
STRAP: A Structured Analysis Framework for Privacy
Carlos Jensen, Joe Tullio, Colin Potts, Elizabeth D. Mynatt

Graphics, Visualization and Usability Center
Georgia Institute of Technology

Atlanta, GA 30332, USA
+1-404-385-1102

[carlosj, jtullio, potts, mynatt] @cc.gatech.edu

ABSTRACT
Privacy is an important concern for users, and a difficult
design challenge. Different user populations have different
requirements and expectations when it comes to privacy;
thus finding universally acceptable solutions is far from
trivial. Design guidelines have been available for a number
of years, but often fail to address the dynamic and
impromptu nature of privacy management. These methods
also fail to provide a robust and replicable procedure for
identifying potential problems, leaving the design process
more in the realm of art than science. We identify general
requirements for privacy-aware design and review how
existing methods and guidelines meet these requirements.
We then introduce a light-weight method adapted from the
requirements engineering literature for the structured
analysis of privacy vulnerabilities in design and the
iterative adaptation of preferences. We present a study of
this method on a predictive group calendar system.

Author Keywords
Design, Privacy, CSCW, Goal-oriented Analysis,
Structured Analysis, Groupware, Calendar Systems, e-
commerce.

ACM Classification Keywords
H5.2 [User Interfaces]: Theory and Methods. D2.1
[Requirements/Specifications]: Methodologies. K.4.1
[Public Policy Issues] – Privacy

INTRODUCTION
People are concerned about their online privacy, as
reflected in numerous surveys [12, 14]. Such concerns are
understandable given the growing number of privacy
invasions [31], and the increasing pervasiveness of
information capture and sharing between IT systems. This
pervasiveness of information capture and sharing facilitated

by today’s networked systems has in part triggered a
growing interest and awareness among users about privacy
management, and an increase in the legislation aimed at
protecting privacy [34, 35, 36].
These developments are important to us as designers
because they impose limitations on the types of systems we
may build, and impose requirements on how they must
operate. This is especially important for computer
supported collaborative work (CSCW), e-commerce, and
online environments, where the very nature of the system
requires some information disclosure. Privacy will always
be an important consideration in designing such systems,
and may seriously affect their adoption and ultimate
success.
In addition to requiring the collection and dissemination of
information, these systems present other challenges to
privacy management; their boundaries are sometimes
unclear, especially to the casual user. Who is collecting
what information about them, what other information is
this combined with and from what sources, what is done
with their information, and who is it shared with?
Information in computer systems is seldom ephemeral; it
accumulates and aggregates without the users’ knowledge.
Many of these challenges are fundamentally classic HCI
problems: customization, situation awareness, decision
support, and adequate controls. Whitten and Tygar found
that in the context of security, well-engineered systems
may fail or be circumvented because of inadequate
usability [37]. The same is likely true for privacy
management, which is seldom an active goal for the user. It
is more often the case that privacy becomes a concern only
after some violation has occurred or is suspected. This has
important implications for design; we need to minimize the
burden and distraction of doing privacy management.
Failing to do so will result in the user neglecting this task
in favor of their other goals, at least until the damage is
done.
In response, heuristics and guidelines have been proposed
to help guide design [6, 7, 21, 24]. As in security, non-
trivial problems are often caused by high-level architectural
problems that affect many aspects of a system. These
architectural problems are hard to identify before a system
is built, and both difficult and costly to address after the

fact [3]. Thus, it is important to identify potential privacy
vulnerabilities at the design stage to minimize potential
damage and maintenance costs.
Guidelines provide support to designers by giving them a
framework for detecting and addressing potential privacy
violations before the system is implemented and deployed.
As we will show, these heuristics, though building on a
wealth of experience, fall short in some respects The most
important shortcoming is that they imply the existence, or
the desirability of seeking a universally satisfactory
solution.
Palen and Dourish describe privacy management as
managing disclosure – allowing users to manage and
maintain separate public and private spheres [28]. From a
design perspective, not only do preferences and
expectations vary greatly between individuals and cultures,
but privacy management is a highly dynamic process. If
one accepts this view of privacy, it follows that for non-
trivial systems it will be impossible to derive a universally
acceptable solution. The goal instead shifts to identifying
potential vulnerabilities, identifying solutions where
possible, and mitigation strategies where not possible.
 In addition, heuristic-based approaches to privacy-aware
design often depend on the expertise of the evaluator(s) in
order to successfully identify vulnerabilities. Even with
skilled evaluators, the unstructured form of heuristic
analysis means that potential areas of concern may be
overlooked or given less treatment than others. Moreover,
evaluative skills may not transfer adequately from one type
of system to the next. What is needed, then, is a structured,
robust approach to privacy analysis that mitigates variance
in expertise and knowledge transfer between systems.
In this paper we examine some of the most influential
frameworks for privacy-aware design to see how they meet
these challenges. We then present a light-weight structured
analysis of privacy vulnerabilities (STRAP) that builds on
these frameworks while borrowing methods from
requirements engineering and goal-oriented analysis [13,
15, 30]. We discuss how STRAP fits into the software
development cycle, including how it supports iteration and
adaptation. We wrap up with a comparison between the
performance of STRAP and other frameworks for a
predictive group calendar system.

BACKGROUND AND RELATED WORK
Computers became an important part of the privacy debate
in the 1960’s following the widespread adoption of
computers, or “giant brains” by business and government
in the US. In 1973, the U.S. Department of Health
Education and Welfare’s (HEW) Advisory Committee on
Automated Personal Data Systems presented a report that
defined for the first time a code of Fair Information
Practices (FIPs) [10]. The FIPs have since widely

influenced legislation and practice, especially privacy
policies.
There have been a number of studies examining policies.
The results of these studies show that privacy policies are
increasingly popular among companies, yet provide little
value to users. Policies were seldom consulted, even when
accessible [22]. Possible explanations include the fact that
policies did not focus on the issues users cared about [4],
and used intimidating or difficult language [22]. In order to
overcome the barriers of language, interpretation, and
unnecessary burden, efforts have been made to develop
machine-readable policies, such as P3P [11], and the
automated agents which would act upon such policies [2].
Such policies could be automatically parsed by an agent,
only interrupting the users if the policy is likely to concern
or trouble the user. By filtering which policies, and even
which elements of a policy require attention, users are more
likely to be engaged.
Although external policy statements are often the only
source of information on privacy practices available to
users, it is also important to examine how policy is
implemented. After all, it makes little difference how
accessible and usable a policy is if the software does not
follow the policies specified. The relationship between
policy and code is explored in Lessig’s CODE [25], where
he describes source-code as an instantiation of policy. Code
and programs are a set of rules which the computer, and by
extension the user, must follow in order to accomplish a set
of goals. Some of these policies are planned and
intentional, while others are the product of ad-hoc and
potentially inconsistent implementation decisions. Still
others are artifacts of the tools and underlying
infrastructure.
Because of the evolving nature of both policy and code,
there have been efforts to decouple the two. The IBM
Tivoli system uses the EPAL specification language [5] to
allow policy makers to specify and enforce policies
regarding data access in applications. In order to access
data, the application must go through a gatekeeper, which
ensures that the policy is enforced. Though this approach
adds some overhead, it frees the developer from verifying
that the policy is up to date and being enforced. Policy-
makers are similarly free to modify data policies as needed
without having to modify the applications.
CSCW systems by their very nature usually imply the
disclosure of information by individuals for consumption
by a group. Whether in the interest of maintaining
awareness of coworkers, providing context for
collaborative activities, or promoting distributed
collaboration, disclosure of personal information is often
necessary or adds value to the group. Grudin notes that in
the case of networked applications, we introduce new
possibilities for actions that are de-situated and may have
unknown consequences beyond the user’s control [17].

Identity, location, and activity are examples of common
information types that can both facilitate group work and
expose users to privacy invasions.
In ubiquitous computing applications, the sensing,
recording and application of personal information, possibly
without the users’ knowledge, raises critical privacy
concerns. Bellotti and Sellen stress the importance of
feedback and control over information capture, access,
purpose, and construction [6]. Similarly, Abowd and
Mynatt describe the challenges of designing collaborative
environments where actions and roles are dynamic [1].
Privacy has also been an important concern in groupware
calendar systems (GCS), most extensively studied in the
work of Palen [29], Grudin [16], and collaborations
between the two [19, 28]. While their studies were not
specifically aimed at studying privacy, they found that it
has a significant impact on the adoption, use, and evolution
of groupware calendar systems. We conclude this paper by
performing a small evaluation on a predictive GCS.
Grudin found that users with no people-management
responsibilities regarded calendar sharing as an invitation
to be micromanaged, and therefore preferred to only share
information about free/busy time. Executives refrained
from sharing their schedules due to the sensitivity of the
information they contained. On the other hand, managers
and administrators exhibited the highest degree of sharing,
characterized by high levels of trust and perceived benefit.
These benefits include the ability to determine the
availability of colleagues, the assimilation of organizational
knowledge, and the ability to keep more flexible work
hours. [16]
The success of groupware systems, as in most other things,
seems to depend largely on the degree to which the
individual benefits of contributing outweigh its costs [19].
Palen and Dourish describe these tradeoffs as the resolution
of tensions between the need to be part of the world and
receive some benefit, and the need to shield and protect
oneself and ones personal life [27]. In the case of calendar
systems, Grudin writes:

Just as people who live in buildings with paper-thin walls may
adopt a convention of ignoring what they cannot help overhearing,
people who allow open access to their calendar details assume that
people will access information only when needed and would be
offended by an inquiry that revealed “snooping.” Being able to
block off a calendar entry or reserve a conference room is deemed
an adequate balance. Privacy is ultimately a psychological
construct, with malleable ties to specific objective conditions [19].

While workplace habits and individual experience may
motivate users to share their schedules, mechanisms must
still exist to manage and protect ones privacy. The
frequency with which such mechanisms are used seems to
be less important than the fact that they exist, and the
impact they have on risk perception. Such mechanisms may
be as simple as the ability to omit sensitive events, give

cryptic or context-sensitive names to events, to enable
reciprocity of access settings, or to schedule defensively to
regulate interruption [29]. More explicit mechanisms such
as access-control lists or levels of disclosure are also
possible.
These GCS studies also found that the default settings for
privacy preferences are not typically changed, and may
over time become institutionalized. In one example, the
ability to add events to a colleague’s calendar, while
surprising to new employees, was eventually accepted due
to its widespread use. Grudin and Palen compared an
organization whose shared calendar system defaulted to
openness, with one whose calendar showed only free/busy
blocks, finding they resulted in very different norms [18].

PRIVACY DESIGN BY HEURISTICS

Privacy Design Methods
The first set of privacy guidelines, the HEW FIPs [10],
have survived and evolved over the years. These principles
were originally derived from expert testimony and defined
a set of ethical guidelines for developers and designers.
The most recent version was given by the Federal Trade
Commission (FTC) in their 2000 report on the state of
online privacy [31]. This list, a simplification of the
original principles given in the HEW report, defines the
FIPs as the following 4 principles:
1. Notice/awareness “Consumers should be given notice

of an entity's information practices before any
personal information is collected from them.”

2. Choice/Consent “[…]giving consumers options as to
how any personal information collected from them
may be used.”

3. Integrity/Security “[…] data [should] be accurate
and secure.”

4. Enforcement/Redress “[…]privacy protection can
only be effective if there is a mechanism in place to
enforce them.”

Though groundbreaking, these are by far the most high-
level and abstract of guidelines, providing little practical
guidance. This lack of specificity and detail may make
these guidelines difficult to apply in the real world. This
may explain why the FTC recently found that few websites
were in compliance with these principles [31].
More detailed and applicable frameworks have been
proposed, most embracing the FIPs while providing more
detailed guidance. Bellotti and Sellen developed a
framework for privacy-aware design in ubiquitous
computing [6, 7]. A brief description of this method is
provided in Box 1.
What this framework presents is a procedure designers may
follow in order to evaluate a system, and a set of
requirements for solutions. This is a definitive
improvement over the high-level FIPs guidelines. Though

Bellotti and Sellen’s framework has been the benchmark
since it was introduced, there is no evidence in the
literature of widespread use. A recent variation on this
method was that proposed by Hong et al [20] (see Box 2).

The designer asks a set of questions about the proposed
system meant to identify potential privacy problems:

o What information is captured and how?
o What happens with this information?
o How is this information made accessible to the user?
o What is the purpose of the information collected?

Given the answers to these questions, the designer then
identifies core vulnerabilities and ways to address them. The
following criteria are both guidelines for desirable design, and
benchmarks for evaluating potential solutions:

o Trustworthiness o Appropriate timing
o Perceptibility o Unobtrusiveness
o Minimal intrusiveness o Fail safety
o Flexibility o Low effort
o Meaningfulness o Learnability
o Low cost o Collection and limitation
o Data quality o Purpose specification
o Use limitation o Security safeguards
o Openness o Individual participation
o Accountability

The designer starts by asking a set of analytical questions:
o Who are the users?
o What kinds of information are shared?
o What are the relationships between data subjects and

observers?
o How much information is shared?
o How much information is stored?
o How is the personal information collected and shared?
o Are there malicious data observers?

A vulnerability should only be remedied if the cost is lower
than the product of the likelihood of a violation and the
damage it would cause, providing a set of priorities. A set of
questions guide the discovery of potential solutions:

o How does the unwanted disclosure take place?
o How much choice, control, and awareness do data

sharers have?
o What are the default settings?
o Is it better to prevent unwanted disclosures or prevent

them?
o Are there ways for data sharers to maintain plausible

deniability?
o What mechanisms for recourse or recovery are there?

Method Review
These frameworks are relatively inexpensive to use; they
are not very time-consuming nor do they require a lot of
expertise. Ideally, these traits should promote adoption and
real world use. Heuristics are often derived from case
studies and observation, a large part of their appeal.
Despite these benefits, Bellotti and Sellen’s framework,

and even the FIPs, have seen relatively little adoption
(Hong et al. is too new to evaluate).
These heuristic frameworks address fairly high-level
concepts, they don’t address implementation or technology
issues such as what protocols to use or programming
pitfalls. They derive an analysis independent of
implementation. Critics may of course say that they are too
abstract, that important problems are being glanced over by
keeping the analysis at this level. This is an important
critique because these frameworks do not give a way of
getting from design to requirements and implementation. A
number of decisions which may impact the final design
need to be made on the way down to this level.
Another problem with these methods is that they do not
take iteration into account, an important part of the design
process. Changes to one part of a system’s design may
affect multiple other parts in terms of privacy. These
heuristics, producing a list of vulnerabilities, leave the
designer no choice but to re-evaluate the entire system for
each proposed change. There is no reliable way of
leveraging previous analyses. This means that rather than
becoming a part of the design process, these methods are
more likely to be employed once at the end of the design
cycle.
These heuristic forms of analysis assume that designers
can, with the aid of some well-chosen questions, discover
all or most vulnerabilities. Nielsen showed that given a
small number of reviewers, heuristic analysis can be highly
effective for general HCI problems [26]. This may not hold
true for a domain such as privacy where designers have
much less experience and bias abounds. These biases may
have a large effect when it comes to hot-button topics such
as privacy, and may lead the designer to overly focus on
certain areas to the exclusion of others. This does not mean
that heuristics will not work; it may just mean that a higher
number of reviewers are needed to reach optimal
performance.
Hong et al. include a cost-benefit analysis in their method
to determine which problems are worth addressing. This
takes into account the fact that not all vulnerabilities are
worth addressing. It may even be the case that some
vulnerabilities are impossible to address without crippling
the overall system. In many ways, a vulnerability which
does not have a cost-effective fix is sometimes more
important to document, as it will live on in the system.
Keeping track of hidden assumptions and vulnerabilities
should therefore be an essential part of maintaining a
system.
There are some problems with this cost-benefit analysis;
this step depends on coming up with reliable numbers for
the likelihood of a problem occurring as well as potential
damages. Buttler and Fischbeck showed how you can do
this when prior data is available [9], but it always includes

Box 1: Bellotti and Sellen framework

Box 2: Hong et al framework

an element of guesswork. Because of this uncertainty, it
may be more useful and honest to come up with non-
numeric categorizations (e.g. critical, urgent, important,
annoyance) and a set of objectives (e.g. eliminate all
important vulnerabilities costing less than 100 man-hours
to fix.)

From Heuristics to Goal Analysis
To address some of the weaknesses of the heuristic
approaches we turn to the goal-oriented analysis methods
of requirements engineering [13, 15, 30]. In goal-oriented
analysis, a domain is a collection of goal-achieving actors.
Actors correspond not only to users who are pursuing their
own goals (as in GOMS [23]) but also the major
architectural components, described in terms of the user or
customer goals they are designed to support. Goal analysis
methods, such as ScenIC [30] provide guidelines for
identifying goals, refining them into operationally defined
tasks, and allocating tasks to actors. It should be stressed
that no analysis method is fully algorithmic or replaces
expert domain knowledge. Different analysts could
produce functionally equivalent but structurally different
goal hierarchies when applying these guidelines.
Goals, in contrast to requirements, are approximations of
system properties. They may be vague or incomplete. They
may be goals for the solution of a problem but not
necessarily goals that will be wholly achieved by the
proposed software system. Thus the system boundary may
still be fluid, with the automation, partial automation, or
assignment to users or external systems of tasks that
achieve desired goals still being an unresolved issue.
Another difference between goals and requirements is that
goals are idealizations that not necessarily fully achievable
in their original form. The real world is not always as
accommodating as a set of high-level goals assume. The
“real world” may include human decisions outside the
control of the designers, physical properties of the
environment that may be predicted or influenced but not
determined absolutely, other systems that may not behave
as assumed, and the implementation of the proposed system
itself, which may include defects. In the areas of privacy
and security, the world includes actors with their own goals
antagonistic to the systems’. In requirements engineering, it
is often assumed that this refinement and allocation of
goals is a rational and beneficent activity, but nothing in
the approach requires this. Indeed, in a multi-actor domain,
such as e-commerce or GCS, there is ample opportunity for
conflicts or tradeoffs among the goals of users.

A goal may be blocked when there exists a hypothetical
situation which makes the fulfillment of the goal
impossible. We normally refer to this situation as an
“obstacle”. Such an obstacle is an “anti-goal,” a set of
events which make it impossible for the goal to be
satisfied. In the domain of privacy, it is common to refer to

obstacles as vulnerabilities, because they locate the
potential for privacy violation. To identify vulnerabilities,
we use the obstacle-identification heuristics of ScenIC [30]
and KAOS [8].

Figure 1: A goal-tree with vulnerabilities

As part of a goal-oriented analysis, one typically derives a
goal-tree (see Figure 1). In the goal-tree, goals and sub-
goals are drawn as circles, the top decomposed into lower
level circles, as denoted by the arrows. Actors responsible
for goals are typically identified by color-coding the nodes.
Arches along the paths denote an ‘or’ operator, and while
the ordering of the children left to right does not
necessarily denote order of operation, we have attempted to
accommodate that reading. Vulnerabilities are drawn as
clouds with a callout describing them, and are placed on
the path of the goal they block. Sub-goals sometimes refer
to each other recursively. No new vulnerabilities are
introduced or removed in these recursive branches.
Therefore, for the sake of brevity, these nodes may be
marked and the sub-trees omitted.
With STRAP we address some of the concerns associated
with the heuristic frameworks. We leverage the real-world
experience on which the heuristics are based, and structure
and methods provided by goal-oriented analysis. This last

point gives us a method for bridging the gap between
design, requirements and code.
Our goal with STRAP is to guide the analysis to ensure that
we get a thorough, detailed, and unbiased evaluation. This
is especially important when we are dealing with new
domains or applications. In STRAP, we try to strike a
balance between the costs of application against the utility
of the method. We seek to provide enough detail to
generate real value, while still being light-weight enough to
see real use.

STRUCTURED ANALYSIS OF PRIVACY
STRAP is a method in four steps:

1. Analysis
2. Refinement
3. Evaluation
4. Iteration

Each of these steps is explained in more detail below.

Design Analysis
In order to address privacy vulnerabilities, we must be able
to reliably find them. Depending on the complexity of the
system, or the novelty of the domain, this may not be an
easy process. Current frameworks rely on leading the
designer through a set of analytical questions aimed at
identifying potential trouble areas. This depends on the
designers’ ability to thoroughly examine all aspects of the
application. The process of elicitation is not unreasonable,
but the requirements literature shows that this type of
analysis is difficult and error prone unless preceded by a
systematic analysis of the system [3]. By omitting steps,
ignoring problem areas or fixating on a specific
component, important functions, hidden dependencies, and
deep-rooted architectural problems may be overlooked.
We therefore start by performing a goal-oriented analysis
of the system. As part of this analysis, the domain with its
actors, goals and major system components is identified.
Context information is collected; what the expectations of
the different actors are with regards to privacy such as
whether it is an open or closed system, whether there are
expectations of privacy, of layers of access, default settings
and behaviors, and of course the limitations of the physical
and technological environment. This helps give the
designers and users a shared vocabulary for discussing the
system.
For each goal and sub-goal we ask a set of analytical
questions, similar to those of [6, 20]:
• What information is captured/accessed for this goal?
• Who are the actors involved in the capture and access?
• What knowledge is derived from this information?
• What is done with the information afterward?

If information is captured or accessed, it presents a
potential vulnerability. The user may wish to somehow be
made aware of this, and consent may need to be collected.
While the first question identifies vulnerabilities, the
remaining help identify the appropriate actions to take. We
mark all vulnerabilities in the goal-tree as clouds blocking
the path to a goal, and keep a record of its context.
Once vulnerabilities have been identified, we look for
common causes and duplicates. These often occur when
one set of goals collect and store data needed to meet a
different set of goals. The vulnerability will then appear in
two or more places, with different contexts. These contexts
must be merged in order for a full picture of the
vulnerability to emerge. Vulnerabilities are then evaluated
and categorized in terms of the risk they pose to the user, as
described in section 3.2.
Final we categorize the vulnerabilities, which helps identify
strategies to follow in order to negate them. It is important
to note that these are not hard categories, but rather loose
labels which suggest approaches to follow in negating the
vulnerabilities. We derive these from the FIPS [31]:

• Notice/Awareness
• Choice/Consent
• Security/Integrity
• Enforcement/Redress

These categories overlap, particularly the
Notice/Awareness category which is a catch-all, and
prerequisite to most of the other categories. Once
vulnerabilities have been identified, organized, evaluated
and categorized, we are ready to enter the design
refinement stage.

Design Refinement
It is important to note that it may not be possible to address
all vulnerabilities in a system. In some cases they may not
be worth addressing, typically because the cost would be
prohibitive, because any fix would introduce more serious
vulnerabilities, or because any remedies would seriously
undermine the utility of the system. Vulnerabilities
resulting from dependencies on other systems, such as the
operating system, are especially difficult to remedy, short
of switching platforms. In such cases, the best one can do is
to note the existence of these vulnerabilities so they are not
overlooked later in the systems lifespan (maintenance and
continued development).
The first step in the refinement process is to look at which
vulnerabilities can be eliminated, and which can be
mitigated. As an example: Data storage is often associated
with potential theft or misappropriation of information.
This can in part be avoided by encrypting the data, for
which there are several low-cost implementation options
(e.g. built in database functions). The benefits (e.g.
avoiding wholesale compromise of database) therefore

clearly outweigh the costs of elimination (e.g. use built-in
encryption functions.) The design document is then
updated to reflect that this database must be encrypted, and
that the vulnerability considered eliminated.
Vulnerabilities may also be eliminated by modifying the
goal structure. A vulnerability may be considered important
enough yet impossible to eliminate through implementation
choices. This is an indication of an inadequate architecture
or system design. To eliminate these vulnerabilities, the
goal-tree must be re-examined to realign, remove, or
modify the goals introducing this vulnerability so that the
vulnerability disappears or a different implementation is
possible. These are likely the most difficult vulnerabilities
to address.
Vulnerabilities which cannot be eliminated, or which are
deemed too costly to eliminate, may instead be mitigated.
Mitigation is a strategy by which one tries to minimize the
damage caused by a violation, and/or the likelihood of a
violation occurring. The first is usually done by imposing
limits on the information stored, processed or displayed;
the latter by involving the user in the decision-making
process. It is important to note that there are a large class of
vulnerabilities which cannot be eliminated, only mitigated.
This is especially true for Notice/Awareness and
Choice/Consent types of vulnerabilities where there is
room for nuance in terms of user preferences or
sensitivities.
As we discussed earlier, and as Palen and Dourish point
out, one is unlikely to find a single policy or design
solution to fit all. A more successful strategy will in many
cases be to involve the user in the privacy management
process. This is the only real way to customize applications
to meet the privacy requirements of diverse user
populations. There are of course multiple strategies to
employ at this point; we will simply present a few which
we have found to be useful or promising.
The simplest strategy is one which we use every day,
presenting the user with a dialogue, informing them of
what the system is going to do, and ask them to consent or
decline. Since the causes of every vulnerability are
documented, warning and consent can be collected in
context. This strategy, given the tendency to overwhelm
users, is unlikely to succeed for complex systems.
We know that privacy is seldom a primary concern for
users; privacy invasions are a potential side-effect which
the user seeks to avoid while performing some other task.
We have seen that when security or privacy systems
interfere excessively with the tasks users wish to
accomplish, these systems are often disabled. For more
complex systems, users will likely need to specify policies
about the use of their personal information so as to limit the
clarification requests from a privacy management system.

While privacy management as a dynamic decision making
process, high-level polices and plans can serve as the basis
for basic risk assessment. These can serve as the basis for
more advanced and less intrusive UI approaches such as
mixed-initiative systems [21] or ramping interfaces [32].
These techniques try to minimize the distraction to the user
by determining what the user needs or wants to know, and
disclosing more or less information as needed.
In a mixed-initiative approach, a high-level policy is
evaluated against the risks associated with the disclosure or
withholding information. The cost of distracting the user
also factors into the calculation [21]. The result is an
expected utility for each of four possible actions: correct
automatic disclosure, incorrect automatic disclosure,
correct withholding, and incorrect information withholding.
The utility values dictate what action to follow, or when
the user should be prompted to make the decision (utilities
too close or low to discriminate). Over time, user actions
can inform the model, resulting in a more detailed, flexible,
and individualized model, progressively becoming less
invasive.
 “Ramping interfaces” [32] can also be employed to let the
user determine the amount of attention he/she wishes to
devote to privacy management tasks. By progressively
providing more details about the potential disclosure of
information as the user increasingly interacts with it, this
style of user interface facilitates the quick execution of
straightforward decisions and the more involved, lengthier
determination of difficult decisions.
These are only some of the possible strategies for
mitigating vulnerabilities. Other techniques, such as
attention-based interaction or peripheral user interfaces
could also be employed to minimize the cost of interaction.
Social solutions such as collaborative filtering could be
used to inform decision-making for privacy. The
application domain and its constraints will dictate which
are feasible, or desirable in any given situation, and more
are sure to be added as work continues in this area.

Evaluation
As in any design process, several competing designs should
be generated, where possible by independent designers.
Competing designs should then be evaluated to identify the
most successful design (or the synthesis of the most
successful designs). Because individual or small groups of
vulnerabilities will have similar causes and remedies, it is
in theory possible to combine elements from multiple
designs.
The first type of evaluation is to look at the risks assigned
to each vulnerability and calculate the delta for the two
design solutions. The design which results in the greatest
decrease in risk is the best, from the perspective of privacy.
This design may of course not be the best from other
design perspectives. Other factors also need to be

considered, primarily how much the redesign affects the
overall functionality or value of the resulting system.
Mitigation strategies will by their very nature not
completely eliminate risks. For these we must instead
perform an evaluation of the adequacy of the solution. For
this we refer back to the classification of the vulnerability
according to the FIPs categories. Each type of vulnerability
presents certain unique challenges, derived from the
definition of the FIPs categories and previous frameworks
[31]. Proposed solutions need to meet as many of these as
possible:

1. Notice/awareness
a. Available, Accessible and Clear
b. Correct, Complete and Consistent
c. Presented in context
d. Not overburdening

2. Choice/Consent
a. Meaningful options
b. Explicit consent

3. Integrity/Security
a. Awareness of security mechanisms
b. Transparency of transactions

4. Enforcement/Redress
a. Access to own records
b. Ability to revoke consent

In addition to these minimum requirements, the solution
must of course meet requirements in terms of human
factors. The evaluation factors in Bellotti and Sellen’s
privacy heuristics make up a good list of desirable
properties for any solution [6].

Iteration
Though the analysis and redesign processes are given
structure, it is still beneficial for multiple designers to
perform this analysis. Ultimately, the actual identification
process is driven by the designers understanding and
perspective. Jacobs, in his analysis of Heuristic evaluation
noted that given a small set of analysts, their combined
results quickly reach near-perfect detection [26]. While we
expect this method to do better than purely heuristic
approaches it should hold true that a larger number of
critical eyes improve the analysis.
Most design processes are naturally iterative, and it is
important to support this practice. We have seen different
steps in this method benefit from multiple design phases
and how these are evaluated and merged. This method also
leaves a documentation trail of vulnerabilities found. This
stays with the system through its lifecycle, documenting
unaddressed vulnerabilities, assumptions, and the
motivation behind design decisions. As the system evolves,
this document needs to evolve. Successful designs start to
manifest vulnerabilities when the system is used in contexts
that violate hitherto justifiable assumptions [3]. It is

essential to document assumptions so that they may be re-
checked whenever the design changes.
Before new features are added to the system, their impact
on users’ privacy needs to be evaluated. This is done by
modifying the goal-tree to include the new objectives of the
system. We then do the analysis step on the new part of the
tree. If new information is collected, the rest of the graph
must be examined for ripple-effects in terms of privacy.
For each goal we ask how it is affected by the new
vulnerability. New vulnerabilities may emerge as part of
this process, or even disappear as new goals are added.
This process, though time-consuming, is less so than re-
performing the entire analysis from scratch.

EVALUATION
To valuate STRAP, we present a comparative study against
the Bellotti and Sellen method. For this analysis we chose
to use the Augur calendar system developed by Tullio et al.
[33] as the target of analysis. This system was chosen
because it has a number of known privacy vulnerabilities
and because the subjects were unlikely to be familiar with
it. The goal of this evaluation was to see if STRAP would
prove to be more cumbersome (prohibitively so) to use
compared to the Bellotti and Sellen method and whether it
would result in better analysis results (more vulnerabilities
discovered, less false positives and noise). Given time
resource and space constraints we did not seek to do a more
exhaustive evaluation as in [26].

Augur: A Shared, Predictive Calendar
The Augur calendar system is a web-based, shared calendar
that provides additional predictive features intended to
facilitate communication within a workgroup. These
features include predictions on the attendance of
colleagues, as well as information on who has scheduled
the same events. These predictions are based on Bayesian
networks and improve over time, learning from attendance
patterns. With these features, users can identify events that
are no longer attended, make informed decisions about
which of several conflicting events will be attended, and
determine who they will likely see at a particular event.
Users access Augur via secure login. Scheduled events are
presented in a standard hour-by-hour, block format. This
view is augmented with additional information indicating
colleagues who have scheduled the same events and
attendance probabilities for those colleagues. Events on a
user’s calendar have a colored bar to indicate the user’s
likelihood of attendance as predicted by Augur.

Methodology
Similar to Nielsen’s study [26], we recruited 32 college
students from an HCI class. The students had completed
their full semester, covering the usual HCI curriculum
including Heuristic evaluation, GOMS and similar
evaluation methods. They had not covered privacy as a

specific subject, nor read about Bellotti and Sellen’s work.
They had all completed significant project work as part of
their class-work (50% of their overall grade).
The students were given a system description complete
with screenshots of the Augur system in use. They did not
have access to the system itself. They were randomly
assigned into two groups, 16 subjects in the Bellotti and
Sellen condition and 16 in the STRAP condition. The
students were given a 2 hour lecture, roughly one hour on
Augur, and 1 hour on the method they were assigned. The
students were also given hardcopies describing their
method, in the case of Bellotti and Sellen [7], and in the
case of STRAP a draft of the relevant section from this
paper.
The students then went off to do their analyses
individually, though the students in the STRAP case were
allowed to work out the goal-tree in groups of up to three
students. The students submitted their results together with
an estimated time-on-task. Students knew their
performance on this experiment would not be linked to
their grade in the class.
We expected the STRAP group to spend more time-on-task
then the Bellotti and Sellen group given the overhead of
performing the goal-oriented analysis. We also expected to
find that the STRAP group performed better both in terms
of the number vulnerabilities discovered and the quality of
the analysis (fewer false positives).

Results
31 students returned their assigned analysis (1 was
missing), and 26 returned data on the time spent on the
analysis. The full data is reported in Table 1.

 Ti
m

e
on

 ta
sk

(m

in
ut

es
)

To
ta

l N
ot

es

Vu
ln

er
ab

ili
tie

s

G
en

er
al

 H
C

I
is

su
es

STRAP 88.77
(25.82)

6.86
(2.28)

5.14
(2.14)

1.00
(0.96)

Bellotti & Sellen 101.18
(43.46)

6.53
(2.50)

3.80
(1.74)

2.13
(2.10)

 +13.49 -0.33 -1.34 +1.13

Table 1: Study Results (stdev in parenthesis)

We did not find any statistically significant differences in
terms of the time spent doing the analysis (n=24, t=0.831,
p=0.418). In fact the students in the STRAP condition
reported spending less time on the analysis, which
surprised us. There was no significant difference in the
total number of reported vulnerabilities (n=29, t= -0.364,
p=0.718). These “vulnerabilities” were filtered to remove
non-privacy issues.

In the case of the Bellotti and Sellen case a full 32.65%
were found to be general HCI issues rather than privacy
issues (compared to 14.58% for STRAP). We did find
marginal significance in the number of “real” privacy
vulnerabilities discovered (n=29, t= -1.845, p=0.077).

CONCLUSIONS
In this paper we have presented a novel approach to
designing for privacy, STRAP. STRAP is a light-weight
structured analysis technique that incorporates heuristics
from existing frameworks and borrows from the fields of
requirements and goal-oriented analysis. Our approach
provides an analytical structure for privacy-aware design
and a method for deriving policy requirements from the
analysis. We demonstrate that STRAP performs better
than the standard Bellotti and Sellen heuristics, requiring as
much time on task yet resulting in more privacy-related
vulnerabilities discovered.

FUTURE WORK
In the future we will conduct a larger and more detailed
analysis of STRAP and how it performs both against the
Bellotti and Sellen as well as the Hong et al. frameworks.
We are especially interested in determining why the
Bellotti and Sellen framework elicits such a large number
of general HCI issues. Though we do not consider it to be a
confound, we will involve more expert designers in these
studies, and see whether we can find differences in terms of
the kinds of vulnerabilities discovered through the different
methods. We will also seek to apply STRAP through a real
software development cycle to see if iteration and
refinement are adequately supported.

REFERENCES
1. Abowd, G. and Mynatt, E. D. Charting past, present, and

future research in ubiquitous computing. ACM Transactions
on Computer-Human Interaction, 7(1):29-58, March 2000.

2. Ackerman, M.S. and Cranor, L,. Privacy critics: UI
components to safeguard users' privacy. In ACM Conf.
Human Factors in Computing Systems (CHI'99), 1999.

3. Anderson, R. J. Security Engineering: A Guide to Building
Dependable Distributed Systems, Wiley 2001

4. Antón, A.I., He, Q. and Bolchini, D. The Use of Goals to
Extract Privacy and Security Requirements from Policy
Statements, To appear in: 12th IEEE International
Requirements Engineering Conference (RE'04).

5. Ashley, P. and Schunter, M. The Platform for Enterprise
Privacy Practices; Information Security Solutions Europe,
Paris, October 2002.

6. Bellotti, V. Design for Privacy in Multimedia Computing
and Communications Environments, In Agre, P., &
Rotenberg, M. Eds. Technology and Privacy: The New
Landscape. MIT Press, Cambridge MA, 1997.

7. Bellotti, V. and Sellen, A. Design for Privacy in Ubiquitous
Computing Environments. ECSCW 1993.

8. Bertrand, P., Darimont, R., Delor, E., Massonet, P., van
Lamsweerde, A. GRAIL/KAOS: an environment for goal
drivent requirements engineering. Proceedings ICSE'98 -
20th International Conference on Software Engineering,
IEEE-ACM, Kyoto, April 98.

9. Butler S. A. and Fischbeck P. “Multi-Attribute Risk
Assessment” Proceedings of SREIS’02, Raleigh, NC, 2002.

10. Code of Fair Information Practices (The), US. Department of
Health, Education and Welfare, 1973.

11. Cranor, L., Langheinrich, M., Marchiori, M., Presler-
Marshall, M., and Reagle, J. The Platform for Privacy
Preferences 1.0 (P3P1.0) Specification. W3C. 16 April 2002.
Online: http://www.w3.org/TR/P3P/

12. Culnan, M.J. Georgetown Internet Privacy Policy Survey:
Report to the Federal Trade Commission. Washington, DC:
Georgetown University, The McDonough School of
Business, 1999.

13. Dardenne, A., Lamsweerde, A.V. and Fickas, S. Goal-
directed requirements acquisition. Sci. Comp. Prog, 1993.
20(1-2): 3-50.

14. Earp J.B. and Meyer, G. Internet Consumer Behavior:
Privacy and its Impact on Internet Policy, 28th
Telecommunications Policy Research Conference, Sept. 23-
25, 2000.

15. Evans, E. Domain-Driven Design: Tackling Complexity in
the Heart of Software, Addison-Wesley 2003.

16. Grudin, J. Managerial Use and Emerging Norms: Effects of
Activity Patterns on Software Design and Deployment. In
Proceedings HICSS-37, 2004.

17. Grudin, J. Desituating Action: Digital Representation of
Context. Human-Computer Interaction, 16, 2-4, (2001)

18. Grudin, J. and Palen, L. Emerging Groupware Successes in
Major Corporations: Studies of Adoption and Adaptation.
International Conference On Worldwide Computing and
Applications, 1997.

19. Grudin, J. Groupware and social dynamics: Eight challenges
for developers. Communications of the ACM, 37, 1 (1994).

20. Hong, J.I., J. Ng, S. Lederer, and J.A. Landay. Privacy Risk
Models for Designing Privacy-Sensitive Ubiquitous
Computing Systems. Designing Interactive Systems
(DIS2004). Boston, MA..

21. Horvitz, E. Principles of Mixed-Initiative User Interfaces.
Proceedings of CHI'99, May 1999, pp.159-166.

22. Jensen. C. and Potts, C. “Privacy Policies as Decision-
Making Tools: A Usability Evaluation of Online Privacy
Notices” In Proceedings of CHI’04 Vienna, Austria, 2004

23. John, B.E. and Kieras, D.E. The GOMS Family of User
Interface Analysis Techniques: Comparison and Contrast.
ACM Transactions on Computer-Human Interaction, 3 (4).
320-351.

24. Langheinrich, M. “Privacy by Design - Principles of
Privacy-Aware Ubiquitous Systems.” Proc. Ubicomp 2001,
pp. 273-291, Springer-Verlag LNCS 2201, 2001

25. Lessig, L. Code and Other Laws of Cyberspace. Basic
Books, New York, 1999.

26. Nielsen, J. & Molich, R. (1990). Heuristic evaluation of user
interfaces, Proceedings of ACM CHI'90 Conf. (Seattle, WA,
1-5 April), 249-256.

27. Palen, L. and Dourish, P. “Unpacking ‘Privacy’ for a
Networked World.” Proceedings of CHI’03, Ft. Lauderdale,
FL. 2003

28. Palen, L. and Grudin, J. Discretionary Adoption of Group
Support Software: Lessons from Calendar Applications.
Implementing Collaboration Technologies in Industry. B. E.
Munkvold, Springer Verlag.2002

29. Palen, L. Social, Individual, and Technological Issues for
Groupware Calendar Systems. Proceedings of CHI '99,
Pittsburgh, PA, pp. 17-24.

30. Potts, C. ScenIC: A Strategy for Inquiry-Driven
Requirements Determination, IEEE Fourth International
Symposium on Requirements Engineering (RE’99),
University of Limerick, Ireland, pp. 58-65, 7-11 June 1999.

31. Privacy Online: Fair Information Practices in the Electronic
Marketplace. A Report to Congress. Federal Trade
Commission, 2000.

32. Rhodes, B.J. Margin notes: building a contextually aware
associative memory, In Proceedings 5th International
Conference on Intelligent User Interfaces (IUI'2000),.

33. Tullio, J., Goecks, J., Mynatt, E.D., and Nguyen, D.H.
Augmenting Shared Personal Calendars, UIST 2002, 11-20.

34. U.S. Children’s Online Privacy Protection Act of 1998,
Public Law No. 105-277, October 21, 1998.

35. U.S. Gramm-Leach-Bliley Financial Modernization Act of
1999, Public Law No. 106-102, November 1, 1999.

36. U.S. Health Insurance Portability and Accountability Act of
1996, Public Law No. 104-191, August 21, 1996.

37. Whitten, A. and Tygar, J.D. "Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0," in Proceedings of the 8th
USENIX Security Symposium, August 1999.

