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3.1 Depiction of the mammalian middle ear (from a publicly available 3D scan of a gerbil
middle ear5). A. Front view of the middle ear attached to the cochlea. B. Rear view
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of the umbo is noted (which is the center, most inverted portion of the mammalian
eardrum). Each ossicle is depicted with a single color: the malleus is yellow, the incus
is green, and the stapes is red. The incudomalleolar joint (IMJ) and incudostapedial
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Summary

The ear acts as a sensitive broadband receiver which transduces sound waves in the ear canal into

electrical signals sent to the nervous system. Each of the many small components which comprise

the ear are mechanically �ne-tuned to detect faint sound throughout a wide range of frequencies.

By studying the mechanics of di�erent components of the ear, the mechanisms which allow for such

remarkable abilities can be better understood. In this thesis, the mechanics of components of the

ears of several species are investigated: speci�cally, the mouse tectorial membrane (an extracellular

matrix located in the inner ear), the chinchilla middle ear, and the bullfrog eardrum are studied.

Previous experimental studies have revealed interesting phenomena in these components; this study

aims to use computational models to clarify key aspects of the mechanics of these components.

This thesis aims to characterize, for the �rst time, the anisotropic material properties of the

tectorial membranes of wild-type and genetically modi�ed mice at audio frequencies. Additionally,

a circuit model of the chinchilla middle ear, absent in literature prior to this study, was developed.

Using this model, this thesis aims to evaluate the in�uence of sti�ness, damping, and inertial

properties on middle-ear transmission characteristics. Lastly, in this thesis, a mechanical basis for

the long group delay observed through the bullfrog eardrum is proposed.

xix



Chapter 1

Introduction

1.1 Introduction to hearing mechanics

The mammalian ear acts as a sensitive, broadband receiver: the human ear, for example, can detect

frequencies from approximately 20 Hz to 20 kHz; at 1 kHz, sounds that displace the eardrum one

tenth the size of hydrogen molecule can be detected19. Together, the nervous system and the

mammalian ear act as a frequency analyzer of impressive selectivity19. By studying the mechanics

of di�erent components of the ear, the mechanisms which allow for such remarkable abilities can

be better understood and the treatment and prevention of hearing loss can be improved. The

components of the ear examined in this thesis are the mouse tectorial membrane (a component of

the inner ear), the chinchilla middle ear, and the bullfrog eardrum.

The mammalian ear is a complex, �nely tuned structure which transforms sound in the ear

canal into electrical signals sent to the brain. A schematic representation of the mammalian ear is

given in Figure 1.1A. In normal hearing, the pinna of the outer ear (labeled in Figure 1.1A) acts a

horn collecting sound into the ear canal19. As seen in Figure 1.1A, at the end of the ear canal lies

the eardrum. Once the sound wave is transformed into mechanical vibration by the eardrum, it is

passed on to the ossicular chain through the manubrium of the malleus.

The ossicular chain is connected to the inner ear at the stapes footplate (the footplate of the

smallest ossicle, the stapes). The stapes pushes the water-like �uid of the cochlea (located in the

inner ear) back and forth. As detailed in Figure 1.1A-B, the cochlea can be described as a series

of three ducts, the scala vestibuli, the scala media, and the scala tympani, which are wound into

a snail shape. A schematic of a cross-section of the cochlea is given on Figure 1.1B where each of

these three ducts are labeled. Vibration of the �uid within the top duct, the scala vestibuli, due to

vibration of the stapes footplate causes a pressure di�erence between the top two ducts (the scala
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vesibuli and the scala media) and the bottom duct (the scala tympanic) which in turn, causes the

structure separating these ducts, the organ of Corti, to move. The organ of Corti is boxed in red on

Figure 1.1B (and shown in more detail in the following chapter on Figure 2.1). Within the organ

of Corti are mechanosensory receptors, the inner and outer hair cells. De�ection of these hair cells,

caused by relative motion between the basilar and tympanic membranes, opens mechanically gated

ion channels which begins the process of sensory transduction and ampli�cation.

1.2 Thesis Overview and Outline

In this thesis, the mechanics of the mouse tectorial membrane, the chinchilla middle ear, and the

bullfrog eardrum are investigated in order to better understand each component's role in hearing

function. A separate study was conducted for each of these components and each study is detailed

in its own chapter. The �rst study of this thesis, discussed in Chapter 2, aims to characterize the

anisotropic material properties of the tectorial membrane of wild-type and genetically modi�ed mice

at audio frequencies. Chapter 3 aims to evaluate the in�uence of inertial, sti�ness, and damping

properties on the middle ear's ability to transmit of sound. Lastly, in Chapter 4, this thesis proposes

a mechanical basis for the long group delay observed through the bullfrog eardrum.

The tectorial membrane (TM) is an extracellular matrix which is directly coupled with the

mechanoelectrical receptors responsible for sensory transduction and ampli�cation. As such, the TM

is often hypothesized to play a key role in the remarkable sensory abilities of the mammalian cochlea.

Genetic studies targeting TM proteins have shown that changes in TM structure dramatically

a�ect cochlear function in mice20,21. Precise information about the mechanical properties of the

TMs of wild-type and mutant mice at audio frequencies is required to elucidate the role of the

TM and to understand how these genetic mutations a�ect cochlear mechanics. This study aims

to determine, for the �rst time, the anisotropic, viscoelastic material properties of wild-type and

transgenic mice within the auditory frequency range and to draw conclusions about how these

mutations a�ect cochlear physiology. To do so, an automated inverse-�tting algorithm was used to

�nd the material properties of �nite element models which best capture experimental data provided

by our collaborators.

The mammalian middle ear is responsible for the e�cient transmission of sound from the ear
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FIGURE 1.1. A. Diagram of the mammalian ear edited from public domain image2. In this
dissertation, the mammalian middle ear (outlined in green) and tectorial membrane, a component
of the inner ear (the inner ear is outlined in blue) are studied. In addition, the bullfrog eardrum is
examined, discussed in further detail in later sections. B. Cross-section of the cochlea, a component
of the inner ear. The location of the tectorial membrane (TM) within the scala media (which lies
between the scala vestibuli and scala tympani) is indicated with red, dashed box (details of the area
within the red box are given in Figure 2.1).

canal into the inner ear through a broad range of frequencies. As such, understanding middle-

ear transmission characteristics is essential in the study of hearing mechanics. A circuit model

of the chinchilla middle ear, absent in literature prior to this study, was developed. Using this

model, Chapter 3 aims to evaluate the in�uence of sti�ness, damping, and inertial properties on its
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transmission characteristics.

In the aforementioned mammalian middle-ear analysis, the eardrum was found to play a large

role in group delay through the middle ear at high frequencies. The eardrum's role in the group delay

through the middle ear has been observed to be even more dramatic in the American bullfrog22,23.

While the surface area of these eardrums is similar to that of humans or cats17,18,8, the group delay

through the bullfrog eardrum is nearly an order of magnitude larger, even when unattached to the

rest of the middle ear23. A slow, inward traveling wave on the eardrum has been observed on the

bullfrog eardrum and has been hypothesized to be the source of this large group delay23. However,

the underlying mechanics behind this slow, inward traveling wave are not understood and thus, the

source of the group delay through the bullfrog eardrum remains unclear. Chapter 4 aims to elucidate

the mechanics which make possible the slow, inward traveling wave seen on these eardrums. To

do so, the bullfrog eardrum is modeled as a viscoelastic circular membrane with spatially varying

thickness.
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Chapter 2

Characterizing the anisotropic, viscoelastic material properties of

the tectorial membranes of wild-type and Tectb−/− mice

2.1 Chapter overview

In the work presented here, I aim to (1) characterize the anisotropic, viscoelastic material properties

of WT TMs at audio frequencies and (2) provide a quantitative understanding of how, precisely, the

Tectb−/− mutation (a genetic mutation known to alter the microstructure of the TM) a�ects the

anisotropic material properties of the TM. To do so, an inverse �tting algorithm was implemented

to �nd to material parameters of �nite element models of isolated TM segments which best capture

the displacement of the TMs measured by our collaborators, Dr. Dennis Freeman's group at MIT.

The accuracy and precision of this �tting methodology was characterized to ensure di�erences seen

in material properties between WT and Tectb−/− TMs are due to actual changes in the material

properties rather than an artifact of the imprecision or inaccuracy of the algorithm. The statistical

signi�cance of the observed changes in the material properties due to the Tectb−/− mutation was

evaluated. Additionally, the e�ects of changes in the TM's material properties on TM motion are

analyzed in order to better understand how these changes might a�ect the role of the TM in vivo.

2.2 Introduction to tectorial membrane mechanics

2.2.1 The role of the tectorial membrane

The mammalian ear's remarkable ability to detect faint sound throughout a wide range of frequencies

is largely due to the sensory abilities of the cochlea. Within the cochlea, traveling waves propagate

along the basilar membrane (BM)24: relative motion between the BM and tectorial membrane

causes de�ection of the hair bundles attached to the mechanosensory receptors, the inner and outer
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hair cells, labeled in Figure 2.1. Both the inner and outer hair cells transduce mechanical energy into

electrical signals25. The inner hair cells transform mechanical energy into electrical signals which

are relayed via the auditory nerve while the outer hair cells are responsible for the ampli�cation of

low-level sound that enters the cochlea.

Hair bundle

Inner hair cells

Tectorial membrane (TM)

Basilar membrane (BM)

Spiral limbus

Outer 
hair cells

x
y

z

FIGURE 2.1. A schematic of the organ of Corti (the portion of the cochlea boxed in red on Figure
1.1A). The TM, which is attached to the spiral limbus, lies above hair bundles attached to the inner
and outer hair cells. Relative motion between the TM and the BM causes de�ection of the hair
bundles.

As seen in Figure 2.1, the TM overlies the hair bundles attached to the inner and outer hair

cells. This strategic anatomic con�guration of the TM relative to the hair bundles suggests that

the TM plays a key role in cochlear function. Studies working towards the characterization of

cochlear physiology in transgenic mice have demonstrated that mutations of the genes that encode

TM proteins a�ect key characteristics of cochlear function, such as the sensitivity and tuning of the

BM26,21 or cochlear stability (some mutant mice emit more spontaneous otoacoustic emissions than

wild-type mice27,28). Furthermore, recent in vivo measurements of traveling waves on the TM and

BM have shown that the TM has a larger dynamic range, has a sharper frequency selectivity, and is

tuned to a slightly higher frequency than the BM29: these measurements by Lee et al. support the

concept that micromechanical interactions within the organ of Corti modulate the stimulus to the

inner hair cells and a�ect the neural code of hearing. Disruption of non-collagenous proteins within

the TM due to genetic mutation is a known cause of hereditary hearing loss in humans30: thus,

characterizing precisely how these genetic mutations a�ect TM mechanics, and thereby cochlear

function, is a crucial step in better understanding human deafness.
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2.2.2 Previous measurements of TM mechanical properties

The TM is a soft, gel-like extracellular matrix31,32,33 containing two groups of components: collagen

�brils and non-collagenous proteins. Collagen �brils are organized in thick, nearly radially-oriented

�bers34. The non-collagenous proteins compose a striated-sheet matrix (SSM) surrounding the

collagen �bers35,36,21. The SSM is composed of several di�erent proteins, including β-tectorin

(TECTB)21, which are structural macromolecules that are thought to contribute to the elastic

properties of the TM3,4. Due to the presence of collagen �bers, the TM is highly anisotropic:

most studies have found that the TM is sti�er in the radial direction than in the longitudinal

direction37,38,39,40 (one study, Ref. 41, found the opposite). Most38,39,41 reports of anisotropic

material properties have been static or quasi-static measurements. However, the TM is highly

viscoelastic42,4,43,3,40,37 and as such, its mechanical properties vary signi�cantly with frequency.

Thus, static measurements are limited in their ability to provide information about the role of

the TM in hearing mechanics where properties at auditory frequencies are needed. Studies where

dynamic anisotropic mechanical properties40,37 have been reported do not provide the anisotropic

material properties of the TM; rather, shear impedance measurements of the TM in the radial and

longitudinal directions are given.

In an e�ort to characterize the dynamic mechanical properties of the TM, Refs. 42, 4, 43, 3

measured the radial displacement of isolated TM segments in response to a harmonic, radial stimulus

(as on Figure 2.2A). In all studies, longitudinal propagation of radial motion (where the longitudinal

direction is de�ned as x and the radial direction is de�ned as y on Figures 1.1B, 2.1, and 2.2B)

were observed on the TMs: these measurements were used to extract the viscoelastic mechanical

properties of TMs of wild-type (WT) and mutant mice at audio frequencies. To do so, traveling,

exponentially decaying waves were �t to the measured displacements. By assuming that the motion

of the TM could be described as a shear wave, i.e. that the TM only moves in the radial direction,

Refs. 42, 4, 43, 3 were able to analytically relate the wave speeds and space constants of the �t

waveforms to the shear modulus and shear viscosity of the TMs.

For these isolated TM segments to move as a shear wave, the width of the TM (its y-direction

dimension) must be very large relative to the wavelength. If the TM's width were very small, for

example, the TM's motion would be better described as a �exural wave propagating on a viscoelastic
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beam. Since the reported wavelengths for these longitudinally propagating shear waves (between

305-360µm for WT TMs at 20kHz3) are on the order of the width of the isolated TM segments

(which are ≈ 150µm wide), the validity of the assumption that the TM is moving purely in shear

is questionable. In the experimental data provided by our collaborators, signi�cant motion in the

longitudinal direction due to a harmonic radial input is measured, further demonstrating that this

assumption does not adequately describe the motion of the TM. Because the motion becomes much

more di�cult to model analytically for intermediate widths, particularly for anisotropic structures,

a �nite element-based approach which takes into consideration the known anisotropy and �nite

dimensions of the TM is used here to determine the anisotropic, viscoelastic material properties of

the TMs of WT and Tectb−/− mutant mice at audio frequencies.

2.2.3 Known properties of Tectb−/− TMs

Tectb−/− mice are transgenic mice that lack functional β-tectorin. In these mice, a complete loss

of the striated sheet matrix has been reported21. While the Tectb−/− mutation does not directly

a�ect the hair bundles or TM's attachments to the hair bundles or limbal edge, the BM tuning is

sharpened by a factor of 2-3 at high frequencies in these mice21. In addition, at low frequencies,

the BM is about 10 dB less sensitive in these mice than in WT mice21. Tectb−/− mutants display

slightly greater numbers of spontaneous otoacoustic emissions than in WT mice; these emissions

also tend to be at a higher frequency than observed in WT mice28.

Previous studies have estimated the complex shear modulus of WT and Tectb−/− TMs at audio

frequencies3,4. In these studies, the shear sti�ness of Tectb−/− mice was found to be signi�cantly

smaller than the shear sti�ness in WT mice. The source of the sharper tuning in these mice

has been attributed to weaker coupling of individual cross-sections of the TM in the longitudinal

direction reported in these mice3,44. Reduced longitudinal coupling could reduce the ability of waves

to travel along the TM such that a smaller area of the cochlea (the portion tuned to the input

frequency) would be excited in response to an input. However, the anisotropic elastic properties of

the TM have not been reported at audio frequencies: as shown in this study, the TM's anisotropic

properties greatly a�ect its motion. Thus, understanding the e�ect of the Tectb−/− mutation on

the TM's anisotropic material properties could help to elucidate the underlying mechanics behind

the combined sharper tuning and decreased sensitivity reported in these mice.
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2.3 Fitting methodology: overview and implementation

2.3.1 Experimental Methodology of Collaborators

All experiments were conducted by Jonathan B. Sellon and Dennis M. Freeman at MIT. The Optical

System Motion analysis was conducted by Jonathan B Sellon, Daniel Filizzola, and Dennis M.

Freeman. While the experiments themselves are not my work, it is necessary to explain how the

experimental data was obtained in order to best understand the rest of my work outlined in this

chapter.

Brie�y, the cochleae from �ve adult Tectb−/− mice and six WT mice were excised using a pre-

viously published surgical technique45. Basal region TM segments were then suspended between

vibrating and stationary supports of a previously published wave chamber device43, as seen on Fig-

ure 2.2A. This device consisted of a vibrating support attached to a piezoelectric actuator (Thorlabs)

that delivered oscillatory motions at audio frequencies (10-20 kHz). The stationary support was

attached to the underlying glass slide and both supports were coated with 2µL of tissue adhe-

sive (Cell-Tak) and surrounded with arti�cial endolymph. The TM was placed into the arti�cial

endolymph bath and attached to the surfaces of the supports.
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TM motions were generated by stimulating the piezoelectric actuator of the vibrating support

and were captured using a computer vision system. The computer vision system is discussed in Ref.

46 and Refs. 43, 3. The steady-state displacement at each point on the TM and at each frequency

can be written as,

u⃗(x, y, t) = ux(x, y, t)⃗i+ uy(x, y, t)⃗j (2.1)

where a bolded character indicates a complex value, i⃗ indicates a unit vector in the longitudinal

direction, x, j⃗ indicates a unit vector in the radial direction, y, and uy(x, y, t) and ux(x, y, t) are

the radial and longitudinal displacements, respectively. ux(x, y, t) can be written in the following

forms:

ux(x, y, t) = Ux(x, y, ω)e
iωt

= [ℜ (Ux(x, y, ω)) + iℑ (Ux(x, y, ω))] e
iωt

= |Ux(x, y, ω)| ei(ωt+
̸ Ux(x,y,ω))

(2.2)

where Ux(x, y, ω) is the complex amplitude of the longitudinal displacement, ω is the forcing fre-

quency, ℜ(•) and ℑ(•) refer to the real and imaginary parts, respectively, |•| indicates the amplitude,

and ̸ (•) indicates the phase angle. uy(x, y, t) can be written using similar expressions.

Our collaborators provided ux(x, y, ω) and uy(x, y, ω) for several WT and mutant TMs: an

example of Ux(x, y, ω) and Uy(x, y, ω) for one WT TM, WT1, at 18kHz is given in Figures 2.2C-F.

I use this data in order to �nd the anisotropic material properties of the TMs of these mice based

on the approach detailed in the remainder of this section.

2.3.2 Modeling Isolated TM Segments

In order to characterize the anisotropic, viscoelastic material properties of WT and Tectb−/− mice,

I implemented an inverse �tting method to �nd the material properties which best capture the

experimentally captured motion of the isolated TM segments provided by our collaborators. To do

so, a �nite element model of each TM used in the study was built using Abaqus47, a commercial

software suite for �nite element analysis. In these models, the geometry of each TM was taken
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directly from snapshots of the TM in the experiments, as marked by a black outline in Figure 2.2B.

Since data near the supports tends tends to be noisy, the locations of the left and right edges of the

model (marked in blue and green in Figure 2.2B, respectively) were chosen such that they provide

the largest area of the TM possible without falling within a zone on the TM snapshot, labeled

�shadow region� on Figure 2.2B, where the TM is not clearly visible.

A steady-state direct dynamics simulation was run for each discrete frequency (between 10-

20kHz) of the experimental data. The real and imaginary parts of the experimentally measured x

and y displacement were input as boundary conditions at the left and right edges of the model. It

should be noted that the length of each TM extends beyond what is seen in the experimental data

or in the snapshot on Figure 2.2B and the exact amount that the TM extends beyond the boundary

is unknown: hence, the displacement is directly input at each edge of the model instead of idealizing

the left edge as a pure radial input and the right edge as perfectly �xed.

Since the out-of-plane (z) dimension of the TM is quite small (≈ 22µm21) relative to the x and

y dimensions (≈ 300− 400µm long and ≈ 200µm wide), the TM was assumed to be in plane stress.

To limit the number of free parameters, the TM was modeled as homogeneous. In addition, since

the TM is mostly composed of water, the TM was modeled as incompressible. Due to the presence

of collagen �bers which lie nearly in the radial direction38, a transversely isotropic, viscoelastic

material model was used where, as shown in Figure2.2B, the �ber direction was oriented 15◦ from

the radial axis (based on previous measurements of �ber orientation48). A standard linear solid

viscoelastic model49 was used to model the viscoelastic behavior in the transverse direction and in

shear. Thus the complex Young's modulus in the transverse direction, Et, and the complex in-plane

shear modulus, Gtf , are written as,

Et =
Et1iωηt1

Et1 + iωηt1
+ Et0 and Gtf =

Gtf1iωηs1
Gtf1 + iωηs1

+Gtf0 (2.3)

where Et1 and Gtf1 are the sti�ness in the viscoelastic branch for the Young's modulus and shear

modulus, respectively. ηt1 and ηs1 are the viscosity in the viscoelastic branch for the Young's

modulus and shear modulus, respectively. Et0 and Gtf0 are the long term Young's modulus and

shear modulus, respectively, and are measures of the static sti�ness of a material. The sti�ness of

the TM in the �ber direction was modeled using a linear elastic and lossless model such that the
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Young's modulus in the �ber direction, Ef , is independent of frequency. With the aforementioned

assumptions, seven free parameters remain: Et1, Et0, ηt1, Gtf1, Gtf0, ηs1, and Ef .

2.3.3 Fitting Methodology Description

The values of the seven free parameters given in the previous subsection were found for each TM

sample using an automated �tting algorithm that minimizes the mean error across the frequency

range, ϵavg, de�ned as,

ϵavg =
1

Nf

Nf∑
i=1

ϵ(ωi) (2.4)

where Nf is the number of discrete frequencies of the available data (between 10-20kHz) and ϵ(ωi)

is the error at frequency ωi. ϵ(ωi) is de�ned using the following equation:

ϵ(ωi) =

∫
S

∥∥∥U⃗FEM (x, y, ωi)− U⃗data(x, y, ωi)
∥∥∥2 dS∫

S

∥∥∥U⃗data(x, y, ωi)
∥∥∥2 dS (2.5)

where U⃗FEM (x, y, ωi) and U⃗data(x, y, ωi) are the complex displacement vectors of the TM model

and experimental data, respectively.

In the above equations, the error was calculated over an area S where the data appeared to be

the most robust. This area S, labeled ��t region� noted on Figure 2.2D (and again in a later section

on Figure 2.7G), corresponds to the area de�ned as the main body of the TM by Ref. 32. The

data within the spiral limbus attachment zone (labeled LZ on Figure 2.2D) was noticeably noisy

on several of the TMs due to poor re�ection in this region. An example of visible noise within this

region can be seen in the boxed area marked with a star on Figures 2.2D and F. In the outer hair

cell zone, de�ned by Ref.32 and labeled as HC on Figure 2.2B, there appeared physically unrealistic

discontinuities in the some of the experimental data sets. One example of a physically unreasonable

discontinuity seen in the data is marked with a circle on WT1 data seen on Figures 2.2C and E.

The pattern search algorithm, a derivative-free based numerical optimization method50, was

chosen to minimize ϵavg for each TM. Multiple, random initial guesses were provided to the algo-

rithm: the best �t was chosen to be the solution with the lowest ϵavg value. The accuracy and

precision of the �tting methodology were evaluated, as discussed in the following section.
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Previous reports of the dynamic shear moduli42,4 of the TM do not describe the frequency

dependence of the material properties using a standard linear solid viscoelastic model. Instead,

values for the shear storage and loss moduli were given at each frequency. Therefore, in order to

properly constrain the model and to compare the results found in this study with previous �ndings,

the values of the real parts of Young's moduli in the transverse and �ber directions, Et(ω) =

ℜ(E∗
t (ω)) and Ef , respectively, the real part of the in-plane shear modulus, Gtf (ω) = ℜ(G∗

tf (ω)),

and the loss tangent values in the transverse direction and in shear, tan δt(ω) = ℑ(E∗
t (ω))/ℜ(E∗

t (ω))

and tan δs = ℑ(G∗
tf (ω))/ℜ(G∗

tf (ω)), respectively, are reported as a function of frequency. The

parameter space was limited by constraints on these values, given in Table A.2 in Appendix A.

The parameter constraints were chosen based on previously reported values from3,4 and physical

considerations based on a micro-mechanics model of a �ber-reinforced material (justi�cation for

these constraints is discussed in Appendix A).

2.4 Evaluation of the �tting methodology accuracy and precision

For any inverse �tting method, it is important to understand the accuracy and precision of the

algorithm so that conclusions can be made about the �t parameter values. In this section, (1) the

�tting algorithm's ability to capture the material parameters of a simulated TM and (2) the range of

parameters found for solutions with low error are characterized. By characterizing the (1) accuracy

and (2) precision of our �tting methodology, conclusions can be made regarding the di�erences in

the material properties of WT and Tectb−/− TMs.

2.4.1 Evaluation of �tting method accuracy

In order to test the accuracy of the �tting method, the �tting methodology as described in the

previous sections was implemented using simulated data where the values of the model parameters

are known.

Simulated data was obtained using an idealized TM model, detailed in Figure 2.3, Steps 1 and

4. The material of the simulated TM segment was set equal to a similar material as found for WT1:

the material parameters for the simulated are plotted with a blue dotted line on Figure 2.4. As

seen on Step 1 of Figure 2.3, the right end of the simulated TM segment was held stationary while
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the left end was given a radial, harmonic input from 10-20kHz. To mimic the fact that the TM's

movement near its left and right edges was not visible in the experimental data, only the motion of

the simulated TM from x0 = 100µm to xend = 400µm was recorded, deemed the �visible data,� as

shown on Figure 2.3, Step 1.
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To understand the e�ect of noise on the �tting algorithm's ability to �nd the material parameters

of the TM, two di�erent scenarios were tested. In one case, labeled Step 3a in Figure 2.3, the

simulated TM's motion over the visible range was used as the simulated data. In the second case,

labeled Step 3b in Figure 2.3, normally distributed random values were added to the simulated

data from Step 3a such that the signal to noise ratio was similar to that found for the WT1

experimental data (SNR = 14dB). In Step 3b, this combination of the recorded motion plus

simulated experimental noise was considered the simulated data.

A TM model with the same width and curvature (Rmid) as the simulated TM segment but with

length Lmodel = Ltm − 2Lnv was built, as seen in Figure 2.3, Step 4. On the left and right edges of

this model, the displacement from the simulated experiment at x0 and xend are input as boundary

conditions. Step 4 is repeated for the simulated data from Steps 3a (noiseless simulated data) and

3b (noisy simulated data). These models (from Step 4) were �t to data from Steps 3a and 3b using

the �tting algorithm discussed in the previous section.

As de�ned in the previous section, the �tting algorithm minimizes the mean error across the

frequency range, ϵavg, de�ned in Eq. 2.4; in this study, however, the calculation of ϵ(ωi) is changed

such that the simulated data replaced the experimental data,

ϵ(ωi) =

∫
S

∥∥∥U⃗model(x, y, ωi)− U⃗sim(x, y, ωi)
∥∥∥2 dS∫

S

∥∥∥U⃗sim(x, y, ωi)
∥∥∥2 dS (2.6)

where U⃗model(x, y, ω) is the complex amplitude of the displacement of the TM model (from Step 4)

using the material parameters prescribed by the �tting algorithm and U⃗sim(x, y, ω) is the complex

amplitude of the simulated data (from Step 3). For both studies (simulated data with and without

noise), 10 random initial guesses were input into the �tting algorithm.

On Figure 2.4, the material parameters of the best �ts found with and without noise are plotted

against the material parameters of the TM in the simulated experiment. For each parameter P (such

as Et, Ef , etc.), the error between the parameter value obtained for the best �t (the �t with the

lowest ϵavg value), Pfit, and the actual parameter of the simulated TM segment, Psim, is calculated

as,
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E(ω) = 100×
Pfit(ω)− Psim(ω)

Psim(ω)
(2.7)

This value is multiplied by 100 in order to give the error as a percent. The maximum values of E(ω)

found in the study for each material parameter are given in Table 2.1. As seen on Figure 2.4 and

Table 2.1, in both the models, the �t properties of the TM model capture the material properties of

the simulated TM very well. In both cases, the algorithm overestimates the values of Ef , Gtf , and

tan δt and slightly underestimates the values of Et and tan δs. Excluding Ef , which is overestimated

by ≈ 30%, the algorithm is able to capture all material parameters within 20% of the their actual

values.
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FIGURE 2.4. Comparison of the best �t model parameters (�t to simulated data with and without
noise) vs. the actual material parameters of the TM in the simulated experiment. Sti�ness properties
(Et, Gtf , Ef ) are plotted on panels A-C. Damping properties (tan δt and tan δs) are compared on
panels D-E

The main di�erence between �tting the TM model to simulated data with and without noise

is the value of ϵavg. In the case where the model is �t directly to the recorded motion (no noise is

added), ϵavg = 2.5 × 10−4. When noise is added to the recorded motion, the error for the best �t

TM becomes ϵavg = 0.065, a 257% increase in ϵavg. Thus, although noise causes an increase in ϵavg,

it does not appear to inhibit the algorithm's ability to �nd the material parameters of the TM.
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TABLE 2.1. Maximum error between simulated TM material parameters and model best �t pa-
rameters, E(ω) (de�ned in Eq. 2.7), found between 10-20kHz. Two studies are compared: in one
case, the TM parameters were �t directly to simulated data (no noise was added). In the second
case, noise was added to the simulated data such that the signal to noise ratio = 14dB.

Max. Parameter Error, E(ω) (%)

Parameter No noise (Step 3a) With noise (Step 3b)

Ef +29 +21

Et -2.3 -2.4

Gtf +15 +16

tan δt +1.7 +4.9

tan δs -13 -14

2.4.2 Evaluation of �tting method precision

In addition to testing the accuracy of the �tting method, the algorithm's ability to �nd precise

results was assessed. If the �tting algorithm is converging towards a single global minimum, little

variation is expected among solutions with low error. However, if there are many local minima, large

variation in the parameters obtained using �tting algorithm with multiple initial guesses would be

expected since many combinations of parameters would produce low error. Occasionally, the �tting

algorithm converged to a local minimum with large error relative to the other solutions: these local

minima were discarded in the current study by keeping only the solutions with low error de�ned as,

ϵpassavg < ϵmin
avg +∆ϵ (2.8)

where ϵpassavg is the average error value for the solution in question, ϵmin
avg is the best �t for the TM

examined, and ∆ϵ is the cuto� criteria, set equal to 0.03. The value of ∆ϵ was chosen by examining

the results of the initial guesses �t to the simulated data described in the previous subsection: the

largest ∆ϵ which disallowed solutions that produced a parameter error (excluding Ef ) of greater

than 50% was chosen.

Two representative examples (one sample for wild-type mice, WT1, and one for Tectb−/− mice,

TB1) are plotted in Figure 2.5. For each of these TMs, 20 di�erent, random initial guesses were

provided to the �tting algorithm. For WT1, 13 initial guesses produce solutions whose ϵavg values

meet the cuto� criteria; for TB1, 16 trials pass the given criteria. Although there is some variation
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in the parameter results found for WT1, no overlap in Et or Gtf is found between these two

representative TMs. For all TMs, although not shown here, no overlap for passing solutions is

found for Et and only slight overlap is seen at high frequencies for Gtf . Signi�cant overlap in results

are found for damping parameters. Although large variation in Ef results are found, all TMs are

found to be signi�cantly anisotropic. Since for each TM, solutions with low error are found to have

similar parameters, it appears that the algorithm approaches a true global minimum for each TM.

Furthermore, since for all solutions with low error, very little or no overlap in Et and Gtf is found

between phenotypes, it appears that di�erences found in sti�ness values for each phenotypes are

due to signi�cant changes in the material properties resulting from the Tectb−/− mutation, rather

than an artifact of the imprecision of the �tting algorithm.
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2.5 Results

2.5.1 Spatial variation of radial and longitudinal TM motions in WT and Tectb−/−

mice

In this subsection, the experimentally captured motion of WT and Tectb−/− mice provided by our

collaborators is discussed. While the experiments are not my work, an analysis of the motion is

included in order to better understand why my approach to modeling the TMs was necessary. The

experimentally captured longitudinal and radial motions over the entire TM area at 18kHz for one

TM of each phenotype are shown on Figure 2.6. For each TM, the magnitude of the motion has

been normalized by the average magnitude of Uy along its left edge.
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FIGURE 2.6. Experimentally captured motion over TM area for one WT TM (WT1) (A-D) and
one Tectb−/− TM (TB1) (E-H). The displacement along one line is plotted in panels I-L. All
displacements are normalized to the mean of |Uy(0, y, ωi)|. The magenta asterisks on Panels A,
C, G, and H indicates the point, P , chosen to examine the ratio of |Ux| to |Uy| discussed in the
Results section.
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For both TMs, Uy is nearly uniform in the radial direction and can be characterized as a

longitudinally propagating plane wave with decaying amplitude. Thus, looking at the radial motion

down one line (marked by a solid, black line on panels A-D), plotted on panels E and F, can provide a

clearer picture of the wave propagation characteristics, as was done in Refs. 43, 3, 42, 4. Speci�cally,

on Figure 2.6I, it can be seen that the radial motion of the Tectb−/− TM tends to decay faster than

that of the WT TM. This is particularly apparent at 200µm where |Uy| is nearly twice as high for

the WT TM as for the Tectb−/− TM. In addition, as seen in Figure 2.6J, the phase tends to have

a steeper slope in the Tectb−/− TM. If boundary e�ects are minimal, the quick decay and steep

slope of |Uy| would be indicative of a smaller space constant and slower wave speed, respectively.

Since, however, the wavelength is on the order of the TM length, a more detailed analysis of wave

characteristics is required, as discussed in a later section.

While the radial displacement, Uy, is approximately uniform in the radial direction, the longi-

tudinal displacement, Ux, plotted on Figures 2.6C-D and G-H, depends on both the longitudinal

and radial positions. Not only is Ux highly spatially dependent, it is also of signi�cant magnitude:

|Ux| is as large as half of the average |Uy| along the left edge for the WT TM and of equal or

greater magnitude than |Uy| along the left edge for the Tectb−/− TM, as seen on Figure 2.6K. In

addition, over the length of the TM segments, the longitudinal motion tends to decay only slightly

on the Tectb−/− TM and remains nearly constant in magnitude on the WT TM. Interestingly, the

amplitude of Ux relative to the radial displacement at the left edge is signi�cantly higher in TB1

than in WT1.

In previous studies43,3,42,4, the motion of an isolated TM segment due to a harmonic, radial

input was modeled as a decaying shear wave. However, in a shear wave, the TM moves only in

the radial direction. The signi�cant magnitude of the longitudinal-direction displacement relative

to the radial-direction displacement indicates that TM motion cannot be adequately described as a

shear wave.

With the addition of longitudinal-direction data, a model of the TM can be adequately con-

strained such that an inverse �tting method can be employed to �nd the anisotropic material

properties of the TM, as discussed in the next section. This is in part why no previous reports of

anisotropic material properties exist within the auditory frequency range: very few groups have the

ability to make these measurements and prior to this study, none had published an experimental
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data set su�cient to constrain the parameters of an anisotropic model.

2.5.2 Transversely isotropic �t model captures experimental motion in both radial

and longitudinal directions

In the previous section, the amplitude and phase of the experimental data for WT1 and TB1 are

given in order to best visualize the di�erences in longitudinal wave propagation between the two

phenotypes. However, since the �tting algorithm tries to minimize the complex residual between the

real and imaginary parts of the data and the model motion, in this section, the real and imaginary

parts of the experimental data for WT1 are compared to that of the model best �t, seen on Figure

2.7, in order to evaluate the capacity of the model to capture the experimental data.
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FIGURE 2.7. Experimentally captured motion for WT1(A-D) over TM area compared with WT1
model results (E-H) at 18kHz. On each plot, the highlighted area labeled �Fit region� on panel C,
is the region used to calculate the solution �tness. I-L: Model results (solid line) vs. experimental
data (dashed line) along one line (marked on A-H). Overall �t error for WT1 is ϵavg = 0.10; the
error at 18kHz for WT1 is ϵ(18kHz)=0.06.

Using a transversely isotropic material model, for WT1, the overall �t error value, ϵavg was
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0.10. For both the longitudinal and radial displacements, the model captures features seen in the

experimental data, such as the peak in the imaginary part of the radial motion at 200µm (marked

with a star on Figure 2.7F) very well. Notably, the model is able to predict features seen in the

experiments outside of the �tting region (the non-highlighted region on Figures 2.6A-B and G-J),

such as the concentration of longitudinal motion at the top and bottom edges of the TM, indicating

that the area chosen for the �tting algorithm is su�cient to constrain the parameters enough to

capture the full data set.

2.5.3 Anisotropic material model necessary to capture experimental motion

To understand the necessity of using an anisotropic material model, the �tting procedure was

repeated for each TM using an isotropic material model: the resulting error values for each TM are

compared on Figure 2.8. As seen on Figure 2.8A, the error found by using an isotropic model is

higher than the error found using a transversely isotropic model (∆ϵ = ϵTI
avg− ϵisotropicavg ) by a median

value of 0.06 for WT TMs and by a median value of 0.14 for Tectb−/− TMs. The inability of an

isotropic model to capture the experimentally measured motion is illustrated by plotting the results

for the isotropic and transversely isotropic best �ts for WT1 (at 20kHz). As seen on Figure 2.8,

for WT1, the isotropic model is able to �t the radial direction motion (panels A and B), but fails

to capture the experimentally measured displacement in the longitudinal direction (panels C and

D) whereas the transversely isotropic model is able to better capture the experimentally measured

motion in both the longitudinal and radial directions.
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FIGURE 2.8. A. Median improvement in error due to introduction of anisotropy, ∆ϵ = ϵTI −
ϵisotropic where error bars represent the interquartile range found for each phenotype. B-E. Best
�t displacement magnitude (A, C) and phase (B,D) results for WT1 when �t with a transversely
isotropic (TI) model (in blue) and with an isotropic material model (in red) at 20kHz (where
ϵTI
WT1(20kHz) = 0.09 and ϵisotropicWT1 (20kHz) = 0.35).

2.5.4 Signi�cant di�erences in anisotropic material properties are found between the

TMs of WT and Tectb−/− mice

The �tting procedure described in Methods Section was applied to multiple WT (n=6) and Tectb−/−

(n=5) TMs to determine if statistically signi�cant changes in anisotropic material properties due to

the Tectb−/− mutation can be observed. The resulting transversely isotropic, viscoelastic material

properties for WT and Tectb−/− TMs are plotted on Figures 2.9 and 2.10 where on each �gure, the

median values found for each phenotype are plotted with solid lines and the shaded area indicates the

interquartile range found for each phenotype at each frequency. Reported values for the complex

shear modulus from Sellon et al.3 and Jones et al.4 are also plotted on these �gures; however,

consideration of these values is reserved for the Discussion.
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FIGURE 2.9. E�ect of Tectb−/− mutation on anisotropic sti�ness properties: the Young's moduli in
the transverse (A) and �ber (C) directions, the in-plane shear moduli (B), and the anisotropy ratio
(D). Median anisotropic storage moduli values found for WT (n=6) and Tectb−/− (n=5) mice TMs
are plotted using solid lines. Shading indicates the interquartile range of material properties found
in this study for each phenotype. Anisotropic material parameters from this study are compared to
previously reported shear parameters from Sellon et al.3 (only at 20kHz) and Jones et al.4. Error
bars on Sellon et al.3 data indicate the interquartile range. The interquartile range is not given for
the Jones 20154 data and is therefore not shown here.

The largest di�erence between WT and Tectb−/− TMs was found to be the signi�cant loss of

sti�ness in the transverse direction, Et, and in shear Gtf , seen on panels B and C, respectively:

this decrease in sti�ness due to the Tectb−/− mutation was signi�cant over the entire frequency

range explored in this study. The statistical signi�cance of these parameters is explored further in

Appendix A. Brie�y, the 95% con�dence intervals of these two parameters do not overlap in any

portion of the frequency range and a two-sample t-test conducted on the material properties of WT

and Tectb−/− TMs suggests the null hypotheses stating ĒWT
t (ωi) < ĒTectb−/−

t (ωi), Ē
WT
t (ωi) =

ĒTectb−/−
t (ωi), Ḡ

WT
tf (ωi) < ḠTectb−/−

tf (ωi), and ḠWT
tf (ωi) = ḠTectb−/−

tf (ωi) (where ¯(•) indicates a

mean value) can be rejected at all frequencies ωi explored in this study (at a 5% signi�cance level).

The loss of sti�ness in shear due to the Tectb−/− mutation found in this study is consistent with

previously reported3,4 �ndings, although the assumptions made to obtain these previously reported

values are questionable, as mentioned previously. In addition, for Tectb−/− TMs, Et and Gtf tend

to be relatively constant across the explored frequency range, increasing by only 7.8% and 9.5%,
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respectively, from 10 to 20 kHz. For WT TMs, however, Et and Gtf increase by 14% and 16%,

respectfully, from 10 to 20kHz.

As seen in Figure 2.9A, the interquartile ranges found for Ef for WT and Tectb−/− share

considerable overlap: thus, a signi�cant di�erence in the values of Ef between the two phenotypes

is unable to be detected. It should be noted that the algorithm �nds Ef values for two Tectb−/−

TMs that hit the upper bound set for Ef (2000 kPa). The motion of the TM appears to be relatively

independent of the value of Ef provided that the ratio of Ef to Et is su�ciently large, as discussed

in the following subsection. As such, the inability of the algorithm to �nd a precise value of Ef does

not hinder its ability to �nd values for the other material parameters, as discussed in Appendix A. In

all Tectb−/− TMs and in the majority of WT TMs, the TM is found to be signi�cantly anisotropic

(the anisotropy ratio, Γ(ω) = Ef/Et(ω) is signi�cantly larger than 1 from 10-20kHz), as shown on

Figure 2.9D. Furthermore, Γ(ω) is consistently higher in Tectb−/− TMs than in WT TMs.
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FIGURE 2.10. E�ect of Tectb−/− mutation on anisotropic damping properties: the loss tangent
in the transverse direction (A), the loss tangent in shear (C), the transverse direction viscosity
(C), and the shear viscosity (D). Median material loss tangent (A-B) and viscosity (C-D) values
found for WT (n=6) and Tectb−/− (n=5) mice TMs are plotted with solid lines. Shading indicates
the interquartile range of material properties found in this study for each phenotype. Anisotropic
material parameters from this study are compared to previously reported shear parameters from3

(only at 20kHz) and4. Error bars on Sellon et al.3 data indicate the interquartile range: note the
loss tangent values are calculated using the median shear modulus and shear viscosity and were
not published. Thus, interquartile ranges for the Sellon et al. loss tangents are not given. The
interquartile range is not given for the Jones et al.4 data.

The damping of a viscoelastic material can be characterized by several di�erent measures. For

example, Gha�ari et al.43 and Sellon et al.3 reported the shear viscosity of the TM, ηs(ω). The

viscosity in shear and in the transverse direction at a given frequency are related to the shear and

transverse loss tangents by Eqs. 2.9.

ηs(ω) = (Gtf (ω)× tan δs(ω))/ω and ηt(ω) = (Et(ω)× tan δt(ω))/ω (2.9)

In this study, both the loss tangent and the viscosity in shear and in the transverse direction, shown

on Figures 2.10A-D, are reported. A signi�cant di�erence in the loss tangents due to the Tectb−/−

mutation is unable to be detected. A small decrease in the shear viscosity, ηs, is observed due to the

Tectb−/− mutation (a median decrease of 50%). For both WT and Tectb−/− TMs, the loss tangent

in shear, tan δs, tends to be signi�cantly higher than that in the transverse direction, tan δt: the
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�ber direction was assumed lossless (tan δf = 0).

2.5.5 Alteration of mechanical properties due to Tectb−/− mutation signi�cantly changes

TM motion

The aim of this section is to characterize how the Tectb−/− mutation a�ects the radial and longitu-

dinal motion of isolated TM segments. Although a shear wave is too simplistic to fully describe the

motion of the TM, the amplitude and phase of the radial displacement, uy(x, y, t), can be used to

determine the wave speed c and space constant σ of a longitudinally-propagating wave of decaying

amplitude, as was done in previous studies3,4. Because of the presence of a reverse traveling wave

due to re�ection at the apical edge of the TM, the radial displacement can be written as:

uy(x, t) =
(
Ufe

−ikx +Ure
ikx
)
eiωt (2.10)

where k is the complex wave number which can be expressed as,

k(ω) = ω/c− i/σ (2.11)

In Eq. 2.10, Uf and Ur are the amplitudes of the forward-traveling and reverse-traveling waves,

respectively, and are found from the boundary conditions at the basal and apical edges of the TM.

On Figures 2.11A-B, the median values of c and σ calculated by �tting the radial displacement

measurements in this study using Eq. 2.10 are compared to previous reports of c and σ at 20kHz

from Refs. 3, 4. One outlier, WT9 (whose value for σ was two standard deviations above the mean

σ value found for WT TMs), was removed from this analysis. As seen in Figure 2.11A-B, in all

studies, a decrease in c and a large reduction in σ due to the Tectb−/− mutation are observed. The

smaller value found for σ in Tectb−/− TMs indicates that the radial motion decays at a faster rate

in these TMs than in WT TMs. While similar values for σ were found here and in Ref. 3, Jones

et al.4 found signi�cantly larger space constants for both phenotypes. The large σ values reported

by Jones et al. could be because they do not consider the �nite length of the TM in their analysis:

reverse-traveling waves due to a re�ection at the apical edge might arti�cially in�ate their reported

values of σ.
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FIGURE 2.11. Analysis of TM motion at 20kHz. A-C. Comparison of median TM wave speeds,
space constants, and ratios of longitudinal to radial displacement found between phenotypes along
a line 40µm above the bottom of the �t region (where the �t region is de�ned on Figure 2.7C and
the lines for TB1 and WT1 are seen on Figures 2.6A-H). The error bars indicate the interquartile
range. The A. wave speeds, c, and B. space constants, σ, found in this study are compared with
previously reported values from Sellon et al.3 and Jones et al.4 at 20kHz. The values from our study
are found by �tting Eq. 2.10 to [1] the experimental measurements of radial displacement and to
[2] the resulting radial motion of a �nite element model (described in Figure 2.3) after inserting
the material properties found for each TM in this study. C. The ratio of the amplitudes of the
longitudinal and radial displacements at a point P . For the experimental data, this point is shown
with a magenta asterisk on Figure 2.7A, C, G, and H). For the �nite element model, this point is
marked with a black asterisk on Step 1 of Figure 2.3
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As observed in Figure 2.6, the ratio of the magnitude of longitudinal displacement, |Ux|, to the

magnitude of the radial displacement, |Uy|, tends to be higher for the TB1 TM than the WT1 TM.

To determine whether there is a systematic di�erence between |Ux|/|Uy| for WT and Tectb−/−

TMs, this ratio was computed for all TMs (excluding WT9) at ∆x = 80µm from the left edge of the

data along a line 40µm from the bottom of the �t area (where the �t area is de�ned on Figure 2.7C):

on Figures 2.7A, C, G, and H, this point is marked with a magenta asterisk. This location was

chosen because the di�erence between the WT and Tectb−/− TMs was the clearest at that point.

The results, shown in Figure 2.11C, demonstrate that at this location, |Ux|/|Uy| is signi�cantly

higher in Tectb−/− TMs than in WT TMs.

To identify which individual parameters of the TM are responsible for the changes in TM motion

observed in Tectb−/− TMs, a parametric study of TM motion was conducted using a �nite element

model of the TM (described in Step 1 of Figure 2.3). The geometry and boundary conditions of

this model are �xed; however, the material properties were varied according to the results given in

Figures 2.9 and 2.10. As seen in Figure 2.11, by changing the TM properties from the WT values

to the Tectb−/− values, the �nite element model is able to capture the di�erences in c, σ, and the

ratio of longitudinal to radial displacement due to the Tectb−/− mutation. Note that the |Ux|/|Uy|

ratio was, for this model, calculated at a point ∆x = 100µm from the edge of the �visible� data,

marked with a black asterisk on Step 1 of Figure 2.3. Like in the experimental data, this location

was chosen because the di�erence between the WT and Tectb−/− TMs was the clearest at that

point.

A parameter sensitivity study was then conducted with the �nite element model to determine

the in�uence of the transverse and shear sti�nesses, Et and Gtf (properties largely controlled by the

properties of the TM matrix, detailed in the Discussion), the �ber direction sti�ness, Ef , and the

damping parameters (tan δt and tan δs) on TM motion. For each TM parameter, the baseline value

was set to the median value obtained for WT TMs. By decreasing Et and Gtf from their baseline

values to levels found in this study for Tectb−/− TMs (approximately ≈ 40% of the WT value), c

and σ are signi�cantly reduced, as seen in Figures 2.11A-B : the reduction of Et and Gtf seen in

Tectb−/− TMs appears to be the main source of the reduction in σ and c observed on Tectb−/−

TMs. Additionally, as seen on Figure 2.12C, by reducing Et and Gtf , the ratio of longitudinal

to radial displacement is dramatically increased. This is due to a large drop in amplitude of the
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radial motion, as seen on Figure 2.12E, as the longitudinal displacement amplitude is only slightly

reduced. In other words, while the reduction of Et and Gtf due to the Tectb−/− mutation causes

the radial motion to be attenuated much more quickly than in WT TMs, this attenuation is not

nearly as dramatic in the longitudinal direction. As a result, the ratio of |Ux| to |Uy| is much higher

in Tectb−/− TMs.

The sti�ness in the �ber direction, Ef does not seem to signi�cantly a�ect c or σ. However, as

seen in Figure 2.12C-D, if Ef is reduced any lower than ≈ 50% of the median WT value (nearing

an anisotropy ratio Γ = Ef/Et = 1), the ratio of |Ux| to |Uy| decreases sharply due to a signi�cant

reduction in |Ux|. This helps to explain why, as discussed in a previous subsection, an anisotropic

material model is needed to capture both the longitudinal and radial motion seen in the experimental

data and why the algorithm struggles to capture the precise value of Ef while consistently �nding

Ef >> Et.

As seen in Figure 2.12A-B, adjusting the value of the two loss tangents, tan δt and tan δs,

signi�cantly a�ects σ while only slightly altering reducing c. Additionally, as seen in Figure 2.12D-

C, by decreasing the damping, |Uy| increases more than |Ux| and thus the ratio of |Ux| to |Uy| is

decreased.

2.5.6 Fiber orientation and TM width play signi�cant role in TM motion

In addition to investigating the in�uence of each material property on TM motion, the e�ects of the

TM's width and �ber orientation on its motion were evaluated, as seen in Figure 2.13. As in the

previous section, a parameter sensitivity study was conducted where the values of the TM's width,

Wmodel, and �ber orientation, θ, are varied from a baseline value. The baseline value for Wmodel was

set equal to the median width found for WT TMs, Wmodel = 173µm: Wmodel is described on Step

1 of Figure 2.3. The baseline value for θ was set equal to the �ber orientation used in all models in

this study, θ = 15◦ (based on measurements of �ber orientation in the mouse given in Ref. 48): θ

is de�ned on Figure 2.2B.

While the Tectb−/− mutation is not known to signi�cantly a�ect the �ber orientation or ge-

ometry of the TM, the �ber orientation and width of the TM varies signi�cantly between species.

In humans, for example, the TM is ≈ 250% wider than in the mouse and the �bers are oriented

35◦ from the radial direction, a value ≈ 200% larger than in mice48. In previous studies, similar
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wave speeds and space constants were observed on isolated, basal segments of mouse and human

TMs51,48. Since the wave speeds and space constants between the two species were similar, using

the approach outlined in Ref. 3, the TM shear moduli and shear viscosities for these two species

were found to be of similar value52. Without knowing how the width and �ber orientation each

a�ect the motion of the TM, however, it is di�cult to know whether the conclusions about the

material properties of the human TM can be conclusively drawn based only on measurements of c

and σ.

While the orientation of the �bers, θ, does not seem to signi�cantly a�ect the wave speed, c,

the width of the TM, Wmodel, does seem to a�ect the value found for c (albeit in a non-monotonic

manner). Increasing the �ber angle from 50% of θ used in this study to 220%, σ increases by 44%;

contrarily, increasing the TM width from that of the median WT value does not signi�cantly change

σ. Thus, if the material properties of mouse and human basal TM segments were the same, it would

be expected that c for human TMs would be ≈ 25% higher (due to the larger width of human TMs)

and σ would be ≈ 35% higher (due to the di�erence in �ber orientation between these two species)

than the values found for mice TMs.

Furthermore, as demonstrated in this study, TMs are highly anisotropic at audio frequencies.

The values of all anisotropic material properties in�uence the ratio of the longitudinal to radial

motion. From Figures 2.13C-E, it can be seen that θ and Wmodel also signi�cantly a�ect the ratio

of |Ux|to |Uy|. Therefore, if the material properties of the human TM were equal to that of the

mouse TM, it would be expected that |Ux|/|Uy| would be signi�cantly lower than that seen in the

mouse. However, the longitudinal motion on isolated human TM segments has not been published.

Were this data to be published, a similar �tting methodology as was done here would be suggested

in order to characterize the anisotropic material properties of human TMs at audio frequencies.
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FIGURE 2.13. A parametric study of TM motion is conducted by varying the width, Wmodel

(de�ned in Figure 2.3, Step 1), and �ber orientation, θ (de�ned on Figure 2.2B) of a �nite element
model described in Step 1 of Figure 2.3. In both cases, the parameter is varied from the median WT
value. The A. wave speed and B. space constant due to changes in �ber orientation and TM width
are compared. C. Changes in ratio of the amplitudes of the longitudinal displacement to the radial
displacement at a point marked with a black asterisk on Step 1 of Figure 2.3. D. and E., changes in
the amplitudes of the longitudinal and radial displacements, |Ux| and |Uy|, at the aforementioned
point, respectively, due to changes in TM width and �ber orientation are compared.

2.6 Discussion

2.6.1 Only longitudinal displacement of TM is radially-dependent

As seen on Figures 2.6A-D and 2.7A-D, for both WT and Tectb−/− TMs, the radial direction motion

is nearly radially uniform: this was found to be the case in all TMs at all frequencies examined

here. This radially uniform radial motion would be advantageous physiologically as OHCs within

one longitudinal cross-section would be excited in phase by the TM: cooperation of OHCs within

one longitudinal cross-section might be needed to maximize the e�ciency of cochlear ampli�cation.

Contrarily, as seen on Figures 2.6G-J and 2.7G-J, the longitudinal direction motion is highly

spatially dependent in both the longitudinal and radial directions. This highly spatially dependent

motion is in�uenced signi�cantly by the anisotropy and �nite width of the TM. Although signi�cant

longitudinal motion has been detected on other components of the organ of Corti53,54, it remains
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to be seen if signi�cant longitudinal vibration of the TM is observed in vivo given that the TM is

attached to the spiral limbus and outer hair cell hair bundles, as seen in Figure 2.1. Progress in

optical coherence tomography (OCT) recording techniques have made TM vibration measurements

in the radial and transverse (z) directions possible29. Similar techniques could potentially be used to

observe in vivo measurements of longitudinal TM vibration. These measurements could determine

if TM motion in the longitudinal direction is signi�cant. However, even if longitudinal motion is not

present in vivo, the in vitro longitudinal motion that was used in this study provides key information

about the intrinsic, anisotropic mechanical properties of the TM.

2.6.2 Comparison of material properties found in this study vs. previously reported

values

In this section, the material properties found in this study are compared to those reported previously

in order to assess whether the values found here are reasonable and to test the validity of previously

reported dynamic material properties based on the assumption of shear wave propagation.

While no measurements of the anisotropic elastic moduli of the mouse TM have been reported,

using static Atomic Force Microscopy measurements, Gavara and Chadwick38 found an anisotropy

ratio, Γ = Ef/Et, of 7 in isolated basal segments of the gerbil TM. In WT TMs at audio frequencies,

we found very similar values, ranging from ≈ 7 at 10kHz to ≈ 5 at 20kHz. Although the mouse

TM is about 5-8 times sti�er than in the gerbil TM33,55, this increase in sti�ness does not appear

to be limited to one direction as the anisotropy ratio is similar in these two species. Gu et al.40

measured the longitudinal and radial shear impedance, ZR and ZL, between 0.01 and 1 kHz for

apical, mouse TM segments: they found |ZR|/|ZL| to be between 1-8.3 at 0.01kHz and 3.7-11.7 at

1kHz. Although shear impedance measurements cannot be directly compared to estimates of the

anisotropic elastic moduli, this observation is similar to our �nding that the WT TM is signi�cantly

sti�er in the �ber direction than in the transverse direction.

Since the TM is highly viscoelastic33,4, its material properties are frequency-dependent such that

comparison of the TMmaterial properties found here to other estimates found at audio frequencies3,4

is the most meaningful. Sellon et al. and Jones et al.3,4 used identical (in Ref. 3) or similar (in Ref.

4) experimental set-ups as seen on Figure 2.2A. However, in both of these studies, only the radial

displacement along one line was reported. In these studies, to determine the material properties of
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the TM, the �nite width of the TM was neglected and the TM was assumed to move only in the

radial direction. These assumptions are clearly not valid, since we observe signi�cant longitudinal

motion of the TM (shown on Figures 2.6G and I). Thus, the validity of the values found in Refs.

3, 4 is examined by comparing them to the material properties found in this work which capture

the experimental motion in both directions. Note that in Refs. 3, 4, only the values of the shear

modulus and damping in shear were reported, plotted in Figure 2.9B and Figures 2.10B and D.

At high frequencies (near 20kHz), for both phenotypes, Jones et al.4 found very similar shear

sti�ness values as found here for Gtf . Sellon et. al3 found similar Gtf values as found here for

Tectb−/− mice, but underestimate Gtf in WT mice by a factor of ≈ 1.5. As in this study, Jones

et al.4, found that Gtf in WT TMs increases signi�cantly with frequency; however, this frequency-

dependent sti�ening is markedly less dramatic in Tectb−/− TMs, as found here. Both previous

studies3,4 found lower loss tangent values than the values reported here. The signi�cantly lower loss

tangent values found by Jones et al. are likely due to (1) the consideration of the viscous boundary

layer in their model (which our model lacks), and perhaps more signi�cantly, (2) the assumption of

in�nite TM length (since the wavelengths are on the order of the TM length, boundary e�ects are

non-negligible such that estimating the space constant by �tting the amplitude data using a single

exponential can result in inaccurate values).

Thus, although the �nite width of the TM was not considered by Sellon et al. or Jones et al.,

these previous studies3,4 provide reasonable, but incomplete, measures of TM material properties.

Since the TM is highly anisotropic, the motion of the TM cannot be fully described using shear

properties alone: knowledge of the viscoelastic properties in the �ber and transverse directions is

also needed.

2.6.3 Absence of the SSM largely alters TM transverse and shear sti�ness

The TM is composed of radially oriented collagen �bers embedded in sheets of noncollagenous

matrix with a striated appearance21,35. A total loss of this major structural component of the TM,

the SSM, is reported in TMs of Tectb−/− mutant mice21. Changes in the mechanical properties

of the TM due to alterations to the SSM can be understood by using a micromechanics approach

to simplistically model the TM as a continuous �ber-reinforced composite material. Using this

approach, Ef , Et, and Gtf can be expressed in terms of the moduli and volume fractions of the
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�ber and the matrix using the rule of mixtures56:

EMM
f = EcolVcol + EmatVmat , EMM

t =
EcolEmat

EcolVmat + EmatVcol

and GMM
tf =

GcolGmat

GcolVmat +GMVcol

(2.12)

where MM indicates a value found using a micromechanics approach, Vcol and Vmat are the volume

fractions of the collagen �bers and the matrix, respectively, Ecol and Emat are the Young's moduli

of the collagen �bers and the matrix, respectively, and Gcol and Gmat are the shear moduli of the

collagen �bers and the matrix, respectively. If it is assumed that the total volume of the �bers is

much less than that of the matrix, Vcol << Vmat, and that the sti�ness of the �bers is much greater

than that of the matrix, Ecol >> Emat and Gcol >> Gmat , then Eq. 2.12 becomes

EMM
f ≈ EcolVcol , EMM

t ≈ Emat/Vmat and GMM
tf ≈ Gmat/Vmat (2.13)

Thus, if disruption of the SSM changes of the properties of the matrix, Emat and Gmat, without

a�ecting the volume fraction of the collagen �bers, from Eq. 2.13, it becomes clear that Et and Gtf

would be signi�cantly altered, as observed in this study (and in previous studies4,3 for the shear

sti�ness). As seen on Figures 2.9A-B, at 20kHz, a median 57% reduction in transverse direction

sti�ness and a median 67% reduction in shear sti�ness was found: the similarity of these values

implies that Gmat and Emat might be reduced by a similar amount. On the other hand, since Ecol

is on the order of 1 GPa57,58, the value of Ef is dominated by the sti�ness of the �bers and is not

signi�cantly a�ected by an alteration in matrix properties. As mentioned in the Results Section,

although the �tting algorithm struggles to �nd the precise value of Ef , the results of this study do

not indicate that the Tectb−/− mutation reduces sti�ness in the �ber direction.

2.6.4 Implications of changes in TM material properties on cochlear physiology

Disruption of the SSM due to the Tectb−/− mutation has been found to sharpen the tuning of the

BM in response to a low-level pure tone and of neural masking curves21. In this study, alteration

of the SSM was found to greatly reduce the sti�ness of TM in shear and in the transverse direction,

which would reduce TM longitudinal coupling. A reduced spread of excitation in consequence to
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weaker TM longitudinal coupling could be partially responsible for the enhanced tuning reported

in Tectb−/− mice21,3,4. Indeed, Meaud and Grosh44 showed that a cochlear model with a locally

reacting TM model exhibits sharper tuning than a model with longitudinal coupling. However, in

addition to its e�ect on cochlear tuning, Russell et al. reported that the Tectb−/− mutant mice

also have reduced cochlear sensitivity. This is in contrast with the theoretical study conducted by

Meaud and Grosh44 who predicted that this sharper tuning is associated with higher sensitivity.

Perhaps, the large reduction in Et plays a role in the reduced sensitivity in Tectb−/− mutants:

this large reduction in Et might allow OHC and IHC hair bundles to de�ect more easily in the

longitudinal direction. Longitudinal-direction de�ection of hair bundles would be ine�cient given

that OHC channels hair bundle mechano-electric transduction channels open due to a radially-

oriented stimulation of hair bundles59. Additionally, a slight increase in tan δs due to the Tectb
−/−

mutation was found. Reduced longitudinal coupling due to lower Gtf and slightly higher damping

in Tectb−/− mutants may, when combined, be responsible for the sharper tuning and reduced

sensitivity reported in Tectb−/− mice. Tectb−/− mice tend to produce more spontaneous otoacoustic

emissions than observed in WT mice28. The increased longitudinal motion of the TMs in these mice

might contribute to the additional spontaneous otoacoustic emissions.

2.7 Summary of Contributions & Conclusions

In this study, for the �rst time, the anisotropic, viscoelastic material properties of wild-type and

transgenic mice were reported at auditory frequencies. These material properties were found using

an inverse �tting algorithm which sought the material parameters of �nite element models which

best capture experimentally measured displacements of isolated TM segments provided by our

collaborators. The accuracy and precision of the �tting algorithm were assessed: the di�erences

in the material properties seen between phenotypes were found to be due to actual changes in the

material properties of these TMs rather than an artifact of the �tting algorithm. The inverse �tting

algorithm was repeated on the TMs of several WT and Tectb−/− mice: doing so, I was able to

uncover statistically signi�cant changes in the anisotropic, dynamic material properties of the TM

due to the Tectb−/− mutation. Finally, a parameter study was conducted in order to determine the

in�uence of the TM's material parameters, width, and �ber orientation on its motion. The results
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of this analysis suggest that at auditory frequencies, the material properties of the TMs of humans

are di�erent than in mice. A study which considers the �nite width and anisotropy of the TM, as

was done in this thesis, is needed to quantify these di�erences in material properties.

Knowledge of the material properties of the TM are necessary in order to elucidate the role

of the TM in cochlear mechanics: these properties give insight into how genetic mutation a�ects

the mechanical properties of the TM. In a future study, these material properties could be inserted

into computational models of the cochlea which would allow (1) for more realistic modeling of

the TM and (2) the consequences of the Tectb−/− mutation on cochlear mechanics to be evaluated.

Additionally, the inverse �tting algorithm could be applied to experimental measurements of isolated

TM segments of other genetically modi�ed mice (such as the TectaY 1870C/+ mutation20) or of other

species should the data become available.
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Chapter 3

In�uence of middle-ear properties on its ability to transmit sound

3.1 Chapter overview

In this chapter, I aim to (1) develop a circuit model of the chinchilla middle ear by modifying the

topology and parameter values of existing mammalian middle-ear models and to (2) use this model

to examine the e�ects of inertial, sti�ness, and damping properties on the middle ear's ability to

transmit sound. While a signi�cant amount of experimental data on the chinchilla middle ear had

been published, no circuit model of the chinchilla middle ear existed in literature prior to this model

(and only one other model, a �nite element model60, of the chinchilla middle ear was available at

the time the model described in this chapter was published in a journal article61). The simplicity of

the model allowed for direct relation of the model parameters to features in the experimental data

using analytical expressions. Doing so, I was able to use reported values of the transmission matrix

parameters in order to evaluate di�erences in ossicular joint sti�ness across several mammalian

species.

3.2 Introduction to middle-ear mechanics

3.2.1 Overview of middle ear physiology

The mammalian middle ear allows acoustic energy to be e�ciently transferred from the ear canal

to the inner ear through a broad range of frequencies. At the end of the ear canal lies the eardrum,

the �rst component of the middle ear. As seen on Figure 3.1A-B, the eardrum is directly coupled

with the malleus, the �rst of the three bones which comprise the ossicular chain. In normal hearing,

sound travels through the ear canal where it vibrates the eardrum which in turn causes the ossicular

chain to move. The ossicular chain and connecting joints and ligaments which comprise the middle

ear are enclosed in an air-�lled cavity called the middle ear cavity, as seen in Figure 3.1C. After
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traveling through the ossicular chain, the stapes footplate vibrates the water-like �uid within the

inner ear.

In this chapter, sound traveling from the ear canal into the inner ear will be referred to as

traveling in the �forward� direction. Sound can also be generated by the inner ear itself; these

sounds are called otoacoustic emissions (OAEs)62. OAEs travel from the inner ear, through the

ossicular chain and the eardrum, and into the ear canal where they are measured: this direction

will be referred to as the �reverse direction.�
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FIGURE 3.1. Depiction of the mammalian middle ear (from a publicly available 3D scan of a gerbil
middle ear5). A. Front view of the middle ear attached to the cochlea. B. Rear view of the middle
ear. In both A and B, the eardrum is noted in blue: on A, the location of the umbo is noted (which is
the center, most inverted portion of the mammalian eardrum). Each ossicle is depicted with a single
color: the malleus is yellow, the incus is green, and the stapes is red. The incudomalleolar joint
(IMJ) and incudostapedial joint (ISJ) are both noted in magenta. Tendons and muscles are colored
purple: �TT� is the tensor tympani muscle, �AL� is the annular ligament, �SM� is the stapedius
muscle, and �PIL� is the posterior incudal ligament. C. The eardrum and ossicular chain situated
within the air-�lled middle-ear cavity (the cavity formed from the bony wall surrounding the middle
ear, the bulla).

3.2.2 Background: middle-ear modeling

In an e�ort to better understand middle-ear mechanics, circuit and �nite-element models of human,

cat, and rodent middle ears have been previously developed, as reviewed in Ref. 63. Circuit

models have well-known limitations. For example, they cannot represent three-dimensional ossicular

motion at high frequencies64 or complex vibration patterns of the eardrum65,66. However, while
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circuit models generally have trouble representing higher order motion, they have value as concise

representations of experimentally observed phenomena and are su�cient in relating inputs and

outputs of the middle ear63.

The simplicity of circuit models allows for insight into the e�ects of each component of the middle

ear with little computational cost, especially when compared to �nite-element models. In practice,

this means circuit models can be easily coupled with computational models of the cochlea in order to

directly compare experimental measurements of OAEs in the ear canal with model simulations1,67.

Additionally, the simplicity of circuit models makes it possible to derive analytical expressions which

directly relate the model parameters to transfer function measurements. Hence, with circuit models,

measurements of the inputs and outputs of the middle ear provide more information than just the

transmission properties of the middle ear: they allow for insight into the sti�ness, damping, and

inertial properties of individual bones, joints, and ligaments of the middle ear.

3.2.3 Chinchillas and hearing mechanics

The chinchilla is a well-studied species, in part because chinchillas and humans share similar hear-

ing ranges68 (the hearing range of the chinchilla extends from 50 Hz to 33 kHz69) and eardrum

dimensions68,70. As such, numerous measurements of sound transmission through the chinchilla

middle ear have been published9,11,12,13,71,14,10. However, before the development of the circuit

model discussed in this chapter and a �nite element model by Wang et al.60 in 2016, no models of

the chinchilla middle ear had been published. With the addition of these models, the underlying

mechanics behind the experimentally measured middle ear motion can be better understood.

3.2.4 Background: characterization of middle-ear function via two-port transmission

matrix

The middle ear plays a role in the transmission of acoustic energy in both the forward and reverse

directions. Hence, in order to properly validate a middle-ear model, an experimental data set

that fully characterizes the relationship between the inputs and outputs of the middle ear in both

directions is needed. In this subsection, characterization of the inputs and outputs the middle ear

by a two-port transmission matrix (as was done by Ref. 16 for the human middle ear, Ref. 15

for the cat middle ear, and Ref. 10 for the chinchilla middle ear) is discussed. This method of
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characterization is used in the following sections to relate the parameters of my circuit model of the

chinchilla middle ear to features seen in experimental data.

The middle ear can be characterized as a two-port system with one port in the ear canal and

the other at the stapes footplate72 (as seen in Figure 3.2). This two-port system can be represented

with a two-port transmission matrix in which four matrix parameters, A, B, C, and D, relate the

inputs and outputs of the middle ear and allow for characterization of the middle-ear independent

of the in�uence of the termination loads. The relationship between the inputs and outputs of the

two-port system can be written as

Ped

Ued

 =

A B

C D


Ps

Us

 (3.1)

where Ped and Ued are the pressure and volume velocity in the ear canal at the eardrum, respectively;

Ps and Us are the pressure and volume velocity at the stapes footplate, respectively; and A, B, C,

and D are the two-port transmission matrix elements73.

These two-port matrix parameters can be estimated by measuring the pressure and the volume

velocity in the ear canal and the volume velocity at the stapes footplate (and by assuming reci-

procity) in two di�erent cochlear conditions: (1) with a �xed stapes and (2) with a drained cochlea,

as was done for the chinchilla in Ref. 10. By examining Eq. (3.1), it is seen A, B, C, and D can

be physically interpreted in the following manner16,10:

A =
Ped

Ps

∣∣∣
Fixed stapes

B =
Ped

Us

∣∣∣
Drained cochlea

C =
Ued

Ps

∣∣∣
Fixed stapes

D =
Ued

Us

∣∣∣
Drained cochlea

(3.2)

where it is assumed that the �xed stapes condition and drained cochlea condition approximate

Us = 0 and Ps = 0, respectively.
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FIGURE 3.2. A two-port representation of the middle ear where Ped is the pressure at the eardrum
on the side of the ear canal, Ued is the volume velocity of the eardrum, T represents the two-port
middle-ear system (with parameters A, B, C, and D), Us is the volume velocity of the stapes, and
Ps is the pressure at the stapes footplate within the inner ear.

3.2.5 Background: Middle-ear forward pressure transfer function

While the A, B, C, and D matrix parameters provide a description of middle-ear function that is

independent of termination loads, a more common measurement of middle-ear transmission is the

forward pressure transfer function, GMEf , de�ned as,

GMEf =

−→
Ps
−→
Ped

(3.3)

where the rightward arrows indicate that the value is measured in the forward direction (i.e., when

the middle ear is driven by pressure in the ear canal). The forward pressure transfer function is a

useful measure of middle-ear sound transmission since in normal hearing, sound travels from the

ear canal into the cochlea. As such, several groups have measured GMEf for the chinchilla middle

ear9,11,12,13,71,14: in this study, these measurements are compared to the model predictions of GMEf .

Note however, the forward-pressure transfer function, GMEf , does not fully characterize middle ear

function: to do so, GMEf must be combined with additional measurements of the middle ear in the

reverse direction (such as the reverse pressure transfer function or the reverse middle-ear impedance,

discussed further in Ref. 61).

3.3 Modeling the chinchilla middle ear

Each component of the chinchilla middle ear was modeled by (1) selecting a previously published

model of the middle-ear component of another mammalian species whose topology best represents

that of the chinchilla middle ear and by (2) altering features of these models in order to best
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represent known properties of the chinchilla middle ear and to be able to reproduce features seen

in experimental data of the chinchilla middle ear. In this section, the selection of these models is

discussed and a description of each component model is provided. Modi�cation of model parameters

is discussed in the following section.

3.3.1 Chinchilla middle-ear model: overview

A block diagram of the entire ear as modeled in this section is seen in Figure 3.3. The transformers

represent the transition from the acoustic to the mechanical domain (or vice versa) within the ear.

Each block represents a component of the ear: the middle-ear model consists of the middle-ear

cavity (MEC), eardrum (ED), and ossicular chain (OC) models. Additionally, the input pressure

and the termination impedance in the forward direction are shown. As seen in Figure 3.3, the input

for the forward direction is the pressure in the ear canal and the termination load is the cochlear

input impedance, Zc. Zc is given by:

Zc =

−→
Ps
−→
Us

(3.4)

As in Eq. 3.3, rightward arrows indicate that the value is measured in the forward direction.
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FIGURE 3.3. A block diagram of lumped parameter model of the middle ear. Here, Ped and Ued

are the pressure and volume velocity in the ear canal (at the eardrum), respectively, ZMEC is the
impedance of the middle-ear cavity, Fu and Vu are the force and velocity at the umbo, respectively,
Fs and Vs are the force and velocity at the stapes footplate, respectively, Zc is the cochlear input
impedance (as in Figure 11 of Ref. 21), Us is the volume velocity at the stapes footplate, and Aed

and Afp are the cross-sectional areas of the eardrum and stapes footplate, respectively.
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3.3.2 Modeling the ossicular chain

The ossicular chain (the OC block in Figure 3.3) represents the lumped parameter model shown

in Figure 3.4. The model of the ossicular chain is depicted as a simple electric circuit: force is

represented as voltage and velocity is represented as current. Resistors, inductors and capacitors

represent mechanical resistances, masses, and sti�nesses, respectively.

In the chinchilla middle ear, the malleus and incus are believed to be tightly fused64,74; in other

words, the incudomalleolar joint (the magenta joint noted on Figures 3.1A-B) is thought to be

extremely sti�. Thus, a model where the incus and malleus are modeled as a single lumped mass

(as in Ref. 67), rather than a model that incorporates the �exibility of the incudomalleolar joint

(such as the human model from Ref. 18 or the cat model from Ref. 8) was chosen. Thus, in Figure

3.4, Mm represents the rotational and translational inertia associated with this fused malleus-incus

mass.

Mm is attached to a �xed point by a spring and a dashpot, Km and Cm, which represent

the sti�ness and damping of the ligaments and muscle which support the malleus and incus (the

tensor tympani muscle and the posterior incudal ligament, noted in purple on Figures 3.1A-B). Kisj

and Cisj represent the sti�ness and damping associated with the incudostapedial joint (the joint

which connects the incus and stapes, noted in magenta on Figure 3.1A). Note that the mechanical

advantage of the middle ear is represented as a transformer with a turns ratio of Nlr; the turns

ratio, Nlr, represents the ratio of malleus velocity to incus velocity.

The stapes is the �nal bone of the ossicular chain which pushes the �uid within the cochlea: it

can be seen in red on Figures 3.1A-B. Since the stapes primarily translates in a piston-like motion75,

Ms represents the actual mass of the stapes bone of the chinchilla. The stapes is connected to the

bulla by the annular ligament and is supported by the stapedius muscle (both of which are noted in

purple on Figures 3.1A-B); note the main source of sti�ness and damping on the stapes is due to the

annular ligament. The sti�ness and damping associated with the annular ligament and stapedius

muscle are represented by a spring and dashphot, Kal and Ral.
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FIGURE 3.4. The ossicular chain model used in this study. Note all impedances in this model are
mechanical impedances. In this model, the malleus and incus are fused, i.e. IMJ noted in Figure
3.1A-B is very sti�. V indicates a velocity; Nlr is the lever ratio of the middle ear; M , K, and R
indicate lumped mass, sti�ness, and resistance parameters, respectively; subscripts m, isj, s, and al
indicate parameters belonging to the malleus, incudostapedial joint, stapes, and annular ligament,
respectively; and Z indicates a mechanical impedance. Note that the color scheme used in this
�gure is the same as in Figure 3.1: as such, the fused malleus and incus mass is colored green and
yellow. Additionally, the sti�ness and damping associated with muscle and ligaments are colored
purple while the sti�ness and damping associated with the incudostapedial joint is colored magenta.
The stapes mass is colored red.

3.3.3 Modeling the middle-ear cavity (MEC)

The load due to the middle-ear cavity (MEC) (represented as the ZMEC block in Figure 3.3) is

signi�cant in the chinchilla middle ear7. The middle ear cavity is the space enclosed by the bulla,

seen on Figure 3.1C. Opening the bulla, as was done in the experimental data used to �t the model

parameters, can cause several changes in the response of the middle ear6. One notable e�ect of

opening the bulla is the introduction of small resonances which can be seen in the experimental

data6,10. Songer and Rosowski6 used a simple model of cavity resonance to explain this observed

phenomenon where the air within the cavity was modeled as an acoustic compliance, Kcav, and the

mass of the air within the neck of the cavity was modeled as an acoustic mass, Mhole. A similar

model of the load due to the middle ear was chosen in this study, given in Figure 3.5. In this study,

however, the radiation resistance of the open hole in the bulla (as in Ref. 8), Rhole, is also included.

Note that this model was chosen in order to best represent the condition of the middle ear in the

experimental data, rather than the middle-ear cavity in its natural state.
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Rhole

Kcav

Mhole

Ued

FIGURE 3.5. Model of the chinchilla middle-ear cavity where the bulla has been opened with a
small hole (all impedances in this model are acoustic impedances). Here, Ued is the volume velocity
of the eardrum; Kcav is the sti�ness due to the air in the main middle-ear cavity6; Mhole is the
e�ective acoustic mass of the open hole in the bulla6,7; Rhole is the radiation resistance of the open
hole in the bulla8.

3.3.4 Modeling the eardrum

Two di�erent models of the eardrum are considered. In one model, the eardrum is modeled as

a one-dimensional cylindrical lossless acoustic transmission line with characteristic impedance Zed

and a propagation delay Ted, as in Refs. 8, 18. The transmission line model can be represented in

terms of a two-port matrix as in Ref. 8,

Ped

Ued

 =

 cos (ωTed)/Aed iZedAed sin (ωTed)

iZ−1
ed sin (ωTed)/Aed Aed cos (ωTed)


Fu

Vu

 (3.5)

where Fu and Vu are the force and velocity of the umbo. The middle-ear model with the transmission

line model of the eardrum (referred to as �the TL model� in the remainder of this thesis), best

captures certain e�ects of the eardrum on normal sound transmission. However, at low frequencies,

the additional complexity introduced by this model is often unnecessary to model the mechanics

of the system, and thus another model, in which the eardrum is modeled as a rigid mass lumped

with the mass of the malleus and incus, was also considered (this model is referred to as �the noTL

model�). Two sets of parameters are given: one set of parameters for the TL model, and one set for

the noTL model.
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3.3.5 Cochlear Input Impedance

While the focus of this study was to model middle-ear mechanics, termination impedances are needed

so that the model can be compared to most existing experimental data. In the forward direction,

the termination impedance is the cochlear input impedance. The cochlear input impedance, Zc

from Ref. 9, found by directly measuring the pressure in the scala vestibuli and the velocity of the

stapes, was coupled directly with the chinchilla ear models.

3.4 Fitting model parameters to experimental data

In the previous section, the selection and modi�cation of previously published models which best

represent the topology of the chinchilla middle ear is discussed. In each of these models, the model

parameters must be adjusted to represent known properties of the chinchilla middle ear and to best

capture experimental data for the chinchilla middle ear. Some alterations to model parameters are

based on known di�erences between the chinchilla middle ear and the previously published model:

for example, the mass of the stapes in chinchillas is di�erent than that of the human and can be

directly input into a lumped parameter model of the human ossicular chain from Ref. 67. For other

parameters, the di�erences between species are unclear. Finding the values of these parameters is

not trivial as there are 11 total free parameters for the noTL model and 13 for the TL model (the

mass of the stapes, Ms and the area of the stapes footplate Afp are based on physiological values

and are considered known). It was found that some form of �tting methodology was required in

order to �nd the values of these values of the parameters of the model which allow the model to

reproduce the features seen in experimental data for the chinchilla middle ear.

In this section, I develop manual procedures for �nding parameter values for the noTL and

the TL middle-ear models. An automated error minimization algorithm was not used to �t the

parameters: as in a previous paper18, manual �tting procedures were chosen because they allowed

the models to be �t to speci�c qualitative features of the data rather than obtaining an overall

quantitative �t. Furthermore, the developed manual procedures make it possible to gain insight

into the role of the di�erent components of the model. This is particularly true for the noTL Model

Fitting procedure, where analytical expressions relating model parameters to features captured in

the experimental data can be derived.
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To help readability of the following sections, a description of each parameter discussed in this

section is provided in Table 3.1.
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TABLE 3.1. Description of each parameter discussed in Section 3.4.

Aed E�ective area of the eardrum (barrier between ear canal and middle ear)

Afp E�ective area of the stapes footplate (barrier between middle ear and inner ear)

Nlr Lever ratio of the middle ear

Mm Mass representing the inertial e�ects of the fused malleus and incus

Km Sti�ness of ligaments & muscle which connect Mm to bullar wall

Rm Damping associated with ligaments & muscle which connect Mm to bullar wall

Kisj Sti�ness of incudostapedial joint (joint which connects incus to stapes)

Risj Damping associated with incudostapedial joint (joint which connects incus to stapes)

Ms Mass of the stapes (�nal bone in ossicular chain)

Kal Sti�ness of ligaments & muscle which connect Ms to bullar wall (dominated by
annular ligament)

Ral Damping associated with ligaments & muscle which connect Ms to bullar wall (dom-
inated by annular ligament)

Mhole E�ective acoustic mass due to the hole in the bulla

Kcav E�ective sti�ness due to the air in the main middle-ear cavity

Rhole Radiation resistance of the open hole in the bulla

Ted Propagation delay of the TL model of the eardrum

Zed Characteristic impedance of the TL model of the eardrum

3.4.1 noTL Model Fitting procedure

A method for �tting parameters of the noTL model to experimental two-port transmission matrix

parameter data from Ref. 10 is described in this section; this simple, manual �tting procedure

could be used to develop similarly structured lumped parameter models of the middle ear for other

mammals. When �tting models, it is generally preferable to use direct experimental measurements.

However, two-port transmission matrix parameter data, while obtained indirectly (as was done in

Ref. 10), allows for characterization of the middle ear independent of in�uence from the termination

loads72. Because ear canal and cochlear loads vary by species and by experimental set-up, it is

desirable to �t a middle-ear model to a set of data that excludes these in�uences. Additionally,

simple expressions for A, B, C, and D in terms of lumped parameter model elements can be

found in the case of the noTL model: these simple expressions make it possible to adjust the

lumped parameter elements in a straightforward manner to improve the �t between the model and

experimental data.

Before �tting model parameters, Aed, Afp, and Nlr were �xed to constant, real values. The

value used for Nlr (3.7) is similar to measured and computational results of the anatomical lever
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ratio (where Nlr is de�ned as the ratio of the length of the malleus lever arm to the length of the

incus lever arm): Nlr = 2.84, 3.66 and 3.76 in Refs. 68, 76, and 60, respectively. The value for

Aed (Aed = 80mm2) was chosen so that at frequencies between 170 and 1,200 Hz, the e�ective area

(de�ned here as the ratio of the volume velocity in the ear canal to the velocity of the umbo, Uec/Vu)

in the noTL model was similar to the ratio of the value of Uec/Vu (shown in Figure 6.18 in Ref. 74)

which was calculated based on measurements from Refs. 77, 78. This value is slightly larger than

the measured value of the chinchilla pars tensa area reported by Vrettakos et al.68 to be 60.44 mm2;

however, in several species including the chinchilla, the e�ective area is larger than the anatomical

area of the eardrum74. Within the frequency range for which the value of Aed was chosen, 170-1,200

Hz, the ear canal volume velocity to umbo velocity ratio magnitude calculated from experimental

data is relatively �at; because the e�ective area of the noTL model is real and frequency independent

while the actual e�ective eardrum area is complex and frequency dependent74, the noTL model can

only represent the eardrum e�ective area well at these frequencies (170-1,200 Hz). In the TL model,

however, the ratio Uec/Vu is complex and varies with frequency at frequencies above 1.2 kHz: the

value of Aed in Eq. (3.5) for the TL model was chosen to be equal to the value of Aed chosen for

the noTL model. The value for Afp (in both models) was chosen to be equal to the value of the

stapes footplate area in the chinchilla as reported by Vrettakos et al.68.

After �xing the values of Aed, Afp, and Nlr as scalars, the model is simultaneously �t to both

the two-port matrix parameters and their transformed values. The transformed values of A, B, C,

and D are de�ned by the following equation:

Ped

Ued

 =

AT BT

CT DT


PsT

UsT

 (3.6)

where PsT and UsT are the �transformed� e�ective pressure and volume velocity at the stapes foot-

plate. As de�ned by O'Connor and Puria18, these transformed values correspond to the values that

are obtained when the e�ect of the transformers seen in Figure 3.3 are absorbed by the parameters,

as shown in Figure B.1 in Appendix B (the relationships between the untransformed variables and

the transformed variables are given in the caption of Figure B.1).

The transformed two-port transmission matrix parameters can be expressed as a function of
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the impedances of the noTL lumped parameter model. The procedure for relating the transformed

two-port transmission matrix parameters, AT , BT , CT , and DT , to lumped parameter elements is

detailed in Appendix B and the resulting equations are seen below:

AT =
ZmT + ZMEC

ZisjT
+ 1

BT =
(ZmT + ZMEC)ZsT

ZisjT
+ ZmT + ZMEC + ZsT

CT =
1

ZisjT

DT =
ZsT

ZisjT
+ 1

(3.7)

where, as in Figure B.1, a T in the subscript denotes a �transformed� parameter.

The expressions for AT , BT , CT , and DT in Eq. (3.7) provide the basis for the noTL �tting

procedure. Before beginning the procedure, the ossicular chain sti�ness parameter values were set

to that of a model of the guinea pig middle ear that I had developed previously to couple with a

model of the inner ear1. The values for the damping parameters were all initially set to the value

used in Ref. 1 for the annular ligament damping parameter. The mass parameter values for the

combined malleus/incus and for the stapes were set equal to, respectively, 80% and 100% of the

mass values reported for the chinchilla ossicular chain in Ref. 70. The speci�c amount of 80% of the

actual malleus/incus mass is arbitrary. However, Puria and Steele64 noted that in several published

circuit models, the malleus and incus mass parameter values are smaller than their corresponding

measured masses; this disparity was attributed to the fact that the actual physiological motions

of the ossicles tend to be rotational rather than translational, particularly at higher frequencies64.

The initial values for the MEC parameters are discussed in further detail in Ref. 61; brie�y, they

are based on known quantities of the volume of the middle-ear cavity and size of the middle-ear

cavity hole.

Using these initial parameters, steps were taken to �t the noTL model which are listed in the

procedure given below. In order to follow the procedure, it is helpful to look at Figure 3.7 which is

shown with the model results in Section 3.5.

1. In Eq. (3.7), if the e�ective area of the eardrum is assumed constant and real, it can be
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seen that CT depends only on the incudostapedial joint impedance, ZisjT . Before �tting

other parameters, the value of Kisj was adjusted such that the model's resulting C magnitude

matches the magnitude of the C data at low frequencies

2. In the noTL model, DT depends only on ZisjT and the stapes and annular ligament impedance,

ZsT . Since a value for Kisj was chosen in step 1 of the procedure, the value of the annular

ligament sti�ness, Kal, was adjusted so that the model's resulting D magnitude matches the

magnitude of the D data below 1 kHz

3. At this step, the e�ect of the MEC is ignored by setting ZMEC = 0. With this assumption,

BT is only a function of ZisjT , ZsT , and the malleus impedance, ZmT . Since values were

found for Kisj and Kal in steps 1 and 2, the value of the malleus sti�ness, Km, was adjusted

to improve the model �t data for BT at low frequencies. AT could potentially have been used

to �nd a value for Km, but using BT was preferred because the values of B reported in Ref.

10 only required two measurements (of the ear canal pressure and stapes velocity) whereas

A was found indirectly using a large number of measurements and required an assumption of

reciprocity. It was found that there was a trade-o� between adjusting Km so that

(a) the model results best match the magnitude of the B data at low frequencies (between

100 and 300 Hz)

(b) the frequency of the minimum in the model's B magnitude matches the frequency of

minimum in the magnitude of B (400 Hz)

Km was chosen to be equal to the average value found with the two di�erent �tting methods

listed above.

4. While still ignoring the e�ect of the MEC, the values of the three ossicular damping parameters

(Rm, Risj , and Ral) were adjusted (while maintaining Rm = Risj = Ral) so that the model

matched the depth of minimum of the B magnitude data at 400 Hz

5. At this step, the MEC is taken into account and the value of the MEC mass parameter, Mhole,

was adjusted to �t the frequency of the peak in the B magnitude data at 2.5 kHz.
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6. By adjusting the MEC resistance, Rhole, it was found that there was a trade-o� between

adjusting Rhole so that the model results best match

(a) the height of the peak in B magnitude data at 2.5 kHz

(b) the depth of the notch in B phase data at 2.6 kHz

Rhole was chosen to be equal to the average value found by adjusting Rhole to match each of

the features listed above.

The parameter values after each step are listed in Table 3.2. The resulting model �ts are given

in the Results Section.

3.4.2 TL Model Fitting procedure

While the noTL model is simple to �t and works well at low frequencies, a more complex model

of the eardrum (the TL model described in Section 3.3) was found to be necessary in order to

improve the model's high frequency forward pressure transfer function, GMEf , phase results. The

addition of the TL model of the eardrum adds signi�cant complexity to the expressions for AT ,

BT , CT , and DT ; furthermore, experimental data for the two-port transmission matrix parameters

only extends to 8 kHz. Hence, a di�erent �tting procedure was developed for the TL model. The

TL model parameters were adjusted using experimental measurements of GMEf from Ref. 9: these

measurements were taken at frequencies between 62.5 Hz and 28.5 kHz which is similar to the

hearing range of the chinchilla69.

Before beginning the procedure, all middle ear cavity and ossicular chain parameters excluding

the malleus mass were set to the noTL model parameter values. The eardrum delay, Ted, was

initially set equal to the delay found for a cat TL model8. The malleus mass parameter value was

reduced to 10% of the value of the malleus mass found for the noTL model. As in the noTL model,

the speci�c amount of 10% of the noTL model malleus mass value is arbitrary: however, as was

found in previous models with a TL model of the eardrum8,18, a small malleus mass parameter was

needed in order to reduce re�ections in the model simulations at high frequencies.

In a circuit model of the cat middle ear with a lossless transmission line model of the eardrum,

Puria and Allen noted that a carefully selected sti�ness element may be placed after each mass
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element such that a section of a �matched� transmission line is formed by the two elements8. In

the model described in this paper, the transformed combined malleus and incus mass, MmT , has a

corresponding transformed shunt sti�ness of KisjT ; as in Ref. 8, these two elements may be viewed

as one segment of a lumped parameter transmission line. In order to reduce re�ections due to

impedance mismatch between the eardrum and the ossicular chain, the characteristic impedance of

the eardrum, Zed, was initially set equal to the local characteristic impedance of MmT and KisjT ,

ZOC
char =

√
MmTKisjT .

Using the initial parameters described in the proceeding two paragraphs, the following steps

(shown in Figure 3.6) were taken to �t the TL model:

1. Adjust Ted so that that the frequency of the sharp peak in the model response (marked with

a magenta arrow labeled �+� in Figure 3.6A) matches the frequency of the peak in GMEf

magnitude data at 22.6 kHz (marked with a blue arrow labeled �o� in Figure 3.6A).

2. Increase Zed so that at frequencies between 2-10 kHz, the model's GMEf magnitude results lie

within the 95% con�dence interval of the data and re-adjust Ted such that the high frequency

peak in model's GMEf magnitude matches the frequency of the peak in the data at 22.6 kHz

(marked with a blue arrow labeled �o� in Figure 3.6A).

3. Adjust Mhole so that the frequency of the notch in the model's GMEf magnitude matches the

frequency of the notch in the GMEf magnitude data at 2.5 kHz and Rhole so that the model's

GMEf magnitude results match the magnitude of the notch in the GMEf data at 2.5 kHz.

The notch in the GMEf magnitude data at 2.5 kHz is noted with a green arrow labeled �x�.

After Mhole and Rhole are chosen, re-adjust Ted to match the frequency of the peak in GMEf

magnitude at 22.6 kHz

4. It was found that Rm in�uences both (1) the height of the high frequency peak in the GMEf

magnitude (highlighted in step 1 with a magenta arrow in Figure 3.6A) and (2) the drop in

the GMEf phase found between 20-22 kHz (noted with an orange arrow labeled �*� in Figure

3.6B). Adjusting Rm such that the model results exactly match the GMEf phase at high

frequencies while simultaneously remaining within the 95% con�dence intervals of the GMEf

experimental measurements was found to be impossible. Thus, Rm was chosen to be equal to
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the average of the value found with the following methods:

(a) Increase Rm to reduce the model's high frequency peak in the GMEf magnitude so that

the results lie within the 95% con�dence interval of the data

(b) Adjust Rm so that the model results best match the GMEf phase data between 20-22

kHz

The parameter values after each step are listed in Table 3.3.
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FIGURE 3.6. Chinchilla TL model results after each step in the TL model �tting procedure versus
experimental GMEf measurements9. The 95% con�dence intervals of these measurements are plot-
ted in gray. Arrows indicate notable features in the GMEf model results and measurements that
were used to adjust the TL model parameters (described in more detail in the TL model �tting
procedure).

3.5 Middle-ear circuit model: results

In this section, the model predictions for (1) A, B, C and D and (2) the forward pressure transfer

function (the pressure gain at the stapes footplate from pressure input in the ear canal), GMEf =

Ps/Ped, are given. Since the TL model was �t to forward pressure transfer function data, its A,

B, C and D results can be used to validate the model. Similarly, since the noTL model was �t to

experimental data for B, C and D, both its forward pressure transfer function and A results can
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be used to validate the model. Both models are compared against with additional data sets in Ref.

61.

3.5.1 Model predictions of A, B, C, and D

Figure 3.7 displays the model simulations for both middle-ear models (the TL model and the noTL

model) compared to the experimental data for A, B, C and D from Ref. 10. Neither middle-ear

model was �t directly to A experimental data. Still, both models are able to capture several notable

characteristics seen in the A data (panels A and E in Figure 3.7): the markedly �at magnitude and

phase in A at frequencies below 1 kHz, the notch in the A magnitude data (marked with a red

arrow labeled �*� in Figure 3.7A) and corresponding peak in the A phase data at 2 kHz, the peak

in the A magnitude data (marked with a blue arrow labeled �+� in Figure 3.7A) and corresponding

notch in the A phase data at 2.5 kHz, and, qualitatively, the notch in the A magnitude data marked

with a green arrow labeled �o� in Figure 3.7A. However, the frequency of the notch (marked with

a green arrow labeled �o�) in the A magnitude predicted by each model (3.1 kHz and 3.5 kHz in

the noTL and eardrum models, respectively) is lower than the frequency of the notch seen in the

data (3.8 kHz); furthermore, the notch in the data is deeper than what is predicted by either of

the models. Additionally, as seen in Figure 3.7E, both models predict a �at response in the phase

at frequencies above 4 kHz while the A phase data begins to decrease at frequencies above 4 kHz.

However, despite these discrepancies at high frequencies, overall, both models �t the magnitude and

phase of A quite well at frequencies below 3 kHz.

The noTL model represents both the magnitude and phase of the B data better than the TL

model throughout the frequency range of the data (panels B and F in Figure 3.7); this is expected

since the noTL model parameters were speci�cally adjusted to �t this data while the TL model

parameters were re-adjusted to improve the agreement between simulations and experimental data

for GMEf at high frequencies. The noTL model predicts a minimum in the B magnitude at 440 Hz

and the TL model predicts a B magnitude minimum at 540 Hz: a minimum in the B magnitude

data is seen at 400 Hz (marked with an orange arrow in Figure 3.7B). Thus, while noTL model

better captures the frequency of this minimum seen in the experimental data, the values predicted

by both models for the frequency of this minimum are reasonable. The noTL model is able to match

the depth of the minimum in the B magnitude data much better than the TL model. This is due
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to the extra damping in Rm needed in the TL model in order to damp out peaks in predicted value

of GMEf which are caused by an impedance mismatch between the transmission line model for the

eardrum and the ossicular chain. There is a peak in the A and B experimental data and the model

results at around 2.5 kHz (marked with a blue arrow labeled �+� in Figure 3.7A and a black arrow

labeled with a square in Figure 3.7B). As mentioned previously, the peak in the experimental data

at this frequency was attributed to an anti-resonance produced by open holes in the bulla: in both

models, matching these features seen in the data required a middle-ear cavity model.

At low frequencies, both models match the C magnitude data very well (Figure 3.7C). How-

ever, at frequencies above 2 kHz, the models predict a continued increase in magnitude while the

experimental data begins to decrease. As in the data, the magnitude of D remains relatively �at

below 3.5 kHz in both models (Figure 3.7D). As seen in Figure 3.7H, the experimental phase for D

rises sharply at high frequencies: while the TL model begins to increase at around 10 kHz, neither

model is able capture the trend seen in the high frequency phase data for D.
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3.5.2 Model predictions of GMEf

Measurements of the forward pressure transfer function, GMEf , in the chinchilla middle ear have

been reported by multiple groups and published in several di�erent papers9,11,12,13,71,14. In addition,

GMEf can be calculated using experimental data for the velocity transfer function (the velocity of

the stapes relative to the pressure in the ear canal) from Ref. 10 and experimental measurements

of Zc from Ref. 9. Results for the TL and noTL models are compared to these calculated GMEf

data and to several experimental GMEf measurements9,11,12,13,14.

Qualitatively, all experimental GMEf data sets compared are relatively consistent14. The mag-

nitude of all GMEf data sets compared increases with frequency up until it reaches a maximum

at frequencies between 250-600 Hz. There is a notch in the magnitude data (and corresponding

peak in the phase data) at approximately 2.3-2.8 kHz for all data sets except the Decory et al.

1990 measurements. At frequencies higher than 10 kHz, both the magnitude and the phase data

decrease with increasing frequency. Overall, all available experimental data for GMEf suggest that

the chinchilla middle ear behaves as a broadly tuned bandpass �lter. There are, however, quanti-

tative di�erences as large as 27 dB in the amplitude between some of the data sets that tend to

increase the pressure by 20 to 40 dB across most of the frequency range. In particular, at most

frequencies, the GMEf magnitude reported in Ref. 12 is approximately 10-20 dB lower than the

magnitudes of the other GMEf data sets. Chhan et al. speculate that this di�erence might be due

to their placement of the scala vestibuli sensor12.

Both the TL and noTL middle-ear models match the experimental data well throughout the

majority of the frequency range. At frequencies between 100 Hz and 15 kHz, the GMEf magnitude

results from both models agree with the GMEf magnitudes measured by Refs. 9, 13, 14 and the

calculated GMEf data10,9 . At frequencies above 15 kHz, the noTL GMEf magnitude results

resemble the GMEf magnitudes measured by Refs. 14, 9, 11. However, while the TL model is

able to capture the frequency of the 22.6 kHz peak seen in magnitude of the Slama et al. 2010

GMEf measurements, quantitatively, it does not match the magnitude of the GMEf data well at

high frequencies. The noTL model is not able to match the GMEf phase data at frequencies above

10 kHz whereas the TL model phase predictions better �t the data.

Despite discrepancies between the data and the models at high frequencies, both models match
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the data well at frequencies lower than 15 kHz and capture several notable characteristics seen in the

GMEf data. In the magnitude results from both models, a maximum is seen which resembles the

maximum seen in the GMEf magnitude data at frequencies between 250-600 Hz: the TL model's

maximum occurs at a higher frequency (approximately 900 Hz) and the noTL model predicts a

maximum at approximately 400 Hz. Both models' magnitude results reproduce the notch in the

data seen at frequencies between 2.3 and 2.6 kHz. In the model, the notch is due to resonance

between the compliance of the air in the MEC and the bulla hole since this notch disappears with

the impedance of the MEC is set to zero. Magnitude results from both models capture the notch

at 10 kHz and peak at 12 kHz seen in the magnitude of the Slama et al. data9. Additionally, the

phase results from both models include a peak at 2.6 kHz similar to the peak seen in the GMEf

phase data at frequencies between 2.3 and 2.8 kHz.
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TABLE 3.2. NoTL model parameter values at each step in the �tting procedure. In the steps
column, initial parameters are labeled as step �0� and �All� signi�es that a parameter value remains
the same throughout the �tting procedure. All parameter values are in MKS mechanical units (kg
for mass parameters, N/m for sti�ness parameters, and N − s/m for damping parameters) unless
noted with an �a� in the superscript in which case the parameter values are in MKS acoustical units
(kg/m4 for the mass parameter, N/m5 for the sti�ness parameter, and N − s/m5 for the damping
parameter). Parameters are de�ned in Figure 3.4

Parameter Steps Parameter Value

Mm All 8.89× 10−6

Km

0-2 30

3-6 88

Rm

0-3 4.0× 10−4

4-6 0.02

Kisj

0 340

2-6 2.34× 104

Risj

0-3 0.03

4-6 0.02

Ms All 4.35× 10−7

Kal

0-1 5

2-6 10

Ral All 0.02

Mhole

0-4 246

5-6 268

Rhole

0-5 1.60× 106

6 6.12× 105

Kcav All 7.00× 1010

3.6 Discussion

3.6.1 Strengths and limitations of the noTL and TL models and �tting procedures

In this chapter, two models of the chinchilla middle-ear, the TL and the noTL model, each with a

separate set of �tting procedures and model parameter values, were presented. Both are provided

since there are advantages to each model under di�erent circumstances. The strengths and weak-

nesses of each model are discussed in this section in order to help a researcher who wishes to use

one of the two models choose the better of the two models for their situation.
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TABLE 3.3. TL model parameter values at each step in the �tting procedure. In the steps column,
initial parameters are labeled as step �0.� and �All� signi�es that a parameter value remains the
same throughout the �tting procedure. All parameter values are in MKS mechanical units (kg
for mass parameters, N/m for sti�ness parameters, and N − s/m for damping parameters) unless
noted with an �a� in the superscript in which case the parameter values are in MKS acoustical
units (s for the delay parameter, kg/m4 for the mass parameter, N/m5 for the sti�ness parameter,
and N − s/m5 for the damping and impedance parameters). Ted and Zed are the eardrum delay
and characteristic impedance, respectively. Ossicular chain and middle ear cavity parameters are
de�ned in Figure 3.4

.

Parameter Steps Parameter Value

Mm All 8.89× 10−7

Km All 88

Rm

0-3 0.02

4 0.04

Kisj All 23400

Risj All 0.02

Ms All 4.35× 10−7

Kal All 10

Ral All 0.02

Mhole

0-2 268

3-4 284

Rhole

0-2 6.12× 105

3-4 6.49× 105

Kcav All 7.0× 1010

Ted

0 3.57× 10−5

1 1.39× 10−5

2 1.95× 10−5

3-4 1.90× 10−5

Za
ed

0-1 6.09× 106

2-4 3.65× 107
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The simplest of these two models is the noTL model: in this model, the eardrum is modeled

as a rigid mass lumped with the incus and malleus masses. The two-port transmission matrix

parameter equations for the noTL model make it relatively straightforward to �t the parameters to

experimental A, B, C, and D data and to analyze each parameter's e�ect on the model's response.

As detailed in Ref. 61, at frequencies below 10 kHz, the noTL model �ts experimental data for the

forward and reverse transfer functions of the middle ear quite well in multiple conditions for the

termination loads.

At frequencies above 19 kHz, the phase of the forward pressure transfer function experimental

measurements9,14 decreases with frequency: using the simple noTL model, it was impossible to

match this trend in the data. The inability of the noTL model to match the GMEf experimental

phase data at high frequencies could be due to the use of a simplistic ossicular chain model: although

the malleus and incus are tightly fused in the chinchilla middle ear, it is possible that there is

relative motion between the two bones at high frequencies similar to the �exibility of the malleo-

incudo articulation observed in the guinea pig79 (whose malleus and incus are also tightly fused80).

Alternatively, the rotation of these bones could be more complex at high frequencies. These more

complicated vibrational responses of the ossicular chain were not considered in this study. In order

to improve the predictions for phase of GMEf at high frequencies, a second model which included

a lossless TL model of the eardrum (as in Refs. 8, 18) was developed; its parameters were adjusted

using available measurements for the forward pressure transfer function at high frequencies.

The TL model has several advantages over the noTL model: the TL model is able to capture

the trend of the forward pressure transfer function phase data at high frequencies, can represent

the propagation delay in the sound traveling through the eardrum, and allows for constructive or

destructive interference within the eardrum18. However, while the TL model better captures the

phase of GMEf experimental measurements at high frequencies, it does not capture the magnitude

very well. This is likely due to the assumption of impedance matching: a TL transmission line

model of the eardrum perfectly matched to the ossicular chain transmission line would result in a

�at, broadband GMEf magnitude response, unlike the experimental GMEf magnitude data which

decreases sharply at high frequencies. However, if the impedance mismatch at the eardrum is too

high, the TL model produces large peaks in the GMEf magnitude. The inability of the TL model

to simultaneously match both the amplitude and phase of the forward pressure transfer functions
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at high frequencies might be due the fact that the TL model simpli�es many aspects of eardrum

motion. The complex motion of eardrum vibration has been studied since the 1970s81 and has

been the focus of active research in recent years65,66: while many �nite element models have been

developed in an e�ort to simulate and study eardrum motion, such models were not used in this

study in the interest of simplicity. In order to match both the phase and magnitude of the GMEf

data for the chinchilla at frequencies higher than 16 kHz, a more realistic model of the eardrum

that captures its complex motion at high frequencies65,66 might be needed.

With the introduction of the TL model of the eardrum, the expressions for A, B, C, and

D in terms of model elements become quite complex making the model more di�cult than the

noTL model to analyze. Additionally, at low frequencies, the noTL model �ts the majority of the

experimental data better than the TL model. Because each model has its own set of strengths and

weaknesses as discussed above, both models were included in this chapter. If using the model at high

frequencies, particularly if using the model in a situation where the group delay through the middle

ear is important, it is recommended that the TL model is used. Otherwise, at low to mid-range

frequencies, the noTL model works well in representing the input and output relationships of the

chinchilla middle ear in normal hearing conditions.

The experimental data for A, B, C, and D 10 includes features (particularly at high frequencies)

that neither the noTL model nor the TL model are able to match. By examining Eqs. 3.7 and

adjusting parameters, the general shape of the model's A, B, C, and D response can be found and it

becomes apparent which features of the data are able to be represented in the model results. Certain

features of the data that the noTL and TL models are not able to represent, such as the maximum

in the D magnitude at 3 kHz or the phase discontinuity in the C data at 2.5 kHz, could be due to

aspects of middle-ear function that the models cannot capture. A middle-ear model that allows for

relative motion between the incus and malleus at high frequencies, more complex rotational motion

of the ossicles at high frequencies, or that captures modal motion of the eardrum might be able to

match these features.
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3.6.2 Importance of the existence of multiple experimental data sets for middle-ear

mechanics

In this chapter, a simple procedure for �tting the chinchilla middle-ear model to experimental data

for A, B, C, and D matrix parameters was outlined. This procedure can be extended to �t 2-DOF

lumped parameter middle-ear models for other mammals; however, in order to use this procedure,

a full set of experimental data for the inputs and outputs of the middle ear is needed. While A,

B, C, and D matrix parameters were found by measuring Ped, Ued, and Us in various cochlear

conditions in Ref. 10, the matrix parameters can also be determined by measuring GMEf , GMEr,

ZMEr, and the termination impedances in both directions72,16. Finding the two-port transmission

matrix parameters by draining the cochlea and �xing the stapes fully characterizes the middle ear's

input and output relationship with relatively few measurements�if this experimental data existed

for other animals, middle-ear models for these animals could be developed relatively quickly. For

example, there is not as much experimental data for the gerbil or mouse middle ears, making the

middle-ear model development for these animals di�cult. Additionally, measurements of A, B,

C, and D matrix parameters using the methods described in Ref. 10 could be used to calculate

GMEf , GMEr, ZMEr, and Zme; these calculated results could compared against measurements of

GMEf , GMEr, ZMEr, and Zme. By comparing these two sets of data (each found through di�erent

experimental methods), both experimental results could be veri�ed; problems and inconsistencies

with the measurements, if present in the data, could potentially be identi�ed.

3.6.3 Comparison of chinchilla, guinea pig, cat, and human middle-ear transformed

two-port transmission matrices

In the previous section, expressions were given which analytically relate the chinchilla middle-ear

circuit model parameters to two-port transmission matrix parameters, A, B, C, and D. Since

experimental data for A, B, C, and D exist for multiple species, this section aims to employ the

foregoing analytical expressions for A, B, C, and D to extract information about the compliance of

the ossicular joints of these species.

The transformed two-port transmission matrix elements are de�ned in Eq. 3.6: this de�ni-

tion assumes that the e�ective area of the eardrum and the lever ratio remain real and constant
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throughout the frequency range. This is a simpli�cation of middle-ear function, particularly at high

frequencies. Thus, the most insightful components of any AT , BT , CT , and DT comparison will be

from low frequency examination.

On Figures 3.9A-H, AT , BT , CT , and DT results for the chinchilla TL model are compared with

Meaud and Lemons' model1 of the guinea pig middle ear coupled with a TL model of the eardrum

(detailed in Appendix B), O'Connor and Puria's model of the human middle ear18, and Puria and

Allen's model of the cat middle ear8. Chinchilla10, human16, and cat15 experimental AT , BT , CT ,

and DT data are shown in on Figures 3.9I-P. The Aed, Afp, and Nlr values used for each species

are given in Table 3.4. Comparing the model results for AT , BT , CT , and DT on Figures 3.9A-H

with experimental data on Figures 3.9I-P, it is seen that the models are generally consistent with

experimental data. For these four species, AT , BT , CT , and DT are qualitatively similar: for all

species compared, the AT magnitudes remain relatively �at before decreasing to a minimum between

1 and 5 kHz and subsequently increasing sharply with frequency, the BT magnitudes decrease to

a minimum between 400 Hz and 1 kHz, the CT magnitudes have relatively constant slope (on the

logarithmic plot) at low frequencies, and the DT magnitudes decrease to a minimum between 2 and

11 kHz before increasing sharply with frequency.

While AT , BT , CT , and DT are qualitatively similar between species, there are quantitative

di�erences in the numerical results; the amplitudes of AT , BT , CT and DT tend to be higher in

humans than in other species while the amplitude of CT tends to be lower in the guinea pig than in

other species. Di�erences in the amplitude values can be interpreted physically by examining Eqs.

3.7 where expressions relating AT , BT , CT and DT to the noTL model's lumped parameter elements

are given. While these expressions were not developed for the TL model, at low frequencies, the

response of the model is sti�ness-dominated and the e�ects of the eardrum are negligible: thus, the

following discussion will be limited to frequencies below 1 kHz where these expressions are su�cient

to characterize the TL model.

Since the guinea pig and chinchilla middle-ear models used in this discussion share the same

topology, Eqs. 3.7 can be directly applied to the chinchilla and guinea pig TL models at low frequen-

cies. In these two species, the malleus and incus are tightly fused68,80,64 and the incus and malleus

are modeled as a single lumped mass. The chinchilla and guinea pig middle-ear models compared in

this section will be referred to as two-degrees of freedom (2-DOF) models where the degrees of free-
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dom correspond to the velocities of the two lumped masses (the combined incus/malleus mass and

the stapes mass). The cat8 and human18 middle-ear models used in this comparison incorporate

the �exibility of the incudomalleolar joint82,83 in these species: these two models include both the

incudostapedial joint sti�ness, Kisj , and the incudomalleolar joint sti�ness, Kimj . The human and

the cat models compared here will be referred to as 3-DOF models where the degrees of freedom

correspond to the velocities of the three lumped masses (the malleus, incus, and stapes masses).

The full AT , BT , CT , and DT expressions for the 3-DOF cat8 and human18 models are signif-

icantly more complex than the expressions given in Eqs. 3.7: if the numerical values of KisjT and

KimjT are similar in a 3-DOF system, the 2-DOF equations in Eqs. 3.7 will provide little insight

into the mechanics of the system. However, for both the cat and the human models in this compar-

ison, the KimjT values are an order of magnitude smaller than the KisjT values which suggests that

it is possible to approximate each as a 2-DOF system where the incus and stapes are assumed to

be fused. For these approximate 2-DOF systems, the joint sti�ness that has the biggest in�uence

on the �exibility of the ossicular chain is the incudomalleolar joint sti�ness. Hence, in the rest of

this section, a transformed joint sti�ness, KjT , is discussed. KjT refers to KimjT in the case of the

human and cat models; KjT refers to KisjT in the case of the chinchilla and guinea pig models.

Using this notation, Eqs. 3.7 can be generalized to the approximate 2-DOF cat and human models

by replacing KisjT by KjT .

Examining Eq. 3.7, it can be seen that for the 2-DOF and approximate 2-DOF models discussed

above, at frequencies below 1 kHz, the magnitude of CT is a function of KjT . Examining the model

CT magnitudes in Figure 3.9C, the value of KjT is expected to be the largest for the guinea pig

followed by values for the cat, chinchilla, and the human, respectively. However, comparing KjT

values for the these species shows that the cat model does not match this prediction. This could

indicate that the cat model cannot be approximated as a 2-DOF system even at low frequencies, or

possibly, that the eardrum plays a strong role at these frequencies: in either of these scenarios, the

simple equation for CT (for a 2-DOF system neglecting the e�ects of the eardrum) does not hold.

In the 2-DOF models of the chinchilla and guinea pig and in the approximate 2-DOF models

of the human and cat, Eq. 3.7 shows that at frequencies below 1 kHz (where e�ects of the MEC

model are negligible), the magnitudes of AT and DT are functions of KmT /KjT and KalT /KjT ,

respectively. Since, at these frequencies, the human model AT (in Figure 3.9A) and DT (in Figure
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3.9D) magnitudes are much larger than the cat, guinea pig, and chinchilla model magnitudes, it is

expected that KmT /KjT and KalT /KjT are closer to one in the humans than in the other species.

The model parameters match these predictions: (1) KmT /KjT is equal to 0.59 in the human while

it is equal to 0.02, 0.05, and 0.05, for cat, guinea pig, and chinchilla, respectively, and (2) the

KalT /KjT ratio is equal to 0.68 in the human while it is much smaller in the guinea cat, guinea pig

and chinchilla (0.03, 0.01, and 0.0004, respectively).

The large low frequency AT andDT magnitudes seen for the human are consistent with Nakajima

et al.'s suggestion that there is considerable �exibility within the human ossicular chain between

the stapes and the umbo84. Although Nakajima et al. estimate that the incudostapedial joint is the

more compliant of the two ossicular joints84 whereas the incudomalleolar joint is the more compliant

of the two joints in O'Connor and Puria's model18, the ratio of the annular ligament sti�ness to the

smallest joint sti�ness value estimated by Nakajima et al.84, Kal/Kisj = 0.49 (found using relative

values of the ossicular compliances given in Eq. 4 of Ref. 84), is similar to the ratio of the annular

ligament sti�ness to the smallest joint sti�ness value found in the human model18, Kal/Kimj = 0.68.

Discrepancies in the determination in the more compliant ossicular joint between these two studies

may be due to di�erences in topology between the model used to estimate ossicular sti�nesses in

Ref. 84 and the human middle-ear model in Ref. 18.
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FIGURE 3.9. (Color online) AT , BT , CT , and DT results from middle-ear circuit models and
experimental data. In subplots A though H, circuit model AT , BT , CT , and DT results for the
human, cat, guinea pig, and chinchilla are compared. In subplots I through P, experimental AT ,
BT , CT , and DT data for human, cat, and chinchilla middle ears are compared. Here, * indicates
cat experimental data (for cat 58) and model results15, ** indicates human experimental data and
model results16, and *** indicates chinchilla experimental data10. For both the human model results
and human experimental data, the phase of A provided in16 was multiplied by -1 as the published
values appeared to be erroneous.
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TABLE 3.4. Area and lever ratio values used to �nd AT , BT , CT , and DT for the human, cat,
guinea pig, and chinchilla

Animal Aed(m
2) Afp(m

2) Nlr (unitless) Ref.

Human 6.0× 10−5 3.1× 10−6 1.3 Ref. 18
Cat 4.1× 10−5 1.3× 10−6 2.0 Ref. 8

Guinea Pig 2.5× 10−5 1.0× 10−6 1.8 TL model
Chinchilla 8.0× 10−5 2.0× 10−6 3.7 TL model

3.7 Summary of Contributions & Conclusions

The circuit model described in this chapter is the �rst published circuit model of the chinchilla

middle ear (which was �rst published in Ref. 61). The chinchilla middle-ear models discussed

in this chapter were developed using a manual �tting procedure based on analytical expressions

which directly relate model parameters to the inputs and outputs of the middle ear. With these

relations, two-port transmission matrix data was used to provide insight into the sti�ness, damping,

and inertial properties of individual elements of the middle ear. Speci�cally, in this study, these

expressions were used to compare the compliance of the middle-ears of several mammalian species

using published two-port transmission matrix experimental data. It was found that the ratio of the

(1) malleus sti�ness to joint sti�ness and (2) the annular ligament sti�ness to joint sti�ness is much

higher in the human than in the chinchilla, guinea pig, and cat.

The small computational cost of the models described in this chapter would allow either model

to be easily coupled with a model of the inner ear. Reasonably accurate representation of middle ear

mechanics at little computational cost is valuable to researchers in computational hearing mechanics

as a middle-ear model is necessary in order to compare their model results with experimental data

collected in the ear canal. If the computational model of the ear is of a species other than the

chinchilla is desired, the manual �tting procedure developed in this chapter could be used to quickly

develop lumped parameter models for other species with similarly structured middle ears.
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Chapter 4

Investigation of the slow-wave dynamics of the bullfrog eardrum

4.1 Chapter Overview

Previous studies have hypothesized that a slow, inward traveling wave is the source of a signi�cant

fraction of an extremely long group delay observed through the bullfrog middle ear23. However,

the mechanical basis behind this slow, inward traveling wave is not understood. In this chapter, I

use a simple model of the eardrum in order to elucidate the underlying mechanics of the long group

delay observed in the eardrums of bullfrogs. I aim to (1) determine if this traveling wave is a likely

explanation for the long group delay and (2) clarify which features of the bullfrog eardrum make

possible this slow, inward traveling wave.

4.2 Introduction

In the previous chapter, a model of the eardrum which includes signi�cant delay was found to be

necessary to capture the phase of the middle-ear pressure gain at high frequencies (between 10-20

kHz). In other words, the eardrum contributes signi�cantly to the group delay through the middle

ear in the models presented in this thesis. Indeed, previous studies of the gerbil middle ear have

reported that it takes≈ 25µs for sound to travel from the ear canal to the stapes footplate (within the

scala vestibuli)85. The majority of this delay was measured between the ear canal and the umbo

at frequencies below 17 kHz (and along the ossicles at higher frequencies)86. Signi�cant group

delay through the middle ear is not unique to the mammalian middle ear. Group delays of ≈ 0.7

ms have been observed through the bullfrog middle ear22, approximately an order of magnitude

larger than the delays measured in the gerbil middle ear. While the morphology of the amphibian

middle ear is quite di�erent than the mammalian middle ear, the area of the bullfrog eardrum23,17

(≈ 30 − 200mm2) is quite similar to that of the human eardrum87 (≈ 70mm2). Furthermore, the
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hearing range of bullfrogs (≈ 0.5− 2 kHz) falls within the hearing range of humans (0.2− 20 kHz).

Bergevin et al. investigated the basis for this lag by examining the velocity pro�le across the

surface of the bullfrog eardrum23; signi�cant group delay through the eardrum was found. This

long delay was attributed to slow, inward-traveling waves observed on these eardrums. These slow,

inward-traveling waves were observed both on eardrums in normal condition and those disarticulated

from the rest of the middle ear. The fact that the long group delay was observed regardless of the

condition of the rest of the middle ear strongly suggests that the eardrum alone is responsible for a

substantial fraction of the relatively long group delays previously reported in the bullfrog ear.

However, since the biomechanical basis for the relatively long delays of the bullfrog eardrum is

not understood, the source of the long group delay through the eardrum remains unclear. In this

study, the underlying mechanics behind the long group delay of the bullfrog eardrum are explored

by modeling the eardrum as a �at, viscoelastic membrane with spatially dependent thickness. Clar-

ifying the source of the long group delay through the bullfrog eardrum might help to elucidate which

of the properties of the bullfrog eardrum cause its motion to di�er from that of the mammalian

eardrum.

A. B. C.
rθ

FIGURE 4.1. American Bullfrog, Rana catesbeiana. A. Female bullfrog (note that the area of the
eardrum is small relative to the frog's eye): modi�ed from photograph by Derek Ramsey. B. Male
bullfrog (note here that the eadrum is larger than eye and center of eardrum is quite pronounced):
modi�ed from photograph by Carl D. Howe. Both images are shared under a creative commons
license CC BY-SA 2.5. C. Female bullfrog eardrum along with scanning grid used in experimental
measurements by our collaborators: each point on the grid is marked with a red �x.� The points
provided in the experimental data set used to �t the model are marked with colored circles. The
red circle is at the center of the membrane (r = 0), the green circle is at a point between the center
and the edge of the membrane (r = 1.2 mm), and the cyan circle is a point located towards the edge
of the membrane (r = 2.3 mm). The microphone is visible, placed 1-2 mm away from eardrum.
Experimental velocity measurements (for one representative data set) and model results (�t to the
aforementioned data set) are plotted for these three points in Figure 4.5
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4.3 Methods

4.3.1 Experimental Methods of Collaborators

Measurements were conducted by C. Bergevin, S.W.F. Meenderink, M. van der Heijden, and P.M.

Narins. Details of the experimental methodology are outlined in Ref. 23. Brie�y, three female and

one male American bullfrogs (Rana catesbeiana) were used to record vibrations on the eardrum.

Acoustic stimulation was delivered via a loudspeaker placed ≈18 cm away from the eardrum (stim-

ulated by �at-voltage frequency sweeps with 700 ms duration where the frequency changed linearly

from 0.2 to 8kHz). The resulting vibration was measured using a scanning laser Doppler vibrometer

at points marked with red squares in Figure 4.1C. The analysis of the vibration assumed linearity.

This process was repeated after disarticultion of the eardrum from the rest of the middle ear. The

response for all female frogs was fairly similar regardless of the connection to the middle ear and

signi�cant phase accumulation was observed all eardrums, male or female, with either a disarticu-

lated or intact middle ear. Experimental data for one representative, female disarticulated eardrum

was used to �t the model (given on Figure 4.5). Additionally, experimental data for one male

disarticulated eardrum is provided in order to help interpret model results (given on Figure 4.10).

4.3.2 Modeling the bullfrog eardrum

4.3.2.1 Bullfrog eardrum overview

The structure of the bullfrog eardrum is signi�cantly simpler than that of a mammalian eardrum88.

While the mammalian eardrum, seen in Figure 3.1, is conical and somewhat oval shaped, the

eardrum of the American bullfrog is relatively �at and nearly perfectly round, as seen in Figure 4.1.

The circular shape and relative thinness of the bullfrog eardrum (compared to the radius) might

suggest that the eardrum's motion could be expressed using an analytical solution of a circular

membrane under uniform, harmonic loading. However, in an undamped circular membrane, the

presence of both forward and reverse waves will cause standing waves where (1) nodes will be

present and (2) areas of the eardrum will simply be in or out of phase. In other words, an inward

traveling wave will not be visible.

Although the response over the entire area of the bullfrog eardrum is not shown here (and was
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not provided for the disarticulated eardrums), at frequencies below 2.5kHz, no nodes (areas with

very little displacement) are observed in the experimental displacement measurements (given in

Ref. 23). At frequencies between 800Hz and 3 kHz, signi�cant phase accumulation (>0.25 cycles) is

observed progressing from the outer rim of eardrum towards the center (i.e. the slope of the phase

gets progressively steeper at points towards the center), seen in Figure 4.5B. This is indicative of a

delay between the outer edge of the eardrum and the center, suggestive of a slow inward-traveling

wave. A perfectly elastic circular membrane cannot capture these phenomena. However, with few

small additions to this simple model, it could be possible to capture certain qualitative features

observed in the data: the signi�cant phase accumulation between the acoustic source and the center

point of the membrane's displacement and the phase accumulation observed between the outer edge

of the membrane and the center point.

Two additional features to a model of the circular membrane are proposed: (1) A non-uniform

areal density due to non-uniform thickness of the eardrum and (2) signi�cant damping due to the

mucosal nature of the frog eardrum. The bullfrog eardrum is non-uniform in its thickness: the

central patch (the central portion of the membrane) is thicker than the laminar annulus (the outer

portion of the membrane)89. This non-uniform thickness is particularly pronounced in the eardrums

of male bullfrogs, and can be seen on the male bullfrog eardrum in Figure 4.1B. Additionally, the

bullfrog is amphibious: it spends its life both in water and on land. As such, bullfrogs have a

super�cial mucosal nature23 which could cause these eardrums to act signi�cantly more viscoelastic

(and more damped, in particular) than the mammalian eardrum.

4.3.2.2 Model Assumptions & Boundary Value Problem

The membrane used to model the bullfrog eardrum is assumed to be axisymmetric, under uniform,

harmonic loading, pinned at the outer rim, and isotropic. These assumptions were made in an

attempt to �nd a simple model which is able to reproduce certain qualitative features seen in the

data. In reality, the measured response is not perfectly axisymmetric. Additionally, the pressure at

the eardrum is not uniform due to acuostic �uid-structure interaction that is not considered. The

material properties of the bullfrog eardrum are unknown; however, it is likely that the eardrums

of these frogs would be more accurately described as orthotropic as connective tissue �bers radiate

outwards from the center90. Finally, the bullfrog eardrum is terminated around its outer perimeter
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by an annular cartilage90 which would possess some sti�ness and damping properties itself: thus,

the assumption that the outer rim is held perfectly stationary is an oversimplication. With these

assumptions, however, a simple model can be constructed which can capture key qualitative features

in the experimental data with relatively few free parameters.

The boundary value problem associated with an axisymmetric, circular membrane with spatially

dependent properties under uniform, harmonic loading is derived by extending the known equation

of a string with nonuniform properties into two dimensions. Morse91 gives the most general equation

of motion for a �exible string under harmonic forcing involving linear density, ρs(x), and tension of

the string, Ts(x), both of which vary with x as,

∂

∂x

(
Ts(x)

∂η(x)

∂x

)
+ ω2ρs(x)η(x) = −fs(x) (4.1)

where η(x) is the transverse displacement of the string and fs(x) is the transverse applied force of

density per unit length. Samejima and Fukuda92 extended this equation into two dimensions by

adding the derivative of the tension term with respect to y in Eq. 4.1 and extending all variables to

functions of both x and y. Samejima and Fukuda converted this equation to cylindrical coordinates

and �nd:

Tm(r, θ)

(
∂2ζ(r, θ)

∂r2
r +

∂ζ(r, θ)

∂r
+

1

r

∂2ζ(r, θ)

∂θ2

)
+

∂Tm(r, θ)

∂r

∂ζ(r, θ)

∂r
r +

1

r

∂Tm(r, θ)

∂θ

∂ζ(r, θ)

∂θ

+ ω2rρm(r, θ)ζ(r, θ) = −rP (r, θ)

(4.2)

where ρm(r, θ) is the spatially varying areal density, Tm(r, θ) [N/m] is the spatially varying tension of

the membrane, ζ(r, θ) is the transverse displacement of the membrane, and P (r, θ) is the transversely

applied pressure.

If axisymmetry is assumed, then ∂ζ
∂θ = ∂2ζ

∂θ2
= 0. Additionally, due to axisymmetry and the

absence of a concentrated load at the center of the membrane, the slope at the center should be equal

to zero, such that the boundary condition at r = 0 becomes ∂ζ
∂r |r=0 = 0. The boundary condition

at the outer rim is enforced by setting the displacement at r = R equal to zero, ζ(r)|r=R = 0. If
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uniform pressure is assumed, then P (r, θ) = P . Finally, Tm(r) is replaced by a complex, uniform

tension T ∗
m, where the imaginary part of the complex tension represents the damping e�ects of the

membrane. With these assumptions, the following boundary value problem is obtained:

T ∗
m

(
∂2ζ(r)

∂r2
r +

∂ζ(r)

∂r

)
+ ω2rρm(r)ζ(r) = −Pr

ζ(r)|r=R = 0

∂ζ(r)

∂r
|r=0 = 0

(4.3)

A �nite di�erence method is used in order to solve the boundary value problem given in Eq.

4.3: this discretization is outlined in Appendix C.

4.3.2.3 Models of spatially-dependent areal density

The areal mass density, ρm(r), is a parameter in the ordinary di�erential equation given in Eq. 4.3.

Since the volumetric mass density of the eardrum, ρ, is assumed to be constant (and equal to that of

water), ρm(r) becomes a measure of the thickness of the eardrum at point r, ρm(r) = τ(r)ρ (where

τ(r) is the eardrum thickness).

As previously mentioned, the thickness of the bullfrog eardrum is spatially dependent. The

bullfrog eardrum tends to be thicker at its center and thinner towards the edge. To test whether

the spatial-dependence of the eardrum thickness is necessary to capture the response seen in the

experimental data, two models are proposed: (1) a model where the thickness is constant and (2) a

model where the thickness varies as a piecewise function, shown on Figure 4.2. In Model 2, where

the thickness varies as a piecewise function, the thicker portion of the eardrum extends from r = 0

to r = R/2 (where R is the radius of the eardrum) and the thinner portion of the eardrum consists

of the region from r = R/2 to r = R. In the actual eardrum, the thickness is not distributed

exactly as a piecewise function and the thickness distribution varies between frogs (although the

central region is consistently and clearly thicker than the edge). The choice of r = R/2 is an

estimation suggested by one of our collaborators, Peter Narins (based on his personal observations

and extensive background in hearing mechanics in frogs).
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FIGURE 4.2. A. Schematic of spatially-varying, piecewise model of eardrum thickness (Model 2).
B. Model of spatially-varying eardrum thickness plotted vs. r. In both panels, r is the radial
dimension, as on Figure 4.1C, R is the radius of the eardrum, τ0 is the thickness of the center
portion of the membrane, and τR is the thickness of the outer portion of the membrane (τR = γτ0).

4.3.2.4 Models of eardrum damping

The damping of the eardrum is included by introducing complex tension, T ∗
m(ω) = T ′

m(ω)+ iT ′′
m(ω),

as in Ref. 93. The frequency-dependent nature of the complex tension is unknown. Three models

for the relationship between the complex tension and frequency were proposed, as seen on Figure

4.3: (A) structural damping, (B) Kelvin�Voigt viscoelasticity, and (C) Maxwell viscoelasticity. In

all three models, two free parameters are introduced: T0 and tan δmin (the smallest loss tangent

within the examined frequency range). Note that for structural damping, the ratio of the real

and imaginary portions of the complex sti�ness, referred to here as the loss tangent (tan δ), is

equivalent to the structural damping factor as de�ned in Ref. 94. In structural damping, both the

real and imaginary portions of the material are constant with frequency and thus T0 represents the

constant real portion of the sti�ness at all frequencies and tan δmin = tan δ at all frequencies. In a

Kelvin�Voigt material, the complex tension is written as,

T ∗
m(ω) = T0 + iωη (4.4)

And thus, the real portion of the tension is simply T0 which is constant with frequency. The loss

tangent can be written as,
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tan δ(ω) = ωη/T0 (4.5)

Thus, the loss tangent increases linearly with frequency in Kelvin-Voigt materials. In a Maxwell

material, the complex tension is written as,

T ∗
m(ω) =

T0iωη

iωη + T0
(4.6)

With the above equation, the loss tangent can be expressed as,

tan δ(ω) = T0/ηω (4.7)

Thus, in Maxwell materials, the loss tangent decreases with frequency.

4.3.3 Testing the necessity of spatially-dependent thickness and frequency-dependent

damping

In order to determine (1) if spatially-dependent thickness is necessary to �t the experimental data

and (2) how to describe the frequency-dependence of the damping, each of the two thickness models

and three damping models were used to �t the experimental data. The combination of models is

described in Figure 4.3.
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FIGURE 4.3. Combinations of thickness models (1-2) and damping models (A-C) tested. Values
for the parameters (γ = τR/τ0 (for Model 2), T0, and tan δmin) for each model combination were
found using an automated �tting algorithm. It was found that a model with spatially dependent
thickness and Maxwell viscoelasticity best �t the experimental data, Model 2C.

In all models, the total mass of the eardrum is �xed to an experimentally measured value of a

female bullfrog eardrum from Werner et al.17 (of 18.7 mg). All models contain two free parameters

associated with the complex tension, T0 and tan δmin. For models with spatially dependent thickness

(Model 2 on Figure 4.3), an additional free parameter, γ = τR/τ0 (the ratio between the center and

edge membrane thickness) is introduced.

An automated �tting algorithm was used to �nd the values of these parameters for each model.

The allowed parameter values, the upper and lower parameter values, are given in Table C.1 in

Appendix C. The �tting algorithm aims to �nd the values of the free parameters which best capture

the phase of the experimental data at the three points indicated on Figure 4.1C (r = 0, r = 1.2

mm, and r = 2.3 mm) across the frequency range from 900 Hz to 3 kHz (the frequency range of the

available experimental data excluding lower frequencies where the data tends to be less robust). Note

that the objective function does not take the magnitude of the model response into consideration:
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this due to the signi�cant spatial (particularly in the radial direction) and frequency variation of the

magnitude. If any model assumption causes the resonance frequency or mode shapes to be slightly

di�erent than in the experimental data, the error is large, even if the model appears to qualitatively

�t the data. Thus, the magnitude of the response is used only for model validation after �tting the

parameters.

The algorithm minimizes the value of ϵ, de�ned as,

ϵ =
1

NrNωϕref

Nω∑
j=1

Nr∑
i=1

(ϕmodel(ri, ωj)− ϕdata(ri, ωj))
2 (4.8)

where Nr is the number of spatial points examined. 3 spatial points are examined: r = 0, r = 1.2

mm, and r = 2.3 mm. Nω is the number of discrete frequency points examined: 100 discrete fre-

quencies are examined within the frequency range of 900 Hz to 3 kHz. ϕmodel(ri, ωj) and ϕdata(ri, ωj)

are the phase of the model velocity and the experimentally measured velocity, respectively. ϕref is

de�ned as,

ϕref = max
ω,r

(
ϕ2
data(r, ω)

)
(4.9)

where ω and r extend over the frequency and spatial points examined in Eq. 4.8.

Di�erent functions were tested: since this particular objective function produced a smaller error

when the model appeared to capture the data fairly well and a larger error when the model clearly

did not look like the data, this function was deemed adequate for the study.

Note that the velocities of the model and the data are given relative to the value of the center

point at 500 Hz. Thus, the magnitude of the center point at 500Hz is equal to 0dB and the phase of

this point at 500Hz is equal to 0 cycles. This normalization will be employed in all data and model

results shown in this chapter and in Appendix C.
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FIGURE 4.4. Error values, ϵ (de�ned in Eq. 4.8) found with each model combination detailed in
Figure 4.3. Two di�erent models of thickness and three di�erent models of damping were tested. In
Model 1, the thickness is constant throughout the membrane. In Model 2, the thickness varies as
a Piecewise function, shown in Figure 4.2. In damping model A, the real and imaginary portions
of the complex tension are constant with frequency (structural damipng). In damping model B,
a Kelvin-Voigt viscoelastic material is implemented. In damping model C, a Maxwell viscoelastic
material is used. In both models of thickness, using a Maxwell material produces the lowest value
of ϵ. For each damping model, spatially-varying thickness produces the best �t to the data.

The error value found for the best �t of each model (detailed in Figure 4.3) is given in Figure 4.4.

For both constant thickness (Model 1) and spatially varying thickness (Model 2), the lowest error

is obtained using a Maxwell viscoelastic model. Additionally, for each model of damping, using

spatially varying thickness (Model 2) produced the lowest error. Thus, a model with spatially-

dependent thickness and Maxwell viscoelasticity will be discussed throughout the remainder of the

chapter. The resulting best �t for each model combination is given in Figure C.1 in Appendix C.

As discussed in Appendix C, Model 2C (a model with spatially-dependent thickness and Maxwell

viscoelasticity) appears to visibly �t the data the best of any other model combination.

4.4 Results

4.4.1 Bullfrog model �t to experimental data

The model with the lowest error, Model 2C (a model with spatially varying density and Maxwell

viscoelasticity) is compared to experimental data from one representative female frog in Figure 4.5.

Note that for this frog, the eardrum had been disarticulated from the rest of the middle ear: this

data, rather than a data set with an intact middle ear, was used in order to reduce the number

of free parameters in the system (no middle-ear model is necessary to capture the response of this

system).
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As seen in Figure 4.5, the model captures the phase of the response at r = 0, r = 1.2 mm,

and r = 2.3 mm very well, particularly at frequencies above 1.2 kHz. Notably, the model is able

to capture the signi�cant phase accumulation between points closer to the edge and points closer

to the center seen in the experimental data. Additionally, the model captures the signi�cant group

delay through the eardrum very well (i.e. the slope of the phase at r = 0 is very similar to that seen

in the experimental data). While the objective function does not consider the model's magnitude

response, the model's magnitude response captures certain qualitative features seen in the data.

For example, the model response at r = 0 contains small peaks and troughs, as in the experimental

data, and is relatively broadband.

The model does not capture the phase at r = 2.3 mm at frequencies below 1.2 kHz very well.

In addition, the model struggles to quantitatively �t the magnitude of the experimental data at all

frequencies, particularly at r = 1.2 mm. These limitations were found regardless of the objective

function implemented, even when the magnitude response was considered in the error de�nition.

Thus, the model itself appears limited in its ability to fully represent the motion of the actual bullfrog

eardrum. Were certain assumptions of the model loosened or additional parameters introduced (e.g.

if axisymmetry was not assumed, if spatially-dependent damping were introduced, or if the geometry

of the eardrum were imported from a scan of the actual system), it is possible that the model would

be able to capture the experimental data with much better accuracy. However, the goal of the study

was not necessarily to develop a model which can best reproduce the motion of a bullfrog eardrum.

Rather, this chapter seeks a simple explanation of the long group delay though the bullfrog eardrum.

With the model described in this section, which captures the experimental data with reasonable

accuracy, all free parameters can be tested to examine which are responsible for the long group

delay, discussed in the following subsections.
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FIGURE 4.5. Comparison of the predicted model velocity at r = 0.1 mm, r = 1.2 mm, and r = 2.3
mm (plotted in solid lines) with the experimentally measured model velocity at r = 0, r = 1.2 mm,
and r = 2.3 mm (plotted in dashed lines). Note that all points are normalized to the response at
500 Hz. A. Velocity magnitude in dB. B. Phase of the velocity. The experimental data is from one
representative eardrum of a female frog. This eardrum had been disarticulated from the rest of the
middle ear.

4.4.2 Parametric studies: e�ects of varying thickness ratio, damping, and mass

4.4.2.1 Spatially-varying thickness is required to capture eardrum response near edge

Here, the ratio of the thickness at the center of the membrane to the thickness at the edge of the

membrane, γ = τR/τ0 is varied and the resulting model responses are compared in order to examine

how spatially-varying thickness a�ects the model response. The model results after varying γ while

while holding the model radius, the total mass of the eardrum, and the complex tension constant

(set equal to the best �t value discussed in the previous sections) are compared on Figure 4.6.

Examining Figure 4.6E-G, it can be seen that the largest e�ect of adjusting γ appears to be

the phase of the membrane near its edge. By increasing γ from an extremely inhomogeneous case

(where the thickness at the edge is only 4% of that at the edge) to the case where the thickness

is uniform (γ = 1), it can be seen that the average slope of the phase at r = 2.3 mm goes from

being nearly zero to a non-zero, negative value. This can be seen most clearly by examining the
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value of the phase at r = 2.3 mm at 3 kHz for all three cases (indicated with a magenta asterisk in

Figures 4.6E-G): this value drops from ≈ 0.4 cycles when γ = 0.04 (seen on Figure 4.6E) to nearly

-0.5 cycles when γ = 1 (seen on Figure 4.6G). At the �t value (of γ = 0.43), the phase of the edge

point matches the data quite well throughout the frequency range. Interestingly, the phase at the

center point, r = 0, does not change signi�cantly regardless of the value chosen for γ. This suggests

that despite the necessity of spatially-varying thickness to capture the eardrum's motion at its edge,

spatially-varying thickness is not necessary to capture the long group delay through the eardrum.

Altering the value of γ also appears to change the magnitude of the model's response. By setting

γ = 0.04, the magnitude at all three points (r = 0, r = 1.2 mm, and r = 2.3 mm), seen in Figure

4.6B, is slightly lower than that of the �t value, seen in 4.6C. By introducing uniform thickness,

γ = 1, as seen in 4.6D, the magnitude of the center point becomes more bandpass-like and looks

quite a bit like the data. However, the magnitude of the model at r = 2.3 mm starts to look

signi�cantly di�erent than the data; speci�cally, only one local minimum is seen at 1.8 kHz.

Thus, in order best capture the response near the edge of the membrane, the thickness near the

edge of the membrane must be smaller than that at the center, as in the actual eardrum of the

bullfrog89.
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FIGURE 4.6. Model results after varying γ = τR/τ0 while holding R, the total mass of the eardrum,
and T ∗

m constant (from �t value). A. The values of the thickness vs. radial position after varying
γ = τR/τ0. On the right portion of the �gure, the magnitude (B-D) and phase (E-G) of the model
response at r = 0, r = 1.2 mm, and r = 2.3 mm after varying γ is compared to the experimentally
measured motion at the same points. The magenta asterisk plotted at 3kHz on E-G is to help
visualize the a�ect of γ on the model's phase response near the edge.

4.4.2.2 Signi�cant damping is necessary to capture traveling wave and response magnitude

In this subsection, the minimum loss tangent seen over the frequency range examined in this study,

tan δmin, is varied while keeping T0 and γ = τR/τ0 constant in order to examine the e�ects of high

or low damping on the model response. Note that by changing tan δmin, the values of both tan δ(ω)

and ℜ(T ∗
m) are changed as well. For Maxwell materials, tan δmin = tan δ(ωmax) = T0/(ηωmax) where

ωmax is simply the largest frequency examined. Thus, tan δ can be written in terms of tan δmin as,

tan δ(ω) =
tan δminωmax

ω
(4.10)

The portion of the tension is written in terms of tan δmin as,

ℜ(T ∗
m) =

T0

1 + tan δ2minω
2
max/ω

2
(4.11)

In Figure 4.7A-B, tan δmin is varied and the resulting tan δ(ω) and ℜ(T ∗
m) are given. The model
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results after varying tan δmin while while holding the values of R, T0, γ = τR/τ0, and the total

mass of the eardrum constant (set equal to the best �t value discussed in the previous sections)

are compared on Figure 4.7C-H. Examining panels C-E, it is clear that the largest e�ect of varying

tan δmin is the large change in damping: while the frequencies of the peaks and troughs remain

roughly the same (where they can be seen, Panels C-D), the sharpness of the peaks and troughs

decreases dramatically as tan δmin is increased. This can be seen clearly by examining the e�ect of

tan δmin on the second peak seen in the magnitude of the response at r = 0, marked with a blue

asterisk on Panels C-D. Increasing tan δmin from 0.03 to 0.17, the location of the peak remains at

approximately 1.8 kHz; however, the magnitude drops from approximately 18 dB to 2 dB. When

tan δmin is increased to 0.33, no local minima are clearly visible across the frequency range near the

center of the membrane.

Examining Figures 4.7F-H, it can be seen that changing the value of tan δmin also has a noticeable

e�ect on the phase of the response. When the loss tangent is quite low, as in Figure 4.7F, there are

many jumps in the phase seen at all spatial points on the membrane and throughout the frequency

range. These phase jumps indicate standing waves: in other words, regions of the membrane simply

move in or out of phase, no traveling wave is present. As tan δmin is increased, the phase of the

response at all spatial points vs. frequency appears nearly linear where the phase of the slope

becomes more steep towards the membrane center, indicative of a traveling wave moving from the

edge to the center. Thus, signi�cant damping is necessary in order for a traveling wave to appear

on these membranes.
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FIGURE 4.7. Model results after varying tan δmin (= tan δ(ωmax) where ωmax is the largest fre-
quency within the range explored here). In this study, R, γ = τ0/τR, and T0 are held constant.
A-B. The values of tan δ(ω) (A) and ℜ(T ∗

m) (B) vs. frequency after varying tan δmin. On the right
portion of the �gure, the magnitude (C-E) and phase (F-H) of the model response at r = 0, r = 1.2
mm, and r = 2.3 mm after varying tan δmin is compared to the experimentally measured motion
at the same points. The blue asterisk seen on Panels C-D marks the location of the second peak in
order to aid in visualization of the e�ect of altering tan δmin on the height of the peaks.

4.4.2.3 Altering membrane thickness drastically changes group delay through eardrum

Here, the e�ect of the model's thickness on its response is examined. The values of τ0, τR are varied

uniformly (thereby increasing the mass of the membrane) while the values of γ = τ0/τR, the radius,

and the complex tension are held constant (and set equal to the best �t model value). The resulting

spatial variations of the thickness for the three values of τ0 (and thereby τR) examined are given on

Figure 4.8A. The model results after varying the model thickness are given on Figures 4.8B-G: as

seen in these �gures, varying the thickness of the membrane drastically alters both the magnitude

and phase of the response at all three points examined.

As seen on Figures 4.8B-C, by decreasing the model thickness, the frequency of the �rst peak

is shifted to a higher frequency and all other peaks are now outside of the examined frequency

range. By increasing the thickness, as seen on Figures 4.8C-D, the peaks appear to have shifted

downwards and the magnitude at the center point (r = 0) becomes more lowpass-like. Additionally,
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by increasing the model thickness, the average slope of the phase for the model response at r = 0

increases signi�cantly between 1.5-3 kHz indicating a large increase in the group delay though the

eardrum.

Combined with the results from the previous subsection, it is clear that a combination of signif-

icant damping and large thickness is largely responsible for the slow-inward traveling wave on the

eardrum. Note that, as discussed in the next section, the model's tension and thickness are both

directly linked to its wave speed. Thus, a parametric study of T0 (which changes the real portion of

the complex tension) is not provided in this chapter, since increasing T0 a�ects the model's results

in the same manner as decreasing the model's thickness.
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FIGURE 4.8. Model results after varying τ0 and τR while holding R, γ = τ0/τR, and T ∗
m constant.

A. The values of the thickness vs. radial position after varying τ0 and τR. On the right portion of
the �gure, the magnitude (B-D) and phase (E-G) of the model response at r = 0.1 mm, r = 1.2
mm, and r = 2.3 mm after varying the model thickness is compared to the experimentally measured
motion at the same points.
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4.5 Interpretation of model results

4.5.1 Traveling wave explains long group delay through middle ear

If a traveling wave is responsible for the group delay observed in the model results, then by either

(1) changing the radius while keeping the wave speed constant or (2) altering the wave speed, a

predictable change in the group delay will occur. If re�ections at any point of the membrane are

assumed to be minimal, the delay of a wave traveling from the edge of the membrane to the center

can be estimated as,

∆t =
R

2

(
1

c0
+

1

cR

)
(4.12)

where R is the radius of the membrane whose thickness is spatially dependent as described in Figure

4.3, c0 is the wave speed from r = 0 to r = R/2 (where the membrane is thickest) and cR is the

wave speed from r = R/2 to r = R (where the membrane is thin). Noting that the complex wave

number, k∗, of a membrane with complex tension is written as93 k∗ = ω
√

ρm/T ∗
m, the wave speed

is found using c = ω/ℜ(k∗):

c(r, ω) = ℜ

(√
T ∗
m(ω)

ρτ(r)

)
(4.13)

In the remainder of this study, c(r, ω) is found at frequencies above 1.5 kHz where the real portion

of the complex tension is approximately constant and the imaginary portion of the complex tension

is small (tan δ < 0.3).

In Figure 4.9, the validity of the expression for the group delay given in Eq. 4.12 is tested:

values found for ∆t using Eq. 4.12 are compared to the group delay predicted by the model after

varying R or τ0 and τR (while holding γ = τR/τ0, tan δmin, and T0 constant). The model group

delay is found by �tting a line to the phase of the response of the center point from the frequency

of the �rst peak to the end of the frequency range (at 3 kHz).

The results of uniformly varying the membrane thickness (τ0 and τR) while holding R constant

are seen in Figure 4.9A: it is clear that by changing the model thickness, the wave speed is altered

and the resulting changes to the model group delay can be accurately captured by Eq. 4.12.
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FIGURE 4.9. A study of the group delay predicted by the model compared with theoretical es-
timations found using Eq. 4.12 and the group delay calculated from experimental data from one
male and one female disarticulated eardrum. Note the group delay found from model results and
experimental data is calculated by �tting a line from the �rst peak in the experimental data to
the end of the frequency range. A. Model group delay calculated on a female model eardrum after
uniformly varying the model thickness (τ0 and τR) is compared to estimates using Eq. 4.12. B.
Model group delay calculated using female material and thickness values and varying the model
radius is compared to theoretical group delay estimates found using Eq. 4.12 and to the delay
found for one male and one female eardrum. C. Group delays calculated from model results found
either by changing the thickness or the radius of the model are compared to theoretical estimates
or to experimentally captured group delay (where the mass of the male and female bullfrog are set
equal to that found by Werner et al.17).

In Figure 4.9B, the resulting model group delay found by holding c0 and cR constant while

varying R is compared to the estimated group delay calculated using Eq. 4.12. Comparing the two

curves, it is seen that the group delay found using Eq. 4.12 provides an accurate estimate of the

group delay of the model, particularly at larger values of R where re�ection at the center of the

membrane is negligible. Additionally, the group delay found using experimental measurements of

the response of one female eardrum (where R = 3.4mm) and one male eardrum (where R = 8.0mm)

(via �tting a line to the phase of the response) are plotted in order to understand if the increased

diameter in male frogs could explain the longer group delays seen in these frogs. It appears that that

this is indeed the case: while other factors may in�uence the group delay (such di�ering thickness

between male and female frogs), the larger radius alone is enough to explain the longer group delay

observed in these frogs.

As further evidence that the larger radius is the primary di�erence between the male and female

bullfrog eardrums used in this study, the radius of the best �t eardrum (�t to female data) is

increased to that of the male eardrum while the eardrum thickness and all other model parameters

(T0, γ = τ0/τR, and tan δmin) are held constant and set equal to that of the best �t model. The
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resulting model response is compared to measurements of a male bullfrog eardrum in Figure 4.10.

As seen on Figure 4.10A, using the values of T ∗
m and γ = τ0/τR found for the best �t female model

but inserting a male-sized radius, the model captures the broadband nature of the magnitude of the

response seen in the male data quite well, particularly at frequencies lower than 2 kHz. It is also

reproduces the local minimum seen in the center point magnitude (r = 0) at around 2 kHz seen

on Figure 4.10A (seen at around 1.8 kHz in the model, marked with a magenta star and around

2.3 kHz in the data, marked with a blue rectangle). Additionally, as seen on Figure 4.10B, it can

be seen that by increasing the radius of the model to that measured for male eardrums, the model

is able to capture the phase of the measured male bullfrog velocity very well; as such, the longer

group delay seen in the male bullfrog is reproduced by the model.
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FIGURE 4.10. Comparison of model velocity response (after changing the radius of the model to
that of the radius of the male in the experimental data) to experimentally measured velocity of a
disarticulated male eardrum. All free parameters of the model (the thickness, thickness ratio, and
complex tension) are equal to that found for the female bullfrog eardrum. A. The magnitude of the
velocity (in arbitrary dB units, normalized to a value at 700Hz). B. The phase of the velocity.

By changing either the model thickness or the model radius, the mass of the eardrum is altered.

By plotting the group delay vs. the mass, the results on 4.9A-B can be directly compared and

the results found by varying the model's thickness can be compared to experimental data. The

group delay found for both the male and the female bullfrog eardrums in this study are plotted vs.
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the mean mass value found for male and female eardrums by Werner et al.17. As seen on 4.9C,

regardless of whether the radius or the thickness is being altered, the group delay is nearly the same;

in all cases, the resulting model group delay is very similar to that found by Eq. 4.12. Additionally,

the group delay calculated from the experimental measurements are very similar to that found by

using the model and by Eq. 4.12.

Thus, since altering the distance over which the wave travels or altering the wave speed both

predictably change the group delay through the eardrum, it appears that a traveling wave is indeed

the source of the large group delay seen in the eardrums of bullfrogs.

4.5.2 Long group delay through bullfrog eardrum due to large thickness and signi�cant

damping relative to mammalian eardrum

While the eardrums of bullfrogs (Aed = 30−200 mm2 in this study) and humans87 (Aed ≈ 70 mm2)

are similar in surface area, the group delay of the center point of human eardrums is signi�cantly

shorter than that in the bullfrog. At midrange frequencies (1-11 kHz), the delay through the human

middle ear is ≈ 130µs (calculated using data from Ref. 18), while the group delays calculated from

the experimental data for male and female bullfrog eardrums were found to be ≈ 990µs and ≈ 470µs,

respectively. Since there are many di�erences in the eardrums of bullfrogs and humans, it is di�cult

to make any �rm conclusions as to why the delays are so much shorter in human eardrums.

However, there are known di�erences between the eardrums of these species which, if all else

is equal, would shorten the delays predicted by the model dramatically. Most signi�cantly, the

thickness of the bullfrog eardrum is very large relative to the human eardrum. The results of

the model �tting procedure suggest that the thickness of the female bullfrog eardrum ranges from

≈ 0.4mm towards to the edge to ≈ 0.9 mm near the center of the membrane: this is roughly similar

to the thickness of an adult male bullfrog eardrum (of ≈ 0.3mm towards the edge and ≈ 2mm

at the center) found using images from Horowitz and Simmons95. The thickness of the human

eardrum is 0.04-0.12 mm96, an order of magnitude smaller than that seen in the bullfrog. As seen

on Figure 4.9A, if the real portion of the tension is held constant, when the center thickness is

reduced to 0.2 mm, the group delay predicted by the model is ≈ 150µs, similar to that calculated

through the human eardrum. However, the di�erences in the tension between species are unknown,

so interpretation of the di�erences in wave speed between species in this manner is, again, limited.
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Another feature which might contribute to the long group delay through the bullfrog eardrum

relative to mammals is its super�cial mucosal nature which might cause the eardrums of these frogs

to be relatively damped. It was found that signi�cant damping is necessary for an inward-traveling

wave to be present: otherwise, standing waves appear and there is very little delay at any given

frequency. It is possible that the mammalian eardrum is not nearly as damped, and thus, any group

delay would be unrelated to an inward-traveling wave.

Furthermore, the geometry of the mammalian eardrum is more complex than that of the frog.

Most noticeably, the mammalian eardrum is more conically shaped, as seen in Figure 3.1A-B of

the previous chapter, whereas the frog eardrum is relatively �at, as seen in Figure 4.1. Using a

mathematical model, Fay et al. investigated the e�ects of several features of the human eardrum on

its ability to transmit sound97. Two features produced noticeable changes to the phase between the

input and the umbo: the depth of the conical shape and the degree of orthotropy of the eardrum.

Changing the depth of the human eardrum model produced a clear trend between the frequencies

of 700 Hz and 6 kHz: as the depth of the model was reduced, the average group delay within in

this frequency range increased (the �at model's delay was ≈ 1.3 times larger than the model with

large depth). Fay et al. also found that extreme orthotropy causes a larger average group delay

at frequencies below 2 kHz97: however, whether the bullfrog eardrum is more anisotropic than the

human eardrum is unknown.

4.6 Summary of Contributions & Conclusions

In this study, an isotropic, viscoelastic circular membrane was used to model the displacement of

bullfrog eardrum in response to harmonic, uniform pressure. Using this simple model, I found that

viscoelasticity and slow wave speed are both necessary to reproduce the phase response seen in

the experimental data. These two properties, when combined, produce the observed slow traveling

waves observed in previous measurements of bullfrog eardrum: signi�cant damping reduces the

presence of outward-traveling such that inward-traveling waves are dominate in the response of the

eardrum. The large thickness of these eardrums contributes to the slow wave speed. By adjusting

either the wave speed (by adjusting the thickness of the membrane) or the distance over which

the wave travels (by adjusting the eardrum radius), the group delay is altered predictably which
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demonstrates that the source of the group delay in these eardrums is, in fact, a traveling wave.

This hypothesis was tested by looking at the group delay though male bullfrog eardrums where the

radius is nearly twice as large as that of the female eardrum: in these eardrums, as predicted by the

model simulations and by assuming an inward-traveling wave with no re�ection, the group delay is

approximately twice as long as that observed on female bullfrog eardrums.
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Chapter 5

Conclusion

5.1 Summary of contributions

This thesis investigated the mechanics of the mouse tectorial membrane, the chinchilla middle ear,

and the bullfrog eardrum.

In the second chapter of this thesis, I characterized, for the �rst time, the anisotropic, vis-

coelastic material properties of the TMs of wild-type and transgenic mice at auditory frequencies.

These material properties were found using an inverse �tting algorithm which sought the material

parameters of �nite element models which best capture experimentally measured displacements of

isolated TM segments provided by our collaborators. I was able to uncover statistically signi�cant

changes in the anisotropic, dynamic material properties of the TM due to the Tectb−/− mutation.

Finally, a parameter study was conducted in order to determine the in�uence of the TM's material

parameters, width, and �ber orientation on its motion. The results of this analysis suggest that

at auditory frequencies, the material properties of the TMs of humans are di�erent than in mice.

A study which considers the �nite width and anisotropy of the TM, as was done in this thesis, is

needed to quantify these di�erences in material properties.

In this third chapter of this thesis, for the �rst time, a circuit model of the chinchilla middle ear

was developed61. The chinchilla middle-ear models discussed in this thesis were developed using

a manual �tting procedure based on analytical expressions which directly relate model parameters

to the inputs and outputs of the middle ear. With these relations, two-port transmission matrix

data was used to provide insight into the sti�ness, damping, and inertial properties of individual

elements of the middle ear. These expressions were used to compare the ossicular chain compliance

of several mammalian species using published two-port transmission matrix experimental data. It

was found that the ratio of the (1) malleus sti�ness to joint sti�ness and (2) the annular ligament
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sti�ness to joint sti�ness is much higher in the human than in the chinchilla, guinea pig, and cat.

The delay through the middle ear of bullfrogs is nearly an order of magnitude larger than

that seen in mammals. A large portion of this large group delay through the bullfrog middle ear

had previously been attributed to the eardrum23,22; however, prior to this study, the mechanics

which allow for a slow-inward traveling wave were not well understood. An isotropic, viscoelastic

circular membrane was used to model the displacement of bullfrog eardrum in response to harmonic,

uniform pressure. Using this simple model, I found that viscoelasticity and slow wave speed are

both necessary to reproduce the phase response seen in the experimental data. Signi�cant damping

reduces the presence of outward-traveling such that inward-traveling waves are dominate in the

response of the eardrum. In addition, the relatively large thickness (compared to the mammalian

eardrum) contributes to the slow speed of the waves on these eardrums. By adjusting either the

wave speed or the distance over which the wave travels (by adjusting the eardrum radius), the

group delay is altered predictably, which demonstrates that the source of the group delay in these

eardrums is, in fact, a traveling wave.

5.2 Opportunities for future work

In a future study, the anisotropic, visceolastic material properties found for wild-type and Tectb−/−

mice, discussed in Chapter 2, could be inserted into existing computational models of the cochlea1,98,99,100

which would allow (1) for more realistic modeling of the TM and (2) the consequences of the

Tectb−/− mutation on cochlear mechanics to be evaluated. In addition, the inverse �tting algo-

rithm could be applied to experimental measurements of isolated TM segments of other genetically

modi�ed mice (such as the TectaY 1870C/+ mutation20) or of other species, such as human TMs,

should the data become available. Repeating the analysis conducted in this thesis on a mutant where

the TM's collagen �bers, rather than its striated sheet matrix, are greatly disrupted (such as in

Col11a2−/− mice, previously studied by our collaborators using shear impedance measurements37),

would particularly interesting, as the anisotropy introduced by collagen �bers was hypothesized to

play a large role on the motion of isolated TM segments. Furthermore, while the �uid surrounding

the TM was ignored in this study, the addition of a viscous boundary layer into the model would

introduce an inertial load and additional damping onto the TM: the addition of extra damping due
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to the �uid might help the model capture the actual loss tangent of the TM material. Exploring the

e�ect of a viscous boundary layer on the motion of the TM would be an excellent next step prior

to evaluating the material properties of other transgenic mice since reduced damping is thought to

be the main material di�erence between the TMs of wild-type and some transgenic mice, such as

TectaY 1870C/+ mice.

The small computational cost of the chinchilla middle-ear models described in the third chapter

of this thesis would allow either model to be easily coupled with a model of the inner ear. Reasonably

accurate representation of middle ear mechanics at little computational cost is valuable to researchers

in computational hearing mechanics as a middle-ear model is necessary in order to compare their

model results with experimental data collected in the ear canal. If the computational model of

the ear of a species other than the chinchilla is desired, the manual �tting procedure developed

in Chapter 3 could be used to quickly develop lumped parameter models for other species with

similarly structured middle ears, should the experimental data become available.

Finally, in the fourth chapter of this thesis, the slow speed of the inward-traveling waves of

the bullfrog eardrum was attributed to the relative thickness of these eardrums. This hypothesis

could be experimentally tested by adding mass to bullfrog eardrums (e.g. by attaching a soft, thin,

dense �lm to the eardrum) and repeating the study. A similar test was conducted (although not

discussed in this thesis) where the eardrum was allowed to dry and the experimental measurements

were repeated. However, since several variables are changed during this experiment (the damping

is decreased, the mass is decreased, and the sti�ness is likely increased), all of which would reduce

the group delay, it is di�cult to analyze which factor is responsible for the altered response.
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Appendix A: Tectorial membrane mechanics supplemental

information
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A.1 Statistical analysis of material property di�erences

In order to better understand if the di�erences in material properties found between WT and WT

and Tectb−/− TMs are representative of the di�erences seen between the average wild-type and

Tectb−/− TMs, at each frequency examined in the study, the 95% con�dence interval for each

material property is calculated.

As seen on Figures A.1A-B, throughout the entire frequency range, there is no overlap between

the con�dence intervals found for wild-type and Tectb−/− values for Et and Gtf . Thus, it appears

that the average wild-type TM is likely signi�cantly sti�er than the average Tectb−/− TM in the

transverse direction and in shear. In the �ber-direction, there is signi�cant overlap in the con�dence

intervals found for Ef : thus, it is remains unclear if the Tectb−/− mutation a�ects the �ber-

direction sti�ness. The signi�cant di�erence in Et between phenotypes causes the TMs of Tectb−/−

mice to be signi�cantly more anisotropic than WT TMs, as no overlap in Γ(ω) = Ef/Et(ω) is

seen throughout the frequency range. Additionally, for both phenotypes, throughout the frequency

range, the con�dence interval for Γ remains above one indicating that the average TM is likely to

be signi�cantly anisotropic.

As seen on Figures A.2, there is signi�cant overlap in all damping parameters. Therefore, it

remains unclear if the Tectb−/− mutation a�ects TM damping.
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ratio (D). Mean anisotropic storage moduli values found for wild-type (n=6) and Tectb−/− (n=5)
mice TMs are plotted using solid lines. Shading indicates the 95% con�dence interval in this study
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To further analyze whether the di�erence in Et and Gtf found between phenotypes is statistically

meaningful, a two-sample t-test was conducted. In this test, the two populations are assumed to be

normally distributed. The variances of the values found for WT and those found for Tectb−/− are

not assumed to be equal (the Behrens-Fisher problem); since the variances are not assumed to be

equal, the Welch-Satterthwaite equation is used to estimate the e�ective degrees of freedom. The

null hypotheses tested and the results of each test are given in Table A.1. From Table A.1, it can be

seen that the null hypotheses stating that the TMs of Tectb−/− are of equal or greater sti�ness than

the TMs of WT mice (in the transverse direction or in shear) can be rejected at a 5% signi�cance

level, while the null hypothesis stating that the TMs of WT mice are sti�er than those of Tectb−/−

mice can not be rejected.

TABLE A.1. Results of a two-sample t-test at a 5% signi�cance level for parameters whose 95%
con�dence intervals do not overlap in Figure A.1, Et and Gtf . In this table, ¯(•) indicates a mean
value. Each test was repeated at each frequency examined in this study (10-20 kHz), ωi. For all
tests, the same results were found at all frequencies.

Null Hypothesis Can be rejected @
5% signi�cance level at
any frequency ωi?

Ēt

ĒWT
t (ωi) = ĒTB

t (ωi) Yes
ĒWT

t (ωi) < ĒTB
t (ωi) Yes

ĒWT
t (ωi) > ĒTB

t (ωi) No

Ḡtf

ḠWT
tf (ωi) = ḠTB

tf (ωi) Yes

ḠWT
tf (ωi) < ḠTB

tf (ωi) Yes

ḠWT
tf (ωi) > ḠTB

tf (ωi) No

A.2 In�uence of the value of Ef and �ber-direction damping on model �t

In the study discussed in Chapter 2, the values of the transversely isotropic material parameters

were found by assuming that Ef was elastic. In the actual TM, some damping in the �ber direction

would be present and the value of the loss tangent in the �ber direction, tan δf , would likely lie

somewhere between 0 and tan δt. Introduction of the two additional free parameters needed to

represent the �ber-direction sti�ness using a standard linear solid (Ef1 and ηf1, as in Eq. 3 in the

main body of the text) would signi�cantly increase the computational time necessary to complete

the �tting process (which takes approximately two days with seven free parameters). Thus, to
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ensure that our assumption regarding the viscoelasticity of the �ber direction and our algorithm's

inability to precisely capture the value of Ef do not a�ect the values found for other parameters,

all TMs were �t using three di�erent Ef assumptions:

1. Ef is elastic (i.e. tan δf = 0), as in Chapter 2

2. Ef is set viscoelastic with tan δf = tan δt

3. Ef is elastic and �xed to a constant value (of 700kPa)

The median parameter values at 20kHz found in each case are compared in Figure A.3. The

values for Et and Gtf are consistent regardless of the model chosen for Ef (shown on Figures A.3A-

B). As seen on Figure A.3C, when Ef is modeled as viscoelastic, for both phenotypes, the median

real portion of Ef remains very similar to the median value found using an elastic model of Ef . In

all cases, the TM remains signi�cantly anisotropic (Γ > 3) and more anisotropic in Tectb−/− TMs

than in wild-type TMs (even in the case where Ef is �xed to a value at the low end of the range of

values found for the wild-type TM). While in all cases, the algorithm struggles to �nd the precise

value of the loss tangents, tan δt and tan δs, the e�ect of the Ef model appears to be negligible.

A.3 Justi�cation for Parameter Constraints

In an e�ort to limit the parameter space, constraints were placed on the values of Ef , Et, Gtf ,

tan δt, and tan δs, given in Table A.2. The parameter constraints were chosen based on previously

reported values from Refs. 3, 4 and physical considerations based on a micro-mechanics model of a

�ber-reinforced material. The justi�cation for these constraints is described in more detail below.

TABLE A.2. Constraints placed on parameter values

Parameter Lower Bound Upper Bound Additional Constraints

Ef 0 kPa 2000 kPa
Ef/Et ≥ 1

Et 0 kPa 330 kPa
1 ≤ Et/Gtf ≤ 3

Gtf 0 kPa 160 kPa

tan δt 0 3.3
tan δt ≤ tan δs

tan δs 0 3.3
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in red), Ef is viscoelastic with tanδf = tanδt (plotted in green), and where Ef is elastic and �xed
to a constant value of 700kPa (plotted in purple)

A.3.1 Justi�cation of parameter bounds

For all parameters, the lower bound was set to zero. The upper bounds for the two loss tangents

were set slightly higher (20% larger) than maximum value of the loss tangent calculated from values

found by Sellon et al.3, tan δmax = ωηmax/Gmin
tf = 2.77. The upper bound for Gtf was set as

twice the highest value found for Gtf at 20kHz (=80 kPa by Jones et al.4). The upper bound of

Et was chosen arbitrarily as a value slightly higher than three times the max value found for Gtf :

although this bound is arbitrary, no solution approached this bound. The upper bound of Ef was

chosen arbitrarily as approximately ten times higher than the largest static Young's modulus value

reported for a basal mouse TM (=210 kPa measured by Gueta et al.32): two solutions found a value

of Ef at the upper bound.

A.3.2 Justi�cation of Ef ≥ Et constraint

The constraint that Ef ≥ Et was motivated by the presence of collagen �bers aligned within a

striated sheet matrix within the TM35,36,21: it was assumed that the collagen �bers are sti�er than

107



the matrix.

A.3.3 Justi�cation of 3 ≤ Et/Gtf ≤ 1 constraint

An approximation of Gtf based on the micromechanics approach is given in the main body of

the text in Eq. 11. Assuming that the matrix is an isotropic, incompressible material (such that

EM = 3GM ), we �nd that

EMM
t

GMM
tf

= 3 (5.1)

This value, EMM
t /GMM

tf = 3, was set as the upper bound of the parameter constraint. However,

several assumptions of this approach render the micromechanics description of Et and Gtf too

simplistic. One such oversimpli�cation is the assumption of contiguity of the matrix; i.e. all �bers

are parallel and are not in contact with one another. From ultrastructural studies of the mammalian

TM, it appears that the collagen �bers are not perfectly parallel, are distributed unevenly, and are

sometimes in physical contact with one another101. Thus, to obtain a constraint between Et and

Gtf , an elasticity approach in which the contiguity of the �bers is considered102,103 is used. With

this approach, Et and Gtf are expressed as,

EEA
t =2 (1− νcol + (νcol − νmat)Vmat)

[
(1− C)

Kcol(2Kmat +Gmat)−Gmat(Kcol −Kmat)Vmat

(2Kmat +Gmat) + 2(Kcol −Kmat)Vmat

+ C
Kcol(2Kmat +Gcol) +Gcol(Kmat −Kcol)Vmat

(2Kmat +Gcol)− 2(Kmat −Kcol)Vmat

]
(5.2)

and,

GEA
tf = (1− C)Gmat

2Gcol − (Gcol −Gmat)Vmat

2Gmat + (Gcol −Gmat)Vmat

+ CGcol
(Gcol +Gmat)− (Gcol −Gmat)Vmat

(Gcol +Gmat) + (Gcol −Gmat)Vmat

(5.3)

where the superscript (•)EA indicates a value found using the elasticity approach given in Refs.102,103,

a subscript (•)col indicates a property of the collagen �bers, and a subscript (•)mat indicates a prop-

erty of the matrix. In the above equations, C denotes the degree of contiguity (where C = 0

corresponds to isolated �bers and C = 1 corresponds to the condition where all �bers are contact),
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K• indicates a bulk modulus, ν• indicates a Poisson's ratio, and k is the �ber misalignment factor.

Kmat, Kcol, Gmat, and Gcol are written as,

Kmat =
Emat

2(1− νmat)

Kcol =
Ecol

2(1− νcol)

Gmat =
Emat

2(1 + νmat)

Gcol =
Ecol

2(1 + νcol)

(5.4)

To �nd the upper and lower bounds of the ratio between Et and Gtf , Ecol was set to the upper

bound of the Young's modulus measured for single collagen �bril, Ecol = 0.8 GPa57. Emat was set

to Emat = 3Gtf = 140kPa where the value for Gtf was taken from from Ref.3. The matrix itself

was assumed to be incompressible, νmat = 0.5, and νcol was set arbitrarily to 0.33 (as the Poisson's

ratio of collagen is unknown58). With these values and assumptions, Vcol is varied between 0.05%

and 2%. The results for EEA
t /GEA

tf are plotted on Figure A.4. Even quite low levels of contiguity

(C < 0.2), Et/Gtf can vary from approximately 1 to 3; thus, Et/Gtf was constrained from 1 to 3

in our models.

A.3.4 Justi�cation of tan δt ≤ tan δs constraint

Using a micromechanics model of a unidirectional �ber-reinforced matrix where the �ber material

is assumed to be much sti�er than the matrix and where the volume fraction of the �bers is much

smaller than that of the matrix, as in Eq. 11 in main body of text, it can be seen that the properties

of the shear modulus and transverse Young's modulus depend primarily on the values of the Young's

modulus of the matrix. If the matrix of the material is modeled as an isotropic, homogeneous, linear

solid viscoelastic material, previous studies have shown that the loss component of the bulk modulus

is signi�cantly higher than that of the shear modulus104; i.e., isotropic, viscoelastic materials tend

to be more lossy due to deformation in shear than in compression. Thus, the parameter space

was limited by setting the loss tangent in the transverse direction smaller than that in shear,

tan δt ≤ tan δs.
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B.1 Derivation of two-port transmission matrix parameters in terms of lumped

parameter impedances

In Eq. (3.1), the two-port transmission matrix parameters, A, B, C, and D, relate the pressure and

volume velocity in the ear canal at the TM to the pressure and volume velocity at the stapes foot-

plate. Similarly, in Eq. (3.6), the transformed two-port transmission matrix parameters, AT , BT ,

CT , and DT relate the pressure and volume velocity in the ear canal at the TM to the transformed

e�ective pressure and volume velocity at the stapes footplate. The equations for the transformed

pressure and volume velocity at the stapes footplate are given in Figure B.1. Thus, the di�erence

between the two-port transmission matrix parameters in Eq. (3.1) and Eq. (3.6) is simply scaling

in order to remove the e�ects of the geometry of the ear.

In order to express Eq. (3.6) in terms of the lumped parameter matrix elements, the forces and

velocities in the lumped parameter model seen in Figure B.1A are converted to transformed pressures

and volume velocities, seen in Figure B.1B; Kircho�'s current and voltage laws are employed to �nd:

Ped = (ZMEC + ZmT + ZisjT )Utm − ZisjTUsT

PsT = ZisjTUtm − (ZsT + ZisjT )UsT

(5.5)

Rearranging it is found that

Utm =
PsT

ZisjT
+

ZsT + ZisjT

ZisjT
UsT (5.6)

Such that,

Ped =

[
ZmT + ZMEC

ZisjT
+ 1

]
PsT +

[
(ZMEC + ZmT )ZsT

ZisjT
+ ZmT + ZMEC + ZsT

]
UsT (5.7)

Eqs. (5.6) and (5.7) can be directly equated to Eq. (3.6) in order to �nd expressions for AT ,

BT , CT , and DT given in Eq. (3.7).
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FIGURE B.1. Original and �transformed� middle-ear models used in model comparison. A. The
original middle-ear circuit model, as seen in Figures 3.3 and 3.4 (the model variables are de�ned
in the captions of these �gures). B. An alternate version of the circuit model where the transform-
ers have been �removed� from the model such that all variables are represented by their acoustic
equivalents as seen from the left of the three transformers, as was done by O'Connor and Puria in
a circuit model of the human middle ear18. Transformed variables are noted with a �T� appended
to their subscripts: the relationships between the transformed and untransformed versions of the
variables are given below sub�gure (B). As mentioned by O'Connor and Puria18, by rede�ning
model variables in this manner, it is possible to make quantitative comparisons between variables
that were previously on opposite sides of the transformers.

B.2 Guinea pig model with transmission line model of the TM

In Section Chapter 3, the guinea pig model published in Ref. 1 was coupled with the transmission

line model of the TM outlined in Section 3.3. After inserting the TL model, parameters were

adjusted in order to best match the group delay at high frequencies and to reduce peaks in GMEf .

The parameters used for the comparison are listed in Table B.1.
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TABLE B.1. Guinea pig model parameter values from the Meaud and Lemons noTL model1 and
the adjusted parameters for the TL model used in the interspecies comparison. Ossicular chain and
middle ear cavity model parameters are de�ned identically to those given in Figure 3.4. Ted and
Zed are the TM delay and characteristic impedance, respectively. All parameter values are in MKS
mechanical units (kg for mass parameters, N/m for sti�ness parameters, and N − s/m for damping
parameters) unless noted with an �a� in the superscript in which case the parameter values are in
MKS acoustical units (s for the delay parameter, kg/m4 for the mass parameters, N/m5 for the
sti�ness parameters, and N − s/m5 for damping and impedance parameters).

Parameter NoTL model values1 Adjusted TL model values

Mm 6.0× 10−7 1.6× 10−7

Km 30 50
Rm 0.0004 0.02
Kisj 340 2.8× 103

Risj 0.03 3.0× 10−4

Ms 1.5× 10−7 6.0× 10−7

Kal 5 200
Ral 0.016 0.016
T a
ed � 1.45× 10−5

Za
ed � 1.15× 10−8

Nlr 2 1.75
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C.1 Discretization of di�erential equation

Eq. 4.3 can be expressed as

A(r)ζ ′′ +B(r)ζ ′ + C(r)ζ = g(r) (5.8)

where

A(r) = r

B(r) = 1

C(r) =
rω2ρm(r)

T ∗
m

g(r) =
−Pr

T ∗
m

(5.9)

Discretizing r into n points and using central di�erence approximations for ζ ′′ and ζ ′,

ri = ih, i = 0, 1, ...n

h =
R

n

ζi = ζ(ri)

Ai = A(ri)

Bi = B(ri)

Ci = C(ri)

gi = g(ri)

ζ ′′ =
ζi+1 − 2ζi + ζi−1

h2

ζ ′ =
ζi+1 − ζi−1

2h

(5.10)

And simplifying (as in Ref. 105), it is found that,
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(
Ai +

1

2
hBi

)
ζi+1 +

(
−2Ai + h2Ci

)
ζi +

(
Ai −

1

2
hBi

)
ζi−1 = h2gi (5.11)

Looping through i = 1, 2, ...n− 1 a row in a sparse matrix, A, is found:

[A] {ζ} = h2{g} (5.12)

Where the components of A are found easily using Eq. 5.11, except for at the boundaries, where

the process is outlined below. Setting the slope at r = 0 equal to zero, it is found that at i = 0:

ζi−1 = ζi+1 (5.13)

In order for the membrane to be continuously di�erentiable at r = 0, ζ0 = ζ1 = ζ−1. Thus, for the

�rst row, (i = 1),

A0,1 = Ai +
1

2
hBi

A0,0 = −Ai −
1

2
hBi + h2Ci

(5.14)

For the last row (i = n− 1):

ζi+1 = 0 (5.15)

So that,

An−1,n−1 = −2Ai + h2Ci

An−1,n−2 = Ai −
1

2
hBi

(5.16)
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C.2 Constraints placed on bullfrog parameters

The upper and lower bounds placed on the bullfrog model parameters in the inverse �tting algorithm

are given in Table C.1.

TABLE C.1. Lower and upper bounds placed on bullfrog eardrum model.

Parameter Lower Bound (LB) Upper Bound (UB) Justi�cation

γ = τ0/τR 0.1 1 LB is arbitrary, UB =
uniform

T0 0 100 Trial & error

tan δmin 0.05 ωmin/ωmax = 1 UB set such that
max(tan δ(ω)) = 1

C.3 Best �t for each combination of thickness and damping models

In this section, the resulting best �t for each model combination described in Figure 4.3 is given in

Figure C.1. The error for each model combination is given on Figure 4.4: the lowest error is found

by using spatially-dependent thickness and Kelvin-Voigt material (Model 2C). As seen in Figures

4.4 and C.1, the worst error for both thickness models is found by using a Maxwell material: the

damping must be signi�cant at low frequencies or large peaks appear in the magnitude which are

not seen in the experimental data. Models 1A and 1C capture the magnitude and phase of the

center point fairly well, but struggle to capture the response at the edge of the membrane. Model

2A captures the phase of all three points fairly well, but does not capture the peaks and troughs seen

in the magnitude of the response at each point: the loss tangent for this model is constant across the

frequency range and thus, must be large to avoid large peaks within the magnitude, as in Models 1B

and 2B. This large loss tangent value would then cause the model to struggle to capture the small

peaks and troughs at high frequencies. In Model 2C, the response captures both the small peaks

and troughs seen in the center point magnitude and the phase of the response of all three points.

While the model struggles to precisely capture the magnitude at r = 1.2mm and r = 2.3mm, it does

a very good job at capturing qualitative features we seek to reproduce: speci�cally, the broadband

nature of the eardrum and the long group delay through the ear.
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A: Structural Damping B: Kelvin-Voigt Material C: Maxwell Material
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FIGURE C.1. The best �t found by minimizing model parameters using �tting algorithm described
in Chapter 4 Section 4.3.3. Each model combination is described in Figure 4.3. The error for each
model combination is given in Figure 4.4.
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