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SUMMARY 

The body of work described here seeks to understand uncertainties that are inherent 

in the system prognosis procedure, to represent and propagate them, and to manage or 

shrink uncertainty distribution bounds under long-term and usage-based prognosis for 

accurate and precise results. Uncertainty is an inherent attribute of prognostic technologies, 

in which we estimate the End-Of-Life (EOL) and Remaining-Useful-Life (RUL) of a 

failing component or system, with the time evolution of the incipient failure increasing the 

uncertainty bounds as the fault horizon also increases. These increased uncertainty bounds 

may result in maintenance failure and system life reduction. In the given testbed case, the 

life of the electric vehicle energy system is not measurable. It is only estimated, thereby 

increasing the importance of uncertainty management. Furthermore, the more complex the 

system, the greater the impact of uncertainty on the prognosis procedure over time. 

Therefore, methods are needed to handle this uncertainty appropriately in order to improve 

the accuracy and precision of prognosis via shrinking the uncertainty bounds. 

To this end, this thesis introduces novel methodologies for the RUL prognosis, that 

is data-driven, model-based, and hybrid methods. It introduces next two important 

classifications for prognostic technologies, i.e.  usage-based and health-based prognosis. 

At this point, each uncertainty method has its own uncertainty bound properties that depend 

on the system or prognosis conditions. Therefore, an understanding of prognosis methods 

and finding optimized uncertainty methods for a given condition is the basis of uncertainty 

management procedures. In this thesis, Gaussian process regression, neural networks, 
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Kalman filtering, particle filtering, and Gaussian process functional regression are used to 

derive the RUL prediction. 

Next, this thesis discusses proposed uncertainty management methods, and 

suggests an innovative way to reliably estimate the life of a given system subjected to 

disturbances and various usage patterns. The enabling technologies build upon a three-

tiered architecture that aims to shrink EOL/RUL bounds: uncertainty representation, 

uncertainty propagation, and uncertainty management. The first step, uncertainty 

representation, is addressed via identification, characterization, and classification of the 

uncertainty sources that are inherent in the system and prognosis procedure. In the next 

step, uncertainty propagation, estimates of the propagation of each uncertainty source are 

derived using the gradient vector from the most probable point technique and a short- and 

long-term prognosis bounds ratio is derived using a source relation dependency approach. 

An uncertainty tree and a relation equation are formulated to assess the flow of the 

uncertainty in the system and model. In the last step, uncertainty management, sensitivity 

analysis methods are used to weigh the impact of each uncertainty source while feedback 

and hyperparameter loops are adopted to update the uncertainty tree. Finally, the most 

important uncertainty sources are retained that have an impact on the state model and the 

prognosis process. 

The expected results and contributions of the study will provide a framework for 

uncertainty management tasked to shrink uncertainty bounds; they will also suggest a 

general and systematic listing of uncertainty sources for a given engineering system, derive 

more precise and accurate predictions based on three prediction methods, and assist to 

arrive at a true assessment of the current health state of complex engineering systems. 
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Additionally, the electric vehicle energy system is used as the testbed, along with a baring 

crack case study. These examples are used to illustrate the efficacy and easy applicability 

of the proposed methodology.  
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CHAPTER 1. INTRODUCTION 

1.1 Overview and Statement of the Problem 

 The adage “Γ Ν Ω Θ Ι Σ Α Υ Τ Ο Ν (in English: Know thyself)” is traditionally 

ascribed to ancient Greece. According to the Greek writer Pausanias, the aphorism was 

inscribed in the pronaos of the temple of Apollo at Delphi [104]. Legend tells us that in 

ancient Greece, philosophers, statesmen and law-givers gathered together in Delphi and 

encapsulated their wisdom in this phrase [105]. The phrase is commonly used to emphasize 

the importance of knowing your authentic state [106] and it was adopted later by the famed 

Greek philosophers Aeschylus, Socrates, and Plato. Similar wisdom is found in ancient 

Chinese texts: “知彼知己, 百戰百勝” (In English: “Know yourself and you will fight 

without danger in battles). This is a Chinese idiom that was derived from the ancient book, 

“孙子兵法” (“The Art of War”), written in the 5th century BC [107]. 

As these famous dictums emphasize, irrespective of time and place, understanding 

one’s own states such as character, limitations, strengths, and weaknesses is always 

important [110]. The importance of knowing states is not only for humans; it applies to 

engineering systems as well. The systems are always subjected to incipient fault or failure 

conditions. In addition, their performance degrades as a function of time, reaching a limit 

state beyond which the system must be repaired, re-engineered or maintained 

appropriately. These degradations or failures of engineering systems may also give harmful 

results to humans, directly or indirectly. Examples range from oil pipe leaks, to building or 

bridge collapses, to airplane engine failure crash cases. Therefore, estimating current 
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engineering system states is important. Fortunately, engineering systems are less complex 

than human beings [108] and do not typically require an entire lifetime of self-examination. 

However, there are many factors, such as functional coupling complexity, processing 

power increase, and product miniaturization, that contribute to the complexities of 

engineering systems. For these reasons, the importance of state estimation is growing.  

The classical methods of system state estimations are based on scheduled 

maintenance practices, in which the system components are maintained, whether such 

maintenance is required or not. It is preferable if such costly practices are based on an exact 

assessment of the current health of the system. Life extension, availability, and cost 

benefits are derived if one is able to predict the system’s health status and take appropriate 

action only when needed. Research about system lifespan extension starts with the 

maintenance cycle. The maintenance cycle began with the concept of dead and fix, such as 

reactive maintenance (RM) or unplanned corrective maintenance (CM). Later, research 

topics progressed to preventive maintenance (PM) which was developed and executed 

based on a predefined schedule or an accessible condition called Condition-Based 

Maintenance (CBM). Essentially, maintenance tendencies have switched from dead and 

fix to predict-prevent. With current advances in technology, researchers are able to improve 

maintenance support systems that enhance reliability and availability of significant 

engineering assets, while dropping overall costs through predictive and prognostic 

strategies. This latest maintenance stage is called Prognosis and Health Management 

(PHM).  

In this thesis, a novel framework for the prognosis of engineering system remaining 

useful life (RUL) is introduced to suggest an innovative way to reliably estimate the life of 
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a given system from various characteristics. There is a need to explore state-of-the-art 

prognosis strategies such as usage-based/health-based strategies and model-based/data-

driven strategies, as well as to acknowledge the existence of uncertainty during these 

procedures. Uncertainty is inherent in systems, because in the real world systems rarely, if 

ever, exist under ideal circumstances. This uncertainty also increases with the complexity 

of the system. The emphasis of this research is to represent uncertainties of prognosis 

procedures for a given system and to determine how they propagate, followed by a 

discussion of how to manage these uncertainties. The efficacy of the suggested research 

will be demonstrated through the evaluation of a lithium-ion (Li-ion) battery system in an 

electric vehicle (EV).  

1.2 Motivation 

 There are many prediction methods, which in general can be grouped into three 

categories: data-driven methods, model-based methods, and hybrid methods. Data-driven 

prognostics use regularly-monitored data without any consideration of physical modeling 

to identify the characteristics of the current state and future behavior of a system [10]. 

Model-based prognosis considers a system’s underlying physical understanding and thus 

incorporates a mathematical expression of the system into the estimation of RUL [15]. The 

hybrid method incorporates positive features of both the data-driven and model-based 

prediction methods; it is also called the surrogate method. Prediction results can be shown 

through statistical expressions such as probability distribution graphs; however, it is almost 

impossible to perfectly and accurately predict the operating and environmental conditions 

under which an engineering system functions. Therefore, it is necessary to acknowledge 

the presence of uncertainty in the prognosis of a system. At this point, observation and 

research are needed to 1) analyze and identify uncertainties of systems, and 2) infer and 
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control the increase in uncertainty within systems, rather than the uncertainties that come 

juxtaposed with the system. When the proportion of uncertainties in the system is fairly 

small, there is a common misconception that the effect of uncertainty can be considered in 

the later stages of the analysis after the fundamental and deterministic problem has been 

solved. However, the more complex the system, the greater the impact of uncertainty. 

Therefore, it is important to account for uncertainty throughout the analysis, design, testing, 

and operation of a system. For example, if a battery in the tractive system of an electric 

vehicle, or EV, is very sensitive to various influences, then researchers must investigate 

uncertainties and their effects on RUL estimation of battery life degradation in the EV 

system. Furthermore, such an electric plane requires more efficient and accurate battery 

life prediction by battery limitation, and even though it has a much simpler power system 

than an EV, an uncertainty mitigation algorithm in prognosis must be investigated and 

evaluated. 

This thesis presents several approaches that can be used to shrink uncertainty bounds 

that result from long-term and usage-based prognosis procedures. This goal, shrunk 

uncertainty bounds, represents more accurate and precise prognosis results. The main 

algorithm for these approaches was developed through uncertainty representation, 

uncertainty propagation, and uncertainty management steps; however, it has minor 

differences that depend on prediction methods and application data states. The principal 

contributions of these works are the following. 

● Novel methodologies of prognoses of remaining useful life in usage-based conditions. 

Results of model-based methods such as the particle filter method and the Markov 

Chain Monte Carlo Method have high accuracy and low precision, whereas results of 

data-driven methods such as the Gaussian Process Method and the Neural Network 
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Method have high precision and low accuracy under long-term and usage-based 

conditions. 

● A general framework of characterization, representation, and classification of sources 

of uncertainty in the system. The general uncertainty management procedure of the 

prognostics system is frequently discussed from the representation, propagation, and 

management points of view. However, there are various interpretations of each 

procedure’s terms and orders depending on the writer, so clarification here is helpful. 

● The introduction and comparison of methodologies to estimate the propagation or 

impact ranking of uncertainty sources in the system. Generally, Monte Carlo simulation 

methods, probabilistic fuzzy approach, interval analysis, first- and second-order 

reliability methods (FORM; SORM), evidence approach methods, regression technique 

polynomial chaos expansions, and most probable point (MPP) methods are used for 

uncertainty propagation methods. Among these methods, some are not suitable for all 

types of uncertainty source handling, and some are difficult to classify in terms of the 

impact of sources. The rest of the methods have less accurate propagation; however, 

they have other positive aspects. Among the pros and cons of these methodologies, this 

thesis helps the reader to select the best methods for a given application via a thorough 

comparison. 

● More accurate model-based methods results are shown via the uncertainty management 

procedure. The model-based methods have high accuracy and less precision, usually 

because the physical model is expected to catch most of the behavior or states via an 

outline of the model plot. However, the uncertainty management procedure has higher 

numbers of uncertainty sources than data-driven methods. It also affects uncertainty 
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bounds on prediction points. For this reason, it has lower precision than data-driven 

methods. However, it can be improved via uncertainty management methods and 

results also show that the uncertainty bounds are shrunk. 

● Data-driven methods, upgraded by adding a physical model, are introduced, with 

improved accuracy and precision results shown via adapted uncertainty handling 

methods. General Data-Driven (DD) methods only consider relationships between each 

data point, so the property of high accuracy does not always hold true when an early 

phase prognosis is performed. In other words, DD methods do not catch later-occurring 

behavior in the system. Accuracy can be improved by adding a physical model to DD 

methods. However, in doing so, many additional uncertainty sources are added. At this 

point, expanded uncertainty bounds can be reduced by uncertainty management, 

thereby providing more accurate and precise results. 

● The validation of the proposed framework in two case studies. The approaches 

presented in this thesis can be validated using an 18650 li-ion battery, usually used in 

determining electric vehicle life degradation data, and also used in bearing crack 

growth data. Both data results indicated shrunk uncertainty bounds. Furthermore, this 

author’s suggested approaches also are adaptable for comparison with other uncertainty 

management methods for validation. 

1.3 Organization 

This thesis will cover a brief review of the literature. Then, in Chapters 2 and 3, the 

author will discuss technical approaches for handling uncertainty in the prognosis 

procedure. Next, the author will introduce the three/four major sections of this thesis. The 

first major section will discuss prognosis strategies in Chapter 4. This chapter handles 
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prognosis; prognosis methodologies such as model-based prognosis; data-driven 

prognosis; and surrogate approaches such as the hybrid method. It also covers major 

techniques used in each method such as the Particle filter, the Gaussian process regression, 

and the Gaussian process functional regression. The second major section treats strategies 

of uncertainty in Chapter 5. This chapter introduces an overall understanding and 

appreciation of uncertainty, and methods for increasing prognosis performance using 

uncertainty handling via uncertainty representation, propagation, and management 

procedures. Chapter 6 shows how these methodologies work on electric vehicle energy 

systems (EVES) cases. The last major section, in Chapter 7, shows another performance 

verification using a different application from the EVES case. Finally, Matlab codes and 

references are included at the end of this thesis. 
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CHAPTER 2. BACKGROUND STUDY 

2.1 Background 

 Much has happened in engineering since the Industrial Revolution a couple hundred 

years ago; however, the most dramatic changes have occurred in the past century. During 

this period, maintenance management has evolved tremendously from reactive 

maintenance (RM) to prognosis and health management (PHM) as Figure 2.1 indicates. In 

particular, maintenance was promoted in the 1950’s with the rebuilding of industry after 

World War II [1]. The rapid development of system failure-detecting in the 1970’s led to 

the growth in popularity of predictive methods [2]. At the left bottom of Figure 2.1, 

Reactive Maintenance (RM) indicates maintenance 

 action applied on a failure machine. Smith and Hinchcliffe (2003) mention that the task of 

RM is to restore functional capabilities of failed systems, so this type of maintenance is 

also called corrective or unplanned maintenance [111]. There is no action required to 

maintain the component until it reaches end of life, so RM may provide economic benefits 
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Maintenance 
(RM) 

 

Preventive 
Maintenance 
(PM) 

 

Condition-based 
Maintenance 
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Predictive 
Maintenance 
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Prognosis and 
Health 
Management  
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Figure 2.1 Uncertainty bounds example on prognostics approach 
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due to a low investment cost. However, as Sullivan et al. (2010) mention, RM may increase 

costs due to unplanned equipment downtime, increased labor costs if overtime is needed, 

possible secondary damage from equipment failure, and insufficient use of staff resources 

[112]. The next type of maintenance depicted in the above figure, Preventive Maintenance 

(PM), can be defined as an implementation that is based on a certain schedule intended to 

prevent the failure of a component or of the system. Therefore, scheduled adjustments, 

replacement of components, repairs, calibration, and lubricants are part of this strategy, the 

goal of which is to avoid unexpected failures during the operation cycle [113]. PM has an 

increased component life cycle, is cost-effective in many capital-intensive processes, and 

its flexibility allows for the adjustment of maintenance periodicity. However, it may suffer 

from being labor intensive, with potential for incidental damage in conducting unnecessary 

maintenance, with catastrophic failure still likely to occur [112].  

Predictive maintenance (PdM) is the next shift in the trend depicted in Figure 2.1. PdM, as 

its name suggests, predictively handles actual conditions instead of schedule pre-setting, 

as PM did. Sullivan et al. (2010) defined the detection of system or component degradation, 

then elimination or control, allowing for casual stressors, prior to any significant disaster 

in the system’s physical state. PdM has many more advantages than RM or PM. It decreases 

process downtime, decreases cost of labor and/or parts, increases product quality, and 

improves the component operational cycle. However, this maintenance methodology may 

incur increased investment in diagnostic skills or staff training, therefore being more 

difficult to justify for management [112]. Indicative of the developing nature of diagnostic 

engineering, PdM methods have become more varied. At the end, PdM can be classified 

into reliability-centered maintenance (RCM) and condition-based maintenance (CBM). 

RCM only considers the important equipment in the system. It recognizes that safety and 

major repair cost issues outweigh the cost of components.t A higher probability to 

withstand failure or life degradation exists. Therefore, RCM methods evaluate system 
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components to best mate the two and result in a higher reliability and cost-effectiveness 

[112]. In contrast, CBM focuses more on monitoring the entirety of the parts in the system. 

In other words, this methodology involves a process for monitoring the operating 

characteristics of a system; changing the monitoring can be used to predict failures or 

abnormal degradations. CBM methods are better than other methods for real-time 

maintenance resources and for avoiding unnecessary maintenance. Therefore, this method 

can adapt to more varied systems than can the RCM methods. CBM became the 

predominant maintenance strategy implemented in production systems. However, the more 

complex the system, the less rapid the processing speeds of CBM methods [3]. 

With increases in system complexities over the years, it has become essential to develop 

more rapid and accurate forecasting methodology; additionally, online monitoring and 

prognosis became more important. At this point, state-of-the-art research on maintenance 

strategy, prognostics, and health management (PHM), was introduced. The PHM method 

focuses on understanding, detecting, and tracking failure, then predicting the remaining 

useful life of the system or components. In other words, PHM includes a set of technologies 

that link studies of failed mechanisms to system lifecycle management, degradation 

tracking mechanisms, and predictions on the remaining useful life of components and 

systems. This is the most useful maintenance method in terms of helping to reduce labor 

costs, reducing unnecessary or unplanned activities, and increasing proactivity. This thesis 

is based on the PHM method to predict components and system life degradation. 

2.2 Literature Review 

Academic research in three distinct areas is reviewed in this section: 1) The general 

prognosis of engineering systems that covers theoretical and technical approaches; 2) The 

uncertainty of prognostics in the engineering system; and 3) State-of-the-art-research about 

the tractive/energy system of the electric vehicle. 
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2.2.1 Prognosis of engineering system  

In the field of engineering and in this thesis, prognostics is defined as the prediction 

of the remaining useful life in a system [7]. Prognosis algorithms can be categorized into 

health-based and usage-based prognostics, which refer to differing theoretical approaches. 

The former refers to the detection, isolation, and assessment of a fault or incipient failure 

condition. In contrast, usage-based prognostics algorithms refer to a long-term prediction 

of the health of a system subjected to internal and external condition factors without any 

consideration of incipient failure modes or the existence of fault detection [4]. As an 

example, the aircraft industry is very sensitive to matters of maintenance. For instance, R. 

Patrick (2009), of Impact Technologies LLC, suggests increasing prognostic system 

effectiveness of the health and usage monitoring system (HUMS) in the YH-60 helicopter 

[8]. Patrick’s team approached the improvement of the helicopter CBM system 

performance and implemented prognostics as a part of the Air Vehicle Diagnostics and 

Prognostics Improvement Program (AVDPIP). The team also utilized the general 

characteristics of both categories of prognostics in their research on air vehicle diagnostics 

and prognostic improvement programs [5].  

Methods of prognosis can also be classified into two categories, these being data-

driven and model-based prognostics. Data-driven prognostics use regularly-monitored data 

without any consideration of physical modeling to identify the characteristics of the current 

state and future behavior of a system. The advantage of this method is that it is relatively 

simple to implement and the speed of estimation is both fast and inexpensive when 

compared to other approaches. It also helps to gain an understanding of the tendencies of 

physical systems through large data sets without the need for a physical system. 
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Mathematical regression approaches, neural fuzzy, relevance vector machines, support 

vector machines, Markov Chain, Gaussian process regression, Dempster-Shafer 

regression, neural network, and other computational methods have provided alternative 

tools for data-driven prognoses [10]. As examples, D. Brown (2009) introduced a data-

driven methodology for the Electro Mechanical Actuator that takes advantage of online 

and real-time estimation of RUL [12]. J. Liu (2010) presented a developed adaptive 

recurrent neural network (ARNN), which is constructed based on the optimized recursive 

Levenberg-Marquardt method mixed with the adaptive/recurrent neural network for RUL 

prediction of lithium-ion batteries [13]. There are also some other methods cited in K. 

Javed (2011) on data-driven prognostics improvements by assessing the predictability of 

features when selecting them for bearing cases [14]. M. Rigamonti (2016) proposed using 

differential evolution for the optimization of the Echo State Network, which is a relatively 

new type of Recurrent Neural Network for RUL prediction of a turbofan engine working 

under variable conditions [11]. While the data-driven methodology does not utilize 

physical cause-and-effect relationships, it does require a substantial lifecycle of data. 

Furthermore, the dependency on the quality of data is high, so it may have wider confidence 

intervals than other methods. 

Model-based prognosis considers a system’s underlying physical understanding and 

thus incorporates a mathematical expression of the system into the estimation of RUL. 

Therefore, the main advantage of model-based prognostics is to achieve a higher accuracy 

estimation due to the incorporation of the physical understanding of the model by directly 

monitoring it [15]. Models can be used to account for differences in design between various 

systems, and are computationally efficient to implement [7]. Paris’ law, Forman’s law, 
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Bayesian methods, nonlinear least squares, the Karman filter, autoregressive moving 

averages, the Monte Carlo simulation, particle filters, and other states or methods have 

provided alternative tools for model-based prognosis. This method is used in various areas 

such as the mechanical, electrical, aerospace, and automotive industries. J.C. Newman 

(1992) developed a conventional computing platform for initiation and propagation of 

common crack configurations in structural components [16]. J. Luo (2008) suggested the 

model-based prognostic process for a suspension system under nominal and degraded 

conditions with an interacting multiple model [15]. M. Daigle and S. Sankararaman (2013) 

described first-order reliability-based methods for battery prediction [17]. 

Furthermore, as time goes by, these theoretical boundaries of model-based and data-

driven are blurred and becoming more complex. Therefore, it is necessary to further refine 

the application with methods that are more appropriate. G. Vachtsevanos (2006) presents 

many approaches for prognostics, such as PHM in control, fault diagnosis and prognosis, 

and performance metrics in unmanned aerial vehicle systems [100]. M. Orchard (2007) 

developed a model-based approach of a particle filter, for on-line fault diagnosis and 

prognosis [102] and presents outer feedback correction loops for on-line model parameter 

adjustments [103]. D. Edwards presents sets of uncertainty measurements to quantify the 

impact on prognostic algorithms [101]. 

2.2.2 Uncertainty in prognosis procedure 

The general meaning of ‘uncertainty’ can be defined as the things that are only 

known imprecisely or not known exactly [56]; the inability to determine the exact state of 

the system [57]; reflecting potential outcome distributions [58]; and so on. Historically, the 
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concept of uncertainty has long been associated with civilizations starting with the early 

Egyptians and Greeks of the 4th century BC; however, the definition has persisted almost 

unchanged until the 20th century, and only recently has the contribution of uncertainty to 

engineering systems been analysed [55]. Uncertainty is also inherent in the engineering 

system; therefore, uncertainty should be considered carefully to design and maintain a more 

accurate and effective engineering system. In classical philosophy, uncertainties have been 

classified into two groups, aleatory uncertainty and epistemic uncertainty [52, 53]. 

Aleatory uncertainty comes from inherently uncertain natural phenomena. It is also 

variably referred to as irreducible uncertainty, objective uncertainty, and stochastic 

uncertainty. In other words, when a fault in a system forces an outage, aleatory uncertainty 

is the most considerable uncertainty in the system. Epistemic uncertainty, on the other 

hand, comes from a lack of knowledge. It is also called subjective uncertainty and state-of-

knowledge uncertainty [54]. A usage-based system prognosis case, epistemic uncertainty 

is the most considerable uncertainty the researcher commonly encounters. These 

uncertainty classifications have become more complex with the passage of time than their 

counterparts in many uncertainty-related research fields, including economics, geometrical 

engineering, mechanical engineering, electrical engineering, system engineering, structure 

engineering, management science, uncertainty analysis, and risk analysis [55]. The goal of 

these wide ranges of research is to find out more accurate and precise results by mitigating, 

managing, or modeling uncertainty [59~66]. For example, Girish et al. (2013) show 

improved results by modeling the uncertainty in Gaussian Process model reference 

adaptive control [87], and H.A. Kingravi et al. (2012) use capturing the uncertainty for a 

connection between kernel methods using reproducing kernel Hilbert space theory [88]. 
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Furthermore, there is more uncertainty in the state prediction and/or prognosis case than in 

the general estimation case [74] There are numerous studies that have dealt with 

uncertainty management methods in prognosis [67~73]. The general uncertainty 

management procedure of the prognostics system is generally discussed from the 

representation, propagation, and management points of view. Different sources also 

describe the procedure of the prognostics system as identification, quantification, 

propagation, and analysis [75]; or quantification, representation, and management [76]. 

Though the interpretations of the term vary, the procedural outlines are similar. This paper 

will now define representation, propagation, and management steps for uncertainty 

management procedures for the system life degradation prognosis. 

2.2.2.1 Uncertainty representation (add more paper reviews)  

Uncertainty representation, identifying and characterizing a source of uncertainty 

in the system, is the first step in prognostics uncertainty management [75]. Merrick J.R et 

al. (2003) describe four steps of input and output uncertainty representation in a Bayesian 

framework [78]. The representation step can also be broken down into the uncertainty 

identification and qualification of certain mathematical formulas, described below [79].  

2.2.2.2 Uncertainty propagation (add more paper reviews)  

A general case of uncertainty propagation can be derived via a mathematical 

function such as the Monte Carlo Simulation for prognostics [80] or the improved Monte 

Carlo algorithm [79]. J.R. Celaya (2012) defined that this step can be guided by the choice 

of modeling and simulation frameworks of common theories such as classical set theory, 

probability theory, fuzzy set theory, fuzzy measure theory, and rough set theory [74]. 
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Orchard (2008) and Saha (2009) mentioned that representation of uncertainty is dominated 

by probabilistic measures in the prognosis and health management domain when 

simulation has a sufficient statistical database [73,85]. Wang suggested using the Dempster 

Shafer theory for occasions when data is incomplete or scarce [84]. These mathematical 

approaches work well for simple systems or on a single uncertainty case such as a 

measurement error or a parameter uncertainty. However, a real-world engineering system 

has more complex relations than those for which these methods are suited. Therefore, this 

paper suggests a new approach for finding the percentage of each growth in the whole, 

rather than observing the growth of the elements over time. 

2.2.2.3 Uncertainty management  

There are numerous publications about ‘uncertainty management’ 

[51,58,60,63,69,73,77,81,83]. However, many articles do not directly show a mathematical 

approach for management. Often, they omit management terms instead of quantification 

or propagation, or they suggest management methods without sufficient mathematical 

support. The suggested management stage in this thesis starts with the relationship between 

sensitivity analysis and uncertainty analysis [82], and the method of local or global 

sensitivity analysis, which can be used to aid uncertainty reduction and management [83]. 

Chapter 2 will discuss suggested management in more detail.  

2.2.3 Uncertainty management of energy system degradation for electric vehicles 

 The biggest issue of the EV, or electric vehicle, is that the energy storage system 

degradation is much shorter than others. Although it has more benefits than the inter-

combustion engine (ICE), the EV system’s battery degradation holds its popularity. 
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Therefore, a significant amount of research remains to be done. Battery degradation 

consists of calendar aging [89] and cycle aging [90]. These degradations cannot be 

measured directly, so the role of estimation techniques for SOC and SOH with uncertainty 

handling becomes more important. First of all, the battery has various modeling 

approaches, such as the equivalent circuit model [91], the NCA model, the simple model 

[92], the first/second/third order RC model [93], the electrochemical model [94], the 

electrochemical impedance spectroscopy model [95], and more. In addition, by using the 

prognostic technique as mentioned in the previous section, battery life degradation can also 

be predicted [9,23,96] and uncertainty management becomes an important issue to shrink 

the uncertainty bounds. The following section is devoted to this topic and discusses 

suggested shrinking distribution bounds on the prognostics technique. 
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CHAPTER 3. TECHNICAL APPROACH 

 The previous section describes a brief overview of engineering system life 

degradation, prognoses of degradation, and prognoses of remaining useful life (RUL) 

estimation. It also explained briefly that there is an inherent uncertainty in the system and 

that this uncertainty increases in the prognosis process. This next section briefly introduces 

the suggested approach of uncertainty management for engineering system RUL prediction 

via three steps of uncertainty representation, propagation, and management for accurate 

and precision prognosis results. Detailed about suggested methods are treated in Chapters 

4 and 5. 

3.1 Strategy of the design and analysis of uncertainty in prognostics 

Prognostic algorithms must account for inherent uncertainty in the system, which 

cannot be eliminated. It would be possible to effectively predict the engineering system 

state in an ideal scenario, but uncertainty becomes more blurry and complex in practice. 

Furthermore, it is necessary to account for uncertainty beginning with the initial stages of 

system development through the whole system process, including design, build, and 

modification, rather than misunderstanding that the effect of the uncertainty can be 

included at the later stages of the analysis. Using a three-step strategy, this section will 

examine the design and analysis of the uncertainty algorithm to accurately account for the 

effect of uncertainty in prognostics under the long-term and usage-based prognosis cases. 

The steps are as follows: (1) Uncertainty Representation; (2) Uncertainty Propagation; and 

(3) Uncertainty Management. The goal of this three-step strategy is to shrink the 

uncertainty bounds. Figure 3.1 illustrates the suggested algorithm. It shows that a long-
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term prediction period prognosis distribution has wider uncertainty bounds than a short-

term prognosis distribution and depicts suggested methods for shrinking the bounds for 

precise and accurate results.  

3.2 Uncertainty Representation 

The first step to shrinking distribution bounds on the prognostics technique is an 

“uncertainty representation.” This step is guided by the recognition that there are many 

different uncertainties (∆) in the system and prediction procedures. Therefore, the task of 

the uncertainty representation stage is to identify and characterize these uncertainties first, 

then classify each source as much as possible. Generally, the sources of uncertainty in the 

RUL prediction can be classified into three main sources: physical uncertainty, data 

uncertainty, and model uncertainty [97], as shown in Figure 3.2.  

Figure 3.1 Illustration of suggested algorithm to shrink uncertainty bound 
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Physical uncertainty (∆physical) refers to the inborn variation of the physical 

system. The uncertainty or fluctuations can appear in the form of uncontrollable variations 

in the external environment, instruments, test procedures, observers, and so on. They are 

usually modeled as random phenomenon characterized by their probability distributions 

and require large amounts of information [26]. The physical variability in the loading 

(∆load), environmental condition (∆e.c.) and operation condition of load (∆o.c.) are 

considered during this proposed research. The variability in other physical properties is 

insignificant, so it is not considered to be human error or physical measurement error. 

Another type of uncertainty is data uncertainty (∆data). Acquired data can contain 

outliers, have errors, or simply have missing data. In addition, the probability distributions 

of some technical properties of energy systems are inferred using data from laboratory 

experiments [27]. The measurement error (∆m.e.), sensor noise (∆s.n.) and sparse noise 

(∆sparce) are considered for the source of ∆data. 

 

Figure 3.2 Taxonomy of the general sources of uncertainty in RUL prediction 
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Model uncertainty (∆model) refers to the difference between the true variable and 

the predicted variable that can neither be measured accurately nor already be known, and 

comprises several parts such as modeling error (∆m.e.), model parameter (∆m.p), state 

estimation (∆s.e.), operation condition (∆o.c.), and surrogate model uncertainty (∆s.u.). In 

addition, the state model cannot be perfect, because system phenomena cannot be 

expressed completely by equations and numbers, so the prognosis must account for the 

model uncertainty. Any remaining uncertainty in the system during prognostics is 

called unclassified uncertainty (∆unclassified). This paper assumes that the uncertainty 

source has an insignificant effect on the prognostics, neglectable during procedure, and 

without regard to dependent or independent sources.  

3.3 Uncertainty Propagation 

Identified and classified sources of uncertainty from the previous steps are 

propagated throughout the prognostics procedure. In addition to such an RUL prediction 

case, general prognostics methodologies such as data-driven, model-based, and hybrid 

methods show different results of RUL estimation from what these three methods consider 

 

Figure 3.3 Illustrate the propagated source of uncertainty 
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at the propagation step. After that, the ideal propagated uncertainty can be estimated from 

the ratio of increased uncertainty (the gap of output and input uncertainty) and original 

uncertainty. At this point, as mentioned in the literature review, the Monte Carlo method 

and improved Monte Carlo methods such as SRSM and SFEM can be used for this 

estimation. However, these methods are only good for the single or source of uncertainty 

calculation, and it is impossible to figure out all mathematical uncertainty source 

propagations using these methods in the RUL prediction. This thesis suggests using the 

most probable point (MPP) method at this propagation stage. The performance of this 

method alone is not optimal because the accuracy is lower than average. However, when 

combined with the uncertainty tree method, the effect is brilliant. The most probable point 

method classifies each propagation during transformation via gradient vector. After that, 

using this gradient vector, the researcher can classify the source of uncertainty into the 

uncertainty tree and can express the result with the sensitivity and dispersion vector. Using 

the concept of the uncertainty tree [28], one can estimate total propagated uncertainty by 

using the ratio or size of each propagated source of uncertainty with an uncertainty relation 

equation. It is also beneficial to determine how sources of uncertainty occupy spaces in the 

propagated uncertainty distribution through a sensitivity and effectiveness vector from the 

visualized tree. The uncertainty tree shows a graphical/hierarchical structure to assess the 

flow of uncertainty in prognostic computational models. Essentially, it is a graphical 

depiction of the variable dependencies employing sensitivity analysis tools in uncertainty 

analysis [28]. Figure 3.4 shows an example of the uncertainty tree with the uncertainty 

relation expression. 

Propagated uncertainty can be written as:  
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∆𝐴 = √[(
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Furthermore, each branch shows the mathematical relationship between each source of 

uncertainty. These relationships are shown in the uncertainty relationship equation as 𝑓𝐴 

and 𝑓𝐵  in figure 3.4. After this second propagation step, propagated uncertainty in the 

system can be expressed with a dispersion and sensitivity vector on the uncertainty relation 

equation, and each uncertainty relation also can be shown by the uncertainty tree. 

Furthermore, this propagated uncertainty algorithm and two vectors will help to shrink the 

uncertainty bounds in the next step.  

3.4 Uncertainty Management 

The last step of the suggested method for shrinking the uncertainty bound distribution 

on RUL prognosis is the uncertainty management step. The uncertainty management has 

Figure 3.4 Basic Uncertainty Tree with expression of uncertainty relations 
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two feedback loops, the inner loop and outer loop. From the previous step, the dispersion 

vector and sensitivity vector can be estimated via the most probable point and uncertainty 

tree approaches. After that, each dispersion vector shows how those sources of uncertainty 

occupy space on top of the desired uncertainty. Sensitivity vectors show how each source 

of uncertainty is sensitive to the prediction point, and they help to estimate propagation 

sensitivity via sensitivity analysis. As the final step, the system can be understood via a 

source impactor that shows the ranking of the contribution factors in the source of 

uncertainty, by using the dispersion vector and sensitivity analysis. Repeat this contribution 

factor configuration, then update to the uncertainty tree. This is referred to as the updated 

uncertainty tree, or inner loop, at the third stage, the management step. Figure 3.5 illustrates 

this concept visually. 

The second feedback loop begins from the updated uncertainty tree. From this 

updated tree, sources of uncertainty can be expressed via the percentage of impact. Then, 

use the impactor source percentage in the prognosis parameter, which is generally set to 

 

Figure 3.5 Uncertainty management stage illustration 
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zero during the prognosis method. These steps do not provide the exact propagated source 

of uncertainty during prognosis, but they focus on major factors of impact and neglect less 

important factors during the procedure. The result of this third stage of uncertainty handling 

during prognosis is shrunk uncertainty bounds at the end of the procedure. 

To summarize, using this methodology, the researcher can accomplish a shrinking 

uncertainty distribution bound by disregarding tiny contribution sources of uncertainty and 

managing high contribution sources of uncertainty. The researcher is advised to process 

important uncertainty sources more carefully, by collecting more data or changing the 

prognostics method. The next chapter will dive deeper into a discussion of such concepts 

as system degradation, propagation, and uncertainty handling that this chapter briefly 

covered. After that, the electric vehicle energy system case study and the bearing crack 

case study are both discussed for thesis verification. 
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CHAPTER 4. PROGNOSIS MECHANICS 

This chapter introduces the various prognosis methods for the end-of-life prediction 

of the engineering system, comparing advantages and disadvantages under the given 

operational and observational conditions, and combined for better prediction results. Next, 

this chapter shows the prediction results obtained in a given battery life degradation case. 

This chapter’s structure is the following: Section 4.1 briefly introduces prognosis. Section 

4.2 introduces a general description of model-based prognosis such as Particle Filter (PF) 

and linear regressions. Section 4.3 provides a general description of data-driven methods 

such as the Neural Network (NN) method and the Gaussian Process Regression (GPR) 

method. Section 4.4 presents a surrogate method, also known as the hybrid method. This 

section particularly emphasizes the Gaussian Process Functional Regression (GPFR) 

method. 

4.1 System Life Degradation  

  Engineering systems do not maintain their performance from their initial conditions 

permanently, because all stresses gradually accumulate and result in damage to the system. 

The damage also gradually accumulates, leading to system fault. The ageing of the 

engineering system under the normal usage condition also occurs naturally. When system 

faults and natural deterioration continue, the system will either reach soft failure at a pre-

specified threshold, or hard failure when it ceases to function entirely. This procedure is 

called a system life degradation. Figure 4.1 illustrates these two general types of 

degradation [128]. The life, or performance, degradation cannot be avoided because it 

inherently exists in every engineering system, with different degradation ratios to its time 

frame. Generally, 𝑡0is the initial condition time and 𝑡𝑓 is the failure time. The cause of 
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degradation can vary greatly. It could be a mechanical issue, a chemical issue, an 

electrochemical issue, an electro-chem-mechanical issue, a thermal issue, a usage 

condition, a health condition, an environmental condition, and so on. The classification of 

degradation varies with each of the above causes. It can be classified by degradation speed, 

term of the time frame, degradation reason and factors, or methodological approaches. 

Therefore, the degradation can be classified as on-line performance degradation and off-

line performance degradation, mutant degradation and gradual degradation, cycle-based 

degradation and calendar-based degradation, and so on.  

 Modeling and simulation are the main approaches to estimating life degradation, 

because modeling follows the degradation process path and judges system health condition 

performance via simulation. The system degradation process modeling can generally be 

divided into two categories. One modeling methods in this category focuses on physical-

based models and captures several degradation models that derive from physical changes. 

X. Ni (2014) shows one example of degradation modeling under discrete time through this 

approach. This method set t is time, 𝛻𝑥 is a damage or physical deterioration, and both 

initial conditions are set to zero. Cumulative damage and distribution is then shown as the 

following: 

𝑡𝑖;  𝑖 = 0,1,2,⋯ , 𝑛,⋯ , 𝑓; 𝑡0 = 0 

Figure 4.1 Example of the engineering system life degradation 
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 {𝛻𝑥𝑖;  𝑖 = 0,1,2,⋯ , 𝑛,⋯ , 𝑓; 𝛻𝑥0 = 0} 

Assuming the variable 𝛻𝑥 is independent and identically distributed (IID) and that it is also 

independent from t, then the cumulative damage 𝑥𝑐 is: 

𝑥𝑐 =∑(∑𝛻𝑥𝑖

𝑓

𝑖=1

)

𝑚

𝑗=1

 

where m is the number of physical damage factors. Next, the cumulative damage 

distribution can be calculated via the Poisson Process, 𝑃(𝑓 = 𝑛) =
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡 as is shown 

below: 

𝐹𝑐(𝑥) = 𝑃(𝑥𝑐 ≤ 𝑥) = ∑𝑃(∑𝛻𝑥𝑖

𝑓

𝑖=1

≤ 𝑥)
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡

𝑛=1

 

This approach is frequently used in bearing wear, oil pipelines, and gas pipeline 

corrosion. Ideally, this method could handle every degradation mechanism; however, it is 

not perfect under complicated empirical conditions. First of all, the mathematical equations 

increase in complexity as the number of degradation mechanisms increase. Therefore, this 

method’s effectiveness is limited to handling just one or two degradation mechanisms. The 

other modeling methods focus on statistical models and fitted them to measured data. They 

may also change or update statistical models to reduce errors between the model and the 

data, expressing the current state via a probability distribution function (p.d.f). 

Furthermore, the statistical model may also include a physical model as a surrogate method 

before handling the full state of the engineering system. This thesis, as mentioned, uses the 

statistical degradation prediction model. The goal is to find and track system degradation 
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so as to extend the system’s performance and life via maintenance. Details about this 

method and maintenance are presented in Chapter 5. 

4.2 About Prognostics 

As briefly mentioned in a previous section, PHM can be divided into two parts, P 

(prognosis), and HM (health and management). According to the International 

Organization for Standardization (ISO), “Prognostics refers to a prediction / forecasting / 

extrapolation process by modeling fault progression, based on current state assessment and 

future operating conditions” and “Health Management refers to a decision-making 

capability to intelligently perform maintenance and logistics activities on the basis of 

diagnostics / prognostics information” [114]. Therefore, PHM focuses on determining the 

operating state of components or of the system, predictive action that includes estimating 

the remaining useful life of the system, and determining appropriate actions for 

maintenance based on diagnosis and prognosis. PHM consists of diagnostics and 

prognostics for system health management, and this results in hugely positive effects, such 

as extending the system cycle, safety improvements, reliability improvements, increases in 

quality and productivity, and a reduction in maintenance time, labor, and costs. Therefore, 

PHM has become a rising solution in many engineering fields nowadays.  

G. Vachtsevanos suggests seven modules for an integrated approach to PHM 

system design as Figure 4.2 depicts. This configuration shows that feedback loops, 

complete data collection,  
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and complete data analysis steps are essential for failure diagnosis and prognosis 

development [100]. PHM can be broken down into seven functional layers: data 

acquisition, data manipulation, health assessment, diagnostics, prognostics, decision 

support, and human interface [115]. The data acquisition layer generally refers to the 

module that provides system access to, and monitoring of, data. The data manipulation 

layer performs data filtering, denoising, feature extraction, and classification, along with 

specialized extraction algorithms. The health assessment layer detects any degredation or 

abnormal state in the health of monitored components, systems, and subsystems. The 

diagnostic layer detects and identifies failures. The prognostics layer projects the current 

health state into the future and estimates the RUL of the system or components, taking a 

confidence interval into consideration. The decision support layer generates 

recommendations related to maintenance action and modification of the objective profile. 

The last layer, the human interface layer, displays alerts and status updates, such as health 

assessments and prognosis assessments of the different layers. Among these layers, 

 

Figure 4.2 An integrated approach to PHM design (from G. Vachtsevanos) 
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prognosis layers and RUL prediction are the keys to maintaining and extending the 

engineering components or system life via PHM. To summarize, better RUL prediction 

can result in more accurate and precise maintenance, followed by logistic cost decrease, 

unnecessary maintenance decrease, and increases in reliability and safety. 

 

Figure 4.3 The seven-layered ISO - PHM architecture (from G. Vachtsevanos) 

 

Figure 4.4. Illustration of prognosis and RUL prediction 
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The prognosis is based on an analysis of failure modes, detection of the current 

state, aging, fault conditions, and correlation of degradation symptoms with a goal of 

increasing them. As previously mentioned, an illustration of RUL prediction as the goal of 

prognostics is given in Figure 4.4. This configuration consists of actual life, prediction time 

𝑡𝑝, end-of-life (EOL) time 𝑡𝐸𝑂𝐿, estimated RUL, threshold, and current time 𝑡𝑐. In such 

cases, life degradation starts right after the initial state. As discussed, it always exists in a 

system, but the most users do not notice the degradation right after the initial state due to 

its low degradation ratio. This ratio is shown in the nonlinear graph in Figure 4.4. Threshold 

refers to the suggested timing for changing the component or maintenance schedule. It is 

also referred to as the EOL threshold of the component or system. The prediction time (𝑡𝑝) 

is regarded as the current time (𝑡𝑐 ), or vice versa because the assumption of such a 

prognostic case is that prediction behavior performs at the current point. Actual EOL (𝑡𝐴𝑂𝐿) 

refers to actual values of system/component life status and estimated or predicted 𝑡𝐴𝑂𝐿 is 

referred to as end-of-life (EOL) time (𝑡𝐸𝑂𝐿). The goal of system state prediction is to find 

the 𝑡𝐸𝑂𝐿 that is in a similar position to 𝑡𝐴𝑂𝐿 under the same threshold. Therefore, the result 

of system/component EOL is expressed in probabilistic terms, such as a probability 

distribution and/or a graph after the prediction is performed. In other words, 𝑡𝐸𝑂𝐿 shows 

the potential possibilities for 𝑡𝐴𝑂𝐿 to exist at the threshold. 

Most traditional prediction techniques deliver a single point [116]. However, it is 

impossible to use such techniques for an empirical system, because system and/or 

environmental conditions are never ideal and it is not possible to handle whole conditions 

mathematically. Furthermore, even under ideal conditions simple point prediction is 

impossible for complex and uncertain systems. Therefore, single point prediction is not 
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adequate to state prognostics or decision makings [117]. In such cases, the value of end-

of-life (EOL) time (𝑡𝐸𝑂𝐿) is estimated into lower limit EOL time (𝑡𝑙𝑜𝑤𝑒𝑟_𝐸𝑂𝐿) and upper 

limit EOL time (𝑡𝑢𝑝𝑝𝑒𝑟_𝐸𝑂𝐿). These are the upper and lower limits of the confidence interval 

(CI), with 98%, 95%, 90%, and 80% confidence. 

The remaining useful life (RUL) estimation, which is the remaining time to 

maintenance from the present time, is also estimated as a probabilistic term because it 

comes from the result of EOL prediction and present time. The simplified general RUL can 

be defined by Eq. (4.1):  

𝑅𝑈𝐿 = 𝑡𝐸𝑂𝐿 − 𝑡𝑃    (4.1) 

It is also expressed as 𝑅𝑈𝐿(𝑡𝑃) = 𝑡𝐸𝑂𝐿(𝑡𝑃) − 𝑡𝑃, because the predicted 𝑡𝐸𝑂𝐿 and RUL are 

updated when new data arrives at each time point. Previous expressions fixed the time point 

at 𝑡𝑃 on Eq. (4.1). RUL is also the same as 𝑡𝐸𝑂𝐿. Just as EOL has lower and upper bounds, 

RUL prediction also has lower and upper bounds. The lower bound of RUL is the 

replacement or maintenance time under PHM. The gaps between these bounds are also 

referred to as RUL bounds or RUL uncertainty bounds. The difference between them will 

Figure 4.5 Prognosis classification 
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be explained in more depth in Chapter 5, along with uncertainty explanations. In general, 

prognostics methods to estimate EOL and RUL predictions can be categorized into 

characteristics classification and methodological classification as Figure 4.5 indicates. The 

former, characteristic classification, is categorized into two activity levels: a usage-based 

(UB) prognosis and a health-based (HB) prognosis. The UB prognosis considers the past, 

present, and future usage of the system to predict the RUL of the system. The UB prognosis 

is also subjected to external and internal stresses during the whole performance period, so 

it is used for long-term prediction. This method does not suppose the fault mode on the 

system cycle. In contrast, the health-based prognostics always suppose the fault mode 

because the HB prognosis predicts the RUL of the failing system. The HB prognosis detects 

and isolates a fault when the fault condition has been detected, and assesses its severity. 

The HB prognosis fits well to the online and real time prognoses of the system via a 

diagnosis that keeps monitoring and updating the system and data. After deciding between 

the HB and UB prognoses for a given project, the researcher must choose the prognosis 

method. Methodological categories can be classified into three categories: model-based, 

data-driven, and hybrid approaches. Physical models illustrate the differences between 

Figure 4.6 A Taxonomy of Prognostic Approaches from K. Goebel 
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these approaches, depicting the evolution of damage or degradation, field operating 

conditions, and required amount of life degradation data. K. Goebel and G. Vachtsevanos 

describe the range of these methods as a function of the range of system applicability and 

cost, shown in Figure 4.6. The pyramid in the figure starts with the experience-based 

prognostic as the base, the widest range of applicability. In the experience-based approach, 

prognostics are based on the evaluation of a stochastic deterioration function or a fiability 

function, thereby covering most statistical terms of prognostics [120]. Subsequently, cost 

increases and the range of applicability narrows as the pyramid migrates from data-driven 

prognostics to model-based prognostics at the top. These approaches will be discussed in 

more detail in the following sections.  

4.3 Model-Based Methods 

4.3.1 Basic Principles of Model-Based Prognostics 

As briefly mentioned in the literature review, the model-based approaches for 

prognostics consider a system’s underlying physical understanding, such as mechanical, 

electrical, chemical, and thermal processes, and then incorporate a mathematical 

expression of the system into the estimation of RUL. Model-based methods may be 

classified into the first-principle model-based (FPMB) and reliability model-based (RMB) 

methods as described by Enrico Zio, 2012. FPMB approaches use a mathematical model 

derived from first principles to describe the degradation process leading to the failure for 

the prognosis procedure. The author mentions that if this approach is applicable, it leads to 

the most accurate prediction results but the first principle model definition is the hardest 

step in the process. In addition, it is impossible to find a first principle model for complex 
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or real systems. RMB approaches estimate the average equipment life under average usage, 

then use traditional reliability models to estimate the system failure behavior or prediction 

of system RUL. This method includes the environmental stresses and conditions under 

average usages, so prediction is more flexible than in the FPMB approaches. However, this 

approach may require sufficient representative data, especially reliable equipment life 

degradation data, which is quite difficult to come by.  

J. Luo et al. (2012) suggest a block diagram of model-based prognostics as shown in 

Figure 4.7 [122]. This diagram consists of six blocks: (1) Identify system or degradation 

model; (2) Calculate simulation under load condition; (3) Prognostic modeling; (4) Feature 

estimation; (5) Track and measure the model; and (6) Predict RUL. There are also other 

diagrammatic suggestions for model-based prognostics from authors M. Diagle [123], A. 

Dawn [124] and L. Honglei [125]. Differences exist in the details of each researcher’s the 

diagrams, because their models are different and filtering/state space choices to obtain the 

model parameters or RUL are also different. However, the outlines of these various 

diagrams are similar in that they focus on identifying model parameters, then predict future 

 

Figure 4.7 Model-based prognostic process diagram from J.Luo 
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behaviour via consistent parameter updating. Therefore, this method has such high 

reliability and robust prediction that it has become very popular for a number of 

applications in aerospace, the automotive industry, power generation, artificial 

intelligence, transportation, and heavy industry. In addition, autoregressive moving-

average (ARMA) techniques, Bayesian filtering algorithms, and empirically-based 

methods are also included in the model-based prognostic schemes. Furthermore, there are 

a variety of methods raging from Bayesian estimation to artificial intelligence tools to 

estimate model parameters. Common approaches include the Kalman filter (KF), the 

Extended Kalman filter (EKF), the Unscented Kalman Filter (UKF), the particle filter (PF), 

stochastic autoregressive models, the Markov chain Monte Carlo (MCMC) method, the 

Weibull model, and nonlinear least square methods. This thesis will only handle the 

Particle Filter for model-based prognostic methods. 

4.3.2 Hidden Markov Models 

The mathematical modeling of the model-based prognosis starts from the understanding of 

two state models, the first two of which are the State-Space Model and the Hidden Markov 

Model (HMM). Both models are based on Bayesian analysis and they have a similar feature 

 

Figure 4.8 Representation of Hidden Markov Models (HMM) as graphical model 
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in that they express unobserved states or physical models of the system in terms of 

numerical and mathematical representations. According to L. Fahrmeir et al. (2001), both 

state models have been used in the context of time series or longitudinal data {𝑦𝑡}; but the 

observation model of the state space model for 𝑦𝑡 is given by a single state, whereas the 

observation model of HMM uses the sequence of states. In this subchapter, only the general 

HMM are introduced with some detail; the State-Space Model with uncertainty will be 

expanded upon in Chapter 5 as part of the explanation for handling uncertainty.  

The fundamental idea of HMM is illustrated in Figure 4.8. It is expressed by the 

variables 𝑥0, 𝑥1, ⋯ , 𝑥𝑘−1, 𝑥𝑘 , 𝑥𝑘+1  that represent the states on the top nodes, and the 

variables 𝑦0, 𝑦1, ⋯ , 𝑦𝑘−1, 𝑦𝑘, 𝑦𝑘+1 that represent observations or evidence on the bottom 

nodes. Each vertical discrete slice represents time steps. In HMM, state models are hidden 

or non-observable but they can be modeled with the Markov process. The goal of HMM is 

to estimate the state model by providing all observations up to the current point, then also 

estimating future states via past and current state inferences. This method has three 

probability distributions: (1) The transition model, denoted as𝑝(𝑥𝑘|𝑥𝑘−1), only depends on 

the previous state means, initial state distribution 𝑝(𝑥0), and observation model 𝑝(𝑦𝑘|𝑥𝑘). 

With these probability distributions, the posterior distribution can be expressed as follows: 

𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘) = 𝑝(𝑥0)∏𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘)

𝑘

𝑡=1

 

𝑝(𝑥𝑘, 𝑦𝑘−1, 𝑦𝑘−1, … ) = 𝑝(𝑥𝑘) 

𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘|𝑦0, 𝑦1, … , 𝑦𝑘−1, 𝑦𝑘) = 𝑝(𝑥0)𝑝(𝑦𝑘|𝑥0)∏𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘)

𝑘

𝑡=1
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At this point, posterior distribution can be solved using Bayes’ rule for conditional 

probability and non-linear filtering as follows: 

𝑝(𝑥0, … , 𝑥𝑘|𝑦0, … , 𝑦𝑘) =
𝑝(𝑥0, … , 𝑥𝑘 , 𝑦0, … , 𝑦𝑘)

𝑝(𝑦0, 𝑦1, … , 𝑦𝑘−1, 𝑦𝑘)
=
𝑝(𝑦0, … , 𝑦𝑘|𝑥0, … , 𝑥𝑘)𝑝(𝑥0, … , 𝑥𝑘)

𝑝(𝑦0, … , 𝑦𝑘)
 

𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘, 𝑦0, 𝑦1, … , 𝑦𝑘−1, 𝑦𝑘)

=  𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑦0, 𝑦1, … , 𝑦𝑘−1)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘) 

𝑝(𝑦0, 𝑦1, … , 𝑦𝑘−1, 𝑦𝑘) = ∫𝑝(𝑦0, … , 𝑦𝑘|𝑥0, … , 𝑥𝑘)𝑝(𝑥0, … , 𝑥𝑘)𝑑𝑥0… , 𝑑𝑥𝑘 

𝑝(𝑦0, 𝑦1, … , 𝑦𝑘−1, 𝑦𝑘|𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘) =∏𝑝(𝑥ℎ)

𝑘

ℎ

 

𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘) = 𝑝(𝑥0)∏𝑝(𝑥ℎ−1)

𝑘

ℎ

 

Filtering, smoothing, and predicting tasks are used to determine 𝑝(𝑥𝑘|𝑦0, … , 𝑦𝑛), which 

depends on the position of the time slot t. Smoothing is the estimation of 

𝑝(𝑥0, … , 𝑥𝑘|𝑦0, … , 𝑦𝑘) ; as observations arrive, filtering is the estimation of 

𝑝(𝑥𝑘|𝑦0, … , 𝑦𝑘). Finally, the formal solution of 𝑝(𝑥0, … , 𝑥𝑘|𝑦0, … , 𝑦𝑘) is the following: 

𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘|𝑦0, 𝑦1, … , 𝑦𝑘−1, 𝑦𝑘)

=
𝑝(𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑦0, 𝑦1, … , 𝑦𝑘−1)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘)

𝑝(𝑦𝑛|𝑦1, … , 𝑦𝑘−1)
 

𝑝(𝑥𝑘|𝑦0, … , 𝑦𝑘−1) → [𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑠𝑡𝑒𝑝]: 𝑝(𝑥𝑘|𝑦0, … , 𝑦𝑘) =
𝑝(𝑥𝑘)𝑝(𝑥𝑘|𝑦0, … , 𝑦𝑘−1)

𝑝(𝑦𝑛|𝑦1, … , 𝑦𝑘−1)
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𝑝(𝑥𝑘|𝑦0, … , 𝑦𝑘−1) → [𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝]: 𝑝(𝑥𝑘|𝑦0, 𝑦1, … , 𝑦𝑘−1)

= ∫𝑝(𝑥𝑘|𝑦0, 𝑦1, … , 𝑦𝑘−1)𝑝(𝑥𝑘−1|𝑦0, 𝑦1, … , 𝑦𝑘−1)𝑑𝑥𝑘−1 

To achieve prognostics, update the prediction step in the Bayesian inference. Then, use the 

nonlinear filtering equation above in Sequential Important Sampling (SIS) or Important 

Sampling (SI) methods with resampling. This combination is referred to as Sequential 

Monte Carlo methods (SMC).  

4.3.3 Particle Filters 

PF is an emerging popular method for physical-based prognostics with a wide range 

of applications in science and engineering. It fundamentally uses sequential importance 

sampling and Bayesian Theory. Bayesian state estimation calculates a posterior probability 

density function (PDF) from prior observation in the system state. At this point, the 

parameters of the posterior and prior PDFs of the PF method are represented by random 

samples and referred to as particles, hence the name “particle filtering”. PF is also referred 

to as Sequential Monte Carlo (SMC) Methods because the posterior and prior parameters 

change sequentially. In other words, the posterior from the current step shifts to the prior 

on the next step. The parameters are also updated by multiplying them with the likelihood 

from the updated measurement. This is the main difference between the Sequential Monte 

Carlo Method and the classical Monte-Carlo Method. The required number of samples to 

perform filtering will be reduced by likelihood multiplication or necessary precision. 

Therefore, PF is faster and more efficient than the classical Monte Carlo Method, and it 

also covers complex systems, because it can handle non-linear and non-gaussian cases. In 
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addition, PF can perform long-term prediction in multiple steps if the calculation of the 

future state is extended.  

Importance sampling (IS), mentioned at the end of previous subchapter, uses 

importance density and weighting to model density as follows:  

𝜋𝑘(𝑥0, … , 𝑥𝑘) =
𝑤𝑛(𝑥0, … , 𝑥𝑘)𝑞𝑛

𝑍𝑛
 

𝜋𝑘(𝑥0, … , 𝑥𝑘) is model density. It is combined with weight and importance such that 

𝑤𝑘(𝑥0, … , 𝑥𝑘)  is weight, 𝑞𝑘(𝑥0, … , 𝑥𝑘)  is importance, and 𝑧𝑘 is a normalization factor. 

After that, the model density can then be estimated as: 

𝜋̂𝑘(𝑥0, … , 𝑥𝑘) =∑(
𝑤𝑛(𝑋0

𝑖 , … , 𝑋𝑘
𝑖 )

∑ 𝑤𝑛(𝑋0
𝑗
, … , 𝑋𝑘

𝑗
)𝑁

𝑗=1

)(𝛿
(𝑋0

𝑖 ,…,𝑋𝑘
𝑖)
(𝑥0, … , 𝑥𝑘))

𝑁

𝑖=1

 

For the SIS case, select the importance distribution first such that 𝑞𝑘(𝑥0, … , 𝑥𝑘) =

𝑞𝑘−1(𝑥0, … , 𝑥𝑘−1)𝑞𝑘(𝑥0, … , 𝑥𝑘) and the original distribution initial probability sample is 

𝑞0(𝑥0) . Then pick (i) from the conditional probabilities for subsequent steps such as 

𝑞𝑘(𝑥𝑘|𝑥0
𝑖 , … , 𝑥𝑘−1

𝑖 ). Note that these estimated variances also increase as n is increased, so 

a resampling step is required. Resampling generates the sample again from the newly 

created approximation distributions to reduce increased variance on SIS. At this step, each 

sample is associated with a number of offspring samples to estimate the already estimated 

distributions. Figure 4.9 will help to understand this PF algorithm.  
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4.4 Data-Driven Methods 

The model-based prognostics methods introduced in the previous subchapter are 

popular and powerful tools for predicting system state or life degradation. However, they 

are limited in that these models can only be used when physical models or system life 

degradation descriptions are available. Even when well-defined physical models are used, 

there may be drawbacks such as mis-parameterization, parameter instability, mis-

calibration, and high computational time required [133]. In sum, these drawbacks tend to 

generate more uncertainty and increasing the uncertainty bounds. Furthermore, in some 

cases involving complex systems, it is almost impossible to derive a system state model or 

physical process. In such cases, it is possible to set up a surrogate system model via 

assumption of certain forms for the dynamic model first, and then use the observed inputs 

and outputs of the system to determine the model parameters needed [100]. This is a 

fundamental concept of data driven prognosis methods, based on having little physical 

meaning of the system.  

Figure 4.9 Illustration of PF/SMC algorithm 
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4.4.1 Basic Principles of Data-Driven Prognostics 

Data-Driven Prognosis Methods define the relationship between system state 

variables directly from monitored system operating data. They usually rely on knowledge-

based, signal processing, and statistical methodologies to extract the hidden information in the 

measurements. That may require much observed data from similar systems to make reliable 

prognostics without the physical models, since measured data can be major sources for deep 

understanding of system degradation behavior in applications. Therefore, even if the physical 

meaning of the system was not included in this method, the pattern of system degradation can 

be found from trends within measured data. Those trends can then be used for estimating the 

current degradation state and predicting the future system remaining useful life. This data can 

now be referred to as training data. The next step is to evaluate the predicted performance or 

difference between the current data and historical degradation using a testing data set. 

Validation data set is also similar as training and testing data set, that means another training 

data set act as testing dataset and checking performance validation. T. Wang et al. (2008) 

explained four steps (operating regime partitioning, sensor selection, performance assessment, 

and model identification) of training data and three steps (signal transformation, distance 

evaluation, and RUL estimation) of testing data [134]. 

The Data-Driven Approach’s methodologies rely upon the statistical and learning 

approaches from pattern recognition in computational intelligence and machine learning. 

Therefore, as mentioned in the literature review, popular techniques include NN, Fuzzy 

Rule-based, tree-based methods, evolution computational methods, support vector 

machines, relevance vector machines, least square regression, wiener process, and gaussian 
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process regression. Among these techniques, the Gaussian Process is used for the data-

driven methods in this thesis. 

4.4.2 Gaussian Process Regression (GPR) 

  Figure 4.10 illustrates the concept of the Gaussian Process. The Gaussian Process 

(GP) is a framework for a global black-box and non-parametric regression method based 

on Bayesian inference. It uses the empirical data in the absence of the specific system 

model structure to estimate the most probable output algorithm as one of the data-driven 

methods. According to Dr. Melo’s explanation about GP, A Gaussian Process is a 

collection of random variables, any finite number of which have joint Gaussian distribution 

that is fully specified by a covariance matrix and a mean vector. Therefore, the Gaussian 

Process is also a stochastic process that is completely specified by its mean function 𝜇(𝑥) 

and positive definite covariance function 𝑘(𝑥, 𝑥′): 

𝑓(𝑥)~𝐺𝑃(𝜇(𝑥), 𝑘(𝑥, 𝑥′)); 

𝜇(𝑥) = 𝐸(𝑓(𝑥));  𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝜇(𝑥))(𝑓(𝑥′) − 𝜇(𝑥′))]; 

 

Figure 4.10 Gaussian Process Regression Concept illustration 
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Formally, the stochastic process 𝑓(𝑥) is a Gaussian Process and its value at a discrete and 

finite number of points {𝑓(𝑥1), … , 𝑓(𝑥𝑛)} can be seen as part of the normal distribution:  

𝑓(𝑥1),… , 𝑓(𝑥𝑛)~𝑁(0, 𝑘(𝑥, 𝑥′)) 

In most cases, it is commonly assumed that the mean function, 𝜇(𝑥), is zero, because there 

is no prior knowledge about the mean function and linear combination of the random 

variable with the normal distribution to support this assumption. In contrast, the covariance 

function, 𝑘(𝑥, 𝑥′), should reflect prior knowledge, such as smoothness or continuity, about 

the underlying function; therefore its role is important. A popular choice of the covariance 

function is the squared exponential as follows: 

𝐶𝑜𝑣(𝑓, 𝑓′) = 𝑘(𝑥, 𝑥′) = 𝜎𝑓
2 𝑒𝑥𝑝 𝑒𝑥𝑝 [

−(𝑥 − 𝑥′)2

2𝑙2
] ; 

Where 𝑙  and 𝜎𝑓  are hyperparameters of covariance function and 𝜎𝑓
2  is the maximum 

allowable covariance, that should cover a broad range on the y-axis. If the exponential 

function is zero inside when the function 𝑓(𝑥) is almost correlated with 𝑓(𝑥′) or 𝑥 ≈ 𝑥′, 

then 𝑘(𝑥, 𝑥′) = 𝜎𝑓
2 and the covariance function approaches this maximum allowance. On 

the other hand, if 𝑥 and 𝑥′ are far away, 𝑘(𝑥, 𝑥′) is zero and each 𝑥 and 𝑥′ are not visible 

[136]. At the end of this equation, the output is a normal distribution based in terms of 

mean and variance. The mean represents the most likely output and the variance represents 

the confidence of measurement. 

The prediction stage is slightly different from previous methods. Given a set of data 

and prior GP and 𝑓(𝑥) with the mean and covariance function, the prediction stage aims to 
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predictively distribute the function 𝑓∗(𝑥)  at the new input, 𝑥∗.The typical prediction 

methods are given with some observations {𝑦1, … , 𝑦𝑘}  and certain time instances 

{𝑥1, … , 𝑥𝑘}, and they estimate new observations on a new time instance at 𝑘 + 1. However, 

GP sets an input vector 𝑋 = {𝑥1, … , 𝑥𝑘} as training, and a test points vector 𝑋∗, composed 

of all points. In this process, system models are very flexible because they aren’t fixed by 

physical models and the GP chooses the best choice in every case. Therefore, the GP 

always handles additional noise (Gaussian noise is assumed) and is denoted by the 

following observation: 

𝑦 = 𝑓(𝑥) + 𝑁(0, 𝜎𝑛
2) 

This equation is also classified into the global function output, 𝑓(𝑥) , and the local 

departure, 𝑁(0, 𝜎𝑛
2). The global function handles the alternative system model and its 

parameter via regression. Local departure handles error between the global function and 

measured data as noise. This noise folds into 𝑘(𝑥, 𝑥′) by the following equation with the 

Kronecker delta function 𝜎𝑛
2𝛿(𝑥, 𝑥′): 

𝐶𝑜𝑣(𝑓, 𝑓′) = 𝑘(𝑥, 𝑥′) = 𝜎𝑓
2 𝑒𝑥𝑝 𝑒𝑥𝑝 [

−(𝑥 − 𝑥′)2

2𝑙2
]  +  𝜎𝑛

2𝛿(𝑥, 𝑥′) 

𝐾 = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑛)

⋮ ⋮ ⋮
𝑘(𝑥𝑛, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

] 

(
𝑦

𝑓′) =
(0 (𝐾)) 

Once prior distribution is set up from this redefined covariance function, it can be used in 

posterior distribution as follows: 
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𝑓∗(𝑥)~𝐺𝑃(𝑓′, 𝑐𝑜𝑣(𝑓′)); 

𝑓∗ = 𝐸[𝑓∗] =
𝑘(𝑥, 𝑥′)

(𝑘(𝑥, 𝑥′) + 𝜎𝑛2𝐼)
𝑦 

𝑐𝑜𝑣(𝑓∗) = 𝑘(𝑥′, 𝑥′) −
𝑘(𝑥, 𝑥′)

(𝑘(𝑥′, 𝑥) + 𝜎𝑛2𝐼)
 

4.4.3 Neural Network Methods 

The NNs are a family of models inspired by biological neural networks that 

do not have direct storage space in the brain. The brain then stores them in a way that 

changes the connections of nerve neurons. At this point, neurons only receive signals 

coming from other nerve cells and serve to send out their signals [30]. The Neural 

Network Models operate upon a similar principle. A Neural Network is a network 

that connects a small element called a node, corresponding to the nerve cells in the 

brain. The neural connections of the most vital nerve cells of the brain represent the 

connection weights of nodes. Figure 4.11.a represents graphical simple nodes on NN 

where 𝑥1, 𝑥1,𝑥3 are inputs, 𝑤1, 𝑤1,𝑤3 are weights of input, b is bias, and y is output. 

Output y is 𝑦 = 𝜌(𝑤𝑥 + 𝑏) where 𝑥 = [𝑥1, 𝑥1,𝑥3]
𝑇 , 𝑤 = [𝑤1, 𝑤1,𝑤3], and 𝜌 is the 

activation function. NN then connects to simple nodes as a network, shown in Figure 

4.12.b. NN have various architecture such an artificial neural networks (ANN), back 

propagation neural networks (BPNN), confidence prediction neural networks 

(CPNN), dynamic wavelet neural networks (DWNN), feed forward neural networks 
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(FFNN), recurrent neural networks (RNN), time delay neural networks (TDNN), and 

so on; however, this paper only considers ANN. 

4.5 Hybrid Methods 

Data-Driven Methods are also popular and powerful tools for predicting system state 

or life degradation on complex systems at low cost. However, they have some drawbacks 

such as mis-parameterization, parameter instability, mis-calibration, and high 

computational effort and time required. Even if huge data are ready for prognosis, if 

training data and testing data have a big gap, the prognosis result will not be accurate and 

precise. In other words, data-driven methods are not also perfect for prognosis as dependent 

of system, operating, or environmental condition. Therefore, there is no single prognosis 

method that covers any engineering system. The methods covered in this chapter have their 

own identical techniques to estimate current system states and predict the remaining useful 

life of the components or system. Accuracy and precision results could be high or low 

depending on the situation if using just one method. Therefore, researchers have tried to 

use fusion approaches as hybrid methods that combine data-driven and model-based 

methods to improve the prognosis performance. Examples include averaging combinations 

 

Figure 4.12.a. Simple node of NN 

 

Figure 4.12.b. Network of NN 
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between model-based and data-driven method prognosis results [137], replacing the system 

model in the model-based method by using data-driven methods [138], and using data-

driven methods using model-based methods [139]. 

4.5.1 Gaussian Process Functional Regression (GPFR) 

Dr. Shi JQ et al. (2007) introduced Gaussian Process Functional Regression 

(GPFR) modeling methods for batch data to improve performance of multiple step-ahead 

prediction with Gaussian Process Regression [140]. This method keeps comparing and 

updating the mean function and covariance function of the basic Gaussian Process Method 

continuously. In most cases, the Gaussian Process commonly assumes that the mean 

function, 𝜇(𝑥), is zero because there is no prior knowledge about the mean function, and 

the linear combination of random variables with normal distribution also supports this 

assumption. However, certain methods of the mean, 𝜇(𝑥), suggest optimizing the mean 

function via training data sets or physical state models that come from similar model-based 

methods in the GPFR method. This is why the GPFR model could have improved results 

on long-term based prognoses. The GPFR model is defined as follows: 

𝑦 = 𝜇(𝑡) + 𝜏(𝑥) + 𝑁(0, 𝜎𝑛
2) 

𝜏(𝑥)~𝐺𝑃(0, 𝑘(𝑥, 𝑥′|𝜃)) 

𝜇(𝑡) = 𝜇′𝛽(𝑡) 

Then y can be decomposed by  

𝑦 = 𝜇′𝛽(𝑡) +∑𝜙(𝑥)

𝑗

𝒩(0, 𝜆) +𝒩(0, 𝜎𝑛
2) 



 

 50 

Where 𝜙(𝑥)  is eigenfunction for covariance function of 𝑘(∙,∙) . At the end, prior and 

posterior distribution of GPFR are as follows: 

(
𝑦

𝑓′) = (
𝑢
𝑢∗

(
𝑘(𝑥, 𝑥′) + 𝜎𝑛

2 𝑘(𝑥, 𝑥′)

𝑘(𝑥, 𝑥′)𝑇 𝑘(𝑥′, 𝑥′)
)) 

𝑓∗(𝑥)~𝐺𝑃(𝑓′, 𝑐𝑜𝑣(𝑓′)); 

𝑓∗ = 𝐸[𝑓∗] = 𝜇(𝑥) +
𝑘(𝑥, 𝑥′)

(𝑘(𝑥, 𝑥′) + 𝜎𝑛2𝐼)
(𝑦 − 𝜇) 

𝑐𝑜𝑣(𝑓∗) = 𝑘(𝑥′, 𝑥′) −
𝑘(𝑥, 𝑥′)

(𝑘(𝑥′, 𝑥) + 𝜎𝑛2𝐼)
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CHAPTER 5. UNCERTAITNY HANDLING IN PROGNOSIS 

The previous section introduced the overall properties of prognosis and its technical 

methods. Prognosis deals with predicting the future state of a system. Prediction is always 

blurred by uncertainty, due to a lack of information, unexpected incidents, and so on. 

Uncertainty is a key factor in prognosis to which close attention must be paid, in order to 

maximize the accuracy and precision of results. This chapter will introduce the overall 

properties of uncertainty, including sources of uncertainty and their effects in the system, 

propagation estimation of uncertainty, and how to achieve more accurate and precise 

prognostics by mitigating uncertainty. 

5.1 About Uncertainty 

The Cambridge Dictionary defines uncertainty as “a situation in which something is 

not known, or something that is not known or certain”[141]. Ironically, the actual meaning 

of uncertainty is uncertain; therefore, numerous definitions for uncertainty exist in the 

literature. Uncertainties arise from various factors, including inaccuracy, imprecision, 

vagueness, lack of knowledge or data, randomness, and ignorance. Some sources of 

uncertainty are measurable, whereas others are not; some sources are manageable and 

others are not, and so on. In addition, certainty in a real-world system is vastly less than 

uncertainty in the same system. Therefore, the literature shows numerous attempts to 

research uncertainty reduction in both real world and engineering systems. 

Different researchers categorize uncertainty differently. Yen et al. (1971) categorized 

uncertainty into objective uncertainty, that which is associated with random processes, and 
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subjective uncertainty, or that which is related to imprecision [142]. Burges et al. (1975) 

classified uncertainty into Type I and Type II errors; the former of which is related to the 

use of an inadequate model with proper parameters, and the latter of which is related to the 

implementation of inadequate parameters with proper model [143]. Klir et al. (1987) 

categorized uncertainty into ambiguity, which is associated with one-to-many relations 

(situations in which the choice between two or more alternatives is left unspecified), and 

vagueness, which is associated with a difficulty in making sharp distinctions [144]. 

Among these various uncertainty categories, the most popular classification 

distinguishes between aleatory uncertainty and epistemic uncertainty [145, 146]. Aleatory 

uncertainty derives from the inherently uncertain nature and variability of basic 

information. Therefore, it is referred to as irreducible uncertainty, objective uncertainty, 

and stochastic uncertainty. When a system experiences a forced outage due to a fault, 

aleatory uncertainty is the most considerable uncertainty in the system. Epistemic 

uncertainty, on the other hand, results from imperfect knowledge. It is also called reducible 

uncertainty, subjective uncertainty, and state-of-knowledge uncertainty [54]. Since the 

majority of this thesis focuses on knowledge-based propagation and uncertainty handling, 

the epistemic category is most relevant here.  

 Given the information above, how should we resolve uncertainty in engineering 

systems? Researchers have developed many approaches, including mathematical 

approaches such as uncertainty modeling, uncertainty analysis, the importance of 

uncertainty, the effects of uncertainty in the system, propagation of uncertainty, risk 

management of uncertainty, and more. New theories currently trending are imprecise 
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probability theory [147], interval analysis [148, 149], evidence theory [150, 151], 

possibility theory [152, 153], and fuzzy set theory [154, 155]. 

5.2 Significance of Uncertainty in Prognostics  

Prognostics attempts to predict the future state of the engineering system, which is 

invariably clouded by uncertainty. Uncertainty plays a significant role in prognosis; while 

prognosis predicts the system state, uncertainty propagates and reducing accuracy. 

Furthermore, the longer the prognosis performance time, the more potential for the 

outcome to become even more blurred, because the quantity of the uncertainty source 

increases proportionately and propagates uncertainty. This is the reason why long-term 

prognosis involves more significant uncertainty than short-term prognosis. As a clarifying 

point, in the literature, long-term prognosis also refers to multiple-step-ahead prognosis 

and short-term prognosis refers to one-step-ahead prognosis. In this thesis, the author 

assumes that the short-term prognosis has less than 10% segment of the whole degradation 

period, and the long-term prognosis has greater than 50% segment of the entire degradation 

period.In this thesis, long-term prognosis indicates that the prognostics procedure is 

performed anytime from right after the initial time, to the system half life period. 

5.3 State-space and RUL modeling with uncertainty 

Generally, a mathematical approach of system uncertainty management or RUL 

prediction starts from describing state spaces. In the prognosis mechanism introduction, in 

Chapter 4, the Hidden Markov Models were introduced. These models have a function 

similar to that of the state space model. Both models are based on Bayesian analysis and 

they have a similar feature in that they express the unobserved state of the system in terms 
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of numerical and mathematical representation. However, the state-space model can 

describe both: the hidden state of the equipment and the uncertain relationship of the states. 

In addition, it considers both the uncertain relationships between the latent degradation 

condition and the indirect degradation indicators, as well as the asset latent degradation 

processes. The state space model provides a comprehensive approach to RUL estimation 

and to the degradation process [19, 20, 21, 22]. 

The following mathematical representations indicate the system with nonlinear, 

time-variant, continuous time state-space representation: 

𝑥(𝑡)̇ ≜ 𝑓(𝑡, 𝑥(𝑡), 𝜃(𝑡), 𝑢(𝑡), 𝑣(𝑡)), 

𝑦(𝑡) ≜ ℎ(𝑡,  𝑥(𝑡), 𝜃(𝑡), 𝑢(𝑡), 𝑛(𝑡)), 

Where 𝑥(𝑡) ∈ ℝ𝑁𝑥 is the state vector, 𝑡 is the continuous time variable, 𝜃(𝑡) ∈ ℝ𝑁𝜃 is the 

unknown parameter vector, y(t) ∈ ℝ𝑁𝑦  is the output vector, 𝑢(𝑡) ∈ ℝ𝑁𝑢  is the input 

vector, 𝑣(𝑡) ∈ ℝ𝑁𝑣  is the process noise vector, and 𝑓 is the state equation, 𝑓:ℝ𝑁𝑥 ×ℝ𝑁𝜃 ×

ℝ𝑁𝑢 ×ℝ𝑁𝑣 → ℝ𝑁𝑥, 𝑛(𝑡) ∈ ℝ𝑁𝑛 is the measurement noise vector, ℎ is the output vector, 

and ℎ:ℝ𝑁𝑥 × ℝ𝑁𝜃 × ℝ𝑁𝑢 ×ℝ𝑁𝑛 → ℝ𝑁𝑦. Furthermore, the energy available in the system 

at any moment is represented by:  

𝜀(𝑡) ≜ 𝜗(𝑡,  𝑥(𝑡), 𝜃(𝑡), 𝑦(𝑡)), 

Where 𝜀(𝑡) ∈ ℝ𝑁𝜀 is the energy available at the time t, 𝜗 is the mapped function between 

system stages[23], and 𝜗:ℝ𝑁𝑥 ×ℝ𝑁𝜃 ×ℝ𝑁𝑦 → ℝ𝑁𝜀 . From the system state mode, the EOL 
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at the current time 𝑡𝑐, 𝐸𝑂𝐿(𝑡𝑐) is defined as end of time from current time (𝑡𝑐) , before 

which point the system can no longer fulfill its requirement. It is then represented by: 

𝐸𝑂𝐿(𝑡𝑐) ≜ inf{𝑡 > 𝑡𝑐 , 𝑇ℎ(𝑡) ∈ Γ} 𝑎𝑛𝑑 𝑡𝑐 < 𝑡 < 𝑡𝐸𝑂𝐿; 

Where 𝛤 is the failure zone that refers to the set of undesired system states and 𝑇ℎ(𝑡) is a 

threshold function. In the prognosis approach, note that this state space focuses on the 

predicting the future and the associated uncertainty; the output equation 𝑦(𝑡) is not used in 

the prognosis stage, because output measurements are only available until 𝑡 = 𝑡𝑐 [24] and 

the state of performance system lies outside the desired region of acceptable states. The 

desired state is expected through a set of constraints, 𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ≜ {𝑐𝑖}𝑖=1
𝑁𝑐 , where 𝑐𝑖 is a 

function c𝑖: ℝ
𝑁𝑥 × ℝ𝑁𝜃 → ℬ that maps a given point in the joint space parameter given the 

current inputs (𝑥(𝑡), 𝜃(𝑡), 𝑢(𝑡)) , to the Boolean domain 𝐵 ≜ [0,1], 𝑤ℎ𝑒𝑟𝑒 

𝑐𝑖(𝑥(𝑡), 𝜃(𝑡), 𝑢(𝑡)) = 1 if the state of the performance system lies outside of the desired 

region, otherwise zero [25]. The RUL is expressed as 

𝑅𝑈𝐿(𝑡𝑐) ≜ 𝐸𝑂𝐿(𝑡𝑐) − 𝑡𝑐 

From the above expression 𝑅𝑈𝐿(𝑡𝑐), it is clear that RUL depends on the following: 

(1) present time; (2) present state; (3) parameter; (4) future loading; and (5) process noise. 

Since these variables are random, 𝑅𝑈𝐿(𝑡𝑐) is also random at any prediction time. The 

variables 𝑣(𝑡) and 𝑢(𝑡) are never known exactly on the range 𝑡𝑐 < 𝑡 < 𝑡𝐸𝑂𝐿, and the system 

evolution is randomly processed; thus, uncertainty is inherent to the RUL estimation and it 

cannot be avoided in the prognostics approach. The prediction of RUL is affected by 

several sources of uncertainty, such as measurement error, modeling error, loading 
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uncertainty, and so on. It is important to accurately account for these sources of uncertainty 

during the RUL procedure. 

5.4 Mathematical Approaches of Uncertainty  

Many researchers express uncertainty through mathematical formulas; this refers to 

uncertainty quantification. One of the uncertainty quantification methods suggests using 

different approaches via the aleatory and epistemic uncertainty classifications. This method 

includes probability-based methods (section 5.4.1), possibility-based methods (section 

5.4.2), and evidence theory methods (section 5.4.3). The probability-based methods are 

widely used for modeling aleatory uncertainty; possibility-based methods are used for 

modelling epistemic uncertainty; and evidence theory is used to cover both types of 

uncertainty [156].  

Probability theory: This is one of the traditional tools used to express uncertainty. 

In probability theory, random variables and probability measures are used to represent a 

magnitude of uncertainty, such that the uncertainty about the occurrence of an event A is 

represented by a P(A). Let 𝛺 be the sample space that contains all possible outcomes 𝑋, so 

𝑋 ∈ 𝛺 . For a discrete case, 𝛺 = (𝑥1, ⋯ , 𝑥𝑛) . A probability distribution function 

𝑑𝑋(𝑥): 𝛺 → [0,1] exists such that ∑ 𝑑𝑋(𝑥)𝑋∈𝛺 = 1. At this point, 𝑑𝑋(𝑥) represents the 

frequency of observing 𝑥  after many trials. Similarly, for a continuous case, if 

𝑝𝑋(𝑥) represents the frequency density of 𝑥 , then the probability distribution function 

𝑝𝑋(𝑥)  exists such that ∫ 𝑝𝑋(𝑥)𝑑𝑥 𝑋∈𝛺
= 1 . For any measurable subset A of 𝛺  called 

“event”, the probability P(A) is: 
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𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑎𝑠𝑒, 𝑃(𝐴) = ∑ 𝑑𝑋(𝑥)

𝑋∈𝛺

 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑎𝑠𝑒, 𝑃(𝐴) = ∫ 𝑝𝑋(𝑥)𝑑𝑥 
𝑋∈𝛺

 

In this interpretation, the probability is defined as a fraction of the repeated number of times 

of an event. To take repetitions of the situation as a sample, randomness determines 

whether or not the event occurs. This process generates a fraction of success, P(A), and 

this uncertainty is sometimes referred to as aleatory uncertainty [157]. 

Evidence theory: This also known as Dempster-Shafer theory, proposed by 

Dempster (1967) and Shafter (1967). It provides a representation for uncertainty of 

incomplete information [158, 159]. The metrics used to measure uncertainty in this method 

are plausibility and the belief that is determined from known information for the 

proposition. In this method, the lower and upper bounds of probability are defined as a 

range of metrics, instead of precise probability for the proposition. The mathematical 

structure of evidence theory starts from defining the sample space as: 

𝑋 = {𝑥: 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦} 

Based on the information available concerning uncertainty quantities, a basic probability 

assignment can be defined as:  

𝑚: 𝑋 → [0,1] 

𝑚(𝐸) ≥ 0 𝑓𝑜𝑟 𝐸 ⊂ 𝑋 
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∑𝑚(𝐸) = 1

𝐸⊂𝑋

 

Where evidence theory defines a mass assignment function 𝑚. The focal element of the 

uncertain quantities is subsequently defined as: 

𝑋 = {𝐸: 𝐸 ⊂ 𝑋,𝑚(𝐸) > 0} 

The belief function, 𝐵𝑒𝑙(𝐸) represents the degree of belief that, based on the available 

evidence, indicates that a given element X belongs to B, as well as to any of subsets of B; 

therefore, this is the degree of belief in set B. The plausibility function, 𝑃𝑙(𝐸) represents 

the sum of the sets that intersect with the amount of all evidence that does not rule out the 

fact that the actual state belongs to B. The fundamental properties of the plausibility and 

belief functions can be defined as follows: 

𝑃𝑙(𝐸) = ∑ 𝑚(𝐵)

 𝐸∩𝑋≠0

; 𝐵𝑒𝑙(𝐸) = ∑ 𝑚(𝐵)

 𝐵⊂𝐸

 

𝑃𝑙(𝐸) + 𝑃𝑙(𝐸) ≥ 1;  𝐵𝑒𝑙(𝐸) + 𝐵𝑒𝑙(𝐸) ≤ 1 

𝐵𝑒𝑙(𝐸) = 1 − 𝑃𝑙(𝐸);  𝑃𝑙(𝐸) = 1 − 𝐵𝑒𝑙(𝐸); 

In evidence theory, likelihood is assigned to sets, as opposed to probability theory, in which 

likelihood is assigned to a probability density function [161]. 

Possibility theory: Classical possibility theory, as introduced by Zadeh in 1978, is based 

on possibility and necessity measures. The concept starts with a branch of evidence theory 

that deals with elements (𝐴1, ⋯ , 𝐴𝑛)  on the power set (𝑃(𝐸) ) of the universe of 



 

 59 

discourse  (𝛺)  and are connected as 𝐴1 ⊂ ⋯ ⊂ 𝐴𝑛 ∈  𝑃(𝐸) . The plausibility belief 

functions are represented as a consonant body of evidence with 𝑋, 𝑌 ∈  𝑃(𝐸) as follows: 

𝑃𝑙(𝑋 ∪ 𝑌) = (𝑃𝑙(𝑋), 𝑃𝑙(𝑌)) ; 𝐵𝑒𝑙(𝑋 ∩ 𝑌) = (𝐵𝑒𝑙(𝑥), 𝐵𝑒𝑙(𝑌)) ; 

The consonant plausibility and belief are then referred to as possibility 𝑃𝑜𝑠(∙)  and 

necessity 𝑁𝑒𝑐(∙) , adapting the basic notion of numerical possibility theory with a 

possibility distribution (𝑟) that expresses the degree of analysis considering the chance of 

event occurrence. Therefore, 𝑟 provides a measure of confidence that is assigned to each 

element of 𝑋 , where 𝑋  is the set of possible values for the uncertain variable x, and 

subjective knowledge is modeled with the pair (𝑋, 𝑟). At this point, 𝑟(𝑥) = 1 indicates that 

there is no known information or occurrence and 𝑟(𝑥) = 0 means that known information 

completely refutes the occurrence of x. So, every possibility (𝑃𝑜𝑠(𝑌))  and necessity 

(𝑁𝑒𝑐(𝑌)) is uniquely represented by association with 𝑟 through the following supremum 

and infimum: 

𝑃𝑜𝑠(𝐸) = 𝑠𝑢𝑝 {𝑟(𝑥): 𝑥 ∈ 𝐸} 

𝑁𝑒𝑐(𝐸) = 1 − 𝑃𝑜𝑠(𝐸) = 𝑖𝑛𝑓{1 − 𝑟(𝑥)} 

These are brief explanations about well-known uncertainty mathematical approach 

methods. However, it is difficult to interpret the results from one method to another, since 

these methods developed from different statistical theories. In addition, as the system 

becomes more and more complex, the boundaries of epistemic and aleatory uncertainty 

become more ambiguous, and the appropriate uses for these methods become less defined 

[161]. 
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5.5 Uncertainty Bounds in Prognosis Metrics 

In statistics, an estimated range of values is likely to include an unknown parameter 

(𝜃) with the population mean (𝜇) and the sample mean (𝑥), and the estimated range is 

calculated from observed data given by the confidence interval (CI). This interval describes 

the amount of uncertainty associated with a sample estimation of the population parameter. 

The CI is constructed with a confidence level (𝛼), which is the probability that the interval 

produced by the method employed includes the true value of the parameter. The confidence 

level 𝛼 is expressed as the percentage chance that the unknown parameter is contained 

within the interval. Common choices of 𝛼 are 0.99, 0.97, 0.95, and 0.90; these are also used 

in Matlab. This interval estimation can be classified into either the one-sided confidence 

bounds or the two-sided confidence bounds shown in Figure 5.1. In addition to these 

differences, the mathematical approach of CI for an unknown mean and a known standard 

deviation case, versus an unknown mean and an unknown standard deviation case are 

shown by the following expressions: 

𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝜇 𝑎𝑛𝑑 𝑘𝑛𝑜𝑤𝑛 𝜎 𝑐𝑎𝑠𝑒, 𝐶𝐼 =  𝑥 ± 𝑧
𝜎

√𝑛
 

 

Figure 5.1 Examples of Confidence Interval  
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𝑈𝑛𝑘𝑛𝑜𝑤𝑛 𝜇 𝑎𝑛𝑑 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝜎 𝑐𝑎𝑠𝑒, 𝐶𝐼 =  𝑥 ± 𝑡
𝑠

√𝑛
 

Where z is the upper critical value for the normal distribution on the two-sided bound CI, 

n is the sample size, and 𝜎 is the standard deviation for the upper case when 𝜎 is known. 𝑡 

is the upper critical value for the t-distribution with n-1 degrees of freedom on the two-

sided bound. The only two-sided confidence bound is used for the uncertainty bounds; it 

addresses the degree of uncertainty associated with data under a given prognosis process. 

5.6 Uncertainty Management for the Long-term Prognosis  

This subsection of Chapter 5 is the goal of this thesis. To summarize, as the result of 

the prognosis, the narrowed range of the uncertainty bounds carries more accurate and 

precise results. This thesis suggests how the uncertainty bound is shrunk by the methods 

Chapter 3 suggests. There are three steps of uncertainty management: i. Uncertainty 

Representation, ii. Uncertainty Propagation, and iii. Uncertainty Management. As 

Figure 5.2 Illustration of uncertainty managing metrics in prognosis 
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mentioned earlier, this thesis does not distinguish between aleatory uncertainty and 

epistemic uncertainty.  

5.6.1 Uncertainty Representation  

In the engineering system, uncertainties arise from a variety of sources and at 

different points during the prognosis process. The first step for shrinking distribution 

bounds in prognosis is to recognize, characterize, and classify the sources of uncertainty in 

the system’s RUL prognosis procedure. This is referred to as “Uncertainty Representation”. 

At this stage, it is not important to determine the exact mathematical approach for 

classifying each uncertainty source in prognosis. The reason is that, as a system increases 

in complexity, such a mathematical approach may become meaningless if the properties of 

each classification are mixed together. However, there is one trend that becomes clearer 

over time with regards to prognosis metrics. Prognosis methods (model-based, data-driven, 

and hybrid methods) are all becoming more methodologically distinct and the usage of 

hybrid methods also increases with time. Therefore, uncertainty classification at this stage 

begins with “system/physical uncertainty” at the base, “data uncertainty” as the next layer, 

and “model uncertainty” as the top layer [97, 162]. Such a taxonomy makes it easy to model 

where the uncertainty occurs from the system and the prognosis. For example, model-based 

methods focus more on the model uncertainty layer, and data-driven methods focus more 

on the data uncertainty layer. Figure 5.3 shows a general illustration of engineering system 

uncertainty classification in the prognosis. The top three classifications of system/physical 

uncertainty, data uncertainty, and model uncertainty remain more or less unchanged, but 

the remainder of the linked branches from these top layers may be added to or skipped 
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over, depending on the system and prediction method. Each source of uncertainty can be 

described as follows: 

Physical uncertainty (∆physical) refers to the inborn variation of the physical 

system. Uncertainty or fluctuations can appear in the form of uncontrollable variations in 

the external environment, instruments, test procedures, observers, and so on. They are 

usually modeled as random phenomena characterized by probability distributions and they 

require large amounts of information [26]. The physical variability in the loading (∆load), 

the environmental condition (∆e.c.) and the operation condition of the load (∆o.c.) is 

considered during this proposed research. The variability in other physical properties is 

insignificantly small, and thus is not considered to be human error or physical measurement 

error. 

Figure 5.3 Taxonomy of the sources of uncertainty in RUL prediction 
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Another type of uncertainty is data uncertainty (∆data). Acquired data can contain 

outliers, errors, or simply have missing data. In addition, the probability distributions of 

some technical properties of energy systems are inferred using data from laboratory 

experiments [27]. The measurement error (∆m.e.), sensor noise (∆s.n.) and sparse noise 

(∆sparse) are the sources of ∆data. 

Model uncertainty (∆model) refers to the difference between the true variable and 

the predicted variable that can neither be measured accurately nor already be known, and 

comprises several parts such as modeling error (∆m.e.), model parameter (∆m.p), state 

estimation (∆s.e.), operation condition (∆o.c.), and surrogate model uncertainty (∆s.u.). 

The state model cannot be perfect, because equations and numbers cannot completely 

explain system phenomena Therefore, the prognosis will have to account for the model 

uncertainty. Any remaining unidentified or uncategorized uncertainty in the system during 

prognostics is called unclassified uncertainty (∆unclassified). This thesis assumes that the 

uncertainty source has an insignificant effect on the prognostics, neglectable during 

procedure, and without regard to dependent or independent sources. 

5.6.2 Uncertainty Propagation 

Figure 5.4 below illustrates traditional uncertainty propagation, determined by 

mapping input structures to output structures after using mathematical quantification to 

classify the uncertainty. Mapping is commonly done by random sampling or analytical 

methodology, such as using the Monte Carlo simulation methods or the probabilistic fuzzy 

approach. For this reason, many researchers place this propagation stage right after the 
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uncertainty quantification step. In past decades, the most common uncertainty propagation 

considers the mathematical function given by: 

𝑌 = 𝛾(𝑋1, 𝑋2, ⋯ , 𝑋𝑙, 𝑋𝑙+1, ⋯ , 𝑋𝑚, ⋯ , 𝑋𝑛) (5.1) 

Where 𝑋 is the input, 𝑌 is the output, 𝛾 is the mapping model, the source of uncertainty 

from each input is 𝑓𝑋𝑖(𝑥𝑖) or 𝜋𝑋𝑖(𝑥𝑖), and all inputs may be expressed with the joint pdf of 

each source as 𝑓𝑋(𝑥). The n number of variables as inputs to X and (𝑋1, 𝑋2,⋯ , 𝑋𝑙) are 

affected purely by epistemic uncertainty and (𝑋𝑙+1, ⋯ , 𝑋𝑚, ⋯ , 𝑋𝑛) is affected purely by 

aleatory uncertainty. The epistemic uncertainties can be described by probability 

distributions as 𝑓𝑋1(𝑥1), 𝑓𝑋2(𝑥2),⋯ , 𝑓𝑋𝑙(𝑥𝑙); aleatory uncertainties, however, are described 

by possibility distributions as 𝜋𝑋1(𝑥𝑙+1),⋯ , 𝜋𝑋𝑚(𝑥𝑚),⋯ , 𝜋𝑋𝑛(𝑥𝑛).  The possibility 

distributions can be described in terms of α-cuts at vertical levels α. In other words, set α 

to zero for the initial setup, then select the α-cuts 𝐴𝛼
𝑥𝑙+1 , ⋯ , 𝐴𝛼

𝑥𝑚 , ⋯ , 𝐴𝛼
𝑥𝑛 of the possibility 

distributions 𝜋𝑋1(𝑥𝑙+1),⋯ , 𝜋𝑋𝑚(𝑥𝑚),⋯ , 𝜋𝑋𝑛(𝑥𝑛). Next, calculate the smallest and largest 

values of 𝛾(𝑋𝑙+1, ⋯ , 𝑋𝑚, ⋯ , 𝑋𝑛) as lower and upper limits then when α is 1, and input the 

Figure 5.4 Traditional uncertainty propagation 
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selected distribution to the probability distribution [163]. These total uncertainties on 

inputs may be expressed in terms of the joint probability density function:  

𝑓𝑋(𝑥) = ∫⋯∫𝑓(𝑥1, ⋯ , 𝑥𝑛) 𝑑𝑥1, ⋯ , 𝑑𝑥𝑛 (5.2) 

The goal of the uncertainty propagation stage is to compute uncertainty in the output of Y, 

in terms of 𝑓𝑌(𝑦) or 𝐹𝑌(𝑦), as either the CDF, or the PDF of output as follows: 

𝑓𝑌(𝑦) = ∫𝑓𝑌(𝑦|𝑥)𝑓𝑋(𝑥) 𝑑𝑥 (5.3) 

𝐹𝑌(𝑦) = ∫ 𝑓𝑋(𝑥)

𝛾(𝑋)<𝑦

𝑑𝑥 (5.4) 

The three common methods for solving these equations are 1) sampling-based methods; 2) 

analytical methods; and 3) surrogate methods. The Monte Carlo and fuzzy methods are 

Figure 5.5 Uncertainty propagation stage illustration 
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sampling-based methods. Interval analysis and the evidence approach belong to the 

analytical method. Regression, chaos expansion, and the most probable point methods are 

classified as surrogate methods. The sampling-based method may require several thousand 

samples. It is time-consuming and costly. The analytical method is not readily suitable to 

account for all types of uncertainty in prognosis. In addition, both methods are not well-

suited to classifying propagated uncertainty sources. Therefore, all sources are considered 

reducible uncertainty, which affects the input variables (𝑋1,⋯ , 𝑋𝑛). In addition, the model 

whose output is the function𝑌 = 𝛾(𝑋1, 𝑋2,⋯ , 𝑋𝑙, 𝑋𝑙+1, ⋯ , 𝑋𝑚,⋯ , 𝑋𝑛) has n number of 

uncertainty sources (∆𝑥1,⋯ , ∆𝑥𝑛) that can be described by the probability distributions as 

𝑓𝑋1(𝑥1),⋯ , 𝑓𝑋𝑛(𝑥𝑛)  without the possibility distribution handling loop. For common 

sources of uncertainty from the uncertainty representation step, use input variables 

𝑋1, 𝑋2, ⋯ , 𝑋𝑛 . This research utilizes the Most Probable Point (MPP) method for 

propagation estimation because, although it has less accurate propagation results, it 

classifies each propagation during transformation via a gradient vector, which, as this thesis 

will show, will be very useful in the final procedure. 

5.6.2.1 Uncertainty Tree 

Dr. Jon P. Longtin suggested the uncertainty tree concept in 2002. The 

uncertainty tree represents a graphical depiction of the variable, with the desired 

uncertainty at the top of tree. It indicates dependence in handling uncertainty. This 

is an effective tool to properly account for showing the flow of uncertainty from 

the input to the output variables via a hierarchical structure in prognostic 

computational models. This tree grows downward. The most desired uncertainty 
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source is located at the top of the tree. t Each uncertainty sources upon which the 

top source depends is listed at descending sublevels, until every branch is 

eventually terminated. After that, each branch is connected via a functional 

uncertainty relationship. Figure 5.6 illustrates an example of the uncertainty tree 

with the uncertainty relationship expressed in the prognosis metrics. In order to 

replicate an uncertainty tree, first, place the desired variable at the top of the tree. 

Below, list all uncertainty sources that contribute to the desired variable. Repeat 

this process until known variables with uncertainty are located at the end of each 

branch. The terminal variable should have a double underline to signify that it is 

terminated. Finally, desired uncertainty is determined simply by descending the tree 

one level at a time, until every branch of the tree is terminated with a variable of 

known uncertainty. In addition, each source of uncertainty within the same branch 

can be expressed by the uncertainty relation equation (h), which refers to a general 

law of uncertainty propagation [29] with the dispersion vector (σ) and the 

 

Figure 5.6 Example of the uncertainty tree and uncertainty relation equation 
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gradient/sensitivity vector (S). The MPP method derives from the gradient vector, 

based upon the dispersion and. Thus, propagated uncertainty can be written as:  

∆𝐴 = √[(
𝜕𝐴

𝜕𝐵𝐴

𝜕𝐵

𝜕𝐸𝐵
∆𝐸𝐵)

2

+ (
𝜕𝐴

𝜕𝐵𝐴

𝜕𝐵

𝜕𝐹𝐵
∆𝐹𝐵)

2

+ (
𝜕𝐴

𝜕𝐶𝐴
∆𝐶𝐴)

2

+ (
𝜕𝐴

𝜕𝐷𝐴
∆𝐷𝐴)

2

] (5.5)  

Each branch shows the mathematical relationship, such as 𝑓𝐴 and 𝑓𝐵 in Figure 5.5. 

5.6.2.2 Most Probable Point (MPP)  

As previously mentioned, the MPP method is one of the most popular 

uncertainty or reliability analysis methods. In this method, fandom input variables 

are transformed into Gaussian variables, using a standard normal transformation. 

They are then linearized using Taylor’s series expansion [164]. Figure 5.7 shows a 

general illustration of MPP estimation with both first- and second-order reliability. 

In this thesis, MPP is used for uncertainty propagation in the RUL prognostics. As 

mentioned, the goal of this stage is to compute uncertainty from the equation (5.1) 

based on output (Y) from input uncertainty (X). In other words, we compute the 

probability distribution function, or cumulative distribution, of the output (𝑌) with 

Figure 5.7 Illustration of the most probable point 
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respect to the probability distribution (𝑋). In this computation, the propagation 

model (𝛾) cannot be linear; so, the MPP method is needed to compute the gradient 

vector of the uncertainty in (𝑌) in terms of the pdf of 𝑓𝑌(𝑦) via transformation and 

linearization in the RUL prognosis [48]. The MPP method requires that the limited-

state function 𝑍(𝑥) be defined as greater or less than zero: 

𝑍(𝑥) = 𝑌 − 𝑐 =  𝛾(𝑥) − 𝑐 (5.5)  

Where c is constant, Y comes from equation (5.1), and X is the number of input 

variables {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}. These input variables are transformed into the standard 

normal space 𝑢 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑛} via the Rosenblatt equation: 

𝑢𝑖 = 𝛷−1[𝐹𝑖(𝑥𝑖)], 𝑤𝑖𝑡ℎ (𝑖 = 1,⋯ , 𝑛) (5.6)  

Where 𝛷−1 refers to the inverse of the standard normal distribution function [165]. 

After this step, the limited-state function can be rewritten as u pace based as 𝑍(𝑢) =

𝛾(𝑢) − 𝑐  with a minimization equality constraint 𝛽 = ‖𝑢‖ . To summarize, 

compute the gradient vector while finding the shortest distance from the origin to 

the limited-state surface equation. Graphically speaking, the MPP is the tangential 

point of the surface of the limited state and the shortest-distance vector from the 

origin 𝛽 in the normal (u) space. This tangential point overlaps with the gradient 

vector of the function ∆𝛾(𝑢) = {
𝜕𝛾

𝜕𝑥1
,
𝜕𝛾

𝜕𝑥2
, ⋯ ,

𝜕𝛾

𝜕𝑥𝑛
}  [166]. This gradient vector 

becomes the key for comparison of the changing length of the CI with respect to a 

changing 𝛽  on the CDF of Y. This gradient vector, in the form of a partial 

derivative, only results from a state-space model prognosis with physical 
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mathematical source variable handling. If data-driven methods are used for 

prognosis, use a gradient vector proportional to the CIS rate. At this stage, the 

problem with developing the uncertainty tree in the prognosis is that the dispersion 

and sensitivity vector equations described above cannot be implemented with pure 

numbers. Therefore, empirical data must be utilized to replace these variables via 

this MPP with the CI from the comparison of 𝛽 based on a changing CDF. 

These uncertainty propagation procedures can be applied to the RUL prognosis case in the 

following order. First, the identified and classified source of uncertainty can be used for 

input variables in equation (5.1) as follows: 

∆𝑅𝑈𝐿 = 𝛾𝑅𝑈𝐿(∆𝑝ℎ𝑦𝑠𝑅𝑈𝐿 , ∆𝑑𝑎𝑡𝑎𝑅𝑈𝐿, ∆𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿) (5.7) 

∆𝑝ℎ𝑦𝑠𝑅𝑈𝐿 = 𝛾𝑝ℎ𝑦𝑠(∆𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠) (5.8) 

∆𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠 = 𝛾𝑙𝑜𝑎𝑑(∆𝑒𝑐𝑙𝑜𝑎𝑑, ∆𝑜𝑐𝑙𝑜𝑎𝑑) (5.9)  

∆𝑑𝑎𝑡𝑎𝑅𝑈𝐿 = 𝛾𝑑𝑎𝑡𝑎(∆𝑠𝑛𝑑𝑎𝑡𝑎 , ∆𝑠𝑑𝑑𝑎𝑡𝑎, ∆𝑚𝑒𝑑𝑎𝑡𝑎) (5.10) 

∆𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿 = 𝛾𝑚𝑜𝑑𝑒𝑙(∆𝑚𝑝𝑚𝑜𝑑𝑒𝑙, ∆𝑠𝑒𝑚𝑜𝑑𝑒𝑙, ∆𝑜𝑐𝑚𝑜𝑑𝑒𝑙) (5.11)  

Where each ∆𝑝ℎ𝑦𝑠∆𝑅𝑈𝐿 , ∆𝑑𝑎𝑡𝑎∆𝑅𝑈𝐿 , 𝑎𝑛𝑑 ∆𝑚𝑜𝑑𝑒𝑙∆𝑅𝑈𝐿 refers to the total physical/system 

uncertainty, data uncertainty and model uncertainty on the RUL prognosis. ∆𝑅𝑈𝐿  is 

accumulated uncertainty after RUL prognosis in the engineering system as the output. 

Other uncertainty sources (∆𝑚𝑝𝑚𝑜𝑑𝑒𝑙, ∆𝑠𝑒𝑚𝑜𝑑𝑒𝑙, ∆𝑜𝑐𝑚𝑜𝑑𝑒𝑙, ∆𝑒𝑐𝑝ℎ𝑦𝑠, ∆𝑜𝑐𝑝ℎ𝑦𝑠, ∆𝑙𝑜𝑝ℎ𝑦𝑠, 

∆𝑒𝑐𝑝ℎ𝑦𝑠, ∆𝑜𝑐𝑝ℎ𝑦𝑠, ∆𝑙𝑜𝑝ℎ𝑦𝑠) refers to the input variables (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  in the equation 

(5.1). The ∆𝑅𝑈𝐿 can then be rewritten as: 
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∆RUL = 𝛾𝑅𝑈𝐿 (

𝛾𝑝ℎ𝑦𝑠(∆𝑒𝑐𝑝ℎ𝑦𝑠, ∆𝑜𝑐𝑝ℎ𝑦𝑠, ∆𝑙𝑜𝑝ℎ𝑦𝑠),

𝛾𝑑𝑎𝑡𝑎(∆𝑠𝑛𝑑𝑎𝑡𝑎 , ∆𝑠𝑑𝑑𝑎𝑡𝑎 , ∆𝑚𝑒𝑑𝑎𝑡𝑎),

𝛾𝑚𝑜𝑑𝑒𝑙(∆𝑚𝑝𝑚𝑜𝑑𝑒𝑙, ∆𝑠𝑒𝑚𝑜𝑑𝑒𝑙, ∆𝑜𝑐𝑚𝑜𝑑𝑒𝑙)

) (5.12)  

The goal of the uncertainty propagation stage in the RUL prognosis is to compute the 

uncertainty of output Y in terms of 𝑓𝑅𝑈𝐿(𝑅𝑈𝐿) or 𝐹𝑅𝑈𝐿(𝑅𝑈𝐿) as the CDF, or to compute 

the uncertainty as the PDF output as follows: 

𝑓RUL(∆RUL) = ∫𝛾𝑅𝑈𝐿(∆RUL|∆𝑝ℎ𝑦𝑠RUL, ∆𝑑𝑎𝑡𝑎RUL, ∆𝑚𝑜𝑑𝑒𝑙RUL)𝛾𝑅𝑈𝐿(∆RUL)𝑑𝑥 (5.13)  

𝐹RUL(∆RUL) = ∫ 𝑓RUL(∆RUL)

𝛾(∆RUL)<𝑦

𝑑𝑥 (5.14)  

Based upon the above calculations, both the CDF and PDF of the RUL can be calculated 

from prognosis methods, such as via model-based methods, data-driven methods, or hybrid 

methods, as uncertainty bounds of the confidence interval. From this CDF, 𝐹𝑅𝑈𝐿(𝑅𝑈𝐿), 

the reference of 𝛽, 𝛽𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, is estimated via the equation shown in Figure 5.6 of the MPP 

method. In addition, the gradient vectors, 〈
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑅𝑈𝐿
,

𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎∆𝑅𝑈𝐿
,

𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿
, ⋯ 〉 also can be 

estimated while in transformation to the standard normal space. These gradient vectors 

adapt to the uncertainty relation equation in the uncertainty tree. Subsequently, the 

uncertainty tree of the RUL prognosis can be drawn as shown in Figure 5.6. This tree shows 

dependency and linkages between each source, and will be used at the management step 

for impactor estimation. The tree also shows the connected adjacent levels via functional 

relations as follows: 

[1st level of main tree] 
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 ∆𝑅𝑈𝐿 = 𝛾𝑅𝑈𝐿(∆𝑝ℎ𝑦𝑠𝑅𝑈𝐿 , ∆𝑑𝑎𝑡𝑎𝑅𝑈𝐿 , ∆𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿) 

= [(
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑅𝑈𝐿
∆𝑝ℎ𝑦𝑠𝑅𝑈𝐿)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎∆𝑅𝑈𝐿
∆𝑑𝑎𝑡𝑎𝑅𝑈𝐿)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿
∆𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿)

2

]

1
2

 

[2nd level of main tree] 

 ∆𝑑𝑎𝑡𝑎𝑅𝑈𝐿 = 𝛾𝑑𝑎𝑡𝑎(∆𝑠𝑛𝑑𝑎𝑡𝑎 , ∆𝑠𝑑𝑑𝑎𝑡𝑎, ∆𝑚𝑒𝑑𝑎𝑡𝑎) 

= [(
𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿
𝜕𝑠𝑛𝑑𝑎𝑡𝑎

∆𝑠𝑛𝑑𝑎𝑡𝑎)
2

+ (
𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿
𝜕𝑠𝑑𝑑𝑎𝑡𝑎

∆𝑠𝑑𝑑𝑎𝑡𝑎)
2

+ (
𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿
𝜕𝑚𝑒𝑑𝑎𝑡𝑎

∆𝑚𝑒𝑑𝑎𝑡𝑎)
2

]

1
2

 

 

Figure 5.8 General schematics of the RUL uncertainty tree 
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∆𝑝ℎ𝑦𝑠𝑅𝑈𝐿 = 𝛾𝑝ℎ𝑦𝑠(∆𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠) =
𝜕𝑝ℎ𝑦𝑠𝑅𝑈𝐿
𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠

∆𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠 

 [2nd level of sub tree] 

 ∆𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿 = 𝛾𝑚𝑜𝑑𝑒𝑙(∆𝑚𝑝𝑚𝑜𝑑𝑒𝑙, ∆𝑠𝑒𝑚𝑜𝑑𝑒𝑙, ∆𝑜𝑐𝑚𝑜𝑑𝑒𝑙) 

= [(
𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿
𝜕𝑚𝑝𝑚𝑜𝑑𝑒𝑙

∆𝑚𝑝𝑚𝑜𝑑𝑒𝑙)
2

+ (
𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿
𝜕𝑠𝑒𝑚𝑜𝑑𝑒𝑙

∆𝑠𝑒𝑚𝑜𝑑𝑒𝑙)
2

+ (
𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿
𝜕𝑜𝑐𝑚𝑜𝑑𝑒𝑙

∆𝑜𝑐𝑚𝑜𝑑𝑒𝑙)
2

]

1
2

 

[3nd level of sub tree] 

 ∆𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠 = 𝛾𝑙𝑜𝑎𝑑(∆𝑒𝑐𝑙𝑜𝑎𝑑, ∆𝑜𝑐𝑙𝑜𝑎𝑑) 

= [(
𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠

𝜕𝑒𝑐𝑙𝑜𝑎𝑑
∆𝑒𝑐𝑙𝑜𝑎𝑑)

2

+ (
𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠

𝜕𝑜𝑐𝑙𝑜𝑎𝑑
∆𝑜𝑐𝑙𝑜𝑎𝑑)

2

]

1
2

 

At the end, the uncertainty relation equation can be re-written as:  

∆𝑅𝑈𝐿 =

√
  
  
  
  
  
  
  
  
  
  
  
  
  
 

[
 
 
 
 
 
 
 
 
 
 
 
 (

𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑

𝜕𝑒𝑐𝑙𝑜𝑎𝑑
∆𝑒𝑐𝑙𝑜𝑎𝑑)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑

𝜕𝑜𝑐𝑙𝑜𝑎𝑑
∆𝑜𝑐𝑙𝑜𝑎𝑑)

2

 

+(
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎

𝜕𝑠𝑛𝑑𝑎𝑡𝑎
∆𝑠𝑛𝑑𝑎𝑡𝑎)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎

𝜕𝑠𝑑𝑑𝑎𝑡𝑎
∆𝑠𝑑𝑑𝑎𝑡𝑎)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎

𝜕𝑚𝑒𝑑𝑎𝑡𝑎
∆𝑚𝑒𝑑𝑎𝑡𝑎)

2

 

+(
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑚𝑒𝑚𝑜𝑑𝑒𝑙
∆𝑚𝑒𝑚𝑜𝑑𝑒𝑙)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑚𝑝𝑚𝑜𝑑𝑒𝑙
∆𝑚𝑝𝑚𝑜𝑑𝑒𝑙)

2

 

+(
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑠𝑒𝑚𝑜𝑑𝑒𝑙
∆𝑠𝑒𝑚𝑜𝑑𝑒𝑙)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑜𝑐𝑚𝑜𝑑𝑒𝑙
∆𝑜𝑐𝑚𝑜𝑑𝑒𝑙)

2

 

+(
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑠𝑢𝑚𝑜𝑑𝑒𝑙
∆𝑠𝑢𝑚𝑜𝑑𝑒𝑙)

2

 
]
 
 
 
 
 
 
 
 
 
 
 
 

 

In reality, it is only possible to determine the gradient vector of each source’s 

variable when a physical-based system model is used for state estimatation, as opposed to 
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model-based prognosis methods. The gradient vector cannot exist with a form of the partial 

derivative; so, the confidence interval sensitivity (CIS) for the gradient vector will be:  

𝛾(𝑢) = {
𝐶𝐼𝑆𝛾

𝐶𝐼𝑆𝑥1
,
𝐶𝐼𝑆𝛾

𝐶𝐼𝑆𝑥2
, ⋯ ,

𝐶𝐼𝑆𝛾

𝐶𝐼𝑆𝑥𝑛
} 

𝐶𝐼𝛾 = (𝛾 − 𝛼√𝑣𝑎𝑟(𝛾), 𝛾 + 𝛼√𝑣𝑎𝑟(𝛾)) ; 𝐶𝐼𝑆𝛾 = 2𝛼√𝑣𝑎𝑟(𝛾)  

This mathematical form will compare the gradient role in MPP to the CDF of 𝛾 and will 

calculate ∆𝛽 = ‖𝛽𝑖‖ − 𝛽𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. It is impossible to determine each source’s propagation 

with a single number via any mathematical formula; however, it is possible to show how 

each source of uncertainty affects all uncertainty at the end of propagation using the 

gradient and sensitivity vector probability. The MPP model advocates focusing on the CDF 

value to solve for the whole [167]. Finally, the uncertainty tree, the uncertainty relationship 

equation, the gradient/sensitivity vector, and 𝛽 values are ready to proceed to the next stage 

through the suggested uncertainty propagation. 

5.6.3 Uncertainty Management 

The last step in this procedure is the uncertainty management stage. The key of this 

stage is to estimate the importance of the uncertainty sources in the prediction process via 

sensitivity analysis, then to simplify the uncertainty tree with high-impact sources only. 

This is referred to finding the ‘source impactor’ from the gradient vectors and ∆𝛽 

comparisons via the sensitivity analysis from the propogation stage results. Next, 

regenerate the RUL prediction using the same prognosis methods that were used to estimate 
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the CDF and PDF of the RUL. A brief explanation follows; this stage is also depicted in 

Figure 5.9. 

5.6.3.1 Sensitivity Analysis 

Generally, the sensitivity analysis represents how uncertainty in the output of the 

system can be apportioned to each source of uncertainty. It provides the theoretical 

framework and numerical tools to identify the contributions of uncertainty sources in the 

RUL prognosis. There are two types of sensitivity analysis methods commonly used: local 

sensitivity analysis and global sensitivity analysis. Global sensitivity analysis focuses on 

analyzing variability across the full factor space, whereas local sensitivity analysis focuses 

on analyzing sensitivity around some point in the factor space [98]. Generally, the global 

sensitivity methods, such as variance-based sensitivity [99], fit for nonlinear cases. 

Figure 5.9 Illustration of the uncertainty management stage 
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Otherwise, a linear case fitting the local sensitivity analysis method must be used, such as 

one-factor-at-a-time (OFAT). OFAT is a classical approach to deriving local sensitivity 

analysis. It consists of estimating, which characterizes the effect on the random value, 𝑌 =

𝑓(𝑋1, 𝑋2,⋯ , 𝑋𝑙) , of perturbation on the input near the nominal value {𝑋|𝑋 =

(𝑋1, 𝑋2,⋯ , 𝑋𝑙)} as: 

𝑆𝑖 =
𝜕𝑦

𝜕𝑋(𝑖)
{𝑋} (5.15)  

This is the variable connected from the tangential point of the MPP, where it overlaps with 

the gradient vector of the function ∆𝛾(𝑢) = {
𝜕𝛾

𝜕𝑥1
,
𝜕𝛾

𝜕𝑥2
, ⋯ ,

𝜕𝛾

𝜕𝑥𝑛
} . Then the sensitivity 

estimation can be re-written as 𝑆𝑖 = ∆𝛾(𝑢){𝑋} with 𝑢𝑖 = 𝛷−1[𝐹𝑖(𝑥𝑖)].  

The variance-based method is another major sensitivity analysis method that 

decomposes output variance into parts attribution to both the input variable and the 

combination variables. This method was introduced by Dr. Sobol (1993); it is also referred 

to as the Sobol Method. The sensitivity of this method is estimated by the amount of 

variance in the output caused by the input [168]. Two effect estimations in this method are 

the first-order effect and total effects. The former estimates the contribution itself. The 

latter describes synthetical interaction among the input factors. These first-order sensitivity 

(𝑆1𝑖) and total effects sensitivity (𝑆𝑇𝑖) estimations are written as:  

𝑆1𝑖 =
𝑉𝑖
𝑉
=
𝑣𝑎𝑟𝑋𝑖 (𝐸𝑋𝑖̅(𝑌|𝑋𝑖))

𝑣𝑎𝑟(𝑌)
=
𝑣𝑎𝑟(𝑋𝑖) − 𝐸(𝑣𝑎𝑟(𝑋𝑖|𝑌))

𝑣𝑎𝑟(𝑌)
(5.16)  
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𝑆𝑇𝑖 =∑𝑆𝑘
𝑘=𝑖

= 1 −
𝑣𝑎𝑟𝑋𝑖̅ (𝐸𝑋𝑖(𝑌|𝑋𝑖̅))

𝑣𝑎𝑟(𝑌)
(5.17)  

Where 𝑉𝑎𝑟(𝑌)  is the unconditional variance of the output, 𝑋𝑖  is all factors except 𝑋𝑖 , 

𝑉𝑎𝑟𝑋𝑖 (𝐸𝑋𝑖̅(𝑌|𝑋𝑖)) is the variance of the conditional expectation, and 𝑉𝑎𝑟𝑋𝑖̅ (𝐸𝑋𝑖(𝑌|𝑋𝑖̅))is 

the first-order effect that does not correspond to 𝑋𝑖 [169]. Each method has its own positive 

and negative properties. The indices in the Sobol method also have another attractive point 

than OFAT, because they quantify the effect of an input variable on the output [103]. 

Regardless, uncertainty sources as input variables are transformed into Gaussian variables 

using the standard normal transformation. They are then linearized using Taylor’s series 

expansion via the MPP methods. In the end, the decision of which method is to be used is 

decided by the form of the gradient vector in the RUL prognosis. 

The OFAT Method can adapt well to the RUL prognosis when the gradient vector 

has the mathematical form that the state model handles via model-based prognosis in the 

equation shown (5.15). In contrast, when the gradient vector consists of rate of confidence 

interval sensitivities, 𝛾(𝑢) = {
𝐶𝐼𝑆𝛾

𝐶𝐼𝑆𝑥1
,
𝐶𝐼𝑆𝛾

𝐶𝐼𝑆𝑥2
, ⋯ ,

𝐶𝐼𝑆𝛾

𝐶𝐼𝑆𝑥𝑛
}, the Sobol Method can be adapted for 

sensitivity estimation via CIS as: 

𝐶𝐼𝛾 = (𝛾 − 𝛼√𝑣𝑎𝑟(𝛾), 𝛾 + 𝛼√𝑣𝑎𝑟(𝛾)) ; 𝐶𝐼𝑆𝛾 = 2𝛼√𝑣𝑎𝑟(𝛾) (5.18)  

Each uncertainty source variables (𝑋1, 𝑋2, ⋯ , 𝑋𝑙) are already assumed to be independent. 

𝑆1𝑖 =
𝑣𝑎𝑟𝑋𝑖 (𝐸𝑋𝑖̅(𝛾|𝑋𝑖))

𝑣𝑎𝑟(𝛾)
=
𝑣𝑎𝑟(𝑋𝑖) − 𝐸(𝑣𝑎𝑟(𝑋𝑖|𝛾))

𝑣𝑎𝑟(𝛾)
=
𝑣𝑎𝑟(𝑋𝑖)

𝑣𝑎𝑟(𝛾)
= (

𝐶𝐼𝑆𝑋𝑖
𝐶𝐼𝑆𝛾

)
2

(5.19)  
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𝑆𝑇𝑖 = 1 −
𝑣𝑎𝑟𝑋𝑖̅ (𝐸𝑋𝑖(𝑌|𝑋𝑖̅))

𝑣𝑎𝑟(𝑌)
= 1 − 𝑆1𝑖̅ = (

𝐶𝐼𝑆𝑋𝑖̅
𝐶𝐼𝑆𝛾

)
2

(5.20)  

For the resulting sensitivity estimation of both the OFAT and Sobol Methods, it is 

important that the sensitivity index, or first-order effect index, of a variable is high. If, 

instead, the total effects index of a variable is low, then that variable is of lesser 

consideration [83].  

The results of sensitivity estimation show how uncertainty sources vary in their 

sensitivity in the output. The results of the sensitivity estimation are based on the 

percentage of each source’s sensitivity and can be added to each source. This is used to 

simplify the uncertainty tree’s focus to important sources of impact. 

5.6.3.2 Updating the Uncertainty Tree 

Uncertainty source variables are sorted by sensitivity after the sensitivity analysis. 

The key of the management stage is to focus on higher impact sources. To do so, the 

simplified uncertainty tree helps to make the process more intuitive. If the gap between the 

higher and lower sensitivity estimations is large, this thesis recommends using just higher 

sensitivity sources. If the gap is small, this thesis recommends choosing a higher random 

median or mean sensitivity estimation. Next, choose a weight based on source sensitivity. 

Weight can be added directly after the sensitivity estimation process but, it can be difficult 

to choose impact source factors from ranked numbers. Therefore, weight may be added 

directly after choosing impact sources based on the sensitivity estimation. 
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Updating the uncertainty tree is simple, as Figure 5.10 depicts. The chosen 

uncertainty sources that are ranked with higher impact remain in the tree and change the 

branch thicknesses. If the impact is remarkable, it is indicated by the thickest branches. In 

contrast, the disregarded uncertainty sources with lower impact ranking are removed from 

the tree and from the relational equation. Using this methodology ultimately accomplishes 

shrunk uncertainty bounds. Model-driven methods on prognosis therefore focus more on 

which model, model parameter, and state estimation variables reduce the modelling error. 

The weighted source variable in Matlab also can be used instead of zero or instead of the 

normally distributed variable that is generally used. The data-driven method on prognosis 

focuses more on sensitive reference data which has sensitive noise, operating conditions, 

and environmental conditions, than it uses a regression model to achieve shrinking 

uncertainty bounds. As discussed, the hybrid methods are the most beneficial, because they 

are based on data-driven methods with a physical model. Though uncertainty is 

significantly increased, it can be reduced in RUL prognosis. To paraphrase, this is similar 

Figure 5.10 Updated Basic Uncertainty Tree 
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to having navigation guide your car: it helps you to reach your destination a little faster and 

to know which road to take when the familiar road is blocked through past experiences.  
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CHAPTER 6. CASE STUDY AND RESULT 

This chapter validates uncertainty management by using an engineering system as a 

case study. Among many engineering systems, the energy storage system requires more 

precise RUL estimation in prognosis, and it is the hottest research component in the electric 

vehicle (EV). Nowadays, the EV is the market dominator for clean vehicles. More than 

half of new vehicles will likely be EVs instead of internal combustion engine vehicles by 

2020 [18]. This thesis introduces this important topic through a general overview of EVs 

in terms of how they impact future vehicle technologies, the basic current understanding 

of the EV, and the life degradation of EVs. This thesis will finally discuss the RUL 

estimation of EV energy storage, with suggested adaptations for uncertainty handling 

methods via uncertainty representation, uncertainty propagation, and uncertainty 

management, to show sensitivity estimations of uncertainty sources. Lastly, this thesis will 

show shrunken uncertainty bounds in this case study to validate the theory. 

6.1 About Electric Vehicles 

Historically, the invention of the automobile gave immense contributions to human 

civilization. It increased social activity and interactions by allowing easier access to remote 

places; it increased economic growth and consumption; and it led to the advent of suburban 

society. Its many positive attributes have led the automobile to become the most popular 

and influential form of transportation in the world. During the past several decades, 

however, the automobile has also caused more negative effects than any other invention. 

Automobiles have led to dramatic increases in accidental death rates; air and noise 

pollution increases major traffic congestion and urban sprawl; and an increased use of non-
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renewable fuels. Especially, scientists and consumers alike have begun to realize a 

connection between human-generated pollution and global warming. We have learned that 

the internal combustion engine (ICE) is one contributing factor. Yet, despite these 

shortcomings, society will not stop using ICE vehicles, because the positive effects in the 

short-term still outweigh the drawbacks in the long-term. Fortunately, both the automobile 

industry and academic researchers have been developing cars that can overcome the 

aforementioned drawbacks. Alternative fuel vehicles were invented as a result of these 

efforts. Electric, propane, methanol, and hydrogen are all used as alternative fuels that help 

to solve the pollution issue. Among them, the electric vehicle has become the most popular 

alternative fuel vehicle. Figure 6.1 shows the increase in the number of electric charging 

stations in 2017 since 2011. This thesis only discusses electric vehicles for the applied case 

study. 

The EV is a vehicle that does not use petroleum as the fuel. Rather, it uses an electric 

storage system and electric motors as its engines. The EV was, in fact, invented twelve 

Figure 6.1 Alternative fueling station by fuel type (by U.S. Department of Energy) 
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years prior to the ICE vehicle [126], but the battery is heavy, capacity is low, and the battery 

charging speed is slow. So, it has not been practically used until recently. More than 100 

years have passed since the invention of the first electric vehicle. Researchers began to 

develop alternative fuel vehicles around the 1990s with better and better battery 

technologies Current EVs have attractive features such as no tailpipe air pollution, less 

noise pollution than ICE vehicles, reduced carbon dioxide emissions, high-efficiency 

components, quiet and smooth operation due to fewer vibrating components, low recharge 

and maintenance costs, and government tax credits. In addition, one well-known electric 

vehicle company, Tesla Motors, is growing rapidly and receiving a constant media 

spotlight. These phenomena grab consumers’ attention and accelerate the place of EVs in 

the market. However, the EV is not perfect yet. It has several negative properties such as a 

battery safety issue, an improved but still shorter driving range compared to ICE vehicles, 

Figure 6.2 Electric vehicle classification and overview 
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and a limited number of charging stations available. Fortunately, these negatives are well-

known and solutions are under research. In addition, many governments have set goals to 

cut carbon dioxide emissions annually, and some are planning to ban sales and 

manufacturing of ICE vehicle in the near future. Commonly, EVs can be classified into 

hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), fuel cell electric 

vehicles (FCEVs), and (pure) battery electric vehicles (BEVs). HEVs are powered by an 

electric motor that uses energy stored in an energy storage system as well as an ICE. HEVs 

do not have a plug for battery charging because they are charged by an ICE or by 

regenerative braking. Therefore, battery packs do not need to be large. PHEVs are similar 

to HEVs because they also combine an electric tractive system with an ICE. The difference 

is that PHEVs can be plugged into the electric grid for charging. They can still be charged 

by an ICE or by regenerative braking, but their charging efficiency is lower than that of 

BEVs, which obtain their charge solely from the electric grid and are the purest form of 

EV. FSEVs in contrast, do not have an ICE or plugs for battery charging. However, they 

have a fuel cell system to generate electricity and thereby charge their battery packs. 

Generally, hydrogen is used for the fuel, and water is generated instead of carbon dioxide 

in the tailpipe. Therefore, FSEVs have zero emissions, long range, and short refueling time. 

However, a limited number of manufacturers are considering this vehicle, so the number 

of hydrogen charging stations are limited. In this paper, EVs only refer to the (pure) battery 

electric vehicles (BEVs).  

6.2 EVES 
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The Electric Vehicle Energy System (EVES) architecture is illustrated in Figure 6.3, 

which was for academic purposes designed, built, and modified for a Formula SAE 

competition in 2015. As was mentioned previously, EVs comprise fewer parts than ICE 

vehicles. They have an electric control unit, an on/off board charger, a battery management 

system (BMS), a high-voltage energy storage system, batteries for low voltage, a DC 

converter, a power inverter, and a motor as the main components. Figure 6.4 shows both 

the high- and low-voltage systems. The high-voltage subsystem (also known as the tractive 

or energy system) and its components comprise a charger, an HV battery, a power inverter, 

and a motor. Voltages in the HV system increase with respect to the number of battery 

Figure 6.3 Example of EV configuration – academic level 
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packs, which typically start at 300V. For example, according to the Tesla Model-S 

datasheet, Tesla has nine bricks and 11 modules of NCR18650 battery cell in the Model S, 

so its high-voltage system covers around 356.4V from 9 𝑏𝑟𝑖𝑐𝑘𝑠 ∗ 3.6𝑉 ∗ 11 𝑚𝑜𝑑𝑢𝑙𝑒𝑠. 

The low-voltage subsystem is similar to an ICE. It is generally 12 ~ 24 volts and handles 

any other electric devices, except tractive-related components. Among these subsystems 

and components, the energy system, motor controller/power inverter, and motor comprise 

 

Figure 6.4 Electric systems in the electric vehicle (HV/LV) 

 

Figure 6.5 Electric Vehicle Energy System (EVES) configuration 
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the primary electric vehicle powertrain, which together is called the EVES as illustrated in 

Figure 6.5. This system does the same function as an engine in the ICE and is the most 

important part of propulsion.  

6.3 Life Degradation of EVES 

 In the EVES subsystem, the motor components significantly degrade with time and 

operating stress. Electrical insulation weakens over time with exposure to the high 

temperature, voltage unbalance, over voltage, and voltage disturbance. The lubricant also 

weakens from high temperature and contamination. Dirt, moisture, and corrosive fumes 

also affect the motor’s performance degradation. According to the United States 

Department of Energy, the life of the motor may last over 40,000 hours and it lasts much 

longer with a conscientious maintenance plan [127]. The motor controller and power 

inverter each have a similar life expectancy. Battery issues are mainly caused by chemical 

and/or mechanical problems. Many chemical degradation factors are only known from 

estimation or bias measurement results. For example, battery capacity can only be 

estimated via state-of-charge (SOC) that is defined as the available capacity and expressed 

as a percentage of its rated capacity. The depth of discharge (DOD) is the inverse of SOC.  

𝑆𝑂𝐶 =
𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑎𝑏𝑙𝑒
𝐶𝑟𝑎𝑡𝑒𝑑

∗ 100%;  𝐷𝑂𝐷 =
𝐶𝑟𝑎𝑡𝑒𝑑

𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑎𝑏𝑙𝑒
∗ 100%; 

Where 𝐶𝑟𝑎𝑡𝑒𝑑  is rated capacity from the battery datasheet and 𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑎𝑏𝑙𝑒 is releasable 

capacity when the battery is completely discharged. In general, there are four methods to 

estimate SOC indirectly. Voltage methods convert battery voltage measurements to SOC 

using a discharge curve that determined from empirical data or open circuit voltage (OCV). 

Coulomb counting methods estimate SOC by integrating the measured battery current in 

time. The last method is the hybrid approach that estimates SOC via the combined voltage 
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method and current integration for better SOC estimation [130]. It is worth noting that 

chemical material more easily changes its property than metal which affects deterioration 

and failure. Therefore, the battery life degradation should be considered more thoroughly 

than any other part in the EVES.  

 In general, the battery case, performance and life deteriorate over time, whether the 

battery used or not. Degradation with usage is defined as ‘cycle fade’ and unused battery 

degradation is defined as ‘calendar fade’ [40,46], as shown in Figure 6.6. The former, 

battery cycle fade, is defined as the number of charging and discharging cycles completed 

until battery capacity reaches the soft failure threshold. According to K. Smith (2009) et 

al., typically time (t) and the number of charge-discharge cycles (N) are dependent, and 

often correlated log function with N by change of the depth of discharge (DOD) or log 

function of DOD, and the cycling fade is poorly understood by its wide condition factors 

[129]. Calendar fade is defined as the total elapsed period until battery capacity reaches the 

soft failure threshold, whether it is in active or inactive usage. In the inactive usage 

condition, temperature and time are the main factors and are mathematically dependent, as 

shown by K. Smith. Typically, this fade has √𝑡 time dependency. This time dependency 

can be described by the Arrhenius relationship. It is described as the rate at which a 

chemical reaction proceeds and doubles for every degree increase in temperature. This 

Figure 6.6 Calendar based (inactive) vs Cycle based (exercised) degradation 
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description can be applied to the rate at which the slow deterioration of active chemicals 

increases. In the active case, both calendar and cycling fades occurs but the impact of the 

former factor is almost negligible; therefore, many models only consider cycling 

degradation. However, the greatest accuracy in state estimation is achieved by considering 

both fades.There are several modes that cause degradation, such as a loss of active material, 

solid electrolyte interface (SEI) layer growth, internal resistance increase, capicity 

reduction, lithium plating, and elevated self-discharge [44,45].  

Figure 3.8 compares EVES component life degredation. Each component’s lifespan 

has a different degradation ratio; however, as shown in the graph, these can be divided into 

two major categories because the battery degradation plot has sharply decreased compared 

to others in deterioration degradation. Electrical and chemical properties degrade much 

more rapidly than mechanical properties. Therefore, energy storage components in EVES, 

especially the battery, can represent the entire system life degradation. Therefore, this 

thesis also assumes that since EVES degradation can be replaced by battery subsystem 

degradation, it will focus on this aspect for the RUL prognosis and uncertainty handling. 

6.3.1 Battery Degradation Model 

 

Figure 6.7 EVES component life degradation 
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There are many types of battery degradation models. The most commonly used are 

the electrochemical model, the equivalent circuit model (ECM), and the exponential 

growth model. The electrochemical model is the most physically-based model. It attempts 

to represent the real battery system more precisely. The ECM model uses a simplified 

physically-based model, in which a capacitor and resistors are used to represent the 

diffusion process and internal impedance. The last model, the exponential growth model, 

is empirically-based [170]. Itl uses more simplified physically-based factors, and can 

therefore be viewed as a low-fidelity but high-efficiency model. At this point, there is no 

well-defined physical battery degradation model. In this thesis, the lack of full data 

regarding physically-based battery information, ECM, and the exponential growth model 

is adapted to uncertainty handling. 

6.3.1.1 Equivalent Circuit Model (ECM) 

The ECM model features extractions from the sensor data of voltage, power, 

resistance, frequency, temperature, and current to estimate the internal parameters. This 

method is commonly used in the BMS for SOC and SOH estimation. Moreover, the first-

order resistor-capacitor (FORC) model and second-order resistor-capacitor (SORC) model 

are commonly used for ECM, as shown in Figure 6.9. It starts from the open circuit voltage 

(OCV) estimation of the cell which is 𝑂𝐶𝑉 = 𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝐸𝑎𝑛𝑜𝑑𝑒. In the illustrations, 𝑅𝑂 

is the ohmic resistance of the battery, which describes the electrolyte and connection 

resistance of the battery, 𝑅𝑃𝐴 is polarization resistance, 𝐶𝑃𝐴 is polarization capacity, 𝑅𝑃𝐶 is 

nonlinear polarization resistance, and 𝐶𝑃𝐴 is nonlinear polarization capacity. With these 
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variables, the diffusion resistor current is 𝑖𝑃𝐴,𝑘+1, the hysteresis voltage is 𝑉𝑘, and the state 

of charge (SOC) 𝑧𝑘+1 can be estimated as: 

𝑂𝐶𝑉 = 𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝐸𝑎𝑛𝑜𝑑𝑒 (6.1) 

𝑖𝑅𝑃𝐴,𝑘+1 =𝑒𝑥𝑝 exp (
−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
) 𝑖𝑅𝑃𝐴,𝑘 + (1 −𝑒𝑥𝑝 𝑒𝑥𝑝 (

−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
) ) 𝑖𝑘 (6.3) 

𝑉𝑡,𝑘 = 𝑂𝐶𝑉𝑘(𝑆𝑂𝐶) − 𝑖𝑅𝑃𝐴,𝑘+1𝑅𝑃𝐴 − 𝑉𝑘 (6.4) 

𝑉𝑘 =𝑒𝑥𝑝 exp (− |
−𝜂𝑘𝑖𝑘−1𝛾∆𝑡

𝑄
|) 𝑉𝑘 + (1 −𝑒𝑥𝑝 𝑒𝑥𝑝 (− |

−𝜂𝑘𝑖𝑘−1𝛾∆𝑡

𝑄
|) )𝑀 (6.5)  

𝑧𝑘+1 = 𝑧𝑘 −
𝜂𝑘𝑖𝑘∆𝑡

𝑄
(6.6) 

 𝑆𝑂𝐶 =
∫𝜂𝑘𝑖𝑘∆𝑡

𝑄
(6.7) 

Where 𝛾 is a positive value that indicates the rate of decay, 𝑧𝑘+1 is SOC at the (𝑘 + 1)𝑡ℎ 

time step, 𝜂𝑘 is charging and discharging efficiency, 𝑄  is rated capacity, and 𝑀  is a 

polarization coefficient [171]. The second-order RC ECM comprises the following terms:  

 

Figure 6.8 The first-order RC ECM and second-order RC ECM 
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𝑖R,𝑘+1 =

[
 
 
 exp (

−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
) 0

0 exp (
−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
)
]
 
 
 

𝑖R,𝑘 +

[
 
 
 (1 − exp (

−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
))

(1 − exp (
−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
))
]
 
 
 

𝑖𝑘 (6.8) 

𝐴RC =

[
 
 
 exp (

−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
) 0

0 exp (
−∆𝑡

𝑅𝑃𝐶𝐶𝑃𝐶
)
]
 
 
 

 ; 𝐵RC = 

[
 
 
 (1 − exp (

−∆𝑡

𝑅𝑃𝐴𝐶𝑃𝐴
))

(1 − exp (
−∆𝑡

𝑅𝑃𝐶𝐶𝑃𝐶
))
]
 
 
 

 

[

𝑧𝑘+1
𝑖R,𝑘+1
ℎ𝑘+1

] = [

1 0 0
0 𝐴RC 0

0 0 exp (−
𝜂𝑘𝑖𝑘∆𝑡

Q
)
] [

𝑧𝑘+1
𝑖R,𝑘+1
ℎ𝑘+1

] +

[
 
 
 
 −
𝜂𝑘∆𝑡

Q
0

𝐵RC 0

0 1 − exp (−
𝜂𝑘𝑖𝑘∆𝑡

Q
)
]
 
 
 
 

[
𝑖𝑘
𝑀
] 

Next, these terms adapt to the state-space model as: 

𝑥𝑘+1 = 𝑥𝑘 −
𝜂𝑘𝑖𝑘𝑇

𝑄
+ 𝑤𝑘 (6.9) 

𝑦𝑘 = 𝜗𝑥𝑘 − 𝑖𝑘𝑅 + ℎ𝑘 + 𝑣𝑘 + 𝛿(∙) (6.10) 

Where 𝑦𝑘 is terminal voltage, 𝜗𝑥𝑘 is open circuit voltage at 𝑥𝑘, 𝑅 is internal impedance, 𝑣𝑘 

is measurement noise, and 𝛿(∙) stands for the uncertainty sources [172]. In addition to this 

state-space modeling, the modeling of degradation effect from side reaction such an solid 

electrolyte interphase (SEI) and deposit layer growth (𝑅𝑆𝐸𝐼 , 𝑅𝐷𝐿), consumption of solvent 

of electrolyte (𝐷𝑒), and isolation of certain anode particles due to SEI and deposits (𝜀𝑠) 

are following: 

𝜂𝑘 = 𝜑𝑠 − 𝜑𝑒 − 𝑈𝑒𝑞 −
𝑅𝑆𝐸𝐼
𝑎𝑠

𝑗𝐿𝑖 (6.11) 
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𝑉𝑘 = 𝜑𝑠 − 𝑅𝑐𝑖 − 𝑅𝐷𝐿∫𝑗𝐿𝑖(𝑙)𝑑𝑙 (6.12) 

Q = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)𝑉𝑘𝜀𝑠𝑐𝑠F (6.13) 

𝜕𝜀𝑠𝑐𝑠
𝜕𝑡

=
𝜕

𝜕𝑙
(𝐷𝑒𝜀𝑠

𝜕𝑐𝑒
𝜕𝑙
) +

𝑗𝐿𝑖

𝐹
(6.14) 

Where 𝜑𝑠 𝑎𝑛𝑑 𝜑𝑒 are potential of anode and electrolyte, 𝑈𝑒𝑞 is equilibrium potential of 

anode, 𝑗𝐿𝑖 is reactive rate, 𝑎𝑠 is ratio of electrode particle volume, 𝑉𝑘is terminal voltage, 

𝑅𝑐 is resistance of current collector, and 𝜀𝑠 is volume fraction of electrolyte [ 174]. 

6.3.1.2 Exponential Growth Model 

The general shape for capacity vs. cycle numbers is plotted below. It has some 

features of each stage A to D in Figure 6.9. Region A has high capacity degradation 

initially, then it slows quickly at Region B, before slowing even more so at Region C. 

Degradation occurs rapidly at Region D. These rates are based on the mathematical and 

physically-based analyses. Furthermore, as previously mentioned, at around 70~80% of 

life degradation from the initial capacity, or SOH, it is recommended to replace the battery. 

This occurs at Regions B or C [41]. 

Figure 6.9 General shape for capacity versus cycle number plots [41] 

 



 

 95 

Unfortunately, the empirical graph does not follow the regional separated graph. The 

trend of degradation is similar to that shown by the exponential graph. Therefore, a simple 

form of the empirical degradation model is expressed by the exponential growth model as:  

𝑦 = 𝐶 𝑒𝑥𝑝 exp(−𝜆𝑡) (6.15)  

Where 𝑦 is the internal battery state, t is time or cycle, and 𝐶 and 𝜆 are model parameters. 

Based on this approach, the battery state models are given as: 

𝑧𝑘 = 𝑧𝑘−1 𝑒𝑥𝑝 exp(−𝛬𝑘) + 𝑤𝑘;  𝑤𝑖𝑡ℎ 𝑧0 = 𝐶 (6.16) 

𝛬𝑘 = 𝛬𝑘−1 + 𝑣𝑘;  𝑤𝑖𝑡ℎ 𝛬0 = 𝛬 (6.17) 

𝑥𝑘 = [𝑧𝑘; 𝛬𝑘] (6.18) 

𝑦𝑘 = 𝑧𝑘 + 𝑣𝑘 (6.19)  

Where the matrices 𝐶 𝑎𝑛𝑑 𝛬 contain decay parameters of 𝐶 and 𝜆, 𝑥𝑘 is the state vector 

that combines with 𝛬 𝑎𝑛𝑑 𝑍, and 𝑣𝑘 𝑎𝑛𝑑 𝑤𝑘 are noise, as in the ECM method. 

6.4 About Data 

 

Figure 6.10 Data set - discharge / charge loop 
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 Battery data is from NASA’s Prognosis Center of Excellence. It was generated by 

Brian Bole, a NASA researcher and former fellow of Dr. Vachtsevanos.  

Test-DATA Scheme 

 18650 Li-ion batteries in batches of four are run through three different operational 

profiles - charge, discharge and impedance - at ambient temperatures of 4, 24 and 44 oC. 

Charging was carried out in a constant current mode at 1.5A until the battery voltage 

reached 4.2V. It was then continued in a constant voltage mode until the charge current 

dropped to 20mA. Fixed and variable load currents at 1, 2, and 4 Amps were used and the 

discharge runs were stopped at 2V, 2.2V, 2.5V or 2.7V. The experiments were carried out 

until the capacity was reduced to at least 1.6Ahr (20% fade).  

Reference charge and discharge cycle  

 

Figure 6.11 Figure Data set – Operating condition differences 
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1. Batteries are first charged at 2A (constant current), until they reach 4.2V, at which 

time the charging switches to a constant voltage mode and continues charging the 

batteries until the charging current falls below 0.01A. 

2. Batteries are then discharged at 2A or 1A until the battery voltage crosses 3.2V. 

Random Walk (RW) charge and discharge cycle  

1. Charging the batteries to 4.2V. Batteries are charged at a 2A current until the battery 

voltage reaches 4.2V. When battery voltage reaches 4.2V then the system will 

switch to constant voltage charging. In this mode, the charging current will be 

regulated to maintain 4.2V at the battery output until the battery current drops 

below a lower threshold. 

2. Batteries are discharged to 3.2V using a randomized sequence of discharging loads 

between 0.5A and 4A. Discharging periods last five minutes each. 

 

Figure 6.13 All data in one plot 

Figure 6.12 Reference data 
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As discussed, these data were collected under various operational and environmental 

conditions. An approximately 800mb-sized data plot with noise added is shown in Figure 

6.12. Median reference data collected under the same conditions are shown in Figure 6.13. 

The real battery life reduction is shown in Figure 6.14. This data is used to show and 

validate the RUL prognosis, as well as to indicate shrinking the prognosis uncertainty 

bounds. 

6.5 RUL Prognosis via the data-driven, mode-based, and hybrid methods  

Figure 6.14 Li-ion battery discharge time decrasing by life degradation 

Figure 6.15 Plot explanation 
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The result of the prognosis of RUL estimation with empirical data via model-based, 

data-driven, and hybrid methods is shown as mentioned in Chapter 4. In the figure 6.15, 

the plot consists of measurement, threshold, upper and lower CIs, regression, median, 

current time, and the RUL probability distribution, also referred to as the uncertainty 

bound. The measurement is divided by the current time point. The measurement on the left 

side in blue used at a prognosis mechanism that only indicates as past and current data. The 

measurement on the right side is in black. These measurements are only used for validation 

of the RUL prognosis results, so the system and prediction mechanisms do not indicate the 

existence of those values. Figure 6.16 shows the result of prognosis via one of model-based 

prognosis that PF is used. The current timeline for the prediction point is at least the middle 

of the whole life degradation time. In addition, the uncertainty bound that is performed 

Figure 6.16 RUL prognosis via model-based method (PF) 
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from the right after the initial point has the widest result, and as such is meaningless for the 

prognosis. Thus, the RUL prognosis can be performed when the current point is located on 

greater than 10% and less than 60% of the total life period. Figure 6.17 shows the prognosis 

result via the GP method as one of data-driven approaches using the empirical growth 

model. This method is based on data inference only, so if the data trend continues to 

decrease, then the prediction result will be high and thus have narrow uncertainty bounds. 

However, due to the unexpected occurrence of unpredictable events occurring in the 65th 

week, the prediction results have low accuracy. In other words, accuracy and precision 

Figure 6.17 RUL prognosis result via data-driven (GP) method 
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characteristics depends on the prognosis methods under the long-term and usage-based 

conditions. Often, the terms accuracy and precision are used interchangeably. However, 

they have totally different meanings in mathematics as Figure 6.18 shows. According to 

the ISO definition, accuracy is used to describe the closeness of true value. Precision is the 

closeness of data among a set of results [173]. Good results may have both high accuracy 

and high precision. Figure 6.19 shows this property classification via PF, GP, and the NN 

prognosis methods. Both data-driven methods are affected by irregular trends that should 

be accounted for, to achieve higher accuracy. In the battery case, the battery can self-charge 

right after discharge. If that phenomena occurs when the theoretical stage changes, this is 

Figure 6.19 Accuracy and precision comparison under given condition 

 

Figure 6.18 Accuracy and Precision 
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indicated as an arrow in Figure 6.19. The hybrid method, created by adding the surrogate 

model to the data-driven method, shows a better result in Figure 6.20.(b). The RUL 

Figure 6.20 (a).Data-driven method VS (b).Hybrid Method 
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prognosis pdf covers expected validation points on the long-term prognosis using a 

physical model. Compared to data-driven methods in Figure 6.20(a), the hybrid method 

RUL prognosis result shows improved accuracy. However, as extra physical models are 

added, they show lower precision than in (a) plots. This can be handled through uncertainty 

management.  

6.6 Uncertainty Management on the Long-term Prognosis of the 1860 Battery 

6.6.1 Uncertainty Representation of the Li-ion RUL prediction 

The first step, the uncertainty representation of the Li-ion RUL prediction, can be 

classified into three main types, as mentioned in the previous chapter: physical uncertainty, 

data uncertainty, and model uncertainty. ∆temp is uncertainty from operating temperature 

changes; ∆D.O.D is uncertainty from depth of discharge rate changes; ∆S.O.C is 

uncertainty from state of changes; ∆𝑐_𝑟𝑎𝑡𝑒 is uncertainty from C-rate changes; ∆𝑛𝑜𝑖𝑠𝑒 

represents noises such as from a sensor or sparse; ∆𝑚𝑒𝑎𝑠 is measurement error; ∆s.e. is 

state estimation such an ∆S.O.C or ∆S.O.H at time t; and ∆input is the model inputs. There 

are three reliable Li-ion battery prognostics models: PF, GP, and GPF, which are used in 

this paper for better skewed lower and upper uncertainty bounds. Therefore, representation 

also deals with each model’s uncertainty. ∆𝑝𝑎𝑟𝑎_𝑝𝑓 , ∆𝑝𝑎𝑟𝑎_𝑔𝑝, 𝑎𝑛𝑑 ∆𝑝𝑎𝑟𝑎_𝑔𝑝𝑓  are 

parameter uncertainties for each model; ∆𝑚. 𝑒. 𝑝𝑓, ∆𝑚. 𝑒. 𝑔𝑝, 𝑎𝑛𝑑 ∆𝑚. 𝑒. 𝑔𝑝𝑓  are 

modeling errors for each model. At the end, the mathematical function with these 

uncertainty source variables and total uncertainties on the input can be expressed as; 

𝑌 = 𝛾 (
𝑥𝑠𝑛𝑑𝑎𝑡𝑎 , 𝑥𝑠𝑑𝑑𝑎𝑡𝑎 , 𝑥𝑚𝑒𝑑𝑎𝑡𝑎 , 𝑥𝑚𝑒𝑝𝑓|𝑔𝑝|𝑛𝑛 , 𝑥𝑚𝑝𝑝𝑓|𝑔𝑝|𝑛𝑛 , 𝑥𝑠𝑒𝑝𝑓|𝑔𝑝|𝑛𝑛 , 𝑥𝑜𝑐𝑝𝑓|𝑔𝑝|𝑛𝑛 ,

 𝑥𝑠𝑢𝑝𝑓|𝑔𝑝|𝑛𝑛 , 𝑥𝑡𝑒𝑚𝑝𝑙𝑜𝑎𝑑 , 𝑥𝑝𝑟𝑒𝑠𝑠𝑙𝑜𝑎𝑑 , 𝑥𝑐𝑟𝑎𝑡𝑒𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 , 𝑥𝑠𝑜ℎ𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 , 𝑥𝑑𝑜𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙  
) 
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6.6.2 Uncertainty Propagation of Li-ion RUL prediction 

The first step of uncertainty propagation of Li-ion RUL prediction is finding CDF of 

RUL via PF and GPF. The pdf graph already got from the RUL prognosis of chapter 6.5. 

From the estimated CDF, calculate β which shows the result of RUL bound on each present 

time setting on figure 6.21. These values got from at least 5,000 repeated prognosis 

procedures to minimize uncertainty under the exact same condition. In addition, the earlier 

prognosis point doesn’t have meaningful RUL prognosis result, it is neglect on long-term 

prognosis. After that, use MPP methods as forehead mention because this is one of 

prognosis methods via linear transformation and normalization while the process, gradient 

vector or each source is used. Therefore, find gradient vector using MPP methods via 

following algorithm using estimated β from PF and GP via following algorithm. 

Table 6.1 CDF and β information via prognosis methods 

Figure 6.21 CDF plot on each time point 
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After that, connect the gradient vector of each independent uncertainty sources via 

uncertainty tree. Using the uncertainty tree, uncertainty sources of the lithium ion battery’s 

RUL prediction are constructed as shown in Figure 6.22. After that, the uncertainty 

relations and propagation are expressed as follows: 

∆𝑅𝑈𝐿 =h(𝜎𝑅𝑈𝐿, 𝑠𝑅𝑈𝐿);  

𝜎𝑅𝑈𝐿 =[𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝜎𝑚𝑜𝑑𝑒𝑙  𝜎𝑑𝑎𝑡𝑎], 𝑠𝑅𝑈𝐿=[𝑠𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑠𝑚𝑜𝑑𝑒𝑙  𝑠𝑑𝑎𝑡𝑎], 

𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = [𝜎𝑐−𝑟𝑎𝑡𝑒 𝜎𝑠.𝑜.ℎ. 𝜎𝑑.𝑜.𝑑. 𝜎𝑙𝑜𝑎𝑑], 𝑠𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 = [𝑠𝑐−𝑟𝑎𝑡𝑒 𝑠𝑠.𝑜.ℎ. 𝑠𝑑.𝑜.𝑑. 𝑠𝑙𝑜𝑎𝑑], 

𝜎𝑑𝑎𝑡𝑎 = [𝜎𝑚.𝑒. 𝜎𝑠.𝑑. 𝜎𝑠.𝑛.], 𝑠𝑑𝑎𝑡𝑎 = [𝑠𝑚.𝑒. 𝑠𝑠.𝑑. 𝑠𝑠.𝑛.], 

Algorithm 6.1 Most probable point  

1: Procedure MPP(𝑡,𝑢𝑖 ,𝛽,𝑔, 𝑡𝑡ℎ ) 

2: 𝑘 ← 𝑡 − 1 

3: for 𝑖=1 to 𝑁𝑢  do 

4:  𝑢𝑖 ←  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 // from representation stage 

5:  𝜂𝑘
(𝑖)
←

−𝛷(𝛽𝑘)

𝑁𝑢
 

6: 𝑖 ← 𝑖 + 1 

7:  𝜔0 ← 𝜂𝑘
(1)

//set initial weight via uniform distribution for optimization 

8: end for 

9: 𝑘 ← 𝑡 
10: for 𝑖=1 to 𝑁𝑢  do 

11:  𝜂𝑘
(𝑖)
←

−𝛷(𝛽𝑘)

𝑁𝑢
 

12:  𝛽𝑘
(𝑖)
← −𝛷−1(𝜂𝑘

(𝑖) − 𝜔0)  

13:  𝛽𝑘 ←  ∑(𝛽𝑘
(𝑖)

)2  

14:  𝜔𝑗 ← 𝛽𝑘 − 𝛽𝑘−1 

15: 𝑖 ← 𝑖 + 1 

16: end for 

17: 𝑘 ← 𝑡𝑡ℎ  

18: for 𝑗=1 to 𝑁𝑢  do 

19:  for 𝑗=1 to 𝑘 do 

20:  𝛷𝑗𝑘 ← 𝑇𝑁(𝜔𝑗 )  

21:  𝛷𝑗 ← 𝛷𝑗𝑘  

22: 𝛼𝑗𝑘 ←
𝜕𝑔

𝜕𝛷𝑗𝑘
  

23: 𝛼𝑗 ← 𝛼𝑗𝑘   

24: end for 

25: return 𝛼𝑗  
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𝜎𝑝𝑓|𝑔𝑝|𝑛𝑛 = [𝜎𝑚.𝑒. 𝜎𝑚.𝑝. 𝜎𝑠.𝑒. 𝜎𝑜.𝑐. 𝜎𝑠.𝑢.], 𝑠𝑝𝑓|𝑔𝑝|𝑛𝑛 = [𝑠𝑚.𝑒. 𝑠𝑚.𝑝. 𝑠𝑠.𝑒. 𝑠𝑜.𝑐. 𝑠𝑠.𝑢.] 

=

√
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑

𝜕𝑡𝑒𝑚𝑝𝑙𝑜𝑎𝑑
∆𝑡𝑒𝑚𝑝𝑙𝑜𝑎𝑑)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑙𝑜𝑎𝑑

𝜕𝑝𝑟𝑒𝑠𝑠𝑙𝑜𝑎𝑑
∆𝑝𝑟𝑒𝑠𝑠𝑙𝑜𝑎𝑑)

2

+(
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑐𝑟𝑎𝑡𝑒𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
∆𝑐𝑟𝑎𝑡𝑒𝑙𝑜𝑎𝑑)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑠𝑜ℎ𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
∆𝑠𝑜ℎ𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙)

2

+(
𝜕𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑅𝑈𝐿

𝜕𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙

𝜕𝑑𝑜𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙
∆𝑑𝑜𝑑𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎

𝜕𝑠𝑛𝑑𝑎𝑡𝑎
∆𝑠𝑛𝑑𝑎𝑡𝑎)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎

𝜕𝑠𝑑𝑑𝑎𝑡𝑎
∆𝑠𝑑𝑑𝑎𝑡𝑎)

2

+(
𝜕𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎𝑅𝑈𝐿

𝜕𝑑𝑎𝑡𝑎

𝜕𝑚𝑒𝑑𝑎𝑡𝑎
∆𝑚𝑒𝑑𝑎𝑡𝑎)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑚𝑒𝑝𝑓|𝑔𝑝|𝑛𝑛
∆𝑚𝑒𝑝𝑓|𝑔𝑝|𝑛𝑛𝑙)

2

+(
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑚𝑝𝑝𝑓|𝑔𝑝|𝑛𝑛
∆𝑚𝑝𝑝𝑓|𝑔𝑝|𝑛𝑛)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑠𝑒𝑝𝑓|𝑔𝑝|𝑛𝑛
∆𝑠𝑒𝑝𝑓|𝑔𝑝|𝑛𝑛)

2

+(
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑜𝑐𝑝𝑓|𝑔𝑝|𝑛𝑛
∆𝑜𝑐𝑝𝑓|𝑔𝑝|𝑛𝑛)

2

+ (
𝜕𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙𝑅𝑈𝐿

𝜕𝑚𝑜𝑑𝑒𝑙

𝜕𝑠𝑢𝑝𝑓|𝑔𝑝|𝑛𝑛
∆𝑠𝑢𝑝𝑓|𝑔𝑝|𝑛𝑛)

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

6.6.3 Uncertainty Management of Lithium Ion RUL prediction 

 

Figure 6.22 Uncertainty tree of lithium ion battery RUL estimation 



 

 107 

The last step of uncertainty handling of li-ion battery RUL prognosis is finding 

impact uncertainty sources via sensitivity analysis then simplify uncertainty tree to use 

impactor via prognosis procedure to shrink uncertainty bound. The 18650 li-ion battery 

case, estimated first and second order of sensitivity from gradient vector of MPP are shown 

on table 6.2. As shown by the indices, the researchers identified important sources of 

uncertainty and eliminated unimportant sources, while updating the uncertainty tree as 

shown in Figure 6.23. This updated uncertainty tree shows which source of uncertainty 

should focus on the shrinking uncertainty bounds. The lithium ion battery prognosis case, 

Table 6.2 first order and total effect index 

Figure 6.23 Updated uncertainty tree of Li-ion battery RUL estimation 
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the model parameter and temperature effects have higher first and total effects source of 

uncertainty on the model-based approach are indicated as the high impactor. Use the 

percentage of impactor weight in 𝜔𝑗  on MPP or adapt hyper parameter loop that 

Dr.Orchard suggested on 2008 as  

𝑣𝑎𝑟{𝑛(𝑡 + 1)} ≔ 0.95 ∗ 𝑣𝑎𝑟{𝑛(𝑡)},  𝑖𝑓 
‖𝑃𝑟𝑒𝑑𝑒𝑟𝑟𝑜𝑟(𝑡)‖

‖𝑦(𝑡)‖
< 0.1; 

𝑣𝑎𝑟{𝑛(𝑡 + 1)} ≔ 1.2 ∗ 𝑣𝑎𝑟{𝑛(𝑡)},  𝑖𝑓 
‖𝑃𝑟𝑒𝑑𝑒𝑟𝑟𝑜𝑟(𝑡)‖

‖𝑦(𝑡)‖
> 0.1 

then RUL prognosis bound shows around 2 to 10% was shrunk as figure 6.24. In addition, 

this approach appears to have an excellent effect in securing the disadvantage of the hybrid 

method where physical modeling added on data-driven approach based on figure 6.25. As 

Figure 6.24 Shrunk uncertainty RUL bound 



 

 109 

Figure 6.25 Original GPF (left) vs Uncertainty handled GPF(right) 
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a result, the RUL prognosis result via uncertainty handled GPF approach shows the most 

accurate and precision PDF graph among model-based and data-driven methods. 

 

6.7 Demonstration  

6.7.1 Use Another Uncertainty Management for Demonstration  

There are several literatures that suggest uncertainty managing [89-96]. Among them, 

Dr. Jing suggest battery performance and RUL estimation via parameter and model 

uncertainty quantification via ECM modeling [172]. First step did system model set up via 

ECM state space model as forehead mentioned. After that, parameter uncertainty 

quantification via mean and standard deviation (STD) of each parameter were calculated 

then ratio between mean and STD were computed. At the end, quantify the model 

uncertainty as a random process, construct GP for modelling the model uncertainty, and 

mean of the model uncertainty can be obtained from the GP on the last step. For the 

Figure 6.26 Shrunk uncertainty bound 
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comparison, set up the same condition and do only GP with suggested uncertain handling 

then result shows on figure 6.26. There are much more uncertainty sources that effects to 

pdf and suggested approach could check more source via gradient vector then it shows 

more efficient RUL bound. 

6.7.2 Simply apply to the 2nd Case Study – Bearing Crack Growth Case 

Origin of CBM and RUL prognosis is invented for maintain the life of engineering 

system as longer as possible. Among many of engineering systems, this research is mostly 

demanded at aircraft engineering as mentioned on the background chapter. Engine or 

bearing crack growth was one of main concern on aircraft research field. Therefore, 

suggested uncertainty managing to shrink RUL uncertainty bound is also shown on this 

bearing crack growing case then compare the result from other older handling methods. 

First of all, the general state model of bearing crack growth model is following 

Figure 6.27 Uncertainty handling comparison 
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𝑥 = [𝑡 ∗ 𝐶 (1 −
𝑚

2
) (∆𝐾)𝑚 + 𝑥0

1−
𝑚
2 ]

2
2−𝑚

 

Where 𝑥 is a current crack length, 𝑥0 is an initial crack size, ∆𝐾 is a stress factor that give 

main factor driving crack growth, and 𝐶 and 𝑚 is model parameter. The paper of Dr. C. 

Chen who is former student of Dr. Vachtsevanos researches about bearing crack growth 

using model-based and data-driven methods and prognosis result as figure [1102,1103]. 

Set same model, parameter, and data, then do the PF prognosis procedure as original 

researcher did. The RUL prognosis results on figure 6.28 and it is similar as original result 

Figure 6.28 Bearing crack growth prognosis result [1102,1103] 

Figure 6.29 Bearing crack growth /w PF (original) 
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on 6.27. after that, adapt uncertainty handling methods via representation, propagation, and 

management step as suggested and the result shows on figure 6.29. 

 

  

Figure 6.30 Figure 6.28 Bearing crack growth /w PF(uncertainty handled) 
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CHAPTER 7. CONCLUSION 

On the conceptual front, the suggested research presented uncertainty handling 

procedure via model-based, data-driven, and hybrid prognosis methods to get more precise 

and accurate RUL prediction result by shrinking uncertainty bound. This research cannot 

show how each sources of uncertainty propagate exactly via mathematical equation but 

using idea from uncertainty tree, uncertainty relation, and gradient vector of MPP methods, 

estimating propagation of uncertainty sources via relation comparing between short-term 

propagation and long-term propagation.  

7.1 Contribution 

• Novel methodologies of prognoses of remaining useful life in usage-based conditions. 

Results of model-based methods such as the particle filter method and the Markov 

Chain Monte Carlo Method have high accuracy and low precision, whereas results of 

data-driven methods such as the Gaussian Process Method and the Neural Network 

Method have high precision and low accuracy under long-term and usage-based 

conditions. 

• A general framework of characterization, representation, and classification of sources 

of uncertainty in the system. The general uncertainty management procedure of the 

prognostics system is frequently discussed from the representation, propagation, and 

management points of view. However, there are various interpretations of each 

procedure’s terms and orders depending on the writer, so clarification here is helpful. 
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• The introduction and comparison of methodologies to estimate the propagation or 

impact ranking of uncertainty sources in the system. Generally, Monte Carlo 

simulation methods, probabilistic fuzzy approach, interval analysis, first- and second-

order reliability methods (FORM; SORM), evidence approach methods, regression 

technique polynomial chaos expansions, and most probable point (MPP) methods are 

used for uncertainty propagation methods. Among these methods, some are not 

suitable for all types of uncertainty source handling, and some are difficult to classify 

in terms of the impact of sources. The rest of the methods have less accurate 

propagation; however, they have other positive aspects. Among the pros and cons of 

these methodologies, this thesis helps the reader to select the best methods for a given 

application via a thorough comparison. 

• More accurate model-based methods results are shown via the uncertainty 

management procedure. The model-based methods have high accuracy and less 

precision, usually because the physical model is expected to catch most of the behavior 

or states via an outline of the model plot. However, the uncertainty management 

procedure has higher numbers of uncertainty sources than data-driven methods. It also 

affects uncertainty bounds on prediction points. For this reason, it has lower precision 

than data-driven methods. However, it can be improved via uncertainty management 

methods and results also show that the uncertainty bounds are shrunk. 

• Data-driven methods, upgraded by adding a physical model, are introduced, with 

improved accuracy and precision results shown via adapted uncertainty handling 

methods. General Data-Driven (DD) methods only consider relationships between 

each data point, so the property of high accuracy does not always hold true when an 
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early phase prognosis is performed. In other words, DD methods do not catch later-

occurring behavior in the system. Accuracy can be improved by adding a physical 

model to DD methods. However, in doing so, many additional uncertainty sources are 

added. At this point, expanded uncertainty bounds can be reduced by uncertainty 

management, thereby providing more accurate and precise results. 

• The demonstration of the proposed framework in two case studies. The approaches 

presented in this thesis can be demonstrated using an 18650 li-ion battery, usually used 

in determining electric vehicle life degradation data, and also used in bearing crack 

growth data. Both data results indicated shrunk uncertainty bounds. Furthermore, this 

author’s suggested approaches also are adaptable for comparison with other 

uncertainty management methods for demonstration. 

7.2 Future Work 

On the software side, whole code was Matlab based. Matlab is still used many 

engineering field but there definitely exists technical limitation and the modeling trend is 

moving to Python. Therefore, developing code that works on Python based. In addition, 

looking for more application that suggested uncertainty managing can be adapted to get 

more precision and accurate prognosis result. Furthermore, using R and Hadoop, adapt it 

to data analytical field. On application side, the author is going to jump in to the industry 

and adapt these suggested methods on different applications. As two of case study already 

shown that the uncertainty handling methods leads to shrink uncertainty bound on RUL 

prognosis for accuracy and precision result.  
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