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This paper discusses measures for connection
strength (strength between any two nodes)
and link strength (strength along a specific
edge) in Discrete Bayesian Networks. The
typical application is to visualize the con-
nections in a Bayesian Network learned from
data to learn more about the inherent prop-
erties of the system (e.g. in earth sciences,
biology or medicine).

The paper focuses on measures based on mu-
tual information and conditional mutual in-
formation. The goal is to provide an easy-to-
read document that gives clear reasoning for
existing measures, provides some simple ex-
tensions (modified measures for different ap-
plications), discusses the limitations of the
measures, provides enough interpretation to
aid a scientist in selecting the most appropri-
ate one and suggests some new uses for link
strength.

1 LINK STRENGTH AND
CONNECTION STRENGTH

Boerlage was the first to formally introduce the con-
cepts of link strength versus connection strength for
Bayesian Networks with binary nodes (Boerlage 1992).
Boerlage defines connection strength for any pair of
nodes (adjacent or not) to measure the strength be-
tween those nodes taking any possible path between
them into account. In contrast link strength (also
known as arc weight) is defined for a specific edge and
measures the strength of connection only along that
single edge.
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Figure 1: Sample BN with weak link from X to Y , but
strong links from X to Z and Z to Y .

To demonstrate the difference between these concepts
in particular for adjacent nodes consider the network
in Figure 1. Each of the three nodes only has two
states, True and False. Let us focus on the connec-
tion between nodes X and Y . For this sample network
the direct link from X to Y is weak1 , while the indirect
link from X to Y through Z is very strong. According
to the above (vague) concept definitions, the connec-
tion strength, CS, between X and Y is strong here,
but the link strength, LS, of the edge X → Y is weak:

CS(X, Y ) = strong,
LS(X → Y ) = weak.

Any pair of measures for link strength and connection
strength should yield this result for the above example.

1.1 APPLICATIONS

Bayesian Networks have become a tool to learn about
the inherent structure of systems in disciplines ranging
from earth sciences to medicine, biology and the social
sciences. For this purpose both the network structure

1This becomes obvious by noting that the state of X
has little effect on the values of P (Y = True|X,Z).



and probabilities are often learned from data and the
resulting structures are visualized as graphs to learn
about potential connections between the variables. For
this purpose it is helpful to visualize not only the ex-
istence of arrows, but also the strength of the vari-
ous connections. Both connection strength and link
strength are useful for that purpose (Boerlage 1992).
They can also be used to generate explanations for
reasoning in Bayesian Networks.

In the context of causal discovery, mutual information
was used by Cheng et al. (2002) to identify node pairs
with strong connections in a proposed constraint-based
learning algorithm. Unfortunately, Cheng et al.’s algo-
rithm is based on an unrealistic assumption and thus
not reliable, as shown by Chickering and Meek (2003).
Nevertheless, the basic idea is a good one and is likely
to eventually lead to correct and more efficient struc-
ture learning algorithms. Furthermore, we believe that
there are several new applications for link strength in
causal discovery as outlined in the future work section
(Section 7).

Connection strength has also been used for approxi-
mate inference. Namely, connection strength can be
used to determine the influence of variables, i.e. to
determine which ones can be neglected in the approxi-
mation (Jitnah and Nicholson 1998). Since connection
strength is generally computationally expensive to cal-
culate, link strength measures are sometimes employed
to approximate connection strength quickly. For that
purpose the link strength measures must be computa-
tionally efficient and combinations of them must yield
either bounds on or a decent approximation of con-
nection strengths between any two nodes (Jitnah and
Nicholson 1998).

The measures in this paper are targeted toward in-
terpretation of Bayesian Networks and potentially for
causal discovery, rather than approximate inference.
Thus computational complexity takes a back seat.

1.2 OVERVIEW OF MEASURES

The following measures are discussed in this paper:
(1) Entropy (Shannon 1949) is used to measure the
uncertainty in a single node.
(2) Mutual information (Shannon 1949, Pearl 1988) is
used to measure connection strength.
(3) Two variations of the link strength measure in
(Nicholson and Jitnah 1998) are presented: True Av-
erage Link Strength and Blind Average Link Strength.
(4) Mutual Information Percentage and Link Strength
Percentage are proposed to measure the percentage of
the existing uncertainty that has been removed.
All measures are defined in this document only for dis-
crete Bayesian Networks.

1.3 ADDITIONAL LITERATURE

The most important work related to this article, as
evident from the previous sections, consists of Shan-
non’s definitions of Entropy and Mutual Information
(Shannon 1949), Pearl’s use of Mutual Information for
Bayesian Networks (Pearl 1988), Boerlage’s definition
of link strength and connection strength for Bayesian
networks with binary nodes (Boerlage 1992) and Jit-
nah and Nicholson’s definition of link strength for fast
approximate inference (Jitnah and Nicholson 1998).

Other work of interest – although not used here – is
the work by Lacave and Diez (Lacave and Diez 2004)
proposing a measure for the “magnitude of influence”
of two ordinal variables and displaying it by the thick-
ness of an arc. Other visualization techniques are re-
viewed in (Lacave and Diez 2002) and (Zapata-Riviera
et al. 1999), but no other measures for link or connec-
tion strengths are presented in those articles.

2 ENTROPY AS UNCERTAINTY
MEASURE

Entropy was already defined by Shannon in the late
1940s (Shannon 1949) and has become the most com-
monly used measure for the uncertainty of a random
variable.

Definition The entropy of a discrete random variable,
X , is defined as

U(X) =
∑

xi

P (xi) log2
1

P (xi)
. (1)

Some readers may be more familiar with the expression
U(X)=−

∑
xi

P (xi) log2 P (xi), which is identical to (1).

Interpretation How much uncertainty is there in X
if no evidence is given for any of the nodes?

Entropy forms the basis for all connection and link
strength measures discussed in this paper and thus it
is very important to understand its limitations. Those
are rarely discussed in textbooks and thus briefly re-
viewed in Appendix A. While it is important to under-
stand these limitations, it is unlikely, based on the na-
ture of the limitations, that they can be overcome by
other generally applicable uncertainty measures and
entropy thus remains by far the most popular measure
for uncertainty.



3 MEASURES FOR CONNECTION
STRENGTH

Connection strength between X and Y measures how
strongly information on the state of X affects the state
of Y (and vice versa). The standard approach is to
compare the distribution of Y without any evidence to
the distribution of Y if there is evidence for X . Mutual
Information is the most common implementation of
this idea: one simply calculates U(Y ) and U(Y |X)
and compares them (see Section 3.1).

An alternative is to apply a divergence measure be-
tween the two probability distributions of Y and Y |X .
For example, in their earlier work Nicholson and Jit-
nah apply the Bhattacharyya distance (Nicholson and
Jitnah 1997) to the distributions. However, that ap-
proach yields less suitable results than Mutual Infor-
mation (Nicholson and Jitnah 1998).

3.1 MUTUAL INFORMATION

Shannon (Shannon 1949) introduced Mutual Informa-
tion for the purpose of communication theory. Pearl
(Pearl 1988) was the first to propose the use of mu-
tual information to measure connection strength in
Bayesian Networks to determine the relevance of some
nodes on others.

Definition Mutual Information is defined as

MI(X, Y ) = U(Y ) − U(Y |X), (2)

where U(Y |X) is calculated by averaging U(Y |xi) over
all possible states xi of X , taking P (xi) into account:

U(Y |X) =
∑

xi

P (xi)U(Y |xi). (3)

Simple arithmetic transformations yield the formula:

MI(X, Y ) =
∑

x,y

P (x, y) log2

(
P (x, y)

P (x)P (y)

)
.

Mutual Information is symmetric in X and Y , i.e.
MI(X, Y ) = MI(Y, X).

Interpretation How much is the uncertainty in Y
reduced by knowing the state of X? How much is the
uncertainty in X reduced by knowing the state of Y ?

3.2 MUTUAL INFORMATION
PERCENTAGE

In some cases the absolute amount of uncertainty re-
duction in a variable may provide less insight than
the percentage of the original uncertainty that was re-
moved. Thus we propose a simple extension of Mutual

Information, namely Mutual Information Percentage,
to be used in conjunction with Mutual Information.

Definition Mutual Information Percentage is defined
for U(Y ) #= 0 as

MI%(X, Y ) =
MI(X, Y )

U(Y )
· 100

=
U(Y ) − U(Y |X)

U(Y )
· 100.

Mutual Information is not symmetric in X and Y , i.e.
MI%(X, Y ) #= MI%(Y, X). MI%(X, Y ) is undefined
for U(Y ) = 0, which makes perfect sense: if there is
zero uncertainty to begin with, then it makes no sense
to ask what percentage of it was removed.

Interpretation By how many percentage points is
uncertainty in Y reduced by knowing the state of X?

4 MEASURES FOR LINK
STRENGTH

There is much less literature on link strength than on
connection strength and it appears to be harder to
measure. Boerlage (Boerlage 1992) defined measures
for both link strength and connection strength, but
those only apply to two-state variables. (Nicholson
and Jitnah 1998) and (Jitnah 1999) derived a measure
based on conditional mutual information that applies
for any discrete Bayesian Network. They did not, how-
ever, provide a derivation of their measure, which we
try to do in the following subsection.

4.1 TRUE AVERAGE LINK STRENGTH

A definition of link strength of an edge X → Y can
be derived from the definition of connection strength.
When considering a link X → Y , we need to decide
how to deal with the other parents of Y in order to fo-
cus on the connection from parent X to child Y solely
along edge X → Y . The approach used here is to in-
stantiate all other parents of Y , leaving the direct con-
nection from X to Y as only pathway through which
information can travel from X to Y .

Denoting the set of other parents of Y as Z =
{Z1, . . . Zn}, we can adjust Equation (2) of Mutual
Information by conditioning both terms on the right
on Z, resulting in the following definition. (We use
boldface for Z and z to indicate that each represents
a set of zero, one or more variables.)

Definition True Average Link Strength of edge X →
Y is defined as the mutual information of (X, Y ) con-
ditioned on all other parents of Y , namely

LStrue(X → Y ) = MI(X, Y |Z)



= U(Y |Z) − U(Y |X,Z),

where U(Y |X,Z) is the average over the states of all
parents and is defined as

U(Y |X,Z) =
∑

x,z

P (x, z)U(Y |x, z) (4)

=
∑

x,z

P (x, z)
∑

y

P (y|x, z) log2

(
1

P (y|x, z)

)
,

and U(Y |Z) is defined analogously as the average over
all other parents:

U(Y |Z) =
∑

z

P (z)U(Y |z), (5)

where z represents all possible state combinations of
the set of other parents, Z.

Instantiating all other parents of Y in MI(X, Y |Z) es-
sentially blocks all information flow through the other
parents, Z. We still need to ensure that there remain
no other indirect open pathways between Y and X ,
e.g. through descendants of Y . The following theorem
shows that indeed the only pathway that remains open
between X and Y once all other parents are instanti-
ated is the direct link from X to Y .

Theorem 4.1 Consider a BN (G,P ) consisting of
DAG G and joint probability P . Let X → Y be an
edge in G and denote the set of all other parents of Y
as Z. Let Ĝ be the modified DAG generated by deleting
edge X → Y in G. Then X and Y are conditionally
independent given Z in BN (Ĝ,P̂ ) for any joint prob-
ability P̂ .

Proof Since edge X → Y does not exist in Ĝ, set Z
represents all parents of Y in Ĝ. Furthermore, X is
not a descendent of Y in Ĝ - otherwise the original
DAG G would contain a directed cycle. Due to the
Markov condition any node in a BN is conditionally
independent of its non-descendents given its parents.
Therefore for any BN with DAG Ĝ, node Y is condi-
tionally independent of X given Z.

Since X and Y are conditionally independent given Z
if the edge from X to Y is removed, it is clear that edge
X → Y is indeed the only path along which informa-
tion can flow from X to Y in G if Z is instantiated.
This fact ensures that the True Average Link Strength
indeed only measures information flow along the con-
sidered edge.

Using (4) and (5) and some transformations yields

LStrue(X→Y ) =
∑

x,z

P (x, z)
∑

y

P (y|x, z) log2
P (y|x, z)
P (y|z) . (6)

Interpretation By how much is the uncertainty in Y
reduced by knowing the state of X , if the states of all
other parent variables are known (averaged over the
parent states using their actual joint probability)?

Comparison to Measure by Jitnah and Nichol-
son: By converting to our notation the measure pre-
sented by (Nicholson and Jitnah 1998) and (Jitnah
1999) can be written as

LSJitnah−Nicholson(X→Y ) =
∑

x,z

Ppr(z)Ppr(x)
∑

y

P (y|x, z) log2
P (y|x, z)
Ppr(y|z)

,

where the term Ppr indicates an approximation of
probability that avoids using any inference. Thus
Equation (6) presents the exact formula, while the
measure by (Nicholson and Jitnah 1998) already em-
ploys some approximations to allow for faster evalua-
tion.

4.2 BLIND AVERAGE LINK STRENGTH

This measure is new and is derived from True Av-
erage Link Strength by disregarding the actual fre-
quency of occurrence of the parent states. Namely we
assume that X,Z are independent and all uniformly
distributed:

P̂ (x, z)=P (x)P (z), P̂ (x)=
1

#(X)
, P̂ (z)=

1
#(Z)

, (7)

where #(X) denotes the number of discrete states of
X , etc.

Essentially, this approximation goes one step further in
simplifications than the approximations by Jitnah and
Nicholson. However, these additional simplifications
have a justification of their own. Namely an interest-
ing property of the set of assumptions (7) is that it
creates a local measure that depends only on the child
node and its conditional probability table, but noth-
ing else in the network. One may argue that for some
applications such a local measure is actually more nat-
ural, since the connection between parents and child
should be independent of any changes in probabilities
elsewhere in the network. This discussion is continued
in Section 6.3.

Definition Blind Average Link Strength is defined as

LSblind(X → Y ) = Û(Y |Z) − Û(Y |X,Z),

where

Û(Y |Z) =
1

#(X)#(Z)

∑

x,y,z

P (y|x, z) log2
#(X)∑

xP (y|x, z)
,

Û(Y |X,Z) =
1

#(X)#(Z)

∑

x,y,z

P (y|x, z) log2 P (y|x, z).



Note that Û(Y |Z) and Û(Y |X,Z) are obtained from
U(Y |Z) and U(Y |X,Z) simply by applying assump-
tions (7). This definition yields the simple formula

LSblind(X → Y ) =
1

#(X)#(Z)

∑

x,y,z

P (y|x, z)

log2

(
P (y|x, z)

1
#(X)

∑
x P (y|x, z)

)
,

where P (y|x, z) is given by the conditional probability
table of Y and no inference is required at all.

Interpretation By how much is the uncertainty in Y
reduced by knowing the state of X , if the states of all
other parent variables are known (averaged over the
parent states assuming all parents are independent of
each other and uniformly distributed)?

Comment: This is the simplest and computationally
least expensive measure. It is also a local measure,
taking only the child and its conditional probabilities
into account, thus allowing for isolated analysis of child
and parents, regardless of the rest of the network.

4.3 LINK STRENGTH PERCENTAGES

Just as percentage of uncertainty reduction can be im-
portant in mutual information, the same holds for True
Average and Blind Average Link Strength. Therefore
we suggest the following two simple extensions of Link
Strength:

Definition True Average Link Strength Percentage is
defined for U(Y |Z) #= 0 as

LS%true(X→Y ) =
LStrue(X → Y )

U(Y |Z)
· 100

=
U(Y |Z) − U(Y |X,Z)

U(Y |Z)
· 100. (8)

Applying independence and uniformity assumptions
(7) to the True Average Link Strength Percentage (8)
yields the Blind Average Link Strength Percentage.

Definition Blind Average Link Strength Percentage
is defined for Û(Y |Z) #= 0 as

LS%blind(X → Y ) =
LSblind(X → Y )

Û(Y |Z)
· 100

=
Û(Y |Z) − Û(Y |X,Z)

Û(Y |Z)
· 100.

Analogously to MI% (and for the same reasons),
LS%true(X → Y ) is undefined if U(Y |Z) = 0 and
LS%blind(X→Y ) is undefined if Û(Y |Z) = 0.

Interpretation By how many percentage points is
the uncertainty in Y reduced by knowing the state of
X , if the states of all other parent variables are known
(averaged over the parent states using their actual joint
probability (for True Average) or assuming all par-
ents are independent of each other and uniformly dis-
tributed (for Blind Average))?

5 COMPUTATIONAL ISSUES

All the measures discussed in the previous sections
plus several visualization routines were implemented
by the author as add-ons for two different software
packages.
(1) LinkConnectionStrength package (Ebert-Uphoff
2006) is an add-on for Intel’s Open-Source Probabilis-
tic Network Library (PNL).
(2) LinkStrength package is an add-on for Kevin Mur-
phy’s Bayes Net Toolbox (BNT) for Matlab.
Sources and documentation for both packages are
available at www.DataOnStage.com.

5.1 DEGENERATE CASES

Considering the formulas for entropy, mutual informa-
tion and link strengths turns up a variety of potential
degenerate cases that would lead to either (1) division
by zero, (2) calculating the logarithm of zero, or (3)
calculating an undefined expression such as P (y|x) for
P (x) = 0. Fortunately, careful analysis shows that
in all of those cases the expressions in question con-
verge towards zero when approaching the degenerate
case and can thus be handled by simple if-statements
in the code.

5.2 COMPUTATIONAL COMPLEXITY

The computation with the highest computational com-
plexity in all of the connection strength and link
strength formulas appears to be the inference used to
calculate the various required joint probabilities. The
inference requirements are as follows:
• CS(X, Y ) requires P (X, Y ).
• LStrue(X → Y ) requires P (all parents of Y ).
• LSblind(X → Y ) requires no inference at all.
• Each percentage measure requires the same proba-
bilities as the corresponding absolute measure above.

6 MORE PROPERTIES AND
INTERPRETATION

This section provides additional intuition on the mea-
sures by presenting some properties and illustrating
them by several examples.



Table 1: Results for Sample Network in Figure 1

LStrue LSblind MI

X → Y 0.000 0.000 0.311
X → Z 0.531 0.531 0.531
Z → Y 0.204 0.516 0.515

6.1 DO OUR MEASURES BEHAVE AS
DESIRED?

Let us revisit the network from Section 1 (Figure 1)
used to demonstrate the desired difference in behav-
ior between connection strength and link strength and
see whether the measures defined here actually behave
in the desired way. Table 1 shows the results for the
network from Figure 1 for True Average and Blind
Average Link Strength for each edge, as well as Mu-
tual Information for each node pair. The values are
consistent with the expectations for link strength and
connection strength specified in Section 1, specifically:

Link Strength: No matter which formula is used
(True Average or Blind Average), the link strengths
of the arcs from X to Z and from Z to Y are signifi-
cant, while the strength of arc X → Y nearly vanishes.

Connection Strength: Each pair of nodes, (X, Y ),
(X, Z) and (Y, Z), is strongly connected. In particular,
the pair of nodes (X, Y ) receives a strong connectiv-
ity value, because X and Y are strongly connected
through the chain X → Z → Y .

6.2 MUTUAL INFORMATION VERSUS
TRUE AVERAGE LINK STRENGTH

It is clear from their definitions that for a node with
only one parent Mutual Information and True Aver-
age Link Strength yield the same value. Mutual Infor-
mation Percentage and True Average Link Strength
Percentage also coincide in this case.

In contrast, let us consider the node pair (X, Y ) in the
simple 3-node network

X → Y ← Z.

Since the only connection between X and Y is the arc
X → Y , one may initially expect that Mutual Infor-
mation and True Average Link Strength would also
coincide for that arc. However, mutual information
measures how much uncertainty is removed from Y by
knowing the state of X if nothing else is known. In
contrast, True Average Link Strength measures how
much uncertainty is removed from Y by knowing the
state of X if the state of Z is known.

In summary, Mutual Information and True Average
Link Strength generally only coincide if the child has

only one parent.

6.3 TRUE VERSUS BLIND AVERAGE
LINK STRENGTH

Let us consider the Visit to Asia network introduced
in (Lauritzen and Spiegelhalter 1998). Figure 2, 3 and
4 show True Average Link Strength, Blind Average
Link Strength and some selected Mutual Information
graphs. In the link strength graphs, the value of the
link strength is indicated both by the number next to
the arrow and by the gray scale of the arrow (if the
arrow would otherwise be invisible, a dashed light gray
line is used instead). The mutual information graphs
indicate the target node by an octagonal shape and
the mutual information of all other nodes relative to
that one is indicated both by the value underneath
each node and by its gray scale.

As indicated by the True Average Percentages on the
right of Figure 2 most links are quite strong. Keeping
the comments on scale from Section 6.5 in mind all
connections except for the one from Visit to Asia to
Tuberculosis can be classified as significant.

The Blind Average Value Percentage for Visit to Asia
is much higher though, indicating that the reason for
the low True Average Percentage is the low probabil-
ity of state True for Visit to Asia. In a nutshell, one
could say that in this example True Average Link
Strength (and Percentage) only considers the
benefit of the information of variable Visit to
Asia for the average patient. In contrast Blind
Average Link Strength (and Percentage) con-
siders all patient categories equally – in this
case the small group of patients actually hav-
ing traveled to Asia is given equal weight to
the large group not having traveled there – and
thus gives more attention to special cases (small
groups) and the value of information of variable
Visit to Asia for that special group.

This difference is typical of the different viewpoints
of True Average and Blind Average. One should be
aware of those viewpoints when choosing one measure
for a particular application.

6.4 DETECTING DETERMINISTIC
RELATIONSHIPS

This section illustrates interesting properties of the
Link Strength Percentages for deterministic functions.
By deterministic function we mean that the state of a
child is completely known if the states of all of its par-
ents are known, i.e. there is no uncertainty involved.

Definition A node Y is a deterministic child of its
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parents, P1, . . . , Pn, if

∀ states y, ∀ parent states p1, . . . , pn :
P (y|p1, . . . , pn) ∈ {0, 1}.

Proposition 6.1 If Y is a deterministic child of its
parents, then both its True Average and Blind Average
Link Strength Percentage from any parent P is 100%:

∀P ∈ parents(Y ) : LStrue%(P → Y ) = 100%
∀P ∈ parents(Y ) : LSblind%(P → Y ) = 100%.

Proof See Appendix B.

The question arises whether the reverse is also true,
i.e. if the link strength percentages of all parents to a
child are 100% does that imply that the child is de-
terministic? This is indeed the case for Blind Average
Percentage, but not for True Average Percentage, as
evident from the following two Propositions.

Proposition 6.2 If LSblind%(P → Y ) = 100% for at
least one parent P of a node Y , then Y is a determin-
istic child of its parents.

Proof See Appendix B.

Remark: it follows that if LSblind%(P → Y ) = 100%
for one of Y ’s parents, that the same must hold for all
of Y ’s parents.

Proposition 6.3 Even if LStrue%(P → Y ) = 100%
for all parents P of node Y , then Y is not necessarily
a deterministic child of its parents.

Proof See Appendix B.

To see the usefulness in particular of Proposition 6.2
we revisit the Visit to Asia Example. Looking at the
plot for the Blind Average Link Strength Percentage
(right plot in Figure 3) immediately shows that Can-
cerOrTuberculosis is a deterministic child of its par-
ents – which, admittedly, in this case could have been
guessed from its name, too. Other cases are less obvi-
ous, in particular if a network is learned from data and
this property can be helpful to identify deterministic
and nearly deterministic child nodes.

6.5 WHICH NUMBERS INDICATE A
“STRONG” RELATIONSHIP?

This question cannot be fully answered here, but we
try to shed some light on it by considering the triv-
ial example in Figure 5. Nodes A and B are both
binary with states True and False and b is a free
parameter. Note that for this trivial system it is

A

B

A : P (A = True) = 0.5
B : P (B = True|A = True) = b

P (B = True|A = False) = 1 − b

Figure 5: Two-Node Network with parameter b.
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Figure 6: MI%(A, B) vs. b for Network in Figure 5.

MI(A, B) = LStrue(A→B) = LSblind(A→B), since
B only has a single, uniformly distributed parent (A).

How do mutual information and link strength “scale”
for this network, i.e. what values do they result in for
varying b? Table 2 (on next page) and Figure 6 show
results for MI(A, B) and MI%(A, B) – and thus also
for LStrue/blind(A → B) and LS%true/blind(A → B)
– for a variety of values of b. Notice how quickly
MI(A, B) decreases when increasing b from zero. For
example, for b = 0.1 we know that in 90% of cases B
is True if and only if A is False. However, the con-
nection/link strength value is only 0.531 with a per-
centage value of 53.1%. Similarly, even for b = 0.4 we
know that A still has a significant effect on B, but the
percentage value of removed uncertainty is only 2.9%.

The lesson from this is that while the values
of the measures increase monotonously when
uncertainty is reduced, the scale of the actual
values is not linear and not intuitive. This needs
to be considered when choosing a threshold for when
a connection is considered “strong”.

7 FUTURE WORK

Much work remains to be done to develop more in-
terpretation and specific guidelines for the use of the
measures discussed in this document. Many questions
about alternative measures also arise: Are there other
measures that have a more intuitive scale? Which
other functions U(X) (other than entropy) would be
suitable as basis for these measures? Is there an-
other averaging technique – other than True Average
or Blind Average – that would yield interesting results?

Furthermore we believe that Link Strength measures
may be useful in the context of constraint-based struc-
ture learning algorithms to derive hypotheses of
a system’s primary causal pathways from data.
One problem when using constraint-based structure



Table 2: Connection and Link Strengths for varying b in Figure 5.

b 0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5

MI(A,B) = LStrue/blind(A → B) 1.0 0.919 0.859 0.714 0.531 0.278 0.119 0.029 0
MI%(A,B) = LS%true/blind(A → B) 100 91.9 85.9 71.4 53.1 27.8 11.9 2.9 0.0

learning algorithms is the generally large number of
possible DAGs returned by the algorithm. One way in
which link strength may be helpful is that it could help
one reduce the number of models to look at. Specif-
ically, we plan to conduct some case studies where
we look at the different models delivered by struc-
ture learning, and use link strength visualization to
see how different they really are if one focuses only on
the strong connections. It is likely that some of them
only differ in minor connections and this will reduce
the number of models in some cases enough so that
one can identify only a few major causal hypotheses.

We believe that link strengths measures could also be
used to evaluate the quality of structure learn-
ing algorithms. Currently structure learning algo-
rithms are evaluated by counting the number of incor-
rect arrows when identifying known systems. We be-
lieve that it may be more appropriate to weigh those
counts by the link strength of the incorrect arrows.
Details of the weighing remain to be determined.

8 CONTRIBUTIONS

This paper reviewed link strength and connection
strength measures for discrete Bayesian Networks.
The primary contributions are a clean derivation of
True Average Link Strength, newly proposed Blind
Average Link Strength, newly proposed Percentage
Measures for Mutual Information and Link Strength,
derivation of several properties of the various mea-
sures, and proposed new uses for link strength mea-
sures in the context of causal discovery.
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A Weaknesses of Entropy

Pearl explained a weak point of using entropy – or any
other measure that is a function of only the probabili-
ties of a random variable’s states – to measure uncer-
tainty (Pearl 1988, pp. 322-323):

The main weakness of Shannon’s measure is that it
does not reflect the ordering or scale information rel-
ative to the values that a variable may take. For ex-
ample, the uncertainty associated with the belief “The
temperature is between 37o and 39o would have the
same entropy measure as the uncertainty associated
with “The temperature is either between 0o and 1o or
between 99o and 100o” (assuming uniform distribution
over the intervals specified). Entropy is invariant to
reordering or renaming the values in the domain, so
it cannot reflect the fact that we perceive an error be-
tween 37o and 38o to be much less critical than an
error between 0o and 100o. [...]

The source of this peculiar behavior is that entropy,
contrary to folklore, does not measure the harm caused
by uncertainty; it measures the cost of removing the
uncertainty (by querying an oracle and paying the
same fee for all binary queries). This is why Shannon’s
mutual information measure endows equal penalty to
all errors.

It should also be noted that Pearl’s interpretation
above of entropy as the approximate number of re-
quired binary queries to determine the state of the vari-
able has an additional advantage. It seems to be the
simplest one that fully explains the exact formula of
entropy, including the logarithmic scale.

In contrast, most textbooks motivate entropy by stat-
ing that the term

(
log 1

P (xi)

)
measures the surprise

if event xi occurs. Then U(X) is the expected (aver-
age) surprise, if infinitely many trials are performed.
This interpretation is helpful, but does not directly
explain the logarithmic scale, since one can think of
many measures of surprise that are not logarithmic.
Shannon (1949) stipulated some additional properties
for his entropy measure that force the scale to be log-
arithmic. However, it is still a question of discussion
whether those properties are indeed required for an
uncertainty measure (Uffink (1995)). Nevertheless, no
convincing alternative has yet emerged to measure un-
certainty and entropy remains by far the most common
choice.

B Proofs for Propositions 6.1 to 6.3

Proof of Proposition 6.1

Proof If node Y is a deterministic child of its parents
then it follows U(Y |X,Z) = 0 and Û(Y |X,Z) = 0 in
the definitions of True/Blind Average Link Strengths,
which then yields the desired result.

Proof of Proposition 6.2

Proof From LSblind%(P → Y ) = 100% follows
Û(Y |X,Z) = 0, thus

∑

x,y,z

P (y|x, z) log2 P (y|x, z) = 0.

Each term P (y|x, z) log2 P (y|x, z) is positive and van-
ishes if and only if P (y|x, z) = 0 or P (y|x, z) = 1.
Thus in order for the whole sum to vanish, we must
have ∀x, y, z : P (y|x, z) ∈ {0, 1}. Thus Y is a deter-
ministic child of its parents.

Proof of Proposition 6.3

Proof The following degenerate case serves as a
counter example. Y has two parents, X, Z, which each
can only take states 0 and 1. Let us say that x = 0 and
z = 0 always, thus P (x = 0, z = 0) = 1 and P (x, z) =
0 otherwise. Define Y = (x + z) ∗ (random number),
then U(Y |x = 0, z = 0) = 0 and U(Y |x, z) #= 0 other-
wise. Thus all products P (x, z)U(Y |x, z) vanish and
U(Y |X, Z) = 0, although Y is clearly not a determin-
istic child of its parents.

Comment: The inability of the True Average Link
Strength Percentage to guarantee that a node is a de-
terministic child comes from the fact that the defini-
tion of whether a child is deterministic is independent
of the joint probability of the node’s parents, while True
Average Link Strength Percentage disregards parent
state combinations with zero joint probability. Thus
one may argue that this difference is philosophical in
nature and that True Average Link Strength Percent-
age is also a good indicator for deterministic relation-
ships. Nevertheless, it is more prudent to use Blind
Average Link Strength Percentage for that purpose.


