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hope in my life. Last but not least, I can never thank my mother enough for enduring

my foolishness at the cost of her increasing amount of white hair.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I RESEARCH BACKGROUND AND LITERATURE REVIEW . 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II DYNAMIC PREFERENTIAL NETWORK MODEL . . . . . . . 6

2.1 The Model Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Preferential Attachment Algorithm . . . . . . . . . . . . . . 7

2.1.2 Arc Add Algorithm . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Arc Drop Algorithm . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Dynamic Network Model . . . . . . . . . . . . . . . . . . . . 9

2.2 Model Modification and Extension . . . . . . . . . . . . . . . . . . . 10

2.2.1 Modifying the Preferential Attachment and Arc Add Algorithms 12

2.2.2 Disease Spread Algorithm . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Dynamic Network Model with Disease Spread . . . . . . . . 16

III DYNAMIC PREFERENTIAL NETWORK MODEL IN SEXU-
ALLY TRANSMITTED DISEASES . . . . . . . . . . . . . . . . . . 21

3.1 NNAHRAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Contact Network in NNAHRAY . . . . . . . . . . . . . . . . . . . . 23

3.3 Dynamic Preferential Network Model Calibration Metrics . . . . . . 27

3.3.1 Network Structure Metrics . . . . . . . . . . . . . . . . . . . 27

3.4 Dynamic Preferential Network Model Fitting . . . . . . . . . . . . . 31

3.4.1 The Spread of HIV and HSV-2 . . . . . . . . . . . . . . . . 31

3.4.2 Dynamic Preferential Network Model Description . . . . . . 33

3.4.3 Initial Model Fitting Results . . . . . . . . . . . . . . . . . . 37

iv



3.4.4 Modeling the Study Sampling Procedure . . . . . . . . . . . 39

3.4.5 Sample Model Fitting Results . . . . . . . . . . . . . . . . . 44

IV DYNAMIC NETWORK MODEL COMPUTATIONAL RESULTS 52

4.1 Disease Prevalence and Network Dynamic . . . . . . . . . . . . . . . 52

4.1.1 Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Preferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 Grandom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.5 Compartmental . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.6 Computational Results And Discussion . . . . . . . . . . . . 58

4.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Disease Prevalence and Network Structure . . . . . . . . . . . . . . 64

4.2.1 Computational Results and Discussion . . . . . . . . . . . . . 65

4.2.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Model Application to Public Health Policy Analysis . . . . . . . . . 71

4.3.1 Size Invariant Properties . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Computational Results and Discussion . . . . . . . . . . . . . 72

4.3.3 STD/HIV Prevention Policy Analysis . . . . . . . . . . . . . 74

4.3.4 Computational Results and Discussion . . . . . . . . . . . . . 74

4.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

V THESIS CONTRIBUTION AND FUTURE RESEARCH DIREC-
TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

APPENDIX A — COMPUTATIONAL MODELS . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

v



LIST OF TABLES

3.2.1 NNAHRAY component distribution . . . . . . . . . . . . . . . . . . 25
3.2.2 Static NNAHRAY network node-arc type incidences . . . . . . . . . 27
3.2.3 Static NNAHRAY Network node-node type incidences - I . . . . . . 28
3.2.4 Static NNAHRAY Network node-node type incidences -II . . . . . . 29
3.4.1 HIV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 HSV2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 Dynamic network model parameter value - I . . . . . . . . . . . . . 34
3.4.4 Dynamic network model parameter value - II . . . . . . . . . . . . 35
3.4.5 Network metric and disease prevalence results of NNAHRAY . . . 37
3.4.6 Network metric close range . . . . . . . . . . . . . . . . . . . . . . 38
3.4.7 Initial model fitting result example - I . . . . . . . . . . . . . . . . . 41
3.4.8 Initial model fitting result example - II . . . . . . . . . . . . . . . . 42
3.4.9 Sampling algorithm parameter value . . . . . . . . . . . . . . . . . . 44
3.4.10 Network metric values of sampling without the adding arc step - I . 46
3.4.11 Network metric values of sampling without the adding arc step - II . 47
3.4.12 Network metric values of sampling with the adding arc step - I . . . 48
3.4.13 Network metric values of sampling with the adding arc step - II . . 49
3.4.14 Closest parameter sets . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.15 Prevalence Prediction versus Simulation Time . . . . . . . . . . . . 51
4.1.1 Dynamic network model parameter fitting results with NNAHRAY . 53
4.1.2 HIV annual prevalence results of all models . . . . . . . . . . . . . . 59
4.1.3 Network structures of all models . . . . . . . . . . . . . . . . . . . . 62
4.2.1 HIV prevalence result . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Single metric close range . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Structure comparison - I . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 Structure comparison - II . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.5 The number of fitted network metrics for the selected parameters . 70
4.3.1 HIV incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Population composition . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Disease prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 HIV transmission probability . . . . . . . . . . . . . . . . . . . . . . 76
4.3.5 HSV-2 synergistic impact on HIV . . . . . . . . . . . . . . . . . . . 77
4.3.6 HSV-2 transmission probability . . . . . . . . . . . . . . . . . . . . 78
4.3.7 The frequency of unprotected sex . . . . . . . . . . . . . . . . . . . 79
4.3.8 The frequency of needle sharing . . . . . . . . . . . . . . . . . . . . 79
A.1 Preferential parameter value - I . . . . . . . . . . . . . . . . . . . . 86
A.2 Preferential parameter value - II . . . . . . . . . . . . . . . . . . . . 87
A.3 Grandom parameter value -I . . . . . . . . . . . . . . . . . . . . . . 91
A.4 Grandom parameter value -II . . . . . . . . . . . . . . . . . . . . . 92
A.5 Configuration parameter value - I . . . . . . . . . . . . . . . . . . . 96
A.6 Configuration parameter value - II . . . . . . . . . . . . . . . . . . . 97

vi



A.7 Compartmental parameter value - I . . . . . . . . . . . . . . . . . . 102
A.8 Compartmental parameter value - II . . . . . . . . . . . . . . . . . . 103

vii



LIST OF FIGURES

2.1.1 Preferential attachment algorithm . . . . . . . . . . . . . . . . . . 8
2.1.2 Arc add algorithm for existing nodes . . . . . . . . . . . . . . . . . 9
2.1.3 Arc drop algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Dynamic preferential model . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Preferential attachment algorithm - Part I . . . . . . . . . . . . . . 14
2.2.2 Preferential attachment algorithm - Part II . . . . . . . . . . . . . 15
2.2.3 Arc add algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Disease spread algorithm . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Dynamic preferential model - Part I . . . . . . . . . . . . . . . . . . 19
2.2.6 Dynamic preferential model - Part II . . . . . . . . . . . . . . . . . 20
3.2.1 NNANRAY static contact network . . . . . . . . . . . . . . . . . . 24
3.4.1 Sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Model contact network sample . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 NNANRAY contact network . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 HIV prevalence of testing 1 . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 HIV prevalence of testing 2 . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 HIV prevalence of testing 3 . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Unprotected sex frequency vs HIV prevalence . . . . . . . . . . . . 69
4.2.2 Synergy of HSV-2 vs HIV prevalence . . . . . . . . . . . . . . . . . 69
4.2.3 Number of fitted network metric on HIV prevalence . . . . . . . . . 71
A.1 Preferential model - Part I . . . . . . . . . . . . . . . . . . . . . . . 84
A.2 Preferential model - Part II . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Grandom AddArc algorithm . . . . . . . . . . . . . . . . . . . . . . 88
A.4 Grandom model - Part I . . . . . . . . . . . . . . . . . . . . . . . . 89
A.5 Grandom model - Part II . . . . . . . . . . . . . . . . . . . . . . . . 90
A.6 Configuration AddArc algorithm . . . . . . . . . . . . . . . . . . . 93
A.7 Configuration model - Part I . . . . . . . . . . . . . . . . . . . . . . 94
A.8 Configuration model - Part II . . . . . . . . . . . . . . . . . . . . . 95
A.9 Compartmental AddArc algorithm . . . . . . . . . . . . . . . . . . 98
A.10 Compartmental SpreadDisease algorithm . . . . . . . . . . . . . . . 99
A.11 Compartmental model - Part I . . . . . . . . . . . . . . . . . . . . . 100
A.12 Compartmental model - Part II . . . . . . . . . . . . . . . . . . . . 101

viii



SUMMARY

Compartmental models have long been used to represent disease progression

and propagation. Since individuals and their relationships can be viewed as a network

on top of which diseases spread over time, compartmental disease models have also

been combined with static contact network models to capture heterogeneity in the

number as well as in the duration of individual contacts. However, such models

assume the contact network remains static over time. To replicate more closely the

population network structures of interest, in this thesis we create a dynamic network

model. The model is an extension of the static preferential attachment network model:

it allows arcs to be dropped and added over time based on the nodes’ demographic

and sociological attributes.

Network, Norms and HIV/STI Risk Among Youth (NNAHRAY) is a community

relationship survey data set recording 465 residents’ demography, relationships, and

blood testing results of Sexually Transmitted Diseases (STDs) in Bushwick, NY [19].

It provides a rare sample of a human risky-behavior contact network. Combining

disease compartmental models with our dynamic network model, we simulate the

spread of Human Immunodeficiency Virus (HIV) and Herpes Simplex Type 2 Virus

(HSV2) with consideration of HSV2’s synergistic impact on HIV’s transmission in

Bushwick from 1990 to 2002.

When our disease spread model parameters are set according to the observed data

and the epidemiological literature such that the designed network metrics approxi-

mate the data well, the model reproduces HIV prevalence, HSV-2 prevalence, and

the contact network close to those observed in NNAHRAY. Our model prevalence

prediction results of HIV annual prevalence are closer to the estimated values from

ix



the literature than those of any disease spread model based on static networks. Our

work supports the hypothesis that considering the underlying contact dynamics as

well as network structures is important for making good disease prevalence predic-

tions. From our network model fitting experience, we demonstrate the need to model

the data sampling process when validating against real-world data.

Our model, under certain conditions, has prevalence prediction results that are in-

sensitive to changes in network size. The analysis of various prevention/intervention

strategies targeting different risky groups gives important insights into strategy prior-

itization and illustrates how our model can be used to assist in making public health

policy decisions in practice, both for individual diseases and in the more-recent area

of study that considers synergy between two diseases.
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CHAPTER I

RESEARCH BACKGROUND AND LITERATURE

REVIEW

The complexity of disease spread, due to both development within a host and in

transmission through a population, makes analyzing the impact of public health pre-

vention/intervention programs a difficult task. The spread of disease has been tra-

ditionally modeled using differential equations, in which the human contact network

is assumed to be homogeneous (at least within pairs of groups). This unrealistic as-

sumption has spurred efforts to develop models that account for contact heterogeneity.

One of these is the network model.

When a network, which consists of nodes and arcs between nodes, is applied to

model population contacts, a node is regarded as an individual and an arc as the

indicator that shows the linked individuals have contacted with each other. Unlike

the traditional differential equation model, which assumes every infected person in

the same compartment (normally characterized by age and disease status) has the

same contacts as the others, in a contact network nodes from the same compartment

may have different contacts and/or different numbers of contacts, and the disease can

transmit from one node to another only when the two are linked by an arc.

Various network models have been developed to explain the attributes of contact

networks observed in real life. In general, they can be partitioned into static and

dynamic network models. In a static network model arcs never appear or disappear,

while in the dynamic network model arcs are expected to appear and disappear over

time. Due to the more-realistic representation of contact characteristics and there-

fore a more-realistic disease propagation process, a dynamic network model can be
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preferable to a static network model in public intervention policy analysis.

We hypothesize that, to closely reflect the disease propagation process, a synthe-

sized population model needs to include the dynamic nature of contacts and match

well with the contact structures observed in real data.

To test the hypothesis, in Chapter 2 we introduce a new dynamic network model

combined with the compartmental disease progression model. We show in Chapter 3

how to parameterize our network model with behavioral study data collected by public

health workers as well as HIV and HSV-2 transmission data in the epidemiological

literature. Our model-fitting experience shows that it can be important to model

how the interviewee sampling was done in detail in order to match the network model

structures with data.

After completing the parameterization of our model, in Chapter 4 we compare our

model’s annual HIV prevalence prediction with other static network models’. The

comparison results show that inclusion of network dynamics and network structural

properties is indeed necessary to closely replicate the estimated HIV prevalence from

the literature. Also in Chapter 4 we confirm our model’s scale-invariant property

computationally and then illustrate our model’s potential use to analyze intervention

policy effectiveness. In Chapter 5 we conclude this thesis with a summary of research

contributions and discussion of future research directions.

1.1 Literature Review

The concepts of compartmentalizing population and regarding diseases as the driving

forces for individuals flowing through compartments were introduced as early as 1927

[28], but did not attract much research attention until 1982. Kermack and McK-

endrick [28] compartmentalized the population into three groups based on disease

stages: (1) susceptible, (2) infected and infectious, and (3) recovered. The indi-

viduals flow through the compartments in order. The flow speed depends on how
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infectious the disease of concern is: the more infectious the virus is, the shorter time

it requires for all individuals in the population to move from the susceptible group to

the infected and infectious group. The flow between compartments, therefore, rep-

resents the spread of disease among population. This type of model also was later

referred to as an SIR model.

The model simplicity results from two major assumptions: individuals within the

same compartment are equally infectious or equally susceptible, and all individuals in

the infected compartment can reach all individuals in the susceptible compartment.

In 1982, Anderson and May [2, 3, 4] successfully brought the SIR model back to the

attention of the field of epidemiology. To accommodate the incubation period and

the age-wise infection rates of diseases, they added to the SIR model one more disease

stage compartment, infected but not infectious, and divided all disease stage com-

partments further by age. After the concept of population compartmentalization was

widely accepted, more variants of the SIR model were developed to predict endemic

outbreak potential [12, 43] and to assess public health policy effectiveness [5, 11, 39].

Since the models are usually formulated with ordinary differential equations, they are

also called compartmental differential equation models of disease spread.

The assumption of equal infectivity, susceptibility, and connectivity in the com-

partmental model can be questioned easily, especially when it is used to replicate the

spread of Sexually Transmitted Diseases (STDs). Because the number of individual

sexual contacts ranges more widely than the casual contacts [31], and also because

the infection likelihood varies greatly between individuals at high risk and the general

public, the modeling of STDs naturally needs to take heterogeneity and connectivity

into consideration so that it can be accurate enough to assist in analyzing intervention

policies.

The emergence of large static network data [1, 27, 44, 47] and the development of

3



static contact network models, such as the configuration network model [33], small-

world network model [44], and geometric preferential-attachment model [15], in the

recent two decades enabled researchers to effectively avoid the homogeneity assump-

tion. Many works, e.g., [30, 34, 37] have shown how to define heterogeneity in a

population mathematically and further incorporate it with the compartmental model

under various contact network settings. These contact networks are all static, par-

tially for the benefit of analytical tractability. Since in a static contact network any

contact is assumed to exist from the beginning of the disease spread until the end, it

may lead to disease prevalence inacurracy.

To model the dynamics of contacts, research efforts have been put into the follow-

ing three directions: (1) collection of larger and more-precise dynamic contact data,

(2) development of sophisticated agent-based simulation models, and (3) construction

of abstract dynamic network models. For example, [40] extracted an approximate dy-

namic sexual contact network from the massive number of prostitute rating comments

by sex buyers. [9, 14] used census data to parameterize individuals’ characteristics

and behaviors in agent-based simulation models of measles and influenza respectively.

[41] proposed a theoretical dynamic network model in which an individual has a fixed

number of contacts but with a varying set of individuals over time.

To date, there is still no large real-life dynamic contact data available. Most

existing contact network data are samples of the real-life dynamic contact network of

certain focus groups, for example, young adult populations [29] and drug users [45].

Discussion of disease prevalence on the collected contact network data provides ad-hoc

insights, difficult to generalize. To represent the whole population, dynamic network

models therefore play an important role. Agent-based simulation models are capable

of modeling dynamic interactions in detail, but when it comes to parameterizing the

model, the amount of data needed, both the census and the field behavioral data, is

generally not available.
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Abstract dynamic contact network models, on the other hand, keep the number of

parameters under control. They were built upon the establishment of static network

models with additional parameters to control the dynamics of networks. For example,

the models in [13, 42] started with the static configuration model algorithm. They

both allow arcs to drop and form over time, but use different algorithms to maintain

the chosen degree distribution. For example, the model in [25] adopted an algorithm

that creates the small-world model when forming and dropping arcs. All these models

have great potential of being incorporating into disease modeling. However, none of

the dynamic contact network models have been validated either by large dynamic

network data, which is still missing for comparison, or by the available static contact

network data.

Compared to the progress made in population interaction modeling, the modeling

of disease interaction has been less studied. The presence of STDs which cause genital

ulceration, such as HSV-2 and syphilis, has long been suspected to be an important

cofactor of HIV spread [16]. [23] built an agent-based simulation model to study the

synergistic impact of syphilis on HIV transmission among men who have sex with men

(MSM) in Australia. Their results show that it is possible and also effective to bring

down HIV incidence by successfully implementing a national syphilis action plan. The

same cost-effectiveness analysis would also be desirable for HSV-2, especially given

that the estimated global prevalence of HSV-2 is 536 million, including 23.6 million

new cases worldwide in 2003 [32], and also that HSV-2 has been found to be highly

prevalent in places where HIV incidence is high [24].
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CHAPTER II

DYNAMIC PREFERENTIAL NETWORK MODEL

In this chapter, we propose a general dynamic network model whose parameters

allow us to study the dynamics of personal attributes, contacts, and contact network

structures. Our model’s outputs are undirected networks, but it can be flexibly

extended to develop directed networks for other applications where they are more

appropriate.

The model is simple and general enough to fit many situations. In this thesis

we show its application to STD networks. In this chapter we first introduce the

basics of our model, which replicate the dynamics of contact in a network. Then

we introduce the more-detailed version of our model, designed to accommodate both

personal attribute changes and disease spread over time.

2.1 The Model Basics

Starting from a single node, our model produces an undirected network whose number

of nodes grows and whose arcs appear and disappear with time. Our model takes three

kinds of actions to alter the network structure over time: increasing the network size,

adding new arcs, and deleting arcs. When a new node is to be added, our model uses

the preferential attachment algorithm (see Section 2.1.1) to select an existing node

to attach to the new node. To add or delete an existing arc, it uses our arc change

algorithm (see Section 2.1.2). The preferential algorithm, the arc change algorithm,

and a detailed description of our overall model are illustrated in order in the next

sections.
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2.1.1 Preferential Attachment Algorithm

The power law distribution of degree has been widely observed in large network

systems in real life, such as scientific collaboration networks [35], sexual networks [31],

and the internet [1]. One family of methods to produce networks with a power law

distribution is based on the preferential attachment mechanism, in which new nodes

are more likely to connect to existing nodes of higher degree. Every newly added

node goes through the preferential attachment algorithm to choose an existing node

to form an arc with. Our model uses a similar preferential attachment formulation

to that proposed in [15]: Given a vector c of the degrees of each existing node, a new

node attaches to existing node i with probability cαi /(
∑

k∈N c
α
k ) for some exponent α,

where N is the set of all existing nodes. However, assuming that isolated nodes are

more eager to establish new arcs than connected nodes, which is usually the case with

human partner-seeking behavior, in our algorithm we set the isolated nodes to be as

popular as the most-connected node, i.e., if ci = 0, we instead set ci = maxk{ck}.

Figure 2.1.1 describes how the preferential attachment is implemented in our

model. Input parameter α (exponential preference) will get its value from fits to

actual data (see Chapter 3).

2.1.2 Arc Add Algorithm

The arc add algorithm is designed to capture the establishment of new relationships

between existing nodes. When the network is scheduled to establish new relationships,

the algorithm examines each existing node, and with probability PAdd it connects the

examined node with another node using the same node selection process as the one

implemented in the preferential attachment algorithm. Figure 2.1.2 describes how the

arc add algorithm is implemented in our model. Input parameter PAdd (probability

for a node to add a new arc) will get its value from fits to actual data (see Chapter

3).
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A

Input: Degree of connectivity: α

Function create weights(N,A, α, preferential weight[ ])
begin

Store the number of arcs of each existing node in c[ ] ;
Let maxc = maxi{c[i]} ;
sum=0 ;
for i = 1 to |N | do

if c[i] = 0 then
c[i] = maxc ;
sum + = c[i]α ;

end
end

for i = 1 to |N | do
preferential weight[i] = c[i]α/sum;

end
end
Function preferential attachment(N,A, α)
begin

Call create weights(N,A, α, preferential weight[ ]) ;
Choose node n ∈ N using preferential weight[ ] as a probability mass
function;
Add node |N |+ 1 to N ;
Add arc (|N |+ 1, n) to A ;

end

Figure 2.1.1: Preferential attachment algorithm
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A

Input: Degree of connectivity: α
Probability for a node to add a new arc: PAdd

Function arc add(N,A, α, PAdd)
begin

for i = 1 to |N | do
Call create weights(N,A, α, preferential weight[ ]) ;
With probability PAdd do

Choose a node n ∈ N using preferential weight[ ] as a
probability mass function ;
if i 6= n then

add arc (i, n) to A ;

end
end

end
end

Figure 2.1.2: Arc add algorithm for existing nodes

2.1.3 Arc Drop Algorithm

The arc drop algorithm is designed to model the disappearance of existing relation-

ships. When the network is scheduled to abandon existing relationships, the algo-

rithm examines each existing arc and with probability PDrop it drops the examined

arc from the current network. Figure 2.1.3 describes how the arc drop algorithm is

implemented in our model. Input parameter PDrop (probability for an existing arc to

disappear) will get its value from fits to actual data (see Chapter 3).

2.1.4 Dynamic Network Model

Our general dynamic model is constructed based on the preferential attachment, arc

add, and arc drop algorithms. The former guides the model to produce a power law

degree distribution and the latter two algorithms equip the model with dynamic arc

features. There are in total seven parameters in our model: besides the parameters
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A

Input: Probability for an existing arc to be dropped: PDrop

Function arc drop(N,A, PDrop)
begin

for a = 1 to |A| do
With probability PDrop do

Delete arc a from A ;

end
end

end

Figure 2.1.3: Arc drop algorithm

α, PAdd, PDrop explained as part of the preferential attachment, arc add, and arc drop

algorithms, there are three more parameters, New, TAdd, and TChange, that govern the

frequency of dynamic behaviors, and one more parameter WEEK, which is just the

number of time periods that the model is run for. The complete model description is

given in Figure 2.1.4.

Our model works in the following way. It starts with only one node in the network.

Every TAdd weeks it adds to the current model New number of new nodes. To assign

arcs between new nodes and existing nodes, it follows the preferential attachment

algorithm. Every TChange weeks it scans through the current network to add new

arcs and to drop arcs among existing nodes according to the arc add and arc drop

algorithms. The algorithm terminates after WEEK weeks.

2.2 Model Modification and Extension

Our dynamic network model can be modified and extended to accommodate the pro-

cess of disease spreading, one of the interesting applications of contact network model

research. We incorporate the idea of compartmentalization to track node attributes as

well as arc attributes, and to include a slightly different node selection process in both
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Data: Number of weeks to run our model: WEEK

Input: Degree of connectivity: α
Probability for a node to add a new arc: PAdd
Probability for an existing arc to be dropped: PDrop
Number of new nodes added at the same time: New
Time interval between adding new nodes: TAdd
Time interval between changing current arcs: TChange

Function
dynamic preferential model(WEEK,NEW,TAdd, TChange, PAdd, PDrop, α)
begin

N = 1 ; A = ∅;
model time = 0 ;
while model time ≤ WEEK do

if (model time mod TAdd) = 0 then
Call preferential attachment (N,A, α) New times;

end
if (model time mod TChange) = 0 then

Call arc add (N,A, α, PAdd) ;
Call arc drop (N,A, PDrop) ;

end
model time = model time+ 1 ;

end
end

Figure 2.1.4: Dynamic preferential model
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the preferential attachment and arc add algorithms. The modification is essential to

reflect two observations in reality. The first observation is that nodes of different at-

tributes experience disease transmission differently. For example, very young people

can be infected with seasonal influenza virus more easily than people of middle age,

so differentiating between those nodes is important. The second observation is that

arcs of different types transmit disease with different efficiencies. For example, HIV

is more likely to transmit through an arc representing contact resulting from needle

sharing than an arc representing contact resulting from handshaking.

Once we include node and arc attributes to accurately capture disease spreading,

we need to also incorporate them in the node selection process to prevent unwanted

arc assignment results, such as the case in which an injection drug user node has a

needle-sharing contact with a non-injection-drug user node. On top of our dynamic

network model, we include a disease spread algorithm to capture the dynamics of

disease spreading between nodes.

In this section we first explain how the node selection process is modified in the

preferential attachment and arc change algorithms. Then we introduce the disease

spread algorithm. Last, we show a summary of our modified and extended model.

2.2.1 Modifying the Preferential Attachment and Arc Add Algorithms

Both in the preferential attachment and arc add algorithms, the node selection process

needs to take node attributes and arc attributes into consideration. As shown in

Figure 2.2.1, Figure 2.2.2, and Figure 2.2.3, three more vectors CT , NT , and pn[ ]

are now included in set of input data. CT stores the arc contact types and NT stores

the node types accepted in our model. pn[ ] stores the probability of having a node

of each type. As we show in Chapter 3, the frequencies of node and arc types and

their connectivity with one another can be estimated from observed data.

There are two more matrices included in the algorithms: pnc[ ][ ] and pnn[ ][ ],
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which can also be estimated directly from data. pnc[ ][ ] stores the probability for

nodes of each type to have arcs of each type, while pnn[ ][ ] stores the probability

for nodes of each type to have an arc connecting to nodes of each type. pnc[ ][ ] and

pnn[ ][ ] have entries equal to zero if the corresponding pair of node and arc or pair

of nodes is unwanted or unrealizable.

After pnc[ ][ ] and pnn[ ][ ] are properly set, they are used to alter the node selec-

tion process in both algorithms. Before the modification is in place, we use the current

node degree, ci, as the only criterion to determine the popularity of a node i, and the

probability that node i will form an arc with node j is equal to c[j]α/
∑

k∈N c[k]α. The

new probability is now modified to be equal to (c[j]α/
∑

k∈N c[k]α)× pnn[j’s node type]

[i’s node type] × pnc[j’s node type][a], where a is the type of arc which node i chooses

in advance using pnc[i’s node type][ ] as a probability mass function. In this way we

still maintain the preferential attachment mechanism based on node degree while

ruling out unwanted arc formation between any incompatible pair of nodes. More

generally, we account for node preference in terms of contacted node types.

We can view the modified node selection process as first choosing the type of arc

and then preferentially selecting the corresponding node. If no node in the current

network is compatible with the chosen arc type in the first attempt, we set the arc

type equal to 1 and repeat the node selection process once more.

2.2.2 Disease Spread Algorithm

In the contact network setting, a disease is transmitted through arcs, with varying

transmission rates whose values can change with node types and arc types (includ-

ing gender, health conditions, etc., of the connected pair of nodes). We create the

disease spread algorithm, detailed in Figure 2.2.4, to reflect this aspect of disease

transmission.

In the disease spread algorithm the vector S[ ] stores the stages of disease, the
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A
Set of contact types in our model: CT
Set of node types in our model: NT
Probability of having a type A node: pn[A]
Probability of a type A node having a type C contact: pnc[A][C]
Probability of a type A node choosing a type B node: pnn[A][B]

Input: Degree of connectivity: α

Function cre-
ate weights(N,A,CT,NT, pnc[ ][ ], pnn[ ][ ], node type, preferential weight[ ])
begin

Store the number of contacts of each existing node in c[ ];
Let maxc = maxi{c[i]} ;
sum=0 ;
for i = 1 to |N | do

if c[i] = 0 then
c[i] = maxc ;
sum + = c[i]α ;

end
end
Store the node type of each existing node in nt[ ] ;
Choose an arc type ∈ CT using pnc[nt][ ] as a probability mass function ;
for j = 1 to |N | do

preferential weight[j] =
(c[j]α/sum)× pnn[nt[i]][nt[j]]× pnc[nt[j]][arc type] ;

end
if preferential weight[ ] are all 0s then

arc type = 1 ;
for j = 1 to N do

preferential weight[k] =
(c[j]α/sum)× pnn[nt[i]][nt[j]]× pnc[nt[j]][arc type] ;

end
end

end

Figure 2.2.1: Preferential attachment algorithm - Part I
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Function preferential attachment(N,A,CT,NT, pnc[ ][ ], pnn[ ][ ])
begin

Choose node type ∈ NT using pn[ ] as a probability mass function;
Call create weights(N,A,CT,NT, pnc[ ][ ], pnn[ ][ ], node type,
preferential weight[ ]) ;
Choose node n ∈ N using preferential weight[ ] as a probability mass
function ;
Add node |N |+ 1 to N ;
Add type arc type arc (|N |+ 1, n) to A ;

end

Figure 2.2.2: Preferential attachment algorithm - Part II

Data: Set of nodes in the current network: N
Set of arcs in the current network: A
Set of contact types in our model: CT
Set of node types in our model: NT
Probability of a type A node having a type B contact: pnc[A][B]
Probability of a type A node choosing a type B node: pnn[A][B]

Input: Degree of connectivity: α
Probability for a node to add a new arc: PAdd

Function arc add(N,A, α, PAdd, CT,NT, pnc[ ][ ], pnn[ ][ ])
begin

Store the type of each existing node in nt[ ] ;
for i = 1 to |N | do

With probability PAdd do
Call create weights(N,A,CT,NT, pnc[ ][ ], pnn[ ][ ], nt[i],
preferential weight[ ]) ;
Choose a node n ∈ N using preferential weight[ ] as a
probability mass function;
if i 6= n then

Add type arc type arc (i, n) to A ;

end
end

end
end

Figure 2.2.3: Arc add algorithm
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matrix p[ ][ ][ ] stores the probability of infection depending on characteristics like

gender and disease stage of both nodes, the matrix s[ ][ ] stores the cofactor scaling

effect of one disease on another, and the vector F [ ] stores the frequency of each arc

type. The first three are estimated from the epidemiological literature, and F [ ] is

estimated from data.

When the algorithm is called upon to spread a disease d within our model, it finds

arcs that link an infected node i with an susceptible node j for disease d. If such a

pair of nodes is found, the algorithm examines the attributes of both nodes and their

arc to determine the likelihood of transmission, scaled up by both nodes’ cofactors

from every other disease concurrently considered in the model. For example, if the

model has only two diseases, say d and d+, then the likelihood of transmission is then

multiplied by s[i’s d+ stage][i’s d stage] and s[j’s d+ stage][j’s d stage]. To determine

the final likelihood of transmission of disease d from node i to node j, the likelihood

is adjusted by the frequency of the arc linking both nodes. This is to say, in the

previous example, node i transmits disease d to node j with likelihood equal to 1−(1−

p[i’s gender][i’s stage of d] × s[i’s d+ stage][i’s d stage] × s[j’s d+ stage][j’s d stage]

)F [arc type].

2.2.3 Dynamic Network Model with Disease Spread

Our full dynamic network model with disease spread is constructed using our extended

preferential attachment, arc add, arc drop, and disease spread algorithms. Besides the

parameters explained in the original model and the extended versions of the previously

mentioned algorithms, there are four more inputs, pnt[ ], pnd[ ][ ], d[ ][ ], and TSpread.

pnt[ ] is the vector of node type frequencies, pnd[ ][ ] is the initial prevalence of each

disease in each node type, d[ ][ ] is the duration of each stage of each disease, and

TSpread is the frequency with which the model will spread disease. The first two

parameters can be derived from the data, the third can be taken from the epidemiology
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Data: Set of arcs in current network: A
Set of nodes in current network: N
Set of genders for nodes: G
Set of diseases spreading in our model : D
Set of disease A’s infected stages in our model: SA
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]

Input: Frequency of a type A arc: F [A]

Function spread disease(A,N,G,D, S1, . . . , SD, p[ ][ ][ ], s[ ][ ])
begin

Store the stage of each disease of each node in stage[ ][ ] ;
Store the gender of each node in gender[ ] ;

for a = 1 to |A| do
for d1 = 1 to |D| do

if arc a links an infected node n1 with disease d1 and an
uninfected node n2 then

arc type stores a’s type ;
infection probability = p[gender[n1]][stage[n1][d1]] ;
for d2 = 1 to |D| do

infection probability = infection probability ×
s[stage[n1][d2]][stage[n1][d1]]× s[stage[n2][d2]][stage[n2][d1]]

end
if random(0, 1) ≥ (1− infection probability)F [arc type] then

n2 becomes infected with disease d1 ;

end
end

end
end

end

Figure 2.2.4: Disease spread algorithm
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literature, and the last can be fitted to observed data. The complete model description

is detailed in Figure 2.2.5 and Figure 2.2.6.

Our model works in the following way: it starts with only one node in the network.

Every TAdd weeks it adds to the current model New new nodes, each of which is

assigned with a node type based on pnt[ ]. Based on pnd[ ][ ], each new node’s initial

status of all the diseases of concern are determined. To assign arcs between new

nodes and existing nodes, the algorithm uses the preferential attachment algorithm.

Every TChange weeks it scans through the current network to add new arcs and to

drop arcs among existing nodes following the arc change algorithm. Every TSpread

weeks it checks the spread of all diseases from infected nodes to susceptible nodes

on arcs in the network using the spread algorithm. Every week, the disease status

of every node will be examined. If it is their time to advance to the next stage, our

model updates them and records their next advancement times based on d[ ][ ]. After

WEEK weeks, the run terminates.

Although the number of model parameters appears large, only 3 of them can

not be directly taken from data or the epidemiology literature. The remaining 3

parameters can be fit to data, as we show in the next chapter.
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Data: Set of contact types in our model: CT
Set of node types in our model: NT
Set of disease types in our model: D
Set of genders for nodes: G
Set of disease A’s infected stages in our model: SA
Probability of a node being type A: pnt[A]
Probability of a type A node with a disease B: pnd[A][B]
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]
Duration of disease A’s stages: d[A][SA]
Number of weeks to run our model: WEEK

Input: Degree of connectivity: α
Probability for a node to add a new arc: PAdd
Probability for an existing arc to be dropped: PDrop
Number of new nodes added at the same time: New
Time interval between adding new nodes: TAdd
Time interval between changing current arcs: TChange
Time interval between spreading diseases: TSpread
Frequency of a type A arc: F [A]

Figure 2.2.5: Dynamic preferential model - Part I
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Function
dynamic preferential model
(WEEK,New, TAdd, TChange, TSpread, PAdd, PDrop, α, F [A])
begin

model time = 0 ;
N = 1;A = ∅ ;
while model time ≤ WEEK do

if (model time mod TAdd) = 0 then
for i = 1 to NEW do

Choose node (|N |+ i)’s type, node type, ∈ NT using pnt[ ] as
a probability mass function ;
for d = 1 to |D| do

With probability pnd[node type][d] do
Choose (|N |+ i)’s disease d’s status ∈ Sd uniformly at
random ;

end
end

end
Call preferential attachment
(N,A,New,CT,NT, pnc[ ][ ], pnn[ ][ ]) New times;

end
if (model time mod TChange) = 0 then

Call arc add (N,A, α, PAdd, CT,NT, pnc[ ][ ], pnn[ ][ ]);
Call arc drop (N,A, PDrop);

end
if (model time mod TSpread = 0 then

Call spread disease (A,N,G,D, S1, . . . , SD, p[ ][ ], s[ ][ ]) ;

end
for i = 1 to |N | do

for d1 = 1 to |D| do
if model time = node i’s disease d1’s status advancement time
then

stage = node i’s disease d1’s status ;
Advance node i’s disease d1’s status ;
Change node i’s disease d1’s status advancement time
based on d[d1][stage] ;

end
end

end
model time = model time+ 1 ;

end
end

Figure 2.2.6: Dynamic preferential model - Part II
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CHAPTER III

DYNAMIC PREFERENTIAL NETWORK MODEL IN

SEXUALLY TRANSMITTED DISEASES

Previously we introduced a basic framework for dynamic network modeling. In this

chapter we are going to demonstrate how to calibrate our model to replicate both the

real-life risky behavioral contact network and STD prevalence results.

Due to privacy concerns and the complexity of keeping track of human relation-

ships, to date researchers have not been able to accurately depict a dynamic contact

network (based on real human activity) on the scale of thousands of persons. The

best dataset we have found comes from the fields of Social Science and Public Health,

where researchers have been able to track static contact networks representing no

more than hundreds of people (and there, only a portion of the relationships were

tracked).

In this chapter we briefly describe a network study [19] titled ”Networks, Norms,

and HIV Risk Among Youth” (NNAHRAY). Following the introduction we present

the static contact network constructed from the NNAHRAY data as well as the pro-

cedure of construction. We take the following steps to conduct our model parame-

terization. First we estimate some of the network parameters from NNAHRAY data

and the other by fitting the network metrics in the NNAHRAY constructed network.

Then we estimate the HIV and HSV-2 transmission parameters similarly. Most of

them are extracted from the epidemiological literature, except for the risky behavioral

contact frequencies. They are estimated by fitting the HIV and HSV-2 prevalence

records in NNAHRAY data.
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3.1 NNAHRAY

Public health workers conducted the NNAHRAY project in Bushwick, Brooklyn, NY

between 2002 and 2004. In 1981, AIDS was first identified in [22], and there were

53 cases reported in New York City with HIV-related symptoms [38]. The antibody

detection test for HIV was developed in 1984. In the following 10 years the incidence

of AIDS in adults in New York City reported per year increased from fewer than 1000

cases to 9000 cases. However, both the incidence and the mortality rates declined

dramatically around 1996 and remained constant after 1999 [18]. Prevention measures

such as screening of the blood supply, free needle exchange, and safer sexual practices

may have resulted in the drastic slowdown in the epidemic. More details of the HIV

epidemic in New York City between 1985 and 2001 are reported in [18].

In its early years, the New York City AIDS epidemic was mostly localized in

neighborhoods which suffered both economic and social marginalization [17]. Bush-

wick was one such community. Conducted between 2002 and 2004, the NNAHRAY

Project [20, 21] was aimed at studying the risky relationships critical to the spread of

HIV, including sexual relationships, needle sharing relationships and group sex event

attendance relationships in Bushwick.

The interviewers started with an index group of injection drug users (IDUs) and a

sample of young adults living in the area, and then found as many as possible of the

interviewee’s partners up to the fourth level in the relationship chain. In other words,

the partner of the partner of the partner of the partner of the index group member was

the last level to be interviewed in this study. Since not all partners could be reached,

and some refused to be interviewed, some relationships either among the interviewees

or between the interviewees and non-interviewees were missing in the study. All

partners were involved directly or indirectly with at least one index group member in

a risky relationship during the previous three months before being recruited.

The total number of initial group members was 112. Among them, 40 were IDUs.
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The total number of first level, second level, third level, fourth and fifth level partners

was 133, 118, 67, 34,and 1 respectively. In total, 465 interviewees were recruited and

424 risky relationships among them were recorded. The interviewees’ self-reported

records about the type of their relationships in the study fall into the following nine

categories: ”Group Sex and IDU”, ”Group Sex”, ”IDU and Sex”, ”IDU”, ”Sex and

Group Sex”, ”Sex and IDU”, ”Sex”, ”Sex and Group Sex and IDU”, and ”Missing”,

where the category ”Missing” means that the interviewee’s comment on the type of

relationship was not available.

The project also tested the interviewees for HIV and various other STDs, including

herpes simplex virus-2 (HSV-2), syphilis, chlamydia, and gonorrhea. The laboratory

testing showed that HIV and HSV-2 were the two most prevalent diseases in the

testing, at 9% and 48% respectively.

3.2 Contact Network in NNAHRAY

To construct from NNAHRAY the contact network on top of which the spread of

HIV and other STDs can be modeled, we disregarded 36 relationships in which both

partners reported ”Group Sex”, because knowing that any two interviewees who were

in such relationship assures only that they have had attended a group sex event

together but not that they have had sexual contact with each other in the event.

Furthermore, we exclude 2 relationships with both partners’ comments on the type

of relationship ”Missing”. The resulting NNAHRAY static contact network has 465

nodes and 424− 36− 2 = 386 arcs.

Figure 3.2.1 shows the NNAHRAY static contact network. All nodes in green

belong to the largest connected component. Table 3.2.1 summarizes the component

size distribution in the network. Among 107 components, there are 53 isolated nodes

and 28 dyads. This means that (53 + (28 × 2))/465 = 23% of the interviewees

possibly had either no relationships or one monogamous relationship in the three
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months before being recruited. Compared with the largest component, which consists

of (206/465 ≈ 44%) of all interviewees, the second largest component, is relatively

small, 15/206 ≈ 6% of all interviewees.

Figure 3.2.1: NNANRAY static contact network

Based on the self-reported attribute records of gender, injection drug using his-

tory, and sexual orientation of the interviewees, we can categorize the nodes in the

contact network into 12 types: FBN, FHN, FSN, FBI, FHI, FSI, MBN, MHN, MSN,

MBI, MHI, and MSI. F and M indicate a female and a male, respectively. B stands

for bisexual orientation, H means homosexual orientation, and S represents straight

(heterosexual) sexual orientation. N indicates a non injection drug user and I indi-

cates an injection drug user. For example, a node with type MBI corresponds to a

male bisexual who has had injected drugs in the previous three months before being

recruited in the NNAHRAY study.

Ideally when we examine the answers from partners with regard to the type of

relationship they share with each other, we expect they are the same. However, out

of 386 relationships, we found that 105 relationships have one partner’s comment on
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Table 3.2.1: NNAHRAY component distribution

Component size Number of components in the network
1 53
2 28
3 10
4 3
5 6
6 1
7 2
8 2
13 1
14 1
15 1
206 1

the relationship type while the other partner’s comment is ”Missing”. Acknowledging

that this may not be the ideal case, we use the one-sided comment as the type of

those relationship arcs in the contact network.

The preliminary static contact network we thus constructed from the NNAHRAY

data has each node belonging to one of the 12 types, {F,M} × {B,H, S} × {I,N},

and each arc belonging to one of the 3 types, {Sex, IDU, Sex&IDU}, as mentioned

above. However, we found three kinds of inconsistencies when we carefully examined

the matching of node and arc types in the network.

The first kind of inconsistency could result from under-reporting of one partner.

An example from the data is that one partner reported ”Sex and IDU” while the

other reported either only ”Sex” or only ”IDU”. We deal with such inconsistency by

assigning the corresponding arcs a type based on the more complete account.

The second kind of inconsistency could result from the interviewee’s forgetfulness.

For example, an interviewee may have self reported that he/she is homosexual but is

found having a sexual relationship with another interviewee of the opposite gender.

We fix this kind of inconsistency by updating the attribute from ”homosexual” to
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”bisexual” [Note that this attribute is intended to reflect their behavior, not their

self-identification].

The third kind of inconsistency could result from the interviewee’s intention to

hide his/her identity. The first example from the data is that an interviewee self

reported being an ”NIDU” but is found being in an ”IDU” relationship. Another

example is that an interviewee self reported being ”Straight” but is found in a ”Sex”

relationship with another of the same gender. We reassign the attribute records of

these interviewees from ”straight” to ”bisexual” and from ”NIDU” to ”IDU”.

In total we modified the type of 15 arcs, updated the type of 23 nodes from NIDU

to IDU, and changed the type of 30 nodes from straight/homosexual to bisexual in

the contact network.

For the resulting final static NNAHRAY contact network, we summarize the arc

distribution of nodes in 12 types in Table 3.2.2. Since there are no nodes of type

FHI after the type adjustment, their incidence rate is listed as NA in the table. For

example, adjacent to nodes of type FSI, 27% of arcs are ”Sex”, 33% are ”IDU”, and

40% are ”Sex & IDU”.

Table 3.2.3 and Table 3.2.4 record the mixing ratio of nodes in one type with

nodes in another type. For example, in the contact network, for nodes of type FBN ,

18% of arcs link with FBN nodes, 2% with FHN nodes, 6% with FBI nodes, 8%

with MBN nodes, 46% with MSN nodes, 3% with MBI nodes, and 17% with MSI

nodes. After our type modification, nodes whose sexual orientation and drug using

history are not compatible will not have any contact among them. Therefore in Table

3.2.3, for example, nodes of type FSN have no arcs to nodes of type FSN , since

the former, who are female, straight, and non-injection drug users, do not have either

sexual contact or needle sharing contact with nodes who are also female, straight,

and non-injection drug users.
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Table 3.2.2: Static NNAHRAY network node-arc type incidences

Type Arc type Fraction Type Arc type Fraction
FBN SEX 1.00 MBN SEX 1.00
FBN IDU 0.00 MBN IDU 0.00
FBN SE&ID 0.00 MBN SE&ID 0.00
FHN SEX 1.00 MHN SEX 1.00
FHN IDU 0.00 MHN IDU 0.00
FHN SE&ID 0.00 MHN SE&ID 0.00
FSN SEX 1.00 MSN SEX 1.00
FSN IDU 0.00 MSN IDU 0.00
FSN SE&ID 0.00 MSN SE&ID 0.00
FBI SEX 0.50 MBI SEX 0.27
FBI IDU 0.27 MBI IDU 0.32
FBI SE&ID 0.23 MBI SE&ID 0.42
FHI SEX NA MHI SEX 0.42
FHI IDU NA MHI IDU 0.38
FHI SE&ID NA MHI SE&ID 0.19
FSI SEX 0.27 MSI SEX 0.27
FSI IDU 0.33 MSI IDU 0.56
FSI SE&ID 0.40 MSI SE&ID 0.17

3.3 Dynamic Preferential Network Model Calibration Met-
rics

We would like to use the snapshot of a real contact network provided by NNAHRAY

to find reasonable model parameter values of α, PAdd, PDrop, and F [ ] so that our

basic dynamic network model described in Chapter 2 can generate results similar to

NNAHRAY, in terms of both network structure and STD prevalence. In this section

we describe the metrics we use to measure network structure similarity.

3.3.1 Network Structure Metrics

Three interesting characteristics of the contact network in NNAHRAY are difficult to

duplicate using network growth models: it has one dominantly large component and

a few other components of size ≥ 3, in its largest component the nodes are not much

more connected than they are in a tree structure, and certain nodes in it are much

27



Table 3.2.3: Static NNAHRAY Network node-node type incidences - I

Type Type Fraction Type Type Fraction
FBN FBN 0.18 FBI FBN 0.06
FBN FHN 0.02 FBI FHN 0.02
FBN FSN 0.00 FBI FSN 0.00
FBN FBI 0.06 FBI FBI 0.13
FBN FHI 0.00 FBI FHI 0.00
FBN FSI 0.00 FBI FSI 0.06
FBN MBN 0.08 FBI MBN 0.05
FBN MHN 0.00 FBI MHN 0.00
FBN MSN 0.46 FBI MSN 0.15
FBN MBI 0.03 FBI MBI 0.18
FBN MHI 0.00 FBI MHI 0.02
FBN MSI 0.17 FBI MSI 0.34
FHN FBN 0.50 FHI FBN NA
FHN FHN 0.00 FHI FHN NA
FHN FSN 0.00 FHI FSN NA
FHN FBI 0.50 FHI FBI NA
FHN FHI 0.00 FHI FHI NA
FHN FSI 0.00 FHI FSI NA
FHN MBN 0.00 FHI MBN NA
FHN MHN 0.00 FHI MHN NA
FHN MSN 0.00 FHI MSN NA
FHN MBI 0.00 FHI MBI NA
FHN MHI 0.00 FHI MHI NA
FHN MSI 0.00 FHI MSI NA
FSN FBN 0.00 FSI FBN 0.00
FSN FHN 0.00 FSI FHN 0.00
FSN FSN 0.00 FSI FSN 0.00
FSN FBI 0.00 FSI FBI 0.05
FSN FHI 0.00 FSI FHI 0.00
FSN FSI 0.00 FSI FSI 0.10
FSN MBN 0.11 FSI MBN 0.02
FSN MHN 0.00 FSI MHN 0.00
FSN MSN 0.64 FSI MSN 0.15
FSN MBI 0.03 FSI MBI 0.11
FSN MHI 0.00 FSI MHI 0.02
FSN MSI 0.22 FSI MSI 0.55

more connected than the others. We want our model to be able to create network

samples that look similar to the contact network in NNAHRAY, possessing these
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Table 3.2.4: Static NNAHRAY Network node-node type incidences -II

Type Type Fraction Type Type Fraction
MBN FBN 0.10 MBI FBN 0.03
MBN FHN 0.00 MBI FHN 0.00
MBN FSN 0.24 MBI FSN 0.05
MBN FBI 0.06 MBI FBI 0.18
MBN FHI 0.00 MBI FHI 0.00
MBN FSI 0.04 MBI FSI 0.15
MBN MBN 0.24 MBI MBN 0.07
MBN MHN 0.08 MBI MHN 0.02
MBN MSN 0.00 MBI MSN 0.00
MBN MBI 0.08 MBI MBI 0.17
MBN MHI 0.14 MBI MHI 0.17
MBN MSI 0.00 MBI MSI 0.17
MHN FBN 0.00 MHI FBN 0.00
MHN FHN 0.00 MHI FHN 0.00
MHN FSN 0.00 MHI FSN 0.00
MHN FBI 0.00 MHI FBI 0.04
MHN FHI 0.00 MHI FHI 0.00
MHN FSI 0.00 MHI FSI 0.08
MHN MBN 0.33 MHI MBN 0.27
MHN MHN 0.50 MHI MHN 0.04
MHN MSN 0.00 MHI MSN 0.00
MHN MBI 0.08 MHI MBI 0.38
MHN MHI 0.08 MHI MHI 0.15
MHN MSI 0.00 MHI MSI 0.04
MSN FBN 0.25 MSI FBN 0.06
MSN FHN 0.00 MSI FHN 0.00
MSN FSN 0.57 MSI FSN 0.12
MSN FBI 0.08 MSI FBI 0.11
MSN FHI 0.00 MSI FHI 0.00
MSN FSI 0.10 MSI FSI 0.24
MSN MBN 0.00 MSI MBN 0.00
MSN MHN 0.00 MSI MHN 0.00
MSN MSN 0.00 MSI MSN 0.00
MSN MBI 0.00 MSI MBI 0.05
MSN MHI 0.00 MSI MHI 0.01
MSN MSI 0.00 MSI MSI 0.42

characteristics and matching the NNAHRAY snapshot in other metrics as well.

We use 13 network structure metrics in total, defined as follows. When a metric
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has more than one dimension, such as the ordered node degree list of a network,

we quantify closeness by measuring the 1-norm distance between points in the high

dimensional space.

1. Size: the total number of nodes in a network.

2. Edge: the total number of edges in a network.

3. Lgcsize: the total number of nodes in the largest component of a network.

4. Lgcedge: the total number of edges in the largest component of a network.

5. Lgcdensity : the density of the largest component of a network, equal to lgcedge/lgcsize.

6. Arcremove: the minimum number of arcs needed to be removed so that a

network has no cycles. Let C be the set of components in a network, and let

ni and aibe the number of nodes and arcs in component i ∈ C respectively.

Arcremove is equal to
∑

i∈Cmax{0, ai − (ni − 1)}.

7. Componentdistmean: the node-wise average component size. Let N be the total

number of nodes, C be the set of components, and ni be the number of nodes

in each component i ∈ C. Componentdistmean is equal to (
∑

i∈C n
2
i )/N .

8. Componentdistsd : the standard deviation of the node-wise component size. Us-

ing the same notation as that in Componentdistmean, Componentdistsd is equal

to (
∑

i∈C ni(ni − Componentdistmean)2)/(N − 1).

9. Degreemax : the maximum node degree in a network.

10. Degreemean: the average node degree in a network.

11. Degreesd : the standard deviation of node degrees in a network.

12. Orderdegreediffmean: the average of the differences between the ordered node

degree of a network and the ordered node degree of the contact network in
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NNAHRAY. Let N be the total number of nodes, O be an ordering of nodes by

decreasing degree (Oi is the node with ith highest degree), and O′ be a similar

ordering of the 465 nodes of the NNAHRAY network. Let d(j) be the degree of

node j in the test network and d′(j) be the degree of node j in the NNAHRAY

newtork. Orderdegreediffmean is equal to
∑465

j=1(d
′(O′i) − d(Oi))/465, where

d(j) = 0,∀j ∈ {N + 1, . . . , 465}.

13. Orderdegreediffsd : the standard deviation of nodes’ ordered degree difference

between the test network and the NNAHRAY network. Using the same notation

as that in Orderdegreediffmean, Orderdegreediffsd is equal to
∑465

j=1((d
′(O′i) −

d(Oi))−Orderdegreediffmean)2/(465− 1)

In addition to structural similarity, we also measure the similarity in HIV and

HSV-2 prevalence between test networks and the NNAHRAY networks.

3.4 Dynamic Preferential Network Model Fitting

In this section we first introduce the disease parameters used in order to model HIV

and HSV-2 prevalence. We then give a detailed summary of our adjusted network

model to be used to fit the NNAHRAY contact network both structurally and in

disease prevalence. We briefly describe the difficulty with fitting models to data

following the traditional direct approach, and demonstrate the need to also model

the study’s network sampling method in order to have a good comparision. Finally,

we demonstrate our model’s ability to satisfactorily fit the NNAHRAY data.

3.4.1 The Spread of HIV and HSV-2

The parameters needed to model the spread of HIV and HSV-2 are taken directly from

the epidemiological literature, adopted from the stage-based disease models suggested

in [36] and [46]. Their results are summarized in Table 3.4.1 for HIV and Table 3.4.2

for HSV-2.

31



As Table 3.4.1 shows, any patient infected with HIV goes through four stages:

primary, asymptomatic, symptomatic, and AIDS. The patient’s transmission proba-

bility per coital act differs with gender and stage. Men are twice as likely to transmit

the disease than women in general. The duration of each stage assumes a Weibull

distribution with shape parameter 2.

In Table 3.4.2 we see that an HSV-2 infected individual experiences four major

stages in order: primary ulcers, early latent with recurrent ulcers, latent with recur-

rent ulcers, and late latent without ulcers. The patient’s transmission probability per

coital act differs with gender and stage. The duration of each stage follows a Weibull

distribution with shape parameter 2, except for the duration of the early latent stage,

latent stage, and the intervals between recurrent ulcers, which follow an exponential

distribution instead. The mean interval length between ulcer occurrence is 10 weeks

for males and 12 weeks for females in the early latent stage, and 24 weeks for males

and 32 weeks for females in the latent stage.

Also in Table 3.4.2 we note that this HSV-2 model considers HSV2 synergistic

impact on HIV transmission. During the stages of primary ulcers and recurrent ulcers,

patients are much more susceptible to HIV transmission than the other stages, by the

multiplicative factor shown in the rightmost column.

Table 3.4.1: HIV Model

HIV stages Mean duration Transmission probability Transmission probability
(weeks) per coital act per coital act

Male to Female Female to Male
Primary 10 0.028 0.014
Asymptomatic 260 0.002 0.001
Symptomatic 208 0.006 0.003
AIDS 40 0.014 0.007
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Table 3.4.2: HSV2 Model

HSV2 stages Mean duration Transmission Transmission Cofactor on HIV
(weeks) probability probability transmission

per coital act per coital act
Male to Female Female to Male

Primary ulcers 3 0.300 0.150 25
Early latent 104 0.010 0.005 1
Latent 520 0.005 0.003 1
Late Latent Life time 0.000 0.000 1
Recurrent Ulcers 1 0.200 0.100 10

3.4.2 Dynamic Preferential Network Model Description

With the HIV and HSV-2 parameters taken from the literature and the NNAHRAY

attributes taken from that data set, four parameters remain, with three pertaining to

our basic dynamic network model: α, PAdd, and PDrop and the frequency parameter

F [ ] related to the disease spread algorithm. Before reporting on the parameter fitting,

we first review our model, putting together all of the various pieces. All the other

(non-fit) parameter values and the source from which we obtained their estimated

values are summarized in Table 3.4.3 and Table 3.4.4 .

In the very beginning our model starts with one node and progresses through 10

years of time, week by week. Every TAdd = 4 weeks, it adds New = 10 nodes to

the existing contact network. Upon entry to the network, after being assigned an

age and gender according to the NNAHRAY distribution, each node is initialized

to be one of NT = 12 types according again to the NNAHRAY distribution. Each

node is distinguished by gender (Female and Male), sexual orientation (Bisexual,

Homosexual, and Straight), and history of drug use (IDU and Non-IDU).
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Table 3.4.3: Dynamic network model parameter value - I

Definition of parameter Parameter notation Value Value source
Dynamic Network Model
Set of contact types AT 3 (SEX, IDU, SEX and IDU) NNAHRAY [19]
Set of node types NT 12 (FBI, FHI, FSI, . . . ,MSN) NNAHRAY [19]
Set of diseases D 2 (HIV and HSV-2) NNAHRAY [19]
Age Age Uniformly distributed between 18 and 66 NNAHRAY [19]
Gender Gender 57% male and 43% female NNAHRAY [19]
Group type proportion within women:
FBN pnt[FBN ] 22% NNAHRAY [19]
FHN pnt[FHN ] 1% NNAHRAY [19]
FSN pnt[FSN ] 43% NNAHRAY [19]
FBI pnt[FBI] 11% NNAHRAY [19]
FHI pnt[FHI] 0% NNAHRAY [19]
FSI pnt[FSI] 22% NNAHRAY [19]
Group type proportion within men:
MBN pnt[MBN ] 12% NNAHRAY [19]
MHN pnt[MHN ] 3% NNAHRAY [19]
MSN pnt[MSN ] 36% NNAHRAY [19]
MBI pnt[MBI] 9% NNAHRAY [19]
MHI pnt[MHI] 3% NNAHRAY [19]
MSI pnt[MSI] 37% NNAHRAY [19]
Probability of a type A node having a type B contact pnc[A][B] See Table 3.2.2 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
Number of weeks to run our model WEEK (10× 52 = 520) weeks Model setup
Number of new nodes added at the same time New 10 Model setup
Time interval between adding new nodes TAdd 4 weeks Model setup
Time interval between changing current arcs TChange 4 weeks Model setup
Time interval between spreading diseases TSpread 1 week Model setup
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Table 3.4.4: Dynamic network model parameter value - II

Parameter definition Parameter Notation Value Value source
HIV and HSV-2
HIV prevalence rate of newcomers
from 1990 to 2002:
Set of HIV’s infected stages in our model SHIV 4 [18, 26]
IDU: pnd[IDU ][HIV ] 50% with 3% decrease each year [18, 26]
MSM: pnd[MSM ][HIV ] 47% with 3.3% decrease each year [18, 26]
General population: pnd[General][HIV ] 9 % with 0.6% decrease each year [18, 26]
Transmission rate of an infected node p[A][HIV ][SHIV ] See Table 3.4.1 [36, 46]
of gender A with HIV
Duration of HIVs stages d[HIV ][SHIV ] See Table 3.4.1 [36, 46]

HSV-2 prevalence rate of newcomers
from 1990 to 2002:
Set of HSV-2’s infected stages in our model SHSV−2 5 [36, 46]
General population: pnd[General][HSV2] 21% before 1996 and 17% after 1996 [48]
Transmission rate of an infected node p[A][HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
of gender A with HSV-2
Duration of HIVs stages d[HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission s[SHSV−2][SHIV ] See Table 3.4.2 [36, 46]
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Based on its node type, each new node’s infection status of HIV and HSV-2 is set

according to both diseases’ prevalence rates at the time [48, 18, 26]. An infected node’s

disease stage is selected randomly according to a uniform distribution. The HSV-2

prevalence rates before and after 1996 are taken from [48], and the HIV prevalence

rates (and their change) among the general, IDU, and MSM populations are taken

from [18, 26].

After the initialization of a new node’s attributes and disease statuses is com-

pleted, our model assigns it to form an arc with an existing node. The assignment is

conducted preferentially, according to the NNAHRAY incidences, by degree of con-

nectivity α, and the current degree distribution in the network (see Section 2.2.1).

Every TChange = 4 weeks, our model examines each existing arc and drops it with

a probability PDrop. It also examines each existing node and adds a new arc between

it and another existing node (chosen the same way as arcs from new nodes) with

probability PAdd.

Every TSpread = 1 weeks, potential HIV and HSV-2 transmission is checked from

the infected node to each susceptible node along an arc linking them. The trans-

mission rate for HSV-2 in each unprotected sex contact is taken from [36, 46], and

depends on gender and disease stage. For HIV, the transmission rate in each unpro-

tected sex contact or needle-sharing contact is taken from [36, 46]. The duration of

each stage of HIV and HSV-2 follows the distribution functions shown in Table 3.4.1

and Table 3.4.2.

To properly reflect the fact that many intervention policies targeting HIV took

place and successfully diminished its spread in NYC between 1990 and 2000 [48], the

frequency parameter F [ ] is extended to four possible values in the disease spread

algorithm, F [SEXbefore], F [SEXafter], F [IDUbefore], and F [IDUafter], in our model

to capture the difference in HIV and HSV-2 transmission probabilities before and

after 1996 among the population in NYC.
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After WEEK = 520 weeks, we take a network snapshot of nodes and arcs that

have existed in the last 3 months (similar to NNAHRAY’s snapshot).

3.4.3 Initial Model Fitting Results

The contact network metric values measured in the NNAHRAY contact network,

summarized in Table 3.4.5, are used concurrently to define closeness of a simulated

network to the NNAHRAY contact network.

Table 3.4.5: Network metric and disease prevalence results of NNAHRAY

Definition of parameter Parameter notation Value
Disease prevalence:
HIV prevalence 9 %
HSV-2 prevalence 48 %

Network structure:
The number of nodes in a network sample Size 465
The total number of edges in a network sample Edge 386
The number of nodes of the largest component Lgcsize 206
in a network sample
The number of edges of the largest component Lgcedge 231
in a network sample
The density of the largest component Lgcdensity 1.12
in a network sample
The minimum number of arcs to be removed Arcremove 30
so that a network sample has no cycles
The average component weight of the nodes Component− 94.07

distmean
The standard deviation of component weight of the nodes Component− 99.99

distsd
The maximum node degree in a network sample Degreemax 12
The average node degree in a network sample Degreemean 1.66
The standard deviation of node degrees Degreesd 1.49
in a network sample

A contact network is considered close to the NNAHRAY contact network if all its

network metric values fall within the ranges listed in Table 3.4.6. For high dimension

network metrics, such as Orderdegreedisffsd, their ranges of closeness are set wider
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than single dimension network metrics’: their range are chosen with a 50% devia-

tion while the range of most other metrics are set with a 10% deviation, except for

Arcremove. Its range is set with a 25% deviation.

Table 3.4.6: Network metric close range

Network Metric Specification Value
Size 465± (465× 10%) (512,419)
Edge 386± (386× 10%) (424,347)
Lgcsize 206± (206× 10%) (185,227)
Lgcedge 254± (254× 10%) (229,279)
Lgcdensity 1.12± (1.12× 10%) (1.00,1.23)
Arcremove 30± (30× 25%) (37.5, 22.5)
componentdistmean 94.07± (94.07× 10%) (85,103)
componentdistsd 100± (100× 10%) (90,110)
Degreemax 12± (12× 10%) (10,13)
Degreemean 1.66± (1.66× 10%) (1.5,1.8)
Desgreesd 1.49± (1.49× 10%) (1.34,1.64)
Orderdegreediffemean 0.00± (0.00× 50%) (−0.5, 0.5)
Orderdegreedisffsd 0.00± (0.00× 50%) (−0.5, 0.5)

Our modeling fitting takes place in two steps. First, we focus on fitting the model

parameters related to network structures. Then we fit the parameters related to

disease prevalence. In other words, after choosing the right structural parameter set of

(α, PAdd, PDrop), we continue on finding the frequency parameter set of (F [SEXbefore],

F [Sexlater], F [IDUbefore], F [IDUlater]).

The simulation experiments are programmed in C. At the end of each simulation

experiment network structure analysis is performed in R using the network package

[8] and the sna [7] package.

When we tune our model so that the size (number of nodes) of network snap-

shots are the same as that of the NNAHRAY contact network, many points in

the (α, PAdd, PDrop) parameter space can produce network snapshots that match

one target network metric value. When we demand the network snapshots and

the NNAHRAY contact network to be structurally closer and closer, implying more
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and more network metrics being fitted at the same time, there are fewer and fewer

points in the parameter space that can make it happen. Eventually, we found that

there is no point that produces snapshots with Lgcsize, Lgcdensity, Degreemax,

and Arcremove network metric values concurrently close to those measured in the

NNAHRAY contact network. Table 3.4.7 and Table 3.4.8 show an example of the

mentioned fitting results.

This observation, on the one hand, points out an alarming insufficiency of the

traditional single network metric fitting method. It can be used to produce ”fitted”

network results are in reality structurally far from the target network, as is the case

with our model. On the other hand the lack of satisfying points in the (α, PAdd, PDrop)

parameter space signals a missing ingredient in our model that needs to be included

to completely capture the mechanism behind the NNAHRAY contact network struc-

tures. That ingredient turns out to be modeling how the NNAHRAY sample was

collected.

3.4.4 Modeling the Study Sampling Procedure

The NNAHRAY data collection details show that interviewees were sampled with

emphasis on IDUs, whose sexual/needle-sharing relationships were hard to be com-

pletely traced down since not all participants were willing to admit all relationships.

The NNAHRAY contact network, as a result, is a biased/partial sample of the real

contact network. This means that the network’s real structure may be different from

the network discovered by the sampling method deployed in the NNAHRAY study.

In order to match the NNAHRAY contact network structures, we modeled the sam-

pling algorithm, and used it to extract a contact network from our model network

snapshots.
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The main idea behind the sampling algorithm is to model the progression of discov-

ery in the NNAHRAY dataset, so we keep the same number of nodes in each recruit-

ment level as those in the corresponding level of the sampling process in NNAHRAY.

The specifics of the sampling algorithm are summarized in Figure 3.4.1.

The sampling algorithm starts by randomly choosing the same number of NIDU

nodes and IDU nodes as in NNAHRAY’s initial sample. Those nodes (level one

nodes) are stored in both NodeList and Current, and one after another examined in

the algorithm in order to find no more than i[2] number of level two nodes. When a

node is examined, the set Neighbor stores its adjacent nodes and the set Arc stores

its adjacent arcs. If the adjacent nodes are in Neighbor but not in NodeList, they

have not been recruited by the sampling algorithm so far. They are then added to

New and NodeList and their adjacent arcs are added to EdgeList. When either the

number of level two nodes equals i[2] (|New| = i[2]) or there are no more nodes left

to be examined in Current (|Current| = 0), the algorithm stops the current level

examination and repeats the same procedure to find the next level nodes.

When the algorithm completes the node recruiting iterations with |EdgeList|

greater than A, it stops. Otherwise, the sampling algorithm randomly chooses, two

at a time, non-adjacent nodes in the sample contact network using the component

weight c[ ] as the probability mass function and adds the arc (i, j) to EdgeList. The

arc adding process stops when |EdgeList| = A, and the algorithm completes its

iterations.

When the sampling algorithm is used to extract contact networks from our model

network snapshots in comparison with the NNAHRAY contact network, we use pa-

rameter values based on the NNAHRAY study, as summarized in Table 3.4.9.
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Table 3.4.7: Initial model fitting result example - I

Network size edge lgcsize lgcedge lgcdensity arcremove component- component- degree- degree- degree- orderdegree-
Metric distmean distsd max mean sd diffemean
NNAHRAY 465 386 206 231 1.12 30.00 94.07 99.99 12.00 1.66 1.49 0.00
α PAdd PDrop
0 0.02 0.02 465 390 335 350 1.05 16.50 243.31 147.25 11.40 1.68 1.73 -0.02
0 0.04 0.02 465 390 338 360 1.06 22.90 247.11 149.28 11.70 1.68 1.82 -0.02
0 0.04 0.04 465 383 316 329 1.04 13.10 217.92 144.19 10.70 1.65 1.61 0.01
0 0.06 0.02 465 401 346 374 1.08 29.20 258.23 149.41 12.90 1.72 1.92 -0.06
0 0.06 0.04 465 393 328 347 1.06 20.00 233.33 146.54 11.10 1.69 1.69 -0.03
0 0.06 0.06 465 382 293 304 1.04 12.30 194.73 133.48 8.60 1.64 1.50 0.02
0 0.08 0.02 465 393 345 368 1.07 24.60 256.29 149.36 12.90 1.69 1.94 -0.03
0 0.08 0.04 465 391 324 343 1.06 20.60 227.85 145.52 11.40 1.68 1.75 -0.02
0 0.08 0.06 465 387 313 328 1.05 16.10 212.81 143.65 9.70 1.66 1.58 0.00
0 0.08 0.08 465 382 302 312 1.03 11.30 199.65 139.76 9.00 1.64 1.47 0.02

0.25 0.02 0.02 465 393 329 351 1.07 23.20 235.20 146.96 14.40 1.69 1.88 -0.03
0.25 0.04 0.02 465 394 346 367 1.06 21.90 258.76 148.79 15.30 1.70 1.90 -0.04
0.25 0.04 0.04 465 387 326 341 1.05 16.00 230.32 146.12 11.90 1.67 1.71 -0.01
0.25 0.06 0.02 465 396 346 371 1.07 26.10 258.34 149.66 15.60 1.70 2.04 -0.04
0.25 0.06 0.04 465 395 343 366 1.07 23.70 253.84 149.24 12.50 1.70 1.82 -0.04
0.25 0.06 0.06 465 386 318 330 1.04 13.70 219.25 145.12 11.40 1.66 1.60 0.00
0.25 0.08 0.02 465 400 345 374 1.08 30.00 257.86 148.75 15.30 1.72 2.10 -0.06
0.25 0.08 0.04 465 389 324 340 1.05 17.40 228.63 145.26 12.10 1.67 1.80 -0.01
0.25 0.08 0.06 465 385 317 332 1.05 16.50 217.33 145.25 10.60 1.66 1.65 0.00
0.25 0.08 0.08 465 377 284 294 1.03 11.00 178.15 133.96 10.50 1.62 1.53 0.04
0.5 0.02 0.02 465 396 330 354 1.07 25.50 234.77 148.01 21.50 1.70 2.17 -0.04
0.5 0.04 0.02 465 402 351 376 1.07 26.00 265.27 149.35 28.50 1.73 2.35 -0.07
0.5 0.04 0.04 465 392 323 340 1.05 17.90 226.02 146.17 18.40 1.69 1.89 -0.03
0.5 0.06 0.02 465 401 347 374 1.08 28.10 260.50 148.84 19.10 1.73 2.20 -0.07
0.5 0.06 0.04 465 387 330 347 1.05 17.70 235.33 148.08 15.70 1.67 1.88 -0.01
0.5 0.06 0.06 465 382 294 306 1.04 13.40 190.58 137.36 13.70 1.64 1.71 0.02
0.5 0.08 0.02 465 406 352 384 1.09 33.20 267.24 149.62 19.60 1.75 2.30 -0.09
0.5 0.08 0.04 465 395 342 364 1.06 22.40 253.27 148.90 14.70 1.70 1.94 -0.04
0.5 0.08 0.06 465 393 331 350 1.06 19.90 237.79 147.54 14.10 1.69 1.82 -0.03
0.5 0.08 0.08 465 385 308 323 1.05 15.60 206.27 142.83 11.80 1.66 1.64 0.00
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Table 3.4.8: Initial model fitting result example - II

Network size edge lgcsize lgcedge lgcdensity arcremove component- component- degree- degree- degree- orderdegree-
Metric distmean distsd max mean sd diffemean
NNAHRAY 465 386 206 231 1.12 30.00 94.07 99.99 12.00 1.66 1.49 0.00
α PAdd PDrop

0.75 0.02 0.02 465 393 329 349 1.06 20.70 234.49 147.09 28.20 1.69 2.44 -0.03
0.75 0.04 0.02 465 400 333 359 1.08 26.90 240.81 147.34 35.70 1.72 2.69 -0.06
0.75 0.04 0.04 465 394 325 344 1.06 19.80 229.09 146.54 24.30 1.70 2.15 -0.04
0.75 0.06 0.02 465 405 343 376 1.10 33.80 254.76 148.54 29.00 1.74 2.56 -0.08
0.75 0.06 0.04 465 399 337 361 1.07 24.70 245.68 148.16 23.90 1.72 2.25 -0.06
0.75 0.06 0.06 465 389 317 334 1.05 17.50 218.10 145.39 17.50 1.67 1.82 -0.01
0.75 0.08 0.02 465 416 359 394 1.10 35.90 279.23 146.80 44.20 1.79 3.17 -0.13
0.75 0.08 0.04 465 399 333 357 1.07 24.60 240.04 148.13 33.70 1.71 2.57 -0.05
0.75 0.08 0.06 465 390 323 344 1.07 22.70 225.90 145.89 20.40 1.68 2.09 -0.02
0.75 0.08 0.08 465 387 312 325 1.04 14.00 211.61 143.84 15.50 1.66 1.79 0.00

1 0.02 0.02 465 435 374 404 1.08 31.50 301.99 144.68 153.30 1.87 7.58 -0.21
1 0.04 0.02 465 421 344 377 1.09 33.80 259.50 143.38 96.00 1.81 5.14 -0.15
1 0.04 0.04 465 414 340 368 1.08 28.10 252.91 144.88 82.90 1.78 4.55 -0.12
1 0.06 0.02 465 425 361 401 1.11 40.20 282.39 147.48 90.00 1.83 5.02 -0.17
1 0.06 0.04 465 419 351 380 1.08 30.40 267.04 146.67 101.30 1.80 5.16 -0.14
1 0.06 0.06 465 402 310 329 1.06 19.80 210.89 141.04 59.80 1.73 3.42 -0.07
1 0.08 0.02 465 446 371 425 1.14 55.00 297.98 144.51 135.20 1.92 7.00 -0.26
1 0.08 0.04 465 412 347 377 1.08 30.80 260.38 147.96 81.50 1.77 4.65 -0.11
1 0.08 0.06 465 400 329 353 1.07 25.10 234.94 145.74 47.40 1.72 3.13 -0.06
1 0.08 0.08 465 392 307 322 1.05 15.70 205.30 142.40 63.60 1.68 3.49 -0.02

1.25 0.02 0.02 465 439 344 379 1.10 36.10 262.19 137.65 145.10 1.89 7.25 -0.23
1.25 0.04 0.02 465 428 329 360 1.08 32.10 250.49 127.14 128.50 1.84 6.65 -0.18
1.25 0.04 0.04 465 404 282 299 1.05 18.10 188.83 126.48 126.20 1.74 6.36 -0.08
1.25 0.06 0.02 465 417 333 364 1.09 32.30 246.72 138.12 108.80 1.79 5.73 -0.13
1.25 0.06 0.04 465 450 387 426 1.10 40.30 322.75 142.14 245.00 1.94 11.52 -0.28
1.25 0.06 0.06 465 404 312 331 1.06 20.20 217.34 137.27 118.10 1.74 5.92 -0.07
1.25 0.08 0.02 465 446 363 407 1.11 44.40 292.33 132.20 161.00 1.92 8.18 -0.26
1.25 0.08 0.04 465 424 339 368 1.08 30.30 254.67 139.93 140.10 1.82 7.00 -0.16
1.25 0.08 0.06 465 405 306 320 1.04 15.00 208.01 138.97 135.10 1.74 6.56 -0.08
1.25 0.08 0.08 465 403 294 308 1.04 14.90 198.08 132.62 153.10 1.73 7.31 -0.07

42



Data: Set of nodes in the network: N
Total number of target arcs: A
Component weight in the network: c[ ]
Level of sampling : L
Total number of index sampling nodes : I
Total number of index IDU sampling nodes: II
Total number of interviewees for each sampling level: i[L]

NodeList = {∅} ; EdgeList = {∅} ; Current = {∅} ;

Choose uniformly at random II IDU nodes and (I− II) NIDU nodes from N ;
Add them to NodeList and to Current ;

for k = 1 to L do
Neighbor = {∅} ; New = {∅} ; Arc = {∅} ;
position = 1 ;

while |New| ≤ (i[k]) AND position ≤ |Current| do
Store all neighbors of the positionth node in Current in Neighbor ;
Store arcs of the positionth node in Current in Arc ;
Add nodes in (Neighbor - (NodeList ∩Neighbor)) to New ;
Add nodes in (Neighbor - (NodeList ∩Neighbor)) to NodeList;
Add arcs in (Arc - (EdgeList ∩ Arc)) to EdgeList ;

Neighbor = {∅} ;
Arc = {∅} ;
position = position+ 1 ;

end
Current = New ;

end
while |EdgeList| ≤ A do

Choose any two nodes, i and j, from NodeList using c[ ] as a probability
mass function ;
if arc (i, j) is not in EdgeList then

arc (i, j) is added to EdgeList ;

end
end

Figure 3.4.1: Sampling algorithm
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Table 3.4.9: Sampling algorithm parameter value

Parameter Parameter Value Value source
definition notation
Number of target arcs A 386 NNAHRAY [19]
Level of sampling L 4 NNAHRAY [19]
Number of index sampling nodes I 112 NNAHRAY [19]
Number of index IDU sampling nodes II 40 NNAHRAY [19]
Limit of interviewees for each sampling level i[L] (133, 118, 67, 34) NNAHRAY [19]

3.4.5 Sample Model Fitting Results

In Table 3.4.10 and Table 3.4.11 we first show all the sample network structural fitting

results without the arc adding step. The results where PAdd < PDrop are omitted be-

cause their sample networks are more loosely connected than the NNAHRAY contact

network. Each row in Table 3.4.10 lists the average network structure metric values

of the 100 samples, 10 samples from each one of 10 model contact networks, at the

indicated value of (α, PAdd, PDrop). In the sample networks without additional arc

adding, the number of arcs in sample networks is often slightly lower than that in

the NNAHRAY contact network and the largest component is often smaller and less

dense. None of the points produces satisfying structural fitting results.

In Table 3.4.12 and Table 3.4.13 the sample network fitting results with the arc

adding step in the sampling algorithm. Compared to the previous fitting results in

Table 3.4.10, the results here are closer to the NNAHRAY contact network. There

are two sets of parameters,(α, PAdd, PDrop) = (0.25, 0.02, 0, 02) and (0.50, 0.06, 0.06),

meeting the overall structural fitting requirement.

The parameter set (α, PAdd, PDrop) = (0.50, 0.06, 0, 06) has closer structural metrics

values to the NNAHRAY contact network than the set (α, PAdd, PDrop) = (0.25,0.02,

0,02) does, as summarized in Table 3.4.14. For this reason we consider it the best

parameter set to model the NNAHRAY contact network. Figure 3.4.2 shows one

sample network produced by this particular set of parameters. In this graph, and
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many other graphs produced by the chosen parameter set, we can now see three unique

characteristics of the contact network in NNAHRAY: one dominantly large component

and a few other smaller components, a largest component which is slightly more

connected than a tree, and some densely-connected nodes in the largest component.

The frequency of unprotected SEX before 1996, F [SEXbefore], the frequency of

unprotected SEX after 1996, F [SEXlater], the frequency of needle-sharing before

1996, F [IDUbefore], and the frequency of needle-sharing after 1996, F [IDUlater] are

estimated by fitting the HIV prevalence and HSV-2 prevalence rates at the same

time. The (F [SEXbefore],F [SEXlater], F [IDUbefore], F [IDUlater]) are estimated to

be (0.4, 0.1, 0.25, 0.1) times/week, because when combined with the parameter set

(α, PAdd, PDrop) = (0.50, 0.06, 0.06), their prevalence results of both diseases at the

end of 10 years, 12 years, and 15 years, as shown in Table 3.4.15, converge to the

target disease prevalence values.

We conclude this section with a final note. Although the model requires a large

number of parameters, the large majority of our model parameters are estimated

directly from the data and from the epidemiological literature, and require no fit-

ting. Our model fits just seven parameters from the data while meeting thirteen

target metrics, whose interactions are too complicated to manipulate; in fact, until

we modeled the sampling procedure it was impossible to fit. Our model’s ability to

overcome the data fitting challenge, together with its realistic model assumptions,

such as the dynamics of nodes and arcs, leads us to believe that it may be more suit-

able than previous models for studying the interaction between disease spread and

human behavior.
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Table 3.4.10: Network metric values of sampling without the adding arc step - I

Network metric size edge lgcsize lgcedge lgcdensity arcremove component- component- degree- degree- degree- orderdegreediff- oderdegree-
distmean distsd max mean sd diffmean diffsd

NNAHRAY
contact network 465 386 206 231 1.12 30.00 94.07 99.99 12.00 1.66 1.49 0.00 0.00
α PAdd PDrop
0 0.02 0.02 465 356 108 107 1.00 1.30 36.32 42.23 8.90 1.53 1.29 0.13 0.56
0 0.04 0.02 465 373 224 227 1.01 4.30 121.70 105.41 9.60 1.60 1.44 0.06 0.49
0 0.04 0.04 465 359 92 91 0.99 0.70 33.26 37.35 7.60 1.54 1.23 0.12 0.53
0 0.06 0.02 465 382 280 288 1.03 9.50 176.13 130.80 9.50 1.64 1.49 0.02 0.52
0 0.06 0.04 465 368 192 195 1.01 4.70 97.19 88.95 8.80 1.58 1.36 0.08 0.51
0 0.06 0.06 465 358 100 99 0.99 1.00 35.81 40.22 7.30 1.54 1.20 0.12 0.61
0 0.08 0.02 465 385 310 323 1.04 14.40 207.87 144.31 9.80 1.65 1.60 0.01 0.57
0 0.08 0.04 465 373 245 250 1.02 6.70 138.53 115.45 8.90 1.61 1.44 0.06 0.51
0 0.08 0.06 465 372 191 194 1.01 4.40 94.83 89.11 8.70 1.60 1.36 0.06 0.54
0 0.08 0.08 465 361 175 175 1.00 1.60 81.88 81.03 7.10 1.55 1.24 0.11 0.54

0.25 0.02 0.02 465 361 125 125 1.00 1.50 48.76 54.64 11.00 1.55 1.40 0.11 0.43
0.25 0.04 0.02 465 370 204 208 1.02 5.40 104.78 95.27 12.00 1.59 1.51 0.07 0.53
0.25 0.04 0.04 465 361 146 146 1.00 1.50 56.57 62.06 8.60 1.55 1.28 0.11 0.48
0.25 0.06 0.02 465 378 271 279 1.03 9.10 166.77 126.67 11.50 1.63 1.63 0.03 0.49
0.25 0.06 0.04 465 373 250 254 1.02 5.30 139.30 120.46 9.60 1.60 1.43 0.06 0.45
0.25 0.06 0.06 465 361 145 146 1.01 3.00 55.59 64.23 8.50 1.55 1.27 0.11 0.56
0.25 0.08 0.02 465 387 308 325 1.06 18.30 206.93 141.86 12.50 1.66 1.76 0.00 0.62
0.25 0.08 0.04 465 376 261 266 1.02 6.50 157.98 122.38 10.10 1.62 1.51 0.05 0.50
0.25 0.08 0.06 465 367 187 190 1.01 4.00 87.41 88.03 9.30 1.58 1.39 0.08 0.46
0.25 0.08 0.08 464 363 129 129 1.00 1.40 54.05 56.38 8.30 1.56 1.27 0.10 0.65
0.5 0.02 0.02 465 356 136 137 1.00 1.50 53.16 59.75 18.20 1.53 1.64 0.13 0.63
0.5 0.04 0.02 465 370 200 202 1.01 4.10 99.53 92.93 16.00 1.59 1.65 0.07 0.53
0.5 0.04 0.04 465 360 125 126 1.00 2.10 47.13 54.09 11.30 1.55 1.37 0.11 0.48
0.5 0.06 0.02 465 385 292 302 1.03 11.50 187.82 136.26 17.30 1.66 1.81 0.00 0.60
0.5 0.06 0.04 465 372 198 202 1.02 4.60 100.25 91.54 12.00 1.60 1.48 0.06 0.47
0.5 0.06 0.06 465 362 168 170 1.01 2.40 70.62 77.10 10.80 1.56 1.36 0.10 0.45
0.5 0.08 0.02 465 391 315 330 1.05 16.80 214.99 144.42 17.80 1.68 1.90 -0.02 0.69
0.5 0.08 0.04 465 373 241 247 1.03 8.40 138.62 113.58 13.20 1.61 1.65 0.06 0.52
0.5 0.08 0.06 465 368 201 206 1.02 5.50 99.45 94.93 10.00 1.58 1.47 0.08 0.46
0.5 0.08 0.08 464 363 153 153 1.00 1.40 65.93 68.32 9.70 1.56 1.34 0.10 0.54
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Table 3.4.11: Network metric values of sampling without the adding arc step - II

Network metric size edge lgcsize lgcedge lgcdensity arcremove component- component- degree- degree- degree- orderdegreediff- oderdegree-
distmean distsd max mean sd diffmean diffsd

NNAHRAY
contact network 465 386 206 231 1.12 30.00 94.07 99.99 12.00 1.66 1.49 0.00 0.00
α PAdd PDrop

0.75 0.02 0.02 464 357 123 123 1.00 1.70 48.41 53.28 22.60 1.54 1.81 0.12 0.94
0.75 0.04 0.02 465 378 262 269 1.02 7.70 151.93 126.33 40.50 1.63 2.52 0.03 1.51
0.75 0.04 0.04 464 357 129 130 1.00 2.30 58.60 58.02 18.20 1.54 1.58 0.13 0.78
0.75 0.06 0.02 465 389 312 325 1.04 14.10 212.27 143.62 25.80 1.67 2.20 -0.01 0.99
0.75 0.06 0.04 465 367 182 185 1.01 4.10 87.95 84.55 19.00 1.58 1.70 0.08 0.67
0.75 0.06 0.06 465 358 161 162 1.00 1.80 68.78 72.68 12.20 1.54 1.40 0.12 0.53
0.75 0.08 0.02 465 393 315 332 1.05 18.40 214.74 144.68 27.40 1.69 2.32 -0.03 1.18
0.75 0.08 0.04 465 379 287 298 1.04 12.40 179.95 135.89 20.70 1.63 1.90 0.03 0.71
0.75 0.08 0.06 465 372 205 210 1.02 5.50 104.04 97.06 15.00 1.60 1.55 0.06 0.50
0.75 0.08 0.08 464 361 128 129 1.00 2.70 51.02 55.33 12.20 1.56 1.39 0.11 0.61

1 0.02 0.02 464 363 165 167 1.00 2.90 82.80 75.18 67.90 1.56 3.73 0.10 3.03
1 0.04 0.02 464 384 223 231 1.02 8.40 133.64 101.78 97.00 1.65 5.03 0.01 4.35
1 0.04 0.04 464 355 161 163 1.01 2.80 69.82 75.43 30.10 1.53 2.06 0.14 1.24
1 0.06 0.02 465 384 266 276 1.03 10.40 157.69 127.06 58.60 1.65 3.39 0.01 2.42
1 0.06 0.04 465 370 237 243 1.02 7.10 129.18 113.97 54.10 1.59 2.99 0.07 2.09
1 0.06 0.06 463 350 155 156 1.01 2.70 63.49 70.87 38.70 1.51 2.26 0.16 1.70
1 0.08 0.02 465 403 328 348 1.06 21.40 232.68 146.67 71.80 1.73 4.03 -0.07 3.02
1 0.08 0.04 465 379 275 285 1.04 11.70 166.23 131.51 63.70 1.63 3.47 0.03 2.62
1 0.08 0.06 465 368 212 217 1.02 6.10 105.77 101.27 27.50 1.58 2.01 0.08 1.07
1 0.08 0.08 465 365 176 178 1.01 3.30 77.51 82.05 21.10 1.57 1.66 0.09 0.73

1.25 0.02 0.02 427 327 129 130 0.99 1.50 81.86 51.63 105.30 1.52 5.30 0.26 5.51
1.25 0.04 0.02 463 378 198 201 1.00 4.00 122.20 83.37 128.30 1.63 6.30 0.03 5.75
1.25 0.04 0.04 441 348 167 170 1.01 4.80 93.24 77.35 104.40 1.57 5.12 0.16 5.14
1.25 0.06 0.02 465 409 287 300 1.04 14.20 197.14 125.31 166.80 1.76 8.03 -0.10 7.35
1.25 0.06 0.04 465 399 262 271 1.03 10.00 168.72 118.80 169.30 1.72 8.03 -0.06 7.41
1.25 0.06 0.06 463 353 126 128 1.00 2.50 51.00 55.30 42.00 1.52 2.43 0.14 1.80
1.25 0.08 0.02 465 398 290 304 1.04 15.30 191.96 128.14 109.10 1.71 5.49 -0.05 4.70
1.25 0.08 0.04 465 406 299 314 1.05 16.10 207.14 130.43 147.40 1.74 7.15 -0.08 6.43
1.25 0.08 0.06 465 369 194 200 1.02 6.70 103.16 90.33 64.20 1.59 3.43 0.07 2.72
1.25 0.08 0.08 461 347 122 123 1.00 1.70 45.12 53.19 29.60 1.51 1.95 0.17 1.50
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Table 3.4.12: Network metric values of sampling with the adding arc step - I

Network metric size edge lgcsize lgcedge lgcdensity arcremove component- component- degree- degree- degree- orderdegreediff- oderdegree-
distmean distsd max mean sd diffmean diffsd

NNAHRAY
contact network 465 386 206 231 1.12 30.00 94.07 99.99 12.00 1.66 1.49 0.00 0.00
α PAdd PDrop
0 0.02 0.02 465 386 197 218 1.11 22.13 88.82 93.99 9.91 1.66 1.38 0.00 0.46
0 0.04 0.02 465 386 236 255 1.08 20.00 125.14 114.20 9.36 1.66 1.45 0.00 0.46
0 0.04 0.04 465 386 213 234 1.10 22.00 102.81 102.96 8.08 1.66 1.34 0.00 0.50
0 0.06 0.02 465 387 277 294 1.06 18.25 168.98 132.27 10.31 1.66 1.56 0.00 0.50
0 0.06 0.04 465 386 255 272 1.07 18.55 144.45 122.75 9.26 1.66 1.45 0.00 0.47
0 0.06 0.06 465 386 223 244 1.09 21.73 112.02 107.89 8.43 1.66 1.36 0.00 0.49
0 0.08 0.02 465 388 302 319 1.06 18.49 198.99 140.66 10.23 1.67 1.64 -0.01 0.54
0 0.08 0.04 465 387 282 299 1.06 17.89 174.90 133.95 9.66 1.66 1.51 0.00 0.51
0 0.08 0.06 465 386 247 265 1.08 19.38 135.81 118.97 8.22 1.66 1.38 0.00 0.52
0 0.08 0.08 465 386 222 242 1.09 21.19 111.50 107.28 7.66 1.66 1.33 0.00 0.53

0.25 0.02 0.02 465 386 208 230 1.11 22.83 98.22 100.10 11.03 1.66 1.47 0.00 0.45
0.25 0.04 0.02 465 386 253 272 1.08 19.78 141.43 122.56 12.48 1.66 1.58 0.00 0.46
0.25 0.04 0.04 465 386 213 236 1.11 23.86 103.59 102.70 9.97 1.66 1.41 0.00 0.49
0.25 0.06 0.02 465 387 278 294 1.06 17.69 170.40 132.15 11.40 1.66 1.62 0.00 0.49
0.25 0.06 0.04 465 386 244 263 1.08 19.47 132.89 118.33 9.91 1.66 1.45 0.00 0.46
0.25 0.06 0.06 465 386 227 248 1.09 21.58 116.71 109.83 8.85 1.66 1.37 0.00 0.51
0.25 0.08 0.02 465 389 306 323 1.06 18.15 204.25 142.06 12.81 1.67 1.75 -0.01 0.57
0.25 0.08 0.04 465 387 276 292 1.06 17.28 168.09 131.92 11.77 1.66 1.57 0.00 0.50
0.25 0.08 0.06 465 386 259 277 1.07 19.54 148.83 124.79 9.16 1.66 1.46 0.00 0.50
0.25 0.08 0.08 464 386 226 247 1.09 21.38 115.15 109.50 8.39 1.66 1.37 0.00 0.54
0.5 0.02 0.02 465 386 210 232 1.11 23.29 99.47 101.18 15.17 1.66 1.62 0.00 0.53
0.5 0.04 0.02 465 386 262 280 1.07 18.48 152.01 126.44 20.89 1.66 1.85 0.00 0.68
0.5 0.04 0.04 465 386 214 236 1.11 22.94 103.59 103.40 14.18 1.66 1.52 0.00 0.44
0.5 0.06 0.02 465 388 293 309 1.06 17.80 187.80 137.84 19.54 1.67 1.91 -0.01 0.71
0.5 0.06 0.04 465 386 253 271 1.07 19.06 142.82 122.40 12.15 1.66 1.57 0.00 0.45
0.5 0.06 0.06 465 386 218 240 1.10 22.76 107.47 105.40 10.96 1.66 1.43 0.00 0.46
0.5 0.08 0.02 465 391 307 326 1.06 20.29 204.98 142.30 16.33 1.68 1.90 -0.02 0.66
0.5 0.08 0.04 465 387 289 305 1.06 17.17 182.30 136.80 13.09 1.67 1.69 -0.01 0.56
0.5 0.08 0.06 465 386 247 265 1.08 19.67 135.51 119.55 10.91 1.66 1.49 0.00 0.47
0.5 0.08 0.08 465 386 236 256 1.09 21.49 124.69 114.06 9.65 1.66 1.41 0.00 0.48
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Table 3.4.13: Network metric values of sampling with the adding arc step - II

Network metric size edge lgcsize lgcedge lgcdensity arcremove component- component- degree- degree- degree- orderdegreediff- oderdegree-
distmean distsd max mean sd diffmean diffsd

NNAHRAY
contact network 465 386 206 231 1.12 30.00 94.07 99.99 12.00 1.66 1.49 0.00 0.00
α PAdd PDrop

0.75 0.02 0.02 465 386 221 243 1.10 23.00 110.15 106.61 34.91 1.66 2.29 0.00 1.33
0.75 0.04 0.02 465 387 259 278 1.07 19.63 149.26 124.90 28.73 1.67 2.16 -0.01 1.04
0.75 0.04 0.04 464 386 210 234 1.12 25.60 99.19 101.34 23.31 1.66 1.79 0.00 0.83
0.75 0.06 0.02 465 390 293 311 1.06 18.60 188.35 138.29 24.97 1.68 2.17 -0.02 0.98
0.75 0.06 0.04 465 386 248 267 1.08 19.74 137.00 120.04 18.26 1.66 1.76 0.00 0.61
0.75 0.06 0.06 464 386 203 229 1.13 26.42 93.61 98.02 12.45 1.66 1.48 0.00 0.56
0.75 0.08 0.02 465 394 313 333 1.06 20.90 213.79 144.04 34.46 1.70 2.54 -0.03 1.39
0.75 0.08 0.04 465 388 290 306 1.06 17.48 183.48 137.26 27.73 1.67 2.09 -0.01 0.97
0.75 0.08 0.06 465 386 249 268 1.08 20.22 137.92 120.33 16.69 1.66 1.65 0.00 0.56
0.75 0.08 0.08 465 392 314 333 1.06 19.81 214.03 144.37 14.80 1.69 1.77 -0.03 0.56

1 0.02 0.02 462 390 238 262 1.11 24.76 130.13 113.77 87.50 1.69 4.56 -0.02 3.91
1 0.04 0.02 465 396 274 293 1.07 19.98 168.76 128.25 73.63 1.70 4.03 -0.04 3.12
1 0.04 0.04 462 386 194 224 1.16 31.18 85.92 93.04 25.35 1.67 1.91 0.00 1.10
1 0.06 0.02 465 404 301 320 1.06 20.20 200.44 138.42 100.40 1.74 5.10 -0.08 4.27
1 0.06 0.04 465 387 247 268 1.08 21.28 136.00 120.22 44.79 1.66 2.73 0.00 1.75
1 0.06 0.06 461 386 211 241 1.15 31.26 100.98 102.25 33.70 1.67 2.20 0.00 1.51
1 0.08 0.02 465 415 337 362 1.07 26.38 247.51 145.54 108.34 1.79 5.62 -0.12 4.73
1 0.08 0.04 465 391 288 306 1.06 19.00 181.71 136.68 50.76 1.68 2.94 -0.02 1.97
1 0.08 0.06 465 386 244 265 1.09 22.62 131.83 118.36 39.96 1.66 2.47 0.00 1.50
1 0.08 0.08 462 386 200 228 1.14 28.33 91.41 96.44 18.71 1.67 1.61 0.00 0.76

1.25 0.02 0.02 441 399 271 304 1.19 34.69 175.38 123.74 184.42 1.82 8.93 -0.05 8.73
1.25 0.04 0.02 463 410 283 303 1.09 21.15 186.71 126.32 167.92 1.77 8.12 -0.10 7.52
1.25 0.04 0.04 450 392 232 267 1.19 35.66 128.03 110.78 98.63 1.74 5.12 -0.02 4.92
1.25 0.06 0.02 464 416 301 324 1.08 24.28 208.24 129.40 159.17 1.79 7.79 -0.13 7.03
1.25 0.06 0.04 464 394 255 276 1.09 22.53 146.69 121.33 89.76 1.69 4.62 -0.03 3.84
1.25 0.06 0.06 457 386 212 247 1.17 36.06 103.44 102.34 67.12 1.69 3.65 0.00 3.17
1.25 0.08 0.02 464 397 275 296 1.08 22.28 171.20 127.20 80.13 1.71 4.39 -0.05 3.55
1.25 0.08 0.04 465 404 284 305 1.08 21.70 183.10 129.36 123.93 1.74 6.15 -0.07 5.34
1.25 0.08 0.06 464 393 240 262 1.10 23.40 132.91 113.78 75.65 1.69 4.11 -0.03 3.31
1.25 0.08 0.08 463 386 213 243 1.14 30.70 102.22 103.83 58.76 1.67 3.07 0.00 2.41
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Table 3.4.14: Closest parameter sets

Network metric size edge lgc- lgc- lgc- arc- component- component-
size edge density remove distmean distsd

NNAHRAY 465 386 206 231 1.12 30.00 94.07 99.99
After adding arcs

α PAdd PDrop
0.25 0.2 0.2 465 386 208 230 1.11 22.83 98.22 100.10
0.5 0.6 0.6 465 386 218 240 1.10 22.76 107.47 105.40

Before adding arcs
α PAdd PDrop
0.25 0.02 0.02 465 361 125 125 1.00 1.50 48.76 54.64
0.5 0.06 0.06 465 362 168 170 1.01 2.40 70.62 77.10

Network metric degree- degree- degree- orderdegree- oderdegree-
max mean sd diffmean diffsd

NNAHRAY 12.00 1.66 1.49 0.00 0.00
After adding arcs

α PAdd PDrop
0.25 0.2 0.2 11.03 1.66 1.47 0.00 0.45
0.5 0.6 0.6 10.96 1.66 1.43 0.00 0.46

Before adding arcs
α PAdd PDrop
0.25 0.02 0.02 11.00 1.55 1.40 0.11 0.43
0.5 0.06 0.06 10.80 1.56 1.36 0.10 0.45

Figure 3.4.2: Model contact network sample
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Figure 3.4.3: NNANRAY contact network

Table 3.4.15: Prevalence Prediction versus Simulation Time

Number of years α PAdd PDrop populationhiv populationhsv 2 samplehiv samplehsv 2
NNAHRAY NA NA 0.09 0.48
10 0.5 0.06 0.06 0.13 0.39 0.15 0.42
12 0.5 0.06 0.06 0.10 0.38 0.13 0.42
15 0.5 0.06 0.06 0.07 0.41 0.09 0.45
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CHAPTER IV

DYNAMIC NETWORK MODEL COMPUTATIONAL

RESULTS

With our dynamic network model in hand, we now test two important hypotheses of

disease spread modeling. The first hypothesis is that the dynamics of the network

affect the prediction of disease spread. The second hypothesis is that the structure of

a contact network on top of which a disease spreads affects the prediction of disease

spread.

In this chapter we first test both hypotheses by comparing the network structures

and the HIV prevalence prediction of our model and other static network models all

calibrated with NNAHRAY data. We later test the hypothesis regarding the network

structures by observing the prediction change within our model when using various

single metric fitting methods and show how they differ.

To conclude this chapter, we illustrate the potential use of our model to analyze the

efficacy of prevention/intervention policies for controlling HIV spread. This part can

be extended to conduct cost effectiveness analysis of prevention/intervention policies

when desired.

4.1 Disease Prevalence and Network Dynamic

We use NNAHRAY data to calibrate four static models and our dynamic network

model and compare their HIV prevalence simulation results with the HIV preva-

lence record in New York City (NYC) from 1990 to 2002 in three different testings.

The static models are named as follows: Preferential, Grandom, Configuration, and

Compartmental. The first three are static contact network models, and each aims
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at capturing at least one structural property discovered in the contact network in

NNAHRAY. The last one is a variant of the known compartmental disease model

that disregards the contact network structures of any population. Three different

testings are set up: compare the results found in the model samples with NYC record

considering HSV-2 synergy; compare the results in the model with NYC record; com-

pare the model samples with NYC record without considering HSV-2 synergy.

All the simulation coding is done in C programming language and the pseudocode

is included in Appendix A. We first explain each model’s definition and high-level

implementation scheme. Then we discuss the results of HIV prevalence comparison

for each modeling strategy. We conclude this section with a summary of the com-

parison results and the implications for the hypothesis that if the network dynamic

is incorporated into modeling, then a more accurate disease prediction result can be

obtained.

4.1.1 Dynamic

Dynamic is our model calibrated as in Chapter 3 to fit the network structures and

both HIV and HSV-2 prevalence results in NNHARAY. When running our model to

extract HIV prevalence results between 1990 and 2002, we use the fitted parameter

values, summarized in Table 4.1.1, and the extracted parameter values in Table 3.4.3.

The implementation details of Dynamic are explained in Section 2.2.3.

Table 4.1.1: Dynamic network model parameter fitting results with NNAHRAY

Definition of parameter Parameter Notation Value
Degree of connectivity α 0.50
Probability for a node to add a new arc PAdd 0.06
Probability for an existing arc to be dropped PDrop 0.06
Frequency of unprotected SEX before 1996 F [SEXbefore] 0.4 times/week
Frequency of unprotected SEX after 1996 F [SEXlater] 0.1 times/week
Frequency of needle-sharing before 1996 F [IDUbefore] 0.25 times/week
Frequency of needle-sharing after 1996 F [IDUlater] 0.1 times/week
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4.1.2 Preferential

Preferential is one of the static preferential attachment network models, originally

proposed in [6]. The static preferential attachment network model in general aims at

producing networks with the power law degree distribution by making certain nodes

more attractive to add arcs with than the others.

As shown in Figure A.1 and Figure A.2 in Appendix A, to initialize the static

contact network, Preferential starts with only one node in the network and adds

(WEEK/TAdd × New) number of new nodes consecutively. Upon addition to the

existing network each node is assigned with a node type based on pnt[ ][ ]. Based on

pnd[ ][ ], each new node’s initial status of all diseases of concern are determined. Also

upon addition to the existing network each new node is attached to an existing node

following the preferential attachment algorithm. Values of the Preferential parameters

related to network formation are listed in Table A.1 in Appendix A.

Every TSpread weeks, the algorithm checks the spread of all diseases from infected

nodes to the connected susceptible nodes in the network using the spread algorithm.

Each week, the disease status of every node will be examined. If it is their time to ad-

vance to the next stage, our model updates them and records their next advancement

time based on d[ ][ ]. Note that the the disease spread algorithm used in Preferential

is the same as that used in Dynamic. Values of the Preferential parameters related

disease spread are listed in Table A.2 in Appendix A.

There are two main differences between Preferential and Dynamic. The first

difference is that although Preferential considers the node dynamics, such as the pro-

gression of disease stage in each node, Preferential does not incorporate arc dynamics,

such as arc removal and creation as relationships change over time. Dynamic includes

both node and arc dynamics. The second difference is regarding to the initial disease

status. Given that all nodes are assumed to be present at the same time (and be-

fore the diseases start spreading) in Preferential, the proportion of the nodes initially
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infected with HIV or HSV-2 is based on the levels of the population to be modeled.

Since in our model nodes are added over time, the proportions of newly added nodes

infected with HIV or HSV-2 differ each year.

4.1.3 Grandom

Grandom is a variant of the static general random network model. The static general

random network model aims at producing networks whose expected degrees equal

a chosen degree sequence [10]. Specifically, in an N-node graph with degrees w =

(w1, w2, ....., wN), the probability of having an arc between nodes i and j is (wi ×

wj)/
∑N

k=1wk. Note that the chosen degree sequence w needs to satisfy conditions

that (maxk{wk})2 ≤
∑N

k=1wk as well as that
∑N

k=1wk is an even number to avoid

self-loops and hyper arcs in a network.

Figure A.3 in Appendix A summarizes the algorithm used to add arcs between a

set of nodes in Grandom. The algorithm Grandom AddArc has two components. The

first component generates an appropriate degree sequence, n[ ], based on the input

degree distribution w. The second component asigns arcs between all pairs of nodes

based on grandom weight[ ], which is calculated based on the degree sequence n[ ],

the node types of both nodes, the probability pnn[ ][ ], and the probability pnc[ ][ ].

For example, when calculating the probability of an IDU node i having an IDU arc

with another IDU node j, the grandom weight is equal to (n[i]×n[j])/
∑

k∈N n[k]×

pnn[IDU ][IDU ] × pnc[IDU ][IDU ], where N is the total number of nodes in the

network of concern. If two nodes are not compatible regarding the chosen arc type,

for example an IDU node and a non-IDU node with an IDU arc, their grandom weight

is equal to zero.

Details of Grandom are summarized in Figure A.4 and Figure A.5 in Appendix

A. To initialize the static contact network, Grandom starts with only one node in
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the network and adds (WEEK/TAdd × New) new nodes consecutively. Upon ad-

dition to the network each node is assigned with a type based on pnt[ ][ ]. Based

on pnd[ ][ ], each new node’s initial statuses of all the diseases of concern are deter-

mined. As soon as the nodes are all in place, the arc assignment among them follows

the Grandom AddArc algorithm. Values of the Grandom parameters related network

formation are listed in Table A.3 in Appendix A.

Once the contact network is initialized, Grandom adopts the same disease spread-

ing process as that in Preferential. The related parameter values are also listed in

Table A.3.

4.1.4 Configuration

Configuration is a modified version of the static configuration network models, which

aim at producing networks whose node degree ideally follows a chosen degree se-

quence. A widely-adopted algorithm proposed in [10] used to create networks with

node degree sequences close to the desired one is defined as follows. Suppose the cho-

sen degree sequence in a N-node graph is equal to w = (w1, w2, ....., wN). To determine

how the arcs are distributed among the n nodes in the network, the algorithm creates

another network with
∑N

i=1wi nodes that are partitioned into N groups. Each group

i consists of wi nodes. After finding a random perfect matching for the
∑N

i=1wi nodes

in the created network, the algorithm adds an arc to the original network between

each pair of node i and j if there is a node in group i matched with a node in group

j in the created network.

Figure A.6 in Appendix A summarizes the algorithm used to add arcs between

a set of nodes in Configuration. Similar to Grandom AddArc, the first compo-

nent of Configuration AddArc is to generate an appropriate degree sequence, n[ ],

based on the input degree distribution w. The second component, however, is dif-

ferent from that in Grandom AddArc. To determine which node to add an arc to,
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Configuration AddArc relies on the configuration weight[ ], consisting of the num-

ber of unmatched nodes of each group in the created network n1[ ], the node types

of both nodes, the probability pnn[ ][ ], and the probability pnc[ ][ ]. For instance,

when Grandom AddArc calculates the configuration weight of all the other nodes

for an IDU node to form an IDU arc with, the resulting configuration weight for

any non-IDU node’s is equal to zero, and for an IDU node j’s configuration weight

is equal to (n1[j])/
∑

k∈N n1[k]× pnn[IDU ][IDU ]× pnc[IDU ][IDU ].

Details of Configuration are summarized in Figure A.7 and Figure A.8 in Appendix

A. As soon as the nodes are properly initialized and in place, the arc assignment

among them adopts the Configuration AddArc algorithm detailed in Figure A.6.

Values of the Configuration parameters related network formation are listed in Table

A.5 in Appendix A. Configuration adopts the same disease spreading process as that

in Preferential and Grandom. The related parameter values are also listed in Table

A.5.

4.1.5 Compartmental

Compartmental is a network model version of the traditional epidemiological differ-

ential equation model. Since in Compartmental any two nodes in compatible com-

partments are linked by an arc, it has a much denser network than the other network

models have. We discount the disease transmission probability in Compartmental by

a constant equal to the graph density in the NNAHRAY network to make a closer

disease prevalence comparison with the other network models.

Figure A.9 in Appendix A describes the algorithm used to add arcs between a

set of nodes in Compartmental. The algorithm Compartmental AddArc in general

examines all pairs of nodes. If a pair of nodes i and j are type compatible judged

by the arc type randomly chosen based on the node i’s typepnc[nt[i]][ ], then the

algorithm Compartmental AddArc forms an arc between them.
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Figure A.10 in Appendix A describes the algorithm used to spread disease in

Compartmental. The algorithm Compartmental SpreadDisease is similar to that

in the previously mentioned models except that each attempt to transmit a disease

from the infected to the susceptible is discounted by a scaling parameter p. For our

data set, we estimate p to be equal to 386/(465 × 464/2) ≈ 0.0035, since there are

386 arcs in the contact network in NANHRAY, and the network can accommodate

no more than 465× 464/2 = 107880 arcs.

Details of Compartmental are summarized in Figure A.11 and Figure A.12 in

Appendix A. As soon as the nodes are properly initialized and in place, the arc as-

signment among them follows the Compartmental AddArc in A.9. When the contact

network is formed, Compartmental adopts Compartmental SpreadDisease in Fig-

ure A.10 to spread the disease among the nodes. The parameter values are all listed

in Table A.5 in Appendix A.

4.1.6 Computational Results And Discussion

Three testings are used to analyze the HIV prevalence results in the models. Testing

1 intends to simulate HIV transmission within a network of larger size than that

of the contact network in NNAHRAY and compare the HIV prevalence results in

the network model samples. Testing 2 aims at simulating HIV transmission within

a network of size approximately equal to the contact network in NNAHRAY, then

sample from the network using a similar approach to that of NNAHRAY, and analyze

directly the HIV prevalence results in the networks. Testing 3 follows testing 1 but

ignores HSV-2’s effect on HIV spreading. We run 100 independent computational

experiments for each model to simulate HIV transmission from 1990 to 2002. For

testing 1 and 3, we draw a network sample from each of the 100 networks generated

by the model.

We estimate the HIV prevalence of a population whose composition is similar to
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that of NNAHRAY using the NYC HIV prevalence record between 1990 and 2002.

We first assume a network/population in which nodes join at the same rate as that in

Dynamic over the years. The proportion of node types is set to be the same as that

in NNAHRAY. Each node’s HIV and HSV-2 status is probabilistically determined by

its timing of joining the network and its type [18, 26]. For all the infected nodes, their

disease stages advance with time. Therefore an HIV-infected node may die at any

time before 2002. We obtained our estimate from the constructed network between

1990 and 2002.

Table 4.1.2: HIV annual prevalence results of all models

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Testing 1 Dynamic 0.30 0.29 0.27 0.26 0.26 0.25 0.24 0.23 0.20 0.18 0.16 0.14 0.12

Preferential 0.31 0.39 0.40 0.40 0.40 0.40 0.40 0.39 0.38 0.36 0.34 0.32 0.29
Grandom 0.31 0.34 0.34 0.34 0.33 0.33 0.32 0.31 0.29 0.28 0.26 0.23 0.21
Configuration 0.32 0.46 0.47 0.48 0.49 0.49 0.49 0.48 0.47 0.46 0.44 0.41 0.38
Compartmental 0.32 0.49 0.52 0.54 0.56 0.57 0.57 0.57 0.57 0.56 0.54 0.51 0.47

Testing 2 Dynamic 0.34 0.30 0.28 0.27 0.26 0.25 0.25 0.23 0.20 0.18 0.16 0.14 0.12
Preferential 0.31 0.39 0.40 0.40 0.40 0.40 0.40 0.39 0.38 0.36 0.34 0.31 0.29
Grandom 0.31 0.34 0.34 0.34 0.33 0.33 0.32 0.31 0.29 0.28 0.26 0.24 0.21
Configuration 0.31 0.46 0.47 0.48 0.48 0.48 0.48 0.48 0.47 0.45 0.43 0.40 0.37
Compartmental 0.31 0.37 0.39 0.39 0.40 0.40 0.40 0.39 0.39 0.37 0.35 0.33 0.30

Testing 3 Dynamic 0.29 0.27 0.25 0.24 0.22 0.21 0.20 0.19 0.17 0.15 0.13 0.11 0.09
Preferential 0.31 0.35 0.35 0.35 0.35 0.35 0.34 0.33 0.32 0.31 0.29 0.27 0.24
Grandom 0.31 0.32 0.32 0.32 0.32 0.31 0.30 0.29 0.28 0.26 0.24 0.22 0.20
Configuration 0.32 0.37 0.38 0.38 0.39 0.39 0.39 0.38 0.37 0.36 0.35 0.33 0.30
Compartmental 0.31 0.37 0.39 0.40 0.41 0.42 0.43 0.43 0.43 0.42 0.41 0.39 0.37

Table 4.1.2 summarizes the annual HIV prevalence results of all models under

the different strategies. We notice that the models’ prevalence prediction results do

not vary much between testing 1 and testing 2, except for Compartmental, whose

prediction results in testing 2 is 36% lower than those in testing 1. This observation

implies the disease prevalence prediction using the traditional compartmental models

of disease spreading may be sensitive to the population size. The results obtained in

contact network models, either static or dynamic, appear insensitive to population

size.

All the models have lower prevalence prediction results in testing 3 than in the

other strategies, as would be expected if a spread cofactor is ignored. Comparing the
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results in testing 1 and testing 3, the amount of prediction reduction due to neglecting

HSV-2’s effect on HIV across all models is between 5% and 25%. Grandom is the

least affected model while Dynamic is the most sensitive one among all.

1990 1992 1994 1996 1998 2000 2002

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time (Year)

H
IV

 p
re

va
le

nc
e 

(%
)

Modeling Scheme
NYC
Dynamic
Preferential
Grandom
Configuration
Compartmental

NNAHRAY

Figure 4.1.1: HIV prevalence of testing 1

Results from the table for each testing along with the previously-mentioned HIV

prevalence estimate, NYC, are plotted in Figure 4.1.1, Figure 4.1.2, and Figure 4.1.3

for testing 1, testing 2, and testing 3 respectively. All figures clearly show that across

three testings the relative prediction magnitude of all network models is the same.

The order, from the highest to the lowest, is Configuration, Preferential, Grandom,

and Dynamic, which is also the closest to the estimate for NYC from the literature.

The prediction results from Compartmental may be more sensitive to the network size

change than to the transmission rate change, as its relative magnitude with network

models changes in testing 2 but not in testing 3.

Besides observing the HIV prevalence difference in models and in testings, we

would also like to learn about their network structural differences. Since network

structure measurement for models in testing 1 and in testing 3 is performed on samples
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Figure 4.1.2: HIV prevalence of testing 2
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Figure 4.1.3: HIV prevalence of testing 3

from the network of the same size, the network structural results in testing 1 are the

same as those in testing 3. Table 4.1.3 summarizes the network structure measurement

results in all the model samples in testing 1 and testing 2.
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Table 4.1.3: Network structures of all models

size edge lgc- lgc- lgc- arcremove
size edge density

NNAHRAY 465 386 206 231 1.12 30.00
Testing 1 Dynamic 465 386 203 230 1.13 27.62

Preferential 416 386 189 261 1.39 73.29
Grandom 235 386 120 360 3.04 241.53
Configuration 442 387 277 318 1.15 41.64
Compartmental 465 1012 460 1012 2.20 554.06

component- component- degree- degree- degree- orderdegree- orderdegree-
distmean distsd max mean sd diffmean diffsd

NNAHRAY 94.07 99.99 12.00 1.66 1.49 0.00 0.00
Testing 1 Dynamic 93.04 97.81 9.16 1.66 1.39 0.00 0.46

Preferential 88.59 91.57 16.70 1.86 1.82 0.00 2.13
Grandom 62.03 58.97 13.74 3.31 3.43 0.00 3.61
Configuration 176.84 130.78 12.14 1.75 1.70 0.00 1.67
Compartmental 454.02 40.67 412.65 4.35 26.12 -2.69 25.40

size edge lgc- lgc- lgc- arcremove
size edge density

NNAHRAY 465 386 206 231 1.12 30.00
Testing 2 Dynamic 591 451 278 289 1.04 11.81

Preferential 442 245 52 51 0.97 0.00
Grandom 478 138 23 22 0.95 0.25
Configuration 404 252 178 189 1.05 11.63
Compartmental 444 46917 444 46917 105.57 46474.17

component- component- degree- degree- degree- orderdegree- orderdegree-
distmean distsd max mean sd diffmean diffsd

NNAHRAY 94.07 99.99 12.00 1.66 1.49 0.00 0.00
Testing 2 Dynamic 140.27 135.08 8.70 1.52 1.22 0.21 1.99

Preferential 12.71 17.97 11.67 1.11 1.24 0.57 1.54
Grandom 3.63 5.51 5.22 0.58 0.83 -0.75 1.21
Configuration 86.88 85.96 10.02 1.24 1.48 0.58 1.92
Compartmental 444.08 0.00 342.12 211.13 52.83 -178.32 66.96

The results of testing 1 in Table 4.1.3 show that with a sampling method similar

to the real sampling procedure used in NNAHRAY study, only Dynamic has network

samples close to the NNAHRAY contact network. All the static network models are

far from being close.

For testing 2, Table 4.1.3 shows that none of the network models can replicate the

contact network in NNAHRAY closely, especially for the property of having a largest

component which is denser than a tree. Note that Configuration and Dynamic are

similar in their network measurements in testing 2. The similarity and the difference

in sampling network structural measure results between these two models highlight

the importance of network sampling method.
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The above observations bring us to question the general network modeling practice

of using population sample data to directly calibrate models. They also speak to the

potential benefit of modeling the sampling method into network models.

4.1.7 Conclusion

The computational HIV prevalence prediction results of all models show that our

dynamic network model predicts the spreading of HIV in a NNAHRAY- like popula-

tion over 12 years more closely than any other model does in 3 kinds of comparison

strategies. The results support the hypothesis that inclusion of arc dynamics and

consideration of network structure is important to closely predict the prevalence of

diseases that spread in a heterogeneous manner, such as HIV and STDs.

There are a few more network structural comparison results that are noteworthy:

• With a sampling method similar to the real sampling procedure used in NNAHRAY

study, only Dynamic has network samples close to the NNAHRAY contact net-

work. All the static network models are far from being close.

• Without any sampling method, none of the network models can replicate the

contact network in NNAHRAY closely, especially for the property of having a

largest component which is modestly denser than a tree.

• Without any sampling method, Configuration and Dynamic may have similar

averaged network structural measurement results.

The results point out the importance of considering the network sampling process

when adopting network models to represent populations. Our model’s success in

reproducing a contact network sample collected in the field by public health workers

suggests that the practice of modeling the sampling method can be an important key.
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4.2 Disease Prevalence and Network Structure

In the epidemiological literature, network models are commonly used to describe the

population contact pattern, and are usually parameterized by fitting a small number

of network metrics of the data. For example, [13] and [42] both fit their models to the

degree distribution estimated from the data. The latter additionally fits the model to

the number of cliques (a clique is a completely connected subgraph). As important

as the degree distribution or the number of cliques may be, we hypothesize that a

model may need to be fit to many network metrics in order to successfully reproduce

a contact network on top of which the disease spreads similarly to the data. We test

this hypothesis by simulating networks with a wide range of parameter values. If

different parameter values can generate networks that are similar to the data in one

metric and that have varying HIV spreads, then it will suggest that fitting to a single

metric is insufficient to find a model that will closely match the disease reality.

There are three parameters, (α, PAdd, PDrop), in our model to be fitted. In Sec-

tion 3.3, we fit our model so that all 13 network metrics of the network samples are

close to those of the NNAHRAY contact network. To understand the necessity of

fitting a large number of metrics at the same time and to examine the adequacy of

the single metric fitting method, in this section, we fit our model with 8 different sin-

gle metric fitting methods. The selected metrics are HIV prevalence and 7 network

metrics, including Lgcsize, Lgcdensity, Arcremove, Componentdistmean, Orderedde-

greediffmean, Degreesd, Degreemax. After comparing their 13 network metric values

with those of the NNAHRAY contact network, we examine whether the best fitted

results predict similar HIV prevalence within our model. For ease of terminology,

from now on we refer to the single metric fitting method by the metric in use (e.g.,

Lgcsize) and our proposed 13-metric fit by Complete.
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4.2.1 Computational Results and Discussion

We examine the same range of (α, PAdd, PDrop) values as that in Section 3.4.5, using

the network metric results in Table 3.4.12 and Table 3.4.13 to look for the best fit

results for all single metric methods.

In the disease simulation experiments, most model parameter values are the same

as those used in Section 3.4.5, except for the risk behavior frequencies. In Section

3.4.5, the values of F [SEXlater] and F [IDUlater] are lower than those of F [SEXbefore]

and F [IDUbefore] in order to reflect the emergence of intervention policy effects after

1996. To avoid confounding our results with intervention policies, in this section we

set F [IDUlater] := F [IDUbefore] and F [SEXlater] := F [SEXbefore]. For each set of

specific (α, PAdd, PDrop) values, 10 networks are generated by the model. On top of

them the spread of HIV and HSV-2 is simulated. Table 4.2.1 records their average

HIV prevalence result.

For all single network metric methods, a contact network is considered close to the

NNAHRAY contact network if the selected network metric falls within the specific

range listed in Table 4.2.2. The ranges were chosen with varying degrees of deviation

from the mean, from 40% to 1.7%. For the HIV prevalence metric, a contact network

is considered close to NNAHRAY contact network if it has HIV prevalence within

that of Complete, since the increases in F [IDUlater] and F [SEXlater] values lead to a

higher HIV prevalence prevalence than in NNAHRAY.

Table 4.2.3 and Table 4.2.4 summarize the best fit results’ 13 network metric

statistics and HIV prevalence, averaged over the 10 instances, in each single network

metric method. We do not find any single metric method whose 13 average network

metrics are concurrently close to those of NNAHRAY contact network. Although HIV

prevalence has the closest fit results to Complete, the former has larger Degreemax

and Orderdegreediffsd than the latter. The HIV statistics in Table 4.2.4 show that

although some single network metric methods have wider range of HIV prevalence
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Table 4.2.1: HIV prevalence result

α PAdd PDrop HIV α PAdd PDrop HIV
0 0.02 0.02 0.21 0.75 0.02 0.02 0.22
0 0.04 0.02 0.23 0.75 0.04 0.02 0.25
0 0.04 0.04 0.21 0.75 0.04 0.04 0.21
0 0.06 0.02 0.26 0.75 0.06 0.02 0.26
0 0.06 0.04 0.23 0.75 0.06 0.04 0.24
0 0.06 0.06 0.21 0.75 0.06 0.06 0.21
0 0.08 0.02 0.27 0.75 0.08 0.02 0.29
0 0.08 0.04 0.24 0.75 0.08 0.04 0.26
0 0.08 0.06 0.23 0.75 0.08 0.06 0.24
0 0.08 0.08 0.21 0.75 0.08 0.08 0.22
0.25 0.02 0.02 0.22 1 0.02 0.02 0.24
0.25 0.04 0.02 0.25 1 0.04 0.02 0.26
0.25 0.04 0.04 0.21 1 0.04 0.04 0.21
0.25 0.06 0.02 0.26 1 0.06 0.02 0.28
0.25 0.06 0.04 0.24 1 0.06 0.04 0.25
0.25 0.06 0.06 0.21 1 0.06 0.06 0.21
0.25 0.08 0.02 0.28 1 0.08 0.02 0.30
0.25 0.08 0.04 0.26 1 0.08 0.04 0.26
0.25 0.08 0.06 0.24 1 0.08 0.06 0.24
0.25 0.08 0.08 0.21 1 0.08 0.08 0.21
0.5 0.02 0.02 0.22 1.25 0.02 0.02 0.25
0.5 0.04 0.02 0.25 1.25 0.04 0.02 0.28
0.5 0.04 0.04 0.21 1.25 0.04 0.04 0.23
0.5 0.06 0.02 0.28 1.25 0.06 0.02 0.29
0.5 0.06 0.04 0.24 1.25 0.06 0.04 0.26
0.5 0.06 0.06 0.21 1.25 0.06 0.06 0.23
0.5 0.08 0.02 0.29 1.25 0.08 0.02 0.33
0.5 0.08 0.04 0.26 1.25 0.08 0.04 0.28
0.5 0.08 0.06 0.24 1.25 0.08 0.06 0.23
0.5 0.08 0.08 0.21 1.25 0.08 0.08 0.21

Table 4.2.2: Single metric close range

Network Metric Specification Value
Lgcsize 206± (14) (182, 230)
Lgcdensity 1.12± (0.02) (1.10, 1.14)
Arcremove 30± (8) (22,38)
Componentdistmean 94.07± (13) (81,107.47)
Degreemax 12± (2) (10,14)
Desgreesd 1.49± (0.6) (1.43,1.54)
Orderdegreediffmean 0.00± (0) (0.00, 0.00)

than the others, in general their prevalence results are close to that of Complete.

In order to see how consistently and closely the single network metric methods can
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Table 4.2.3: Structure comparison - I

α PAdd PDrop size edge lgc- lgc- lgc- arcremove component- component-
size edge density distmean distsd

NNAHRAY 465 386 206 231 1.12 30 94.07 99.99
Complete

0.5 0.06 0.06 465 386 218 239.8 1.10 22.76 107.47 105.40
Lgcsize
max 1.25 0.080 0.080 465 386 227 248 1.17 36.06 116.71 109.83
min 0.00 0.020 0.020 457 386 194 218 1.09 21.19 85.92 93.04
average 0.54 0.051 0.051 464 386 212 237 1.12 25.17 102.43 102.53
Lgcdensity
max 1.25 0.080 0.080 465 393 240 262 1.14 30.70 132.91 113.78
min 0.00 0.020 0.020 462 386 197 218 1.10 22.00 88.82 93.99
average 0.63 0.044 0.043 464 387 214 238 1.11 24.43 104.54 103.11
Componentdistmean
max 1.25 0.080 0.080 465 386 218 247 1.17 36.06 107.47 105.40
min 0.00 0.020 0.020 457 386 194 218 1.10 22.00 85.92 93.04
average 0.64 0.047 0.047 463 386 208 234 1.12 26.38 98.62 100.50
Arcremove
max 1.25 0.080 0.080 465 416 337 362 1.19 36.06 247.51 145.54
min 0.25 0.020 0.020 441 386 194 224 1.07 22.76 85.92 93.04
average 0.88 0.048 0.042 462 391 229 255 1.13 27.23 122.18 108.09
Orderdegreediffmean
max 1.25 0.080 0.080 465 387 282 299 1.17 36.06 174.90 133.95
min 0.00 0.020 0.020 457 386 194 218 1.06 17.28 85.92 93.04
average 0.46 0.058 0.046 464 386 233 255 1.10 22.40 123.11 112.47
Degreesd
max 0.75 0.080 0.060 465 387 282 299 1.13 26.42 174.90 133.95
min 0.00 0.020 0.020 464 386 203 229 1.06 17.89 93.61 98.02
average 0.30 0.058 0.044 465 386 237 257 1.09 21.01 126.46 114.05
Degreemax
max 0.75 0.080 0.060 465 389 306 323 1.13 26.42 204.25 142.06
min 0.00 0.020 0.020 464 386 203 229 1.06 17.17 93.61 98.02
average 0.33 0.063 0.035 465 387 259 278 1.08 19.80 151.00 123.66
HIV Prevalence
max 1.25 0.080 0.080 465 386 236 256 1.16 31.26 124.69 114.06
min 0.00 0.020 0.020 461 386 194 218 1.09 21.19 85.92 93.04
average 0.50 0.058 0.058 464 386 214 237 1.11 24.66 103.73 103.25

predict HIV prevalence compared to Complete, we run disease spread experiments

with different magnitudes of two parameters, the unprotected sex frequency and the

synergy of HSV-2 on HIV transmission. In half of the experiments, for the previous

best fitted results of each method, HIV is transmitted with the frequency of unpro-

tected sex modified to be 0.4, 0.3, 0.2, and 0.1 times/week. In the other half, HIV

is transmitted when the synergy of HSV-2 on HIV’s transmission, is discounted by

scalars 100%, 50% and 10%. The prevalence comparison results are shown in Figure
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Table 4.2.4: Structure comparison - II

α PAdd PDrop degree- degree- degree- orderdegree- orderdegree- HIV
max mean sd diffmean diffsd

NNAHRAY 12 1.66 1.49 0.00 0.00 NA
Complete

0.5 0.06 0.06 10.96 1.66 1.43 0.00 0.46 0.21
Lgcsize
max 1.25 0.080 0.080 67.12 1.69 3.65 0.00 3.17 0.23
min 0.00 0.020 0.020 7.66 1.66 1.33 0.00 0.44 0.21
average 0.54 0.051 0.051 20.37 1.66 1.77 0.00 0.90 0.21
Lgcdensity
max 1.25 0.080 0.080 87.50 1.69 4.56 0.00 3.91 0.24
min 0.00 0.020 0.020 8.08 1.66 1.34 -0.03 0.44 0.21
average 0.63 0.044 0.043 27.90 1.67 2.08 0.00 1.18 0.22
Componentdistmean
max 1.25 0.080 0.080 67.12 1.69 3.65 0.00 3.17 0.23
min 0.00 0.020 0.020 8.08 1.66 1.34 0.00 0.44 0.21
average 0.64 0.047 0.047 22.76 1.67 1.85 0.00 0.98 0.21
Arcremove
max 1.25 0.080 0.080 184.42 1.82 8.93 0.00 8.73 0.30
min 0.25 0.020 0.020 9.97 1.66 1.41 -0.13 0.44 0.21
average 0.88 0.048 0.042 55.23 1.69 3.24 -0.02 2.46 0.23
Orderdegreediffmean
max 1.25 0.080 0.080 67.12 1.69 3.65 0.00 3.17 0.26
min 0.00 0.020 0.020 7.66 1.66 1.33 0.00 0.44 0.21
average 0.46 0.058 0.046 17.89 1.66 1.72 0.00 0.77 0.23
Degreesd
max 0.75 0.080 0.060 14.18 1.66 1.52 0.00 0.56 0.24
min 0.00 0.020 0.020 9.16 1.66 1.43 0.00 0.44 0.21
average 0.30 0.058 0.044 10.69 1.66 1.47 0.00 0.48 0.23
Degreemax
max 0.75 0.080 0.060 13.09 1.67 1.75 0.00 0.57 0.28
min 0.00 0.020 0.020 10.23 1.66 1.43 -0.01 0.45 0.21
average 0.33 0.063 0.035 11.63 1.66 1.57 0.00 0.50 0.25
HIV prevalence
max 1.25 0.080 0.080 58.76 1.67 3.07 0.00 2.41 0.21
min 0.00 0.020 0.020 7.66 1.66 1.33 0.00 0.44 0.21
average 0.50 0.058 0.058 16.77 1.66 1.62 0.00 0.75 0.21

4.2.1 and in Figure 4.2.2. Both graphs indicated that the single network metric fit-

ting methods are consistently close to that of Complete in predicting HIV prevalence,

noting that the HIV prevalence in the best fitted results of some single network fitting

methods (e.g. Degreemax) gets further from that of Complete as the HIV prevalence

increases.

Observing that the single metric fitting methods perform closely in average results

but with considerable variance in HIV prevalence prediction, we hypothesize that the

noise of HIV prevalence in our model can be eliminated by increasing the number of
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Figure 4.2.1: Unprotected sex frequency vs HIV prevalence
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Figure 4.2.2: Synergy of HSV-2 vs HIV prevalence

network metrics to be fitted. Table 4.2.5 summarizes the number of fitted network

metrics of the selected parameters among all single network metric methods. Figure
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4.2.3 plots all the parameter sets in Table 4.2.5 based on the the number of fitted

metrics and the HIV prevalence. The clear decreasing trend of HIV prevalence with

increasing number of fitted metrics supports the hypothesis.

Table 4.2.5: The number of fitted network metrics for the selected parameters

α PAdd PDrop # of fitted HIV α PAdd PDrop # of fitted HIV
network metrics prevalence network metrics prevalence

0 0.2 0.2 3 0.21 0.5 0.2 0.2 6 0.22
0 0.4 0.2 2 0.23 0.5 0.4 0.4 6 0.21
0 0.4 0.4 4 0.21 0.5 0.6 0.4 2 0.24
0 0.6 0.2 2 0.26 0.5 0.6 0.6 7 0.21
0 0.6 0.4 2 0.23 0.5 0.8 0.4 1 0.26
0 0.6 0.6 2 0.21 0.5 0.8 0.6 3 0.24
0 0.8 0.2 1 0.27 0.5 0.8 0.8 1 0.21
0 0.8 0.4 2 0.24 0.75 0.2 0.2 4 0.22
0 0.8 0.6 1 0.23 0.75 0.4 0.4 6 0.21
0 0.8 0.8 2 0.21 0.75 0.6 0.4 1 0.24
0.25 0.2 0.2 7 0.22 0.75 0.6 0.6 7 0.21
0.25 0.4 0.2 2 0.25 0.75 0.8 0.6 1 0.24
0.25 0.4 0.4 5 0.21 1 0.2 0.2 2 0.24
0.25 0.6 0.2 2 0.26 1 0.4 0.4 4 0.21
0.25 0.6 0.4 2 0.24 1 0.6 0.4 1 0.25
0.25 0.6 0.6 2 0.21 1 0.6 0.6 4 0.21
0.25 0.8 0.2 1 0.28 1 0.8 0.2 1 0.3
0.25 0.8 0.4 2 0.26 1 0.8 0.6 1 0.24
0.25 0.8 0.6 2 0.24 1 0.8 0.8 5 0.21
0.25 0.8 0.8 2 0.21 1.25 0.2 0.2 1 0.25
0.5 0.2 0.2 6 0.22 1.25 0.6 0.6 4 0.23
0.5 0.4 0.2 1 0.25 1.25 0.8 0.6 2 0.23
0.5 0.4 0.4 6 0.21 1.25 0.8 0.8 5 0.21

4.2.2 Conclusion

In this section, we test various single metric fitting methods, and find that none

can reproduce the NNAHRAY contact network closely. Although their structural

fitting results are not satisfying, their HIV prevalence predictions are consistently

close to that of our proposed 13 network metric fitting method, with considerably large

variance in the results. Furthermore, we show that among the best fit parameters

of all single network metric methods, the more network metrics that the parameters

fit, the closer their HIV prevalence results are to the estimated prevalence in real

life. This suggests that single-metric fitting methods should be used with caution,
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Figure 4.2.3: Number of fitted network metric on HIV prevalence

and that the effort of fitting more network metrics eliminates the unwanted disease

prevalence prediction noise .

4.3 Model Application to Public Health Policy Analysis

HIV prevalence in the population can be reduced by decreasing risky contact fre-

quency and host infectivity per contact, or by modifying the contact network struc-

ture. In this section we use our model to analyze the effect of the intervention

measures, focusing more on the straightforward type.

First, we run computational experiments to test whether our model possesses the

scale invariant property, which will enable us to apply the policy analysis result to

a population of different size from our runs but with similar characteristics. Second,

using our model calibrated to reproduce a population similar to Bushwick, we examine

the effectiveness of HIV intervention policies implemented in different target groups.

71



4.3.1 Size Invariant Properties

In our model there are at least seven critical parameters to be considered for reducing

HIV transmission. They are listed as follows:

1. HSV-2 synergistic impact on HIV

2. HIV transmission rate

3. HSV-2 transmission rate

4. Frequency of unprotected sex

5. Frequency of needle sharing

6. Frequency of adding a new partner

7. Probability that a new partner is the most popular, isolated, etc

In the following section we examine the impact in our model of changing these

seven parameters on HIV prevalence for networks of various sizes.

4.3.2 Computational Results and Discussion

In the base case scenario, most model parameter values are the same as those used in

Section 3.4.5, except for the risk behavior frequencies. Their values are selected in the

same way as in Section 4.2 to exclude the effect of policy implementation after 1996.

Both HIV and HSV-2 spread are simulated for 12 years on networks generated by our

model with (α, PAdd, PDrop) = (0.50, 0.06, 0.06), the Complete best fit result. In total

700 simulation experiments are conducted, with 100 experiments each on networks of

7 different sizes. The average number of HIV infections in the base case simulation

experiments are recorded in Table 4.3.1.

700 simulation experiments, with one reduced value of each selected parameter,

are conducted for the 7 parameters mentioned earlier. Among them, five parameters
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have half of the base case values. The other two, the frequency of unprotected sex

and needle sharing, have values cutting down to 0.1 times/week. The average relative

rate of HIV infections compared to the base case for these simulation experiments are

summarized in Table 4.3.1.

Table 4.3.1: HIV incidence

Network size:
(total number of people) 1440 2880 4320 5760 7200 8640 10080 14400
Without intervention:
(total number of infection) 18 36 53 71 87 105 122 179

Relative rate (%)
Intervention 1 85 82 84 84 84 83 83 83
Intervention 2 51 50 51 51 52 51 51 51
Intervention 3 94 92 94 92 93 94 94 93
Intervention 4 33 32 32 31 32 32 32 32
Intervention 5 92 91 92 90 92 92 91 91
Intervention 6 83 82 83 82 84 83 83 85
Intervention 7 100 97 99 97 100 99 100 99

Relative rate summary for all network sizes(%)
Average Max Min

Intervention 1 83 85 82
Intervention 2 51 52 50
Intervention 3 93 94 92
Intervention 4 32 33 31
Intervention 5 91 92 90
Intervention 6 83 85 82
Intervention 7 99 100 97

Intervention 1 Cutting HSV-2 synergistic impact on HIV by half
Intervention 2 Cutting HIV transmission rate by half
Intervention 3 Cutting HSV-2 transmission rate by half
Intervention 4 Decreasing frequency of unprotected sex from 0.4 to 0.1
Intervention 5 Decreasing frequency of needle sharing from 0.25 to 0.1
Intervention 6 Cutting the probability of adding a new partner in a month by half
Intervention 7 Cutting α by half

From the relative rate summary in Table 4.3.1, we find that the effect of cutting

down the selected parameter value on reducing HIV incidence is essentially constant

regardless of the network size. It is equivalent to say that our model, under this

specific setting, possesses a scale invariant property for these critical parameters up

to a network size of 14400 nodes.
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4.3.3 STD/HIV Prevention Policy Analysis

We notice that STD/HIV prevention policies in the literature typically aim at reduc-

ing frequencies of transmission acts and probabilities of transmission through either

pharmaceutical or non-pharmaceutical measures, and it prompts us to take a detailed

look into the first five critical parameters. The synergistic parameter is tested in order

to assess the indirect effectiveness of HSV-2 policies.

We investigate reducing the values of five parameters, including (i) HSV-2 syn-

ergistic impact on HIV, (ii) HIV transmission probability, (iii) HSV-2 transmission

probability, (iv) the frequency of unprotected sex, and (v) the frequency of needle

sharing. We test reductions in four groups: 100% of the population, a randomly-

selected 50% of the population, IDU nodes, and lesbian, gay, and bisexual sex orien-

tation(LGB) nodes. We run 100 simulation experiments for each of four magnitudes

of parameter reduction in each group.

4.3.4 Computational Results and Discussion

We simulate the disease spread using the same parameter settings as in Section 4.2, to

exclude the effect of policy implementation after 1996. Under this setting we simulate

simultaneously the spread of HIV and HSV-2 from 1990 to 2002 in networks whose

node and arc types are similar to those of the contact network in NNAHRAY. The

target network size in these experiment is 1440.

Table 4.3.2 summarizes the average population composition at the end of the

simulation (2002). The population is partitioned into groups based on sexual and

injection drug behavior. On average 29% of nodes are Straight and IDU, 42% are

Straight and NIDU, 10% are LGB and IDU, and 19% are LGB and NIDU.

Table 4.3.3 summarizes the prevalence results of both HIV and HSV-2 at the

end of the simulation (2002) without reducing any of the critical parameters. LGB

nodes and IDU nodes have similar, higher average HIV prevalence than Straight and

74



Table 4.3.2: Population composition

Straight LGB
IDU 29% 10%

NIDU 42% 19%

NIDU nodes, although the latter have the highest average HSV-2 prevalence. Without

any intervention policies, applying our model to represent a population with similar

composition to that in NNAHRAY results in an HIV prevalence prediction equal to

19% and HSV-2 prevalence prediction equal to 54%. Note that these are higher than

the actual prevalence in NNAHRAY because, as we mentioned earlier, we run these

tests ignoring the real-life-intervention-induced decreases, so they would not confound

our results.

Table 4.3.3: Disease prevalence

HIV Prevalence HSV2 Prevalence
within group(%) within group(%)

Straight and Non-IDU 18 57
IDU 21 49
LGB 22 56

Whole population 19 54

Table 4.3.4 records the HIV and HSV-2 prevalence results in 2002 for HIV trans-

mission probability reductions. When the discount scalar is equal to 0.25, it means

the HIV transmission probability is reduced to the original parameter value times

0.25. In the most extreme case in which transmission probability is reduced to zero

for all nodes, the HIV prevalence is reduced from 19% to 4%. The prevalence is

reduced to 11% if the transmission probability reduction takes place only in 50%

randomly-chosen nodes. A similar or even lower HIV prevalence rate can be achieved

by applying the probability reduction to only IDU nodes or LGB nodes, both fewer

than 40% population. This unusual effectiveness of targeting at IDU or LGB nodes
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indicates, in certain settings, how efficiently HIV spreads among (Straight and NIDU)

nodes after relatively few contacts with the infected IDU or LGB nodes.

Table 4.3.4: HIV transmission probability

Discount HIV prevalence HSV2 prevalence
scalar (in whole population) (in whole population)

Without intervention N.A. 0.19 0.54
Target group
100% population 0 0.04 0.54

0.25 0.08 0.54
0.50 0.11 0.54
0.75 0.15 0.53

50% population 0 0.11 0.54
0.25 0.13 0.54
0.50 0.15 0.53
0.75 0.16 0.53

IDU 0 0.08 0.54
(39 % population) 0.25 0.10 0.54

0.50 0.13 0.53
0.75 0.16 0.53

LGB 0 0.11 0.54
(29% population) 0.25 0.13 0.54

0.50 0.15 0.53
0.75 0.17 0.53

Table 4.3.5 records the HIV and HSV-2 prevalence results in 2002 for HSV-2

synergistic impact on HIV reduction for each target group at two levels. The middle

levels were not tested because there was so little difference between the extreme

levels. In the most extreme case in no synergistic impact is considered in our model,

the HIV prevalence rate is significantly less (19%− 13% = 6%). Note that targeting

at IDU nodes or LGB nodes are similarly effective as targeting randomly at 50% of

the population.

Table 4.3.6 records the HIV and HSV-2 prevalence results in 2002 for HSV-2 trans-

mission probability reduction. In the most extreme case in which HSV-2 transmission

probability is reduced to zero for all nodes, HSV-2 prevalence rate drops from 54%
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Table 4.3.5: HSV-2 synergistic impact on HIV

Target group Discount HIV prevalence rate HSV2 prevalence rate
scalar (%) (in whole population) (in whole population)

Without intervention N.A. 0.19 0.54
Target group
100% population 0 0.13 0.54

25 - -
50 - -
75 0.15 0.54

50% population 0 0.16 0.54
25 - -
50 - -
75 0.16 0.54

IDU 0 0.16 0.53
(39 % population) 25 - -

50 - -
75 0.17 0.54

LGB 0 0.16 0.53
(29 % population) 25 - -

50 - -
75 0.17 0.53

to 19%. If the reduction takes place only in 50% of randomly-chosen nodes, HSV-2

prevalence rate drops to 44%. As seen in the case with HIV transmission probability

reduction, a lower HSV-2 prevalence rate can be achieved by applying the probability

reduction to only IDU nodes or LGB nodes, both fewer than 40% of the population.

Earlier in Table 4.3.5 we see that HIV prevalence rate is sensitive to consideration

of synergistic impact. Results in Table 4.3.6, on the other hand, show that HIV

prevalence is less sensitive to the change of HSV-2 prevalence when the latter is

above 33%. The results here shed light on the importance of considering the synergy

of two diseases when at least one of them is moderately prevalent.

Table 4.3.7 records the HIV and HSV-2 prevalence results in 2002 for the reduction

in the frequency of unprotected sex for each target group at different levels. In the

most extreme case in which the frequency of unprotected sex is reduced to zero for all
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Table 4.3.6: HSV-2 transmission probability

Discount HIV prevalence HSV2 prevalence
scalar (in whole population) (in whole population)

Without intervention N.A. 0.19 0.54
Target group
100% population 0 0.15 0.19

25 0.17 0.33
50 0.17 0.41
75 0.18 0.48

50% population 0 0.19 0.44
25 0.18 0.45
50 0.18 0.48
75 0.18 0.50

IDU 0 0.17 0.36
(39 % population) 25 0.17 0.44

50 0.18 0.48
75 0.18 0.51

LGB 0 0.18 0.39
(29 % population) 25 0.18 0.45

50 0.18 0.49
75 0.18 0.51

nodes, HSV-2 prevalence rate drops from 54% to 19% and HIV prevalence rate drops

from 19% to 4%. Targeting nodes with IDU type or with LGB type achieves much

better prevalence results in both diseases than not targeting does. And we see once

more that by targeting IDU or LGB nodes, both HIV and HSV-2 prevalence rates

drop significantly.

Table 4.3.8 records the HIV and HSV-2 prevalence results in 2002 for the reduction

in the frequency of needle sharing for nodes with IDU type at two levels. The middle

levels were not tested because there was so little difference between the extreme levels.

In the most extreme case in which the frequency of needle sharing is reduced to zero

for every IDU node, HIV prevalence rate drops from 19% to 16%. It implies clearly

that the injection subnetwork in our model network is not the main driver of HIV.

The sexual subnetwork within our model is the key focus to decrease the incidence of
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Table 4.3.7: The frequency of unprotected sex

Discount HIV prevalence HSV-2 prevalence
scalar (in whole population) (in whole population)

Without intervention N.A. 0.19 0.54
Target group
100% population 0 0.04 0.19

25 0.07 0.34
50 0.11 0.42
75 0.14 0.48

50% population 0 0.11 0.42
25 0.13 0.45
50 0.14 0.48
75 0.16 0.51

IDU 0 0.08 0.32
(39 % population) 25 0.11 0.42

50 0.13 0.46
75 0.16 0.50

LGB 0 0.09 0.33
(29 % population) 25 0.12 0.43

50 0.14 0.47
75 0.16 0.51

both diseases.

Table 4.3.8: The frequency of needle sharing

Discount HIV prevalence HSV-2 prevalence
scalar (in whole population) (in whole population)

Without intervention N.A. 0.19 0.54
Target group
IDU 0 0.16 0.54
(39 % population) 25 - -

50 - -
75 0.18 0.54

4.3.5 Conclusion

The scale invariant property is a valuable property of our model. It can help us to

save computational time and generalize our model’s findings from a small population
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to a large population with similar attributes.

The results in this section surprisingly show that an overall HIV epidemic can be

initiated by a relatively few number of contacts between the risky individuals (LGB

or IDU nodes) and the less risky individuals (Straight and NIDU nodes), suggesting

that in general intervention efforts to break down mixing between the two groups

might be rewarding. The results also show that, in the presence of a moderate HSV-2

prevalence, the HIV prevalence within the less risky group can match up with that

within the risky group if no intervention efforts are in place.

Finally, although IDU-node interventions can have disproportionally positive im-

pact on HIV prevalence, the results suggest that it is the IDU nodes’ sexual behavior,

more than their IDU behavior, that drives the improvement. Thus, needle-sharing

programs might be less impactful than, for example, condom distribution among the

IDU population.
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CHAPTER V

THESIS CONTRIBUTION AND FUTURE RESEARCH

DIRECTIONS

In this thesis, we show that it is important to consider the human contact dynamics

when a network model is used to represent a human contact network and to predict

the disease spread within a population. We propose a new dynamic network model, a

new model fitting framework with emphasis on both the network structures and the

network sampling process in real life, and a disease spread model based on the former.

Most of the proposed models’ (the network model’s and the disease spread model’s)

parameters can be directly estimated from the epidemiological data; the rest of them

can be fitted from the data while approximating a large number of metrics, whose

interactions are too complicated to manipulate. We initially find that neither the the

the well-known static network models nor our dynamic network can closely fit the

reported data from the target contact network observed in real life. After modeling

the network sampling process, our model does successfully reproduce the target net-

work, but none of the static network models do. Furthermore, compared with disease

spread models on the static network models, our disease spread model outperforms

them in fitting 12 year HIV prevalence estimates. The network structure and disease

prevalence comparison results strongly support two hypotheses: (1) contact dynam-

ics play an important role in forming the human contact network structures, and (2)

consideration of contact dynamics is important to obtain accurate disease prevalence

prediction.

We also show that the HIV prevalence in our model is likely a mild overestimate if
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it is obtained from using the traditional single metric fitting method, but the impre-

cision can be corrected by increasing the required number of fitted network metrics in

the model fitting process. In the results obtained from fitting our model with one of

different metrics, on average, none can reproduce networks with 13 network metrics

concurrently close to those of the target contact network, and most of them produce

slightly higher HIV prevalence than the prevalence estimate in real life. In addition,

the relationship between the number of fitted network metrics and the HIV prevalence

in the fitted results shows that the larger the former is, the closer the latter is to the

prevalence estimate in real life.

Before we use our model to inform HIV intervention policy making, a closer ex-

amination of our model finds that it possesses a scale invariant property for policy-

relevant parameters. The property allows us to apply the policy analysis result to a

population of different size from our simulation experiments but with similar char-

acteristics. After analyzing different kinds of intervention approaches in our model,

we conclude that, in the specific population, (1) HSV-2 intervention policies need

to be implemented long or effectively enough to bring down the HSV-2 prevalence

below 33% before achieving collateral and significant HIV prevalence reduction in the

population, (2) HIV intervention policies targeting at IDU or LGB groups are much

more effective than those implemented among randomly-chosen population, due to

the risky groups’ unique role in introducing the HIV virus to the non-risky group

at the early stage of epidemic, (3) HIV intervention policies targeting at modifying

IDU group’s injection behaviors are less effective than those aiming at changing the

group’s sexual behaviors.

One significant limitation of our work, and opportunity for future analysis, is

the unavailability of multiple data sets with sufficient information to understand the

population dynamics. With our work on a dynamic model fitted to NNAHRAY data

demonstrating potential value beyond that of static network models, it is our hope
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that future data sets will become available and will be used to further inform and

refine our dynamic network modeling framework.
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APPENDIX A

COMPUTATIONAL MODELS

Data: Set of arc types in our model: AT
Set of node types in our model: NT
Set of disease types in our model: D
Set of genders for nodes: G
Set of disease A’s infected stages in our model: SA
Probability of a node being type A: pnt[A]
Probability of a type A node with a disease B: pnd[A][B]
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]
Duration of disease A’s stages: d[A][SA]
Number of weeks to run our model: WEEK

Input: Degree of connectivity: α
Number of new nodes added at the same time: New
Time interval between adding new nodes: TAdd
Time interval between spreading diseases: TSpread
Frequency of a type A arc: F [A]

Figure A.1: Preferential model - Part I
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Function
preferential model(AT,NT,D,G, S[ ], pnt[ ], pnd[ ], p[ ][ ], s[ ][ ], d[ ][ ])
begin

add counts = 0 ; change counts = 0 ; spread counts = 0 ;
model time = 0 ;
N = 1;A = ∅ ;
while add counts ≤ (WEEK/TAdd) do

for i = 1 to NEW do
Choose node (|N |+ i)’s type, node type, ∈ NT using pnt[ ] as a
probability mass function ;
for d = 1 to |D| do

With probability pnd[node type][d]
Choose (|N |+ i)’s disease d’s status from Sd uniformly at
random ;

end
end
preferential attachment (N,A,New,CT,NT, pnc[ ][ ], pnn[ ][ ]) ;
add counts = add counts+ 1 ;

end
while model time ≤ WEEK do

if model time = spread counts× TSpread then
spread disease (A,N,G,D, S[ ], p[ ][ ], s[ ][ ]) ;
spread counts = spread counts+ 1 ;

end
for i = 1 to |N | do

for d1 = 1 to |D| do
if model time = node i’s disease d1’s status advancement time
then

stage = node i’s disease d1’s status ;
Advance node i’s disease d1’s status ;
Change node i’s disease d1’s status advancement time
based on d[d1][stage] ;

end
end

end
model time = model time+ 1 ;

end
end

Figure A.2: Preferential model - Part II
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Table A.1: Preferential parameter value - I

Parameter definition Parameter notation Value Value source
Dynamic Network Model
Set of contact types AT 3 (SEX, IDU, SEX and IDU) NNAHRAY [19]
Set of node types NT 12 (FBI, FHI, FSI, . . . ,MSN) NNAHRAY [19]
Set of diseases D 2 (HIV and HSV-2) NNAHRAY [19]
Age Age Uniformly distributed between 18 and 66 NNAHRAY [19]
Gender Gender 57% male and 43% female NNAHRAY [19]
Group type proportion within women:
FBN pnt[FBN ] 22% NNAHRAY [19]
FHN pnt[FHN ] 1% NNAHRAY [19]
FSN pnt[FSN ] 43% NNAHRAY [19]
FBI pnt[FBI] 11% NNAHRAY [19]
FHI pnt[FHI] 0% NNAHRAY [19]
FSI pnt[FSI] 22% NNAHRAY [19]
Group type proportion within men:
MBN pnt[MBN ] 12% NNAHRAY [19]
MHN pnt[MHN ] 3% NNAHRAY [19]
MSN pnt[MSN ] 36% NNAHRAY [19]
MBI pnt[MBI] 9% NNAHRAY [19]
MHI pnt[MHI] 3% NNAHRAY [19]
MSI pnt[MSI] 37% NNAHRAY [19]
Probability of a type A node having a type B contact pnc[A][B] See Table 3.2.2 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
Number of weeks to run our model WEEK (12× 52 = 624) weeks Model setup
Time interval between adding new nodes TAdd 4 weeks Model setup
Time interval between spreading diseases TSpread 1 week Model setup
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Table A.2: Preferential parameter value - II

Parameter definition Parameter notation Value Value source
HIV and HSV-2
HIV prevalence rate of newcomers from 1990 to 2002:
Set of HIV’s infected stages in our model SHIV 4 (Primary, Asymptomatic, Symptomatic, AIDS) [18, 26]
IDU: pnd[IDU ][HIV ] 50% [18, 26]
MSM: pnd[MSM ][HIV ] 47% [18, 26]
General population: pnd[General][HIV ] 9 % [18, 26]
Probability of an infected node of gender A with HIV to transmit p[A][HIV ][SHIV ] See Table 3.4.1 [36, 46]
Duration of HIVs stages d[HIV ][SHIV ] See Table 3.4.1 [36, 46]

HSV-2 prevalence rate from 1990 to 2002:
Set of HSV-2’s infected stages in our model SHSV−2 5 (Primary, Early latent, Latent, Late latent, Recurrent Ulcers) [36, 46]
General population: pnd[General][HSV2] 21% before 1996 and 17% after 1996 [48]
Probability of an infected node of gender A with HSV-2 to transmit p[A][HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Duration of HIVs stages d[HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 1 and 2 s[SHSV−2][SHIV ] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 3 0
Number of new nodes added at the same time in Testing 1 New 10 Model setup
Number of new nodes added at the same time in Testing 2 New 4 Model setup
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A
Set of arc types in our model: AT
Probability of a type A node having a type B arc: pnc[A][B]
Probability of a type A node choosing a type B node: pnn[A][B]
Degree distribution: w

Function Grandom AddArc(N,A,AT,w, pnc[ ][ ], pnn[ ][ ])
begin

Generate |N | node degree for each node using w as a probability mass
function and store them in n[ ] ;
while ((max{n[ ]})2 ≥

∑
k∈N n[k]) do

Generate |N | node degree for each node using w as a probability mass
function and store them in n[ ] ;

end
while ((

∑
k∈N n[k])/2 6= 0) do

Generate |N | node degree for each node using w as a probability mass
function and store them in n[ ] ;

end
Store the node type of each node in nt[ ] ;
arc type = SEX ;
for i = 1 to |N | do

if (nt[i] = IDU) then
Choose an arc type ∈ AT using pnc[nt[i]][ ] as a probability mass
function ;

end
for j = 1 to |N | do

grandom weight[j] =
(n[i]× n[j])/

∑
k∈N n[k]× pnn[nt[i]][nt[j]]× pnc[nt[j]][arc type] ;

if j = i then
grandom weight[j]=0 ;

end
end
for j = 1 to i do

With probability grandom weight[j] do
Add type arc type arc (i, j) to A ;

end
end

end

Figure A.3: Grandom AddArc algorithm
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Data: Set of arc types in our model: AT
Set of node types in our model: NT
Set of disease types in our model: D
Set of genders for nodes: G
Set of disease A’s infected stages in our model: SA
Probability of a node being type A: pnt[A]
Probability of a type A node with a disease B: pnd[A][B]
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]
Duration of disease A’s stages: d[A][SA]
Number of weeks to run our model: WEEK
Degree distribution: w

Input: Time interval between adding new nodes: TAdd
Time interval between spreading diseases: TSpread
Frequency of a type A arc: F [A]

Function
Grandom model(AT,NT,D,G, S[ ], pnt[ ], pnd[ ], p[ ][ ], s[ ][ ], d[ ][ ])
begin

add counts = 0 ; change counts = 0 ; spread counts = 0 ;
model time = 0 ;
N = 1;A = ∅ ;
while add counts ≤ (WEEK/TAdd) do

for i = 1 to NEW do
Choose node (|N |+ i)’s type, node type, from NT using pnt[ ] as
a probability mass function ;
for d = 1 to |D| do

With probability pnd[node type][d] do
Choose (|N |+ i)’s disease d’s status from Sd uniformly at
random ;

end
end
add counts = add counts+ 1 ;

end
Grandom AddArc (N,A,AT,w, pnc[ ][ ], pnn[ ][ ]) ;

end

Figure A.4: Grandom model - Part I
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begin
while model time ≤ WEEK do

if model time = spread counts× TSpread then
spread disease (A,N,G,D, S[ ], p[ ][ ], s[ ][ ]) ;
spread counts = spread counts+ 1 ;

end
for i = 1 to |N | do

for d1 = 1 to |D| do
if model time = node i’s disease d1’s status advancement time
then

stage = node i’s disease d1’s status ;
Advance node i’s disease d1’s status ;
Change node i’s disease d1’s status advancement time
based on d[d1][stage] ;

end
end

end
model time = model time+ 1 ;

end
end

Figure A.5: Grandom model - Part II
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Table A.3: Grandom parameter value -I

Definition of parameter Parameter Notation Value Value source
Dynamic Network Model
Set of contact types AT 3 (SEX, IDU, SEX and IDU) NNAHRAY [19]
Set of node types NT 12 (FBI, FHI, FSI, . . . ,MSN) NNAHRAY [19]
Set of diseases D 2 (HIV and HSV-2) NNAHRAY [19]
Age Age Uniformly distributed between 18 and 66 NNAHRAY [19]
Gender Gender 57% male and 43% female NNAHRAY [19]
Group type proportion within women:
FBN pnt[FBN ] 22% NNAHRAY [19]
FHN pnt[FHN ] 1% NNAHRAY [19]
FSN pnt[FSN ] 43% NNAHRAY [19]
FBI pnt[FBI] 11% NNAHRAY [19]
FHI pnt[FHI] 0% NNAHRAY [19]
FSI pnt[FSI] 22% NNAHRAY [19]
Group type proportion within men:
MBN pnt[MBN ] 12% NNAHRAY [19]
MHN pnt[MHN ] 3% NNAHRAY [19]
MSN pnt[MSN ] 36% NNAHRAY [19]
MBI pnt[MBI] 9% NNAHRAY [19]
MHI pnt[MHI] 3% NNAHRAY [19]
MSI pnt[MSI] 37% NNAHRAY [19]
Probability of a type A node having a type B contact pnc[A][B] See Table 3.2.2 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
The degree distribution w NNAHRAY [19]
Number of weeks to run our model WEEK (12× 52 = 624) weeks Model setup
Time interval between adding new nodes TAdd 4 weeks Model setup
Time interval between spreading diseases TSpread 1 week Model setup
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Table A.4: Grandom parameter value -II

Definition of parameter Parameter Notation Value Value source
HIV and HSV-2
HIV prevalence rate of newcomers from 1990 to 2002:
Set of HIV’s infected stages in our model SHIV 4 (Primary, Asymptomatic, Symptomatic, AIDS) [18, 26]
IDU: pnd[IDU ][HIV ] 50% [18, 26]
MSM: pnd[MSM ][HIV ] 47% [18, 26]
General population: pnd[General][HIV ] 9 % [18, 26]
Probability of an infected node of gender A with HIV to transmit p[A][HIV ][SHIV ] See Table 3.4.1 [36, 46]
Duration of HIVs stages d[HIV ][SHIV ] See Table 3.4.1 [36, 46]

HSV-2 prevalence rate from 1990 to 2002:
Set of HSV-2’s infected stages in our model SHSV−2 5 (Primary, Early latent, Latent, Late latent, Recurrent Ulcers) [36, 46]
General population: pnd[General][HSV2] 21% before 1996 and 17% after 1996 [48]
Probability of an infected node of gender A with HSV-2 to transmit p[A][HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Duration of HIVs stages d[HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 1 and 2 s[SHSV−2][SHIV ] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 3 0
Number of new nodes added at the same time in Testing 1 New 10 Model setup
Number of new nodes added at the same time in Testing 2 New 4 Model setup
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A
Set of arc types in our model: AT
Probability of a type A node having a type B contact: pnc[A][B]
Probability of a type A node choosing a type B node: pnn[A][B]
Degree distribution: w

Function Configuration AddArc(N,A,AT,w, pnc[ ][ ], pnn[ ][ ])
begin

Generate |N | node degree for each node using w as a probability mass
function and store them in n[ ] and n1[ ] ;
while ((max{n[ ]})2 ≥

∑
k∈N n[k]) do

Generate |N | node degree for each node using w as a probability mass
function and store them in n[ ] and n1[ ] ;

end
while ((

∑
k∈N n[k])/2 6= 0) do

Generate |N | node degree for each node using w as a probability mass
function and store them in n[ ] and n1[ ];

end
Store the node type of each node in nt[ ] ;
arc type = SEX ;
for i = 1 to |N | do

arc left = n1[i] ;
for j = 1 to arc left do

if (nt[i] = IDU) then
Choose an arc type ∈ AT using pnc[nt[i]][ ] as a probability
mass function ;

end
for k = i+ 1 to |N | do

configuration weight[k] =
n1[k]/

∑
k∈N n1[k]× pnn[nt[i]][nt[k]]× pnc[nt[k]][arc type] ;

end
Choose a node, k, from {i+ 1, . . . , N} using
configuration weight[ ] as a probability mass function ;
if (i, k) /∈ A then

Add type art type arc (i, k) to A ;
n1[k] = n1[k]− 1 ;

end
end

end
end

Figure A.6: Configuration AddArc algorithm
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Data: Set of arc types in our model: AT
Set of node types in our model: NT
Set of disease types in our model: D
Set of genders for nodes: G
Set of disease A’s infected stages in our model: SA
Probability of a node being type A: pnt[A]
Probability of a type A node with a disease B: pnd[A][B]
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]
Duration of disease A’s stages: d[A][SA]
Number of weeks to run our model: WEEK
Degree distribution: w

Input: Time interval between adding new nodes: TAdd
Time interval between spreading diseases: TSpread
Frequency of a type A arc: F [A]

Function
Configuration model(AT,NT,D,G, S[ ], pnt[ ], pnd[ ], p[ ][ ], s[ ][ ], d[ ][ ])
begin

add counts = 0 ; change counts = 0 ; spread counts = 0 ;
model time = 0 ;
N = 1;A = ∅ ;
while add counts ≤ (WEEK/TAdd) do

for i = 1 to NEW do
Choose node (|N |+ i)’s type, node type, ∈ NT using pnt[ ] as a
probability mass function ;
for d = 1 to |D| do

With probability pnd[node type][d] do
Choose (|N |+ i)’s disease d’s status from Sd uniformly at
random ;

end
end
add counts = add counts+ 1 ;

end
Configuration AddArc (N,A,AT,w, pnc[ ][ ], pnn[ ][ ]) ;

end

Figure A.7: Configuration model - Part I
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begin
while model time ≤ WEEK do

if model time = spread counts× TSpread then
spread disease (A,N,G,D, S[ ], p[ ][ ], s[ ][ ]) ;
spread counts = spread counts+ 1 ;

end
for i = 1 to |N | do

for d1 = 1 to |D| do
if model time = node i’s disease d1’s status advancement time
then

stage = node i’s disease d1’s status ;
Advance node i’s disease d1’s status ;
Change node i’s disease d1’s status advancement time
based on d[d1][stage] ;

end
end

end
model time = model time+ 1 ;

end
end

Figure A.8: Configuration model - Part II
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Table A.5: Configuration parameter value - I

Definition of parameter Parameter notation Value Value source
Dynamic Network Model
Set of contact types AT 3 (SEX, IDU, SEX and IDU) NNAHRAY [19]
Set of node types NT 12 (FBI, FHI, FSI, . . . ,MSN) NNAHRAY [19]
Set of diseases D 2 (HIV and HSV-2) NNAHRAY [19]
Age Age Uniformly distributed between 18 and 66 NNAHRAY [19]
Gender Gender 57% male and 43% female NNAHRAY [19]
Group type proportion within women:
FBN pnt[FBN ] 22% NNAHRAY [19]
FHN pnt[FHN ] 1% NNAHRAY [19]
FSN pnt[FSN ] 43% NNAHRAY [19]
FBI pnt[FBI] 11% NNAHRAY [19]
FHI pnt[FHI] 0% NNAHRAY [19]
FSI pnt[FSI] 22% NNAHRAY [19]
Group type proportion within men:
MBN pnt[MBN ] 12% NNAHRAY [19]
MHN pnt[MHN ] 3% NNAHRAY [19]
MSN pnt[MSN ] 36% NNAHRAY [19]
MBI pnt[MBI] 9% NNAHRAY [19]
MHI pnt[MHI] 3% NNAHRAY [19]
MSI pnt[MSI] 37% NNAHRAY [19]
Probability of a type A node having a type B contact pnc[A][B] See Table 3.2.2 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
The degree distribution w NNAHRAY [19]
Number of weeks to run our model WEEK (12× 52 = 624) weeks Model setup
Time interval between adding new nodes TAdd 4 weeks Model setup
Time interval between spreading diseases TSpread 1 week Model setup
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Table A.6: Configuration parameter value - II

Definition of parameter Parameter notation Value Value source
HIV and HSV-2
HIV prevalence rate of newcomers from 1990 to 2002:
Set of HIV’s infected stages in our model SHIV 4 (Primary, Asymptomatic, Symptomatic, AIDS) [18, 26]
IDU: pnd[IDU ][HIV ] 50% [18, 26]
MSM: pnd[MSM ][HIV ] 47% [18, 26]
General population: pnd[General][HIV ] 9 % [18, 26]
Probability of an infected node of gender A with HIV to transmit p[A][HIV ][SHIV ] See Table 3.4.1 [36, 46]
Duration of HIVs stages d[HIV ][SHIV ] See Table 3.4.1 [36, 46]

HSV-2 prevalence rate from 1990 to 2002:
Set of HSV-2’s infected stages in our model SHSV−2 5 (Primary, Early latent, Latent, Late latent, Recurrent Ulcers) [36, 46]
General population: pnd[General][HSV2] 21% before 1996 and 17% after 1996 [48]
Probability of an infected node of gender A with HSV-2 to transmit p[A][HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Duration of HIVs stages d[HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 1 and 2 s[SHSV−2][SHIV ] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 3 0
Number of new nodes added at the same time in Testing 1 New 10 Model setup
Number of new nodes added at the same time in Testing 2 New 4 Model setup
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Data: Set of nodes in the current network: N
Set of arcs in the current network: A
Set of arc types in our model: AT
Probability of a type A node having a type B contact: pnc[A][B]
Probability of a type A node choosing a type B node: pnn[A][B]

Function Compartmental AddArc(N,A,AT, pnc[ ][ ], pnn[ ][ ])
begin

arc type = SEX ;
for i = 1 to |N | do

for j = 1 to i do
if (nt[i] = IDU) then

Choose an arc type ∈ AT using pnc[nt[i]][ ] as a probability
mass function ;

end
compartmental weight = pnn[nt[i]][nt[j]]× pnc[nt[j]][arc type] ;
if compartmental weight 6= 0 then

Add type art type arc (i, j) to A ;

end
end

end
end

Figure A.9: Compartmental AddArc algorithm
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Data: Set of arcs in current network: A
Set of nodes in current network: N
Set of genders for nodes: G
Set of diseases spreading in our model : D
Set of disease A’s infected stages in our model: SA
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]
Spreading scaling parameter q

Input: Frequency of a type A arc: F [A]

Function spread disease(A,N,G,D, S[ ], p[ ][ ], s[ ][ ], p)
begin

Store the stage of each disease of each node in stage[ ][ ] ;
Store the gender of each node in gender[ ] ;

With probability q do
for a = 1 to |A| do

for d1 = 1 to |D| do
if arc a links an infected node n1 with disease d1 and an uninfected
node n2 then

arc type stores a’s type ;
infection probability = p[gender[n1]][stage[n1][d1]] ;
for d2 = 1 to |D| do

infection probability = infection probability ×
s[stage[n1][d2]][stage[n1][d1]]× s[stage[n2][d2]][stage[n2][d1]]

end
With probability infection probability)F [arc type] do
n2 becomes infected with disease d1 ;

end
end

end
end

Figure A.10: Compartmental SpreadDisease algorithm
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Data: Set of arc types in our model: AT
Set of node types in our model: NT
Set of disease types in our model: D
Set of genders for nodes: G
Set of disease A’s infected stages in our model: SA
Probability of a node being type A: pnt[A]
Probability of a type A node with a disease B: pnd[A][B]
Probability of an infected node of gender A with disease B to transmit:
p[A][B][SB]
Scaling effect of disease A on disease B’s transmission: s[SA][SB]
Duration of disease A’s stages: d[A][SA]
Number of weeks to run our model: WEEK
Degree distribution: w
Spreading scaling parameter q

Input: Time interval between adding new nodes: TAdd
Time interval between spreading diseases: TSpread
Frequency of a type A arc: F [A]

Function
Compartmental model(AT,NT,D,G, S[ ], pnt[ ], pnd[ ], p[ ][ ], s[ ][ ], d[ ][ ])
begin

add counts = 0 ; change counts = 0 ; spread counts = 0 ;
model time = 0 ;
N = 1;A = ∅ ;
while add counts ≤ (WEEK/TAdd) do

for i = 1 to NEW do
Choose node (|N |+ i)’s type, node type, ∈ NT using pnt[ ] as a
probability mass function ;
for d = 1 to |D| do

With probability pnd[node type][d] do
Choose (|N |+ i)’s disease d’s status from Sd uniformly at
random ;

end
end
add counts = add counts+ 1 ;

end
Compartmental AddArc (N,A,AT, pnc[ ][ ], pnn[ ][ ]) ;

end

Figure A.11: Compartmental model - Part I
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begin
while model time ≤ WEEK do

if model time = spread counts× TSpread then
Compartmental SpreadDisease (A,N,G,D, S[ ], p[ ][ ], s[ ][ ], q) ;
spread counts = spread counts+ 1 ;

end
for i = 1 to |N | do

for d1 = 1 to |D| do
if model time = node i’s disease d1’s status advancement time
then

stage = node i’s disease d1’s status ;
Advance node i’s disease d1’s status ;
Change node i’s disease d1’s status advancement time
based on d[d1][stage] ;

end
end

end
model time = model time+ 1 ;

end
end

Figure A.12: Compartmental model - Part II
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Table A.7: Compartmental parameter value - I

Definition of parameter Parameter notation Value Value source
Dynamic Network Model
Set of contact types AT 3 (SEX, IDU, SEX and IDU) NNAHRAY [19]
Set of node types NT 12 (FBI, FHI, FSI, . . . ,MSN) NNAHRAY [19]
Set of diseases D 2 (HIV and HSV-2) NNAHRAY [19]
Age Age Uniformly distributed between 18 and 66 NNAHRAY [19]
Gender Gender 57% male and 43% female NNAHRAY [19]
Group type proportion within women:
FBN pnt[FBN ] 22% NNAHRAY [19]
FHN pnt[FHN ] 1% NNAHRAY [19]
FSN pnt[FSN ] 43% NNAHRAY [19]
FBI pnt[FBI] 11% NNAHRAY [19]
FHI pnt[FHI] 0% NNAHRAY [19]
FSI pnt[FSI] 22% NNAHRAY [19]
Group type proportion within men:
MBN pnt[MBN ] 12% NNAHRAY [19]
MHN pnt[MHN ] 3% NNAHRAY [19]
MSN pnt[MSN ] 36% NNAHRAY [19]
MBI pnt[MBI] 9% NNAHRAY [19]
MHI pnt[MHI] 3% NNAHRAY [19]
MSI pnt[MSI] 37% NNAHRAY [19]
Probability of a type A node having a type B contact pnc[A][B] See Table 3.2.2 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
Probability of a type A node choosing a type B node pnn[A][B] See Table 3.2.3 NNAHRAY [19]
Spreading scaling parameter q 386/(465× 464/2) = 0.0035 NNAHRAY [19]
Number of weeks to run our model WEEK (12× 52 = 624) weeks Model setup
Time interval between adding new nodes TAdd 4 weeks Model setup
Time interval between spreading diseases TSpread 1 week Model setup
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Table A.8: Compartmental parameter value - II

Definition of parameter Parameter notation Value Value source
HIV and HSV-2
HIV prevalence rate of newcomers from 1990 to 2002:
Set of HIV’s infected stages in our model SHIV 4 (Primary, Asymptomatic, Symptomatic, AIDS) [18, 26]
IDU: pnd[IDU ][HIV ] 50% [18, 26]
MSM: pnd[MSM ][HIV ] 47% [18, 26]
General population: pnd[General][HIV ] 9 % [18, 26]
Probability of an infected node of gender A with HIV to transmit p[A][HIV ][SHIV ] See Table 3.4.1 [36, 46]
Duration of HIVs stages d[HIV ][SHIV ] See Table 3.4.1 [36, 46]

HSV-2 prevalence rate from 1990 to 2002:
Set of HSV-2’s infected stages in our model SHSV−2 5 (Primary, Early latent, Latent, Late latent, Recurrent Ulcers) [36, 46]
General population: pnd[General][HSV2] 21% before 1996 and 17% after 1996 [48]
Probability of an infected node of gender A with HSV-2 to transmit p[A][HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Duration of HIVs stages d[HSV − 2][SHSV−2] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 1 and 2 s[SHSV−2][SHIV ] See Table 3.4.2 [36, 46]
Scaling effect of HSV-2 on HIV’s transmission in Testing 3 0
Number of new nodes added at the same time in Testing 1 New 10 Model setup
Number of new nodes added at the same time in Testing 2 New 4 Model setup
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