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ABSTRACT 
Privacy is an important concern for users, and a difficult 
design challenge. Different user populations have different 
requirements and expectations when it comes to privacy; 
thus finding universally acceptable solutions is far from 
trivial. Design guidelines have been available for a number 
of years, but often fail to address the dynamic and 
impromptu nature of privacy management. These methods 
also fail to provide a robust and replicable procedure for 
identifying potential problems, leaving the design process 
more in the realm of art than science. We identify general 
requirements for privacy-aware design and review how 
existing methods and guidelines meet these requirements. 
We then introduce a light-weight method adapted from the 
requirements engineering literature for the structured 
analysis of privacy vulnerabilities in design and the 
iterative adaptation of preferences. We present a study of 
this method on a predictive group calendar system. 
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INTRODUCTION 
People are concerned about their online privacy, as 
reflected in numerous surveys [12, 14]. Such concerns are 
understandable given the growing number of privacy 
invasions [31], and the increasing pervasiveness of 
information capture and sharing between IT systems. This 
pervasiveness of information capture and sharing facilitated 

by today’s networked systems has in part triggered a 
growing interest and awareness among users about privacy 
management, and an increase in the legislation aimed at 
protecting privacy [34, 35, 36]. 
These developments are important to us as designers 
because they impose limitations on the types of systems we 
may build, and impose requirements on how they must 
operate. This is especially important for computer 
supported collaborative work (CSCW), e-commerce, and 
online environments, where the very nature of the system 
requires some information disclosure. Privacy will always 
be an important consideration in designing such systems, 
and may seriously affect their adoption and ultimate 
success. 
In addition to requiring the collection and dissemination of 
information, these systems present other challenges to 
privacy management; their boundaries  are sometimes 
unclear, especially to the casual user. Who is collecting 
what information about them, what other information is 
this combined with and from what sources, what is done 
with their information, and who is it shared with? 
Information in computer systems is seldom ephemeral; it 
accumulates and aggregates without the users’ knowledge.  
Many of these challenges are fundamentally classic HCI 
problems: customization, situation awareness, decision 
support, and adequate controls. Whitten and Tygar found 
that in the context of security, well-engineered systems 
may fail or be circumvented because of inadequate 
usability [37]. The same is likely true for privacy 
management, which is seldom an active goal for the user. It 
is more often the case that privacy becomes a concern only 
after some violation has occurred or is suspected. This has 
important implications for design; we need to minimize the 
burden and distraction of doing privacy management. 
Failing to do so will result in the user neglecting this task 
in favor of their other goals, at least until the damage is 
done. 
In response, heuristics and guidelines have been proposed 
to help guide design [6, 7, 21, 24]. As in security, non-
trivial problems are often caused by high-level architectural 
problems that affect many aspects of a system. These 
architectural problems are hard to identify before a system 
is built, and both difficult and costly to address after the 

 



fact [3]. Thus, it is important to identify potential privacy 
vulnerabilities at the design stage to minimize potential 
damage and maintenance costs.  
Guidelines provide support to designers by giving them a 
framework for detecting and addressing potential privacy 
violations before the system is implemented and deployed. 
As we will show, these heuristics, though building on a 
wealth of experience, fall short in some respects The most 
important shortcoming is that they imply the existence, or 
the desirability of seeking a universally satisfactory 
solution. 
Palen and Dourish describe privacy management as 
managing disclosure – allowing users to manage and 
maintain separate public and private spheres [28]. From a 
design perspective, not only do preferences and 
expectations vary greatly between individuals and cultures, 
but privacy management is a highly dynamic process. If 
one accepts this view of privacy, it follows that for non-
trivial systems it will be impossible to derive a universally 
acceptable solution. The goal instead shifts to identifying 
potential vulnerabilities, identifying solutions where 
possible, and mitigation strategies where not possible. 
 In addition, heuristic-based approaches to privacy-aware 
design often depend on the expertise of the evaluator(s) in 
order to successfully identify vulnerabilities. Even with 
skilled evaluators, the unstructured form of heuristic 
analysis means that potential areas of concern may be 
overlooked or given less treatment than others. Moreover, 
evaluative skills may not transfer adequately from one type 
of system to the next. What is needed, then, is a structured, 
robust approach to privacy analysis that mitigates variance 
in expertise and knowledge transfer between systems. 
In this paper we examine some of the most influential 
frameworks for privacy-aware design to see how they meet 
these challenges. We then present a light-weight structured 
analysis of privacy vulnerabilities (STRAP) that builds on 
these frameworks while borrowing methods from 
requirements engineering and goal-oriented analysis [13, 
15, 30]. We discuss how STRAP fits into the software 
development cycle, including how it supports iteration and 
adaptation. We wrap up with a comparison between the 
performance of STRAP and other frameworks for a 
predictive group calendar system. 

BACKGROUND AND RELATED WORK 
Computers became an important part of the privacy debate 
in the 1960’s following the widespread adoption of 
computers, or “giant brains” by business and government 
in the US. In 1973, the U.S. Department of Health 
Education and Welfare’s (HEW) Advisory Committee on 
Automated Personal Data Systems presented a report that 
defined for the first time a code of Fair Information 
Practices (FIPs) [10]. The FIPs have since widely 

influenced legislation and practice, especially privacy 
policies. 
There have been a number of studies examining policies. 
The results of these studies show that privacy policies are 
increasingly popular among companies, yet provide little 
value to users. Policies were seldom consulted, even when 
accessible [22]. Possible explanations include the fact that 
policies did not focus on the issues users cared about [4], 
and used intimidating or difficult language [22]. In order to 
overcome the barriers of language, interpretation, and 
unnecessary burden, efforts have been made to develop 
machine-readable policies, such as P3P [11], and the 
automated agents which would act upon such policies [2]. 
Such policies could be automatically parsed by an agent, 
only interrupting the users if the policy is likely to concern 
or trouble the user. By filtering which policies, and even 
which elements of a policy require attention, users are more 
likely to be engaged. 
Although external policy statements are often the only 
source of information on privacy practices available to 
users, it is also important to examine how policy is 
implemented. After all, it makes little difference how 
accessible and usable a policy is if the software does not 
follow the policies specified. The relationship between 
policy and code is explored in Lessig’s CODE [25], where 
he describes source-code as an instantiation of policy. Code 
and programs are a set of rules which the computer, and by 
extension the user, must follow in order to accomplish a set 
of goals. Some of these policies are planned and 
intentional, while others are the product of ad-hoc and 
potentially inconsistent implementation decisions. Still 
others are artifacts of the tools and underlying 
infrastructure.  
Because of the evolving nature of both policy and code, 
there have been efforts to decouple the two. The IBM 
Tivoli system uses the EPAL specification language [5] to 
allow policy makers to specify and enforce policies 
regarding data access in applications. In order to access 
data, the application must go through a gatekeeper, which 
ensures that the policy is enforced. Though this approach 
adds some overhead, it frees the developer from verifying 
that the policy is up to date and being enforced. Policy-
makers are similarly free to modify data policies as needed 
without having to modify the applications.  
CSCW systems by their very nature usually imply the 
disclosure of information by individuals for consumption 
by a group.  Whether in the interest of maintaining 
awareness of coworkers, providing context for 
collaborative activities, or promoting distributed 
collaboration, disclosure of personal information is often 
necessary or adds value to the group.  Grudin notes that in 
the case of networked applications, we introduce new 
possibilities for actions that are de-situated and may have 
unknown consequences beyond the user’s control [17]. 



Identity, location, and activity are examples of common 
information types that can both facilitate group work and 
expose users to privacy invasions.  
In ubiquitous computing applications, the sensing, 
recording and application of personal information, possibly 
without the users’ knowledge, raises critical privacy 
concerns.  Bellotti and Sellen stress the importance of 
feedback and control over information capture, access, 
purpose, and construction [6].  Similarly, Abowd and 
Mynatt describe the challenges of designing collaborative 
environments where actions and roles are dynamic [1].  
Privacy has also been an important concern in groupware 
calendar systems (GCS), most extensively studied in the 
work of Palen [29], Grudin [16], and collaborations 
between the two [19, 28].  While their studies were not 
specifically aimed at studying privacy, they found that it 
has a significant impact on the adoption, use, and evolution 
of groupware calendar systems. We conclude this paper by 
performing a small evaluation on a predictive GCS. 
Grudin found that users with no people-management 
responsibilities regarded calendar sharing as an invitation 
to be micromanaged, and therefore preferred to only share 
information about free/busy time.  Executives refrained 
from sharing their schedules due to the sensitivity of the 
information they contained.  On the other hand, managers 
and administrators exhibited the highest degree of sharing, 
characterized by high levels of trust and perceived benefit.  
These benefits include the ability to determine the 
availability of colleagues, the assimilation of organizational 
knowledge, and the ability to keep more flexible work 
hours. [16] 
The success of groupware systems, as in most other things, 
seems to depend largely on the degree to which the 
individual benefits of contributing outweigh its costs [19].  
Palen and Dourish describe these tradeoffs as the resolution 
of tensions between the need to be part of the world and 
receive some benefit, and the need to shield and protect 
oneself and ones personal life [27]. In the case of calendar 
systems, Grudin writes: 

Just as people who live in buildings with paper-thin walls may 
adopt a convention of ignoring what they cannot help overhearing, 
people who allow open access to their calendar details assume that 
people will access information only when needed and would be 
offended by an inquiry that revealed “snooping.” Being able to 
block off a calendar entry or reserve a conference room is deemed 
an adequate balance. Privacy is ultimately a psychological 
construct, with malleable ties to specific objective conditions [19]. 

While workplace habits and individual experience may 
motivate users to share their schedules, mechanisms must 
still exist to manage and protect ones privacy. The 
frequency with which such mechanisms are used seems to 
be less important than the fact that they exist, and the 
impact they have on risk perception. Such mechanisms may 
be as simple as the ability to omit sensitive events, give 

cryptic or context-sensitive names to events, to enable 
reciprocity of access settings, or to schedule defensively to 
regulate interruption [29]. More explicit mechanisms such 
as access-control lists or levels of disclosure are also 
possible.    
These GCS studies also found that the default settings for 
privacy preferences are not typically changed, and may 
over time become institutionalized. In one example, the 
ability to add events to a colleague’s calendar, while 
surprising to new employees, was eventually accepted due 
to its widespread use.  Grudin and Palen compared an 
organization whose shared calendar system defaulted to 
openness, with one whose calendar showed only free/busy 
blocks, finding they resulted in very different norms [18]. 

PRIVACY DESIGN BY HEURISTICS 

Privacy Design Methods 
The first set of privacy guidelines, the HEW FIPs [10], 
have survived and evolved over the years. These principles 
were originally derived from expert testimony and defined 
a set of ethical guidelines for developers and designers. 
The most recent version was given by the Federal Trade 
Commission (FTC) in their 2000 report on the state of 
online privacy [31]. This list, a simplification of the 
original principles given in the HEW report, defines the 
FIPs as the following 4 principles: 
1. Notice/awareness “Consumers should be given notice 

of an entity's information practices before any 
personal information is collected from them.” 

2. Choice/Consent “[…]giving consumers options as to 
how any personal information collected from them 
may be used.” 

3. Integrity/Security “[…] data [should] be accurate 
and secure.” 

4. Enforcement/Redress “[…]privacy protection can 
only be effective if there is a mechanism in place to 
enforce them.” 

Though groundbreaking, these are by far the most high-
level and abstract of guidelines, providing little practical 
guidance. This lack of specificity and detail may make 
these guidelines difficult to apply in the real world. This 
may explain why the FTC recently found that few websites 
were in compliance with these principles [31]. 
More detailed and applicable frameworks have been 
proposed, most embracing the FIPs while providing more 
detailed guidance. Bellotti and Sellen developed a 
framework for privacy-aware design in ubiquitous 
computing [6, 7]. A brief description of this method is 
provided in Box 1. 
What this framework presents is a procedure designers may 
follow in order to evaluate a system, and a set of 
requirements for solutions. This is a definitive 
improvement over the high-level FIPs guidelines. Though 



Bellotti and Sellen’s framework has been the benchmark 
since it was introduced, there is no evidence in the 
literature of widespread use. A recent variation on this 
method was that proposed by Hong et al [20] (see Box 2).  

The designer asks a set of questions about the proposed 
system meant to identify potential privacy problems: 

o What information is captured and how? 
o What happens with this information? 
o How is this information made accessible to the user? 
o What is the purpose of the information collected? 

Given the answers to these questions, the designer then 
identifies core vulnerabilities and ways to address them. The 
following criteria are both guidelines for desirable design, and 
benchmarks for evaluating potential solutions: 

o Trustworthiness o Appropriate timing 
o Perceptibility o Unobtrusiveness 
o Minimal intrusiveness o Fail safety 
o Flexibility o Low effort 
o Meaningfulness o Learnability 
o Low cost o Collection and limitation 
o Data quality o Purpose specification 
o Use limitation o Security safeguards 
o Openness o Individual participation 
o Accountability  

 
 

The designer starts by asking a set of analytical questions: 
o Who are the users? 
o What kinds of information are shared? 
o What are the relationships between data subjects and  

observers? 
o How much information is shared? 
o How much information is stored? 
o How is the personal information collected and shared? 
o Are there malicious data observers? 

A vulnerability should only be remedied if the cost is lower 
than the product of the likelihood of a violation and the 
damage it would cause, providing a set of priorities. A set of 
questions guide the discovery of potential solutions: 

o How does the unwanted disclosure take place? 
o How much choice, control, and awareness do data 

sharers have? 
o What are the default settings? 
o Is it better to prevent unwanted disclosures or prevent 

them? 
o Are there ways for data sharers to maintain plausible 

deniability? 
o What mechanisms for recourse or recovery are there? 

 

Method Review  
These frameworks are relatively inexpensive to use; they 
are not very time-consuming nor do they require a lot of 
expertise. Ideally, these traits should promote adoption and 
real world use. Heuristics are often derived from case 
studies and observation, a large part of their appeal. 
Despite these benefits, Bellotti and Sellen’s framework, 

and even the FIPs, have seen relatively little adoption 
(Hong et al. is too new to evaluate).  
These heuristic frameworks address fairly high-level 
concepts, they don’t address implementation or technology 
issues such as what protocols to use or programming 
pitfalls. They derive an analysis independent of 
implementation. Critics may of course say that they are too 
abstract, that important problems are being glanced over by 
keeping the analysis at this level. This is an important 
critique because these frameworks do not give a way of 
getting from design to requirements and implementation. A 
number of decisions which may impact the final design 
need to be made on the way down to this level. 
Another problem with these methods is that they do not 
take iteration into account, an important part of the design 
process. Changes to one part of a system’s design may 
affect multiple other parts in terms of privacy. These 
heuristics, producing a list of vulnerabilities, leave the 
designer no choice but to re-evaluate the entire system for 
each proposed change. There is no reliable way of 
leveraging previous analyses. This means that rather than 
becoming a part of the design process, these methods are 
more likely to be employed once at the end of the design 
cycle. 
These heuristic forms of analysis assume that designers 
can, with the aid of some well-chosen questions, discover 
all or most vulnerabilities. Nielsen showed that given a 
small number of reviewers, heuristic analysis can be highly 
effective for general HCI problems [26]. This may not hold 
true for a domain such as privacy where designers have 
much less experience and bias abounds. These biases may 
have a large effect when it comes to hot-button topics such 
as privacy, and may lead the designer to overly focus on 
certain areas to the exclusion of others. This does not mean 
that heuristics will not work; it may just mean that a higher 
number of reviewers are needed to reach optimal 
performance.   
Hong et al. include a cost-benefit analysis in their method 
to determine which problems are worth addressing. This 
takes into account the fact that not all vulnerabilities are 
worth addressing. It may even be the case that some 
vulnerabilities are impossible to address without crippling 
the overall system. In many ways, a vulnerability which 
does not have a cost-effective fix is sometimes more 
important to document, as it will live on in the system. 
Keeping track of hidden assumptions and vulnerabilities 
should therefore be an essential part of maintaining a 
system. 
There are some problems with this cost-benefit analysis; 
this step depends on coming up with reliable numbers for 
the likelihood of a problem occurring as well as potential 
damages. Buttler and Fischbeck showed how you can do 
this when prior data is available [9], but it always includes 

Box 1: Bellotti and Sellen framework 

Box 2: Hong et al framework 



an element of guesswork. Because of this uncertainty, it 
may be more useful and honest to come up with non-
numeric categorizations (e.g. critical, urgent, important, 
annoyance) and a set of objectives (e.g. eliminate all 
important vulnerabilities costing less than 100 man-hours 
to fix.) 

From Heuristics to Goal Analysis 
To address some of the weaknesses of the heuristic 
approaches we turn to the goal-oriented analysis methods 
of requirements engineering [13, 15, 30]. In goal-oriented 
analysis, a domain is a collection of goal-achieving actors. 
Actors correspond not only to users who are pursuing their 
own goals (as in GOMS [23]) but also the major 
architectural components, described in terms of the user or 
customer goals they are designed to support.  Goal analysis 
methods, such as ScenIC [30] provide guidelines for 
identifying goals, refining them into operationally defined 
tasks, and allocating tasks to actors. It should be stressed 
that no analysis method is fully algorithmic or replaces 
expert domain knowledge. Different analysts could 
produce functionally equivalent but structurally different 
goal hierarchies when applying these guidelines. 
Goals, in contrast to requirements, are approximations of 
system properties. They may be vague or incomplete. They 
may be goals for the solution of a problem but not 
necessarily goals that will be wholly achieved by the 
proposed software system. Thus the system boundary may 
still be fluid, with the automation, partial automation, or 
assignment to users or external systems of tasks that 
achieve desired goals still being an unresolved issue.  
Another difference between goals and requirements is that 
goals are idealizations that not necessarily fully achievable 
in their original form. The real world is not always as 
accommodating as a set of high-level goals assume. The 
“real world” may include human decisions outside the 
control of the designers, physical properties of the 
environment that may be predicted or influenced but not 
determined absolutely, other systems that may not behave 
as assumed, and the implementation of the proposed system 
itself, which may include defects.  In the areas of privacy 
and security, the world includes actors with their own goals 
antagonistic to the systems’. In requirements engineering, it 
is often assumed that this refinement and allocation of 
goals is a rational and beneficent activity, but nothing in 
the approach requires this. Indeed, in a multi-actor domain, 
such as e-commerce or GCS, there is ample opportunity for 
conflicts or tradeoffs among the goals of users.  

A goal may be blocked when there exists a hypothetical 
situation which makes the fulfillment of the goal 
impossible. We normally refer to this situation as an 
“obstacle”. Such an obstacle is an “anti-goal,” a set of 
events which make it impossible for the goal to be 
satisfied. In the domain of privacy, it is common to refer to 

obstacles as vulnerabilities, because they locate the 
potential for privacy violation. To identify vulnerabilities, 
we use the obstacle-identification heuristics of ScenIC [30] 
and KAOS [8].  

 
Figure 1: A goal-tree with vulnerabilities 

As part of a goal-oriented analysis, one typically derives a 
goal-tree (see Figure 1). In the goal-tree, goals and sub-
goals are drawn as circles, the top decomposed into lower 
level circles, as denoted by the arrows. Actors responsible 
for goals are typically identified by color-coding the nodes. 
Arches along the paths denote an ‘or’ operator, and while 
the ordering of the children left to right does not 
necessarily denote order of operation, we have attempted to 
accommodate that reading. Vulnerabilities are drawn as 
clouds with a callout describing them, and are placed on 
the path of the goal they block. Sub-goals sometimes refer 
to each other recursively. No new vulnerabilities are 
introduced or removed in these recursive branches. 
Therefore, for the sake of brevity, these nodes may be 
marked and the sub-trees omitted. 
With STRAP we address some of the concerns associated 
with the heuristic frameworks. We leverage the  real-world 
experience on which the heuristics are based, and structure 
and methods provided by goal-oriented analysis. This last 



point gives us a method for bridging the gap between 
design, requirements and code. 
Our goal with STRAP is to guide the analysis to ensure that 
we get a thorough, detailed, and unbiased evaluation. This 
is especially important when we are dealing with new 
domains or applications. In STRAP, we try to strike a 
balance between the costs of application against the utility 
of the method. We seek to provide enough detail to 
generate real value, while still being light-weight enough to 
see real use. 

STRUCTURED ANALYSIS OF PRIVACY  
STRAP is a method in four steps: 

1. Analysis 
2. Refinement 
3. Evaluation 
4. Iteration 

Each of these steps is explained in more detail below. 

Design Analysis 
In order to address privacy vulnerabilities, we must be able 
to reliably find them. Depending on the complexity of the 
system, or the novelty of the domain, this may not be an 
easy process. Current frameworks rely on leading the 
designer through a set of analytical questions aimed at 
identifying potential trouble areas. This depends on the 
designers’ ability to thoroughly examine all aspects of the 
application. The process of elicitation is not unreasonable, 
but the requirements literature shows that this type of 
analysis is difficult and error prone unless preceded by a 
systematic analysis of the system [3]. By omitting steps, 
ignoring problem areas or fixating on a specific 
component, important functions, hidden dependencies, and 
deep-rooted architectural problems may be overlooked. 
We therefore start by performing a goal-oriented analysis 
of the system. As part of this analysis, the domain with its 
actors, goals and major system components is identified. 
Context information is collected; what the expectations of 
the different actors are with regards to privacy such as 
whether it is an open or closed system, whether there are 
expectations of privacy, of layers of access, default settings 
and behaviors, and of course the limitations of the physical 
and technological environment. This helps give the 
designers and users a shared vocabulary for discussing the 
system.  
For each goal and sub-goal we ask a set of analytical 
questions, similar to those of [6, 20]: 
• What information is captured/accessed for this goal? 
• Who are the actors involved in the capture and access?  
• What knowledge is derived from this information? 
• What is done with the information afterward?  

If information is captured or accessed, it presents a 
potential vulnerability. The user may wish to somehow be 
made aware of this, and consent may need to be collected. 
While the first question identifies vulnerabilities, the 
remaining help identify the appropriate actions to take. We 
mark all vulnerabilities in the goal-tree as clouds blocking 
the path to a goal, and keep a record of its context. 
Once vulnerabilities have been identified, we look for 
common causes and duplicates.  These often occur when 
one set of goals collect and store data needed to meet a 
different set of goals. The vulnerability will then appear in 
two or more places, with different contexts. These contexts 
must be merged in order for a full picture of the 
vulnerability to emerge. Vulnerabilities are then evaluated 
and categorized in terms of the risk they pose to the user, as 
described in section 3.2.  
Final we categorize the vulnerabilities, which helps identify 
strategies to follow in order to negate them. It is important 
to note that these are not hard categories, but rather loose 
labels which suggest approaches to follow in negating the 
vulnerabilities. We derive these from the FIPS [31]: 

• Notice/Awareness 
• Choice/Consent 
• Security/Integrity 
• Enforcement/Redress 

These categories overlap, particularly the 
Notice/Awareness category which is a catch-all, and 
prerequisite to most of the other categories. Once 
vulnerabilities have been identified, organized, evaluated 
and categorized, we are ready to enter the design 
refinement stage. 

Design Refinement   
It is important to note that it may not be possible to address 
all vulnerabilities in a system. In some cases they may not 
be worth addressing, typically because the cost would be 
prohibitive, because any fix would introduce more serious 
vulnerabilities, or because any remedies would seriously 
undermine the utility of the system. Vulnerabilities 
resulting from dependencies on other systems, such as the 
operating system, are especially difficult to remedy, short 
of switching platforms. In such cases, the best one can do is 
to note the existence of these vulnerabilities so they are not 
overlooked later in the systems lifespan (maintenance and 
continued development). 
The first step in the refinement process is to look at which 
vulnerabilities can be eliminated, and which can be 
mitigated. As an example: Data storage is often associated 
with potential theft or misappropriation of information. 
This can in part be avoided by encrypting the data, for 
which there are several low-cost implementation options 
(e.g. built in database functions). The benefits (e.g. 
avoiding wholesale compromise of database) therefore 



clearly outweigh the costs of elimination (e.g. use built-in 
encryption functions.) The design document is then 
updated to reflect that this database must be encrypted, and 
that the vulnerability considered eliminated.  
Vulnerabilities may also be eliminated by modifying the 
goal structure. A vulnerability may be considered important 
enough yet impossible to eliminate through implementation 
choices. This is an indication of an inadequate architecture 
or system design. To eliminate these vulnerabilities, the 
goal-tree must be re-examined to realign, remove, or 
modify the goals introducing this vulnerability so that the 
vulnerability disappears or a different implementation is 
possible. These are likely the most difficult vulnerabilities 
to address.  
Vulnerabilities which cannot be eliminated, or which are 
deemed too costly to eliminate, may instead be mitigated. 
Mitigation is a strategy by which one tries to minimize the 
damage caused by a violation, and/or the likelihood of a 
violation occurring. The first is usually done by imposing 
limits on the information stored, processed or displayed; 
the latter by involving the user in the decision-making 
process. It is important to note that there are a large class of 
vulnerabilities which cannot be eliminated, only mitigated. 
This is especially true for Notice/Awareness and 
Choice/Consent types of vulnerabilities where there is 
room for nuance in terms of user preferences or 
sensitivities.  
As we discussed earlier, and as Palen and Dourish point 
out, one is unlikely to find a single policy or design 
solution to fit all. A more successful strategy will in many 
cases be to involve the user in the privacy management 
process. This is the only real way to customize applications 
to meet the privacy requirements of diverse user 
populations. There are of course multiple strategies to 
employ at this point; we will simply present a few which 
we have found to be useful or promising.  
The simplest strategy is one which we use every day, 
presenting the user with a dialogue, informing them of 
what the system is going to do, and ask them to consent or 
decline. Since the causes of every vulnerability are 
documented, warning and consent can be collected in 
context. This strategy, given the tendency to overwhelm 
users, is unlikely to succeed for complex systems.  
We know that privacy is seldom a primary concern for 
users; privacy invasions are a potential side-effect which 
the user seeks to avoid while performing some other task. 
We have seen that when security or privacy systems 
interfere excessively with the tasks users wish to 
accomplish, these systems are often disabled. For more 
complex systems, users will likely need to specify policies 
about the use of their personal information so as to limit the 
clarification requests from a privacy management system. 

While privacy management as a dynamic decision making 
process, high-level polices and plans can serve as the basis 
for basic risk assessment. These can serve as the basis for 
more advanced and less intrusive UI approaches such as 
mixed-initiative systems [21] or ramping interfaces [32]. 
These techniques try to minimize the distraction to the user 
by determining what the user needs or wants to know, and 
disclosing more or less information as needed.  
In a mixed-initiative approach, a high-level policy is 
evaluated against the risks associated with the disclosure or 
withholding information.  The cost of distracting the user 
also factors into the calculation [21]. The result is an 
expected utility for each of four possible actions: correct 
automatic disclosure, incorrect automatic disclosure, 
correct withholding, and incorrect information withholding. 
The utility values dictate what action to follow, or  when 
the user should be prompted to make the decision (utilities 
too close or low to discriminate).  Over time, user actions 
can inform the model, resulting in a more detailed, flexible, 
and individualized model, progressively becoming less 
invasive. 
 “Ramping interfaces” [32] can also be employed to let the 
user determine the amount of attention he/she wishes to 
devote to privacy management tasks.  By progressively 
providing more details about the potential disclosure of 
information as the user increasingly interacts with it, this 
style of user interface facilitates the quick execution of 
straightforward decisions and the more involved, lengthier 
determination of difficult decisions.  
These are only some of the possible strategies for 
mitigating vulnerabilities. Other techniques, such as 
attention-based interaction or peripheral user interfaces 
could also be employed to minimize the cost of interaction.  
Social solutions such as collaborative filtering could be 
used to inform decision-making for privacy. The 
application domain and its constraints will dictate which 
are feasible, or desirable in any given situation, and more 
are sure to be added as work continues in this area.  

Evaluation 
As in any design process, several competing designs should 
be generated, where possible by independent designers. 
Competing designs should then be evaluated to identify the 
most successful design (or the synthesis of the most 
successful designs). Because individual or small groups of 
vulnerabilities will have similar causes and remedies, it is 
in theory possible to combine elements from multiple 
designs.  
The first type of evaluation is to look at the risks assigned 
to each vulnerability and calculate the delta for the two 
design solutions. The design which results in the greatest 
decrease in risk is the best, from the perspective of privacy. 
This design may of course not be the best from other 
design perspectives. Other factors also need to be 



considered, primarily how much the redesign affects the 
overall functionality or value of the resulting system.  
Mitigation strategies will by their very nature not 
completely eliminate risks. For these we must instead 
perform an evaluation of the adequacy of the solution. For 
this we refer back to the classification of the vulnerability 
according to the FIPs categories. Each type of vulnerability 
presents certain unique challenges, derived from the 
definition of the FIPs categories and previous frameworks 
[31]. Proposed solutions need to meet as many of these as 
possible: 

1. Notice/awareness  
a. Available, Accessible and Clear 
b. Correct, Complete and Consistent  
c. Presented in context 
d. Not overburdening 

2. Choice/Consent  
a. Meaningful options 
b. Explicit consent 

3. Integrity/Security  
a. Awareness of security mechanisms 
b. Transparency of transactions 

4. Enforcement/Redress  
a. Access to own records 
b. Ability to revoke consent 

In addition to these minimum requirements, the solution 
must of course meet requirements in terms of human 
factors. The evaluation factors in Bellotti and Sellen’s 
privacy heuristics make up a good list of desirable 
properties for any solution [6]. 

Iteration 
Though the analysis and redesign processes are given 
structure, it is still beneficial for multiple designers to 
perform this analysis. Ultimately, the actual identification 
process is driven by the designers understanding and 
perspective. Jacobs, in his analysis of Heuristic evaluation 
noted that given a small set of analysts, their combined 
results quickly reach near-perfect detection [26]. While we 
expect this method to do better than purely heuristic 
approaches it should hold true that a larger number of 
critical eyes improve the analysis.  
Most design processes are naturally iterative, and it is 
important to support this practice. We have seen different 
steps in this method benefit from multiple design phases 
and how these are evaluated and merged. This method also 
leaves a documentation trail of vulnerabilities found. This 
stays with the system through its lifecycle, documenting 
unaddressed vulnerabilities, assumptions, and the 
motivation behind design decisions. As the system evolves, 
this document needs to evolve. Successful designs start to 
manifest vulnerabilities when the system is used in contexts 
that violate hitherto justifiable assumptions [3]. It is 

essential to document assumptions so that they may be re-
checked whenever the design changes.  
Before new features are added to the system, their impact 
on users’ privacy needs to be evaluated. This is done by 
modifying the goal-tree to include the new objectives of the 
system. We then do the analysis step on the new part of the 
tree. If new information is collected,  the rest of the graph 
must be examined for ripple-effects in terms of privacy. 
For each goal we ask how it is affected by the new 
vulnerability. New vulnerabilities may emerge as part of 
this process, or even disappear as new goals are added. 
This process, though time-consuming, is less so than re-
performing the entire analysis from scratch.  

EVALUATION 
To valuate STRAP, we present a comparative study against 
the Bellotti and Sellen method. For this analysis we chose 
to use the Augur calendar system developed by Tullio et al. 
[33] as the target of analysis. This system was chosen 
because it has a number of known privacy vulnerabilities 
and because the subjects were unlikely to be familiar with 
it. The goal of this evaluation was to see if STRAP would 
prove to be more cumbersome (prohibitively so) to use 
compared to the Bellotti and Sellen method and whether it 
would result in better analysis results (more vulnerabilities 
discovered, less false positives and noise).  Given time 
resource and space constraints we did not seek to do a more 
exhaustive evaluation as in [26]. 

Augur: A Shared, Predictive Calendar 
The Augur calendar system is a web-based, shared calendar 
that provides additional predictive features intended to 
facilitate communication within a workgroup. These 
features include predictions on the attendance of 
colleagues, as well as information on who has scheduled 
the same events. These predictions are based on Bayesian 
networks and improve over time, learning from attendance 
patterns. With these features, users can identify events that 
are no longer attended, make informed decisions about 
which of several conflicting events will be attended, and 
determine who they will likely see at a particular event. 
Users access Augur via secure login. Scheduled events are 
presented in a standard hour-by-hour, block format. This 
view is augmented with additional information indicating 
colleagues who have scheduled the same events and 
attendance probabilities for those colleagues. Events on a 
user’s calendar have a colored bar to indicate the user’s 
likelihood of attendance as predicted by Augur.  

Methodology 
Similar to Nielsen’s study [26], we recruited 32 college 
students from an HCI class. The students had completed 
their full semester, covering the usual HCI curriculum 
including Heuristic evaluation, GOMS and similar 
evaluation methods. They had not covered privacy as a 



specific subject, nor read about Bellotti and Sellen’s work. 
They had all completed significant project work as part of 
their class-work (50% of their overall grade). 
The students were given a system description complete 
with screenshots of the Augur system in use. They did not 
have access to the system itself. They were randomly 
assigned into two groups, 16 subjects in the Bellotti and 
Sellen condition and 16 in the STRAP condition. The 
students were given a 2 hour lecture, roughly one hour on 
Augur, and 1 hour on the method they were assigned. The 
students were also given hardcopies describing their 
method, in the case of Bellotti and Sellen [7], and in the 
case of STRAP a draft of the relevant section from this 
paper.  
The students then went off to do their analyses 
individually, though the students in the STRAP case were 
allowed to work out the goal-tree in groups of up to three 
students. The students submitted their results together with 
an estimated time-on-task. Students knew their 
performance on this experiment would not be linked to 
their grade in the class. 
We expected the STRAP group to spend more time-on-task 
then the Bellotti and Sellen group given the overhead of 
performing the goal-oriented analysis. We also expected to 
find that the STRAP group performed better both in terms 
of the number vulnerabilities discovered and the quality of 
the analysis (fewer false positives). 

Results 
31 students returned their assigned analysis (1 was 
missing), and 26 returned data on the time spent on the 
analysis. The full data is reported in Table 1.  
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STRAP 88.77 
(25.82) 

6.86 
(2.28) 

5.14 
(2.14) 

1.00 
(0.96) 

Bellotti & Sellen 101.18 
(43.46) 

6.53 
(2.50) 

3.80 
(1.74) 

2.13 
(2.10) 

 +13.49 -0.33 -1.34 +1.13 

Table 1: Study Results (stdev in parenthesis) 
 
We did not find any statistically significant differences in 
terms of the time spent doing the analysis (n=24, t=0.831, 
p=0.418). In fact the students in the STRAP condition 
reported spending less time on the analysis, which 
surprised us. There was no significant difference in the 
total number of reported vulnerabilities (n=29, t= -0.364, 
p=0.718). These “vulnerabilities” were filtered to remove 
non-privacy issues.  

In the case of the Bellotti and Sellen case a full 32.65% 
were found to be general HCI issues rather than privacy 
issues (compared to 14.58% for STRAP). We did find 
marginal significance in the number of “real” privacy 
vulnerabilities discovered (n=29, t= -1.845, p=0.077). 

CONCLUSIONS 
In this paper we have presented a novel approach to 
designing for privacy, STRAP. STRAP is a light-weight 
structured analysis technique that incorporates heuristics 
from existing frameworks and borrows from the fields of 
requirements and goal-oriented analysis.  Our approach 
provides an analytical structure for privacy-aware design 
and a method for deriving policy requirements from the 
analysis.  We demonstrate that STRAP performs better 
than the standard Bellotti and Sellen heuristics, requiring as 
much time on task yet resulting in more privacy-related 
vulnerabilities discovered. 

FUTURE WORK 
In the future we will conduct a larger and more detailed 
analysis of STRAP and how it performs both against the 
Bellotti and Sellen as well as the Hong et al. frameworks. 
We are especially interested in determining why the 
Bellotti and Sellen framework elicits such a large number 
of general HCI issues. Though we do not consider it to be a 
confound, we will involve more expert designers in these 
studies, and see whether we can find differences in terms of 
the kinds of vulnerabilities discovered through the different 
methods. We will also seek to apply STRAP through a real 
software development cycle to see if iteration and 
refinement are adequately supported. 
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