot shows the significantly differentially 

expressed genes between any two of the three bone marrow populations. The least-squared 

means of each significant DEG is plotted for each population (popA in yellow, popB in 

red, and popD in brown) for each of these pathways in a radar plot. 

Klein 2003 suggested a role for IL6, SDC1 (CD138), and IGF1 in the survival of 

plasma cells in the context of multiple myeloma; consequently, I selected the IL6 pathway 

(Fig 3.3A), Extracellular Membrane Interactions pathway (Fig 3.3B), IGF1 pathway (Fig 
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3.3C), and Apoptosis pathway (Fig 3.3D) for further analysis. TNFA Signaling (Fig 3.3E) 

and Hypoxia (Fig 3.3F) were selected as well because they were enriched in popD 

compared to the remaining two BMPC populations. { Klein et al (2003)} 

Within the IL6 pathway (Figure 3.3A), IL6ST, GAB1, TIMP1, PRKCD, NLK, 

NCOA1, and JUNB are more highly expressed in popD than pops B or A. Of these, IL6ST 

binds to free IL6 and forms a signaling complex with IL6R within the context of plasma 

cells, which then upregulates the IL6-JAK-STAT3, MAPK, Ras/Raf, PI3K, and NFkB 

signaling pathways. NCOA1 has been found to be a multiple myeloma susceptibility gene 

through variant analysis. GAB1 is also involved in protein-protein interactions resulting in 

PI3K activation. TIMP1 has been known to play a role in modulation of inflammation. 

PRKCD has been shown to play a role in survival of plasma cells. NLK also plays a role in 

signaling pathways. {Rodriguez-Bayona et al (2013); Wang et al (1995); Cokic et al 

(2015); Jourdan et al (2005); Klein et al (2003)} 

Within the ECM (Figure 3.3B), PopD has increased expression of SDC1, CD44, 

ITGB8, ITGB7, ITGB1, ITGAV, ITGA8, HSPG2, TNXB, RELN, LAMC1, LAMB2, LAMA2, 

and COL6A2 compared to pops A and B. SDC1 (or CD138) is a cell surface marker of 

these plasma cells. The integrins have been detected in multiple myeloma and have been 

shown to play a role in cell survival. HSPG2 (or perlecan) plays a role in cell-adhesion. In 

contrast to this, TNXB has an anti-adhesive effect. RELN has been noted to be upregulated 

in the presence of CD138 and plays a role in survival and adhesion in multiple myeloma. 

{Moreaux et al (2009);Jourdan et al (1998);Gokden et al (2006);Bayer-Garner et al 

(2001);Bayer-Garner et al (2002);Bayer-Garner et al (1999);Bayer-Garner et al 

(2001);Bayer-Garner et al (2004);Bayer-Garner et al (2004);Bayer-Garner et al 
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(2001);Aref et al (2003)}.. Finally, the laminins play a role in the chemotaxis of these 

LLPC cells {Ota et al (2006)}, though they are generally known for their contribution to 

attachment of cells to extracellular epithelial matrices. 
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Figure 3.2. Significantly Differentially Regulated Pathways between PopA, PopB, and 
PopD. (A) Two-way hierarchical cluster of the first principal component (%VE > 45) of 32 
pathways (nominal p-value < 0.05, FDR < 0.05) that were significantly differentially regulated 
between pops A, B, and D based on GSEA.  (B) Bubble plot of the normalized enrichment 
score of each of the 32 pathways (from A) show the normalized enrichment score of each 
pathway within each of the two-way comparisons of pops A, B, and D. The size of each bubble 
is directly correlated with the p-value of each pathway. The x-axis shows the normalized 
enrichment score of the each of two-way comparisons of pops 2, 3, and 5. Bubbles are colored 
on a spectrum between each of the two populations, trending closer to the color of denoting the 
population as the enrichment score increases.   

  Within the Apoptosis pathway (Figure 3.3C), PopD has increased expression of 

GADD45B, GADD45A, NFKBIA, FOS, JUN, MAP3K5, BCL2, BIRC3, CTSO, ITPR3, 

LMNA, MCL1, TUBA3D, and CFLAR compared to pops A and B. Many of these genes 

overlap with the TNFA (Figure 3.4D) pathway genes, including CLAR, JUN, BIRC3, FOS, 

NFKBIA, and MAP3K5. In addition to these, the TNFA profile also includes VEGFC, 

AKT3, PTGS2, JUNB, TNFAIP3, CRB3L2, and CEBPB which encode inflammatory and 

survival factors.  

Within the IGF1 pathway (Figure 3.3E), PopD has increased expression of IGF1, 

PDK1, and SMAD3 compared to pops A and B. IGF1 is involved in survival and 

proliferation through the activation of the PI3K-AKT pathway and MAPK pathways. 

PDK1 has been shown to play a role in survival in multiple myeloma. SMAD3 has been 

shown to play a role in survival via interaction with TGFb.  {Klein et al (1999); Klein et al 

(2007); Jundt et al (2004)}. 

Regarding hypoxia (Figure 3.3F), several genes were highly expressed in popD as 

compared to pops A and B: IGF1R, INSR, IGF1, IFNG, CDKN1A, BCL2, PDK1, TIMP1, 

CAMK2D, PRKCA, CYBB, and AKT3. Among these genes are apoptotic genes as well as 

genes that play a role in the activation of PI3K-AKT, MAPK, and NFkB pathways.  
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Figure 3.3. Differential Gene Expression for the IL6, ECM, Apoptosis, TNFA, IGF1, 
and Hypoxia Pathways for PopA, PopB, and PopD. Radar plots show the standardized 
least square means for significantly (p < 0.05, FDR < 0.05) differentially expressed genes 
across plasma cell populations A, B, and D for the indicated pathways.  PopA is shown in 
yellow, popB is shown in red, and popD is shown in brown.  

3.3.2 Comparison of Bone Marrow Plasma Cells to Peripheral Blood Antibody-

Secreting Cells 

RNASeq was performed on pop2, pop3, and pop5 flow-sorted preparations from peripheral 

blood of five donors with one missing pop5 sample; and on popA, popB, and popD flow-

sorted preparations from bone marrow of four different donors.  After normalization as 

described in the Methods, analysis of variance was performed to identify 5684 genes that 

are significantly differentially expressed at a false discovery rate of 5% between any two 

sub-populations from either of the compartments analyzed together (Figure 3.4A). Clusters 

of high expression within the two-way hierarchical expression of these DEGs indicate 

signatures of various cell types. These clusters are delineated by black numbered boxes. 

Box 1 (2403 genes) contains the set of genes that are uniquely upregulated in the bone 

marrow populations. Box 2 (1583 genes) contains the set of genes upregulated in the 

peripheral blood populations. Boxes 3 (167 genes) and 5 (177 genes) show signatures that 

are shared by pop2, pop3, and the bone marrow populations, to the exclusion of pop5. Box 

4 (254 genes) is a signature that is unique to pop2 & pop3.   

Principal components analysis confirms the hierarchical clustering implication that 

the transcriptomes of the bone marrow and peripheral blood cell populations are notably 

divergent. The first principal component captures 34.04% of the variance and separates 

bone marrow from peripheral blood sets. The second principal component captures 10.4% 

of the variance and separates pops2 and 3 from pop5.  Since cell proliferation is elevated 
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in ASCs, we were concerned that expression of proliferation-related genes might be driving 

the separation between the compartments. However, after removing the signature of such 

genes, the global difference in gene expression between ASCs, SLPCs, and LLPCs 

remained present in the resulting data. Given this high level divergence in the 

transcriptomes, all subsequent analyses consider the two cell compartments separately. 

In order to characterize the biochemical functions associated with the sub-population-

specific gene expression, gene-set enrichment analysis was performed. {Subramanian et al 

(2005);Liberzon et al (2011);Liberzon et al (2015)}. For each gene set identified, the first 

principal component was generated as a score summarizing gene expression in the 

pathway, though exceptions were discussed above.  

The results of this gene set analysis for these six populations are summarized in 

Figure 3.5A which shows the PC1 of each of these significantly differentially expressed 

pathways similar to figure 3.2A. To further analyze the enrichment of these gene sets, I 

recapitulated them in Figure 3.5B, which as before displays the enrichment score on the x-

axis with size of the point being directly associated with the negative log p-value of each 

gene set.  Discordance between the two panels is attributable to the fact that the PC1 scores 

are driven by a subset of genes in each pathway that are more closely co-regulated between 

compartments than among populations within a compartment. There are four such 

pathways including Apoptosis, Complement, IL6-JAK-STAT3, and Inflammatory 

Response. As previously discussed, the genes driving PC1 and the genes that contribute to 

the normalized enrichment score (shown in greater detail in Appendix Figure 5) present a 

discrepancy for these pathways. In such cases of discrepancy, normalized enrichment score 

is used for interpretation of the enrichment of these pathways. 
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Figure 3.4. Analysis of Differentially Expressed Genes between ASC, SLPC, and LLPC. 
(A) Two-way hierarchical clustering of 5684 genes that are significantly (FDR < 0.05, p < 
0.05) differentially expressed genes between any two of the six populations of antibody 
secreting cells or plasma cells populations (pop2, pop3, pop5, popA, popB, and popD). The 
samples cluster within population. Box 1 encompasses genes that are upregulated in bone 
marrow plasma cells (pops A, B, and D); Box 2 genes that are upregulated in antibody 
secreting cells (pops 2, 3, and 5); Box 3 genes that are upregulated cross-tissue (pop2, pop3, 
popA, popB, and popD); Box 4 genes that are upregulated in antibody-secreting cell 
populations, pops 2 and 3; Box 5 genes that are upregulated in antibody-secreting cell 
population, pop5. (B) Principal component analysis of these differentially expressed genes 
shows that the first principal component captures 34.04% of variation. PC1 separates the bone 
marrow populations (pops A, B, and D) from antibody secreting cell populations (pops 2, 3, 
and 5). PC 2 captures 10.4% of the variance and separates pops 2 and 3 from pop5.  

The peripheral blood Pops 2, 3, and 5 (all Antibody Secreting Cells, ASCs) show 

coordinated enrichment of proliferation and cell cycle gene sets as compared to the bone 

marrow compartment SLPCs (pops A and B) and LLPC (popD). These proliferation gene 

sets include MYC Targets, E2F Targets, G2M Checkpoint, and DNA Repair. Enrichment 

in ASCs as compared to SLPC and LLPC is also observed for the metabolism gene sets, 

oxidative phosphorylation, and MTOR signaling. ASCs are also enriched for some 

inflammatory pathways (IFNG response and allograft rejection).  

In contrast, SLPC and ASC are not significantly differentially regulated for specific 

metabolism gene sets (adipogenesis and fatty acid metabolism), cell cycle gene sets (DNA 

repair and mitotic spindle), inflammation pathways (complement, IL6-JAK-STAT3, IFNA 

response, reactive oxygen species), MTOR signaling (PI3K-AKT-MTOR), as well as 

apoptosis, NOTCH signaling, and late estrogen response.   

Gene sets that are enriched in LLPC as compared to both SLPC and ASC include 

early estrogen response and TNFA signaling. Conversely, SLPCs are enriched for early 

estrogen response, hypoxia, P53, and TNFA signaling as compared to ASCs. 
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Figure 3.5. Significantly Differentially Regulated Pathways between ASC, SLPC, and 
LLPC. (A) Two way hierarchical cluster of the first principal component (%VE > 45) of 28 
pathways (nominal p-value < 0.05, FDR < 0.05) that were significantly differentially regulated 
between ASCs, SLPCs, and LLPCs based on GSEA.  (B) Bubble plot of the normalized 
enrichment score of each of the 28 pathways (from A) show the normalized enrichment score 
of each pathway within each of the two-way comparisons of ASCs, SLPCs, and LLPCs. The 
size of each bubble is directly correlated with the p-value of each pathway. The x-axis shows 
the normalized enrichment score of the each of two-way comparisons of ASCs, SLPCs, and 
LLPCs. The bubbles are colored on a spectrum between each of the two populations, trending 
closer to the color denoting the population as the enrichment score increases.   

Of these 28 pathways, I have chosen to pursue in depth analysis of six pathways due 

to their purported roles in ASC, SLPC, or LLPC development and survival: IL6, Apoptosis, 

IL2, ECM, TNFα Signaling, IGF1, and OxPhos. Klein 2003 implicated IL6 (Fig 3.6A), 

IL2 (Fig 3.6C), and IGF1 (Fig 3.6E) pathways as major contributors to plasma 

differentiation and survival. The ECM pathway (Fig 3.6B) provides greater insight into the 

proteins that are interacting with the extracellular membrane, including SDC1 (or CD138). 

The TNFA Signaling pathway (Fig 3.6D) has been shown to be key in upregulation of 

other plasma cell pathways including MAPK, NFKB, and PI3K-AKT. Finally, oxidative 

phosphorylation is an energy metabolism pathway that is differentially regulated across all 

pairwise comparisons of ASCs, SLPCs, and LLPCs. {Klein et al (2003)}. 

The IL6 pathway (Fig 3.6A) shows that IL6R is slightly upregulated for ASC as are 

JAK, which is involved in plasma cell differentiation programs, and VAV1, a regulator of 

Blimp-1. SLPC and LLPC strongly upregulate JUNB, NCOA1, SHC1, PRKCD, TIMP1, 

and BCL2L1, many of which are expected from bone marrow plasma cell population 

analysis.  
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Figure 3.6. Differential Gene Expressed for IL6, ECM, IL2, TNFA, IGF1, and Oxidative 
Phosphorylation Pathways for LLPC, SLPC, and ASC. Radar plots of selected pathways 
show the standardized least square means for the significantly (p < 0.05, FDR < 0.05) 
differentially expressed genes across ASCs (pops 2, 3, and 5), SLPCs (pops A and B), and 
LLPCs (popD). LLPC is shown in maroon, SLPC in yellow-orange, and ASC in light blue.  
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In the ECM pathway (Fig 3.6B), ASCs have the highest expression for several 

integrins (ITGB7 and ITGB1), COL4A4, and CD44. The remaining DEGs are more highly 

expressed in the bone marrow plasma cells (COL1A2, ITGA8, ITGA3, SDC1, ITGA6, 

LAMA5, COL9A3, AGRN, and TNR. 

The IL2-STAT5 (Fig 3.6C) pathway is essential to the commitment of the B-cell 

differentiation program. Within this pathway, ASCs most highly express SYK, CBL, 

IL2RB, NMI, and CCND2. SLPC highly express NMI and CCND2, as well. LLPC 

especially upregulate CISH. SLPC and LLPC upregulate JUN, BCL2, FOS, MYC, SHC1, 

and STAT5A.  

 The IGF1 pathway shows ASCs as having the highest expression of TNF and 

PTEN. LLPC has especially high expression of PLD1. The remaining genes are 

upregulated for both LLPC and SLPC: FOXO3, PDK1, PPARGC1A, FBXO32, ACVR2B, 

and IGF1R. 

 In the TNFA pathway (Fig 3.6D), MAP2K4, MAP3K8, and TRADD are most highly 

expressed in ASCs. JAG1, DAB2P, PTGS2, and LTA are most highly expressed in popD. 

The remaining DEGs are most highly expressed in both SLPC and LLPC.  

 Finally, oxidative phosphorylation (Fig 12E) shows highest expression for ASC as 

compared to the other two subsets, with the exception of GMPPB, suggesting that oxidative 

phosphorylation is uniquely upregulated in ASC as compared to SLPC and LLPC.  
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Figure 3.7. Proteomic-Transcriptomic Analysis of the Role of the Bone Marrow Microniche on 
Long-Lived Plasma Cells. Using LC-MS/MS, 91 proteins were identified to be present in the 
MSC secretome. All 4,426 potential protein interactors of these 91 proteins were compared 
against the 2,558 genes that were significantly (p < 0.05, FDR < 0.05) differentially expressed 
between long-lived plasma cells and peripheral blood ASCs. The result was a list of 556 
potential protein interactors that were significantly differentially expressed between LLPCs 
and ASCs. Gene set enrichment analysis of these 556 genes produced 20 differentially 
regulated pathways.  
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3.3.3 Proteomic identification of likely regulators of LLPC survival 

Mesenchymal stromal cells (MSCs) are known to play a key role in LLPC survival. 

Nguyen et al (2018) identified novel MSC plasma plasma cell survival factors using LC-

MS/MS in the MSC secretome. I utilized a bioinformatics approach to integrate this 

proteomic analysis of the MSC proteins with the ASC and LLPC transcriptomic analysis 

(Fig 3.7). Proteomic analysis of the MSC secretome produced 91 proteins. Using HIPPIE, 

which contains a database of potential protein-protein interactions of  ≥ 0.6 score, these 

91 proteins were determined to have 4,426 potential protein-protein interactions (PPI) 

using HIPPIE. {Alanis-Lobato et al (2017)}. 

 To determine which of these PPI played essential roles in the LLPC survival 

process, differential gene expression analysis was performed on LLPC samples (cells that 

had been exposed to the MSC secretome) as compared to ASC samples (cells that were 

naïve to the MSC secretome).  

 A total of 2,558 genes were found to be significantly differentially expressed (p < 

0.05, FDR < 0.05) between blood ASC and BM LLPC. The overlap between these DEGs 

and 4426 PPI from the proteomic analysis identified 556 PPI that were significantly 

differentially expressed between LLPC and ASC. Gene set enrichment analysis revealed 

20 statistically significant Hallmark pathways (Fig 3.7). Highlighted pathways included 

mTORC1 signaling, PI3K-Akt-mTOR signaling, TNFA signaling, and hypoxia. 

Furthermore, twelve of the 91 proteins had more than 45 PPI that overlapped with the 

ASC-LLPC DEGs. These top hits included fibronectin (FN-1), YWHAZ (also known as 

14-3-3 zeta/delta), heat shock proteins, endolase, glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH), eukaryotic elongation factor (EEF2), and various cytoskeletal 

proteins (actin, tubulin, and vimentin). 
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Figure 3.8 Integrated bioinformatics of MSC secretome proteomics with 
transcriptomics of blood ASC and BM LLPC. (A) A heat map of the 2,558 DEG 
between 17 blood ASC (PB ASC) obtained from 7 healthy subjects and BM LLPC (LLPC) 
obtained from 4 adult subjects. (B) HIPPIE analysis of 91 MSC protein revealed 4,429 
potential protein partners (PPI). Overlap of the 4,429 PPI  with the 2,558 DEG uncovered 
556 overlapping gene/protein targets and led to 20 statistically significant GSEA hallmark 
pathways. (C) Of the aforementioned 91 MSC secretome proteins, FN-1 and YWHAZ had 
the highest number (118 and 119, respectively) of potential interacting partners. Of these 
potential partners, 31 were shared between both FN-1 and YWHAZ. (D)  From the 20 
GSEA pathways, FN-1 and YWHAZ were found to be involved in these 10 potential GSEA 
hallmark pathways. 

The top two proteins, FN-1 and YWHAZ, had 436 and 430 PPI, respectively, of 

which 118 and 119 overlapped with the DEG in blood ASC and LLPC (FDR < 0.05; p-

value <0.05). FN-1 and YWHAZ were only involved in 10 of the 20 GSEA hallmark 

pathways. These included proliferation signatures i.e. E2F targets and G2M 

checkpoints, which is consistent with evidence that most blood ASC have undergone 

recent proliferation in contrast to the BM LLPC . However, the downregulation 

of Myc targets, mTORC1 signaling, and PI3K-Akt-MTOR signaling suggested novel 

pathways that the MSC secretome may activate for maintaining ASC survival. 

While YWHAZ and FN-1 have been experimentally as essential for ASC and LLPC 

survival, whether the other 89 proteins have a direct role in LLPC maturation will require 

further investigation.{Nguyen and Lewis et al (2018);Nguyen et al (2018);Halliley et al 

(2015)}. Further experiments have shown a dose-dependent effect of GAPDH, HSPD1, 

and hnRNPA1 when comparing ASCs to PCs, further validating several of these proteins.  

 

3.4  Discussion 

My transcriptomic profiling characterizes differential expression of thousands of 

genes in various gene sets of development and differentiation across two compartments 
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and six cell types. Cell-sorted whole RNASeq was insufficient to resolve the full functional 

consequences of these transcript abundance differences for the development of long-lived 

plasma cells.  However, I discuss some aspects of the processes relevant to each cell type 

and compartment before turning to inferences as to relationships between these cell types 

in the context of order of maturation within and across compartment. 

3.4.1 Bone Marrow Plasma Cells: PopA, PopB, and PopD 

This Chapter started with a detailed analysis of pops A, B, and D independently in 

the bone marrow. Many of the gene sets previously discussed in the peripheral blood 

compartment appear again in this discussion, including proliferation, inflammation, 

MTOR, androgen-estrogen response, cell mobility, tumor suppression, metabolism, stress 

response, and survival (Figure 3.2B).  

Figure 1.2 provided a model for the relationship between pops A, B, and D. In 

addition to the possibility that they arise independently from each other (Figure 1.2, Models 

1 and 4), the differential gene expression clustering in Fig 3.2A suggests that popB could 

be an intermediate population between popA and popD. This could be explained in one of 

two ways: 1) popA is the precursor population and transitions into popB which in turn 

becomes popD (Fig 1.2, Model 2), or 2) popB is the precursor population and from it, either 

popA or popD arise. Bayer Garner 2003 suggested the possibility of three bone marrow 

plasma cell populations that they studied in the murine model, which they differentiated 

based on the strength of CD138 association (strongly (popD), weakly (popB), or absent 

(popA)) wherein the weakly expressed CD138+ cell was the precursor population and 

either more strongly expressed or shed CD138. Unfortunately, transcriptomic analysis 
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alone cannot conclusively prove which, if any, of these models is the true model of 

development of LLPC. Here, I will discuss further the findings of the transcriptomic 

analysis of these three cell types, followed by inference of their relationship with one 

another. {Bayer-Garner et al (2001)} 

Fig 3.2 presents popA as having enrichment of inflammation gene sets, cell cycle and 

proliferation, energy metabolism gene sets (including oxidative phosphorylation), and 

MTOR pathways. In contrast, popD was enriched in cell-cell adhesion, signaling, and 

survival pathways. PopB, as could be surmised from the DEG (Fig 3.5), did not uniquely 

upregulate any pathway in comparison with both popA and popD.  The pathways 

upregulated in popA are more similar to the signatures found in the ASC (Chapter 2), 

especially in relation to oxidative phosphorylation and cell cycle and proliferation. These 

pathways are not relevant for the hypoxic environment of the terminally differentiated 

long-lived phenotype. This suggests the possibility that differential expression of these 

pathways is an artefact of recent transitioning of ASC into BMPC. This lends itself to the 

model that popA is the precursor population that develops into popB and then popD (Figure 

1.2, Model 2). {Tellier et al (2018);Tellier et al (2017);Nutt et al (2015);Klein et al (2003)} 

These pathways of cell-cell adhesion and survival being enriched in popD are 

recapitulated in the individual pathway analysis (Figure 3.6). Across all 6 pathways 

considered in depth, genes associated with survival and adhesion are mainly highly 

expressed by popD as compared to popA and popB.  
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3.4.2 Comparison of Bone Marrow Plasma Cells to Peripheral Blood Antibody-

Secreting Cells  

Initially, BM and PB sets were analyzed together (Figure 3.4) through clustering of 

all significantly differentially expressed genes (DEGs) across all six populations (Figure 

3.4A). The gene expression separated the two compartments with pops A, B, and D 

clustering together relative to the marrow compartment (Fig 3.4, Box 1), and pops 2, 3, and 

5 clustering together representing the distinct blood compartment (Fig 3.4, Box 2). 

Consequently, I analyzed peripheral blood and bone marrow subsets separately by 

considering all three PB populations as one set of cells (ASCs: pop2, pop3, and pop5), 

short-lived plasma cells as a second set (SLPCs: popA and popB), and long-lived plasma 

cells (LLPC: popD).  

As expected from the peripheral blood analysis, proliferation gene sets were enriched 

in ASCs as compared to LLPCs and SLPCs. Some cell cycle gene sets were enriched in 

both SLPC and ASC consistent with the model that ASCs are precursors to SLPCs. Several 

enrichment pathways were similarly enriched in both ASC and SLPC as well as MTOR 

pathways. Nguyen et al (2018) showed through experimental manipulations that MTOR is 

essential for SLPC survival, though not for ASC or LLPC survival. One potential 

explanation for the upregulation of MTOR in ASC, as compared to SLPC and LLPC, could 

be that its upregulation is in preparation for entrance into the marrow space, establishing a 

need for MTOR at the SLPC stage. {Nguyen et al (2018)}. 

Of the significantly differentially regulated gene sets between ASC, SLPC, and 

LLPC, the estrogen response gene sets were unexpected. However, Fortini et al [2017] 
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showed that the upregulation of estrogen provides a protective function for cells against 

TNFα-induced apoptosis by activating Notch signaling, which is involved in cell-cell 

interactions and cell-fate decisions. {Fortini et al (2017);Jundt et al (2004)}. Estrogen has 

also been noted to induce B-cell hyperactivity. {Ahmed et al (1999)}. In fact, the shift in 

cholesterol conversion from androgen to estrogen has been known to upregulate B-cell 

development.{Olsen and Kovacs (2001)}. Hence, the enrichment of androgen gene sets 

may indicate suppression of B-cell development. Whether or not differences in androgen 

and estrogen levels in men and women influence gender-biases in vaccine efficacy by 

virtue of the documented differences in sex-hormone response gene expression remains to 

be evaluated.  

The individual pathway analysis of ASC, SLPC, and LLPC (Figure 3.6) focused on 

six specific pathways. Amongst these, the IL2-STAT5 signaling gene set has been noted 

to commit B-cells to the PC fate. {Tellier et al (2018);Le Gallou et al (2012);Klein et al 

(2003);Hipp et al (2017)}. The remaining gene sets have more complicated roles in the 

development of PCs. TNFα signaling plays a dual role in the context of PCs. Depending 

on its downstream targets (either the caspase cascade or NFκB signaling), it either induces 

apoptosis or proliferation. {Jourdan et al (1999)}. As previously discussed, estrogen 

response gene sets upregulated in PCs might modulate the apoptotic effects of TNFα such 

that NFκB-promoted “proliferation” allows for further development into the long-lived 

phenotype. Additionally TNFα, as well as IFNα signaling, has been a key player in the shift 

from generation of LLPCs to SLPCs and the mobilization of PCs from the marrow during 

infection.{Slocombe et al (2013);Mathian et al (2011)}. The IL6-JAK-STAT3 gene set, in 

contrast, plays a role in survival and differentiation of plasma cells. {Liu et al (2012);J 
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ourdan et al (1991); Jourdan et al (2003); Jourdan et al (2005); Cokic et al (2015)}.  The 

P53 survival gene set also modulate development and survival of plasma cells in the 

context of tumor suppression. {Shi et al (2017); Ma et al (2014); Vicente-Duenas et al 

(2012); Ackermann et al (1998); Wang et al (1995)}.  

These gene sets of development, differentiation, and survival produce a stress 

response in PCs that is also reflected in the enrichment of the Unfolded Protein Response, 

and UV Response. These gene sets are known to be crucial for significant changes in 

demands for antibody production and the changes in cell structure to compensate for these 

changes. {Ma et al (2014)}. However, it is important to note that the differential expression 

at the level of individual genes implies a much more nuanced picture than suggested by 

considering the pathway as a whole.  Experimental manipulation following approaches 

described n Nguyen, Garimalla et al (2018) is critical to validate specific 

inferences.{Tellier et al (2018);Tellier et al (2017);Nutt et al (2015);Nguyen et al 

(2018);Klein et al (2003);Good et al (2009); Jourdan et al (2011)} 

In conclusion, while the exact mechanisms in which these and other pathways engage 

to promote survival and development into the long-lived phenotype is unresolved, what is 

clear is that all of these pathways play a significant role in all three subsets of plasma cells 

(ASCs, SLPCs, and LLPCs); and it is possible that different portions of these pathways are 

upregulated and downregulated through different stages of this development process. 

Furthermore, current gene set enrichment analysis is inadequate to fully determine the 

extent of interaction within and across pathways and genes in the development of novel 

cell types, however it can serve to suggest a direction of more in-depth analysis and focus 

within each functional group of pathways and gene sets.  
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3.4.3 Four Models of Development of Long-Lived Plasma Cells 

We have recently demonstrated that rather than being a homogeneous population of 

cells, plasma cells actually consist of multiple subpopulations based on key cell surface 

markers CD138, CD38, and CD19, both in bone marrow and peripheral blood. {Nguyen 

and Lewis et al (2018);Nguyen et al (2018);Halliley et al (2015)}.  Various models for the 

ontological relationships between the six predominant PC populations, three in each 

compartment, can be considered, as schematized in Figure 1.2.  Each model assumes that 

PC first arise in germinal centers, and that pops A and B are short lived, undergoing high 

rates of apoptosis if they do not further differentiate.  The first is that peripheral blood 

plasma cells are precursors to bone marrow plasma cells of the same cell surface marker 

pattern (Model 1). In this case, each PB ASC would arise independently from a germinal 

center precursor and differentiate into one of the bone marrow plasma cells, retaining their 

matching cell surface markers. Second, pop2 could be the precursor of all bone marrow 

plasma cells (Model 2). In this model, some unidentified precursor from the germinal 

center gives rise to pops 2, 3, and 5.  Then pop2 enters the marrow as popA; popA then 

differentiates popB or undergoes apoptosis. PopB then differentiates into popD or 

apoptoses. Subsequently, popD, migrates further into the hypoxic space of the bone 

marrow as an LLPC. A third possibility is that pop3 is the precursor of all bone marrow 

plasma cells (Model 3). That is, some unidentified precursor from the germinal center gives 

rise to pops 2, 3, and 5 and it is pop3 that enters the marrow as popB; popB then 

differentiates either into popA (which eventually apoptosis) or differentiates into popD 

upon migration further into the hypoxic space of the bone marrow as a LLPC. In the fourth 
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model, each cell type arises independently in both the peripheral blood and bone marrow 

compartments from a common precursor.  

  Model 1 is unlikely due to the lack of similarity between pops 5 and D.  Since pops 

2 and 3 show such high similarity that they are paired within individual, whereas their bone 

marrow counterparts, pops A and B, are quite different from each other, it is difficult to 

distinguish between Models 2 and 3 which postulate that either pop2 or pop3 respectively 

are the precursors to the bone marrow cells.  Model 4 is that all 6 cell types derive 

independently, such that the CD marker similarities between the matching populations 

represent convergent gene expression, rather than retention from peripheral blood 

precursors.  

Models 2 & 3 encapsulate the concept of pop 2 and 3 being closely linked and also 

as the BM precursors. Model 2 suggests that popA differentiates into popB. This 

differentiation would result from significantly altered expression of cell cycle, 

inflammation, and stress gene sets. A failure or inability to proceed with this transition may 

result in apoptosis. Subsequently, popB would differentiates into popD, accompanied by 

significantly altered expression of hypoxia, androgen and estrogen response, and 

proliferation related gene sets. This model is favored by the fact that there are no gene sets 

that are upregulated in B alone. Furthermore, numerous gene sets that are high in popA are 

also characteristic of pops2 and 3.  

Model 3 suggests that at the popB stage of the differentiation, a decision on cell fate 

is made and the plasma cell either differentiates into popA, which significantly altered 

expression of cell cycle, inflammation, and stress gene sets; or popB differentiates into 
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popD, which causes significantly altered expression of hypoxia, androgen and estrogen 

response, and proliferation related gene sets, leading to the long-lived phenotype. This 

model is supported by the observation that pop3 begins to upregulate BMPC relevant 

pathways such as hypoxia and TNFA signaling (Chapter 2) which suggests that it is the 

BM PC precursor population. 

3.5 Conclusion 

While it is clear that we cannot explain the origin of the BM populations without 

postulating independent gain and loss of expression of genes in multiple gene sets on either 

the precursor or transitional models, a mixture of the two is possible as well.  Resolution 

of these relationships is important because it will allow for greater insight into the 

developmental ontogeny of LLPC which could then, ideally, be manipulated for 

autoimmune preventative therapeutics or increased vaccine efficacy, amongst other uses.  

With currently available experimental methods, further understanding of the ontology and 

function of the plasma cell types will be reached by extensive experimental validation of 

in-depth bioinformatic analysis of each individual gene set and its relevant interactors.  
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CHAPTER 4 

SINGLE CELL RNASEQ ANALYSIS OF LUPUS AND HEALTHY 

NAÏVE B-CELLS AND POPD PLASMA CELLS 

4.1  Introduction 

This study has largely been based on the premise that neither bone marrow plasma 

cells nor peripheral blood antibody secreting cells should be considered to be a 

homogenous population; that is, by sorting these cells into subtypes, we are able to better 

determine development and survival mechanisms for the long-lived plasma cell and its 

potential precursors. Where the line should be drawn for the subsetting of cell-types is a 

question under ongoing contention, especially with the advent and perpetual improvement 

of single-cell RNASeq (scRNASeq) technology. Traditionally, fluorescence-activated cell-

sorting (FACS) based on diagnostic cell-surface markers has been used to determine 

subpopulations a priori. Now, scRNASeq and algorithms of analysis of these new datasets 

allow the possibility of using gene expression of the cells themselves to determine how 

many subtypes are present in a given sample, and how they differ.  

Here, I ask the question if there are subpopulations of LLPCs: does the development 

of LLPC happen on a continuum or is it a binary switch? To this end, we were able to 

procure bone marrow samples for two individuals, one healthy and one with systemic lupus 

erythematosus (hereafter, ‘lupus’). Within each of the samples, naïve and popD cells were 

cell-sorted and sequenced using single-cell SmartSeq2. In this chapter I discuss the 

analysis.  
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4.1.1 Systemic Lupus Erythematosus (SLE) 

Lupus is a plasma cell dyscrasia that predominantly affects women, especially of 

African descent. Both genetics and environment play a role in SLE. Lupus is caused by the 

production of autoantibodies. Oftentimes, these antibodies can bind to each other and form 

immune complexes which transverse through the bloodstream to various areas of the body 

and lodge in various tissues causing, at times, severe inflammation. {Tipton et al (2018); 

Ching et al (2012); Banchereau et al (2016)} 

As previously mentioned, there is a predominance of lupus in women. Sex 

hormones have been shown to play a role in lupus, wherein women who were given 

estrogen replacement therapy were 1.3x more likely to have an SLE flare-up as compared 

to women who did not. {Buyon et al (2005);Askanase et al (2004);Askanase et al (2012)}. 

While there have been significant studies and gains in understanding of the disease 

over the last decade that have led to improved patient care, a granular understanding of 

mechanisms behind the production of these aberrant plasma cells remains elusive. Through 

single-cell RNASeq analysis, determination of subpopulations of cell types including naïve 

B-cells and popD cells could provide some insight into the molecular mechanisms behind 

this disorder. 

4.1.2 Naïve B-cells 

I was provided with data for two cell types: naïve and popD. Until now, the focus of 

this thesis has been primarily on plasma cells rather than the naïve B-cell precursor.  
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All B-cells arise from a multipotent precursor in the bone marrow. This precursor 

then differentiates into a common lymphoid progenitor. From here, the B-cell develops 

through many stages of development from early pro-B-cell to immature B-cell with 

rearranged heavy and light chains and IgM expression. These cells then leave the bone 

marrow for the circulation as transitional B-cells and eventually become mature B-cells. 

These naive B-cells eventually encounter antigen and become activated and differentiate 

into plasma cells and memory cells. During the naïve stage, however, they are not 

producing the copious amounts of antibody that their later counterparts do. {Askanase et 

al (2012);Bordon et al (2015); Liu et al (2011); Taylor et al (2015);Tipton et al 

(2015);Tipton et al (2018);Tsokos et al (2016)} 

While the role of plasma cells is established in lupus, only recently has the role of 

naïve autoreactive B-cells been considered. Tipton et al 2015 determined that significant 

numbers of ASCs in lupus patients arise from recently activated naïve cells and are an 

important contributor to the disease. {Tipton et al (2015)} 

4.2 Materials and Methods 

4.2.1 Short Read Mapping and Gene Expression Quantification 

Bone marrow aspirate was collected from one healthy patient and one lupus patient. From 

each of these, 36 Naïve B-cells and 246 popD cells were sorted and collected. They were 

sequenced using the SmartSeq2 protocol {Picelli et al (2014)} by Dr Stephen Bossinger at 

the Yerkes genome core. One million single end 50bp reads were mapped to the reference 

human genome hg38, using STAR {Dobin et al (2013)} to generate bam files.  HTseq 

{Anders et al (2015)} was then used to assess read counts at the gene level.  The mapped 
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libraries were then normalized accounting for differences in size and dispersion using the 

default parameters of EdgeR for gene abundance levels as TMM {Robinson et al 

(2010);Nikolayeva et al (2014)}.  Subsequent analysis was performed using Seurat v2.0 

{Butler et al (2018)}, including normalization and differential expression analysis. 

Gene set enrichment analysis was conducted using the Broad Institute’s GSEA pre-

ranked program as in Chapters 2 and 3. The average difference between conditions was 

used as the rank for this analysis and it was run against the hallmark pathways of GSEA.  

4.2.2 Seurat 

 In this study, I use Seurat v. 2.0 as an R package to analyse the SmartSeq2 single-

cell data. Because I have two datasets (one from each individual), I performed a canonical 

correlation analysis (CCA) within the Seurat package to determine which genes provide 

common sources of variation between the healthy individual and the lupus individual. To 

determine the number of canonical components to be used in this analysis, a metagene 

bicorrelation plot was used to determine the saturation point between the two datasets. This 

was further verified using the CC hierarchical clustering plots. Once the number of CCs 

was determined, Seurat then used to align the CC subspaces and cluster the results in one 

single integrated analysis. Further, tobit differential expression analysis implemented also 

in Seurat was used to identify genes differentially expressed across conditions, individuals, 

and clusters. {Butler et al (2018)} 
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4.2.3 tSNE 

 Visualization of clusters determined through use of canonical components was 

performed using the tSNE dimensionality reduction procedure. Though principal 

component analysis, a linear and parametric method, has been used in the past for 

dimension reduction and analysis of genomic data, for visualization of scRNASeq data, it 

has been supplanted by t-distributed Stochastic Neighbor Embedding, or tSNE, a non-

linear and non-parametric dimension reduction method.  Many commonly used scRNASeq 

analysis pipelines automatically have tSNE included within the clustering and visualization 

of single-cell data, including Seurat. {Butler et al (2018); Maaten and Hinton, 2008; 

Wattenberg, 2016} 

The origin of tSNE is the SNE (or Stochastic Neighbor Embedding) algorithm, which uses 

Euclidean distances and measures similarity between two data points, i and j, as the 

probability that i would have j as its neighbour under a Gaussian distribution that is 

centered on i. Further, SNE requires the use of variance in the calculations of these 

probabilities. Since the dense regions require a smaller variance than the less dense regions, 

SNE performs a binary search for the optimal variance to be used for calculation based on 

perplexity, which is user-defined. Perplexity is effectively a measurement of number of 

neighbors and accounts for entropy of the cluster. Because of these inputs, often the 

computation time for SNE is high, and multiple runs are required to optimize the user-

selected perplexity score, which can result in crowding of datapoints. {Butler et al (2018); 

Maaten and Hinton, 2008; Wattenberg, 2016} 



 81 

          Unlike SNE, tSNE utilizes a heavy-tailed Student’s t-distribution rather than the 

Gaussian distribution which minimizes crowding. Additionally, tSNE uses a symmetrized 

SNE cost function to lower computational time. Further, it is more robust to changes in 

perplexity which minimizes the need for multiple runs to optimize the clustering of 

datapoints. The presentation of single-cell clusters is shown as a tSNE plot. This has 

become common practice within the context of single-cell RNASeq analysis. {Butler et al 

(2018); Maaten and Hinton, 2008; Wattenberg, 2016} 

4.3 Results 

Due to limitations of this experiment containing only two individuals, joint analysis 

of these cells was confounded by the fact that there was just a single individual within each 

disease state (healthy or lupus) and cell type (naïve, or popD). Nevertheless, I used Seurat’s 

canonical correlation (CC) analysis pipeline to identify common cell types across both 

individuals, by identifying common sources of variation between both sets of data.  Given 

these I then quantified differential expression between the two samples.  Any inference that 

the difference is a mark of disease must be tempered by the lack of repetition, though 

comparison with knowledge from existing bulk transcriptomic data can be used as a guide. 

Figure 4.1 provides a bicorrelation plot of the healthy and lupus samples for all cells.  

A “saturation” point for CCs is at approximately the first 10 CCs after which there is a 

drop-off in signal. To ascertain the genes that drive each of these CCs, Figure 4.2 displays 

heatmaps of the top genes that drive each CC for CC1-12. Cells are on the x-axis and genes 

are shown on the y-axis.  As can be seen, there is some structure to the first 10 CCs which 

drops off at CCs 11 and 12. Following the selection of CCs to include, these 10 CCs were 
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aligned between lupus and healthy samples, allowing discrimination of cell types by 

integrated cluster analysis in Seurat.  

                                  
Figure 4.1. Bicorrelation Plot of Healthy and Lupus Samples. This plot compares the 
shared correlation strength of the Healthy and Lupus samples on y-axis of each canonical 
correlation component (on the x-axis).  The drop-off in correlation strength begins at after 
CC10 so CC1-10 was used for this analysis.  

                            

Figure 3.2. Heatmaps of First 6 CCs. This is a heatmap to visualize the first 6CCs and 
their top driving genes. The genes are represented on the rows and the cells are represented as 
columns. CC1-6 shows structure in driving gene expression.  
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The result of this clustering is displayed in Figure 4.3. Four identical tSNE plots are 

shown, varying only in their color schemes. Figure 4.3A shows the three clusters (clusters 

0, 1, and 2) that result from the integrated CCA clustering. Figure 4.3B shows the 

distribution of healthy cells and lupus cells within these clusters. As can be seen, there is 

no special clustering of lupus or healthy samples within each cluster.  Figure 4.3C shows 

the distribution of naïve and popD cells within each cluster. Cluster 1 is dominated by naïve 

B-cells with the exception of 3 cells. Clusters 0 and 2 are dominated by popD cells, 

suggesting that there might be a subpopulation of popD cells. Figure 4.3D shows the 

distribution of disease and population within the same tSNE plot, effectively recapitulating 

Figs 4.3B and 4.3C in one plot.  

Differential expression analysis was performed using the tobit method in Seurat across 

disease state, cell population, cluster, and combinations of these for genes that were present 

in greater than 10% of the cells in both conditions. Figure 4.4A shows the differential 

expression analysis of healthy and lupus popD cells. The 312 differentially expressed genes 

are on the x-axis and disease state is displayed on the y-axis. Gene set enrichment analysis 

was performed on these 337 genes (p < 0.05, FDR < 0.05) and resulted in two significantly 

(p < 0.05, FDR < 0.05) dysregulated gene sets (Fig 4.4B): TNFA signaling (enriched in 

healthy cells) and UPR (enriched in lupus cells). 
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Figure 4.3. tSNE plots of CC-based Clusters. These four graphs present (A) the three 
clusters (cluster 0, 1, and 2) that were determined using the first 10  CCs. (B) These clusters do 
not separate out by disease state (healthy or lupus). (C) These clusters do separate by cell 
population (Naïve and popD) where clusters 0 and 2 are comprised nearly entirely of popD 
cells and cluster 1 is comprised of nearly entirely naïve cells. (D) This is an amalgamation of 
(A-C) to show all four combinations of disease and cell populations: Healthy Naïve, Healthy 
PopD, Lupus Naïve, Lupus PopD.   
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  A similar analysis of differential gene expression analysis followed by GSEA was 

performed on naïve cells in comparison with popD cells (Fig 4.4C). This resulted in 471 

significantly differentially expressed genes (p < 0.05, FDR < 0.05) with 10 significantly 

differentially regulated pathways (p < 0.05, FDR < 0.05) between popD and naïve, nine of 

which are enriched in popD (Fig 4.4D). These pathways fall under the broad categories of 

inflammation (allograft rejection, inflammatory response, and IFNG response). Both 

KRAS Up and KRAS Down gene sets are enriched. While both can be enriched due to the 

fact that both activators and repressors are treated equally in these analyses, this also 

suggests that there may be coregulation of the KRAS signaling pathway in opposite 

directions.   Further IL2-STAT5, PI3K-AKT-MTOR, and apical junction are enriched in 

popD as well. The only pathway that is enriched in naïve cells, interestingly, is UPR. This 

is counterintuitive due to the fact that UPR is commonly associated in B-cells with high 

rates of antibody production which is not characteristic of naïve B-cells in the marrow.  

 Figure 4.4E compares cluster 0 with cluster 2, effectively comparing the bulk of 

the popD cells with the novel popD cells. The result is 163 significantly differentially 

expressed genes. Gene set enrichment analysis of these genes highlights Allograft 

Rejection, Apical Junction, Apoptosis, Coagulation, Complement, EMT, Glycolysis, 

Heme Metabolism, Hypoxia, IL2-STAT5, Inflammatory Response, KRAS Up, PI3K-

AKT-MTOR, Reactive Oxygen Species, and TNFA Signaling pathways previously 

discussed in Chapters 2 and 3, while adding Cholesterol Homeostasis as well. All of these 

pathways are upregulated in cluster 2, which is the cluster of novel popD cells. 
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Figure 4.4. Differential Expression analysis of Markers of Disease States and Cell 
Populations. (A) Heatmap representing the gene markers that differentiate healthy donor cells 
from lupus donor cells. The cells are represented on the y-axis and genes are represented on on 
the x-axis. (B) Bubble plot of the gene set enrichment analysis of the genes that are 
significantly (p < 0.05, FDR < 0.05) differentially expressed between healthy and lupus cells 
The size of each bubble is directly correlated with the negative log nominal p-value of each 
pathway. The x-axis shows the normalized enrichment score of the comparison between 
Healthy and Lupus. The color the bubbles is a spectrum between black (towards -4 or 4) to 
white (trending closer to zero). The bubble becomes darker as the absolute value of the NES. 
(C) Heatmap representing gene markers that differentiate naïve B cells from popD cells. (D) 
The results of the GSEA for this comparison. (E) Heatmap representing the gene markers that 
differentiate cells in Cluster 0 (the main cluster for PopD) from Cluster 2 (the smaller popD 
cluster). The cells are represented on the y-axis and genes are represented on on the x-axis. (F) 
The results of the gene set enrichment analysis of the genes that are significantly (p < 0.05, 
FDR < 0.05) differentially expressed between Cluster 0 and Cluster 2 are shown in this bubble 
plot of the normalized enrichment scores.  

 

4.4 Discussion 

 Using the Seurat package, CCA analysis of samples obtained from lupus and healthy 

donors allowed for determination of cell subpopulations independent of disease state (and, 

consequently, individual). Subsequent analysis showed the presence of three clusters (Fig 

4.2A). None of these three clusters was specific to a disease state (Fig 4.2B). While the 

presence of a naïve cluster separate from popD was expected (Fig.4.2C), in addition to a 

naïve cluster and a large popD cluster, a third cluster also emerged that was also 

predominantly filled with an alternate set of popD cells.  

 Differential expression analysis and gene set enrichment analysis resulted in the 

recapitulation of many of the pathways determined to be significant in the comparison of 

LLPC to SLPC and ASC (Chapter 3). When comparing healthy with lupus cells, the UPR 

was enriched in the lupus popD cells (Fig 4.4A). Pending reanalysis with more samples, 
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this could suggest a greater amount of ER stress and protein production demand in the 

lupus cells.  

In the comparison of naïve B to PopD cells, inflammatory pathways and survival 

and signaling pathways were enriched in popD. The only pathway upregulated in naïve B 

cells is the unfolded protein response pathway. This is unexpected due to the fact that this 

pathway is associated with high antibody production rates that are more typical of plasma 

cells rather than naïve B-cells. It is possible that the UPR gene set, which is noted to be 

associated with stress response in the B-cell, is accommodating a different stress that is 

unrelated to high antibody production rates.  

 I further compared differential expression across the three clusters, focusing on the 

naïve B and novel popD clusters in Figure 4.5. The DE analysis and GSEA between 

clusters 0 and 1, not shown, effectively recapitulated the analysis between naïve and popD 

cells as cluster 0 is effectively the majority of popD cells and cluster 1 is primarily naïve 

cells. When comparing cluster 0 with cluster2 (comparing the two populations of popD), 

however, the results included a greater number of pathways that were upregulated in cluster 

2. Under the assumption that this is representative of true signal, this suggests a potential 

subset of long-lived plasma cells. Whether or not it is a transitional cell type or novel type 

of mature popD cell remains to be elucidated through further single-cell samples and 

experiments as well as potential lineage tracing experiments.  
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4.5  Conclusion 

Because of the low power of this experiment, only preliminary conclusions can be 

drawn from this dataset. Despite this, my analysis of single cell popD and naïve cells does 

suggest the possibility of additional sub-populations of plasma cells, in addition to the 

discrete states defined by the three cell surface markers CD19, CD38 and CD138 as 

analyzed in Chapters 2 and 3.   
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CONCLUSIONS 

5.1  Introduction 

Mammalian immune systems are characterized by two major components: the innate 

and adaptive immune systems. A powerful key feature of the adaptive immune system is 

its ability to provide long-lasting immunity.  This feature is largely composed of plasma 

cells and memory B-cells. {Shi et al (2015);Jourdan et al (2011);Halliley et al (2015)} 

Plasmablasts are precursors to both memory B-cells and terminally differentiated 

plasma cells. Amongst other locations, plasma cells migrate to the bone marrow and 

synthesize copious amounts of antibody. { Zhang et al (2009);Tellier et al (2018);Shi et al 

(2015);Nutt et al (2015);Klein et al (2008);Kassambara et al (2015);Jourdan et al 

(2011);Chatterjee et al (2007);Rawstron et al (2006);Klein et al (2003);Good et al (2009); 

Mei et al (2015) } 

While numerous studies have explored gene expression of plasma cells, none have 

yet focused on the subsets of plasma cells in both the peripheral blood and bone marrow 

compartments: antibody secreting cells (pops2, 3, 5) in the peripheral blood, and short-

lived (popsA and B) and long-lived (popD) plasma cells in the marrow. {Halliley et al 

(2015)} Since these previous studies have primarily addressed these cell types as a 

homogenous population, analysis of the biochemical properties of the plasma cells (PC) in 

peripheral blood and bone marrow have not proved fruitful in the context of study of 

diseases characterized by plasma cell dyscrasia. In this work, I described comparative 

whole-transcriptome analysis of three peripheral blood populations (pop2, pop3, and pop5) 
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from flow-sorted PC preparations and for three bone marrow samples, all of which came 

from live human donors. 

5.2  Peripheral Blood Antibody Secreting Cells 

During the initial discovery of the long-lived phenotype, the Lee Lab at Emory also 

documented the existence of three populations of peripheral blood antibody-secreting cells 

that were determined to be potential precursor populations to the three populations in the 

marrow due to their similarity in cell surface marker presentation (Table 1.1). Until this 

study, no in-depth analysis of the transcriptional and molecular properties of the PB-

specific ASCs had been performed. {Tipton et al (2018);Halliley et al (2015)} 

While it is known that ASCs contribute to antibody production during infection 

despite the rarity of the cell type, most analyses of ASCs have addressed them as a 

homogenous cell type and were primarily performed within the context of the murine 

model. Subsequently, these studies have largely only been able to determine ASC 

signatures that identify them in comparison to other B-cell subsets rather than as subsets 

themselves. {Tellier et al (2018);Tellier et al (2017);Shi et al (2015);Nguyen and Lewis et 

al (2018);Nguyen et al (2018);Kassambara et al (2015);Halliley et al (2015)}.  

In my work, I analyzed pop2, pop3, and pop5 transcriptionally. My findings showed 

a marked similarity between pops2 and 3 to the exclusion of pop5.  Further, these finding 

suggest that pops2 and 3 maintain the potential to develop into the long-lived phenotype. 

Proliferation pathway enrichment in pop2 suggest that it is the precursor to pop3 which 

begins to downregulate these pathways and upregulate hypoxia and TNFA signalling, both 

of which are upregulated in the SLPC and LLPC (discussed in Chapter 3). The 
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downregulation of UPR in pop5 suggest that it is autophagic and that the UPR stress 

response may be unable to manage the stress of ER development and transcriptional shifts, 

possibly resulting in a pre-apoptotic stage. However, further validation experiments must 

be performed to verify these hypotheses as transcriptional analysis alone is insufficient to 

draw any conclusions.  

 

5.3  Bone Marrow Plasma Cells and Peripheral Blood Antibody Secreting Cells 

 Understanding and analysis of the role of plasma cells in plasma cell dyscrasias has 

largely been hampered by the consideration of these cell types as a single population. In 

2015, Halliley et al presented clear evidence that bone marrow plasma cells are not 

homogenous. Further, they went on to characterize a subset of plasma cells that present the 

long-lived phenotype that is responsible for the maintenance of serological memory. 

{Halliley et al (2015);Bayer-Garner et al (2001);Aref et al (2003)}. 

As discussed in Chapter 2, five sub-populations are observed in peripheral blood 

based on the cell surface markers CD19, CD38, and CD138: pop1, pop2, pop3, pop4 and 

pop5. Based on parallel cell surface marker presentation, four bone marrow populations 

have been observed: popA, popB, popC, and popD. {Halliley et al (2015)}. Due to the 

parallel cell surface marker presentation, the peripheral blood populations were 

hypothesized to be precursors of the bone marrow populations. Of these, we have been able 

to assess the cell-sorted whole transcriptomes by RNASeq for the six most abundant 

populations: popA, popB, popD, pop2, pop3, and pop5. {Halliley et al (2015)}. Until this 
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study, contributions of specific aspects of gene expression to functional differences among 

these subpopulations across tissues was not described. 

I found that peripheral blood and bone marrow population gene expression cluster 

within tissue. I put forth 4 models (Figure 1.2) that were more thoroughly described in 

Chapter 3. My analysis showed that the origin of the BM populations cannot be explained 

without further experimentation including single cell analysis and lineage tracing, while a 

mixture of the precursor or transitional models is possible. By resolving these relationships 

through future studies, more granular and clearer insight into the development of long-

lived plasma cells can be determined which would have implications in the context of 

health and disease. Further, integration of proteomic and transcriptomic analyses put forth 

several hypotheses of the role of numerous proteins on the development and survival of 

LLPC that were then validated experimentally by Doan Nguyen of the Lee Lab in Emory, 

including: TNFA, GAPDH, MTOR, HSPD1, FN1, YWHAS, hnRPA1, and Hypoxia.  

 

5.4  Single Cell RNASeq of PopD and Naïve B-cells 

This work has been primarily focused on granular understanding of plasma cells 

which have, until recently, been understood to be a homogenous cell type.  In Chapters 2 

and 3 I considered 6 subsets of the plasma cells populations: pop2, pop3, pop5, popA, 

popB, and popD. In this work, I increased the granularity of assessment of popD cells 

through single-cell RNASeq analysis. In this chapter, the question was posed as to whether 

LLPCs contain within them, subpopulations of long-lived plasma cells.  
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A major implication of this work is that we were only able to procure bone marrow 

samples for two individuals, one healthy and one with systemic lupus erythematosus 

(hereafter, ‘lupus’). For each of these individuals, we procured naïve B-cells and LLPC 

and performed a clustering analysis using a canonical component analysis within the Seurat 

program and tSNE to cluster the cells. The results were three clusters; one contained Naïve 

cells, and two were popD populations.  

As previously stated, the low power of this experiment only allows for preliminary 

conclusions to be drawn. Despite this, my analysis of single cell popD and naïve cells does 

suggest the possibility of additional sub-populations of plasma cells, in addition to the 

discrete states defined by the three cell surface markers CD19, CD38 and CD138 as 

analyzed in Chapters 2 and 3. 

5.5  Conclusions 

 In this work, I transcriptionally characterized six populations of plasma cells; three 

from the bone marrow (pops A, B, and D), and three populations from the peripheral blood 

(pops 2, 3, and 5). I created four potential models of development of long-lived plasma 

cells (Figure 1.2) as a result of these analyses. While this study resulted in the determination 

of many components that contribute to long-lived development and survival were 

determined and experimentally validated across these cell types, further experimental 

validation, single-cell RNASeq, and lineage tracing will be required to more fully elucidate 

the granular mechanisms of development of long-lived plasma cells. 
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APPENDIX A.  

 

Appendix Table 2. Pathway Abbreviations and Associated Pathway Names. This table 
summarizes the abbreviations of pathway names in this study and their associated full name of 
each pathway. The column on the left contains the pathway abbreviation. The column on the 
right contains the full pathway name from the Broad Institute’s Gene Set Enrichment Analysis 
Hallmark pathways.  



 96 

 

Appendix Figure 1. Two-Way Hierarchical Clusters of Incongruous Hallmark Gene Sets 
in the GSEA of pops 2, 3, and 5 and the Top Loading Genes of the First Principal 
Component for Each Pathway. These are two-way hierarchical clusters of 6 Hallmark gene 
sets. On the x-axis are genes within the denoted gene set and on the y-axis are the three 
populations of peripheral blood ASCs; where pop2 is denoted by the number 2, pop3 is 
denoted by the number 3, and pop5 is denoted by the number 5. (A) and (B) both describe 
genes within the Hallmark Allograft Rejection gene set. (C) and (D) describe genes within the 
Hallmark Coagulation gene set. (E) and (F) denote the Hallmark Complement gene set. (I) and 
(J) display Hallmark DNA Repair; (K) and (L) denote genes in the Hallmark Heme 
Metabolism gene set; and (M) and (N) show gene expression for Hallmark IFNG Response 
gene set. All 6 hierarchical clusters on the left (A, C, E, G, I, K, and M) show the expression of 
the all of the genes in the gene set for these 3 populations. The 6 hierarchical clusters on the 
right (B, D, F, H, J, L, and N) provide the gene expression for the subset of the genes in their 
respective gene sets with a loading of greater than or equal to 0.9.  
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Appendix Figure 2. Two-Way Hierarchical Clusters of Incongruous Hallmark Gene Sets 
in the GSEA of pops 2, 3, and 5 and the Top Loading Genes of the First Principal 
Component for Each Pathway. These are two-way hierarchical clusters of 6 Hallmark gene 
sets. On the x-axis are genes within the denoted gene set and on the y-axis are the three 
populations of peripheral blood ASCs; where pop2 is denoted by the number 2, pop3 is 
denoted by the number 3, and pop5 is denoted by the number 5. (A) and (B) both describe 
genes within the Hallmark Mitotic Spindle gene set. (C) and (D) describe genes within the 
Hallmark MTORC1 Signaling gene set. (E) and (F) denote the Hallmark Peroxisome gene set. 
(I) and (J) display Hallmark Spermatogenesis; (K) and (L) denote genes in the Hallmark UV 
Response Up gene set; and (M) and (N) show gene expression for Hallmark Xenobiotic 
Metabolism gene set. All 6 hierarchical clusters on the left (A, C, E, G, I, K, and M) show the 
expression of the all of the genes in the gene set for these 3 populations. The 6 hierarchical 
clusters on the right (B, D, F, H, J, L, and N) provide the gene expression for the subset of the 
genes in their respective gene sets with a loading of greater than or equal to 0.9.  
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Appendix Figure 3. Two-Way Hierarchical Clusters of Incongruous Hallmark Gene Sets 
in the GSEA of pops A, B, and D and the Top Loading Genes of the First Principal 
Component for Each Pathway. These are two-way hierarchical clusters of 4 Hallmark gene 
sets. On the x-axis are genes within the denoted gene set and on the y-axis are the three 
populations of bone marrow plasma cells; where popA is denoted by the letter A, popB is 
denoted by the letter B, and popD is denoted by the letterD. (A) and (B) both describe genes 
within the Hallmark Apoptosis gene set. (C) and (D) describe genes within the Hallmark Fatty 
Acid Metabolism gene set. (E) and (F) denote the Hallmark Hypoxia gene set. (I) and (J) 
display Hallmark IL2-STAT5 Signaling gene set. All 4 hierarchical clusters on the left (A, C, 
E, and G) show the expression of the all of the genes in the gene set for these 3 populations. 
The 4 hierarchical clusters on the right (B, D, F, and H) provide the gene expression for the 
subset of the genes in their respective gene sets with a loading of greater than or equal to 0.9.  
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Appendix Figure 4. Two-Way Hierarchical Clusters of Incongruous Hallmark Gene Sets 
in the GSEA of pops A, B, and D and the Top Loading Genes of the First Principal 
Component for Each Pathway. These are two-way hierarchical clusters of 4 Hallmark gene 
sets. On the x-axis are genes within the denoted gene set and on the y-axis are the three 
populations of bone marrow plasma cells; where popA is denoted by the letter A, popB is 
denoted by the letter B, and popD is denoted by the letterD. (A) and (B) both describe genes 
within the Hallmark IL6-JAK-STAT3 gene set. (C) and (D) describe genes within the 
Hallmark P53 gene set. (E) and (F) denote the Hallmark Reactive Oxygen Species gene set. (I) 
and (J) display Hallmark Unfolded Protein Response gene set. All 4 hierarchical clusters on the 
left (A, C, E, and G) show the expression of the all of the genes in the gene set for these 3 
populations. The 4 hierarchical clusters on the right (B, D, F, and H) provide the gene 
expression for the subset of the genes in their respective gene sets with a loading of greater 
than or equal to 0.9.  
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Appendix Figure 5. Two-Way Hierarchical Clusters of Incongruous Hallmark Gene Sets 
in the GSEA of LLPC, SLPC, and ASC and the Top Loading Genes of the First Principal 
Component for Each Pathway. These are two-way hierarchical clusters of 4 Hallmark gene 
sets. On the x-axis are genes within the denoted gene set and on the y-axis are the three 
populations of bone marrow plasma cells; where LLPC is denoted by the letter L, SLPC is 
denoted by the letter S, and ASC is denoted by the letter A. (A) and (B) both describe genes 
within the Hallmark Apoptosis gene set. (C) and (D) describe genes within the Hallmark 
Complement gene set. (E) and (F) denote the Hallmark IL6-JAK-STAT3 gene set. (I) and (J) 
display Hallmark Inflammatory Response gene set. All 4 hierarchical clusters on the left (A, C, 
E, and G) show the expression of the all of the genes in the gene set for these 3 populations. 
The 4 hierarchical clusters on the right (B, D, F, and H) provide the gene expression for the 
subset of the genes in their respective gene sets with a loading of greater than or equal to 0.9.  
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