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Summary

Discriminant analysis is concerned with the classification of observations, represented by

vectors of attribute values, as belonging to one or more groups and/or with determining the

identifying attributes that best define the groups. The DAMIP (discriminant analysis using

mixed-integer programming) [35] is a model based on a result by Anderson [1] wherein he

derives rules that maximize the total probability of correct G-group classification, subject to

limits on misclassification probabilities. The DAMIP is an empirical method for estimating

the parameters of the optimal classification rule, which were identified as coefficients of

linear functions by Anderson.

The DAMIP is shown to be a consistent method for estimating the parameters of the op-

timal solution to the problem of maximizing the probability of correct classification subject

to limits on misclassification. The method is shown to be NP-complete, and an approx-

imation is formulated as a mixed-integer program (MIP). The MIP is difficult to solve

due to the formulation of constraints wherein certain variables are equal to the maximum

of a set of linear functions. These constraints are conducive to an ill-conditioned coeffi-

cient matrix. The current work investigates techniques for solving instances of the DAMIP.

A polynomial-time algorithm is given for two-group instances of the DAMIP. For harder

problems, the conflict graph and hypergraph are employed for finding cuts in a branch-and-

bound framework. Other techniques include a heuristic for finding integer feasible solutions

and a tailored branching scheme. The robustness of the MIP formulation of the DAMIP is

noted and empirically tested on real-world and simulated data sets.

xiii



Chapter I

Introduction

Discriminant analysis is concerned with the classification of observations as belonging to

one or more groups and/or with determining the identifying attributes that best define the

groups. Classification and group description are tasks that are encountered in almost any

field. Medical diagnosis, assignment to market audiences, and cell behavior analysis are

a few examples of an ever-increasing number of applications (e.g., see [90]). Humans use

discriminating techniques in everyday situations. The automation of this process enables

the incorporation of larger amounts of data on observations with known group membership,

and allows for the possible detection of subtle rules for classification.

The classification models usually take the form of easily-implementable rules for classify-

ing objects. The derivation of the rules need not be as efficient as the process for classifying

unknown entities. For example, a model with the purpose of diagnosing different classes of

heart disease can be built based on archived patient data. The rules need only be deter-

mined one time. Once the model is developed, the time to classify a new patient using the

rules should be short enough to allow the doctor and patient to incorporate other informa-

tion and take preventive measures. The rules may be modified using additional data and

methods, but this process is not as time-sensitive as the diagnosis of a patient.

For most types of classification models, the implementation of the classification rules is

efficient. The development of the model is more often a difficult problem, as is the case for

methods employing mixed-integer programming or neural networks. The difficulties arise

from problem complexity and insufficient computing power.

The DAMIP (discriminant analysis using mixed-integer programming)[35] is a classifi-

cation model based on a result by Anderson [1] wherein he determined the form of optimal

classification rules that maximize the total probability of correct G-group classification,

subject to misclassification probability limits. The result characterizes linear functions that

1



dictate how entities are classified such that the probability of correct classification is maxi-

mized, and the limits on misclassification probabilities are met. The functions are algebraic

expressions of classification rules. The objective of the DAMIP [35] is to determine the co-

efficients in the linear functions that maximize the correct classification of training entities,

subject to upper limits on misclassification.

The major contributions of the DAMIP to the field of discriminant analysis include the

incorporation of a reserved judgment region, the ability to discriminate between more than

two populations in a single application of the model, and a consistent method for classifying

observations subject to limits on misclassification rates. The reserved judgment region is an

artificial group in which entities demonstrating insufficient indication of membership to any

group may be placed. The placement of an observation in the reserved judgment group is a

signal to collect more identifying data. The traditional linear programming- and MIP-based

classification procedures are designed to discriminate between two groups [32, 48]. Through

subsequent applications of the models, rules can be developed to classify observations to

any number of groups [32]. The DAMIP generates rules for multiple-group classification

with the solution of a single mixed-integer program.

Finding the optimal solution for the DAMIP involves finding the maxima of several sets

of linear functions, subject to coupling constraints. The mixed-integer programming formu-

lation of these constraints make the MIP extremely ill-conditioned and therefore difficult

to solve. The goals of this thesis include characterizing the DAMIP as a statistically viable

method for pattern classification when misclassification limits are desired, advance compu-

tational methods for solving the difficult MIP instances arising from the DAMIP models,

and testing the classification performance on of the DAMIP real-world and simulated data.

1.1 Mixed-integer programming and linear programming

Mathematical programming is concerned with the solution of optimization problems with an

objective function formulated in terms of decision variables, with the possibility of additional

restrictions, or constraints, on the values that the decision variables may attain. Decision

variables assume values that represent quantifiable decisions. A math program can be

2



expressed in the following form

maximize f(x)

subject to

x ∈ S

The objective function f(x) is a function of the decision variables x = {x1, x2, . . . , xn},

and ordinarily describes the profit or cost associated with decisions contained in the decision

variables. The set S defines the feasible region, or the set of values that the decision variables

can have. The x variables may be restricted to assume values from a countable set of values,

in which case they are discrete; or, they may be allowed to assume values from intervals of

real numbers, in which case they are continuous, or a mixture of both.

In the special case that the discrete variables are required to assume integral values,

the objective function is a linear function of the decision variables, and the set S is defined

by linear functions of the decision variables, the math program is referred to as a (linear)

mixed-integer program. The reader is referred to the books by Nemhauser and Wolsey [68]

and Wolsey [87] for background on formulating and solving mixed-integer programs. A

mixed-integer programming problem can be expressed as

maximize cx + dy

subject to

Ax + By ≤ b

x ∈ Rn
+

y ∈ Z
p
+

where x and y are vectors of decision variables, maximize cx + dy is the objective function,

and Ax + By ≤ b are the constraints. We will assume, without loss of generality, that all

variables are required to be non-negative. The variables y are integer variables and the

variables x are continuous variables. In the program above, the variables are restricted to

assume only nonnegative values. This practice does not reflect a loss in generality, and the

restriction could have been represented by the linear constraints x ≥ 0 and y ≥ 0.
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A special case of mixed-integer programming of interest is the case when the integer

variables are further restricted to take values 0 or 1. In this case, the variables are binary

variables and the problem is a binary mixed-integer program.

Binary variables are particularly useful in that they can be used to express logical

requirements as constraints. For example, if xi and xj are binary variables, the constraint

xi ≤ xj requires xj = 1 whenever xi = 1.

1.1.1 Feasibility and optimality

A set of values for the variables of a mixed-integer program is a feasible point, or lies in the

feasible region, if all of the constraints are satisfied. A set of values is optimal if, among all

feasible points, no other point has a better objective function value. An optimal solution

is not guaranteed to exist. If the feasible region is empty, then the MIP is infeasible. If for

every feasible point there is another feasible point with a better objective function value,

then the MIP is unbounded.

1.1.2 Polyhedra and facets

The constraints of a mixed-integer program form a polyhedron. A polyhedron is a set of

points satisfying a finite number of linear inequalities. The dimension of a polyhedron is

the maximum number of linearly independent vectors contained in the polyhedron.

A valid inequality for a polyhedron is an inequality satisfied by every point in the

polyhedron. The face corresponding to the valid inequality is the set of points in the

polyhedron satisfying the valid inequality at equality. A facet is a face with dimension one

less than the dimension one less than the polyhedron.

1.1.3 Linear programming and linear programming duality

In the special case that the set of integer variables is empty, the mixed-integer program is

called a linear program (LP). An LP can be expressed as
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maximize cx (P )

subject to

Ax ≤ b

x ∈ Rn
+

The dual of a linear program is also a linear program. The dual of linear program (P ) is

minimize ub (D)

subject to

uA ≥ c

u ∈ Rn
+

The linear program (P ) is called the primal and is the dual of the dual. Primal and dual

linear programs have a special relationship. If the objective value of the primal linear

program is bounded, then the dual linear program has the same optimal objective function

value. If the objective value of the primal is unbounded or infeasible, then the dual linear

program is infeasible. If the objective value of the dual is unbounded or infeasible, then the

primal linear program is infeasible.

1.1.4 Branch-and-bound algorithms

Branch-and-bound is a common method for solving mixed-integer programs. A branch-and-

bound method solves a sequence of relaxations of an optimization problem, updating the

upper and lower bounds on the objective function value along the way. The bounds help to

reduce the number of relaxations that must be considered. After a relaxation is solved, the

solution space is branched upon, producing new relaxations that each contain a different

partition of the solution space. For an introduction to branch-and-bound in general, see

Chapter 18 of [74].

Branch-and-bound for a mixed-integer program begins by solving the linear program-

ming relaxation of an integer program by allowing the integer variables to assume continuous

values. If the solution has all integer variables having integral values, then the solution is

optimal. Otherwise, a sequence of linear programs is solved. Integer feasible solutions
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to these linear programs provide lower bounds for the optimal objective value. Typically,

branches are created by selecting an integer variable with fractional value and branching on

that variable. If ⌊xi⌋ < xi < ⌈xi⌉, then 2 branches can be created, one with the previous

linear program plus the constraint xi ≤ ⌊xi⌋ and one with the previous linear program plus

the constraint xi ≥ ⌈xi⌉. This practice creates a hierarchy of linear programs. The linear

programs are often referred to as nodes of the branch-and-bound tree, where the LP relax-

ation is the root node. The performance of a branch-and-bound algorithm for mixed-integer

programming is often measured by the number of nodes visited, or linear programs solved,

before the optimal solution is found.

Branch-and-bound is essentially an intelligent enumeration scheme that seeks to avoid

enumeration of all feasible solutions by using information gathered from the LP subprob-

lems. If the objective function value of a linear programming subproblem is less than that

of the best known integer feasible solution, then that node is fathomed, meaning that this

LP does not need to be branched upon. The objective value of a feasible solution will never

exceed the incumbent objective value because successive LP’s will optimize over a smaller

feasible region. An LP subproblem is also fathomed when it is infeasible.

Branching is the process by which the feasible region of the LP relaxation is further

partitioned. Branching on a variable refers to selection of a fractional-valued integer variable

and creating two linear programs with additional restrictions as described. The selection

of the branching variable can be based on various criteria, including the most fractional or

least fractional variable. Strong branching refers to branching based on information about

how candidate variables will affect the objective function in subsequent linear program

subproblems. Strong branching was first developed for solving traveling salesman problems

[2].

More general branching schemes can be employed. For example, if a set of binary integer

variables S has
∑

i∈S

xi > |S| − 1, then two linear programming subproblems can be created;

one with the constraint
∑

i∈S

xi < |S|− 1 added and the other with
∑

i∈S

xi = |S| added. Other

generalizations include creating more or less than two new subproblems.

Node selection refers to the process of selecting an unsolved LP subproblem to solve.
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Methods for node selection include selecting the LP subproblem whose parent node has the

best objective value and selecting the LP subproblem with the best estimate of the objective

value when integer infeasibilities are removed.

1.1.5 Branch-and-cut algorithms

Branch-and-cut for mixed-integer programs is a generalization of branch-and-bound. Branch-

and-cut algorithms allow for the addition of valid inequalities for the mixed-integer program

that are violated by the optimal solution of an LP subproblem. The separation problem

is the problem of finding a violated valid inequality. These cuts are added to the LP sub-

problem, the subproblem is re-solved, and the process is either repeated or the problem is

branched upon. Variations of branch-and-cut include using different methods for finding

violated inequalities and varying the number of rounds of cut generation.

1.2 Graphs, hypergraphs, and mixed-integer programming

The reader is referred to Chapter 1 of Graph Theory by Bollobàs [13] for the fundamentals of

graph theory and to Graphs and Hypergraphs by Berge [10] for background on hypergraphs.

A graph G = (V, E) consists of a set of nodes, or vertices, V and a set of edges E. Edges

are unordered pairs of elements of V . A node v is adjacent to another node w if the edge

(v, w) ∈ E. Graphs can be represented pictorially with the nodes drawn as dots and the

edges drawn as lines between the dots for adjacent nodes.

A clique K is a set of nodes such that there exists an edge between every pair of nodes.

A pictorial representation of a clique is given in Figure 1.

Figure 1: An example of a clique.

A cycle is an alternating sequence of nodes and edges beginning and ending with the

same node, and with distinct nodes and edges otherwise. The size of a cycle is the number
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of distinct nodes that it contains. An odd cycle is a cycle with an odd size. A chord of

a cycle is an edge not in the cycle that contains 2 nodes in the cycle. An odd hole is a

chordless odd cycle. A visual representation of an odd hole of size 5 is shown in Figure 2.

Figure 2: An example of an odd hole.
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The chromatic number of a graph is the minimum number of colors needed to assign

a color to each node of the graph such that no two adjacent nodes have the same color.

An induced subgraph of a graph is a subset of the nodes of the graph and all of the edges

between those nodes in the graph. A graph is perfect if every induced subgraph has the

property that the chromatic number is equal to the size of a maximal clique.

A hypergraph G = (V, E) is a set of nodes V and a set of hyperedges E. Hyperedges

will hereafter be referred to as edges. Edges in a hypergraph are elements of the power set

of V . A uniform n-hypergraph is a hypergraph with all edges having the same cardinality.

Therefore, a graph is a uniform 2-hypergraph. We will only consider uniform n-hypergraphs,

and we will refer to them as “n-hypergraphs”, or simply “hypergraphs”.

We extend the notion of adjacency to hypergraphs as follows: A node v is adjacent to a

set of nodes C if either C ∪ v is contained in an edge of the hypergraph, or every subset of

n nodes containing v and nodes from C is an edge of the hypergraph. A hyperclique K of

size m in a n-hypergraph where m ≥ n is a set of nodes such that all
(

m
n

)

edges are present

in the hypergraph.

1.2.1 Conflict graphs and cuts

A conflict graph is a tool for representing relationships between pairs of binary variables in

a math program. For each binary variable, there is an associated node in the conflict graph.

For every pair of variables xi and xj for which xi + xj ≤ 1 is valid for the set of feasible

solutions, there exists an edge between the associated nodes i and j in the conflict graph.

Optimizing over the inequalities of the conflict graph is equivalent to solving a node

packing problem. For a graph G = (V, E), a node packing is a set of nodes such that

no two are adjacent (see [68]). For a mixed-integer program, the polytope defined by

the relationships in the conflict graph contains the projection of the feasible region onto

the space of binary integer variables. Therefore, valid inequalities for the node packing

polytope are valid for the polytope defined by the conflict graph, and are valid for the

associated mixed-integer program. These valid inequalities can be used in a branch-and-cut

framework.
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Two well-known classes of valid inequalities for the node packing polytope are maximal

clique inequalities and odd hole inequalities. For a maximal clique K in a graph, the following

inequality is valid and facet-defining for the node packing polytope [33, 73].

∑

i∈K

xi ≤ 1

If the graph of a node packing problem is perfect, then the maximal clique inequalities is

the set of all facets of the node packing polytope [62].

If H is the set of nodes of an odd hole of a graph, then

∑

i∈H

xi ≤
|H| − 1

2

is a valid inequality for the node packing polytope [73].

Further early work on set packing polyhedra, of which node packing is a special case,

can be found in [72]. Conflict graphs and their use in solving combinatorial optimization

problems are described in [40, 54, 12, 14, 3, 5, 15, 43, 50, 67].

1.2.2 Hypergraphs, the independent set polytope, and cuts

The notion of a conflict graph can easily be extended to a conflict hypergraph where the

nodes again correspond to binary variables in a math program. An edge in the conflict

hypergraph consisting of a set of nodes C corresponds to the following relationship

∑

i∈C

xi ≤ |C| − 1

These types of inequalities are known as independent set inequalities. Facets of the inde-

pendent set polytope were explored in [58], including the following extension of maximal

clique inequalities. Suppose that K is a set of nodes such that all
(

|K|
n

)

edges are present

in the n-hypergraph. Then the following inequality is valid for the associated independent

set polytope
∑

i∈K

xi ≤ |K| − 1

If none of the
(

|K|
n

)

edges is implied by the 2, 3, . . . , n− 1 hypergraphs, then the inequality

is facet-defining [58].
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Further work on conflict hypergraphs and their use in solving combinatorial optimization

problems is in [78, 29, 66, 53, 55].

1.3 Algorithm complexity and NP-completeness

An algorithm is a step-by-step procedure that accepts input and computes an appropriate

output. An algorithm’s complexity is commonly measured by the number of elementary

operations required in the limit as the size of the input increases for a worst-case instance.

The asymptotic running time of an algorithm is represented as a function of the size of

its input. The reader is referred to Chapter 2 of [24] for an introduction to asymptotic

notation. Suppose n is the size of the input for an algorithm, and f(n) is the running

time. An algorithm has complexity O(g(n)) if there exists constants c and n0 such that

f(n) ≤ cg(n) for all n ≥ n0.

We will be concerned with the complexity of algorithms that seek to determine if so-

lutions satisfying certain criteria exist, or feasibility problems. Every optimization problem

can be stated as a feasibility problem. Let P be the set of all problems such that are solv-

able by an algorithm in polynomial time, or O(g(n)) where g(n) is a polynomial. Let NP

be the set of all problems that are verifiable by an algorithm in polynomial time. In other

words, if a potential solution is given, then determining the feasibility of the solution can

be performed in polynomial time.

A problem P1 is reducible in polynomial-time to another problem P2 if there exists a

polynomial-time transformation of an instance of P1 to an instance of P2. Therefore, if there

exists no polynomial-time algorithm for P1, then there exists no polynomial-time algorithm

for P2. Equivalently, if there is a polynomial-time algorithm for P2, then there exists a

polynomial time algorithm for P1 because reducing the instance of P1 to an instance of P2

and then running the algorithm for P2 together takes polynomial time.

A problem is NP-hard if every problem in NP can be reduced to it. Intuitively,

an NP-hard problem is at least as “hard” as every other problem in NP. A problem

is NP-complete if it is in NP and is NP-hard. Therefore, NP-complete problems are
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the “hardest” problems in NP. There are no known polynomial-time algorithms for NP-

complete problems. Should one exist, then every NP-complete problem could be solved in

polynomial time. An extensive list of NP-complete problems and reductions is contained

in [36]. The reader is also referred to [24] and [68] for a further introduction to complexity.

1.4 Pattern recognition, discriminant analysis, and statis-
tical pattern classification

Cognitive science is the science of learning, knowing, and reasoning. Pattern recognition is a

broad field within cognitive science that is concerned with the process of recognizing, iden-

tifying, and categorizing input information. These areas intersect with computer science,

particularly in the closely related areas of artificial intelligence, machine learning, and sta-

tistical pattern recognition. Artificial intelligence is associated with constructing machines

and systems that reflect human abilities in cognition. Machine learning refers to how these

machines and systems replicate the learning process, which is often achieved by seeking and

discovering patterns in data, or statistical pattern recognition.

Discriminant analysis is the process of discriminating between categories or populations.

Associated with discriminant analysis as a statistical tool are the tasks of determining the

features that best discriminate between populations and the process of classifying new

objects based on these features. The former is often called feature selection and the latter

is referred to as statistical pattern classification. This work will be largely concerned with

the development of a viable statistical pattern classifier.

As with many fields, the recent advances in computing power have led to a sharp increase

in the interest and application of discriminant analysis techniques. The reader is referred

to Duda et al. [27] for an introduction to various techniques for pattern classification, and

to Zopounidis et al. [90] for examples of applications of pattern classification.

1.4.1 Supervised learning, training, and cross validation

An entity or observation is essentially a data point as commonly understood in statistics. In

the framework of statistical pattern classification, an entity is a set of quantitative measure-

ments (or qualitative measurements expressed quantitatively) of attributes for a particular
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object. As an example, in medical diagnosis an entity could be the various blood chem-

istry levels of a patient. With each entity is associated one or more groups (or populations,

classes, categories) to which it belongs. To continue with the example, the groups could

be the various classes of heart disease. Statistical classification seeks to determine rules for

associating entities with the groups to which they belong. Ideally, these associations align

with the associations that human reasoning would produce based on information gathered

on objects and their apparent categories.

Supervised learning is the process of developing classification rules based on entities for

which the classification is already known. Note that the process implies that the popula-

tions are already well-defined. Unsupervised learning is the process of discovering patterns

from unlabeled entities and thereby discovering and describing the underlying populations.

Models derived using supervised learning can be used for both functions of discriminant

analysis - feature selection and classification. The model that we consider is a method for

supervised learning, so we assume that populations are previously defined.

The set of entities with known classification that is used to develop classification rules

is the training set. The training set may be partitioned so that some entities are withheld

during the model-developing process, also known as the training of the model. The withheld

entities are a test set that is used to determine the validity of the model, a process known

as cross validation. Entities from the test set are subjected to the rules of classification to

measure the performance of the rules on entities with unknown group membership.

Validation of classification models is often performed using m-fold cross validation where

the data with known classification is partitioned into m folds of approximately equal size.

The classification model is trained m times, with the mth fold withheld during each run for

testing. The performance of the model is evaluated by the classification accuracy on the m

test folds, and can be represented using a classification matrix or confusion matrix.

The classification matrix is a square matrix with the number of rows and columns equal

to the number of groups. The ijth entry of the classification matrix contains the number

or proportion of test entities from group i that were classified by the model as belonging to

group j. Therefore, the number or proportion of correctly classified entities are contained
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in the diagonal elements of the classification matrix, and the number or proportion of

misclassified entities are in the off-diagonal entries.

1.4.2 Bayesian inference and classification

The popularity of Bayesian inference has risen drastically over the past several decades,

perhaps in part due to its suitability for statistical learning. The reader is referred to

O’Hagan’s volume [71] for a thorough treatment of Bayesian inference. Bayesian inference

is usually contrasted against classical inference, though in practice they often imply the

same methodology.

The Bayesian method relies on a subjective view of probability, as opposed to the fre-

quentist view upon which classical inference is based [71]. A subjective probability describes

a degree of belief in a proposition held by the investigator based on some information. A

frequency probability describes the likelihood of an event given an infinite number of trials.

In Bayesian statistics, inferences are based on the posterior distribution. The posterior

distribution is the product of the prior probability and the likelihood function. The prior

probability distribution represents the initial degree of belief in a proposition, often before

empirical data is considered. The likelihood function describes the likelihood that the

behavior is exhibited, given that the proposition is true. The posterior distribution describes

the likelihood that the proposition is true, given the observed behavior.

Suppose we have a proposition or random variable θ about which we would like to make

inferences, and data x. Application of Bayes’ Theorem gives

dF (θ|x) =
dF (θ)dF (x|θ)

dF (x)

For ease of conceptualization, assuming that every distribution has a density function, the

identity can be rewritten as

f(θ|x) =
f(θ)f(x|θ)

f(x)

For classification, a prior probability function π(g) describes the likelihood that an entity

is allocated to group g regardless of its exhibited feature values x. A group density function

f(x|g) describes the likelihood that an entity exhibits certain measurable attribute values,
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given that it belongs to population g. The posterior distribution for a group P (g|x) is given

by the product of the prior probability and group density function, normalized over the

groups to obtain a unit probability over all groups. The observation x is allocated to the

group h = arg max
g∈G

P (g|x) = arg max
g∈G

π(g)f(x|g)
P

j∈G
π(j)f(x|j) .

1.4.3 Discriminant functions

Most classification methods can be described in terms of discriminant functions. A discrim-

inant function takes as input an observation and returns information about the classification

of the observation. For data from a set of groups G, an observation x is assigned to group

h if h = arg max
g∈G

lg(x) where the functions lg are the discriminant functions. Classifica-

tion methods restrict the form of the discriminant functions, and training data is used to

determine the values of parameters that define the functions.

The optimal classifier in the Bayesian framework can be described in terms of discrim-

inant functions. Let πg = π(g) be the prior probability that an observation is allocated to

group g and let fg(x) = f(x|g) be the likelihood that data x is drawn from population g. If

we wish to minimize the probability of misclassification given x, then the optimal allocation

for an entity is to the group h = arg max
g∈G

P (g|x) = arg max
g∈G

πgfg(x)
P

j∈G
πjfj(x) . Under the Bayesian

framework,

P (g|x) =
πgf(x|g)

f(x)
=

πgf(x|g)
∑

j∈G
πjf(x|j)

The discriminant functions can be lg(x) = P (g|x) for g ∈ G. The same classification

rule is given by lg(x) = πgf(x|g) and lg(x) = log f(x|g)+log πg. The problem then becomes

finding the form of the prior functions and likelihood functions that match the data.

If the data are multivariate normal with equal covariance matrices (f(x|g) ∼ N(µg, Σ)),

then a linear discriminant function is optimal:

lg(x) = log f(x|g) + log πg

= −1/2(x − µg)
T Σ−1(x − µg) − 1/2 log |Σg| − d/2 log 2π + log πg

= wT
g x + wg0
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where d is the number of attributes, wg = Σ−1µg, and wg0 = −1/2µT
g Σ−1µg + log πg +

xT Σ−1x − d/2 log 2π. Note that the last two terms of wg0 are constant for all g and need

not be calculated. When there are 2 groups (G = {1, 2}) and the priors are equal (π1 =

π2), the discriminant rule is equivalent to Fisher’s linear discriminant [31]. Fisher’s linear

discriminant can also be derived, as it was by Fisher, by choosing w so that (wT µ1−wT µ2)2

wT Σw

is maximized.

If the data are multivariate normal with unequal covariance matrices (f(x|g) ∼ N(µg, Σg)),

then a quadratic discriminant function is optimal:

lg(x) = log f(x|g) + log πg

= −1/2(x − µg)
T Σ−1

g (x − µi) − 1/2 log |Σg| − d/2 log 2π + log πg

= xT Wgx + wT
g x + wg0

where Wg = −1/2Σ−1
g , wg = Σ−1

g µg, and wg0 = −1/2µT
g Σ−1

g µg − 1/2 log |Σg| + log πg −

d/2 log 2π.

These linear and quadratic discriminant functions are often applied to data sets that

are not multivariate normal or continuous (see [77], pages 234-235) by using approxima-

tions for the means and covariances. Regardless, these models are parametric in that they

incorporate assumptions about the distribution of the data. Fisher’s linear discriminant is

non-parametric because no assumptions were made about the underlying distribution of the

data. Thus, for a special case, a parametric and non-parametric model coincide to produce

the same discriminant rule. The linear discriminant function derived above is also called the

homoscedastic model, and the quadratic discriminant function is called the heteroscedastic

model. The exact form of discriminant functions in the Bayesian framework can be derived

for other distributions [27].

Some classification methods are alternate methods for finding coefficients for linear dis-

criminant functions. In other words, they seek coefficients wg and constant wg0 such that

lg(x) = wgx + wg0 is an optimal set of discriminant functions. The criteria for optimality is

different for different methods. Linear discriminant functions project the data onto a linear

subspace and then discriminate between entities in that subspace. For example, Fisher’s

linear discriminant projects two-group data on an optimal line, and discriminates on that
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line. A good linear subspace may not exist for data with overlapping distributions between

groups and therefore the data will not be classified accurately using these methods. The

hyperplanes defined by the discriminant functions form boundaries between the group re-

gions. A large portion of the literature concerning the use of math programming models for

classification describe methods for finding coefficients of linear discriminant functions [90].

Other classification methods seek to determine parameters to establish quadratic dis-

criminant functions. The general form of a quadratic discriminant function is lg(x) =

xT Wgx + wT
g x + wg0. The boundaries defining the group regions can assume any hyper-

quadric form, as can the Bayes decision rules for arbitrary multivariate normal distributions

[27].

1.4.4 Math programming methods

Math programming methods for statistical pattern classification emerged in the 1960’s and

gained popularity in the 1980’s which has grown drastically since. Most of the math pro-

gramming approaches are non-parametric which has been cited as an advantage when ana-

lyzing contaminated data sets over methods that require assumptions about the distribution

of the data [80]. Most of the literature about math programming methods is concerned with

either using math programming to determine the coefficients of linear discriminant functions

or with support vector machines.

The use of linear programs to determine the coefficients of linear discriminant functions

has been widely studied [32, 63, 48, 39]. The methods determine the coefficients for different

objectives, including minimizing the sum of the distances to the separating hyperplane,

minimizing the maximum distance of an observation to the hyperplane, and minimizing

other measures of badness of fit or maximizing measures of goodness of fit.

Other math programming approaches determine the coefficients to linear discriminant

functions, but using mixed-integer programs [51, 6, 22, 89]. The flexibility of mixed-integer

programming allows for the minimization of misclassified observations or minimization of

misclassification costs. Others [81, 80] have considered nonlinear objectives.

Support vector machines were introduced (by name) in the early 90’s and have gained in
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popularity since. The reader is referred to [82] for an extensive treatment of support vector

machines. Consider the two-group discrimination problem. For observations xj , nonlinear

functions φ(·) are chosen that map the data to a higher dimension such that the observations

are (more) separable by a linear hyperplane in the higher-dimensional space. There always

exists a higher dimensional space where the transformed observations are linearly separable

[82]. A hyperplane is sought that minimizes training error and maximizes the distance

between the groups. The hyperplane is often obtained by solving a quadratic program of

the following form

min
1

2
wT w + C

∑

j

F (ξj)

subject to

yj(w · φ(xj) + b) ≥ 1 − ξj ∀ j

ξj ≥ 0 ∀ j

where w and b are variables that define the hyperplane, yj ∈ {−1, 1} corresponds to the

classification of entity xj , C is a penalty parameter, and F is a monotonic convex function

[25]. The nonlinear mappings φ(·) are called kernel functions and are usually decided upon

before training. The first term in the objective seeks to maximize the distance or margin

between the groups and the second term seeks to reduce the training error.

In practice, the dual problem is solved which requires a small portion of the data, or

the support vectors. The support vectors represent the hardest data to classify, and define

the optimal hyperplane. The use of support vectors in finding optimal hyperplanes for

two-group separable problems is based on the work of Vapnik and Lerner [86], Vapnik and

Chervonenkis [85], and Mangasarian [63, 64].

Many math programming methods are focused on two-group analysis only [80, 90],

and performance is often compared to Fisher’s linear discriminant, or Smith’s quadratic

discriminant [79]. It has been noted that these methods can be used for multiple group

analysis by finding G(G − 1)/2 discriminants for each pair of groups (“one-against-one”)

or by finding G discriminants for each group versus the remaining data (“one-against-all”),

but these approaches can lead to ambiguous classification rules (see [27], page 218).

Math programming methods developed for multiple group analysis are in [61, 37, 39, 35,
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58]. The latter two of these are variations on the DAMIP. The methods in [61, 37, 35] are

mixed-integer programming approaches and the methods in [39, 58] use linear programming.

Multiple group formulations for support vector machines have been proposed and tested

[82, 59], but are still considered computationally intensive [44]. The “one-against-one”

and “one-against-all” methods with support vector machines have been successfully applied

[65, 44].

1.4.5 Other methods

While most classification methods can be described in terms of discriminant functions,

some methods are not trained in the paradigm of determining coefficients or parameters for

functions of a pre-defined form. These methods include classification and regression trees

(CART), nearest-neighbor methods, and neural networks.

Classification and regression trees [17] are nonparametric approaches to prediction. Clas-

sification trees seek to develop classification rules based on successive binary partitions of

observations based on attribute values. Regression trees also employ rules consisting of

binary partitions, but are used to predict continuous responses.

The rules generated by classification trees are easily viewable by plotting them in a

tree-like structure from which the name arises. An example is shown in Figure 3. A test

entity may be classified using rules in a tree plot by first comparing the entity’s data with

the root node of the tree. If the root node condition is satisfied by the data for a particular

entity, the left branch is followed to another node; otherwise, the right branch is followed

to another node. The data from the observation is compared to conditions at subsequent

nodes until a leaf node is reached.
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|Attribute 1<1.25386

Attribute 2<77.2415

Attribute 3<0.698201

Attribute 4<7.051

Attribute 5<1.37

Attribute 6<1.5435

2 1

1

2 2

1 1

Group 1 vs. Group 2

Figure 3: An example of a classification tree for a classification problem with 2 groups.
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Nearest-neighbor methods begin by establishing a set of labeled prototype observations.

The nearest-neighbor classification rule assigns test entities to groups according to the group

membership of the nearest prototype. Different measures of distance may be used. The

k-nearest-neighbor rule assigns entities to groups according to the group membership of the

k nearest prototypes.

Neural networks are classification models that can also be interpreted in terms of dis-

criminant functions, though they are used in a way that does not require finding an analytic

form for the functions [27]. Neural networks are trained by considering one observation at

a time, modifying the classification procedure slightly with each iteration.

1.4.6 Constrained discrimination rules

Constrained or partial discrimination rules are classification rules that do not necessarily

force the allocation of every test observation. In general, a reserved judgment region is

introduced for observations that do not seem to belong to any of the existing groups.

Allocation to the reserved judgment region is a signal to collect more information about an

entity. The region is well suited for classification problems for which some attributes are

costly to measure.

Rao [76] was the first to consider constrained discrimination rules. Anderson [1] deter-

mined the form of constrained discrimination rules between k populations that maximize

the total probability of correct classification. These rules are further discussed in the next

section. The DAMIP is based on Anderson’s result. Other methods that have included a

reserved judgment region are described in [34, 23, 41, 20, 38, 42, 70, 75].

1.5 The DAMIP model

The DAMIP is an empirical model based on a result by Anderson [1]. Several MIP formu-

lations of the DAMIP were proposed by Gallagher et al. [35]. The computational difficulty

led to the development of a quicker linear approximation [58].
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1.5.1 Classification to G populations

The Bayesian method of classification assigns entities to groups according to the largest pos-

terior probability. In practice, this method can result in large misclassification probabilities.

Anderson [1] showed that with the introduction of a reserved judgment region (an artificial

group) and with the use of modified posterior “probabilities”, the probability of correct

classification can be maximized with constraints on the misclassification probabilities. He

also showed that this maximum occurs for deterministic classification rules. The modified

posterior probabilities are not actually probabilities, but the terminology is used because

they are an indication of the likelihood of events; namely, the classification of entities to

groups.

Neyman and Pearson [69] produced results concerning the maximization of the proba-

bility of correct allocation to one population subject to pre-specified misclassification proba-

bilities for G other populations. Anderson [1] generalized the result and solved the problem

of maximizing the probability of correct classification between G populations, subject to

upper bounds on misclassification probabilities.

Suppose a sample point x ∈ Rm is given so that x is a vector containing m measurable

attributes for an entity and must be allocated to one of G groups in G. In Bayesian

analysis, the probability that an entity belongs to a group is initially assumed to follow a

prior distribution π = {πg : g = 1, 2, . . . , G}. The prior distribution reflects the confidence

that the investigator has in the proposition that an observation belongs to each group, prior

to further analysis of the data. Data is collected to derive conditional probability densities

for each group. The conditional densities {fg(·) : g = 1, 2, . . . , G} describe the likelihood

that an entity would exhibit some range of values for the measurable attributes, given that

the entity belongs to population g. For an observation x and group g, fg(x) = f(x|g). The

posterior probability that an observation x belongs to group g is

P (g|x) =
πgfg(x)

G
∑

i=1
πifi(x)

Let {φg(x) : g = 1, 2, . . . , G} be the critical functions so that φg(x) is the probability
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that an entity displaying attribute values x will be allocated to group g. To minimize the

probability of error, observations should be allocated to the groups for which they have the

largest posterior probability. In other words, φh(x) = 1 where

h = arg max
g

πgfg(x)
G
∑

i=1
πifi(x)

= arg max
g

πgfg(x)

This rule is the Bayes decision rule for minimizing the probability of error (see [27], pages

22-25).

Rao [76] and later Anderson [1] considered the problem of maximizing U , but with

limits on the probability of classifying an entity belonging to group h to a different group

g. Anderson showed that an allocation rule maximizing U is

φh(x) =











1 if h = arg max
g

Lg(x)

0 o.w

where Lg(x) is the modified posterior probability for group g, defined as

Lg(x) = πgfg(x) −
G
∑

i∈G\g

λigfi(x)

L0(x) = 0

Anderson introduces group 0, the suspended judgment region, to place entities for which

there is not sufficient information for classification. Placement in the reserved judgment

region corresponds to attributes that do not fit any population, and is a signal to collect

more information. The reserved judgment region is necessary for helping to reduce the

misclassification probabilities; non-classification is preferred over misclassification.

Note that the modified posterior probabilities may assume negative values for certain

values of the λih variables. Modified posterior probabilities are not probabilities, but the

terminology is used because they are an indication of the likelihood of events.

Note that the modified posterior probabilities are discriminant functions and can be

written as lg(x) = Lg(f(x)) for g ∈ G where f(x) = (f1(x), f2(x), . . . , fG(x)) and l0(x) =

L0(x) = 0. In practice, the prior probabilities and likelihood function values are determined
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and then the λih coefficients are determined in a two step process. Any method for deter-

mining the likelihood function values, including any method using discriminant functions,

can be used. An empirical model to determine the optimal rules can be seen as a trans-

formation of the data to a G-dimensional space, perhaps via discriminant functions, and a

subsequent linear transformation.

1.5.2 Empirical models

Gallagher et al. [35] were the first to provide a computational framework for applying

Anderson’s results to discriminant analysis. They formulated three DAMIP models for

calculating the λih’s. The conditional group densities and prior probabilities are calculated

based on input data. The input to the DAMIP includes approximations of prior probabilities

and approximate evaluations of the group density functions evaluated at each training point.

The DAMIP finds the optimal linear coefficients to derive modified posterior probabilities

for optimal allocation subject to the desired limits on misclassification probabilities.

The model uses the proportion of correctly classified training entities as an approxima-

tion of U , and the proportion of misclassified training entities as estimates for the probability

of misclassification. The λih’s are calculated using a training set of data and are then used

to classify entities of unknown group membership. The training data is a set of points

{xgj : g ∈ G, j ∈ Ng}, where G = {1, 2, . . . G} and Ng = {1, 2, . . . , ng}, representing the val-

ues of measurable attributes for entity j of group g. The model takes estimates of the prior

probabilities π̂h, estimates of the conditional group densities evaluated at the points rep-

resenting each training entity f̂h(xgj), and limits on the proportion of misclassified entities

for each combination of groups αhg ∈ [0, 1] as input. Model 1 is a nonlinear mixed-integer

program of the following form
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max
∑

g∈G

∑

j∈Ng

uggj

subject to

Lhgj = π̂hf̂h(xgj) −
∑

i∈G\h

λihf̂i(x
gj) h, g ∈ G, j ∈ Ng

ygj = max{0, Lhgj : h = 1, . . . ,G} g ∈ G, j ∈ Ng

ygj − Lggj ≤ M(1 − uggj) g ∈ G, j ∈ Ng

ygj − Lhgj ≥ ǫ(1 − uhgj) h, g ∈ G, j ∈ Ng, h 6= g

∑

j∈Ng

uhgj ≤ ⌊αhgng⌋ h, g ∈ G, h 6= g

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}

where

uhgj =











1 if entity gj is allocated to group h based on the values of the λih’s

0 o.w.

The nonlinearity arises in the piecewise-linear max constraints. Under mild assumptions,

the model obtains a solution in which no entities are misclassified [35]. In other words, every

training entity is either correctly classified or placed in the reserved judgment group. Model

2 is a variation of model 1 in which the max constraints are replaced by constraints of the

form ygj ≥ Lhgj and the objective function is modified, placing a penalty on the value of

the ygj ’s so that they tend to satisfy the max constraint:

max
∑

g∈G

∑

j∈Ng

(βuggj − γygj)

Model 3 is a mixed-integer program that is equivalent to model 1. The max constraints

are replaced with the following constraints and variables
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ygj ≥ Lhgj h, g ∈ G, j ∈ Ng

ỹhgj − Lhgj ≤ M(1 − vghj) h, g ∈ G, j ∈ Ng

ỹhgj ≤ π̂hf̂h(xgj)vhgj h, g ∈ G, j ∈ Ng

∑

h∈G
vhgj ≤ 1 g ∈ G, j ∈ Ng

∑

h∈G
ỹhgj = ygj g ∈ G, j ∈ Ng

ỹhgj ≥ 0, vhgj ∈ {0, 1}

The three models compete effectively with standard methods on well-known data sets,

but are computationally intensive [35].

A linear programming model (DALP) based on the DAMIP was developed by Lee et

al. [58] which solves rapidly and produces similar results. The DALP has been successfully

applied to the prediction of ultrasound-mediated disruption of cell membranes [57], auto-

mated planning volume definition in soft-tissue sarcoma adjuvant brachytherapy [56], and

genomic pattern recognition in human cancer [30].

For simplicity of notation, the “hat” accents will be omitted. The prior probabilities and

conditional group densities are assumed to be known, and we will not consider techniques

for their estimation.

1.6 Consistency

1.6.1 The Bayes decision rule and consistency

As indicated in Section 1.4.2, the Bayes decision rule for classification is to allocate obser-

vations to the group h for which f(h|x) is largest. This rule is optimal because it minimizes

the probability of misclassification, or equivalently, maximizes the probability of correct

classification. The following development extends the treatment in [26] of the two-group

case to multiple groups.

Let (X, Y ) ∈ Rd × {1, 2, . . . , G} be random variables where G is the number of groups

and let µ be the probability measure for X. The random variable Y is a discrete random

variable defined by a conditional distribution f(h|x) = P{Y = h|X = x} for h = 1, 2, . . . , G.
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A function φ : Rd → {1, 2, . . . , G} is a classifier. The probability of correct classification for

the classifier is P{φ(X) = Y }.

Let φ∗(x) be the Bayes decision rule, the function that assigns x to the group h for

which P{Y = h|X = x} is maximum, or equivalently, φ∗(x) = arg max
h

f(h|x). Then for

any classifier φ(x),

P{φ∗(X) = Y |X = x} − P{φ(X) = Y |X = x}

=
G
∑

h=1

P{Y = h, φ∗(X) = h|X = x} −
G
∑

h=1

P{Y = h, φ(X) = h|X = x}

=
G
∑

h=1

I{φ∗(x)=h}P{Y = h|X = x} −
G
∑

h=1

I{φ(x)=h}P{Y = h|X = x}

=
G
∑

h=1

f(h|x)I{φ∗(x)=h} −
G
∑

h=1

f(h|x)I{φ(x)=h}

≥ 0

Integrating the first and last lines with respect to µ(dx) gives

∫

(P{φ∗(X) = Y |X = x}−P{φ(X) = Y |X = x})µ(dx) = P{φ∗(X) = Y }−P{φ(X) = Y } ≥ 0

Therefore, the Bayes decision function φ∗(x) is optimal for the problem

max
φ

P{φ(X) = Y }

Let φn(X, Dn) be a classification rule selected based on an i.i.d. data set Dn =

{(Xi, Yi)}
n
i=1 with size n. We will call a decision rule consistent if, as the sample size

increases, the expected probability of correct classification converges to the probability of

correct classification associated with the Bayes rule P{φ∗(X) = Y }, or

EP{φn(X, Dn) = Y |Dn} → P{φ∗(X) = Y }, as n → ∞

The rule is strongly consistent if

lim
n→∞

P{φn(X, Dn) = Y |Dn} = P{φ∗(X) = Y }, with probability 1

The rule is universally consistent if the probability of correct classification converges to the

probability of correct classification associated with Bayes rule for all possible distributions

of X and Y .
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(Ordinarily, the Bayes decision rule is defined as that which minimizes the probability

of error, and the Bayes error is P{φ∗(X) 6= Y |X = x}. A rule is called consistent if, as

the sample size increases, the expected probability of error approaches the Bayes error. A

rule is universally consistent if the probability of error converges to the Bayes error for all

distributions of X and Y . The notion of a strongly consistent rule is analogously defined.

For purposes of analyzing the DAMIP, the first definitions will be more useful.)

1.6.2 Vapnik-Chervonenkis Theory

Vapnik and Chervonenkis developed much of the theory concerning the selection of a clas-

sifier from a class C of classifiers based on empirical performance [83, 84, 82]. In particular,

they investigated the selection of a classifier based on minimizing empirical error. The em-

pirical error of a classifier is the difference between the error of the classifier P{φ(X) 6= Y }

and the infimum of the error over the class C of classifiers. The approximation error is the

difference between the infimum of the error over the class C and the Bayes error. There is

a trade-off between the size of C and the size of the approximation error. Additionally, the

empirical error is often easier to minimize when |C| is small.

As with the discussion of the Bayes decision rule in the previous section, the results

from Vapnik-Chervonenkis Theory (VC Theory) will be discussed in terms of maximizing

empirical benefit rather than minimizing empirical risk. Accordingly, associated with the

optimal classification rule will be the Bayes benefit.

In practice, a classifier is selected from a class based on a sample of size n for which the

empirical benefit is maximized. Let the empirical benefit of a classifier φ be

Bn(φ) =

n
∑

j=1
I{φ(Xj)=Yj}

n

for a sample of size n. The difference between the Bayes benefit and the empirically optimal

benefit of a classifier can be written as

(B(φ∗) − sup
g∈C

B(φ)) + (sup
g∈C

B(φ) − B(φn))

where the first difference is the approximation error and the second difference is the empirical

error. “Error” in this context refers to the difference in benefit between the benefit of an
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empirical classifier and a Bayes classifier. In the VC framework, we wish to describe how the

empirical benefit converges to the supremum of the benefit possible within C as the sample

size n increases. The rate of convergence can be bounded above by factors which depend

on the characteristics of functions in C. These factors describe the number of partitions of

n data points that are possible using functions from C.

When applied to empirical benefit maximization, the result on the convergence of fre-

quencies to their probabilities in [83] implies that

P

{

sup
φ∈C

|Bn(φ) − B(φ)| > ǫ

}

≤ 8S(C, n)e−nǫ2/8

and therefore

P

{

sup
φ∈C

B(φ) − B(φn) > ǫ

}

≤ 8S(C, n)e−nǫ2/8

where S(C, n) is the shatter coefficient for the class C. If C is the class of functions that

define a single halfspace {x : ax ≤ b} in Rd, then the shatter coefficient for C is bounded

by S(C, n) ≤ 2(n − 1)d + 2 (see Corollary 13.1 of [26]). If C is the class of functions that

define the intersection of sets of t halfspaces, then the shatter coefficient is bounded by

S(C, n) ≤ (2(n − 1)d + 2)t (using Theorem 13.5 in [26]).

The result due to Vapnik and Chervonenkis regarding the convergence of the empirical

benefit was initially presented in more general terms that describe the convergence of any

empirical risk functional

R(α) =
1

n

n
∑

i=1

Q((Xi, Yi), α)

where Q((X, Y ), α), α ∈ Λ is a set of indicator functions. If F (x, y) is the probability

measure on the space (X, Y ), then

P

{

sup
α∈Λ

∣

∣

∣

∣

∣

Q((x, y), α)dF (x, y) −
1

n

n
∑

i=1

Q((xi, yi), α)

∣

∣

∣

∣

∣

> ǫ

}

≤ 8S(Λ, n)e−nǫ2/8

where S(Λ, n) is the shatter coefficient of the set of indicator functions [83].

1.7 Robustness and stability

Robustness is a term with separate but related definitions across many fields within science.

Perhaps a unifying definition would be the sensitivity of results or conclusions to changes
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in the assumptions upon which an experiment depends. In traditional statistical inference,

Bayesian inference, combinatorial optimization, and computer science, the term “robust-

ness” has been applied in different ways. Each of these definitions can be employed in the

evaluation of a pattern classifier that uses mixed-integer programming.

1.7.1 Traditional statistical inference

In traditional statistical inference, robustness is often defined as the sensitivity of inferences

to outliers or noisy data [77]. An outlier is essentially an unusual observation in a particular

data set. Noise is any uncertainty introduced due to random disturbances in nature or the

data collection process. Robustness is also used more broadly by statisticians to describe

the sensitivity of a model to changes in assumptions about model parameters or to changes

in the characteristics of input data.

These definitions are easily applied to pattern classification. Classification models can

be considered robust if their rules are relatively insensitive to outliers in the input data or

noisy input data. They can also be robust if they are able to classify new data that contains

outliers or noisy data. In the other sense, classification models are said to be robust if they

are insensitive to changes in model parameters or perform well on a wide variety of data

sets. For example, a parametric model might be designed for data from normally distributed

data, but is robust for data derived from distributions with thicker tails.

A little mentioned, but seemingly important, concept in pattern classification is that of

stability. Stability is the sensitivity of the derived classification rules to small changes in the

input data. Breiman [16, 18, 19] and Li and Belford [60] have studied methods for treating

the instability of classification trees.

1.7.2 Bayesian inference

Bayesian statisticians focus on inference robustness, which is closely related to the second

definition for traditional statistical inference. Within Bayesian inference, this approach

implies studying the sensitivity of inferences to uncertainty or misspecification in prior

probability functions and/or likelihood functions.

This notion of robustness applies only to classification models constructed within a
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Bayesian framework - those for which inferences about group membership are made based

on a posterior distribution.

1.7.3 Combinatorial optimization

Robustness is a rather new term in the field of combinatorial optimization, though sensitivity

analysis is probably as old as the field itself. Ben-Tal and Nemirovski [7, 8, 9] introduced the

term to describe the solution of convex optimization problems with well-defined uncertainty

in the input data. Kouvelis and Yu [52], Bertsimas and Sim [11], and Atamturk [4] have

applied the concept to discrete optimization.

Sensitivity analysis is a methodology for characterizing the stability of an already-

obtained optimal solution. The product of sensitivity analysis is a characterization of the

degree of perturbation in input data that would change the optimal solution. Robust opti-

mization, in contrast, is more forward-thinking and seeks to guarantee a desired amount of

stability in the solution of a problem. A robust solution will continue to satisfy constraints

after perturbation of the input data.

1.7.4 Computer science

A computer science definition of robustness is a quality of systems that hold up well under

exceptional circumstances. When applied to classification, this definition seems to coincide

with the traditional statistical notion of performance on noisy data or in the presence of

outliers. This definition is also closely related to the goals of robust optimization.

1.7.5 Conventions used in this dissertation

We seek to test the DAMIP under various notions of robustness and stability. Because the

DAMIP is a statistical tool, developed within a Bayesian framework, involves the solution of

a math program, many of the different definitions apply. Some of these definitions collapse

to assume the same meaning in the context of the DAMIP.

We will take a broad definition of robustness - the ability of a classification model to

perform well in the presence of contaminated data and under a variety of assumptions about

model parameters and problem data. We define stability as the sensitivity of classification
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rules to changes in input data. For the DAMIP, this sensitivity is equivalent to the stability

of optimal solutions. We seek to determine methods of guaranteeing stable solutions or

rules, in line with the goals of robust optimization and stable classification.

1.8 Outline of this dissertation

Chapters 2-4 are concerned with the solution of a mixed-integer programming formulation

of the DAMIP. Chapter 2 develops a polynomial-time combinatorial algorithm for the two-

group case. The algorithm does not use mixed-integer programming, but rather checks a

polynomial number of possible solutions with the guarantee of finding an optimal solution.

Chapter 3 contains theoretical results concerning the solution of the mixed-integer pro-

gramming formulation of the DAMIP for G groups. The solution of the mixed-integer

program is shown to be NP-complete. The dimension of the polytope is characterized.

The structure of the DAMIP is exploited to find edges of the conflict graph and conflict

hypergraphs. Upper bounds on the values of some parameters are derived.

The consistency, robustness, and stability of the DAMIP is discussed in Chapter 4. A

general form of the DAMIP is shown to be strongly universally consistent. The robustness

and stability of solutions and classification rules generated by the DAMIP is discussed.

Computational methods are described in Chapter 5. The methods include a heuristic

for finding integer feasible solutions, a specialized branching scheme, and cutting planes

derived from the conflict graph and conflict 3-hypergraph. An algorithm for finding maximal

hypercliques is presented as an extension of a maximal clique algorithm in [21].

Chapter 6 contains the results of various computational tests. The performance of

CPLEX on mixed-integer programs of the DAMIP is compared to enhanced code with the

techniques of Chapter 4 implemented. The relative contribution of the various compu-

tational strategies is assessed. The classification accuracy of the DAMIP is compared to

standard methods including linear discriminant functions, quadratic discriminant functions,

classification trees, and support vector machines. The methods are tested with both real-

world and simulated data. Additional simulations explore the effects of various training

conditions on classification accuracy.
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Chapter 7 presents a summary of conclusions, contributions, and future research.

chapter 1
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Chapter II

Two-Group Discrimination with the DAMIP

In this chapter, an O(N2) algorithm for solving the 2-group DAMIP is developed, where N

is the number of training observations. An algorithm is first developed for the case when

no misclassification constraints are present. The algorithm is subsequently extended for the

case when misclassification constraints are present.

The input to the 2-group DAMIP is

• Estimates of the prior probabilities πh describing the likelihood that an unknown

entity belongs to group h ∈ {1, 2}.

• A set of entities Nh for each group h ∈ {1, 2} such that the entities in Nh are known

to belong to group h. Let nh = |Nh| and N = n1 + n2.

• Estimates of the conditional group density functions fh(·) evaluated at the points

representing each of the entities xgj .

• Misclassification limits α1 = ⌊α12n1⌋ and α2 = ⌊α21n2⌋ that represent the highest

numbers of entities from group 1 and group 2, respectively, that can be allocated to

group 2 and 1, respectively.

The variables are

uhgj =











1 if entity gj is allocated to group h

0 o.w.

Lhgj = modified posterior probability for entity gj to be allocated to group h
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ygj = maximum modified posterior probability for entity gj

λ12 = linear coefficient determining the modified posterior probability

λ21 = linear coefficient determining the modified posterior probability

A formulation of the problem is as follows

max
∑

g∈G

∑

j∈Ng

uggj

subject to

L1gj = π1f1(x
gj) − f2(x

gj)λ21 g ∈ {1, 2}, j ∈ Ng

L2gj = π2f2(x
gj) − f1(x

gj)λ11 g ∈ {1, 2}, j ∈ Ng

uhgj =











1 if h = arg max{0, Lh′gj : h′ = 1, . . . , G}

0 o.w.
g, h ∈ {1, 2}, j ∈ Ng

∑

j∈Ng

uhgj ≤ ⌊αhgng⌋ h, g ∈ {1, 2}, h 6= g

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0

The following proposition gives conditions on the input data for pairs of entities from

different groups such that there does not exist a solution to the DAMIP where both entities

are correctly or incorrectly classified simultaneously. Figure 4 shows how a pair of entities

would be classified. For this particular pair of observations, they can be simultaneously

correctly classified, but cannot both be misclassified.
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both res. judgement

1 in res. judgement

2 in res. judgem
ent

both correct

both misclass

2 correct

1 correct1 correct

2 misclass

1 misclass
2 correct

λ21

λ12

Figure 4: A representation of outcomes for a pair of entities based on the values of λ12

and λ21. This particular pair of entities can be correctly classified when the λih values fall
in the green region. There are no positive values for the λih’s such that both entities are
misclassified.
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Proposition 2.0.1. If for two entities with different group membership, f1(x
1j)f2(x

2k) −

f2(x
1j)f1(x

2k) > 0, then there exist values for λ21 and λ12 for which both u11j = 1 and

u22k = 1. In other words, a solution exists with both entities correctly classified. Further-

more, there does not exist a solution with both u21j = 1 and u12k = 1 where both entities

are misclassified.

Conversely, if f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k) < 0, then values for the λ’s exist such

that both entities are misclassified, but there are no λ’s for which both entities are correctly

classified.

Proof. Suppose that f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k) > 0.

Case 1: Suppose π1f1(x
1j) ≥ π2f2(x

1j). Let λ12 = 0 and

π1f1(x
2k)

f2(x2k)
− π2 < λ21 ≤

π1f1(x
1j)

f2(x1j)
− π2

Note that such a value for λ21 is feasible because

π1f1(x
1j)

f2(x1j)
− π2 − (

π1f1(x
2k)

f2(x2k)
− π2) =

π1(f1(x
1j)f2(x

2k) − f1(x
2k)f2(x

1j))

f2(x2k)f2(x1j)

> 0

and π1f1(x1j)
f2(x1j)

− π2 ≥ 0 by the assumption for Case 1.

Using these λ’s, the modified posterior probabilities are

L11j = π1f1(x
1j) − f2(x

1j)λ21 > π1f1(x
1j) − f2(x

1j)(π1f1(x1j)
f2(x1j)

− π2) = π2f2(x
1j)

L21j = π2f2(x
1j) − f1(x

1j)λ12 = π2f2(x
1j)

L22k = π2f2(x
2k) − f1(x

2k)λ12 = π2f2(x
2k)

L12k = π1f1(x
2k) − f2(x

2k)λ21 < π1f1(x
2k) − f2(x

2k)(π1f1(x2k)
f2(x2k)

− π2) = π2f2(x
2k)

Therefore, L11j > L21j and L22k > L12k so that both entities are correctly classified.

37



Case 2: Now suppose π1f1(x
1j) < π2f2(x

1j). Let λ21 = 0 and

π2f2(x
1j)

f1(x1j)
− π1 < λ12 <

π2f2(x
2k)

f1(x2k)
− π1

A symmetric argument to that of Case I demonstrates that λ21 = 0 and the given

interval for λ12 are solutions such that both observations are correctly classified.

For the second part of the proposition, suppose that u21j = 1 and u12k = 1. Then

y1j = π1f1(x
1j) − λ21f2(x

1j) ≤ π2f2(x
1j) − λ12f1(x

1j)

y2k = π2f2(x
2k) − λ12f1(x

2k) ≤ π1f1(x
2k) − λ21f2(x

2k)

These inequalities are equivalent to

λ21 ≥
π1f1(x

1j) − π2f2(x
1j) + λ12f1(x

1j)

f2(x1j)

λ12 ≥
π2f2(x

2k) − π1f1(x
2k) + λ21f2(x

2k)

f1(x2k)

Therefore,

λ12 ≥
π2f2(x

2k) − π1f1(x
2k) + λ21f2(x

2k)

f1(x2k)

≥
π2f2(x

2k) − π1f1(x
2k) + π1f1(x1j)−π2f2(x1j)+λ12f1(x1j)

f2(x1j)
f2(x

2k)

f1(x2k)

=
π1(f1(x

1j)f2(x
2k) − f2(x

1j)f1(x
2k)) + λ12f1(x

1j)f2(x
2k)

f2(x1j)f1(x2k)

Rearranging,

λ12(f2(x
1j)f1(x

2k) − f1(x
1j)f2(x

2k)) ≥ π1(f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k))

which is possible only if f1(x
1j)f2(x

2k)− f2(x
1j)f1(x

2k) < 0. Thus, both entities cannot

be misclassified. A symmetric proof proves the converse case.
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The next proposition and corollary give necessary and sufficient conditions for training

observations from 2 groups to be separated by the DAMIP without error.

Proposition 2.0.2. In the two-group case, a solution exists with all entities correctly clas-

sified (and none misclassified) if and only if f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k) > 0 for every

pair of entities j from group 1 and k from group 2.

Proof. If a solution exists with all entities correctly classified and none misclassified, then

f1(x
1j)f2(x

2k)−f2(x
1j)f1(x

2k) ≥ 0 for every j, k from Proposition 2.0.1. If f1(x
1j)f2(x

2k)−

f2(x
1j)f1(x

2k) = 0 for some pair of entities j and k, then j and k are correctly classified if

y1j = π1f1(x
1j) − λ21f2(x

1j) > π2f2(x
1j) − λ12f1(x

1j)

y2k = π2f2(x
2k) − λ12f1(x

2k) > π1f1(x
2k) − λ21f2(x

2k)

These inequalities are equivalent to

λ21 <
π1f1(x

1j) − π2f2(x
1j) + λ12f1(x

1j)

f2(x1j)

λ12 <
π2f2(x

2k) − π1f1(x
2k) + λ21f2(x

2k)

f1(x2k)

Therefore, they are correctly classified if

λ12 <
π2f2(x

2k) − π1f1(x
2k) + λ21f2(x

2k)

f1(x2k)

<
π2f2(x

2k) − π1f1(x
2k) + π1f1(x1j)−π2f2(x1j)+λ12f1(x1j)

f2(x1j)
f2(x

2k)

f1(x2k)

=
π2f2(x

2k)f2(x
1j) − π1f1(x

2k)f2(x
1j) + π1f1(x

1j)f2(x
2k) − π2f2(x

1j)f2(x
2k) + λ12f1(x

1j)f2(x
2k)

f1(x2k)f2(x1j)

= λ12

which is a contradiction. Therefore, if a solution exists with all entities correctly classi-

fied, then f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k) > 0 for every pair of entities j and k.

If f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k) > 0 for every j and k, then either
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1. π1f1(x
1j) > π2f2(x

1j) for every j, or

2. π2f2(x
2k) > π1f1(x

2k) for every k

To demonstrate that at least one case must hold true, suppose that both conditions are

false. Then π1f1(x
1j) < π2f2(x

1j) for some j and π2f2(x
2k) < π1f1(x

2k) for some k. Thus

f1(x
1j)f2(x

2k) − f2(x
1j)f1(x

2k) <
π2

π1
f2(x

1j)
π1

π2
f1(x

2k) − f2(x
1j)f1(x

2k)

= f2(x
1j)f1(x

2k) − f2(x
1j)f1(x

2k)

= 0

This result contradicts the assumption. Therefore, at least one of the conditions holds.

Without loss of generality, suppose π1f1(x
1j) > π2f2(x

1j) for every j in group 1. Then set

λ12 = 0 and let

max
k

π1f1(x
2k)

f2(x2k)
− π2 < λ21 ≤ min

j

π1f1(x
1j)

f2(x1j)
− π2

The value for λ21 is feasible as in the proof of Proposition 2.0.1 because f1(x
1j)f2(x

2k)−

f2(x
1j)f1(x

2k) > 0 for all j and k and π1f1(x1j)
f2(x1j)

− π2 ≥ 0 for every j. Using these values for

the λ’s, L11j > L21j and L11j ≥ 0 for every j, and L22k > L12k and L22k ≥ 0 for every k.

Thus, every entity is correctly classified, and none are misclassified.

Corollary 2.0.3. In the two-group case, a solution exists with all entities correctly classified

(and none misclassified) if and only if the Bayesian classification rule correctly classifies

every entity from at least one of the groups.

Proof. The condition for the Bayesian classification to correctly classify all entities from at

least one of the groups is equivalent to the statement that

1. π1f1(x
1j) > π2f2(x

1j) for every j, or
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2. π2f2(x
2k) > π1f1(x

2k) for every k

This condition is equivalent to the condition f1(x
1j)f2(x

2k)−f2(x
1j)f1(x

2k) > 0 for every

j, k, and is therefore necessary and sufficient for the correct classification of all entities.

2.1 Two-group DAMIP without misclassification constraints

The next two propositions show that an optimal solution to the 2-group DAMIP with-

out misclassification constraints occurs along the line λ12 = 0 or λ21 = 0. They lay the

foundation for the algorithm for 2-group DAMIP without misclassification constraints.

Proposition 2.1.1. In the two-group case, at least one solution exists such that

1. The number of correctly classified entities is maximized, and

2. Either λ12 = 0 or λ21 = 0.

Proof. Suppose the assertion is false. Consider a solution where the maximum number of

entities are correctly classified. For this solution λ12 > 0 and λ21 > 0.

Case I: Let j∗ = arg min
j

{f1(x
1j) : j ∈ G}. Suppose π1f1(x

1j∗) ≤ π2f2(x
1j∗). Then let

λnew
21 = 0 and

λnew
12 =

π2f2(x
1j∗) − π1f1(x

1j∗)

f1(x1j∗)

For entities from group 1 that were correctly classified from before,

L11j − L21j = π1f1(x
1j) − f2(x

1j)λnew
21 − π2f2(x

1j) + f1(x
1j)λnew

12

= π1f1(x
1j) − π2f2(x

1j) + f1(x
1j)

π2f2(x
1j∗)

−
π1f1(x

1j∗)f1(x
1j∗)

=
π2(f1(x

1j)f2(x
1j∗) − f2(x

1j)f1(x
1j∗))

f1(x1j∗)

> 0
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The last inequality is due to the definition of j∗. Also note that L11j > 0, so that

all such entities j are correctly classified. For all entities from group 2 that were

previously correctly classified,

L22k − L12k = π2f2(x
2k) − f1(x

2k)λnew
12 − π1f1(x

2k) + f2(x
2k)λnew

21

=
π2(f2(x

2k)f1(x
1j∗) − f1(x

2k)f2(x
1j∗))

f1(x1j∗)

> 0

The last inequality is due to Proposition 2.0.1 and the fact that entities k and j∗ were

previously correctly classified. Therefore, all entities that were previously correctly

classified are correctly classified with the new λ values.

Case II: Let k∗ = arg min
k

{f2(x
2k) : k ∈ G}. Suppose π2f2(x

2k∗
) ≤ π1f1(x

2k∗
). Then let

λnew
12 = 0 and

λnew
21 =

π1f2(x
1k∗

) − π2f2(x
2k∗

)

f2(x2k∗)

By an argument symmetric to that for Case I, all entities that were previously correctly

classified are correctly classified with the new λ values.

Case III: Suppose for j∗ = arg min
j

{f1(x
1j) : j ∈ G} and k∗ = arg min

k
{f2(x

2k) : k ∈ G} that

π1f1(x
1j∗) ≥ π2f2(x

1j∗) and π2f2(x
2k∗

) ≥ π1f1(x
2k∗

). Then the Bayesian classification

rule correctly classifies all entities by setting λ12 = λ21 = 0.

Proposition 2.1.2. In the two-group case, for any solution that maximizes the number of

correctly classified entities, there are no entities placed in the reserved judgment region.

Proof. Suppose that the assertion is false, so that there exists a solution with at least one

entity placed in the reserved judgment class and the number of correctly classified entities

is maximized. Suppose also, without loss of generality, that an entity from group 1 is placed
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in the reserved judgment region and that j∗ = arg min
j

{f1(x
1j) : j ∈ G and j is classified in

the reserved judgment region}. Then

λ21 >
π1f1(x

1j∗)

f2(x1j∗)
and λ12 >

π2f2(x
1j∗)

f1(x1j∗)

Case I: Suppose π1f1(x
1j∗) ≤ π2f2(x

1j∗). Then let

λnew
21 = 0 and λnew

12 =
π2f2(x

1j∗) − π1f1(x
1j∗)

f1(x1j∗)

For entities that were previously correctly classified from group 1, L11j = π1f1(x
1j)−

f2(x
1j)λ21 ≥ 0, and therefore.

π1f1(x
1j∗)

f2(x1j∗)
< λ21 ≤

π1f1(x
1j)

f2(x1j)

which implies

π1f1(x
1j)

f2(x1j)
−

π1f1(x
1j∗)

f2(x1j∗)
> 0

⇒ f1(x
1j)f2(x

1j∗) − f1(x
1j∗)f2(x

1j) > 0

Then,

L11j − L21j = π1f1(x
1j) − f2(x

1j)λnew
21 − π2f2(x

1j) + f1(x
1j)λnew

12

= π1f1(x
1j) − π2f2(x

1j) + f1(x
1j)(

π2f2(x
1j∗) − π1f1(x

1j∗)

f1(x1j∗)
)

=
π2(f2(x

1j∗)f1(x
1j) − f2(x

1j)f1(x
1j∗))

f1(x1j∗)

> 0

Also note that L11j > 0 so that all entities from group 1 that were previously correctly

classified are still correctly classified. For entities from group 2 that were correctly

classified L22k = π2f2(x
2k) − f1(x

2k)λ12, so that
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π2f2(x
1j∗)

f1(x1j∗)
< λ12 <

π2f2(x
2k)

f1(x2k)

⇒ f2(x
2k)f1(x

1j∗) − f2(x
1j∗)f1(x

2k) > 0

Using this relation and λnew
12 and λnew

21 , L22k > 0 and L22k > L12k so that entities that

were correctly classified before are correctly classified with the new λ’s. For j∗, note

that

L11j∗ − L21j∗ = π1f1(x
1j∗) − f2(x

1j∗)λnew
21 − π2f2(x

1j∗) + f1(x
1j∗)λnew

12

= 0

Note that L11j∗ > 0. Because the inequalities were strict for the other entities,

the value of λnew
12 can be increased slightly so that entity j∗ is correctly classified.

Therefore, all entities that were correctly classified are correctly classified with the

new values for the λ’s. In addition, another entity j∗ is correctly classified, which

contradicts the assumption that the solution is optimal.

Case II: Suppose π1f1(x
1j∗) > π2f2(x

1j∗). Then let

λnew
12 = 0 and λnew

21 =
π1f1(x

1j∗) − π2f2(x
1j∗)

f2(x1j∗)

Then for entities previously correctly classified from group 1, f1(x
1j)f2(x

1j∗)−f1(x
1j∗)f2(x

1j) >

0, L11j > 0, and L11j > L21j . For entities that were correctly classified from group

2, f2(x
2k)f1(x

1j∗) − f1(x
2k)f2(x

1j∗) > 0, L22k > 0, and L22k > L12k. For j∗,

L11j∗ = L21j∗ . Therefore, a solution exists with more entities correctly classified,

a contradiction.
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The following algorithm iterates through possible solutions to the 2-group DAMIP with-

out misclassification constraints by setting λ12 = 0 or λ21 = 0.

Algorithm 2.1.3. 1. Let S = {s : π1P{entity s assigned to group 1} > π2P{entity s

assigned to group 2}}. Sort S in ascending order by P{s assigned to group 1} (and

reassign indices). For each s ∈ S, calculate

λs
12 =

π2P{s assigned to group 2} − π1P{s assigned to group 1}

P{s assigned to group 1}

Let T = {t : π1P{t assigned to group 1} < π2P{t assigned to group 2}}. Sort T

ascending order by P{t assigned to group 2} (and reassign indices). For each t ∈ T ,

calculate

λt
21 =

π1P{t assigned to group 1} − π2P{t assigned to group 2}

P{t assigned to group 2}

Set λ0
12 = λ0

21 = 0.

2. Set λ∗
12 = λ∗

21 = 0.

3. If every entity from group 1 has π1f1(x
1j) ≥ π2f2(x

1j) and every entity from group 2

has π2f2(x
2k) ≥ π1f1(x

2k), then set optimal = number of entities and stop.

4. optimal = 0

5. for (s = 1; s ≤ |S|; + + s)

• currnumcorrect = 0

• Choose a value for λ12 such that λs−1
12 < λ12 < λs

12.

• for each (entity j from group 1)

– if (f1(x
1j) ≥ P{s assigned to group 1}), ++currnumcorrect

• for each (entity k from group 2)

– if (f2(x
2k) ≥ P{s − 1 assigned to group 2}), ++currnumcorrect
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• if (optimal < currnumcorrect)

– optimal = currnumcorrect

– λ∗
12 = λ12

6. for (t = 1; t ≤ |T |; + + t)

• currnumcorrect = 0

• Choose a value for λ21 such that λt−1
21 < λ21 < λt

21.

• for each (entity j from group 1)

– if (f1(x
1j) ≥ P{t − 1 assigned to group 1}), ++currnumcorrect

• for each (entity k from group 2)

– if (f2(x
2k) ≥ P{t assigned to group 2}), ++currnumcorrect

• if (optimal < currnumcorrect)

– optimal = currnumcorrect

– λ∗
21 = λ21, λ∗

12 = 0

The next proposition shows that the algorithm terminates in O(N2) operations.

Proposition 2.1.4. If f1(x
1j)f2(x

2k)−f2(x
1j)f1(x

2k) 6= 0 for all j and k, then Algorithm 2.1.3

finds a solution such that the maximum number of entities is correctly classified. The algo-

rithm terminates in O(N2) time, where N is the number of entities.

Proof. According to Proposition 2.1.1, there exists a solution such that the number of cor-

rectly classified entities is maximized and either λ12 = 0 or λ21 = 0. At these points, no

entities are placed in the reserved judgment region, as shown in Proposition 2.1.2. Step 1

of the algorithm calculates the endpoints of intervals for the λ’s over which an entity is cor-

rectly classified as defined by L11j ≥ L21j and L22k ≥ L12k. The algorithm chooses points

in the interior of the endpoints to avoid values for which an entity is both correctly classi-

fied and misclassified. The optimal λ’s are chosen by checking which entities are correctly

classified over an interval.
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The sorting of the entities in step 1 takes O(N log N) using standard sorting methods.

A total of N intervals for the λ′s is checked, and for each interval, the classification state

of each entity is checked. Therefore, the algorithm finds an optimal solution in O(N2)

time.

2.2 Two-group DAMIP with misclassification constraints

We begin by presenting an algorithm for the two-group DAMIP with misclassification con-

straints, which is an extension of the algorithm for the case with no misclassification con-

straints. The subsequent analysis proves that the algorithm is correct and runs in O(N2)

time.

Algorithm 2.2.1. Given α1, α2 the tolerance for misclassified entities for groups 1 and 2,

respectively.

1. Let S = {s : π1P{entity s assigned to group 1} > π2P{entity s assigned to group 2}}.

Sort S in ascending order by P{s assigned to group 1} (and reassign indices).

Let T = {t : π1P{t assigned to group 1} < π2P{t assigned to group 2}}. Sort T

ascending order by P{t assigned to group 2} (and reassign indices).

2. Set optimal = 0, λ∗
12 = λ∗

21 = 0

3. If every entity from group 1 has π1f1(x
1j) ≥ π2f2(x

1j) and every entity from group 2

has π2f2(x
2k) ≥ π1f1(x

2k), then set optimal = number of entities, λ∗
12 = λ∗

21 = 0 and

stop.

4. for (s = 1; s ≤ |S|; + + s)

(a) Set currnumcorrect1 = currnumcorrect2 = curnummisclass1 = curnummisclass2 =

currresjudgment1 = currresjudgment2 = saved1 = saved2 = 0

(b) for each (entity j from group 1)

• if (f1(x
1j) ≥ P{s assigned to group 1}), ++currnumcorrect1

• else, ++currnummisclass1
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(c) for each (entity k from group 2)

• if (f2(x
2k) ≥ P{s − 1 assigned to group 2}), ++currnumcorrect2

• else, ++currnummisclass2

(d) for (s
′
= s; s

′
≤ |S|; + + s

′
)

• if (saved1 = currnummisclass1 − α1), set j∗ = entity s
′
and s

′
= |S| + 1

• if (entity s
′
is in group 1), ++saved1; else, ++currresjudgment2

(e) for (s
′
= s − 1; s

′
> 0; −− s

′
)

• if (saved2 = currnummisclass2 − α2), set k∗ = entity s
′
and s

′
= 0

• if (entity s
′
is in group 2), ++saved2; else, ++currresjudgment1

(f) for (t
′
= 1; t

′
≤ |T |; + + t

′
)

• if (saved2 = currnummisclass2 − α2), set k∗ = entity t
′
and t

′
= |T | + 1

• if (entity t
′
is in group 2), ++saved2; else, ++currresjudgment1

(g) if ((saved1 =currnummisclass1 − α1) and (saved2 =currnummisclass2 − α2) and

(optimal < currnumcorrect1 + currnumcorrect2 - currresjudgment1 - currresjudgment2))

• optimal = currnumcorrect1 + currnumcorrect2 - currresjudgment1 - currresjudgment2

• Set λ∗
12 = π2f2(x1j∗)

f1(x1j∗)
+ ǫ, λ∗

21 = π1f1(x2k∗)

f2(x2k∗)
+ ǫ

5. for (t = 1; t ≤ |T |; + + t)

(a) Set currnumcorrect1 = currnumcorrect2 = curnummisclass1 = curnummmisclass2 =

currresjudgment1 = currresjudgment2 = saved1 = saved2 = 0

(b) for each (entity j from group 1)

• if (f1(x
1j) ≥ P{t − 1 assigned to group 1}), ++currnumcorrect1

• else, ++currnummisclass1

(c) for each (entity k from group 2)

• if (f2(x
2k) ≥ P{t assigned to group 2}), ++currnumcorrect2

• else, ++currnummisclass2
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(d) for (t
′
= t − 1; t

′
> 0; −− t

′
)

• if (saved1 = currnummisclass1 − α1), set j∗ = entity t
′
and t

′
= 0

• if (entity t
′
is in group 1), ++saved1; else, ++currresjudgment2

(e) for (s
′
= 1; s

′
≤ |S|; + + s

′
)

• if (saved2 = currnummisclass2 − α2), set k∗ = entity s
′
and s

′
= |S| + 1

• if (entity s
′
is in group 1), ++saved1; else, ++currresjudgment2

(f) for (t
′
= t; t

′
≤ |T |; + + t

′
)

• if (saved2 = currnummisclass2 − α2), set k∗ = entity t
′
and t

′
= 0

• if (entity t
′
is in group 2), ++saved2; else, ++currresjudgment1

(g) if ((saved1 =currnummisclass1 − α1) and (saved2 =currnummisclass2 − α2) and

(optimal < currnumcorrect1 + currnumcorrect2 - currresjudgment1 - currresjudgment2))

• optimal = currnumcorrect1 + currnumcorrect2 - currresjudgment1 - currresjudgment2

• Set λ∗
12 = π2f2(x1j∗)

f1(x1j∗)
+ ǫ, λ∗

21 = π1f1(x2k∗)

f2(x2k∗)
+ ǫ

Note: Setting the λ’s involves adding an ǫ to the RHS value, where ǫ is chosen sufficiently

small so that the classification of at most one observation changes.

The algorithm iterates through solutions restricted to λ12 = 0 or λ21 = 0 and then shifts

the restricted λ from zero until the misclassification constraints are satisfied. The next two

lemmas characterize the behavior of the classification as the restricted λ’s are shifted. The

first lemma gives conditions under which entities are placed in the reserved judgment region,

and the second lemma gives conditions under which observations are correctly classified and

misclassified. Figure 5 can be useful for visualizing these lemmas.
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1 correct

1.0 2.0 3.0

1.0

2.0

6/11

p_11j = 1/5

p11j = 7/13

p11j = 7/8

p22k =

p22k = 1/2

p11j = 2/3

p22k = 3/10
p11j = 4/5

λ12

λ21

Figure 5: A graphical representation of several entities in the λ12-λ21 space. As in Figure 4,
input data define regions in which entities are correctly classified, misclassified, or placed
in the reserved judgment region. The arrows point to the region for which an entity is
correctly classified. For a nonzero λ12 (λ21), increasing λ21 (λ12) from zero successively
correctly classifies entities from group 2 (group 1), misclassifies entities from group 1 (group
2), and eventually places entities in the reserved judgment region.
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Lemma 2.2.2. Suppose f1(x
1j

′

) > f1(x
2k

′

) for entities j
′
from group 1 and k

′
from group

2, and both are placed in the reserved judgment region. Then entities from group 1 with

f1(x
2k

′

) < f1(x
1j) < f1(x

1j
′

) and entities from group 2 with f2(x
1j

′

) < f2(x
2k) < f2(x

2k
′

)

are also placed in the reserved judgment region.

If f1(x
1j

′

) < f1(x
2k

′

) and both entities are placed in the reserved judgment region, then

entities from group 1 with f1(x
1j

′

) < f1(x
1j) < f1(x

2k
′

) and entities from group 2 with

f2(x
2k

′

) < f2(x
2k) < f2(x

1j
′

) are also placed in the reserved judgment region.

Proof. Suppose f1(x
1j

′

) > f1(x
2k

′

) and j
′
and k

′
are placed in the reserved judgment region.

Then f2(x
1j

′

) < f2(x
2k

′

) and

λ21 > π1f1(x1j
′

)

f2(x1j
′
)

> π1f1(x2k
′

)

f2(x2k
′
)

λ12 > π2f2(x2k
′

)

f1(x2k
′
)

> π2f2(x1j
′

)

f1(x1j
′
)

For entities from group 1 with f1(x
2k

′

) < f1(x
1j) < f1(x

1j
′

),

λ21 > π1f1(x1j
′

)

f2(x1j
′
)

> π1f1(x1j)
f2(x1j)

> π1f1(x2k
′

)

f2(x2k
′
)

λ12 > π2f2(x2k
′

)

f1(x2k
′
)

> π2f2(x1j)
f1(x1j)

> π2f2(x1j
′

)

f1(x1j
′
)

These constraints on λ21 and λ12 force L11j < 0 and L21j < 0, placing entities j in the

reserved judgment region. And for entities from group 2 with f2(x
1j

′

) < f2(x
2k) < f2(x

2k
′

),

λ21 > π1f1(x1j
′

)

f2(x1j
′
)

> π1f1(x2k)
f2(x2k)

> π1f1(x2k
′

)

f2(x2k
′
)

λ12 > π2f2(x2k
′

)

f1(x2k
′
)

> π2f2(x2k)
f1(x2k)

> π2f2(x1j
′

)

f1(x1j
′
)

These constraints on λ21 and λ12 force L22k < 0 and L12k < 0, placing entities k in

the reserved judgment region. A similar argument shows that the assertion holds when

f1(x
1j

′

) < f1(x
2k

′

).

Lemma 2.2.3. If for two entities with the same group membership, the entity with the lower

correct classification probability is correctly classified, then the entity with the higher correct

classification probability is also correctly classified. If the entity with the higher correct
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classification probability is misclassified, then the entity with lower correct classification

probability is also misclassified.

For example, if f1(x
1j1) > f1(x

1j2), and entity j2 is correctly classified, then entity j1 is

correctly classified. If entity j1 is misclassified, then entity j2 is correctly classified.

Proof. Suppose, without loss of generality, that j1 and j2 are in group 1 and f1(x
1j1) >

f1(x
1j2) and entity j2 is correctly classified. Then,

π1f1(x
1j2) − f2(x

1j2)λ21 ≥ π2f2(x
1j2) − f1(x

1j2)λ12

But π1f1(x
1j1) − f2(x

1j1)λ21 > π1f1(x
1j2) − f2(x

1j2)λ21 and π2f2(x
1j2) − f1(x

1j2)λ12 >

π2f2(x
1j1) − f1(x

1j1)λ12, so that

π1f1(x
1j1) − f2(x

1j1)λ21 ≥ π2f2(x
1j1) − f1(x

1j1)λ12

so that L11j1 ≥ L21j1 . Also,

λ21 <
π1f1(x

1j2)

f2(x1j2)
<

π1f1(x
1j1)

f2(x1j1)

so that L11j1 ≥ 0. Therefore, entity j1 is correctly classified. A symmetric argument shows

that if entity j1 is misclassified, then entity j2 is misclassified.

The following proposition follows from the lemmas and algorithm above, and is the main

result of this chapter. It states that the 2-group DAMIP can be solved in O(N2) time.

Proposition 2.2.4. Algorithm 2.2.1 finds an optimal solution to the problem of maximizing

the number of correctly classified entities such that the number of misclassified entities from

group 1 is no more than α1 and the number of misclassified entities from group 2 is no more

than α2. The algorithm runs in O(N2) time, where N is the number of entities.

If a tolerance α is given for the total number of misclassified entities, an optimal solution

can be found in O(N3) time.

Proof. The algorithm begins by finding a solution with one of the λ’s set to 0. The minimum

number of entities from groups 1 and 2 are placed in the reserved judgment by increasing

the λ’s in order to reduce the number of misclassified entities to the tolerance level.
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For each group i, the loops (d), (e), and (f) search for the currnummisclassi−αi entities

from group i that are misclassified. Due to Lemma 2.2.2, finding the misclassified entities

with the largest correct classification probabilities minimizes the number of entities placed

in the reserved judgment region that were previously correctly classified. These are the

entities that are “saved”. Further, due to Lemma 2.2.3, the number of entities that remain

correctly classified is maximized because the λ’s are kept at the lowest levels possible.

Steps 4 and 5 together iterate through each entity. The inner loops (b), (c), (d), (e),

(f) separately check each entity at most once. Therefore the complexity of the algorithm is

O(N2).

If a tolerance α is given for the total number of misclassified entities, then the algorithm

can be run for every possible value of α1 = 1−α2, which is N times. Therefore, an optimal

solution can be found in O(N3) time.

chapter 2
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Chapter III

Formulating and Solving the Mixed-Integer Programming

Formulation of the DAMIP

The input to the mixed-integer programming formulation of the DAMIP is

• A set of groups G.

• Estimates of prior probabilities πh describing the likelihood that an entity with un-

known attribute values belongs to group h ∈ G.

• A set of entities Nh for each group h ∈ G such that the entities in Nh are known to

belong to group h.

• The conditional group density functions evaluated at the points representing each of

the entities. The conditional group density function for observation j with known

group membership g for allocation to group h is written as fh(xgj).

• Misclassification limits αhg ∈ [0, 1] that represent the highest proportion of entities

from group h that can be allocated to group g.

The variables are

uhgj =











1 if entity xgj is allocated to group h

0 o.w.

Lhgj = modified posterior probability for entity xgj to be allocated to group h

ygj = maximum modified posterior probability for entity xgj
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λih = linear coefficient determining the modified posterior probabilities

The objective of the optimization model is to select λih’s such that the number of

correctly classified training entities is maximized subject to limits on the number of mis-

classified entities. Note that the λih variables completely determine the values of all other

variables.

3.1 Formulations

Consider the following formulation of the mixed-integer program associated with the DAMIP

which is a generalization of Model 1 of Gallagher et. al [35].

max
∑

g∈G

∑

j∈Ng

uggj

subject to

Lhgj = πhfh(xgj) −
∑

i∈G
i6=h

fi(x
gj)λih g, h ∈ G, j ∈ Ng

uhgj =











1 if h = arg max{0, Lh′gj : h′ = 1, . . . , G}

0 o.w.
g, h ∈ G, j ∈ Ng

∑

j∈Ng

uhgj ≤ ⌊αhgng⌋ h, g ∈ G, h 6= g

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0

where G = G and |Ng| = ng.

The model explicitly allocates an observation xgj to a group h based on the maximum

modified posterior probability max
h

Lhgj . A nonlinear mixed-integer programming formula-

tion of the above math program is
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maximize
∑

g∈G

∑

j∈Ng

uggj

subject to

Lhgj = πhfh(x) −
∑

i∈G
i6=h

fi(x)λih g, h ∈ G, j ∈ Ng

ygj = max{0, Lhgj : h = 1, . . . , G} g ∈ G, j ∈ Ng (1)

ygj − Lhgj ≤ M(1 − uhgj) g, h ∈ G, j ∈ Ng (2)

ygj ≤ M(1 − u0gj) g ∈ G, j ∈ Ng (3)

ygj − Lhgj ≥ ǫ(1 − uhgj) g, h ∈ G, j ∈ Ng (4)

∑

0,h∈G
uhgj = 1 g ∈ G, j ∈ Ng (5)

∑

j∈Ng

uhgj ≤ ⌊αhgng⌋ h, g ∈ G, h 6= g (6)

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}

Note that the second formulation is not as precise as the first formulation due to the

introduction of the ǫ constants (4). The relative difference in modified posterior probability

between groups to which an entity is allocated and groups to which it is not allocated

is bounded below by ǫ. In other words, uhgj = 0 implies ygj ≥ Lhgj + ǫ which is an

approximation of ygj > Lhgj .

These ǫ constants, though a source of imprecision, are at the same time the source

of stability of the classification rule derived by the DAMIP (see Section 4.2). Adjusting

the ǫ values will produce classification rules that are robust in the sense that there are

buffers between regions of likelihood function values that define the groups. Adding a set of

constraints ygj ≥ ǫuhgj for each h, g, j further enhances the stability of solutions produced

by the DAMIP by placing a buffer between the reserved judgment region and the regions

corresponding to the groups.

The nonlinearity of the mixed-integer program can be removed by simply removing the

max constraints (1) because they are redundant to the formulation.

Proposition 3.1.1. The max constraints (1) are redundant.
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Proof. Suppose that the constraints (1) are omitted and a solution x = [L, y, λ, u] is ob-

tained. Suppose further that one of the max constraints (1) is violated for some entity xgj

(the constraints can be violated for additional entities as well). Then y > max{0, Lhgj : h =

1, . . . , G}. The big M constraints (2) and (3) force uhgj = 0 for h = 0, 1, . . . , G. These values

for the uhgj ’s violates the constraint (5) u0gj +
∑

h∈G
uhgj = 1. Therefore, the max constraints

will never be violated by an otherwise feasible solution, and they are redundant.

The objective function and constraints (2) and (4) ensure that uh′gj = 1 if and only

if ygj = Lh′gj = max{0, Lhgj : h = 1, . . . , G}. Constraints (2) and (4) also dictate that

uhgj = 0 if and only if ygj ≥ Lhgj + ǫ. The objective and constraint (3) force the condition

u0gj = 1 if and only if ygj = 0 and Lhgj < 0. Constraint (5) forces the classification of each

entity to exactly one group.

The constraints (5) u0gj +
∑

h∈G
uhgj = 1 provide that an observation be allocated to

exactly one group. The reserved judgment region is dedicated to observations for which no

information about group membership is given by the Lhgj ’s (i.e., Lhgj < 0 ∀ h).

The constraints (6) are the misclassification constraints. Limits can be placed on the

number of misclassified training entities with the intention of reducing the probability of

misclassification of test observations. In general, tighter limits will encourage the place-

ment of more entities in the reserved judgment region and reduces the number of correctly

classified entities.

The removal of the nonlinearity and stability considerations lead us to the following

model which will be the subject of the remainder of this work.
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maximize
∑

g∈G

∑

j∈Ng

uggj

subject to

Lhgj = πhfh(xgj) −
∑

i∈G
i6=h

fi(x
gj)λih g, h ∈ G, j ∈ Ng

ygj − Lhgj ≤ M(1 − uhgj) g, h ∈ G, j ∈ Ng

ygj ≤ M(1 − u0gj) g ∈ G, j ∈ Ng

ygj ≥ ǫuhgj g, h ∈ G, j ∈ Ng

ygj − Lhgj ≥ ǫ(1 − uhgj) g, h ∈ G, j ∈ Ng

∑

0,h∈G
uhgj = 1 g ∈ G, j ∈ Ng

∑

j∈Ng

uhgj ≤ ⌊αhgng⌋ h, g ∈ G, h 6= g

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}

The DAMIP is a process that involves estimations of the conditional group density function

values fh(xgj) and subsequent solution of this mixed-integer program. Unless explicitly

stated otherwise, the mixed-integer program will be referred to as the DAMIP for the

remainder of this chapter. The mixed-integer program is solved for the training set only,

so the correct classification of each observation is known. Observation xgj refers to the jth

observation with correct classification to group g. The values fh(xgj) should be considered

known constants in the mixed-integer program.

Note that the Lhgj variables can be substituted out (and we will assume that they are).

The formulation contains the Lhgj for ease of reading only.

The constraints that contain M as coefficients will be referred to as big-M constraints;

those with ǫ coefficients will be ǫ or little ǫ constraints; the constraints requiring the allo-

cation of each observation to exactly one group will be the required allocation constraints;

the constraints with αhg coefficients will be misclassification constraints.
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3.2 The complexity of DAMIP and related problems

3.2.1 LINEAR MAX SAT and its complexity

Previously, Johnson and Preparata [49] showed that CLOSED HEMISPHERE is NP-

complete. A statement of the problem is as follows.

CLOSED HEMISPHERE. Given a set of p linear inequalities

{aix ≤ 0 : i = 1, 2, . . . , p, ai ∈ Qd}

and an integer r, does there exist a vector x∗ ∈ Qd satisfying r of the p inequalities?

Consider q sets of k linear functions in x with rational coefficients and right-hand sides.

Suppose that in each set of functions, there is one function that corresponds to a true value

and the other functions are false. Given values for x, a set of functions is satisfied if the

true function has greater value than the other k − 1 functions. Based on these definitions,

consider the problem LINEAR MAX SAT is stated as follows.

LINEAR MAX SAT. Suppose q sets of k linear functions in x with rational data are

given such that in each set there is one function that corresponds to a true value and the

remaining functions are false. Does there exist a rational vector x∗ ∈ Qd such that s sets

of linear functions are satisfied?

Proposition 3.2.1. For a fixed value of k, LINEAR MAX SAT is NP-complete.

Proof. Given an instance of LINEAR MAX SAT and a vector x ∈ Qd, the vector can be

verified by determining the values of the qk linear functions and counting the number of

satisfied sets. Determining the values of the qk linear inequalities is equivalent to performing

a matrix-vector multiplication, and is therefore polynomial in q and k. Determining if a set

is satisfied takes O(k − 1) time which is the time to compare the true function value to the

other k − 1 function values. Counting the number of satisfied sets takes O((k − 1)q). The

input is polynomial in q, k, and d. Thus, LINEAR MAX SAT can be verified in polynomial

time, and is in NP.

To show that LINEAR MAX SAT is NP-hard, we reduce CLOSED HEMISPHERE to

LINEAR MAX SAT. Suppose an instance of CLOSED HEMISPHERE is given with p linear
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rational inequalities in d variables and an integer r < p. Each inequality will correspond

to a set of k linear functions in the LINEAR MAX SAT problem. For each inequality,

create k − 1 linear functions such that the coefficients are distinct, positive multiples of

the coefficients of the inequality and the constant term is 0. The zero function is the true

function and the others have value false in each set.

A vector x ∈ Qd satisfies r of the p rational linear inequalities if and only if the zero

function is the maximum function in r of the p sets of linear functions. Therefore LINEAR

MAX SAT ≤P CLOSED HEMISPHERE.

Note that every variable x can be written as the difference of two nonnegative variables,

so that it can be shown that LINEAR MAX SAT with nonnegative variables is also NP-

complete.

Also, by the same principle, LINEAR MAX SAT with functions having only positive

coefficients is NP-complete. As an illustration, suppose that function 1, l1(x) =
d
∑

j=1
a1jxj +

b1, is the true function and function 2, l2(x) =
d
∑

j=1
a2jxj + b2, is a false function in the same

set. The set of functions is satisfied only when l1(x) ≥ l2(x), or equivalently,

d
∑

j=1

a1jxj −
d
∑

j=1

a2jxj ≥ b1 − b2

⇒
d
∑

j=1

(a1j − a2j)xj ≥ b1 − b2

The differences a1j − a2j and b1 − b2 can be rewritten in terms of differences between

nonnegative numbers. The functions f1 and f2 can therefore be rewritten with nonnegative

data. LINEAR MAX SAT with nonnegative variables and nonnegative data is also NP-

complete.

3.2.2 The complexity of DAMIP

DAMIP is a special case of LINEAR MAX SAT with nonnegative variables, nonnegative

data, and a particular variable structure. A statement of the problem DAMIP is as follows.
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DAMIP. Suppose N observations, each belonging to one of G groups; prior probabilities

{πh : h ∈ G}; and conditional group density function values for each observation-group

combination {fh(xgj) : h, g ∈ G, j ∈ Ng} are given. Do there exist values for {λih : i ∈

G, h ∈ G, i 6= h} such that at least s observations are correctly classified according to the

modified posterior probabilities?

For an observation xgj , g is the group corresponding to a correct classification of the

observation. With each observation-group combination, there is associated a modified pos-

terior probability, which is a linear function in the λih’s. The modified posterior probability

for observation xgj for allocation to group h is

Lhgj = πhfh(xgj) −
∑

i6=h

fi(x
gj)λih

An observation is allocated to the group h′ for which Lh′gj = max{Lhgj : h = 1, . . . , G}.

If all of the modified posterior probabilities are negative for an observation, that observation

is not classified.

For each observation xgj , the modified posterior probability function Lggj is the analogue

of the true function, and the functions Lhgj , h 6= g are analogous to the false functions in a

set of linear functions in LINEAR MAX SAT. The linear functions have a particular variable

structure, as defined by the modified posterior probabilities. INDEPENDENT SET can be

reduced to DAMIP to show that DAMIP is NP-hard.

Proposition 3.2.2. DAMIP is NP-complete.

Proof. Suppose an instance of DAMIP with G groups and N observations is given, along

with values of the G(G− 1) λih variables. The values of the NG modified posterior proba-

bility functions can be found with a matrix vector calculation and is therefore polynomial

in N and G. Determining if an observation is given the correct classification (i.e., the ap-

propriate modified posterior probability is larger than the others for that observation) takes

O(G−1) time. Counting the number of correctly classified observations takes O(N(G−1))

time. Therefore, DAMIP can be verified in polynomial time and is in NP.

Suppose an instance of INDEPENDENT SET is given for a graph with |V | nodes and

61



|E| edges in an adjacency-list representation, and the problem is to determine if there exists

an independent set of size s in the graph. The problem can be reduced to DAMIP with

G = |V | + 1 groups and N = |V | observations.

For each node in the graph i = 1, 2, . . . , |V |, create an observation xi1 belonging to group

i. Further, create one extra group z. If a node i is adjacent to no other nodes, then let

fi(x
i1) = 1 and fj(x

i1) = 0 for j 6= i. Otherwise, if a node is adjacent to a set of nodes S,

let fi(x
i1) = pi, fk(x

i1) = 2pi for k ∈ S, fz(x
i1) = q, and fj(x

i1) = 0 for j /∈ S and j 6= i

where pi = 1
1+q+2|S| so that

∑

j∈G

fj(x
i1) = fi(x

i1) +
∑

k∈S

fk(x
i1) + fz(x

i1) = 1

(Note that an appropriate value for q for the node with the highest degree will work for

all other nodes.) Finally, set all of the prior probabilities πh to 1/G. The corresponding

DAMIP problem is to determine if values exist for the G(G−1) = (|V |+1)|V | λih variables

such that at least s of the observations are correctly classified according to the maximum

posterior probabilities for each observation.

A solution to INDEPENDENT SET is a set of s or more nodes with no edges between

them. The corresponding observations can be correctly classified in the DAMIP instance.

Because of the way that the conditional probabilities are assigned, if two nodes are not

adjacent to one another, then their simultaneous correct classification is always possible.

For example, suppose that nodes 1 and 2 are not adjacent to one another. Observation

11 is correctly classified if L111 = max{Lg11 : g = 1, 2, . . . G}. For nodes g not adjacent

to node 1, Lg11 ≤ 0 because fg(x
11) = 0. To correctly classify observation 11, the λih

variables for nodes h adjacent to 1 should be increased until L111 is the maximum posterior

probability. Increasing λih variables for h adjacent to 1 only decreases the likelihood that

observations are placed in group h. Because nodes 1 and 2 are not adjacent, increasing

these λih variables can only help the correct classification of observation x21, because the

likelihood of placing observation x21 in h decreases also. In short, the correct classification of

observations x11 and x21 are independent of one another. Therefore, given an independent

set of at least s nodes, there exist values for the λih variables such that all observations are
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correctly classified.

A solution to DAMIP is a set of values for the λih variables such that at least s of the

observations are correctly classified. The correctly classified observations correspond to an

independent set of size s in the original graph.

Suppose, to the contrary, that two observations 11 and 21 are correctly classified and

correspond to adjacent nodes in the graph. Then a necessary and sufficient condition for

an edge in the conflict graph of the DAMIP (see Proposition 3.5.2, condition 1) reduces to

π2f2(x
21) − π1f1(x

21) − π2f2(x
11)

fa(x
21)

fa(x11)
+ π1f1(x

11)
fb(x

21)

fb(x11)
< 0

where fa(x21)
fa(x11)

= max
g 6=1

fg(x21)
fg(x11)

and fb(x
11)

fb(x21)
= max

g 6=2

fg(x11)
fg(x21)

. By the manner in which the

conditional probabilities were assigned, note that

fa(x
21)

fa(x11)
≥

fz(x
21)

fz(x11)
= 1

and

fb(x
11)

fb(x21)
≥

fz(x
11)

fz(x21)
= 1

Then the condition holds because

π2f2(x
21) − π1f1(x

21) − π2f2(x
11)fa(x21)

fa(x11)
+ π1f1(x

11)fb(x
21)

fb(x11)

≤ (1/G)p2 − (1/G)(2p2) − (1/G)(2p1) + (1/G)p1

= (1/G)(−p1 − p2)

< 0

Therefore, observations 11 and 21 cannot be simultaneously correctly classified, a con-

tradiction. The set of correctly classified observations corresponds to an independent set

on the original graph.

DAMIP with misclassification limits is a problem that places limits on the number of

observations that can be incorrectly allocated between each pair of groups. DAMIP can be

reduced to DAMIP with misclassification limits by simply using limits of 100%. DAMIP
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with misclassification limits is in NP, as checking that the limits are satisfied takes linear

time in the number of observations, which is added to the time needed to verify a potential

solution to DAMIP. Therefore, DAMIP with misclassification limits is NP-complete.

3.3 Dimension

The following proposition and corollary characterize the dimension of the DAMIP when the

misclassification constraints are removed and certain restrictions are placed on the data.

Proposition 3.3.1. Suppose that the following three conditions hold

1. M > max
g∈G

{max
h∈G\g

πhfh(xgj) − (G − 2)πgfg(x
gj)} (see Proposition 3.6.3).

2. For every pair of entities xmn and xst and every pair of groups a and b,

fa(x
mn)

fb(xmn)
6=

fa(x
st)

fb(xst)

3. fh(xgj) 6= 0 for all h, g, and j

and the DAMIP has no misclassification constraints. Then there exists an ǫ such that the

equality set of the polyhedron defined by the constraints is comprised of the required allocation

constraints
∑

0,h∈G

uhgj = 1 g ∈ G, j ∈ Ng

Proof. Consider the null space. Let µgj be multipliers for the ygj ’s, let ηih be multipliers

for the λih’s, and let γhgj be multipliers for the uhgj ’s. Then for a constant c, the null space

is the set of multipliers such that

∑

gj

µgjygj +
∑

ih

ηihλih +
∑

hgj

γhgjuhgj + c = 0 (1)

for all feasible points. Consider the following feasible point that places all observations in

the reserved judgment region.

ygj = 0 ∀ g, j; λih = max
gj

πhfh(xgj)

fi(xgj)
; u0gj = 1 ∀ g, j; uhgj = 0, h 6= 0 (a)
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For this point,
∑

ih

ηih

(

max
gj

πhfh(xgj)

fi(xgj)

)

+
∑

gj

γ0gju0gj + c = 0 (2)

For each λih in turn, create new feasible points by adding a quantity δ > 0 such that all

entities are still placed in the reserved judgment region. For example, for λ21, the new

feasible point is

ygj = 0 ∀ g, j; λ21 = max
gj

π1f1(x
gj)

f2(xgj)
+ δ; λih = max

gj

πhfh(xgj)

fi(xgj)
, ih 6= 21;

u0gj = 1 ∀ g, j; uhgj = 0, h 6= 0

The point implies that

η21

(

max
gj

πhfh(xgj)

fi(xgj)
+ δ

)

+
∑

ih6=21

ηih max
gj

πhfh(xgj)

fi(xgj)
+
∑

gj

γ0gju0gj + c = 0

The difference between this equation and (2) implies that

δη21 = 0 ⇒ η21 = 0

The same procedure can be repeated for each λih, so that ηih = 0 for all i, h. From the

point (a), we have that
∑

gj

γ0gj + c = 0

Consider again point (a). Create a new feasible point by setting λi1 = 0, i 6= 2, and

reducing λ21 until an entity, say xmn, has ymn > 0. Then, decrease λ21 by a small positive

quantity such that ygj = 0 for gj 6= mn and all observations remain in the reserved judgment

region. The difference in the points implies that µmn = 0. Such values exist for λ21 because

of the conditions on the data.

Continue to decrease λ21 in pairs of decrements such that the classification of observa-

tions does not change and the number of observations with ygj = 0 remains constant. The

differences in the pairs of points imply that µgj = 0 for all observations xgj .

Return again to point (a). Set λi1 = 0, i 6= 2 and reduce λ21 until an entity is placed in

group 1. Suppose the entity is xmn. Then the new point is
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ygj = ζ ∀ g, j;

λ21 =
π1f1(x

mn)

f2(xmn)
−

ζ

f2(xmn)
, λi1 = 0, i 6= 2,

λih = min
gj

πhfh(xgj)

fi(xgj)
, h 6= 1;

u1mn = 1, u0mn = 0

u0gj = 1 gj 6= mn

uhgj = 0, gj 6= mn (b)

for some ζ > ǫ. Because the µgj ’s and ηih’s are all 0 and
∑

gj
γ0gj + c = 0, this point implies

that

∑

gj

γ0gj − γ0mn + γ1mn + c = −γ0mn + γ1mn = 0

Now take point (b) and create a new feasible point by decreasing λ21 until a second

entity is placed in group 1. Suppose the second entity is xst. Then the new point has values

u1mn = 1, u1st = 1, u0mn = 0, u0st = 0

u0gj = 1 gj /∈ {mn, st}

uhgj = 0, gj /∈ {mn, st}

This new point implies

∑

gj

γ0gj − γ0mn − γ0st + γ1mn + γ1st + c = −γ0st + γ1st = 0

Continue decreasing λ21 until each entity is placed in group 1 and modifying λ21 by a small

factor to show that for each entity, γ0gj = γ1gj .

Return again to point (a) and create a new set of feasible points by setting λih = 0,

i 6= 1 and decreasing λ1h until an entity is placed in group h. For each point in turn,

decrease the λ1h’s in the same way that λ21 was decreased in order to subsequently place

entities in group h. Note that for all of these points to be feasible, ǫ must be chosen small
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enough so that every observation can be allocated to every group in some feasible solution.

A necessary and sufficient condition is to require ǫ ≤ min{πhfh(xgj) : h, g ∈ G, j ∈ Ng}.

Implied by these points are the following

γ0gj = γhgj , ∀ h, g, j

These equations, coupled with the fact that
∑

gj
γ0gj + c = 0, imply that

∑

gj
γhgj + c = 0 for

all h. Each of these conditions on the multipliers are multiples of the required allocation

constraints. Therefore, the required allocation constraints completely define the equality

set.

Corollary 3.3.2. Suppose that the conditions of Proposition 3.3.1 hold. Then the dimen-

sion of the polytope defined by the constraints of the DAMIP is

N + G(G − 1) + (G + 1)N − N = G(G − 1) + N(G + 1)

where N is the number of observations.

Proof. The DAMIP has N ygj variables, G(G − 1) λih, and (G + 1)N uhgj variables. The

equality set consists of the N required allocation constraints, which are clearly linearly

independent. The dimension of the polytope is the dimension of the equality set subtracted

from the number of variables.

When the misclassification constraints are added to the DAMIP, the equality sets for the

models can vary drastically depending on the input data. For example, the misclassification

constraints could dictate that every entity be placed in the reserved judgment region. Some

of the implications of the misclassification constraints are explored in Sections 3.4.2 and

3.4.3.

Let R = {(g, j) : u0gj = 1 in every feasible solution }, and S = {(h, g, j) : there exists

no feasible solution with uhgj = 1}. Then the equality set can contain equalities of the

following forms
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u0gj = 1 (g, j) ∈ R

ygj = 0 (g, j) ∈ R

uhgj = 0 h ∈ G, (g, j) ∈ R

uhgj = 0 (h, g, j) ∈ S

The equality set can also contain equalities of the form

∑

(h,g,j)∈Q1

uhgj =
∑

(h,g,j)∈Q2

uhgj

for sets of entity-group combinations Q1 and Q2.

If the conditions for full-dimensionality given in Proposition 3.3.1 are not true, then the

equality set can change. For example, if two entities xmn and xst have the same input data,

then uhmn = uhst for all h for those entities.

3.4 Finding the conflict graph and fixing variables

Consider the conflict graph for the DAMIP. The required allocation constraints provide that

edges between nodes corresponding to u0gj and uhgj exist in the conflict graph for every

group h and entity xgj . For simplicity, let uhgj represent both the integer variable in the

IP formulation of the DAMIP and its corresponding node in the conflict graph. Let ūhgj

be the node corresponding to the complement of uhgj .

3.4.1 Generating the conflict graph

Consider two entities xmn and xst and groups a and b. Entity xmn is placed in group a and

xst is placed in group b if and only if

Lamn − Lhmn ≥ 0 ∀ h 6= a

Lbst − Lhst ≥ 0 ∀ h 6= b

Lamn ≥ 0

Lbst ≥ 0
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Therefore, uamn = ubst = 1 is infeasible if this system of 2G linear inequalities is infeasible.

Written in terms of the λih’s, the system becomes

∑

i∈G\h

fi(x
mn)λih −

∑

i∈G\a

fa(x
mn)λia ≥ πhfh(xmn) − πafa(x

mn) ∀ h 6= a

∑

i∈G\h

fi(x
st)λih −

∑

i∈G\b

fb(x
st)λib ≥ πhfh(xst) − πbfb(x

st) ∀ h 6= b

∑

i∈G\a

fi(x
mn)λia ≤ πafa(x

mn)

∑

i∈G\b

fi(x
st)λib ≤ πbfb(x

st)

where all of the λih’s are restricted to greater than or equal to zero. Note that in the first

two sets of inequalities, for h 6= {a, b}, the λih’s can be increased arbitrarily to find values

satisfying the inequalities in which they appear. Therefore, the only inequalities needed

are those with only λia and λib variables. For any combination of 2 entities and 2 groups,

an edge of the conflict graph can be derived by determining that the following system of 4

constraints and 2(G − 1) variables is infeasible.

∑

i∈G\b

fi(x
mn)λib −

∑

i∈G\a

fa(x
mn)λia ≥ πbfb(x

mn) − πafa(x
mn)

∑

i∈G\a

fi(x
st)λia −

∑

i∈G\b

fb(x
st)λib ≥ πafa(x

st) − πbfb(x
st)

∑

i∈G\a

fi(x
mn)λia ≤ πafa(x

mn)

∑

i∈G\b

fi(x
st)λib ≤ πbfb(x

st)

All λih’s are restricted to be nonnegative. Similarly, for entities xmn and xst and a group

a, edge (uamn, u0st) can be derived by determining that the following system is infeasible

∑

i∈G\h

fi(x
mn)λih −

∑

i∈G\a

fa(x
mn)λia ≥ πhfh(xmn) − πafa(x

mn) ∀ h 6= a

∑

i∈G\a

fi(x
mn)λia ≤ πafa(x

mn)

∑

i∈G\h

fi(x
st)λih > πhfh(xst) ∀ h

which can be determined by considering the following system of 2 inequalities and (G − 1)

variables.
∑

i∈G\a

fi(x
mn)λia ≤ πafa(x

mn)

∑

i∈G\a

fi(x
st)λia > πafa(x

st)
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Again, all λih’s are required to be nonnegative. Note that these systems are actually con-

servative estimates when solving the DAMIP in practice. The sets of inequalities do not

take advantage of the fact that the DAMIP actually gives classification rules with an ǫ

buffer between groups. See Section 4.2 for more on the stability of solutions to the DAMIP.

Methods for determining if these systems of inequalities are infeasible are developed further

in the next section.

Note that the cases where mn = st and/or a = b do not need to be considered. The

edges (uamn, ubmn) for a 6= b are implied by the required allocation constraints, so that

the case mn = st does not need to be considered. For a = b, there exist non-negative

values for the λih’s such that two entities are placed in the same group, assuming that the

misclassification constraints do not imply otherwise.

Aside from consideration of the misclassification constraints, the edges derived from

the solution of the 2 entity 2 group systems is sufficient to derive all edges of the form

(uamn, ubst) and (uamn, u0st) in the conflict graph for DAMIP. A feasible solution to the

2 entity 2 group solutions provides values for the λih’s that can be extended to a feasible

solution for the DAMIP because the λih’s determine the values of all other variables.

3.4.2 Implications of other inequalities

Suppose that systems of inequalities corresponding to all possible pairs of entities and groups

have been deemed feasible or infeasible. The required allocation constraints can be used to

further describe the conflict graph. Specifically, they can be used to derive implications of

the form uamn ≤ uast or uamn + ūast ≤ 1.

Suppose that for entities xmn and xst and a group a, the edges (uamn, uhst) for all

h ∈ {G\a, 0} are in the conflict graph. Then, by the required allocation constraints, entity

xst is placed in group a whenever entity xmn is placed in group a. Therefore, under such

conditions, edge (uamn, ūast) can be placed in the conflict graph.

3.4.3 Using the conflict graph to fix variables

Now suppose that all edges of the form (uamn, ūast) have been derived. Suppose that for

entity xmn and group a, there are J edges in the conflict graph of the from (uamn, ūamj)
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so that if entity xmn is placed in a, then J other entities are also placed in a. Due to

the misclassification constraints, if J ≥ αmana, placing entity xmn in group a is infeasible.

Therefore, uamn = 0 for all feasible solutions.

3.4.4 Using the conflict graph to solve the DAMIP

The inequalities implied by the conflict graph are a relaxation of the DAMIP. Valid in-

equalities for the conflict graph polytope are valid for the DAMIP. Let PCG bet the conflict

graph polytope.

Note that PCG is a set packing polytope. If K is a maximal clique, the clique constraint

∑

(h,g,j):uhgj∈K

uhgj ≤ 1 is a facet for the convex hull of integer solutions in PCG [73]. Maximal

clique inequalities are also facets for the convex hull of integer solutions to the DAMIP

without misclassification constraints, as shown in the following proposition.

Proposition 3.4.1. A maximal clique inequality derived from the conflict graph is facet-

defining for the full-dimensional (Proposition 3.3.1) DAMIP without misclassification con-

straints for sufficiently small ǫ.

Proof. Let P be the polytope representing the DAMIP without misclassification constraints,

and let F = {x ∈ P :
∑

uhgj∈K

uhgj = 1} for some maximal clique K in the conflict graph.

Suppose for multipliers µgj , ηih, and γhgj and a constant c that

∑

gj

µgjygj +
∑

ih

ηihλih +
∑

hgj

γhgjuhgj + c = 0 (1)

for all x ∈ F . Consider the following feasible point contained in F where all entities are

placed in group a.

ygj = πafa(x
gj); λia = 0, λih = max

gj

πhfh(xgj)

fi(xgj)
+ δ; uagj = 1 (a)

where uamn ∈ K. Note that such a point is feasible for F defined by any maximal clique

K because, without misclassification constraints, there exist values for the λih’s such that

any two entities can be placed in the same group. Therefore, at most one entity in K has

group a as its allocated group. The point (a) implies that
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∑

gj

πafa(x
gj)µgj +







∑

h6=a
i6=h

max
gj

πhfh(xgj)

fi(xgj)
+ δ






ηih +

∑

gj

γagj + c = 0 (2)

Now for each λih in turn where h 6= a, subtract a quantity ξ > 0 such that all entities

are still placed in group a. Such a quantity exists due to the condition on the fi(x
gj)’s in

Proposition 3.3.1. The only difference between the new solution and (a) is the λih with ξ

subtracted. This fact, taken with equation (2), imply that ξηih = ηih = 0 for h 6= a and

i 6= h. Similarly, consider the feasible point contained in F where all entities are placed

in group b and some entity in K has b as its allocated group. For each λih where h 6= b,

subtract a quantity ξ to create a point that still places all entities in group b. These points

imply that ξηih = ηih = 0 for h 6= b and i 6= h. Therefore, ηih = 0 for all h and i 6= h.

Consider an entity xkl and group h 6= a such that uhkl = uamn = 1 holds in a feasible

solution contained in F where uamn ∈ K. If there are other entities xst in such a solution

with uhst = 1, decrease the λia’s and increase the λih’s until only one entity is placed

in group h. Call this entity xkl. For observation xkl, there is a unique hyperplane that

separates the region where uhkl = 1 and the region where uakl = 1. The hyperplane is

Lhkl − Lakl = πhfh(xkl) −
∑

i6=h

fi(x
kl)λih − πafa(x

kl) +
∑

i6=a

fi(x
kl)λia

and xkl is placed in group h if Lhkl−Lakl ≥ ǫ and group a if Lhkl−Lakl ≤ −ǫ. The feasibility

of a point where uhkl = uamn = 1 and a point where uakl = uamn = 1 may imply additional

restrictions on ǫ. Let point (b) be a feasible point with uhkl = uamn = 1 sufficiently close

to the separating hyperplane so that adjusting a λih by ζ results in a feasible point with

uakl = uamn = 1, ykl = ζfi(x
kl), and all other variable values remain constant. Let point

(c) be a point achieved by adjusting a λih by ζ. The difference in (b) and (c) imply

ζfi(x
kl)µkl − γhkl + γakl = 0

Further increase the same λih by δ > 0 such that all entities maintain their current

classification. The new point implies the following
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(δ + ζ)fi(x
kl)µkl − γhkl + γakl = 0

The two equations together force µkl = 0 and γhkl = γakl. Repeat the procedure for

each entity xgj and group h (including h = 0) such that uhgj = uamn = 1 holds in a feasible

solution contained in F . Adjusting the appropriate λih’s demonstrates that µkl = 0 and

γhgj = γagj for entities xgj and groups h where uhgj = uamn = 1 is possible.

Repeat the procedure for all entities xgj and groups h where uhgj = ubst = 1 is possible

where ubst ∈ K. For every uhgj /∈ K, µgj = 0 and γhgj = γagj . Note that because K is a

maximal clique, for every node not in K, there exists a solution with uhgj = ubst = 1 for

some ubst ∈ K. This fact implies that µgj = 0 for every node not in K.

Consider again point (a). Increase λ1a by an amount σ > 0 such that the current

classification of the observations does not change. The new point implies that

(πafa(x
mn) − σf1(x

mn))µmn +
∑

gj

γagj + c = 0

The difference between this equation and point (a) requires that µmn = 0. A similar

argument shows that µbst = 0 for all ubst ∈ K. For each ubst ∈ K,
∑

gj
γbgj + c = 0.

Consider two nodes uamn and ubst that are in K. Adjust the λih’s until a point is obtained

such that uamn = 1 and such that adjusting a λia or λib slightly forces uamn = 0 = 1−ubst.

The difference between this point and one obtained after the slight adjustment implies that

γamn + γast = γbmn + γbst. Repeat this procedure for every pair of nodes uamn and ubst in

K, so that the equality holds for all pairs.

Now consider an entity and group h 6= a such that uhxy + uamn ≤ 1 for all feasible

solutions contained in F . Construct a point such that uhxy = 1 = 1 − uamn and such

that adjusting a λia or λih slightly forces uhxy = 0 = 1 − uamn. If in the adjustment the

classification of another entity not in K changes, relabel uhxy. Note that for the point to

remain feasible through the adjustment, there must exist ubst ∈ K such that ubst = 1 for

the initial point and ubst = 0 in the final point. With the choice of λih’s adjusted, uast = 1

at the final point. The difference between the initial and final points implies that
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γhxy + γbst + γhmn = γaxy + γast + γamn

⇒ γhxy = γaxy

Repeat this procedure for all entities xgj and groups h (including h = 0) where uhgj +

ubst ≤ 1 is true for ubst ∈ K. For all group-entity combinations not in K, γhgj = γagj .

Similarly, γ0gj = γagj for all such nodes not in K.

To summarize, ηih = 0 for all i and h where i 6= h; µgj = 0 for all gj; and γhxy = γaxy

where uamn ∈ K, h 6= a, and xy 6= mn. For each ubst ∈ K,
∑

gj
γbgj = −c. For uamn,

ubst ∈ K, γamn − γbmn = γbst − γast.

Let α = γamn − γbmn for some uamn ∈ K. Let β be a vector of length N with elements

βgj corresponding to each observation and with values

βgj = γagj for gj 6= mn

βmn = γbmn

where uamn, ubst ∈ K.

Recall that the equality set of the DAMIP is the required allocation constraints. If F is

defined by πx = π0, and the equality set of the DAMIP is A=x = b= then απ + βA= is a

vector with each element corresponding to a variable of the DAMIP. The values of απ+βA=

are zero for the elements corresponding to the ygj variables and the λih variables because

they have zero coefficients in both π and A=. The value of the element corresponding to

the uhgj variables are

α + βgj = γamn − γbmn + γbmn = γamn for all uamn ∈ K

βgj = γagj = γhgj for gj with uagj /∈ K, for all h

so that απ+βA= is equal to the vector of multipliers defining the null space of F in equation
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(1). Also,

απ0 + βb= = α +
∑

gj
βgj

= α + βmn +
∑

gj 6=mn

βgj

= γamn − γbmn + γbmn +
∑

gj 6=mn

βgj

= γamn +
∑

gj 6=mn

γagj

=
∑

gj
γagj

= −c

where uamn ∈ K. Thus, the choice of α and β demonstrate that the multipliers and

constant in (1) are linear combinations of the facet-defining equality and the equality set

for the DAMIP. By Theorem 3.6 on page 91 of Nemhauser and Wolsey [68], F is a facet of

P .

If the conflict graph is perfect, then the maximal clique constraints contain the facets

for PCG. Even if the graph is perfect, enumerating all of the maximal cliques can require

an exponential number of operations in terms of the size of a graph.

In general, the conflict graph for the DAMIP is not perfect. Consider the following

input for a 3 group problem with entities x11, x21, and x31 and groups 1, 2, and 3

π1 = 7/20, π2 = 7/20, π3 = 3/10

f1(x
11) = 1/2, f2(x

11) = 9/20, f3(x
11) = 1/20

f1(x
21) = 2/5, f2(x

21) = 11/20, f3(x
21) = 1/20

f1(x
31) = 14/25, f2(x

31) = 2/5, f3(x
31) = 1/25
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u011

u211

u231

u111

u021

Figure 6: A conflict graph with an odd hole.
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The data generate the conflict graph in Figure 6 which contains an odd hole. (Assume

that the misclassification constraints do not imply any other edges or that any variables be

fixed.) Graphs containing odd holes are not perfect, so the maximal clique constraints are

not sufficient to describe the convex hull of integer feasible solutions of P . Odd hole inequal-

ities are valid, but not necessarily facet-defining for the convex hull of integer solutions. If

H is the set of nodes of an odd hole on the conflict graph, then
∑

(h,g,j)∈H

uhgj ≤ |H|−1
2 is a

valid inequality. These inequalities can be strengthened by lifting.

3.5 Finding the conflict hypergraph

The nodes of a conflict hypergraph are the same as those of the conflict graph. For an n-

hypergraph, define an edge to be a subset of the nodes of size n. An edge E of the conflict

n-hypergraph corresponds to an independent set constraint of the form

∑

(h,g,j):uhgj∈H

uhgj ≤ n − 1

Thus, the conflict graph is equivalent to the conflict 2-hypergraph. The results of this

section are generalizations and extensions of the results for conflict graphs. The conflict

n-hypergraph can contain structures such as maximal cliques, odd holes, and webs that are

defined in a manner analogous to structures of the conflict graph []. These structures corre-

spond to valid inequalities for the original problem. As an example, consider the maximal

hyperclique inequality derived by Easton et. al []. A hyperclique Km,n in an n-hypergraph is

a set of m vertices such that the induced subhypergraph of Km,n contains all
(

m
n

)

edges. For

a maximal hyperclique Km,n, the following is a facet of the conflict hypergraph, provided

that none of the edges between the nodes of the 2-, . . . , n − 1-hypergraphs are present.

∑

(h,g,j):uhgj∈Km,n

uhgj ≤ n − 1

(Note that any edge of the conflict (n − 1)-hypergraph can be extended to an edge of the

conflict n-graph by adding any node not in the edge of the conflict (n − 1)-hypergraph.)

These maximal hyperclique inequalities are not implied by the maximal clique inequal-

ities of the conflict graph under certain conditions [28]. They contain more variables than
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the maximal clique inequalities, and can be stronger inequalities than those derived from

the conflict graph.

3.5.1 Necessary conditions for edges in the hypergraph

Consider generating the n-hypergraph of the DAMIP. If the misclassification constraints

are removed, there exist values for λih such that any two entities can be placed in the same

group. For the remainder of the section, the misclassification constraints are removed from

consideration. For simplicity of notation, let xj refer to an observation, and let hj be the

group to which j is potentially assigned (for now, the group to which entity xj belongs is

not needed). Also, let uhjj = 1 if observation j is allocated to hj and 0 otherwise. Let uhjj

represent the corresponding node in the conflict hypergraph. In a fashion similar to the

generation of the conflict graph, for n entities xj and nodes uhjj , a hyperedge in the conflict

n-hypergraph exists between the nodes if and only if the following system is infeasible

∑

i6=g

fi(x
j)λig −

∑

i6=hj

fi(x
j)λihj

≥ πgfg(x
j) − πhj

fhj
(xj) ∀j, g 6= hj (1)

∑

i6=hj

fi(x
j)λihj

≤ πhj
fhj

(xj) ∀j (2)

The above system is actually over-constrained; the inequalities (1) that are needed are the

g’s for which ugk is a node in the potential hyperedge for some entity xk where k 6= j. If

one of the nodes under consideration for the hyperedge corresponds to a reserved judgment

variable u0j , then let hj = 0 and λi0 = 0 and f0(x
j) = 0. The second constraint (2) is

not present for nodes/variables corresponding to the allocation of an observation to the

reserved judgment region. Therefore, a hyperedge exists if and only if the following system

is infeasible

∑

i6=hk

fi(x
j)λihk

−
∑

i6=hj

fi(x
j)λihj

≥ πhk
fhk

(xj) − πhj
fhj

(xj) ∀j, hk 6= hj , k 6= j (1)

∑

i6=hj

fi(x
j)λihj

≤ πhj
fhj

(xj) ∀j : hj 6= 0 (2)

The following two propositions give necessary conditions for the system of inequalities

to be infeasible.
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Proposition 3.5.1. Consider the system of inequalities involved in deriving a potential

edge of a hypergraph, where no reserved judgment nodes are under consideration for the

edge. If the system is infeasible, then πhk
fhk

(xj) > πhj
fhj

(xj) for some entity xj and some

entity xk where k 6= j, and hk 6= hj.

Proof. Consider the linear program formed by the system of inequalities for entities xj and

groups hj

maximize
∑

i,h∈G
i6=h

0λih

subject to

∑

i6=hk

fi(x
j)λihk

−
∑

i6=hj

fi(x
j)λihj

≥ πhk
fhk

(xj) − πhj
fhj

(xj) ∀ j, hk 6= hj k 6= j (1)

∑

i6=hj

fi(x
j)λihj

≤ πhj
fhj

(xj) ∀ j (2)

λihj
≥ 0 ∀ hj , i 6= hj

Note that indices for entities xj and xk are for nodes under consideration only. Let ηgj

and γj be the dual variables for constraint sets (1) and (2), respectively. The dual of the

linear program is
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minimize
∑

j

∑

g 6=hj

(πgfg(x
j) − πhj

fhj
(xj))ηgj +

∑

j

πhj
fhj

(xj)γj

subject to

−
∑

j:hj=h

∑

hk 6=h

fi(x
j)ηhkj +

∑

j:hj 6=h

fi(x
j)ηhj +

∑

j:hj=h

fi(x
j)γj ≥ 0∀ i, h 6= i

ηgj ≤ 0, γj ≥ 0

Negating the ηgj ’s so that all variables are nonnegative gives

minimize
∑

j

∑

g 6=hj

(πhj
fhj

(xj) − πgfg(x
j))ηgj +

∑

j

πhj
fhj

(xj)γj

subject to

∑

j:hj=h

∑

hk 6=h

fi(x
j)ηhkj −

∑

j:hj 6=h

fi(x
j)ηhj +

∑

j:hj=h

fi(x
j)γj ≥ 0 ∀ i, h 6= i

ηgj ≥ 0, γj ≥ 0

The dual is always feasible because all constraints are satisfied when the dual variables

are set to zero. Therefore, the primal is infeasible if and only if the dual is unbounded.

The necessary condition derives immediately from the objective function of the dual, which

requires that at least one coefficient of the ηgj ’s in the dual is negative for the dual to be

unbounded.

Proposition 3.5.2. Consider the system of inequalities involved in deriving a potential

edge of a hypergraph where each entity under consideration belongs to a unique group. If

the system is infeasible, then fikj
(xj)fhk

(xk) − fikj
(xk)fhk

(xj) < 0 for some node uhkk and

some entity xj under consideration, where ikj is chosen such that
fikj

(xj)

fikj
(xk)

= max
i6=hk

fi(x
j)

fi(xk)
.

Proof. Consider the following linear program formed by the system of inequalities for entities

xj and groups hj
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maximize
∑

i,h∈G
i6=h

0λih

subject to

∑

i6=hk

fi(x
j)λihk

−
∑

i6=hj

fi(x
j)λihj

≥ πhk
fhk

(xj) − πhj
fhj

(xj) ∀ j, hk 6= hj k 6= j (1)

∑

i6=hj

fi(x
j)λihj

≤ πhj
fhj

(xj) ∀ j : hj 6= 0 (2)

λihj
≥ 0 ∀ hj , i 6= hj

Note that indices for entities xj and xk are for nodes under consideration only. Let ηgj

and γj be the dual variables for constraint sets (1) and (2), respectively. The dual of the

linear program is

minimize
∑

j:hj 6=0

∑

g 6=hj

(πgfg(x
j)− πhj

fhj
(xj))ηgj +

∑

j:hj=0

∑

g

πgfg(x
j)ηgj +

∑

j:hj 6=0

πhj
fhj

(xj)γj

subject to
∑

k 6=j

fi(x
k)ηhjk −

∑

g 6=hj

fi(x
j)ηgj + fi(x

j)γj ≥ 0 ∀ j, i 6= hj

ηgj ≤ 0, γj ≥ 0

Negating the ηgj ’s so that all variables are nonnegative gives

minimize
∑

j

∑

g 6=hj

(πhj
fhj

(xj) − πgfg(x
j))ηgj −

∑

j:hj=0

∑

g

πgfg(x
j)ηgj +

∑

j

πhj
fhj

(xj)γj

subject to

−
∑

k 6=j

fi(x
k)ηhjk +

∑

g 6=hj

fi(x
j)ηgj + fi(x

j)γj ≥ 0 ∀ j, i 6= hj

ηgj ≥ 0, γj ≥ 0

The dual is always feasible because all constraints are satisfied when the dual variables

are set to zero. Therefore, the primal is infeasible if and only if the dual is unbounded. For

each entity xj with hj 6= 0, and i 6= hj ,

γj ≥
∑

k 6=j

fi(x
k)

fi(xj)
ηhjk −

∑

g 6=hj

ηgj
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in a feasible solution. At any feasible point, the objective function can be decreased by

setting the inequalities to equality above for all j and some i 6= hj . Therefore, we may

assume that the right-hand side is a formula for γj and i 6= hj such that the right-hand side

is maximized. The objective function becomes

∑

j:hj 6=0

∑

g 6=hj

(πhj
fhj

(xj) − πgfg(x
j))ηgj −

∑

j:hj=0

∑

g
πgfg(x

j)ηgj

+
∑

j:hj 6=0

πhj
fhj

(xj)

(

∑

k 6=j

fi(x
k)

fi(xj)
ηhjk −

∑

g 6=hj

ηgj

)

= −
∑

j:hj 6=0

∑

g 6=hj

πgfg(x
j)ηgj −

∑

j:hj=0

∑

g
πgfg(x

j)ηgj +
∑

j:hj 6=0

πhj
fhj

(xj)
∑

k 6=j

fi(x
k)

fi(xj)
ηhjk

= −
∑

j:hj 6=0

∑

g 6=hj

πgfg(x
j)ηgj −

∑

j:hj=0

∑

g
πgfg(x

j)ηgj +
∑

j

∑

g 6=hj

πgfg(x
k) fi(x

j)
fi(xk)

ηgj

=
∑

j

∑

g 6=hj

(

πgfg(x
k) fi(x

j)
fi(xk)

− πgfg(x
j)
)

ηgj

Note that in the first two expressions, i 6= hj and for the last two expressions, i 6= hk

due to the change of variables. The dual is unbounded only if at least one of the coefficients

on the ηgj ’s is less than zero. The coefficient of ηgj is less than zero if fi(x
j)

fi(xk)
<

fg(xj)
fg(xk)

for all

i 6= g which is equivalent to the condition as given in the proposition.

Corollary 3.5.3. If an edge (uhj , ugk) exists in the conflict graph, then

1. πgfg(x
j) > πhfh(xj) or πhfh(xk) > πgfg(x

k), and

2. fi1(x
k)fh(xj)−fi1(x

j)fh(xk) < 0 or fi2(x
j)fg(x

k)−fi2(x
k)fg(x

j) < 0 where
fi1

(xk)

fi1
(xj)

=

max
i6=h

fi(x
k)

fi(xj)
and

fi2
(xj)

fi2
(xk)

= max
i6=g

fi(x
j)

fi(xk)

The first necessary condition is intuitive, because if πhj
fhj

(xj) > πgfg(x
j) for every

entity xj , then λih = 0 for all i, h is feasible. The second necessary condition is reminiscent

of the necessary and sufficient condition of the 2-group problem of Proposition 2.0.1. Both

conditions follow directly from the preceding propositions.

The next two propositions give necessary and sufficient conditions for the system of

inequalities to be infeasible when generating the conflict graph.
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3.5.2 Necessary and sufficient conditions for edges in the conflict graph

Proposition 3.5.4. An edge (uhj , ugk) is in the conflict graph if and only if

1. πgfg(x
k) − πhfh(xk) − πgfg(x

j)
fi2

(xk)

fi2
(xj)

+ πhfh(xj)
fi1

(xk)

fi1
(xj)

< 0, or

2. πhfh(xj) − πgfg(x
j) − πhfh(xk)

fi1
(xj)

fi1
(xk)

+ πgfg(x
k)

fi2
(xj)

fi2
(xk)

< 0, or

3. both 1. and 2. hold

where i1 and i2 are such that
fi1

(xk)

fi1
(xj)

= max
i6=h

fi(x
k)

fi(xj)
and

fi2
(xj)

fi2
(xk)

= max
i6=g

fi(x
j)

fi(xk)
.

Proof. In Propositions 3.5.1 and 3.5.2, necessary conditions for the system of linear inequal-

ities were given by showing that the dual of a corresponding linear program is unbounded.

Consider the dual linear program that is encountered during the generation of an edge

(uhj , ugk) of the conflict graph

minimize (πhfh(xj) − πgfg(x
j))ηgj + (πgfg(x

k) − πhfh(xk))ηhk + πhfh(xj)γj + πgfg(x
k)γk

subject to

fi(x
j)ηgj − fi(x

k)ηhk + fi(x
j)γj ≥ 0 i 6= h

−fi(x
j)ηgj + fi(x

k)ηhk + fi(x
k)γk ≥ 0 i 6= g

ηgj , ηhk, γj , γk ≥ 0

From the two constraints,

γj ≥ −ηgj + fi(x
k)

fi(xj)
ηhk i 6= h

γk ≥ fi(x
j)

fi(xk)
ηgj − ηhk i 6= g

Note that for an optimal basic feasible solution, at least one of the γj and one of the γk

constraints hold at equality because otherwise the objective could be decreased by decreasing

the values of γj or γk. Therefore, at an optimal solution, the γ’s are either basic or fixed

at their lower bound of zero. Also, when the linear program is unbounded, a γj constraint

and a γk constraint can be made to hold at equality (or they can be zero) along an extreme

ray.
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(⇒) Suppose condition 1 is true for a potential edge (uhj , ugk). The let ηgj =
fi1

(xk)

fi1
(xj)

ηhk,

γk = 0, γj =
fi2

(xk)

fi2
(xj)

ηhk − ηgj = (
fi2

(xk)

fi2
(xj)

−
fi1

(xk)

fi1
(xj)

)ηhk. Note that as γgj , ηhk, and ηgj are

increased from zero, the constraints of the LP remain feasible.

The objective function along this ray is

(πhfh(xj) − πgfg(x
j))ηgj + (πgfg(x

k) − πhfh(xk))ηhk + πhfh(xj)γj + πgfg(x
k)γk

= (πhfh(xj) − πgfg(x
j))

fi1
(xk)

fi1
(xj)

ηhk + (πgfg(x
k) − πhfh(xk))ηhk + πhfh(xj)(

fi2
(xk)

fi2
(xj)

−
fi1

(xk)

fi1
(xj)

)ηhk

= (πgfg(x
k) − πhfh(xk) − πgfg(x

j)
fi1

(xk)

fi1
(xj)

+ πhfh(xj)
fi2

(xk)

fi2
(xj)

)ηhk

Condition 1 dictates that the coefficient of ηhk is negative, so that as ηhk is increased

along the ray, the objective function decreases. An analogous proof shows that if condition

2 holds, then the LP is unbounded.

(⇐) Suppose that the LP is unbounded. Then by Corollary 3.5.3,
fi1

(xk)

fi1
(xj)

< fh(xk)
fh(xj)

or

fi2
(xj)

fi2
(xk)

<
fg(xj)
fg(xk)

, or both inequalities hold.

• Suppose that both
fi1

(xk)

fi1
(xj)

< fh(xk)
fh(xj)

and
fi2

(xj)

fi2
(xk)

<
fg(xj)
fg(xk)

. Then

πgfg(x
k) − πhfh(xk) − πgfg(x

j)
fi2

(xk)

fi2
(xj)

+ πhfh(xj)
fi1

(xk)

fi1
(xj)

= πh(fh(xj) − fh(xk)
fi1

(xj)

fi1
(xk)

) + πg(fg(x
k)

fi2
(xj)

fi2
(xk)

− fg(x
j)

< πh(fh(xk)
fi1

(xj)

fi1
(xk)

− fh(xk)
fi1

(xj)

fi1
(xk)

) + πg(fg(x
k)

fi2
(xj)

fi2
(xk)

− fg(x
k)

fi2
(xj)

fi2
(xk)

)

= 0

and condition 1 holds.

• Suppose that
fi1

(xk)

fi1
(xj)

< fh(xk)
fh(xj)

, but
fi2

(xj)

fi2
(xk)

>
fg(xj)
fg(xk)

. Suppose also that the LP is

unbounded along an extreme ray such that γj = −ηgj +
fi1

(xk)

fi1
(xj)

ηhk ≥ 0 and γk =

fi2
(xj)

fi2
(xk)

ηgj − ηhk ≥ 0 so that the γj and γk inequalities hold at equality for i1 and i2,

respectively. Then the objective function along the extreme ray is
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(πhfh(xj) − πgfg(x
j))ηgj + (πgfg(x

k) − πhfh(xk))ηhk + πhfh(xj)γj + πgfg(x
k)γk

= (πhfh(xj) − πgfg(x
j))ηgj + (πgfg(x

k) − πhfh(xk))ηhk + πhfh(xj)(−ηgj +
fi1

(xk)

fi1
(xj)

ηhk)

+πgfg(x
k)(

fi2
(xj)

fi2
(xk)

ηgj − ηhk)

= (−πgfg(x
j) + πgfg(x

k)
fi2

(xj)

fi2
(xk)

)ηgj + (−πhfh(xk) + πhfh(xj)
fi1

(xk)

fi1
(xj)

)ηhk

≥ (−πgfg(x
j) + πgfg(x

k)
fi2

(xj)

fi2
(xk)

)
fi2

(xk)

fi2
(xj)

ηk + (−πhfh(xk) + πhfh(xj)
fi1

(xk)

fi1
(xj)

)ηhk

= (πgfg(x
k) − πhfh(xk) − πgfg(x

j)
fi2

(xk)

fi2
(xj)

+ πhfh(xj)
fi1

(xk)

fi1
(xj)

)ηhk

Because the objective is unbounded along the extreme ray, the right-hand side on the

last line above must be unbounded, which is true only if condition 1 holds. A similar

proof shows that condition 2 must hold if
fi2

(xj)

fi2
(xk)

<
fg(xj)
fg(xk)

, but
fi1

(xk)

fi1
(xj)

> fh(xk)
fhxj)

.

• Suppose again that
fi1

(xk)

fi1
(xj)

< fh(xk)
fh(xj)

, but
fi2

(xj)

fi2
(xk)

>
fg(xj)
fg(xk)

. Suppose also that γk = 0 >

fi2
(xj)

fi2
(xk)

ηgj − ηhk and γj = −ηgj +
fi1

(xk)

fi1
(xj)

ηhk ≥ 0. Then the objective along the extreme

ray is

(πhfh(xj) − πgfg(x
j))ηgj + (πgfg(x

k) − πhfh(xk))ηhk + πhfh(xj)γj + πgfg(x
k)γk

= (πhfh(xj) − πgfg(x
j))ηgj + (πgfg(x

k) − πhfh(xk))ηhk + πhfh(xj)(−ηgj +
fi1

(xk)

fi1
(xj)

ηhk)

= −πgfg(x
j)ηgj + (πgfg(x

k) − πhfh(xk) + πhfh(xj)
fi1

(xk)

fi1
(xj)

)ηhk

> −πgfg(x
j)

fi2
(xk)

fi2
(xj)

ηhk + (πgfg(x
k) − πhfh(xk) + πhfh(xj)

fi1
(xk)

fi1
(xj)

)ηhk

> (πgfg(x
k) − πhfh(xk) − πgfg(x

j)
fi2

(xk)

fi2
(xj)

+ πhfh(xj)
fi1

(xk)

fi1
(xj)

)ηhk

Because the objective is unbounded along the extreme ray, the right-hand side on the

last line above must also be unbounded, which is true only if condition 1 holds. A

similar proof shows that condition 2 must hold if
fi2

(xj)

fi2
(xk)

<
fg(xj)
fg(xk)

, but
fi1

(xk)

fi1
(xj)

> fh(xk)
fh(xj)

.

Note that both γk = 0 >
fi2

(xj)

fi2
(xk)

ηgj − ηhk and γj = 0 > −ηgj +
fi1

(xk)

fi1
(xj)

ηhk cannot occur

simultaneously. Therefore, if the LP is unbounded, then condition 1 or condition 2

holds.
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The following proposition shows that the necessary condition in Proposition 3.5.2 is

both necessary and sufficient for edges (u0j , ugk) in the conflict graph.

Proposition 3.5.5. An edge (u0j , ugk) is in the conflict graph if and only if fi0(x
j)fg(x

k)−

fi0(x
k)fg(x

j) < 0 for i0 such that
fi0

(xj)

fi0
(xk)

= max
i6=a

fi(x
j)

fi(xk)
.

Proof. Edge (u0j , ugk) is in the conflict graph if and only if the following linear program is

infeasible

maximize
∑

i6=g

0λig

subject to
∑

i6=g

fi(x
k)λig ≤ πgfg(x

k) (1)

∑

i6=g

fi(x
j)λig > πgfg(x

j) (2)

λig ≥ 0

Let γ be the dual variable for (1) and η the dual variable for (2). When the ǫ constraints

are present for the reserved judgment region, the second inequality can be changed to a

greater-than-or-equal-to constraint with no loss in the quality of the solution. The dual of

the linear program is

minimize πgfg(x
k)γ − πgfg(x

j)η

subject to

fi(x
k)γ + fi(x

j)η ≥ 0 i 6= a

γ, η ≥ 0

The dual is feasible because all constraints are satisfied at γ = η = 0. The primal is

infeasible if and only if the dual is unbounded. For any feasible solution, γ ≥ fi(x
j)

fi(xk)
η for

each i 6= a. Therefore, any feasible solution can be improved by setting γ =
fi0

(xj)

fi0
(xk)

η. The

objective function becomes

maximize πgfg(x
k)

fi0(x
j)

fi0(x
k)

η − πgfg(x
j)η = (πgfg(x

k)
fg(x

j)

fg(xk)
− πgfg(x

j))η

which is unbounded if fi0(x
j)fg(x

k) − fg(x
j)fi0(x

k) < 0.
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3.6 Upper bounds for M

The relative size of the M and ǫ constraints contributes to an ill-conditioned constraint

matrix for the DAMIP. Ideally, M is chosen large enough so that the feasibility of potential

solutions is not affected. These competing considerations lead us to seek the effects of

different values for M .

The following proposition and lemma suggest a method for placing effective upper

bounds on the λih’s, which in turn can be used to derive upper bounds for M .

Proposition 3.6.1. An entity xgj is placed in the reserved judgment region if for each

h ∈ G, there exists a group a such that

λah >
πhfh(xgj)

fa(xgj)

The converse is true for the 2-group model.

Proof. An entity is placed in the reserved judgment region (i.e., u0gj = 1) if and only if

Lhgj < 0 for all h. Suppose entity xgj has the property that for each h ∈ G, there exists a

a such that λah > πhfh(xgj)
fa(xgj)

. Then, for any Lhgj ,

Lhgj = πhfh(xgj) −
∑

i∈G\{h}

fi(x
gj)λih

= πhfh(xgj) − fa(x
gj)λah −

∑

i∈G\{h,a}

fi(x
gj)λih

< πhfh(xgj) − fa(x
gj)

πhfh(xgj)

fa(xgj)

= 0

Note that for the two group model, the sum
∑

i∈G\{h,a}

fi(x
gj)λih is not present, so the

condition is necessary and sufficient.

Lemma 3.6.2. For every pair of groups i, h where i 6= h, consider the following upper

bound on the λih’s:

λih ≤ max
g∈G,j∈Ng

πhfh(xgj)

fi(xgj)
+ δ
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The δ term can be made arbitrarily small. If this upper bound is enforced, then the set of

integer feasible solutions is not reduced and no meaningful solutions are rendered infeasible.

Proof. Given a, h, λah is found only in the equations Lhgj for all g ∈ G, j ∈ Ng. The

modified posterior probabilities are of the form

Lhgj = πhfh(xgj) −
∑

i∈G\h

fi(x
gj)λih g, h ∈ G, j ∈ Ng

Therefore, the λih’s can be bounded above by any value large enough to force the

appropriate Lhgj ’s to be negative. These values are valid upper bounds because the only

positive term in the equation for the Lhgj ’s is a constant. After a λih forces a Lhgj negative,

then that entity is either placed in the reserved judgment region or another group. For each

entity xgj , if

λah > max
g∈G,j∈Ng

πhfh(xgj)

fa(xgj)

then

Lhgj = πhfh(xgj) −
∑

i∈G\h

fi(x
gj)λih

= πhfh(xgj) − fa(x
gj)λah −

∑

i∈G\{h,a}

fi(x
gj)λih

≤ πhfh(xgj) − fa(x
gj)λah

< πhfh(xgj) − fa(x
gj) max

g∈G,j∈Ng

πhfh(xgj)
fi(xgj)

≤ πhfh(xgj) − fa(x
gj)πhfh(xgj)

fa(xgj)

= 0

The upper bound given for λah allows for negative Lhgj values and is therefore valid.

Proposition 3.6.3. For an entity xgj, an upper bound on M in the big-M constraint

ygj ≤ M(1 − u0gj) is

max
h∈G

πhfh(xgj)

which is equivalent to an upper bound on ygj. For an entity xgj and a group h, an upper

bound on M in the big-M constraint ygj ≤ M(1 − uagj) is

max
h∈G\a

{πhfh(xgj)} − πafa(x
gj) +

∑

i∈G\a

fi(x
gj)λ∗

ia
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where

λ∗
ia = max

g∈G,j∈Ng

πafa(x
gj)

fi(xgj)
+ δ

for each i. The upper bound is equivalent to an upper bound on ygj − Lagj.

Proof. The ygj ’s are defined as the maximum of the Lhgj ’s which are Bayesian probabilities

with nonnegative terms subtracted. Therefore, the maximum value that ygj can attain is

the maximum Bayesian probability, or max
h∈G

πhfh(xgj). Setting M in the constrain ygj ≤

M(1 − u0gj) to this upper bound will enforce the restriction that if ygj > 0, then u0gj = 0.

In other words, if an entity has a positive modified Bayesian probability, then it cannot be

placed in the reserved judgment region.

Now consider ygj − Lagj for some a, m, and n.

ygj − Lagj = ygj − πafa(x
gj) +

∑

i6=a

fi(x
gj)λia

≤ max
h∈G\a

{πhfh(xgj)} − πafa(x
gj) +

∑

i6=a

fi(x
gj)λ∗

ia

The inequality is due to the the upper bound on ygj from the first part of the proposition

and from the upper bound on the λih’s from Lemma 3.6.2. Note that the upper bound is

nonnegative:

max
h∈G\a

{πhfh(xgj)} − πafa(x
gj) +

∑

i∈G\a

fi(x
gj)λ∗

ia

≥ max
h∈G\a

πhfh(xgj) − πafa(x
gj) +

∑

i∈G\a

fi(x
gj) max

m∈G,n∈Ng

πgfa(xmn)
fi(xmn)

≥ max
h∈G\a

πhfh(xgj) − πafa(x
gj) +

∑

i∈G\a

fi(x
gj)πafa(xgj)

fi(xgj)

= max
h∈G\a

πhfh(xgj) + (G − 2)πafa(x
gj)

> 0

Therefore, the case that ygj = Lhgj is also included, and the upper bound is valid.

In practice, the upper bound on the λih’s from Lemma 3.6.2 can be extremely large due

to extremely small values of fi(x
gj). For example if πh and fh(xgj) are on the order of

10−1 and fi(x
gj) is on the order of 10−21, then the upper bound for λih is on the order of
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1020. These high upper bounds on the λih’s can dominate the upper bound for M given in

Proposition 3.6.3, especially for an entity with fi(x
gj) on the order of 10−1.

The λih’s can be interpreted as a measure of the likelihood of placing entities in group

i that would otherwise be placed in group h. Intuitively, if fi(x
gj) is extremely small for

an entity xgj , then that entity would likely not be placed in group i in an optimal solution.

Therefore, the upper bound for λih derived from the data on an entity such as xgj can be

“safely” ignored in most cases. The safety of these assumptions can be quantified.

Suppose the conditional probability fi(x
gj) that entity xgj belongs to group i is less than

or equal to 1
kG where k is a multiplying factor greater than 1. Suppose that for entities with

fi(x
gj) > 1

kG , one wishes that λih can assume a value that will render the corresponding

Lhgj negative. In that case, such entities may be placed in group i, another group, or in

the reserved judgment region. The upper bound for λih is

λih ≤ max
g∈G, j∈Ng

{πhfh(xgj)
fi(xgj)

+ δ|fi(x
gj) > 1

kG}

≤ max
g∈G, j∈Ng

kGπhfh(xgj) + δ

≤ kG

for an appropriately chosen δ > 0. If these upper bounds are placed on all of the λih’s, then

the upper bound on a big M variable can be

ygj − Lhgj = ygj − πhfh(xgj) +
∑

i∈G\h

λihfh(xgj)

≤ max
k∈G

πkfk(x
gj) − πhfh(xgj) + kG

∑

i∈G\h

fh(xgj)

≤ max
k∈G

πkfk(x
gj) − πhfh(xgj) + kG

< (k + 1)G

For example, if G = 3 and k = 10, then using a big M = 33, all entities with fi(x
gj) >

1/30 can be placed in group i. Note that for entities with fi(x
gj) < 1/30, there must exist

at least one group for which

fh(xgj) >
1

2

(

1 −
1

30

)

=
29

60

which is significantly larger than 1/30. In other words, eliminating the opportunity for such

an observation xgj to be moved from group h to group i is reasonable.
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As k gets large, the lower bound for the maximum fh(xgj), h 6= i approaches 1
G−1 :

fh(xgj) >
1

G − 1

(

1 −
1

kG

)

=
kG − 1

kG

1

G − 1

Also, as k increases, the difference between 1
G−1 and 1

kG increases. Therefore, entities

with reasonably large values for fi(x
gj) can potentially be placed in group i, and can be

used to derive upper bounds on the big M ’s.

chapter 3
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Chapter IV

Consistency, Robustness, and Stability of the DAMIP

4.1 Consistency of the DAMIP

The DAMIP involves estimation of the posterior probabilities f(h|x), estimation of the con-

ditional group density functions f(x|h) = fh(x), and subsequent determination of optimal

values of λih variables to define the modified posterior probabilities. Finding good qual-

ity estimates of the posterior probabilities f(h|x) and conditional group density functions

f(x|h) is beyond the scope of this work. When investigating the consistency of the DAMIP,

we make the strong (and unrealistic) assumption that the values for f(h|x) and fh(x) (and

therefore the prior probabilities πh) are known. In other words, we assume that the data

has a density that is known.

Anderson [1] characterized the optimal solution to the problem

max
φ

P{φ(X) = Y }

subject to P{φ(X) = g, Y = h} ≤ αhg, g, h ∈ G, g 6= h

He showed that the optimal allocation is based on modified posterior “probabilities” of

the form

Lh(x) = f(h|x) −
∑

i6=h

fi(x)λih

so that φ†(x) = arg max
h∈G

(f(h|x) −
∑

i6=h

fi(x)λ†
ih) is an Anderson optimal solution, charac-

terized by optimally-chosen λih values. For a classification problem with misclassification

limits, we will consider a classification algorithm consistent if, as the sample size increases,

P{φn(X) = Y } converges to P{φ†(X) = Y } and every sequence of classifiers produced by

the method satisfies the misclassification constraints in the limit. This definition represents

a generalization of the traditional definition where misclassification constraints were not

considered.
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Theorem 4.1.1. Assuming that the conditional group density functions fh(x) and the prior

probabilities πh are known, the DAMIP is a strongly universally consistent classifier.

Proof. To show that the DAMIP is a strongly universally consistent classifier, we will use

VC Theory to show that the objective function converges uniformly to P{φ†(X) = Y } with

n and then show that any sequence of optimal solutions of the DAMIP φn will converge

uniformly to a function satisfying the constraints

P{φ(X) = g, Y = h} ≤ αhg, g, h ∈ G, g 6= h

The modified posterior probabilities are linear functions in the λih’s. One can now think

of the posterior probabilities and conditional group density function values as input data.

The modified posterior probabilities are a certain class of classifiers, with the objective to

find the optimal λih’s based on the input data. Given a sample of size n, the DAMIP solves

the following problem

max
φ

n
∑

j=1

I{φ(Xj)=Yj}

subject to

n
∑

j=1

I{φ(Xj)=g,Y =h}

n ≤ αhg g, h ∈ G, g 6= h

φ(Xj) = arg max
h∈G

(f(h|Xj) −
∑

i6=h

fi(Xj)λih) j = 1, . . . , n

λih ≥ 0 i, h ∈ G, i 6= h

Consider the DAMIP without the misclassification constraints. Finding the optimal

values for the λih variables is equivalent to finding a best linear classifier given the input

data. The input data are the estimates for the conditional group density functions fh(x)

and the prior probabilities πh. An upper bound on the shatter coefficient for this class of

linear functions is (2(n − 1)G(G−1) + 2)G(G−1) where the G(G − 1) term derives from the

number of λih variables, which is the same as the dimension of the “input data” and the

number of hyperplanes in the class of possible classifiers. Considering this bound on the

shatter coefficient and the theorem of Vapnik and Chervonenkis concerning the convergence
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of frequencies to their probabilities,

P{sup
φ∈C

|Bn(φ) − B(φ)| > ǫ} = P{sup
φ∈C

B(φ) − B(φn) > ǫ}

= P{B(φ†) − B(φn) > ǫ}

≤ 8(2(n − 1)G(G−1) + 2)G(G−1)e−nǫ2/8

which implies that the objective function of the DAMIP converges uniformly to P{φ†(X) =

Y }.

Now consider the misclassification constraints. For every n, the DAMIP requires that

Mab
n (φ) =

n
∑

j=1

I{φ(Xj)=b,Y =a}

n
≤ αab

The left-hand side Mab
n (φ) is expressed as another empirical risk functional associated with

the DAMIP. The indicator functions are selected from the same set as for the objective func-

tion. Applying again the fundamental result from Vapnik and Chervonenkis [83], Mab
n (φ)

will converge uniformly to P{φ(X) = b, Y = a}. Because each term in the sequence will

have Mab
n ≤ αab, the limit will also satisfy the constraint. This convergence occurs for all

pairs of groups a and b. Therefore, any convergent sequence of solutions to the DAMIP will

converge to a solution satisfying the misclassification constraints.

Suppose that for groups a and b, the Bayes optimal solution has P{φ∗(X) = b, Y =

a} ≥ αab. The Anderson optimal solution will have P{φ†(X) = b, Y = a} = αab. The

misclassification rates of the DAMIP must converge to the misclassification limits because

if they converged to a value strictly less than αab, then the optimality of an Anderson

optimal solution would be contradicted. If, on the other hand, the Bayes optimal solution

has P{φ∗(X) = b, Y = a} < αab, then the sequence of misclassification rates of solutions to

the DAMIP will converge to some value between P{φ∗(X) = b, Y = a} and αab. The Bayes

optimal solution is the best possible, so the sequence cannot converge to a value less than

the Bayes optimal rate. Additionally, every solution to the DAMIP will have rates less than

or equal to αab, so the sequence will converge to a solution that satisfies the misclassification

constraints.

Thus, we have that the objective value of the DAMIP converges uniformly to P{φ†(X) =
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Y } and any limit of a sequence of solutions for the DAMIP satisfies the misclassification con-

straints as the sample size increases. This convergence does not depend on the distribution

of the data. The DAMIP is therefore strongly universally consistent.

4.2 Stability of solutions to the DAMIP and stability of the

corresponding classification rules

Classification methods can be described as a way of partitioning data or some transforma-

tion of the data. Using the DAMIP involves estimating prior probabilities and likelihood

functions, which can be considered a nonlinear transformation of the raw data. The co-

efficients of the modified posterior probabilities are then derived from the solution of a

mixed-integer program, which is a projection of the prior probabilities and likelihood func-

tion values onto a linear subspace. Given an observation xgj , likelihood functions fh(xgj)

for each h ∈ G, and prior probability πg, the modified posterior probability is

Lhgj = πhfh(xgj) −
∑

i6=h

fi(x
gj)λih

An observation is allocated to a group if the corresponding modified posterior probability

is nonnegative and is the largest modified posterior probability among the groups for that

observation, or xgj ∈ h if

Lagj − Lhgj ≥ 0 ∀ h ∈ G

Lagj ≥ 0

or, equivalently,

∑

i6=a

fi(x
gj)λia −

∑

k 6=h

fk(x
gj)λkh + πafa(x

gj) − πhfh(xgj) ≥ 0 ∀ i ∈ G

∑

i6=a

fa(x
gj)λia ≥ 0

Note that prior to solving for the λih’s, the only quantities that depend on the data are

the estimates of the likelihood functions evaluated at the observations. If a set of λih’s is

given by a solution of the DAMIP and the estimates of prior probabilities are fixed, the

equations above partition the observations in the space of their likelihood function values
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fh(xgj). The partitions are defined by hyperplanes, as the equations are linear in the priors

πh and lambda’s λih.

In a sense, the DAMIP seeks to partition entities with linear hyperplanes in the space

of their likelihood function values. A natural question is how well the hyperplanes separate

the observations; in other words, is there the possibility of confusing the allocation of an

observation between multiple groups? Can the regions between groups be adjusted? With

respect to the DAMIP, the answers to these questions characterize the stability of solutions

to the mixed-integer program and therefore the stability of the corresponding classification

rules.

The formulation of the DAMIP (Section 3.1) as a mixed-integer program requires each

observation to be allocated to exactly one group. Additionally, the constraints ygj ≥ ǫuhgj

are added so that if an entity is allocated to a group (instead of the reserved judgment

region), the modified posterior probability is at least ǫ. These new ǫ constraints, together

with the original ǫ constraints, provide a natural stability to the classification rules. An

observation xgj is placed in group a if and only if

Lagj − Lhgj ≥ ǫ ∀ h ∈ G

Lagj ≥ ǫ

or,
∑

i6=a

fi(x
gj)λia −

∑

k 6=h

fk(x
gj)λkh + πafa(x

gj) − πhfh(xgj) ≥ ǫ ∀ i ∈ G

∑

i6=a

fa(x
gj)λia ≥ ǫ

so that the relative difference in the modified posterior probability for h with the other

modified posterior probabilities is at least ǫ. Therefore, there is a buffer between every pair

of regions, the thickness of which is determined in part by the ǫ constant. Let βab be the

vector coefficients of the hyperplane that partitions likelihood function values to separate

groups a and b, and let f(xgj) = [f1(x
gj), f2(x

gj), . . . , fG(xgj)] be the vector of likelihood

function values. The distance of observation xgj to the ab hyperplane is

βT
abf(xgj)

||βab||
≥

ǫ

||βab||
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Therefore, the smaller the coefficients of the hyperplane (the πh’s and λih’s), the more

stable the solution. The distance to the hyperplane depends partially on the value of ǫ,

which can be changed for each entity-group combination. Restrictions can also be placed

on the size of the λih’s. One begins to think of the objective involved in support vector

machines which has a term to bound the size of the coefficients of the linear hyperplane in

a high dimensional space and another term to reduce training error. Adding a term such as

−||β||2 would convert the DAMIP into a quadratic mixed-integer program which is beyond

the scope of this work. chapter 4
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Chapter V

Computational Methods

The solution of the DAMIP is tested in a branch and cut framework. The ideas developed in

the previous chapter are implemented with industry standard software. The conflict graph

and conflict 3-hypergraph are used to derive cuts at branch and bound nodes. Tailored

strategies for finding initial feasible solutions and setting values for M are employed. A

heuristic for finding integer feasible solutions is added and a specialized branching scheme

is implemented.

5.1 Formulation

The formulation used in testing solution strategies and classification accuracy of the DAMIP

is the same as that given in Section 3.1 with the exception that the Lhgj variables are

substituted out. The formulation is

maximize
∑

g∈G

∑

j∈Ng

uggj

subject to

ygj − πhfh(xgj) +
∑

i∈G
i6=h

fi(x
gj)λih ≤ M(1 − uhgj) g, h ∈ G, j ∈ Ng

ygj ≤ M(1 − u0gj) g ∈ G, j ∈ Ng

ygj ≥ ǫuhgj g, h ∈ G, j ∈ Ng

ygj − πhfh(xgj) +
∑

i∈G
i6=h

fi(x
gj)λih ≥ ǫ(1 − uhgj) g, h ∈ G, j ∈ Ng

∑

0,h∈G
uhgj = 1 g ∈ G, j ∈ Ng

∑

j∈Ng

uhgj ≤ ⌊αhgng⌋ h, g ∈ G, h 6= g

ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}
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5.2 Finding an initial integer feasible solution

The difficulty in finding an initial integer feasible solution depends in large part on the

misclassification limits. If the number of misclassified training entities is restricted to zero,

then most of the integer variables are zero in every feasible solution. The DAMIP either

correctly classifies an observation or places it in the reserved judgment region, and other

integer variables for that observation can be set to zero before branch-and-bound begins.

This case is intuitively easier to solve than other misclassification limits, and returns a

solution that is integer feasible for any other misclassification limit desired. Also, if the

data are completely separable, the solution to this problem quickly returns a solution in

which every entity is correctly classified.

If the number of misclassified observations is unrestricted, the “Bayes rule” always

provides an initial feasible solution. The Bayes rule allocates entities to groups for which

the estimate for the posterior probability is largest. This rule corresponds to a solution of

the DAMIP where λih = 0 for all i and h.

For misclassification limits in between the two extremes, finding an initial integer feasible

solution for the DAMIP may be difficult. One way to guarantee an initial integer feasible

solution is to use the solution derived when misclassification limits are set at zero. For

higher misclassification limits, for example 15− 20% and higher, this solution is unlikely to

be a “good” integer feasible solution for the DAMIP. Note that a solution derived with mis-

classification rates of 5% is feasible for the problem with rates of 5% and higher. Therefore,

slowly raising the misclassification limits and using the preceding solutions guarantees good

initial integer feasible solutions. In the computational tests of Section 6.2.2, the problems

are solved in order of increasing misclassification limits and optimal solutions are used as

initial feasible solutions for subsequent problems.

5.3 Defining values for big M

The values for M in the formulation are derived using the upper bound results in Section 3.6,

with a maximum value of 100. A different value for M is calculated for each integer

variable. If the calculated upper bound for a particular M exceeds 100, then that M
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is set to 100. According to the analysis in Section 3.6, this upper bound on M allows

observations to be allocated to groups h (subject to misclassification constraints) for which

fh(xgj) > 1/(32 ·3) = 1/96 for a 3-group problem and for which fh(xgj) > 1/(32 ·5) = 1/160

for a 5-group problem.

5.4 Generating and storing the conflict graph and conflict
3-hypergraph

As shown in Section 3.4, the solution of small linear programs can be used to find edges in

the conflict graph and hypergraphs. Necessary conditions and sufficient conditions are given

for edges to be present in the graph and hypergraphs. These concepts are implemented for

computational testing to generate and store the conflict graph and conflict 3-hypergraph.

The conflict graph and conflict 3-hypergraph are used to derive cutting planes during solu-

tion of the DAMIP.

5.4.1 Necessary and sufficient conditions for edges in the conflict graph

In Section 3.5.2, necessary and sufficient conditions are given for the existence of edges of

the conflict graph of the form (u0j , ugk) or (uhj , ugk) in the absence of misclassification

constraints. If misclassification constraints are present, the conditions are sufficient but not

necessary.

An alternative to using the conditions for finding edges in the conflict graph is to de-

termine if a corresponding linear program is infeasible. Using the conditions to determine

the edges of the conflict graph is faster and more accurate than determining if the linear

program is infeasible. As an illustration of the increased accuracy, consider the input data

from the va data set

f1(x
5j) = 0.806546994424451 f1(x

3k) = 0.017962285617577

f2(x
5j) = 0.146253643655761 f2(x

3k) = 0.037324280602612

f3(x
5j) = 0.349467241010385 f3(x

3k) = 0.115602826096817

f4(x
5j) = 0.010550943880602 f4(x

3k) = 0.293548055935253

f5(x
5j) = 0.001701693938146 f5(x

3k) = 0.535562551747739

and the associated linear program
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min 0
∑

i,h

λih

subject to

0.806546994424451λ13 + 0.146253643655761λ23

+0.010550943880602λ43 + 0.001701693938146λ53

−0.806546994424451λ15 − 0.146253643655761λ25

−0.0349467241010385λ35 − 0.010550943880602λ45 ≥ 0.00686886004637505

0.806546994424451λ15 + 0.146253643655761λ25

+0.0349467241010385λ35 + 0.010550943880602λ45 ≤ 0.00007961141231096

−0.017962285617577λ13 − 0.037324280602612λ23

−0.293548055935253λ43 − 0.535562551747739λ53

+0.017962285617577λ15 + 0.0373242806026121λ25

+0.115602826096817λ35 + 0.293548055935253λ45 ≥ 0.00207020074087797

0.0179622856175779λ13 + 0.0373242806026121λ23

+0.293548055935253λ43 + 0.535562551747739λ53 ≤ 0.0229853572356244

λih ≥ 0

Using the default tolerances, CPLEX determines that this linear program is feasible, though

the conditions for infeasibility are satisfied. If the feasibility tolerance setting in CPLEX

CPX PARAM EPRHS [45] is decreased to 1×10−8, CPLEX determines that the linear pro-

gram is infeasible. Therefore, the conditions for infeasibility are used to derive the conflict

graph rather than solve the series of linear programs.

5.4.2 Finding edges of the conflict 3-hypergraph

Necessary and sufficient conditions are not known for the existence of edges in the conflict 3-

hypergraph. The known necessary conditions for infeasibility of associated linear programs

given in Section 3.5.1 can be used to reduce the number of linear programs solved. As with

the conditions for conflict graph edges, the evaluation of the necessary conditions is much

faster than determining the feasibility of the linear program.

As noted in Section 3.5, any edge of the conflict graph can be extended to an edge of
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the conflict 3-hypergraph. The edges of the conflict 3-hypergraph that are implied by the

conflict graph are not checked twice. This practice further reduces the computation needed

to check for edges of the conflict 3-hypergraph.

5.4.3 Storing the conflict graph and conflict 3-hypergraph

Decisions about the method for generating and storing the conflict graph and conflict 3-

hypergraph were made based on the size of the example problems. Table 1 contains infor-

mation about the size of the conflict graphs for various test problems with a misclassification

limit 5% for all pairs of groups. The data that were used in generating the test problems

are described in Section 6.1. The relatively small number of nodes allowed for storage

of the conflict graph in both an adjacency matrix and in adjacency lists. The different

representations are used in different graph-searching algorithms as described in Section 5.6.
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Table 1: The size of the conflict graph and the number of variables(nodes) fixed to zero for various data sets when the misclassification
limit is 5% for all pairs of groups. The size of the conflict graph is given before and after the fixed variables are set to zero. Conflict
graph density is calculated as 100 × (Edges after)

(Node after
2 )

. The data sets are described in Section 6.1.

Problem Groups Entities Nodes Edges Fixed Nodes Edges Density
Variables after after (%)

iris 3 135 540 47280 85 455 28628 27.7
wine 3 153 612 59853 174 438 19558 20.4
new-thyroid 3 189 756 67522 49 707 51120 20.5
sepal 3 135 540 38458 74 466 26798 24.7
FNlnVN.alltree1 3 63 252 8283 116 136 963 10.5
va 5 76 456 15924 237 219 2507 10.5
switzerland 5 90 540 23168 186 354 6190 9.9
hungarian 5 233 1398 178558 254 1144 82427 12.6
cleveland 5 264 1584 227953 309 1275 101443 12.5
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The conflict 3-hypergraph is either generated before optimization and stored or edges are

checked as needed inside the structure-finding algorithms. When the conflict hypergraph

is generated, it is stored using an extension of the data structure introduced by Atamtürk

et. al [5] for conflict graphs. The structure for conflict graphs employs an array last of

length equal to the number of nodes and arrays adj and next of length equal to twice the

number of edges in the graph. For node v, the entry adj[last[v]] contains the last node

added to adj to which v is adjacent. The entry adj[next[last[v]]] contains the index of the

second-to-last node added to adj to which v is adjacent. If no other edges are adjacent to

v, then next[last[v]] = 0.

The conflict 3-hypergraph is stored using an array last of length equal to the number

of nodes and arrays adj1, adj2, and next of length equal to 3 times the number of edges

in the hypergraph. For node v, the last edge added to the data structure containing v is

(v, adj1[last[v]], adj2[last[v]]). The second-to-last edge added to the data structure contain-

ing v is (v, adj1[next[last[v]]], adj2[next[last[v]]]) and so on. When an edge is added to the

data structure, 3 entries are added to adj1, adj2, and next for each node in the edge. As an

example, suppose that nodes {1, 2, 3, 4, 5, 6} and edges {(1, 2, 3), (1, 4, 5), (1, 3, 6), (2, 3, 4)}

are contained in the hypergraph. Then the array entries are

last = [7, 10, 11, 12, 6, 9]

adj1 = [2, 1, 1, 4, 1, 1, 3, 1, 1, 3, 2, 2]

adj2 = [3, 3, 2, 5, 5, 4, 6, 6, 3, 4, 4, 3]

next = [0, 0, 0, 1, 0, 0, 4, 3, 0, 2, 8, 5]

Note that this structure can easily be extended further to conflict n-hypergraphs using

an array last of length equal to the number of nodes, n − 1 arrays adji of length n times

the number of edges in the hypergraph, and an array next of length n times the number of

edges in the hypergraph.
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5.4.4 Floating point accuracy and validity of conflict graph and hypergraph
edges

The integer programming formulation of the DAMIP is intrinsically stable due to the pres-

ence of the ǫ constraints (see Chapter 3). The ǫ constants ensure a buffer between the

regions corresponding to the different groups. The linear programs considered in generat-

ing edges of the conflict graph and conflict 3-hypergraph do not take into account the ǫ

constants in the sense that they are formulated with the assumption that there is no buffer

between the group regions. Therefore, if an edge is present in the conflict graph (or hyper-

graph), then the associated integer variables cannot both have value 1 for any value of ǫ,

including in the limit as ǫ approaches 0. In other words, the edges of the conflict graph and

conflict hypergraph are generated in a conservative manner with respect to their validity

for the integer program.

5.5 Fixing variables

As described in Section 3.4.3, the conflict graph and misclassification constraints can imme-

diately imply that certain integer variables will be 0 for any feasible solution. In the com-

putational tests, these variables are fixed at 0 before optimization begins. Table 1 contains

information about how many variables are fixed for each data set when the misclassification

limit is set to 5%.

5.6 Cutting planes

The conflict graph is generated and stored before optimization for the rapid generation

of cutting planes at nodes in the branch and bound tree. Structures such as maximal

cliques, odd holes, and maximal hypercliques correspond to valid inequalities for the integer

programming formulation of the DAMIP.

5.6.1 Maximal clique constraints from the conflict graph

At nodes in the branch and bound tree, violated maximal clique inequalities are found

in the subgraph induced by nodes corresponding to fractional-valued integer variables and

integer variables with value 1. The conflict graph is searched using an implementation of
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the enumeration algorithm proposed by Bron and Kerbosch [21]. The algorithm maintains

sets of nodes compsub, candidates, and not in its search. The set compsub is the current

clique that is to be extended to a larger clique, or reduced to build another maximal clique.

The set candidates is the set of nodes not in compsub that are adjacent to all nodes in

compsub; these nodes are eligible to extend candidates. The set not is the set of nodes

that have already served as an extension of the current configuration of compsub and are

now excluded. The algorithm includes an extension operator on the set compsub in which

a member of candidates is added.

The basic algorithm is as follows

1. Select a candidate from candidates and add it to compsub.

2. Create new sets candidates and not from the old sets by removing nodes not connected

to the selected candidate.

3. Extend compsub based on the sets just formed.

4. Remove the selected candidate from compsub, and place it in not.

A maximal clique is contained in compsub when the sets candidates and not are empty.

If at some stage not contains a point connected to all points in candidates, then that

point will never be removed from not and a maximal clique will not be found. Extensions

on the current compsub need not be explored, and those configurations of compsub have

been fathomed in a branch-and-bound sense. Bron and Kerbosch [21] further enhance

the algorithm by intelligently selecting a candidate from candidates so that the fathoming

condition is met as rapidly as possible.

The maximal clique algorithm implemented for the DAMIP uses the adjacency matrix

representation of the conflict graph. As each maximal clique is generated, the corresponding

maximal clique inequality is checked to determine if the current solution violates it. If so,

then integer variables with value 0 at the current branch-and-bound node are lifted in by

checking for variables whose nodes in the conflict graph are adjacent to nodes in the maximal
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clique and nodes that have already been lifted in. After a maximal set of integer variables

is lifted, then the cut is added, either locally or globally.

5.6.2 Odd hole constraints from the conflict graph

Odd holes are searched for in the entire conflict graph at a node in the branch-and-bound

tree, as opposed to the subgraph induced by fractional variables. A breadth-first search

heuristic, described by Bixby and Lee [12], is used to find odd holes. An odd cycle is found

when two nodes are on the same level of the breadth-first search tree. The algorithm then

backtracks to determine if the odd cycle contains any chords. If the odd cycle is an odd

hole and the corresponding inequality is violated by the current solution, then the odd hole

inequality is lifted and added.

The breadth-first search is repeated ten times at each node of the branch and bound

tree, each time using a randomly selected node in the conflict graph as the root. When a

violated odd hole inequality is found, the search is terminated. If the conflict graph is not

connected, every tree in the forest is searched.

A violated odd hole inequality is lifted in stages.

1. Variables with nonzero values that are adjacent to every node in the inequality are

lifted with a coefficient equal to the size of the odd hole.

2. Remaining variables with nonzero values adjacent to all but one node in the inequality

are lifted with a coefficient equal to one less than the size of the odd hole.

3. Remaining variables with nonzero values and nonzero lifting coefficients are lifted.

4. Remaining variables with nonzero lifting coefficients are lifted.

The cut is added after lifting, either locally or globally. The breadth-first search algo-

rithm for the DAMIP uses an adjacency list representation of the conflict graph which is

better suited for building the queue than the adjacency matrix representation. The lifting

procedure employs the adjacency matrix representation.
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5.6.3 Maximal hyperclique constraints from the conflict 3-hypergraph

Maximal hypercliques, as defined by Easton et. al [28], in an n-hypergraph are structures

containing all
(

m
n

)

edges for some subset of m nodes.

Violated maximal hyperclique inequalities in the conflict 3-hypergraph are found, lifted,

and added at nodes in the branch-and-bound tree. The method for finding maximal hyper-

cliques in the conflict 3-hypergraph is an extension of the algorithm by Bron and Kerbosch

[21] for maximal cliques. The new algorithm enumerates all maximal hypercliques and takes

advantage of the fathoming concepts in the original algorithm.

In the maximal n-hyperclique algorithm, the sets compsub, candidates, and not are

maintained as before. The definitions are slightly altered:

• compsub contains a hyperclique that may or may not be extended. Every subset of

n nodes in compsub is an edge in the conflict n-hypergraph, or the nodes in compsub

are contained in an edge.

• candidates contains nodes v such that every subset of n nodes containing v and

nodes from compsub is an edge in the conflict n-hypergraph, or v and the nodes from

compsub are contained in an edge. In other words, v is eligible to extend compsub.

• not contains nodes v that were contained in a previous extension of the current

compsub. Therefore, every subset of n nodes containing v and nodes from compsub

is an edge in the conflict n-hypergraph, or sets of nodes containing v and the nodes

from compsub is contained in an edge.

In short, the notion of adjacency of a node to a set of nodes is naturally extended to

imply that every subset of n nodes is an edge, or the node and set of nodes is contained in

an edge.

Due to memory and time limitations, only the conflict 3-hypergraph is used for finding

maximal hypercliques. Generating and storing the hypergraph before optimization proved

to be exceedingly time- and memory-intensive for large problems, so generating the hyper-

graph on-the-fly is also tested.
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The adjacency matrix representation of the conflict graph is used to check edges of the

conflict graph, which can be extended to edges in the conflict 3-hypergraph (see Section 3.5).

The conflict 3-hypergraph is stored as described in Section 5.4, and adjacency to a node v

is determined using an algorithm which is an extension of that suggested by Atamtürk et

al. [5]. The following algorithm finds all edges containing node v

Algorithm 5.6.1. 1. k = last[v]

2. while k 6= 0 do

3. (a) print “edge (v, adj1[k], adj2[k]) exists in the conflict 3-hypergraph”

(b) k = next[k]

This algorithm can easily be extended for the conflict n-hypergraph.

When a violated maximal hyperclique inequality is found, the inequality is lifted and

then added, either locally or globally. Variables are lifted in a manner similar to the routine

for odd hole inequalities by using information from the conflict graph:

1. Variables with nonzero values that are adjacent to every node in the inequality are

lifted with a coefficient equal to 2.

2. Remaining variables with nonzero values adjacent to all but one node in the inequality

are lifted with a coefficient equal to 1.

3. Remaining variables with nonzero lifting coefficients are lifted.

5.6.4 Implications of other inequalities

The inequalities of the form uhgj ≤ uhgk (see Section 3.4.2) that are implied by the conflict

graph and misclassification constraints are stored before optimization and then added as

they are violated. The lifting coefficient of any other integer variable is zero, so these

constraints are not lifted.
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5.7 Heuristic

As noted in chapter 3, the values of the λihs determine the values the rest of the variables

in integer programming formulation of the DAMIP. At each node in the branch and bound

tree, there exists a integer solution associated with the current values for the λih’s. This

solution may or may not satisfy the misclassification constraints and may or may not reflect

the robustness provided by the ǫ constraints in the DAMIP formulation.

A heuristic is implemented to check the integer solution derived from the λih values

at every node in the branch and bound tree. The solution is preserved as the incumbent

solution if the new objective is better than the current incumbent and the solution satisfies

the misclassification constraints and preserved the robustness enforced by the ǫ constraints.

5.8 Branching strategies

The DAMIP is tested with a branching strategy that attempts further exploit information

in the conflict graph. The branching strategy involves branching on certain hyperplanes,

branching on the most fractional correct classification variable, and branching on the vari-

able that CPLEX provides based on strong branching information. The branching scheme

creates 2 branches at each node, trying each of the following components in order.

1. The “correct classification hyperplane”. Let Fc be the set of correct classification

variables with fractional values. If
∑

(g,j):uggj∈Fc

uggj > |Fc| − 1, then one branch is

created with the constraint
∑

(g,j):uggj∈Fc

uggj ≤ |Fc| − 1, and another branch is created

with all variables in Fc set to value 1. In the second branch, variables adjacent to

members of Fc in the conflict graph are set to value 0.

2. The “misclassification hyperplane”. Let Fhg be the set of variables with frac-

tional values that correspond to allocating entities from group g to group h. If

∑

j:uhgj∈Fhg

uhgj > |Fhg|−1 , then one branch is created with the constraint
∑

j:uhgj∈Fhg

uhgj ≤

|Fhg| − 1, and another branch is created with all variables in Fhg set to value 1. In

the second branch, variables adjacent to members of Fhg in the conflict graph are set

to value 0.
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3. Most fractional correct classification variable. Branches are created for the

most fractional correct classification variable. For the branch with the variable set to

value 1, all adjacent variables in the conflict graph are set to value 0.

4. CPLEX-provided variable. Branches are created for the CPLEX-provided variable

based on strong branching information. For the branch with the variable set to value

1, all adjacent variables in the conflict graph are set to value 0.

Note that when a single variable is selected for branching, in effect hyperplanes with

nonzero coefficients on the λih variables are added to the formulation. If uhgj is selected for

branching, the branch for which uhgj = 1 requires that Lhgj − Lagj ≥ ǫ for all a 6= h. The

branch for which uhgj = 0 requires that ygj − Lhgj ≥ ǫ.

5.9 Preparation of data

For a set of training observations, estimates of the prior probabilities and estimates for the

conditional group density functions for each observation are generated. The prior proba-

bility for a group is estimated as the proportion of training entities from that group. The

conditional group density functions are generated under the assumption that the data is

multivariate normal with equal covariance matrices between the groups. This method treats

discrete-valued attributes as continuous attributes.

Any method for estimating prior probabilities likelihood functions can be used as input

to the DAMIP. For all of the tests that follow, the conditional group density functions

are approximated using the values returned by linear discriminant functions where the

attributes are assumed to be multivariate normal with a common covariance matrix. This

method for generating the conditional group density function values can lead one to view

the DAMIP as the second in a two-step procedure, or a modification of the rules derived

by another method.

Splus 6.0 for Unix/Linux is used to generate the likelihood function estimates using the

discrim() function.

Missing values are treated by removing attributes and observations so that no missing

values remained. The treatment of missing values is further discussed in the next chapter.
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After the estimates of the likelihood functions are generated, the conditional group

densities evaluated at some of the points can be extremely small. Some of the conditional

group density values are on the order of 1 × 10−20 and smaller. Such small values as

1 × 10−20 can result in floating point inaccuracies in CPLEX, as the default integrality

and feasibility tolerances are set to 1 × 10−5 and 1 × 10−6, respectively. In order to avoid

such difficulties, conditional probability densities are perturbed. If a conditional probability

density evaluates to less than 1× 10−6, the value is set to 1× 10−6 for the remainder of the

calculations.

chapter 5
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Chapter VI

Computational Tests

The computational methods for solving the DAMIP are implemented and tested for im-

provements in computational efficiency. Additionally, the properties of the classification

rules returned by the DAMIP are compared to rules that are derived using standard meth-

ods.

The tests for computational efficiency are performed using real-world data sets. The

tests for classification accuracy are performed using the same data, along with simulated

data that are generated from specified distributions.

Descriptions of the real-world data sets that are used for computational tests are in

the next section, followed by performance comparisons of industry standard software to

code enhanced with the techniques of Chapter 5. Finally, comparisons of the classification

accuracy of the DAMIP with standard methods under various conditions are included.

6.1 Real-world data sets

Let an n-group problem be a problem where discrimination between n groups is of interest.

Five of the data sets are from 3-group problems, and the remaining four data sets are from

5-group problems. The data sets wine, new-thyroid, iris, and sepal are 3-group problems

from the UCI machine learning database repository. The data set sepal is derived from iris

as described in Gallagher et al. [35] by considering a subset of attributes. The data sets va,

switzerland, hungarian, and cleveland are 5-groups problems from the UCI machine learning

database repository. The remaining data set, FNlnVN, is a 3-group problem generated from

data as described in [88] from cell motility data gathered at Georgia Tech by Adele Wright.

6.1.1 3-group data sets

wine The wine recognition data is concerned with discriminating between wines produced in

the same region of Italy, but from three different cultivars (plants). The 13 continuous
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attributes measure the amount of various substances found in the wines. There are

59 instances of class 1 wine, 71 instances of class 2 wine, and 48 instances of class 3

wine.

new-thyroid The thyroid gland data is used to discriminate between euthyroidism (normal func-

tion), hypothyroidism, and hyperthyroidism based on the results of five lab tests.

The results of the lab tests produce continuous measurable attributes. There are 150

normal cases (euthyroidism), 35 hyper, and 30 hypo cases in the original data set.

iris The Iris Plants Database was created by Fisher and is concerned with discriminating

between Iris Setosa, Iris Versicolour, and Iris Virginica based on sepal length, sepal

width, petal length, and petal width. There are 50 entities in each group, for a total

of 150 entities.

sepal The sepal data set is created from the iris data set as described in [35]. The data set

is equivalent to the iris data set, except that only sepal length and sepal width are

included as attributes.

FNlnVN The FNlnVN data set is concerned with discriminating between the behavior of can-

cerous cells placed in culture with extracellular matrix (ECM) proteins. The groups

are determined by the proteins on which cells are placed. For this data set, cells are

placed on fibronectin (Fn), laminin (Ln), and vitronectin (Vn). Continuous measur-

able attributes are gathered for each of the cells. Eight of the attributes are used

in this data set. The objective of the predictive model is to determine how well the

selected attributes discriminate between the effects of the various proteins on cell be-

havior. The data consists of 30 cells placed on fibronectin, 30 cells placed on laminin,

and 25 cells placed on vitronectin.

6.1.2 5-group data sets

All four of the 5-group problems are from databases that were established in the interest

of improving heart disease diagnosis. The five groups are defined by four levels of heart

disease and a group for which heart disease is absent. The entities are the patients for
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which a variety of measurable attributes have been recorded. The attributes include age,

sex, resting blood pressure, cholesterol, and resting electrocardiographic results.

The distribution of entities among the classes of heart disease for computational testing

in the next two sections are given in Table 2.

Table 2: The number of entities belonging to each class for the heart disease diagnosis
data sets. The quantities represent 1 of 10 folds of training data generated, or a sample of
90% of the data.

1 2 3 4 5
va 14 25 18 15 4
switzerland 7 35 24 20 4
hungarian 146 32 20 23 12
cleveland 141 50 31 32 10
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va The data set va was collected at the V.A. Medical Center by Dr. Robert Detrano. For

computational purposes, attributes 12 and 13 are removed from consideration because

most of the values are missing. Also, 94 entities do not contain sufficient information

for assigning group density values and are removed.

switzerland The switzerland data set was collected at University Hospital by Dr. William Stein-

brunn and Dr. Matthias Pfisterer. Attributes 7, 12, and 13 are removed because of

missing values. There are 18 entities in the original data set removed due to missing

values.

hungarian The hungarian data set was collected by Dr. Andras Janosi at the Hungarian Institute

of Cardiology in Budapest. Attributes 11 through 13 are removed from consideration

due to missing values. There are 27 entities removed due to missing values for other

attributes.

cleveland The cleveland data set was collected by Dr. Robert Detrano at the V.A. Medical

Center Cleveland Clinic Foundation. None of the attributes or entities are removed

from the original data set.

6.2 Comparison of performance: enhanced code vs. CPLEX

Instances of the DAMIP are solved using CPLEX Callable Library V8.1 (CPLEX). The

code is also enhanced with the cuts, branching strategy, heuristic described in Chapter 5

(enhanced code) and then used to solve the same instances to determine the improvement

in solution times due to the new methods.

6.2.1 Methods and data

The two codes are tested using real-world data from the 9 data sets described in the previous

section. For computational testing, a single fold of data is selected out of a set of ten folds.

In other words, data from approximately 90% of the observations is selected at random

from each data set. For a particular data set, the same fold of data is used for all tests of

the speed and efficiency of the codes.

116



Preliminary results showed that the 3-group instances are solved in less than 5 seconds

for both codes, so the tests for computational speed are focused on 5-group problems with

varying misclassification limits imposed.

Computational tests are performed on a fold from each of the 5-group data sets using

four sets of misclassification limits. Specifically, tests are run with α = αhg = 0.00 for all h

and g, α = 0.05, α = 0.15, and α = 1.00. These runs correspond to misclassification limits

of 0, 5, 15, and 100%, respectively, such that for a given h and g, at most ⌊αNh⌋ entities

from group h are misclassified as belonging to group g. Problems will be referenced by the

abbreviation and α values; i.e., swi-0.05, cle-1.00.

For all tests, the ǫ in the formulation of the DAMIP is set to 0.0001.

The 12 5-group problems are tested on machines with 2x2.4GHz Intel Xeon processors

and 2GB RAM. CPLEX is set to terminate if either branch and bound tree memory reached

1.9 gigabytes or 200,000 CPU seconds passed.

The reader is referred to the ILOG CPLEX 8.1 Reference Manual [45] for information

regarding parameters controlling cut generation, presolve, probing, optimization strategy,

branching procedures, and node selection procedures. The user-defined cuts, branching

schemes, and heuristics of the enhanced code are implemented using callback functions

which are described in the ILOG CPLEX 8.1 Advanced Reference Manual [46].

Preliminary tests demonstrated that issues concerning floating-point accuracy cause

CPLEX to consider infeasible solutions feasible, and suboptimal problems optimal. To

facilitate proper comparisons and to ensure accurate calculation of the integrality gap re-

maining, the tolerance levels are set to their strictest settings in CPLEX and the enhanced

code for all tests [45].

6.2.2 Results

Various settings for CPLEX are tested including the generation of cuts, branching strategies,

solution strategies, and node selection strategies. Several settings are used in every test

(with the exception of the test of the default settings for CPLEX). Strong branching is used

as the branching strategy. The only CPLEX-generated cuts used are cliques and generalized
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upper bound cuts (GUBs). The alternative best estimate node selection procedure is used.

Preliminary tests showed that generating and storing the conflict 3-hypergraph is pro-

hibitive due to time and memory limitations for the larger instances of the DAMIP (data

not shown). In every test reported, the conflict 3-hypergraph is generated and searched

on-the-fly.

6.2.2.1 Enhanced code versus CPLEX

The best-performing configurations for CPLEX and the enhanced code are compared in

Table 6.2.2.1. The best-performing settings that are observed for CPLEX include using

strong branching, generating cliques and GUBs aggressively, probing at the most aggressive

level, not using presolve, and using a strategy that emphasizes optimality over feasibility.

The enhanced code compared in Table 6.2.2.1 employs these same settings with the excep-

tion that the strategy of moving the best bound is used. In separate tests, this strategy

proves detrimental to the performance of CPLEX (data not shown). The enhanced code

additionally employs maximal clique inequalities and odd hole inequalities derived from the

conflict graph, variable fixing, a user-defined heuristic, a user-defined branching scheme,

and upper bounds for parameters. These enhancements are described in Chapter 5. The

conflict hypergraph is not used in the enhanced code because the time spent generating and

finding violated cuts is unmerited (see Section 7).

The first two columns in Table 6.2.2.1 define the data set and misclassification limit.

The misclassification limits is the maximum percentage of observations from each group

that can be misclassified as belonging to another group. The limit is applied to each pair

of groups.

The third through sixth columns summarize the performance of CPLEX on the test

problems. Column three contains the highest objective value associated with an integer

feasible solution found by CPLEX, column four contains the percentage of integrality gap

remaining, column five contains the processor time for CPLEX to find a feasible solution

with the objective value of column three, and column six contains the nodes solved by

CPLEX before finding a feasible solution with the objective value of column three. By
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definition, the percentage of integrality gap remaining is given by (zLP
UB − zIP )/(zLP

root −

zIP )×100, where the value zIP is the optimal objective value of the mixed-integer program.

If zIP is unknown, the objective value associated with the best known integer feasible

solution is used. The value zLP
UB is the best objective value among active LP subproblems at

termination. The value zLP
root is the optimal objective value of the linear program relaxation

at the root of the branch and bound tree.

Columns seven through ten summarize the performance of the enhanced code. Columns

seven and eight are defined as columns three and four applied to solutions obtained by the

enhanced code. Columns nine and ten contain the processor time and nodes, respectively,

needed for the enhanced code to find an integer feasible solution to the test problem with

an objective value at least as good as the best solution found by CPLEX alone.

Columns eleven and twelve summarize the improvement in time and nodes, respectively,

that the enhanced code provides. Column eleven is calculated by dividing the quantity in

column five by the quantity in column nine. Column twelve is calculated by dividing the

quantity in column six by the quantity in column ten.

The enhanced code solves 8 of the 12 test problems to optimality (Table 6.2.2.1).

CPLEX solves only 4 problems to optimality and obtains a solution with optimal objective

in 7 of the 12 problems. The enhanced code finds solutions with objective values at least

as good as those found by CPLEX in less time and with less nodes explored for all prob-

lems with the exception of va-0.15, hun-0.15, and cle-1.00. CPLEX did not find a feasible

solution to cle-0.15. The percentage of integrality gap remaining for the enhanced code

is smaller than that of CPLEX for the 4 problems that are not solved to optimality. The

percentage of integrality gap remaining evaluates the quality of the lowest upper bound

achieved, and does not consider the quality of the integer feasible solutions that are found.

Thus, the enhanced code outperforms CPLEX in terms of finding upper and lower bounds

on the optimal objective value for ever test problem except cle-1.00.
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Table 3: CPLEX with cliques, GUBs, and strong branching vs. Enhanced code. CPLEX with cliques, GUBs, strong
branching, compared to enhanced code including maximal clique cuts, odd hole cuts, variable fixing, user-defined branching scheme, and
heuristic. The optimal objective values for problems cle-0.05 and cle-0.15 have not been verified, so the best-known objective values are
used.

Problem CPLEX Enhanced code Improvement ( CPLEX
Enhanced code)

Time to Nodes to Time to Nodes to
Best obj. Gap rem. Time to Nodes Best obj. Gap rem. CPLEX CPLEX CPLEX CPLEX

Data αij value (%) best (s) to best value (%) best (s) best best best

va 0.05 27 0.0 5 110 27 0.0 1 4 5.0 27.5
va 0.15 50 0.0 388 4262 50 0.0 1329 10528 0.29 0.4
va 1.00 52 0.0 139 1490 52 0.0 22 133 6.3 11.2
swi 0.05 30 0.0 2363 33790 30 0.0 789 5036 3.0 6.7
swi 0.15 47 22.0 63013 163655 48 0.0 33783 64414 1.9 2.5
swi 1.00 55 17.1 5773 34538 55 0.0 2585 20968 2.2 1.6
hun 0.05 108 80.4 24896 73340 108 0.0 33375 21763 0.75 3.4
hun 0.15 143 61.2 87893 80731 155 25.1 2912 3048 30.2 26.5
hun 1.00 178 32.8 41850 42579 178 0.0 4276 12003 9.8 3.5
cle 0.05 85 54.2 177940 272243 90 37.2 45426 23582 3.9 11.5
cle 0.15 N/A 79.4 N/A N/A 122 51.5 N/A N/A N/A N/A
cle 1.00 187 48.2 39910 31003 187 25.0 104944 224682 0.4 0.1
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6.2.2.2 Benefits of CPLEX-generated cliques and GUBs

Tables 4 through 6 summarize the performance of the enhanced code with various settings

for CPLEX. The first column indicates the setting that is tested. The second and third

columns identify the problem and the misclassification limits enforced. Column four con-

tains the optimal objective value for the test problem. For cle-0.15, the optimal objective

value is not known, so the best-known objective value is used. The fifth column contains the

best objective value associated with an integer feasible solution found. Column six contains

the lowest upper bound achieved by the enhanced code, and column seven contains the per-

centage of integrality gap remaining. The percentage of integrality gap remaining is defined

in Section 6.2.2.1. The eighth column contains the number of nodes solved. Columns nine

and ten contain the nodes solved and time, respectively, before the enhanced code finds a

solution with the objective value of column five. Column eleven contains the total processor

time used in solving the problem.

Extensive testing was performed to determine which classes of cuts available in CPLEX

are most beneficial to solving DAMIP instances. In general, all of the cuts are detrimen-

tal to solution times with the exception of clique cuts and GUBs (data not shown). The

contribution of cliques and GUBs to improved performance is tested by comparing gener-

ating these cuts at their most aggressive levels to not generating the cuts at all in Table 4.

The two settings are compared for the problem instances with the misclassification limits

at 15%. The enhanced code with the cuts aggressively generated outperforms the same

without cuts in terms of time to best solution, percentage gap remaining, and nodes solved

before the best solution on every test instance except cle-0.15 (Table 4) and cle-0.05 (data

not shown).
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Table 4: Benefit of CPLEX-generated cliques and GUBs for enhanced code. The performance of the enhanced code with and
without cliques and GUBs on 5-group problems with misclassification limit 15%. The probing level is set to 3 (most aggressive) and the
optimization strategy is set to 2 (emphasize optimality over feasibility). The optimal objective value for problem cle-0.15 has not been
verified, so the best known objective value is used.

Cliques/GUBs Problem Solutions Branch and Cut Total
(Y/N) Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s)

Y va 0.15 50 50 50 0.0 8454 5823 663 9 0 908
N/A va 0.15 50 50 50 0.0 12461 11374 2986 N/A N/A 3145

Y swi 0.15 48 48 48 0.0 107022 98994 58614 798 0 62756
N/A swi 0.15 48 48 48 0.0 107089 102706 66263 N/A N/A 68958

Y hun 0.15 159 156 177.6656 34.0 132092 56043 78540 913 0 204071
N/A hun 0.15 159 155 180.9966 59.0 111563 96083 176369 N/A N/A 201639

Y cle 0.15 (133) 87 191.4371 42.9 46651 0 0 552 0 205457
N/A cle 0.15 (133) 132 190.9919 51.8 191887 70003 190361 N/A N/A 206267
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6.2.2.3 Benefits of aggressive probing

CPLEX allows various settings for probing, the process of determining logical implications of

constraints before beginning the branch-and-bound algorithm. The settings range from no

probing at all to very aggressive probing. There is little difference in performance between

turning probing off compared to allowing CPLEX to automatically determine the level of

probing (Table ref{probe). This behavior is an indication that by default, CPLEX does not

incorporate probing when solving instances of the DAMIP. With probing set to the most

aggressive level, the enhanced code is able to solve one more problem to optimality than

with probing turned off. Additionally, the enhanced code with probing solves problems to

optimality faster and found better optimal solutions faster than the enhanced code without

probing or the default level of probing.
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Table 5: Performance of enhanced code with various settings for probing. The performance of the enhanced code under
various settings for CPX PARAM PROBE, the CPLEX parameter controlling probing [45]. The levels of probing tested are −1 (no
probing), 0 (automatically determined by CPLEX), and 3 (the most probing). The computational data are shown for 5-group problems
with misclassification limits set at 15%. CPLEX-generated cliques and GUBs are generated aggressively and the optimization strategy
is set to 2 (emphasize optimality over feasibility). The optimal objective value for problem cle-0.15 has not been verified, so the best
known objective value is used.

Probing Problem Solutions Branch and Cut Total
Level Data αij Opt Best Best UB Gap Nodes Nodes Time to Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s)

-1 va 0.15 50 50 50 0.0 10385 8622 1174 1307
0 va 0.15 50 50 50 0.0 10385 8622 1150 1278
3 va 0.15 50 50 50 0.0 8454 5823 663 908

-1 swi 0.15 48 48 48 0.0 218949 183018 61528 69956
0 swi 0.15 48 48 48 0.0 218949 183018 62331 71834
3 swi 0.15 48 48 48 0.0 107022 98994 58614 62756

-1 hun 0.15 159 143 176.6658 23.9 129927 37246 65309 203885
0 hun 0.15 159 143 176.6658 23.9 104611 37246 66932 203180
3 hun 0.15 159 156 177.6656 34.0 132092 56043 78540 204071

-1 cle 0.15 (133) 83 190.3258 43.8 25615 0 0 202966
0 cle 0.15 (133) 83 190.3258 43.8 26015 0 0 203054
3 cle 0.15 (133) 87 191.4371 52.2 46651 0 0 205457
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6.2.2.4 Optimization strategy

CPLEX allows for the specification of a solution strategy ranging from an emphasis on

verifying optimality to an emphasis on generating integer feasible solutions. The optimiza-

tion strategy is controlled by the CPLEX parameter CPX PARAM MIPEMPHASIS [45].

The enhanced code is tested with strategy settings of 0 (a balance between optimality and

feasibility), 1 (emphasize feasibility over optimality), 2 (emphasize optimality over feasibil-

ity), and 3 (emphasize moving best bound). The reader should note that the user-defined

heuristic is implemented in these tests in a slightly different manner, producing different

results from the other tests.

The performance of the various settings on 5-group problems with misclassification limits

of 15% is summarized in Table 6. There is no clear advantage to using any one of the

settings in terms of number of problems solved to optimality, time to find the optimal

objective value, or best objective value obtained. The strategy of emphasizing moving the

best bound solves to optimality noticeably faster than other methods on swi-0.15. However,

the best solution for hun-0.15 obtained using the same strategy has lower objective value

than that acquired using other strategies. Emphasizing optimality over feasibility is the

best strategy for va-0.15, while a balance between optimality and feasibility proves best for

hun-0.15.

Emphasizing moving the best bound is chosen as the best-performing method to compare

to CPLEX (Section 6.2.2.1) because of its superiority in solving swi-0.15, its ability to find

integer feasible solutions quickly, and because it is the only method that solves hun-0.05 to

optimality in the time allotted.
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Table 6: Performance of enhanced code with various settings for optimization strategy. The performance of the enhanced
code under various settings for CPX PARAM MIPEMPHASIS, the CPLEX parameter controlling optimization strategy. The settings
tested are 0 (a balance between optimality and feasibility), 1 (emphasize feasibility over optimality), 2 (emphasize optimality over
feasibility), and 3 (emphasize moving best bound). The computational data are shown for 5-group problems with misclassification limits
set at 15%. CPLEX-generated cliques and GUBs are generated aggressively and the probing level is set to 3 (most aggressive). The
optimal objective value for problem cle-0.15 has not been verified, so the best known objective value is used.

Solution Problem Solutions Branch and Cut Total
Strategy Data αij Opt Best Best UB Gap Nodes Nodes Time to Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s)

0 va 0.15 50 50 50 0.0 23103 20481 2133 2276
1 va 0.15 50 50 50 0.0 13413 9874 1268 1460
2 va 0.15 50 50 50 0.0 10843 10351 1200 1236
3 va 0.15 50 50 50 0.0 11750 10528 1329 1455

0 swi 0.15 48 48 48 0.0 185651 152920 46558 55452
1 swi 0.15 48 48 48 0.0 178465 155471 40543 45900
2 swi 0.15 48 48 48 0.0 100784 96157 54760 56933
3 swi 0.15 48 48 48 0.0 84055 83831 42855 42908

0 hun 0.15 159 159 177.6656 25.6 275824 137630 107644 204569
1 hun 0.15 159 158 178.9979 27.4 225676 65142 70972 207462
2 hun 0.15 159 157 177.6656 25.6 154328 39291 36207 203978
3 hun 0.15 159 155 177.3323 25.1 144403 3588 3293 203450

0 cle 0.15 (133) 91 191.4371 52.2 46521 0 0 205991
1 cle 0.15 (133) 128 190.9943 51.8 86223 10377 23196 205540
2 cle 0.15 (133) 119 191.4371 52.2 70115 63847 185056 205492
3 cle 0.15 (133) 122 190.6545 51.5 30372 5677 1919 203077
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6.3 The relative contribution of various components of the
enhanced code

The enhanced code includes techniques described in Chapter 5. The enhanced code consis-

tently outperforms CPLEX, and the relative contribution of the various components to the

improved performance of the enhanced code is of interest. The current experiment eval-

uates the value of maximal clique cuts, maximal hyperclique cuts, non-dominated versus

all maximal hyperclique cuts, odd hole cuts, the value of adding user-defined cuts locally

versus globally, the heuristic, fixing variables, and the branching scheme.

6.3.1 Methods and data

The various components of the enhanced code are tested using the same instances that

are used in the performance comparisons. The instances are solved 8 times, each time

with a different component removed from the enhanced code. If the enhanced code per-

forms significantly worse with a component removed, then that component can be deemed

valuable.

The same machines and stopping criteria as in Section 6.2 are used. In these tests, the

tolerance levels are set to their default values. The solutions are verified by the enhanced

code, independent of CPLEX. If for a particular instance the solution is determined to

be infeasible, then the instance is run again with the tolerance levels set at their strictest

values.

Except for the test with cuts added globally, all cuts are added locally. Also, all maximal

hyperclique inequalities are eligible to be added.

6.3.2 Results

The performance of the enhanced code with various components removed is compared in

Figure 7. Additional information about each of the runs is in Tables 12-19 of Appendix A.

The performance of enhanced code with all cuts added locally is almost identical to

the performance of the code with non-dominated hyperclique cuts and with no hyperclique

cuts at all. This phenomenon is an indication that the hyperclique cuts are not helpful for

solving DAMIP instances.
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Figure 7: Time to find an integer feasible solution with the best-known objective value
for the enhanced code with user-defined cuts added locally (Local cuts), user-defined cuts
added globally (Global cuts), with only non-dominated hyperclique cuts (Non-dom. hyper-
clique cuts), without maximal clique cuts (No maximal cliques), without odd hole cuts (No
odd hole cuts), without variable fixing (No variable fixing), and without the user-defined
branching scheme (Strong branching only). Some solutions with the best known objective
value are found using settings not included in this test.

The enhanced code with cuts added globally explore far less nodes than when cuts are

added locally, but the objective values of the best integer feasible solutions found using

global cuts are on par with those found using local cuts (Tables 12 and 13).

The enhanced code is among the slowest in finding the best-known integer feasible

solution when maximal clique and odd hole cuts are removed (Figure 7), indicating that

the cuts derived using information from the conflict graph are the most valuable for finding

integer feasible solutions quickly. The best integer feasible solutions found without the cuts

are not poor, perhaps due to the fact that without the cuts, the linear programs at nodes

in the branch and bound tree are easier to solve which allows for the exploration of more

nodes in the time allotted.
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For each of the test runs, the enhanced code solves all but 4 problems to optimality with

the exception of the test with maximal clique cuts removed and the test with the branching

scheme removed. These two tests solve all but 5 problems to optimality.
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6.4 Comparison of classification accuracy of DAMIP with
standard methods

The DAMIP is tested on real-world and simulated data sets in the interest of determining an

indication of its ability to accurately classify test observations under a variety of conditions.

The effect of varying misclassification limits for the DAMIP is observed, and the accuracy

of the DAMIP is compared to linear discriminant functions (LDF), quadratic discriminant

functions (QDF), classification trees (CART), and support vector machines (SVMs).

6.4.1 Methods and data

6.4.1.1 Real-world data

The classification accuracy of the DAMIP is tested using the 3-group and 5-group data sets

described in Section 6.1. Observations with missing values are not included in the training

or testing sets.

Ten-fold cross-validation is used to estimate the performance of the models on new

data. The data sets are partitioned into 10 sets of observations of roughly the same size.

The model is trained 10 times, each time withholding one of the sets as a test set. Each

set of rules generated from the training sets is executed on the corresponding test set. The

performance of the various classification methods is evaluated based on the ability to classify

test set observations.

The proportions of training observations from each group are used as estimates for the

prior probabilities πh.

For the DAMIP, test observations are placed in the group for which their modified pos-

terior probability is largest. The number of observations for which two or more groups have

the largest modified posterior probabilities (i.e., there are ties for the largest) is recorded.

6.4.1.2 Simulated data

The design of the simulation is based on a simulation previously used to test the DALP, the

linear programming approximation of the DAMIP [58]. With simulated data, the degree

of data “confusion” is well-designed so as to allow us to correlate model behavior with the

data characteristics.
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The data are generated from bivariate (2 attributes) normal and contaminated normal

distributions with different mean and variance configurations. For each run, 40 training

observations from each of 3 groups are generated. The rules are then tested on 1000 test

observations from each group. The process is repeated 400 times for each of 8 mean-variance

configurations.

The 8 configurations for the means for the various normal distributions are given in

Table 7. The configurations represent different ways of arranging three groups of data in

the attribute space; i.e., two groups close together and far from the other, all three groups

close together, all three groups far apart. The means and covariances are chosen such that

the measure of distance, the Mahalanobis distance, is approximately 1 for groups close

together and approximately 3 for groups far apart. The Mahalanobis distance between

groups i and j is

(µi − µj)
T V −1(µi − µj)

where µi, µj are the group means and V is the covariance matrix. For configurations E1−

E5, a common covariance matrix is used. For configurations U1 − U3, different covariance

matrices are used for different groups. In U1 − U3, the first group’s covariance matrix

is diagonal (1, 0.25) and the second and third groups’ covariance matrices are diagonal

(0.25, 1). When estimating the Mahalanobis distance for configurations, U1 − U3, V is

approximated as the average of the 2 covariance matrices in question.

For the data from contaminated normal distributions, the same configurations are used,

with the exception that 10% of the data is derived from a normal distribution with the

covariance matrix multiplied by 100.

The proportions of training observations from each group are used as estimates for the

prior probabilities πh.

For the DAMIP, test observations are placed in the group for which their modified pos-

terior probability is largest. The number of observations for which two or more groups have

the largest modified posterior probabilities (i.e., there are ties for the largest) is recorded.
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Table 7: The mean-variance configurations for the normal distributions used in the sim-
ulation study. Configurations E1 − E5 use equal covariance matrices and configurations
U1 − U3 use unequal covariance matrices.

Config. Means Distances
Group 1 Group 2 Group 3 d(1,2) d(1,3) d(2,3)

E1 (0,0) (-0.500, 0.868) (0.500, 0.868) 1 1 1
E2 (0,0) (-1.500, 2.598) (1.500, 2.598) 3 3 3
E3 (0,0) (-1.000, 0.000) (1.000, 0.000) 1 1 2
E4 (0,0) (-0.500, 2.968) (0.500, 2.958) 3 3 1
E5 (0,0) (0.000, 2.000) (2.905, -0.750) 2 3 4

U1 (0,0) (-0.250, 0.750) (0.250, 0.750) 1 1 1
U2 (0,0) (0.000, 0.791) (1.990, 0.395) 1 2.6 4
U3 (0,0) (0.000, 0.000) (2.000, 0.000) 0 2.5 4
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6.4.1.3 Settings for the DAMIP

The data is prepared for input to the DAMIP as described in Section 5.9.

The DAMIP is used with ǫ set to 0.0001. The M values in the formulation are calculated

as described in Sections 3.6 and 5.3.

All of the components of the enhanced code are used with the DAMIP, including maximal

hyperclique cuts. The DAMIP is set to terminate after 7,200 CPU seconds, or after the

branch and bound tree memory reached 1.9 GB. If optimality is not obtained for the DAMIP,

the best-known integer feasible solution is used.

Splus 6.0 for Linux/Unix and ILOG CPLEX Callable Library 8.1 are used for generating

likelihood function values and solving mixed-integer programs, respectively. The data are

generated on Sun 280R’s, each with 2x900MHz UltraSparc-III-Cu CPU’s and 2 GB RAM.

The mixed-integer programs are solved on machines with 2X2.4GHz Intel Xeon processors

and 2GB RAM.

6.4.1.4 Misclassification limits

Four sets of misclassification limits are tested with the DAMIP. For each pair of groups,

the proportion of misclassified training entities allowed is the same, or α = αhg for all h

and g. The DAMIP is tested with limits α = 0.00, 0.05, 0.15, and 1.00. The test with

α = 0.00 allows no misclassified training entities, and α = 1.00 allows an unlimited number

of misclassified training entities.

6.4.1.5 Other methods

Linear Discriminant Functions (LDF) The linear discriminant function coefficients

are derived using the Splus 6.0 for Linux/Unix function discrim() with the homoscedastic

covariance structure. These coefficients maximize the probability of correct classification for

data that is normally distributed with equal covariance among the groups. The coefficients

are obtained based on training set data. The values of the discriminant functions for each

observation are used as estimates for the conditional group density function values fh(xgj).

The “Bayes rule”, allocation to the group for which the estimated posterior probability
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πhfh(xgj) is largest, is applied to the test set data in each fold to obtain a measure of the

performance of LDF.

Quadratic Discriminant Functions (QDF) The quadratic discriminant function co-

efficients are derived using the Splus 6.0 for Linux/Unix function discrim() with the het-

eroscedastic covariance structure. These coefficients maximize the probability of correct

classification for data that is normally distributed with different covariance matrices for

each group. The Bayes rule is applied to the test set data in each fold to obtain a measure

of the performance of QDF. The values of the discriminant functions for each observation

are used as estimates for the conditional group density function values fh(xgj). The “Bayes

rule”, allocation to the group for which the estimated posterior probability πhfh(xgj) is

largest, is applied to the test set data in each fold to obtain a measure of the performance

of QDF.

Classification Trees (CART) Each of the training data sets is passed through the Splus

6.0 for Linux/Unix function tree() with default settings. The default settings terminate

tree growth when a node is either homogeneous (meaning that all entities at that node

are from the same group) or contains less than 6 observations. Given an observation, the

proportions of training observations at the appropriate leaf nodes are used as estimates for

the conditional group density function values. The “Bayes rule”, allocation to the group

for which the estimated posterior probability πhfh(xgj) is largest, is applied to the test set

data in each fold to obtain a measure of the performance of CART.

Support Vector Machines (SVM) SVMmulticlass [47] is used for generating classifica-

tion rules using support vector machines. Linear and radial basis function kernels are used.

Various values for c, the relative emphasis in the objective on minimizing training error and

maximizing the margin between groups, and the width g of the radial basis function kernel

were tested. The results are summarized in Appendix B. For the subsequent tests c is set

to 0.1 for the linear kernel and 0.01 for the radial basis function kernel. A width of g = 1.0

is used for the radial basis function kernel.
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Calculations for LDF, QDF, and CART are performed on Sun 280R’s, each with 2x900MHz

UltraSparc-III-Cu CPU’s and 2 GB RAM. The support vector machine code is executed on

machines with 2x2.4GHz Intel Xeon processors and 2GB RAM.

For all of the classification methods, if there is no unique maximum discriminant function

value for an entity, then the entity is placed in the reserved judgment category.

6.4.2 Results

The various classification methods are evaluated using classification matrices as well as sum-

mary measures. The summary measures include correct classification rate, misclassification

rate, the rate of non-reservation, and accuracy. They are calculated as follows

C = 100 × number of correctly classified entities
total number of entities

I = 100 × number of misclassified entities
total number of entities

N = 100 × number of non−reserved entities
total number of entities

A = 100 × number of correctly entities
number of non−reserved entities

Note that accuracy is defined as the percentage of correctly classified observations of those

not placed in the reserved judgment region.

6.4.2.1 Real-world data

The accuracy, misclassification, correct classification, and non-reserved rates for the various

methods on real-world data are given in Figure 8. The classification matrices for these tests

are in Figures 22 through 26 of Appendix B. The DAMIP with misclassification limits

consistently has lower rates of misclassification, though for some of the less well-separated

data sets, large portions of the test observations are placed in the reserved judgment region.

The data sets wine, iris, and new-thyroid are well-separated data sets, as indicated by

the high accuracy and low misclassification rates for all methods. Support vector machines

tend to place most test observations into one group which reduce its accuracy, particularly

on the wine, FNlnVN, and swi data sets. The accuracy of the methods appears to be a

function of the data set rather than the method, whereas the DAMIP is able to provide

rules with consistently lower misclassification rates by using the reserved judgment region.
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All of the methods perform poorest on the data set FNlnVN. The misclassification rates

are as high or higher than for some of the 5-group data sets that are more computationally

intensive for the DAMIP. To further investigate the problem of discriminating between

cells placed on fibronectin, laminin, and vitronectin, consider the classification matrices in

Figure 9. The results are presented in classification matrices that indicate how entities

from each group are allocated. The quantity in row i and column j + 1 is the proportion of

training entities from group i allocated to group j + 1. The quantity in row i and column 1

is the proportion of training entities from group i allocated to the reserved judgment region.

LDF, QDF, CART, and DAMIP have high rates of correct classification of cells placed

in co-culture with Vn. SVM with a linear kernel has significantly more trouble, placing

41.7% of Vn cells in the Ln group. SVM with a radial basis function kernel places most of

the observations in the Fn group, misclassifying all cells placed on Vn.

All of the methods encounter difficulty in discriminating between cells placed on Fn

and cells placed on Ln. The misclassification rate is minimized by DAMIP as the limit

on misclassified training entities is lowered. The high rate of placement of observations in

the reserved judgment region is an indication of overlapping attribute values and therefore

indistinguishable behavior.

The effects of the misclassification limits of the DAMIP are further explored in Fig-

ure 10. For α = 1.00, the DAMIP will perform at least as well on the training set as the

method used in estimating likelihood function values. This advantage does not translate

to significantly higher rates of correct classification for DAMIP over LDF. In fact, the four

summary measures are almost identical.

With the exception of the hun dataset, the accuracy on the test sets decreases monoton-

ically as the misclassification limits are raised. The correct classification, misclassification,

and non-reservation rates increase as the limits are increased. All four measures appear to

converge to the values obtained by LDF. When the misclassification limits are set to 0% on

the training set, the misclassification rate on the test set is less than 20% for all data sets.

With the exception of the FNlnVN, swi, and va datasets, the misclassification rates are less

than 10%. The range of misclassification rates when the limits are set to 5% is 1.8-37.0%,
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and when the limits are 15%, the range is 1.8-59%.

Perhaps a better measure of the reduction in misclassification of the DAMIP for difficult

data sets is the difference between the misclassification rate when the limits are 100% (which

is roughly the performance of LDF) and the rates when the limits are lower. For FNlnVN,

swi, and va, the improvement in misclassification when limits are set to 0% is a 37-57%

reduction in misclassification. The 5% limits afford improvements of 24-51%, and the 15%

limits result in improvements of 2-31%.

The number of observations for which two or more groups have the largest modified

posterior probabilities (i.e., there are ties for the largest) is 0 for all data sets and misclas-

sification limits for the DAMIP. This result indicates that the DAMIP is stable under these

settings. The stability derives in large part due to the method for estimating the conditional

group density function values.
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Figure 8: (a) Accuracy, (b) misclassification rates, (c) correct classification rates, and (d) non-reservation rates for various methods
on real-world data sets. The DAMIP is tested with misclassification limits of 0 (DAMIP0), 5 (DAMIP5), 15 (DAMIP15), and 100%
(DAMIP100). Other methods tested are linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification
trees (CART), support vector machines with a linear kernel (SVMlinear), and support vector machines with a radial basis function kernel
(SVMrbf). The data sets are described in Section 6.1.
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DAMIP with misclassification limits
0% 5% 15% 100%

62.5 12.5 12.5 12.5
62.5 12.5 20.8 4.2
54.5 0.0 0.0 45.5

54.2 16.7 20.8 8.3
45.8 25.0 25.0 4.2
36.4 4.5 0.0 59.1

20.8 25.0 33.3 20.8
29.2 25.0 37.5 8.3
31.8 4.5 9.1 54.5

4.2 41.7 33.3 20.8
0.0 41.7 37.5 20.8
0.0 4.5 13.6 81.8

LDF QDF CART SVMlinear SVMrbf
0.0 37.5 41.7 20.8
0.0 50.0 41.7 8.3
0.0 13.6 18.2 68.2

0.0 20.8 58.3 20.8
0.0 25.0 58.3 16.7
0.0 18.2 13.6 68.2

0.0 41.7 45.8 12.5
0.0 29.2 58.3 12.5
0.0 0.0 13.6 86.4

0.0 33.3 41.7 25.0
0.0 41.7 54.2 4.2
0.0 4.5 31.8 63.6

0.0 83.3 16.7 0.0
0.0 87.5 0.0 12.5
0.0 86.4 13.6 0.0

Figure 9: Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees
(CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis function kernel (SVMrbf),
and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The
rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns correspond to the allocated
group. The percentage in row i and column j + 1 denotes the percentage of observations from group i allocated by the method to group
j. The first column corresponds to the reserved judgment group; these observations are not classified.
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Figure 10: Correct classification percentage, misclassification percentage, percentage of non-reserved entities, and accuracy of DAMIP
with misclassification limits of 0, 5, 15, and 100% compared to linear discriminant functions (LDF). The data sets are described in
Section 6.1.
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6.4.2.2 Simulated data

The accuracy, misclassification, correct classification, and non-reservation rates for the vari-

ous discrimination methods and simulated data are given in Figures 11 and 12. The classifi-

cation matrices for configurations E1 and U1 with non-contaminated data are contained in

Appendix B in Figure 30. As with the real-world data, DAMIP with misclassification lim-

its has consistently higher rates of accuracy and lower rates of misclassification. Quadratic

discriminant functions produce the highest correct classification rates among rules without

a reserved judgment region, while classification trees and support vector machines with a

linear kernel generally produce the lowest correct classification rates.

The DAMIP with misclassification limits of 0% of training observations translate into

rates of misclassification of test observations consistently under 5%. The DAMIP with

misclassification limits of 5% is equally consistent, producing misclassification rates between

9.5% and 14%. These methods have low correct classification rates due to the large numbers

of observations placed in the reserved judgment region. The proportion of observations

placed in the reserved judgment region varied widely for each of the methods, depending on

the configuration for generating the simulated data. Data sets having larger Mahalanobis

distances between groups result in lower numbers of test observations placed in the reserved

judgment region, and vice versa.

The DAMIP with misclassification limits of 15% produces desirable results in that the

correct classification rates are competitive with other methods, the misclassification rates

are generally lower, accuracy is generally higher, and the reservation rate is never more

than 35%.

The results for the DAMIP with misclassification limits are replicated for the data

generated from contaminated normal distributions, except that the reservation rate is much

higher for DAMIP with misclassification limits of 0 and 5% (Figure 12). The reservation

rates for DAMIP with limits of 15% is largely unaffected, perhaps because only 10% of the

data are contaminated. The relationship between the misclassification limits of 15% and the

10% contamination level is not obvious; however, the event that DAMIP with less-restrictive

misclassification limits places less test observations in the reserved judgment region with
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contamination is both plausible and desirable.

Plots of the summary measures as a function of the misclassification limits for simulated

data from normal and contaminated normal distributions are in Figures 13 and 14. As with

the real-world data, the summary measures converge to the values obtained by LDF alone

as the misclassification limits are raised for the DAMIP. In general, the accuracy decreases

and the misclassification, correct classification, and non-reservation rates increase to the

values derived using LDF alone.

The simulated data is generated in the same manner as described as in [58], where

the classification performance of the DALP (a linear programming approximation of the

DAMIP) is evaluated. The plots in Figures 13 and 14 can be easily compared to the plots

in [58]. The curves are very similar in that, for the DAMIP with misclassification limits of 5,

15, and 100%, there is a configuration for the DALP for which the four summary measures

are within 5% of the values recorded for the DAMIP.

The DAMIP with misclassification limits of 15% performed only marginally better than

the best-performing DALP configuration in terms of higher accuracy and non-reservation

rates, and lower rates of misclassification [58]. The subtle differences in performance are

to be expected in part because the data are generated from normal distributions and the

calculation of the conditional group density functions for DALP and DAMIP assumes that

the data are normally distributed. In other words, much of the potential accuracy is achieved

before the data reaches the DALP or DAMIP, respectively.

A noticeable difference in the performance of the DAMIP and DALP is that for DAMIP

with 0% limits, accuracy is generally higher, misclassification rates are lower, and non-

reservation rates are much lower than for any configuration under the DALP. The DAMIP

with strict misclassification limits for the training sets provides greater control over the

levels of misclassification seen in the test sets.

The differences in performance between DAMIP on the data from normal and contam-

inated normal distributions are more pronounced for misclassification limits of 0 and 5%

than for misclassification limits of 15 and 100%. The accuracy decreases for the data from

contaminated normal distributions for the DAMIP with each misclassification limit, but
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less so for limits of 15 and 100% than for limits of 0 and 5%.

The accuracy and misclassification rates on the contaminated data for DAMIP with

limits of 0% are particularly disappointing. The accuracy and non-reservation rates are

noticeably lower when the data is contaminated. Contamination levels of 10% are sufficient

to undermine the performance of the DAMIP with 0% misclassification limits.

The number of observations for which two or more groups have the largest modified

posterior probabilities in these simulations (i.e., there are ties for the largest) is 423 out of

76, 800, 000 test observations for all misclassification limits for the DAMIP. There are 43

ties for the non-contaminated data and 380 ties for the contaminated normal data. This

result indicates that the DAMIP is stable under these settings. The stability derives in

large part due to the method for estimating the conditional group density function values.
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Figure 11: (a) Accuracy, (b) misclassification, (c) correct classification, and (d) non-reservation rates for various methods on simulated
data sets. The data are generated from bivariate normal distributions with different mean and covariance configurations which are de-
scribed in Table 7 and Section 6.4.1.2. The DAMIP is tested with misclassification limits of 0 (DAMIP0), 5 (DAMIP5), 15 (DAMIP15),
and 100% (DAMIP100). Other methods tested are linear discriminant functions (LDF), quadratic discriminant functions (QDF), clas-
sification trees (CART), support vector machines with a linear kernel (SVMlinear), and support vector machines with a radial basis
function kernel (SVMrbf).
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Figure 12: (a) Accuracy, (b) misclassification, (c) correct classification, and (d) non-reservation rates for various methods on simulated
data sets. The data are generated from contaminated bivariate normal distributions with different mean and covariance configurations
which are described in Table 7 and Section 6.4.1.2, except that 10% of the data in each group are generated using covariance matrices 100
times the matrix in the table. The DAMIP is tested with misclassification limits of 0 (DAMIP0), 5 (DAMIP5), 15 (DAMIP15), and 100%
(DAMIP100). Other methods tested are linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees
(CART), support vector machines with a linear kernel (SVMlinear), and support vector machines with a radial basis function kernel
(SVMrbf).
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Figure 13: Correct classification percentage, misclassification percentage, percentage of non-reserved entities, and accuracy of DAMIP
with misclassification limits of 0, 5, 15, and 100% compared to linear discriminant functions (LDF). The data are generated from bivariate
normal distributions with mean-covariance configurations as described in Table 7 and Section 6.4.1.2.
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Figure 14: Correct classification percentage, misclassification percentage, percentage of non-reserved entities, and accuracy of DAMIP
with misclassification limits of 0, 5, 15, and 100% compared to linear discriminant functions (LDF). The data are generated from
contaminated bivariate normal distributions with mean-covariance configurations as described in Table 7 and Section 6.4.1.2, except that
for 10% of the data in each group, the covariance matrix is multiplied by 100.
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6.5 The effect of different sample sizes and group sizes on
classification accuracy

In Section 4.1, the consistency of the DAMIP under certain conditions is established, demon-

strating that larger sample sizes are desirable for obtaining classification rules that are close

to the “Anderson-optimal” strategy. Using simulated data with different training sizes, one

can witness this convergence empirically.

In addition to varying sample sizes, the relative proportions of observations from different

groups in a training sample can affect the classification rules determined by the DAMIP.

The proportions directly affect the rules through the definitions of the prior probabilities,

and indirectly through the objective function. The latter effect results from the DAMIP

seeking to maximize the number correctly classified observations, which will give preference

to groups with higher numbers of training observations. The misclassification limits, which

are imposed for every pair of groups, can help to keep this bias in check.

The dependence of the classification rules on sample size and the relative group sizes is

investigated empirically using simulated data that are generated from normal distributions.

6.5.1 Methods and data

The data used in the simulations are generated from normal distributions with configura-

tions E1 and U1 as described in Table 7. These data sets are among the more difficult

to achieve high accuracy due to the fact that the Mahalanobis distances between pairs of

groups is approximately 1. The settings for the DAMIP, LDF, QDF, CART, and SVMs are

as described in Section 6.4.1.2. Additionally, the same machines are used for the calcula-

tions.

Simulations are performed using three types of simulated data, with a total of 15 sets

of simulated data for each of E1 and U1. The first set consists of training data with equal

numbers of observations from each of 3 groups. The second set consists of training data

with more observations from the first group than from the other two groups. The third set

consists of training data with more observations from the first and second groups than from

the third group. The configurations are given in Table 8.
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Table 8: The numbers of observations from each group in the training sets for the sim-
ulation study. Data is generated under configurations E1 and U1 for each set of group
sizes.

Equal group One large Two large
sizes group groups

5/5/5 100/5/5 100/100/5
15/15/15 100/10/10 100/100/10
25/25/25 100/15/15 100/100/15
40/40/40 100/30/30 100/100/30

100/100/100 100/50/50 100/100/50

For the DAMIP, test observations are placed in the group for which their modified pos-

terior probability is largest. The number of observations for which two or more groups have

the largest modified posterior probabilities (i.e., there are ties for the largest) is recorded.
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The test data sets, as in previously described simulations, consist of 1000 observations

from each group. For each group size configuration and each of E1 and U1, training of the

classification model and testing of the rules is repeated 400 times.

6.5.2 Results

The classification matrices for each of the simulations is contained in Appendix B.

The accuracies of various classification methods for the simulations for which the training

group sizes are equal are in Figure 15. For each of the classification methods, the accuracy

increases slightly with the sample size. All of the methods performed better than expected

on sample sizes as low as 15, and the improvement when the sample size is increased to 300

is not remarkable. The improvement seen for each classification method is rather uniform,

as indicated by the non-intersecting curves in the graph.

The accuracies for the simulations with varying training group sizes are in Figures 16

and 17. The DAMIP with misclassification limits has significantly higher accuracy than

other methods when the number of observations from each group is significantly different.

All of the methods demonstrate detectable but not large improvement in accuracy as the

proportions are leveled.

To investigate further the effects of different group sizes on the accuracy of the DAMIP,

the accuracy of test observations from each group is plotted in Figures 18 and 19. In the

graphs, as is to be expected, the accuracy for observations from the group(s) with the largest

number(s) of training observations is(are) significantly higher. These effects are minimized

when the misclassification limits are set to 15%. The DAMIP with misclassification limits

of 5% also shows better ability to handle differences in training group sizes than LDF. For

DAMIP with no misclassification limits and for LDF, the difference in accuracies across the

groups is considerable.

A more in-depth investigation of the effects of varying group sizes can be achieved by

considering the classification matrices in Appendix B. Consider first the simulations with

equal numbers of training observations (Figures 27 through 31). For methods without a

reserved judgment group, including DAMIP with no misclassification limits (DAMIP with
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limits of 100%), the accuracy and correct classification of observations increases gradually

or remains constant as the sample size increases. The accuracy, misclassification, correct

classification, and non-reservation rates for data from distribution E1 are slightly better

than those for data from distribution U1 (Table 7). Interestingly, the accuracy of methods

for observations from group 1 increases for all methods except for SVMs with a linear kernel,

for which the group 1 accuracy decreases.

For DAMIP with misclassification limits of 0, 5, and 15%, the accuracy increases with

sample size, while misclassification rates decrease. For limits of 0 and 5%, this improved

performance includes a tradeoff, as the correct classification rates decrease and the non-

reservation rates decrease with increases in sample size. For limits of 15%, the reservation

rates and correct classification rates remain relatively constant, while accuracy increases

and misclassification decreases (Figures 27 through 31).

Figures 32 through 36 contain the classification matrices for simulations where the num-

ber of group 1 training observations is much larger than the numbers of training observations

from groups 2 and 3. As expected, methods without misclassification limits tend to place

more test observations in group 1 than the other two groups, especially when the numbers

of group 2 and 3 training observations are extremely low. As the numbers of group 2 and 3

training observations is increased, most method correctly classify group 2 and 3 test obser-

vations at higher rates, and group 1 observations at lower rates. An exception is support

vector machines with a linear kernel, which has significantly higher correct classification

rates for groups 2 and 3 compared to other methods without misclassification limits.

DAMIP with misclassification limits of 0 and 5% have increasing numbers of test obser-

vations placed in the reserved judgment region as the proportions of training observations

is leveled. The accuracy of these methods increases and misclassification decreases as the

numbers of group 2 and 3 training observations are increased. DAMIP with misclassifica-

tion limits of 15% has decreasing numbers of observations placed in the reserved judgment

region as the proportions are evened, while the accuracy increases and misclassification

rates decrease. The DAMIP with misclassification limits clearly offers an alternative to

traditional methods in terms of accuracy for groups underrepresented in the training set,
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while DAMIP with misclassification limits of 15% provides not only increased accuracy, but

lower misclassification rates as well.

For simulations with large proportions of training observations from 2 of the 3 groups,

the classification matrices are in Figures 37 through 41. The traditional methods tend to

correctly classify large numbers of test observations from the groups with larger training

observations, especially when the differences in the proportions are more pronounced. Sup-

port vector machines with a linear kernel does not demonstrate the same ability to correctly

classify observations from groups underrepresented in the training set as it does in other

simulations.

DAMIP with misclassification limits of 5 and 15% correctly classify significant numbers

of observations in group 3, the group underrepresented in the training set, compared to

traditional methods. For DAMIP with limits of 15%, the reservation rates and misclassifi-

cation rates again decrease as the proportions of training observations are leveled while the

accuracy increases. For misclassification rates of 0 and 5%, the reservation and accuracy

rates remain approximately constant as the proportions are varied.

The number of observations for which two or more groups have the largest modified

posterior probabilities (i.e., there are ties for the largest) for these simulations is 79 out

of 163, 200, 000 test observations for all misclassification limits for the DAMIP. This result

indicates that the DAMIP is stable under these settings. The stability derives in large part

due to the method for estimating the conditional group density function values.
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Figure 15: The accuracy of various classification methods on data generated from distributions (a) E1 and (b) U1 as described in Table
7. The values on the x-axis indicate the numbers of training observations for each of the three groups used in generating classification
rules. The accuracy of the methods is the average performance on test observations. The DAMIP is tested with misclassification limits
of 0 (DAMIP0), 5 (DAMIP5), 15 (DAMIP15), and 100% (DAMIP100). Other methods tested are linear discriminant functions (LDF),
quadratic discriminant functions (QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), and
support vector machines with a radial basis function kernel (SVMrbf). Accuracy is defined as the percentage of non-reserved observations
that are correctly classified.

157



0
20

40
60

80
10

0

100/5/5 100/10/10 100/15/15 100/30/30 100/50/50

Methods

DAMIP0
DAMIP5
DAMIP15
DAMIP100
LDF
QDF
CART
SVMlinear
SVMrbf

Data Set

A
cc

ur
ac

y 
(%

)

0
20

40
60

80
10

0

100/5/5 100/10/10 100/15/15 100/30/30 100/50/50

Methods

DAMIP0
DAMIP5
DAMIP15
DAMIP100
LDF
QDF
CART
SVMlinear
SVMrbf

Data Set

A
cc

ur
ac

y 
(%

)

(a) (b)

Figure 16: The accuracy of various classification methods on data generated from distributions (a) E1 and (b) U1 as described in Table
7. The values on the x-axis indicate the numbers of training observations for each of the three groups used in generating classification
rules. The accuracy of the methods is the average performance on test observations. The DAMIP is tested with misclassification limits
of 0 (DAMIP0), 5 (DAMIP5), 15 (DAMIP15), and 100% (DAMIP100). Other methods tested are linear discriminant functions (LDF),
quadratic discriminant functions (QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), and
support vector machines with a radial basis function kernel (SVMrbf). Accuracy is defined as the percentage of non-reserved observations
that are correctly classified.
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Figure 17: The accuracy of various classification methods on data generated from distributions (a) E1 and (b) U1 as described in Table
7. The values on the x-axis indicate the numbers of training observations for each of the three groups used in generating classification
rules. The accuracy of the methods is the average performance on test observations. The DAMIP is tested with misclassification limits
of 0 (DAMIP0), 5 (DAMIP5), 15 (DAMIP15), and 100% (DAMIP100). Other methods tested are linear discriminant functions (LDF),
quadratic discriminant functions (QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), and
support vector machines with a radial basis function kernel (SVMrbf). Accuracy is defined as the percentage of non-reserved observations
that are correctly classified.
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Figure 18: The classification accuracy of the DAMIP with misclassification limits of 0, 5, 15, and 100% and linear discriminant functions
(LDF). The data are generated from bivariate normal distributions (a) E1 and (b) U1 as described in Table 7. The values on the x-
axis indicate the numbers of training observations for each of the three groups. Accuracy is defined as the percentage of non-reserved
observations that are correctly classified.

160



1 1 1 1 1
2 2

2 2
2

3 3

3

3

3

1
1

1 1 1
2 2 2 2 2

3

3

3
3

3
1 1 1 1 1
2 2 2 2 2

3 3
3

3 3

1 1 1 1
1

2 2 2 2
2

3
3

3

3

3

1 1 1 1
1

2 2 2 2
2

3 3 3

3

3

Group Sizes

A
cc

ur
ac

y 
(%

)

100/100/5 100/100/10 100/100/15 100/100/30 100/100/50

0
20

40
60

80
10

0

Methods

DAMIP0
DAMIP5
DAMIP15
DAMIP100
LDF

1
1 1

1 1

2
2

2
2

2

3

3

3

3

3
1

1

1 1 1

2
2

2 2 2

3

3

3
3

3
1 1 1 1 1

2 2 2 2 2

3
3

3

3
3

1 1 1 1
1

2 2 2
2

2

3 3 3

3

3

1 1 1 1
1

2 2 2 2 2

3 3 3 3

3

Group Sizes

A
cc

ur
ac

y 
(%

)

100/100/5 100/100/10 100/100/15 100/100/30 100/100/50

0
20

40
60

80
10

0

Methods

DAMIP0
DAMIP5
DAMIP15
DAMIP100
LDF

(a) (b)

Figure 19: The classification accuracy of the DAMIP with misclassification limits of 0, 5, 15, and 100% and linear discriminant functions
(LDF). The data are generated from bivariate normal distributions (a) E1 and (b) U1 as described in Table 7. The values on the x-
axis indicate the numbers of training observations for each of the three groups. Accuracy is defined as the percentage of non-reserved
observations that are correctly classified.
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Chapter VII

Conclusions, Contributions, and Future Work

The aim of this work is to take the theoretical results of Anderson [1] on classification to

k populations with misclassification limits and develop a practical statistical method for

implementing the results in light of previous work by Gallagher et al. [35]. The DAMIP,

as introduced in [35], is the first computational framework for implementing Anderson’s

results. The mixed-integer programming models of the DAMIP can be computationally

intensive, and accordingly much of this dissertation is dedicated to developing efficient

solution methods. The classification performance of the DAMIP is ascertained, suggesting

circumstances under which the model can be helpful.

The DAMIP is shown to be strongly universally consistent (in some sense) with very

good rates of convergence from VC Theory, given that the density functions for the data

are completely known. In general, it is not possible to guarantee any rate of convergence of

a classifier [26]. When the assumption that the density functions are known is dropped, the

rates of convergence are no longer valid because they will now depend on the method used to

estimate the density functions. The effect of various consistent methods of density function

estimation on the consistency of the DAMIP remains an interesting and open question.

The computational tests of the DAMIP on real-world and simulated data validate the

theoretical consistency. Moreover, the DAMIP maintains competitive accuracy rates as

the sample size increases. The accuracy does not increase significantly with sample size,

indicating that only small sets of training observations are sufficient to train the model.

A polynomial-time algorithm for discriminating between two populations with the DAMIP

is given. A mixed-integer programming formulation of the DAMIP is shown to be NP-

complete for a general number of groups. The proof demonstrating that the DAMIP is

NP-complete employs results used in generating edges of the conflict graph. The neces-

sary and sufficient conditions proven for the existence of edges in the conflict graph is the
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central contribution to the improvement in solution performance over industry-standard

software. The conflict graph is the basis for various valid inequalities, a branching scheme,

and for conditions under which integer variables are fixed for all solutions. Additional so-

lution methods include a heuristic for finding solutions at nodes in the branch-and-bound

tree, upper bounds for model parameters, and necessary conditions for edges in the conflict

hypergraph.

The sizes of the instances tested with the DAMIP are small enough such that the

conflict graph is easily generated, stored, and searched. These test instances are based on

reasonably-sized samples compared to those commonly encountered statistical classification.

While the conflict graph helps to improve solution performance, maximal hypercliques from

the conflict 3-hypergraph does not seem to provide additional benefits. Other classes of

cuts from the conflict 3-hypergraph can be tested in future work. One particular obstacle

in exploiting the conflict 3-hypergraph is developing separation routines that do not require

excessive amounts of computational power. Even for these relatively small mixed-integer

programs, the conflict 3-hypergraph is too large to store before branch-and-bound and then

search at nodes in the branch-and-bound tree.

The DAMIP with various misclassification limits is compared to traditional classification

methods on real-world data and simulated data. It should be noted that the classification

of real-world data performed in this work is done in a “blind” manner, without considering

characteristics pertaining to individual data sets. The computational tests are not meant

to provide insight into the data at hand, but rather to provide a testing-ground for various

classification methods.

The DAMIP with small misclassification limits (i.e., 0 or 5% of training observations

are allowed to be misclassified) provides increased accuracy, but large numbers of training

and test observations are forced into the reserved judgment region and are therefore not

given any classsification. The DAMIP with 15% misclassification limits shows evidence of

being a viable classification method in a variety of situations. The accuracy and correct

classification rates are competitive with traditional methods such as linear discriminant

functions and support vector machines, while the reservation rates remain low under a
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variety of circumstances. The particular circumstances tested here include real-world data,

data generated from normal and contaminated normal distributions, and data with varying

numbers of training observations from each group. The DAMIP with misclassification limits

proves particularly useful when there are disproportionate numbers of training observations

from different groups. Additionally, the simulations conducted here indicate that relatively

small numbers of training observations are necessary for generating good classification rules.

This characteristic can be useful when applying the DAMIP to large data sets for which the

associated mixed-integer program is large and difficult to solve. In the future, a variety of

simulations could be run to further test the viability of the DAMIP, including varying the

methods for generating input data, classifying data from varying numbers of populations,

and testing the classification accuracy of data generated from different distributions.

The DAMIP is presented as the second step of a two-step statistical process: (1) esti-

mating prior probabilities and conditional group density function values for training data,

and (2) solving a mixed-integer program to determine the optimal parameters defining the

classification rules for test observations. The objective of the MIP is to maximize the

number of correctly classified training observations, subject to limits on the number of mis-

classified observations. In light of the math program solved for support vector machines,

a quadratic term could be added to the objective of the DAMIP to expand the margins

between groups in the space of the conditional group density function values. Future work

could consider solution methods for a model, and find coefficients that define the trade-off

between maximizing correctly classified training observations and maximizing the margin

between groups. These coefficients would enable an investigator to control the robustness

of solutions to the DAMIP.

Though quadratic formulations of the DAMIP provide interesting problems, computa-

tional tests in this work indicate that, when input data are generated from a distribution

with a density, the DAMIP provides stable classification rules. The stability is indicated by

extremely low numbers of test observations that have ambiguous group membership when

the classification rules of the DAMIP are applied. A final problem that remains open, and

is actively studied, is that of estimating the density from which data is generated. Future
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work could integrate cutting-edge methods for density estimation with the DAMIP.

In summary, this dissertation provides evidence that the DAMIP is a computationally

feasible, consistent, stable, robust, and accurate classifier.
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Appendix A

More Computational Test Results

This appendix contains additional data collected from the tests involving the evaluation

of the performance of the enhanced code. The first section pertains to comparisons with

CPLEX, and the second section is concerned with the relative contribution of the various

components of the enhanced code.

The first two columns in each table define the data set and misclassification limit. The

misclassification limit is the maximum percentage of observations from each group that can

be misclassified as belonging to another group. The limit is applied to each pair of groups.

The third through sixth columns give the best-known objective value for an integer

feasible solution, the best objective value for an integer feasible solution achieved under

the current settings, the best upper bound achieved, and the percentage of integrality gap

remaining. By definition, the percentage of integrality gap remaining is given by (zLP
UB −

zIP )/(zLP
root − zIP ) × 100, where the value zIP is the optimal objective value of the mixed-

integer program (column 4). If the value is unknown, the objective value associated with

the best known integer feasible solution is used. The value zLP
UB is the best objective value

among active LP subproblems at termination (column 3). The value zLP
root is the optimal

objective value of the linear program relaxation at the root of the branch and bound tree.

For 3 of the problems, none of the methods are able to solve to optimality. For these

problems, zIP is defined as the best known objective value. The problems for which this

definition is necessary and the zIP used are hun-0.15 159, cle-0.05 93, and cle-0.15 133.

Columns 7 through 12 give the number of nodes explored, the number of nodes explored

before an integer feasible solution with the best integer objective value is found, the time to

the best integer feasible solution found, the number of clique cuts used, and the number of

generalized upper bound cuts (GUBs) used. If the optimal solution is found for an instance,

then column 8 contains the number of nodes to optimality and column 9 will contain the
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time to optimality. The last column gives the total processor time in seconds.

The tables for the enhanced code include an additional column (the second to last

column) containing the number of user-generated cuts added.

Note that Table 15 has columns 11 and 12 removed because clique cuts and GUBs are

not generated.

A.1 Comparison of performance

A.1.1 CPLEX
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Table 9: CPLEX with default settings. Solving 5-group problems with CPLEX using default settings.
Problem Solutions Branch and Cut Total

Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB Time (s)
Obj Int Obj (zLP

UB) Rem.(%) to Best Best (s)

va 0.05 27 27 27 0.0 1329 1278 3 0 0 3
va 0.15 50 49 54.9805 19.2 13158438 3293480 8808 0 0 32064
va 1.00 52 52 52 0.0 1549886 1549886 3857 0 0 3857
swi 0.05 30 N 59.9517 49.9 9493726 N N 0 0 25634
swi 0.15 48 N 65.9767 42.8 5833840 N N 0 0 1781
swi 1.00 55 55 55 0.0 8774642 77459 239 0 0 28814
hun 0.05 108 N 201.1208 74.5 2622268 N N 0 0 14761
hun 0.15 159 N 213.9563 79.6 2275578 N N 0 0 16025
hun 1.00 178 N 217.8248 65.4 2299520 N N 0 0 16476
cle 0.05 (93) N 224.9594 77.2 2071608 N N 0 0 17672
cle 0.15 (133) N 250.0411 89.4 2111610 N N 0 0 16476
cle 1.00 188 178 247.8867 78.9 1960141 318027 3935 0 0 39217
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Table 10: CPLEX with strong branching, cliques GUBs, and without presolve. Solving 5-group problems with strong
branching, cliques and GUBs aggressively generated and used, and presolve turned off. All other cuts were turned off. The optimization
strategy was set to emphasize optimality over feasibility, and the probing setting was at its most aggressive level. Alternative best
estimate node selection procedure was used. Feasibility and optimality tolerance parameters were set at their strictest level.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s)

va 0.05 27 27 27 0.0 144 110 5 21 0 7
va 0.15 50 50 50 0.0 16583 4262 388 495 0 1406
va 1.00 52 52 52 0.0 11028 1490 139 493 0 776
swi 0.05 30 30 30 0.0 120799 33790 2363 192 0 8405
swi 0.15 48 47 56.9999 22.0 420018 163655 63013 2894 0 202217
swi 1.00 55 55 60.9914 17.1 206652 34538 5773 1769 0 29874
hun 0.05 108 108 178.7510 80.4 487560 73340 24896 2624 0 202765
hun 0.15 (159) 143 192.6465 61.2 158295 80731 87893 4404 0 201827
hun 1.00 178 178 195.9942 32.8 146641 42579 41850 7165 0 201827
cle 0.05 (93) 85 156.9474 54.2 306609 272243 177940 2585 0 202521
cle 0.15 (133) N 221.9288 79.4 99181 N N 4750 0 201427
cle 1.00 188 187 224.6099 48.2 124222 31003 39910 9625 0 201987
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Table 11: CPLEX with strong branching, cliques GUBs, and presolve. Solving 5-group problems with strong branching,
cliques and GUBs aggressively generated and used, and presolve turned on. All other cuts were turned off. The optimization strategy
was set to emphasize optimality over feasibility, and the probing setting was at its most aggressive level. Alternative best estimate node
selection procedure was used. Feasibility and optimality tolerance parameters were set at their strictest level.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s)

va 0.05 27 27 27 0.0 102 87 3 4 0 3
va 0.15 50 50 50 0.0 29926 10328 1111 35 0 2371
va 1.00 52 52 52 0.0 27591 15007 1337 21 0 2001
swi 0.05 30 30 30 0.0 260711 62560 10403 132 0 51972
swi 0.15 48 48 48 0.0 761218 572910 108776 150 0 130555
swi 1.00 55 55 55 0.0 581925 217696 25940 41 0 54277
hun 0.05 108 N 163.5994 45.7 292844 N N 64 0 201758
hun 0.15 159 156 214.1800 78.0 381261 54955 28574 121 0 202705
hun 1.00 178 178 217.9425 77.1 1231622 1013165 171106 49 0 204774
cle 0.05 (93) N 184.4233 55.6 162050 N N 222 0 201503
cle 0.15 (133) N 228.8472 76.6 208644 N N 130 0 202154
cle 1.00 188 181 244.6365 80.7 314391 43175 28726 157 0 202669
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A.2 The relative contribution of various components of the
enhanced code
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Table 12: Enhanced code with cuts added locally. Solving 5-group problems with up to 1 maximal clique, 1 odd hole, 1 maximal
hyperclique, and 1 implied constraint added locally per pass. A branch callback function was used for branching. The conflict 3-
hypergraph was generated on-the-fly. Variables were fixed to zero before optimization when appropriate. The heuristic was applied. The
solution strategy was set to emphasize optimality over feasibility, probing was set to the highest level, strong branching was set as the
default branching scheme, alternative best estimate node selection procedure was used, and cliques and GUBS were used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 52 10 1 14 0 22 2
va 0.05 27 27 27 0.0 63 3 1 13 0 26 3
∗va 0.15 50 50 50 0.0 8454 5823 672 137 0 28 920
va 1.00 52 52 52 0.0 2300 1278 69 25 0 31 107
swi 0.00 14 14 14 0.0 329 20 2 47 0 26 9
swi 0.05 30 30 30 0.0 20268 4483 664 64 0 96 22162
swi 0.15 48 48 48 0.0 107688 92110 19510 740 0 77 95400
swi 1.00 55 55 55 0.0 55329 27332 2201 80 0 76 4117
hun 0.00 33 33 33 0.0 137 72 9 198 0 8 12
hun 0.05 108 108 108 0.0 124266 48870 32719 1017 0 264 85852
hun 0.15 159 158 179.6644 27.9 332069 65445 44979 605 0 152 204579
hun 1.00 178 178 178 0.0 70840 9445 3556 377 0 64 24067
cle 0.00 70 70 70 0.0 1378 549 74 351 0 31 131
cle 0.05 (93) 91 151.5302 34.2 175120 112550 125297 892 0 379 205074
cle 0.15 (133) 91 191.1923 44.4 143997 0 0 1447 0 490 206498
cle 1.00 188 188 206.9962 25.0 435598 2643 1763 764 0 148 205487
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Table 13: Enhanced code with cuts added globally. Solving 5-group Model 2 problems with up to 1 maximal clique, 1 odd hole,
1 maximal hyperclique, and 1 implied constraint added globally (rather than locally) per pass. A branch callback function was used for
branching. The conflict 3-hypergraph was generated on-the-fly. Variables were fixed to zero before optimization when appropriate. The
heuristic was applied. The solution strategy was set to emphasize optimality over feasibility, probing was set to the highest level, strong
branching was set as the default branching scheme, alternative best estimate node selection procedure was used, and cliques and GUBS
were used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 52 10 1 14 0 23 1
va 0.05 27 27 27 0.0 63 3 1 13 0 35 3
∗va 0.15 50 50 50 0.0 8385 7212 1373 72 0 1155 1529
va 1.00 52 52 52 0.0 2254 1313 76 25 0 218 115
swi 0.00 14 14 14 0.0 312 20 2 47 0 40 9
swi 0.05 30 30 30 0.0 17008 607 89 43 0 517 2462
swi 0.15 48 48 48 0.0 102438 98041 92347 146 0 6847 95400
swi 1.00 55 55 55 0.0 43919 15990 1812 21 0 1846 4844
hun 0.00 33 33 33 0.0 137 72 8 198 0 21 12
hun 0.05 108 108 108 0.0 80243 32798 38876 355 0 3360 113503
hun 0.15 159 157 179.6644 37.6 217947 15718 148065 245 0 4497 201775
∗hun 1.00 178 178 178 0.0 128008 55831 20269 130 0 4375 78409
cle 0.00 70 70 70 0.0 1471 748 114 330 0 50 161
cle 0.05 (93) 91 151.6310 49.7 101914 24533 39489 301 0 3865 201657
cle 0.15 (133) 129 191.1923 52.0 41090 31377 93997 275 0 9709 201143
cle 1.00 188 188 206.9952 25.0 251448 62213 52395 351 0 5042 203140
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Table 14: Enhanced code with non-dominated hyperclique cuts. Solving 5-group Model 2 problems with up to 1 maximal clique,
1 odd hole, 1 non-dominated maximal hyperclique, and 1 implied constraint added locally per pass. A branch callback function was used
for branching. The conflict 3-hypergraph was generated on-the-fly. Variables were fixed to zero before optimization when appropriate.
The heuristic was applied. The solution strategy was set to emphasize optimality over feasibility, probing was set to the highest level,
strong branching was set as the default branching scheme, alternative best estimate node selection procedure was used, and cliques and
GUBS were used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 52 10 1 14 0 22 1
va 0.05 27 27 27 0.0 63 3 1 13 0 26 2
∗va 0.15 50 50 50 0.0 8454 5823 559 137 0 28 763
va 1.00 52 52 52 0.0 2300 1278 54 25 0 31 84
swi 0.00 14 14 14 0.0 329 20 2 47 0 26 9
swi 0.05 30 30 30 0.0 20268 4483 596 64 0 96 2370
swi 0.15 48 48 48 0.0 107688 92110 20725 740 0 77 23931
swi 1.00 55 55 55 0.0 55329 27332 2080 80 0 76 3860
hun 0.00 33 33 33 0.0 137 72 8 198 0 8 12
hun 0.05 108 108 108 0.0 124266 48870 32047 1017 0 264 82530
hun 0.15 159 159 179.6644 37.6 337068 334422 202783 609 0 152 205532
hun 1.00 178 178 178 0.0 73712 9445 3331 488 0 64 24238
cle 0.00 70 70 70 0.0 1378 549 68 351 0 31 141
cle 0.05 (93) 91 151.0238 49.2 183787 112550 118540 899 0 379 204988
cle 0.15 (133) 91 191.1923 52.0 144658 0 0 1449 0 490 206444
cle 1.00 188 188 204.9965 22.4 441553 2643 1912 764 0 148 205414
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Table 15: Enhanced code without maximal clique cuts. Solving 5-group Model 2 problems with up to 1 odd hole, 1 maximal
hyperclique, and 1 implied constraint added locally per pass. A branch callback function was used for branching. The conflict 3-
hypergraph was generated on-the-fly. Variables were fixed to zero before optimization when appropriate. The heuristic was applied. The
solution strategy was set to emphasize optimality over feasibility, probing was set to the highest level, strong branching was set as the
default branching scheme, alternative best estimate node selection procedure was used, and cliques and GUBS generated by CPLEX
were used. Maximal cliques from the conflict graph were not used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 93 50 2 45 0 6 3
va 0.05 27 27 27 0.0 53 17 1 19 0 9 2
∗va 0.15 50 50 50 0.0 10786 9149 1269 364 0 15 1418
va 1.00 52 52 52 0.0 4515 758 39 79 0 26 188
swi 0.00 14 14 14 0.0 248 15 6 94 0 1 5
swi 0.05 30 30 30 0.0 27336 2348 361 117 0 12 3725
swi 0.15 48 48 48 0.0 129986 95729 29100 2140 0 61 41065
swi 1.00 55 55 55 0.0 59679 22451 3163 517 0 54 6826
hun 0.00 33 33 33 0.0 104 28 3 198 0 0 6
hun 0.05 108 108 130.0000 25.0 271263 230186 174149 1511 0 28 203190
hun 0.15 159 124 186.9932 50.9 251562 166907 148255 2437 0 43 202762
hun 1.00 178 178 178 0.0 96936 7973 4099 2400 0 56 38425
cle 0.00 70 70 70 0.0 1486 619 70 494 0 2 150
cle 0.05 (93) 90 135.6096 36.1 199505 117113 109698 1727 0 30 202150
cle 0.15 (133) 132 195.9844 56.3 129588 74695 109641 6225 0 168 203696
cle 1.00 188 188 207.9809 26.3 259931 29359 22750 6601 0 111 204641
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Table 16: Enhanced code without hyperclique cuts. Solving 5-group Model 2 problems with up to 1 maximal clique, 1 odd
hole, and 1 implied constraint added locally per pass. A branch callback function was used for branching. The conflict 3-hypergraph
was generated on-the-fly. Variables were fixed to zero before optimization when appropriate. The heuristic was applied. The solution
strategy was set to emphasize optimality over feasibility, probing was set to the highest level, strong branching was set as the default
branching scheme, alternative best estimate node selection procedure was used, and cliques and GUBS were used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 52 10 1 14 0 22 1
va 0.05 27 27 27 0.0 63 3 1 13 0 26 2
∗va 0.15 50 50 50 0.0 8454 559 137 0 28 765
va 1.00 52 52 52 0.0 2300 1278 54 25 0 31 84
swi 0.00 14 14 14 0.0 329 20 2 47 0 26 9
swi 0.05 30 30 30 0.0 20268 4483 600 64 0 96 2370
swi 0.15 48 48 48 0.0 107688 92110 20693 740 0 77 23893
swi 1.00 55 55 55 0.0 55329 27332 2085 80 0 76 3848
hun 0.00 33 33 33 0.0 137 72 8 198 0 8 12
hun 0.05 108 108 108 0.0 124266 48870 31945 1017 0 264 82438
hun 0.15 159 159 179.6644 37.6 337068 334422 202930 609 0 152 204965
hun 1.00 178 178 178 0.0 73712 9445 3338 488 0 64 24255
cle 0.00 70 70 70 0.0 1378 549 87 351 0 31 141
cle 0.05 (93) 91 151.0238 49.2 184017 112550 118389 899 0 379 204849
cle 0.15 (133) 91 191.1923 52.0 144690 0 0 1449 0 490 206380
cle 1.00 188 188 204.9965 22.4 441815 2643 1904 764 0 148 205451
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Table 17: Enhanced code without maximal clique cuts. Solving 5-group Model 2 problems with up to 1 maximal clique, 1
maximal hyperclique, and 1 implied constraint added locally per pass. A branch callback function was used for branching. The conflict
3-hypergraph was generated on-the-fly. Variables were fixed to zero before optimization when appropriate. The heuristic was applied.
The solution strategy was set to emphasize optimality over feasibility, probing was set to the highest level, strong branching was set as
the default branching scheme, alternative best estimate node selection procedure was used, and cliques and GUBS generated by CPLEX
were used. Odd hole cuts from the conflict graph were not used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 46 10 1 18 0 20 1
va 0.05 27 27 27 0.0 46 7 1 11 0 23 2
∗va 0.15 50 49 49 0.0 14649 8118 830 156 0 21 1421
va 1.00 52 52 52 0.0 2747 1379 71 25 0 29 125
swi 0.00 14 14 14 0.0 388 283 6 50 0 24 7
swi 0.05 30 30 30 0.0 22289 4356 594 60 0 71 2559
swi 0.15 48 48 48 0.0 87702 17596 2939 728 0 71 13620
swi 1.00 55 55 55 0.0 66835 43573 3279 128 0 71 4515
hun 0.00 33 33 33 0.0 137 72 5 198 0 8 7
hun 0.05 108 108 108 0.0 215393 15851 122424 1095 0 168 108976
hun 0.15 159 157 180.6637 39.4 409165 126201 70143 851 0 131 203650
hun 1.00 178 178 178 0.0 69089 8941 3689 581 0 72 23126
cle 0.00 70 70 70 0.0 1270 827 109 492 0 29 153
cle 0.05 (93) 89 151.3746 49.5 217733 8210 4202 1070 0 299 205667
cle 0.15 (133) 130 191.2421 52.0 112077 80916 159291 815 0 864 205398
cle 1.00 188 188 206.9957 25.0 510374 271260 98648 320 0 151 206062
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Table 18: Enhanced code without variable fixing or implied cuts. Solving 5-group Model 2 problems with up to 1 maximal
clique, 1 odd hole, and 1 maximal hypercliuqe constraint added locally per pass. A branch callback function was used for branching.
The conflict 3-hypergraph was generated on-the-fly. The heuristic was applied. The solution strategy was set to emphasize optimality
over feasibility, probing was set to the highest level, strong branching was set as the default branching scheme, alternative best estimate
node selection procedure was used, and cliques and GUBS were used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 61 14 1 8 0 23 2
va 0.05 27 27 27 0.0 58 9 1 11 0 42 2
∗va 0.15 50 50 50 0.0 7148 6969 744 152 0 21 753
va 1.00 52 52 52 0.0 3503 190 21 31 0 19 223
swi 0.00 14 14 14 0.0 401 102 4 26 0 37 12
swi 0.05 30 30 30 0.0 28710 3982 875 78 0 123 5455
swi 0.15 48 48 48 0.0 115445 115416 37191 1062 0 68 37198
swi 1.00 55 55 55 0.0 68234 11907 1505 157 0 62 7120
hun 0.00 33 33 33 0.0 464 311 25 134 0 11 34
hun 0.05 108 108 108 0.0 131564 55698 49586 1453 0 518 139705
hun 0.15 159 159 180.4989 39.1 271284 11968 7843 891 0 154 205581
hun 1.00 178 178 178 0.0 80149 21854 8574 661 0 67 29851
cle 0.00 70 70 70 0.0 1487 143 44 283 0 42 184
cle 0.05 (93) 90 156.2028 53.6 126814 89768 135936 973 0 602 205329
cle 0.15 (133) 133 196.0350 56.3 102500 47968 77070 1856 0 304 207517
cle 1.00 188 185 208.9959 27.7 428064 369635 173085 1903 0 176 205821
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Table 19: Enhanced code without branching scheme. Solving 5-group Model 2 problems with up to 1 maximal clique, 1 odd hole,
1 maximal hyperclique, and 1 implied constraint added locally per pass. The conflict 3-hypergraph was generated on-the-fly. Variables
were fixed to zero before optimization when appropriate. The heuristic was applied. The solution strategy was set to emphasize optimality
over feasibility, probing was set at the highest level, strong branching was set as the default branching scheme, alternative best estimate
node selection procedure was used, and cliques and GUBS were used.

Problem Solutions Branch and Cut Total
Data αij Opt Best Best UB Gap Nodes Nodes Time to Cli GUB User Time (s)

Obj Int Obj (zLP
UB) Rem.(%) to Best Best (s) Cuts

va 0.00 24 24 24 0.0 95 84 4 14 0 22 4
va 0.05 27 27 27 0.0 56 5 1 13 0 26 3
va 0.15 50 50 50 0.0 12683 10124 1510 81 0 23 1785
va 1.00 52 52 52 0.0 3146 319 30 30 0 31 198
swi 0.00 14 14 14 0.0 242 55 2 63 0 26 7
swi 0.05 30 30 30 0.0 18437 787 119 72 0 96 3078
swi 0.15 48 48 48 0.0 97620 17118 4809 1025 0 77 31590
swi 1.00 55 55 55 0.0 26279 7795 1516 59 0 76 4220
hun 0.00 33 33 33 0.0 154 23 10 198 0 8 45
hun 0.05 108 108 117.9955 11.4 260207 57960 69608 1137 0 264 205445
hun 0.15 159 159 173.9934 27.3 192065 69653 69663 1183 0 152 204418
hun 1.00 178 178 178 0.0 64077 49629 24661 493 0 64 32750
cle 0.00 70 70 70 0.0 1050 256 38 355 0 31 188
cle 0.05 (93) 91 149.4615 47.9 284949 182680 128752 958 0 379 205449
cle 0.15 (133) 91 190.5666 51.4 0 0 0 2976 0 490 205779
cle 1.00 188 188 200.9963 17.1 141535 42899 36204 5366 0 148 203831
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Appendix B

More Classification Accuracy Test Results

This appendix contains additional results for various tests of classification performance.

The first section contains results of tests used to determine the optimal parameters for

SVMmulticlass [47], a multi-class support vector machine code. The second section contains

classification matrices for tests of classification performance for various methods on real-

world data sets. The third section contains classification matrices for tests of classification

performance for various methods on simulated data sets.

B.1 Parameter settings in SVMmulticlass [47]

Figures 20 and 21 contain the accuracy and misclassification rates of SVMmulticlass [47] using

a linear and radial basis function kernel, respectively. For each kernel, the c parameter was

tested for various values. The parameter determines the relative emphasis in the objective

on minimizing training error and maximizing the margin between groups.

For SVMmulticlass [47] with a radial basis function kernel, values for g were tested. The

g parameter determines the width of the radial basis function kernel.
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Figure 20: (a) Accuracy and (b) misclassification rates for various settings for SVMmulticlass [47] with a linear kernel on real-world data
sets. The parameter c determines the relative emphasis of the objective function on reducing training error and increasing the margin
between groups. The data sets are described in Section 6.1.
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Figure 21: (a) Accuracy and (b) misclassification rates for various settings for SVMmulticlass [47] with a radial basis function kernel on
real-world data sets. The parameter c determines the relative emphasis of the objective function on reducing training error and increasing
the margin between groups. The parameter g determines the width of the radial basis function kernel. The data sets are described in
Section 6.1.
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B.2 Real-world data
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
0.0 98.3 1.7 0.0
0.0 1.5 97.1 1.5
0.0 0.0 0.0 100.0

0.0 98.3 1.7 0.0
0.0 1.5 97.1 1.5
0.0 0.0 0.0 100.0

0.0 98.3 1.7 0.0
0.0 1.5 97.1 1.5
0.0 0.0 0.0 100.0

0.0 98.3 1.7 0.0
0.0 1.5 97.1 1.5
0.0 0.0 0.0 100.0

LDF QDF CART SVMlinear SVMrbf

0.0 98.3 1.7 0.0
0.0 1.5 97.1 1.5
0.0 0.0 0.0 100.0

0.0 100.0 0.0 0.0
0.0 1.5 98.5 0.0
0.0 0.0 2.3 97.7

0.0 89.7 8.6 1.7
0.0 2.9 94.1 2.9
0.0 0.0 9.1 90.9

0.0 94.8 5.2 0.0
0.0 0.0 97.1 2.9
0.0 0.0 2.3 97.7

0.0 96.6 1.7 1.7
0.0 33.8 54.4 11.8
0.0 43.2 18.2 38.6

(a) wine

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
0.0 100.0 0.0 0.0
2.0 0.0 96.0 2.0
8.0 0.0 2.0 90.0

0.0 100.0 0.0 0.0
0.0 0.0 96.0 4.0
0.0 0.0 6.0 94.0

0.0 100.0 0.0 0.0
0.0 0.0 96.0 4.0
0.0 0.0 4.0 96.0

0.0 100.0 0.0 0.0
0.0 0.0 96.0 4.0
0.0 0.0 4.0 96.0

LDF QDF CART SVMlinear SVMrbf
0.0 100.0 0.0 0.0
0.0 0.0 96.0 4.0
0.0 0.0 2.0 98.0

0.0 100.0 0.0 0.0
0.0 0.0 94.0 6.0
0.0 0.0 2.0 98.0

0.0 100.0 0.0 0.0
0.0 0.0 94.0 6.0
0.0 0.0 6.0 94.0

0.0 100.0 0.0 0.0
0.0 0.0 94.0 6.0
0.0 0.0 4.0 96.0

0.0 100.0 0.0 0.0
0.0 0.0 92.7 7.3
0.0 0.0 9.6 90.4

(b) iris

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
6.1 93.2 0.7 0.0

12.1 3.0 84.8 0.0
10.3 3.4 0.0 86.2

0.7 95.3 2.0 2.0
0.0 6.1 93.9 0.0
3.4 3.4 0.0 93.1

0.0 96.6 2.0 1.4
0.0 9.1 90.9 0.0
0.0 13.8 0.0 86.2

0.0 96.6 2.0 1.4
0.0 9.1 90.9 0.0
0.0 17.2 0.0 82.8

LDF QDF CART SVMlinear SVMrbf
0.0 100.0 0.0 0.0
0.0 33.3 66.7 0.0
0.0 24.1 0.0 75.9

0.0 98.0 1.4 0.7
0.0 3.0 97.0 0.0
0.0 13.8 0.0 86.2

0.0 100.0 0.0 0.0
0.0 15.2 84.8 0.0
0.0 24.1 0.0 75.9

0.0 98.6 0.7 0.7
0.0 0.0 100.0 0.0
0.0 10.3 0.0 89.7

0.0 98.0 0.0 2.0
0.0 3.0 97.0 0.0
0.0 27.6 0.0 72.4

(c) new-thyroid

185



DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
2.0 98.0 0.0 0.0

70.0 2.0 24.0 4.0
74.0 0.0 2.0 24.0

0.0 98.0 2.0 0.0
46.0 4.0 40.0 10.0
62.0 0.0 6.0 32.0

0.0 98.0 2.0 0.0
36.0 2.0 48.0 14.0
38.0 0.0 18.0 44.0

0.0 98.0 2.0 0.0
2.0 2.0 64.0 32.0
0.0 0.0 28.0 72.0

LDF QDF CART SVMlinear SVMrbf
0.0 98.0 2.0 0.0
0.0 0.0 70.0 30.0
0.0 0.0 30.0 70.0

0.0 98.0 2.0 0.0
0.0 0.0 70.0 30.0
0.0 0.0 36.0 64.0

2.0 92.0 6.0 0.0
2.0 4.0 60.0 34.0
0.0 6.0 38.0 56.0

0.0 98.0 0.0 2.0
0.0 12.0 0.0 88.0
0.0 4.0 0.0 96.0

0.0 100.0 0.0 0.0
0.0 22.0 36.0 42.0
0.0 4.0 22.0 74.0

(d) sepal

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
62.5 12.5 12.5 12.5
62.5 12.5 20.8 4.2
54.5 0.0 0.0 45.5

54.2 16.7 20.8 8.3
45.8 25.0 25.0 4.2
36.4 4.5 0.0 59.1

20.8 25.0 33.3 20.8
29.2 25.0 37.5 8.3
31.8 4.5 9.1 54.5

4.2 41.7 33.3 20.8
0.0 41.7 37.5 20.8
0.0 4.5 13.6 81.8

LDF QDF CART SVMlinear SVMrbf
0.0 37.5 41.7 20.8
0.0 50.0 41.7 8.3
0.0 13.6 18.2 68.2

0.0 20.8 58.3 20.8
0.0 25.0 58.3 16.7
0.0 18.2 13.6 68.2

0.0 41.7 45.8 12.5
0.0 29.2 58.3 12.5
0.0 0.0 13.6 86.4

0.0 33.3 41.7 25.0
0.0 41.7 54.2 4.2
0.0 4.5 31.8 63.6

0.0 83.3 16.7 0.0
0.0 87.5 0.0 12.5
0.0 86.4 13.6 0.0

(e) FNlnVN

Figure 22: Classification matrices (a) wine (b) iris (c) new-thyroid (d) sepal and (e) FNlnVN data sets for linear discriminant functions
(LDF), quadratic discriminant functions (QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear),
support vector machines with a radial basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and
100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The rows of each 3×4 matrix correspond to the known group membership
of observations, and the columns correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage
of observations from group i allocated by the method to group j. The first column corresponds to the reserved judgment group; these
observations are not classified. The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15%
62.1 6.9 13.8 13.8 3.4 0.0
71.8 12.8 10.3 5.1 0.0 0.0
86.2 3.4 0.0 10.3 0.0 0.0
66.7 0.0 7.4 3.7 14.8 7.4

100.0 0.0 0.0 0.0 0.0 0.0

58.6 13.8 10.3 6.9 10.3 0.0
66.7 12.8 10.3 5.1 5.1 0.0
72.4 3.4 6.9 10.3 6.9 0.0
55.6 3.7 11.1 7.4 14.8 7.4
83.3 0.0 0.0 0.0 0.0 16.7

13.8 34.5 17.2 20.7 13.8 0.0
35.9 17.9 23.1 10.3 10.3 2.6
41.4 10.3 10.3 20.7 13.8 3.4
37.0 0.0 18.5 22.2 11.1 11.1
83.3 0.0 0.0 0.0 0.0 16.7

DAMIP 100% LDF QDF
0.0 24.1 34.5 20.7 20.7 0.0
0.0 25.6 28.2 20.5 25.6 0.0
0.0 10.3 34.5 27.6 20.7 6.9
3.7 0.0 48.1 18.5 18.5 11.1

16.7 0.0 0.0 33.3 50.0 0.0

0.0 28.6 28.6 14.3 14.3 14.3
0.0 26.7 26.7 15.6 15.6 15.6
0.0 11.4 28.6 20.0 20.0 20.0
0.0 5.3 23.7 23.7 23.7 23.7
0.0 100.0 0.0 0.0 0.0 0.0

0.0 35.7 32.1 10.7 10.7 10.7
0.0 30.0 32.5 12.5 12.5 12.5
0.0 18.2 45.5 12.1 12.1 12.1
0.0 20.7 37.9 13.8 13.8 13.8
0.0 0.0 40.0 20.0 20.0 20.0

CART SVMlinear SVMrbf
0.0 21.4 21.4 19.0 19.0 19.0
0.0 26.8 36.6 12.2 12.2 12.2
2.9 5.9 38.2 17.6 17.6 17.6
0.0 22.6 29.0 16.1 16.1 16.1
0.0 0.0 7.7 30.8 30.8 30.8

0.0 58.3 41.7 0.0 0.0 0.0
0.0 20.5 18.2 20.5 20.5 20.5
0.0 15.2 30.3 18.2 18.2 18.2
0.0 26.7 53.3 6.7 6.7 6.7
0.0 50.0 50.0 0.0 0.0 0.0

0.0 60.0 5.7 11.4 11.4 11.4
0.0 60.0 13.3 8.9 8.9 8.9
0.0 57.1 8.6 11.4 11.4 11.4
0.0 66.7 3.3 10.0 10.0 10.0
0.0 80.0 20.0 0.0 0.0 0.0

Figure 23: Classification matrices for va data set for linear discriminant functions (LDF), quadratic discriminant functions (QDF),
classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis
function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 5 × 6 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15%
83.3 0.0 16.7 0.0 0.0 0.0
65.8 5.3 13.2 7.9 5.3 2.6
67.9 3.6 7.1 10.7 3.6 7.1
69.6 0.0 8.7 4.3 8.7 8.7

100.0 0.0 0.0 0.0 0.0 0.0

50.0 0.0 33.3 0.0 16.7 0.0
50.0 7.9 21.1 13.2 5.3 2.6
39.3 3.6 10.7 25.0 7.1 14.3
34.8 0.0 17.4 13.0 17.4 17.4
60.0 0.0 0.0 20.0 20.0 0.0

0.0 16.7 66.7 0.0 16.7 0.0
15.8 21.1 18.4 18.4 18.4 7.9
10.7 3.6 10.7 39.3 17.9 17.9
8.7 0.0 21.7 17.4 34.8 17.4

20.0 0.0 0.0 20.0 20.0 40.0
DAMIP 100% LDF QDF

0.0 0.0 83.3 0.0 16.7 0.0
2.6 5.3 55.3 13.2 21.1 2.6
0.0 3.6 28.6 39.3 17.9 10.7
0.0 0.0 43.5 21.7 21.7 13.0
0.0 0.0 20.0 40.0 20.0 20.0

0.0 0.0 100.0 0.0 0.0 0.0
0.0 6.5 47.8 15.2 15.2 15.2
0.0 2.3 15.9 27.3 27.3 27.3
0.0 0.0 40.0 20.0 20.0 20.0
0.0 0.0 0.0 33.3 33.3 33.3

0.0 0.0 40.0 20.0 20.0 20.0
0.0 16.7 50.0 11.1 11.1 11.1
0.0 6.9 20.7 24.1 24.1 24.1
0.0 0.0 28.6 23.8 23.8 23.8
0.0 0.0 0.0 33.3 33.3 33.3

CART SVMlinear SVMrbf
0.0 0.0 36.4 21.2 21.2 21.2
0.0 0.0 41.3 19.6 19.6 19.6
0.0 0.0 23.3 25.6 25.6 25.6
0.0 0.0 14.3 28.6 28.6 28.6
0.0 0.0 25.0 25.0 25.0 25.0

0.0 0.0 62.5 12.5 12.5 12.5
0.0 2.0 55.1 14.3 14.3 14.3
0.0 0.0 36.8 21.1 21.1 21.1
0.0 0.0 52.0 16.0 16.0 16.0
0.0 0.0 10.0 30.0 30.0 30.0

0.0 12.5 12.5 25.0 25.0 25.0
0.0 33.3 31.0 11.9 11.9 11.9
0.0 48.3 20.7 10.3 10.3 10.3
0.0 30.8 11.5 19.2 19.2 19.2
0.0 66.7 33.3 0.0 0.0 0.0

Figure 24: Classification matrices for switzerland data set for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 5 × 6 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15%
87.1 10.4 1.2 0.6 0.0 0.6
82.9 5.7 2.9 2.9 5.7 0.0
78.3 4.3 4.3 0.0 4.3 8.7
68.0 0.0 4.0 4.0 16.0 8.0
71.4 0.0 0.0 7.1 14.3 7.1

44.8 47.9 5.5 0.6 0.6 0.6
68.6 8.6 11.4 5.7 5.7 0.0
65.2 4.3 8.7 0.0 8.7 13.0
60.0 0.0 4.0 12.0 16.0 8.0
57.1 0.0 0.0 0.0 14.3 28.6

27.0 62.6 4.9 3.1 1.8 0.6
45.7 17.1 20.0 5.7 11.4 0.0
39.1 4.3 17.4 4.3 17.4 17.4
56.0 4.0 8.0 4.0 20.0 8.0
42.9 0.0 7.1 0.0 28.6 21.4

DAMIP 100% LDF QDF
0.0 92.6 3.7 1.2 1.2 1.2
2.9 60.0 17.1 11.4 8.6 0.0
0.0 43.5 13.0 0.0 30.4 13.0
0.0 32.0 12.0 20.0 20.0 16.0
0.0 28.6 14.3 14.3 28.6 14.3

0.0 88.7 4.2 2.4 2.4 2.4
0.0 50.0 18.4 10.5 10.5 10.5
0.0 37.5 43.8 6.2 6.2 6.2
0.0 21.4 14.3 21.4 21.4 21.4
0.0 44.4 22.2 11.1 11.1 11.1

0.0 85.6 6.9 2.5 2.5 2.5
0.0 44.2 14.0 14.0 14.0 14.0
0.0 22.2 22.2 18.5 18.5 18.5
0.0 14.8 18.5 22.2 22.2 22.2
0.0 23.5 23.5 17.6 17.6 17.6

CART SVMlinear SVMrbf
0.0 98.1 1.9 0.0 0.0 0.0
0.0 80.6 2.8 5.6 5.6 5.6
0.0 75.0 12.5 4.2 4.2 4.2
0.0 54.2 33.3 4.2 4.2 4.2
0.0 50.0 20.0 10.0 10.0 10.0

0.0 99.4 0.6 0.0 0.0 0.0
0.0 64.7 17.6 5.9 5.9 5.9
0.0 68.4 15.8 5.3 5.3 5.3
0.0 45.8 16.7 12.5 12.5 12.5
0.0 54.5 18.2 9.1 9.1 9.1

0.0 86.8 6.0 2.4 2.4 2.4
0.0 82.4 17.6 0.0 0.0 0.0
0.0 95.2 4.8 0.0 0.0 0.0
0.0 87.5 0.0 4.2 4.2 4.2
0.0 73.3 6.7 6.7 6.7 6.7

Figure 25: Classification matrices for hungarian data set for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 5 × 6 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15%
66.0 33.3 0.6 0.0 0.0 0.0
90.6 3.8 1.9 0.0 3.8 0.0
90.9 0.0 0.0 3.0 6.1 0.0
77.1 2.9 2.9 11.4 2.9 2.9
69.2 0.0 7.7 0.0 15.4 7.7

51.9 42.3 5.1 0.6 0.0 0.0
88.7 5.7 0.0 3.8 1.9 0.0
81.8 0.0 6.1 3.0 6.1 3.0
60.0 2.9 2.9 20.0 5.7 8.6
61.5 0.0 7.7 7.7 23.1 0.0

39.1 51.3 7.7 0.0 0.6 1.3
77.4 11.3 3.8 3.8 3.8 0.0
66.7 0.0 9.1 3.0 15.2 6.1
42.9 2.9 11.4 25.7 8.6 8.6
53.8 0.0 7.7 7.7 30.8 0.0

DAMIP 100% LDF QDF
0.6 91.0 4.5 2.6 0.6 0.6
0.0 49.1 17.0 20.8 9.4 3.8
0.0 18.2 15.2 27.3 21.2 18.2
0.0 5.7 25.7 34.3 14.3 20.0
7.7 7.7 15.4 15.4 46.2 7.7

0.0 89.8 6.4 1.3 1.3 1.3
0.0 47.1 23.5 9.8 9.8 9.8
0.0 22.7 22.7 18.2 18.2 18.2
0.0 5.6 27.8 22.2 22.2 22.2
0.0 14.3 42.9 14.3 14.3 14.3

0.0 84.9 7.5 2.5 2.5 2.5
0.0 36.1 19.7 14.8 14.8 14.8
0.0 21.9 12.5 21.9 21.9 21.9
0.0 9.1 36.4 18.2 18.2 18.2
0.0 9.1 36.4 18.2 18.2 18.2

CART SVMlinear SVMrbf
0.0 89.7 8.3 0.6 0.6 0.6
0.0 60.7 17.9 7.1 7.1 7.1
4.7 25.6 20.9 16.3 16.3 16.3
3.0 45.5 33.3 6.1 6.1 6.1

12.5 37.5 50.0 0.0 0.0 0.0

0.0 96.8 1.3 0.6 0.6 0.6
0.0 72.5 3.9 7.8 7.8 7.8
0.0 52.6 15.8 10.5 10.5 10.5
0.0 21.1 15.8 21.1 21.1 21.1
0.0 30.0 10.0 20.0 20.0 20.0

0.0 88.8 3.7 2.5 2.5 2.5
0.0 80.0 3.6 5.5 5.5 5.5
0.0 62.5 7.5 10.0 10.0 10.0
0.0 94.1 5.9 0.0 0.0 0.0
0.0 71.4 7.1 7.1 7.1 7.1

Figure 26: Classification matrices for cleveland data set for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 5 × 6 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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B.3 Simulated data

B.3.1 Equal group sizes
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
41.2 29.9 14.3 14.6
40.6 13.8 30.6 14.9
40.0 14.2 14.2 31.6

39.3 30.9 14.6 15.2
39.0 14.2 31.5 15.4
38.3 14.6 14.6 32.5

39.3 30.9 14.6 15.2
39.0 14.2 31.5 15.4
38.3 14.6 14.6 32.5

1.2 46.1 26.1 26.6
1.3 25.4 46.9 26.5
1.2 25.6 25.5 47.7

LDF QDF CART SVMlinear SVMrbf
0.2 48.1 25.8 25.9
0.2 25.5 48.2 26.1
0.2 26.0 24.8 48.9

0.1 43.9 27.6 28.4
0.1 28.9 42.9 28.0
0.1 29.0 27.2 43.7

20.1 37.8 23.8 18.4
21.7 23.8 37.3 17.2
24.6 25.0 22.7 27.7

0.0 30.6 34.8 34.6
0.0 14.2 54.1 31.7
0.0 14.6 31.3 54.2

0.0 38.3 29.6 32.1
0.0 24.6 44.3 31.2
0.0 23.5 29.0 47.5

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
43.0 27.3 15.3 14.3
41.8 13.6 28.8 15.7
42.8 13.7 15.8 27.8

41.5 27.6 15.7 15.2
40.3 13.9 29.4 16.5
41.0 14.0 16.0 29.0

41.5 27.6 15.7 15.2
40.3 13.9 29.4 16.5
41.0 14.0 16.0 29.1

1.4 45.6 26.4 26.6
1.5 25.8 43.4 29.3
1.5 26.0 27.0 45.5

LDF QDF CART SVMlinear SVMrbf
0.2 48.7 25.9 25.2
0.2 26.9 45.1 27.8
0.2 27.4 27.5 44.8

0.1 54.0 23.6 22.3
0.1 23.2 45.6 31.1
0.1 23.9 30.1 45.8

14.8 46.9 21.6 16.6
17.3 25.9 35.5 21.2
19.7 26.3 24.2 29.8

0.0 35.7 32.4 31.9
0.0 20.5 44.6 35.0
0.0 20.7 35.4 43.9

0.0 46.9 25.5 27.5
0.0 21.2 44.3 34.5
0.0 21.5 30.9 47.7

(b) U1

Figure 27: Classification matrices for (a) E1 and (b) U1 distributions with 5 training observations in each group. Classification matrices
for linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees (CART), support vector machines
with a linear kernel (SVMlinear), support vector machines with a radial basis function kernel (SVMrbf), and DAMIP with training
misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The rows of each 3 × 4 matrix
correspond to the known group membership of observations, and the columns correspond to the allocated group. The percentage in row i
and column j + 1 denotes the percentage of observations from group i allocated by the method to group j. The first column corresponds
to the reserved judgment group; these observations are not classified. The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
71.0 17.9 5.5 5.6
70.5 5.4 18.8 5.3
70.6 5.3 6.0 18.2

69.6 18.7 5.8 5.9
69.3 5.6 19.5 5.6
69.3 5.4 6.1 19.2

24.9 41.5 16.7 16.9
25.0 17.1 41.7 16.3
24.7 16.5 17.4 41.4

0.9 50.5 24.1 24.5
0.9 24.3 51.0 23.8
0.9 23.9 24.7 50.5

LDF QDF CART SVMlinear SVMrbf
0.2 52.5 23.5 23.9
0.2 23.6 52.5 23.6
0.3 23.2 23.9 52.6

0.2 50.1 24.7 25.0
0.2 24.9 50.0 24.9
0.2 24.6 25.2 50.0

12.9 42.1 23.7 21.4
12.7 24.6 41.7 21.1
14.7 24.1 23.6 37.7

0.0 29.4 35.3 35.2
0.0 10.4 59.4 30.2
0.0 10.3 29.5 60.2

0.0 41.5 28.0 30.5
0.0 22.4 49.1 28.5
0.0 21.6 27.2 51.3

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
81.1 9.6 4.6 4.7
74.6 4.1 14.6 6.7
74.2 4.1 6.1 15.6

80.1 9.9 5.0 5.0
73.7 4.5 15.1 6.7
73.4 4.5 6.1 16.1

38.8 30.7 15.1 15.3
31.7 15.0 35.3 18.0
31.5 15.1 16.6 36.9

0.9 52.1 23.9 23.2
0.8 27.5 46.0 25.8
0.7 27.8 24.8 46.7

LDF QDF CART SVMlinear SVMrbf
0.3 53.1 23.4 23.3
0.3 28.2 46.9 24.6
0.3 28.5 24.3 46.9

0.1 64.7 17.7 17.4
0.1 24.4 48.8 26.8
0.2 24.1 27.0 48.8

13.3 49.7 20.0 17.0
10.9 22.8 42.7 23.6
12.1 22.1 26.7 39.1

0.0 33.7 32.4 33.9
0.0 19.1 44.3 36.6
0.0 18.5 33.8 47.8

0.0 56.5 20.3 23.2
0.0 22.8 45.1 32.1
0.0 22.3 28.7 49.0

(b) U1

Figure 28: Classification matrices for (a) E1 and (b) U1 distributions with 15 training observations in each group. Classification
matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees (CART), support vector
machines with a linear kernel (SVMlinear), support vector machines with a radial basis function kernel (SVMrbf), and DAMIP with
training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The rows of each 3 × 4
matrix correspond to the known group membership of observations, and the columns correspond to the allocated group. The percentage
in row i and column j + 1 denotes the percentage of observations from group i allocated by the method to group j. The first column
corresponds to the reserved judgment group; these observations are not classified. The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
79.8 13.4 3.5 3.4
79.4 3.3 14.1 3.2
79.7 3.3 3.6 13.4

61.7 24.2 7.1 7.0
62.0 7.0 24.0 7.0
61.8 7.2 7.1 23.9

32.7 38.9 14.3 14.0
33.3 14.1 38.5 14.1
33.3 14.4 13.8 38.4

0.4 51.3 23.7 24.6
0.5 23.9 51.1 24.6
0.4 23.5 23.4 52.7

LDF QDF CART SVMlinear SVMrbf
0.2 53.3 23.4 23.1
0.2 23.1 53.6 23.1
0.3 23.2 23.3 53.2

0.2 52.1 24.3 23.4
0.2 24.0 52.5 23.3
0.2 24.3 24.1 51.4

12.8 40.7 24.7 21.8
12.1 23.4 42.8 21.7
13.8 23.2 23.8 39.2

0.0 28.0 35.5 36.5
0.0 8.9 60.8 30.3
0.0 9.0 28.4 62.7

0.0 41.8 27.7 30.5
0.0 20.7 50.3 29.0
0.0 20.1 26.1 53.7

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
88.4 6.1 2.7 2.8
81.9 2.5 11.6 4.0
82.2 2.4 4.4 11.0

76.1 12.7 5.5 5.7
65.6 5.7 20.6 8.1
65.8 5.5 8.3 20.4

48.0 26.7 12.4 12.9
37.2 13.0 34.7 15.1
37.6 12.6 15.3 34.5

0.5 57.6 20.4 21.5
0.5 31.1 44.7 23.6
0.5 30.6 22.9 46.1

LDF QDF CART SVMlinear SVMrbf
0.2 53.7 22.7 23.3
0.3 29.1 47.6 23.0
0.3 28.7 23.3 47.7

0.2 68.8 15.4 15.7
0.2 25.2 49.2 25.4
0.2 25.1 25.2 49.5

11.0 51.8 19.3 17.9
9.9 21.4 43.6 25.1

10.7 21.4 26.3 41.7

0.0 32.8 33.9 33.3
0.0 18.3 48.2 33.4
0.0 17.5 35.8 46.7

0.0 59.8 18.3 22.0
0.0 22.8 45.9 31.3
0.0 22.2 27.3 50.5

(b) U1

Figure 29: Classification matrices for (a) E1 and (b) U1 distributions with 25 training observations in each group. Classification
matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees (CART), support vector
machines with a linear kernel (SVMlinear), support vector machines with a radial basis function kernel (SVMrbf), and DAMIP with
training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The rows of each 3 × 4
matrix correspond to the known group membership of observations, and the columns correspond to the allocated group. The percentage
in row i and column j + 1 denotes the percentage of observations from group i allocated by the method to group j. The first column
corresponds to the reserved judgment group; these observations are not classified. The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
85.9 9.8 2.2 2.2
85.6 2.1 10.3 2.0
85.7 2.1 2.3 9.9

61.6 24.5 7.2 6.7
61.7 6.8 24.9 6.6
61.9 6.9 6.9 24.3

24.9 42.9 16.2 15.9
24.9 15.7 43.3 16.1
24.6 16.0 16.0 43.3

0.3 52.1 24.4 23.1
0.3 23.2 53.2 23.3
0.3 23.4 24.1 52.2

LDF QDF CART SVMlinear SVMrbf
0.2 53.6 23.4 22.8
0.2 22.8 54.2 22.8
0.3 22.9 23.1 53.8

0.2 53.1 23.8 22.9
0.2 23.4 53.7 22.7
0.2 23.6 23.6 52.5

12.3 41.6 24.7 21.4
12.7 23.7 42.4 21.2
13.6 24.1 23.8 38.5

0.0 27.8 36.2 36.0
0.0 8.5 62.7 28.8
0.0 8.3 28.7 63.0

0.0 44.7 27.7 27.6
0.0 20.4 53.0 26.5
0.0 20.3 26.4 53.3

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
93.6 3.2 1.6 1.6
87.7 1.3 8.3 2.7
87.7 1.4 2.8 8.1

77.3 12.2 5.1 5.4
65.1 5.6 21.3 8.0
65.0 5.7 7.9 21.4

40.6 29.8 14.9 14.6
29.0 15.0 39.1 16.9
29.1 15.0 16.6 39.4

0.4 60.4 19.6 19.7
0.4 32.6 44.5 22.4
0.4 32.6 21.5 45.5

LDF QDF CART SVMlinear SVMrbf
0.3 53.8 22.8 23.1
0.3 29.2 47.7 22.9
0.3 29.1 21.9 48.7

0.2 71.3 14.2 14.4
0.2 26.0 49.0 24.9
0.2 25.9 24.0 49.9

10.2 52.1 20.5 17.2
9.5 21.2 44.4 24.9

10.8 20.7 27.5 41.0

0.0 31.5 32.5 36.0
0.0 18.8 44.1 37.1
0.0 17.6 31.7 50.7

0.0 64.4 16.7 18.9
0.0 24.2 46.0 29.8
0.0 24.0 26.0 50.1

(b) U1

Figure 30: Classification matrices for (a) E1 and (b) U1 distributions with 40 training observations in each group. Classification
matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees (CART), support vector
machines with a linear kernel (SVMlinear), support vector machines with a radial basis function kernel (SVMrbf), and DAMIP with
training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The rows of each 3 × 4
matrix correspond to the known group membership of observations, and the columns correspond to the allocated group. The percentage
in row i and column j + 1 denotes the percentage of observations from group i allocated by the method to group j. The first column
corresponds to the reserved judgment group; these observations are not classified. The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
92.7 5.5 1.0 0.9
92.3 0.9 5.8 0.9
92.7 0.9 1.0 5.5

65.6 22.7 5.9 5.7
65.3 5.6 23.2 5.8
65.4 5.8 5.9 22.9

27.6 42.5 14.9 15.0
27.3 15.1 42.6 15.0
27.4 15.0 15.3 42.2

0.1 53.4 23.6 22.9
0.1 23.1 53.9 22.9
0.1 23.5 23.4 53.0

LDF QDF CART SVMlinear SVMrbf
0.2 54.4 23.0 22.5
0.2 22.6 54.5 22.6
0.3 22.9 23.0 53.9

0.2 54.3 22.9 22.6
0.2 22.9 54.2 22.8
0.3 23.3 23.0 53.4

12.5 41.8 24.3 21.5
12.3 23.8 42.4 21.5
13.0 24.2 24.3 38.6

0.0 27.1 36.8 36.1
0.0 7.4 64.5 28.0
0.0 7.5 29.0 63.5

0.0 46.8 25.6 27.6
0.0 19.2 54.3 26.5
0.0 19.3 24.6 56.2

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
97.8 0.9 0.6 0.7
93.7 0.6 4.5 1.2
93.7 0.6 1.3 4.4

81.6 9.8 4.2 4.4
69.0 4.9 19.4 6.7
68.9 4.9 6.8 19.3

46.3 27.5 13.2 13.1
31.6 14.2 38.2 16.0
31.9 14.3 15.9 38.0

0.2 64.9 17.0 17.9
0.2 35.0 43.3 21.5
0.2 35.1 20.0 44.7

LDF QDF CART SVMlinear SVMrbf
0.2 53.8 22.8 23.2
0.2 29.6 48.6 21.5
0.3 29.7 21.7 48.3

0.1 73.9 12.9 13.1
0.2 26.7 49.3 23.8
0.2 26.9 23.6 49.3

9.8 53.4 19.4 17.5
9.6 20.4 44.4 25.7

10.4 20.4 27.8 41.5

0.0 23.3 36.9 39.8
0.0 16.3 49.4 34.3
0.0 14.3 32.9 52.9

0.0 70.1 13.7 16.2
0.0 26.0 47.1 26.9
0.0 25.8 25.0 49.1

(b) U1

Figure 31: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations in each group. Classification
matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF), classification trees (CART), support vector
machines with a linear kernel (SVMlinear), support vector machines with a radial basis function kernel (SVMrbf), and DAMIP with
training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15, and DAMIP100, resp.). The rows of each 3 × 4
matrix correspond to the known group membership of observations, and the columns correspond to the allocated group. The percentage
in row i and column j + 1 denotes the percentage of observations from group i allocated by the method to group j. The first column
corresponds to the reserved judgment group; these observations are not classified. The data set and methods are described in Chapter 6.
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B.3.2 One large group
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
0% 5% 15% 100%

59.3 38.4 1.1 1.1
74.5 17.0 6.4 2.1
74.6 16.8 2.0 6.6

53.0 38.3 4.3 4.4
59.4 17.0 16.9 6.7
59.9 16.6 6.2 17.3

43.0 38.3 9.3 9.5
44.7 16.9 26.4 11.9
44.4 16.5 11.3 27.7

0.1 97.9 1.0 0.9
0.6 90.6 6.0 2.8
0.6 90.9 2.8 5.7

LDF QDF CART SVMlinear SVMrbf
0.0 99.6 0.2 0.2
0.0 97.0 2.2 0.8
0.0 97.1 0.8 2.1

0.0 99.3 0.4 0.3
0.0 96.7 2.3 1.0
0.0 96.9 1.1 2.0

0.0 100.0 0.0 0.0
0.0 100.0 0.0 0.0
0.0 100.0 0.0 0.0

0.0 49.4 26.8 23.8
0.0 40.3 33.0 26.6
0.0 40.0 26.8 33.1

0.0 98.7 0.6 0.7
0.0 98.1 1.0 0.9
0.0 98.1 0.6 1.3

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
75.7 22.6 0.9 0.8
63.8 12.4 14.0 9.9
64.4 11.9 10.2 13.6

72.9 22.4 2.3 2.4
55.8 12.2 18.9 13.1
56.0 11.7 13.7 18.5

66.9 22.5 5.5 5.2
50.6 12.2 22.6 14.5
51.5 11.7 16.1 20.8

0.1 98.5 0.7 0.7
1.3 69.2 16.6 12.9
1.2 69.1 13.2 16.5

LDF QDF CART SVMlinear SVMrbf
0.0 99.7 0.2 0.2
0.0 77.8 12.0 10.2
0.0 77.7 10.5 11.7

0.0 99.3 0.4 0.3
0.0 70.5 17.2 12.3
0.0 70.7 12.6 16.7

0.0 99.8 0.1 0.1
0.7 94.8 1.4 3.1
0.7 95.0 1.2 3.1

0.0 49.6 28.4 22.0
0.0 39.5 33.0 27.5
0.0 39.8 32.2 28.0

0.0 97.3 1.2 1.5
0.0 87.7 6.8 5.5
0.0 88.0 5.8 6.2

(b) U1

Figure 32: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations in group 1 and 5 training
observations each in groups 2 and 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.

198



DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
70.8 26.8 1.2 1.2
82.2 8.9 6.8 2.0
82.0 9.2 1.7 7.1

64.4 26.6 4.6 4.4
67.7 8.8 17.5 6.0
68.1 9.0 5.4 17.5

31.0 44.5 12.4 12.1
32.2 18.3 34.7 14.8
32.3 18.7 14.2 34.8

0.2 96.1 1.9 1.8
0.7 84.2 10.3 4.7
0.8 84.5 4.4 10.4

LDF QDF CART SVMlinear SVMrbf
0.0 98.8 0.6 0.6
0.0 93.3 4.9 1.8
0.0 93.4 1.6 5.0

0.0 98.6 0.7 0.7
0.0 93.2 4.7 2.1
0.0 93.5 1.9 4.6

0.0 99.7 0.2 0.1
0.2 99.0 0.6 0.2
0.1 99.1 0.4 0.4

0.0 48.0 28.1 23.9
0.0 32.6 39.9 27.4
0.0 33.1 29.8 37.0

0.0 97.6 1.0 1.4
0.0 95.1 2.7 2.3
0.0 95.1 1.5 3.4

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
91.0 7.8 0.6 0.6
73.6 5.3 12.9 8.2
73.4 5.3 7.6 13.7

87.9 7.7 2.1 2.3
67.6 5.2 17.1 10.0
67.4 5.3 9.5 17.8

56.5 27.0 8.6 8.0
38.5 13.9 29.1 18.5
39.0 13.8 17.0 30.1

0.1 97.3 1.4 1.2
0.8 63.3 21.2 14.7
0.7 63.3 14.3 21.6

LDF QDF CART SVMlinear SVMrbf
0.0 99.5 0.3 0.3
0.0 75.2 13.1 11.7
0.1 75.0 10.6 14.4

0.0 98.6 0.7 0.7
0.1 63.3 22.1 14.5
0.1 63.3 13.5 23.2

0.1 99.1 0.4 0.4
1.9 79.4 9.5 9.2
2.0 78.9 8.1 11.1

0.0 49.0 26.4 24.6
0.0 34.4 32.1 33.5
0.0 35.1 29.6 35.3

0.0 95.9 1.5 2.6
0.0 77.5 12.1 10.4
0.0 77.6 9.9 12.5

(b) U1

Figure 33: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations in group 1 and 10 training
observations each in groups 2 and 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
76.8 20.7 1.2 1.3
84.6 6.2 7.2 2.0
84.5 6.2 1.7 7.6

70.5 20.6 4.4 4.5
71.2 6.2 17.4 5.3
70.9 6.1 4.8 18.2

26.7 46.3 13.5 13.5
27.1 19.4 38.1 15.5
27.1 19.0 14.8 39.1

0.2 94.3 2.7 2.8
0.7 79.5 13.9 5.9
0.7 78.8 5.7 14.8

LDF QDF CART SVMlinear SVMrbf
0.0 97.6 1.1 1.3
0.0 88.7 8.2 3.1
0.0 88.0 2.9 9.1

0.0 97.2 1.3 1.4
0.0 88.6 8.0 3.5
0.0 88.2 3.2 8.6

0.1 98.9 0.6 0.5
0.3 96.3 2.2 1.2
0.3 96.5 1.2 2.0

0.0 46.7 27.1 26.2
0.0 29.3 40.6 30.1
0.0 26.1 29.0 44.8

0.0 96.1 1.6 2.4
0.0 91.1 5.1 3.8
0.0 90.9 2.9 6.3

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
94.1 4.8 0.6 0.6
78.0 3.9 11.6 6.6
78.1 3.7 6.0 12.2

90.8 4.7 2.2 2.3
73.2 3.9 14.9 8.0
73.1 3.8 7.2 16.0

51.8 29.3 9.5 9.3
32.6 14.9 34.3 18.2
33.0 14.8 19.5 32.7

0.1 96.1 1.9 1.9
0.7 60.0 24.4 14.9
0.8 59.8 15.5 23.9

LDF QDF CART SVMlinear SVMrbf
0.0 99.2 0.4 0.4
0.0 72.7 15.9 11.4
0.0 72.6 12.0 15.4

0.0 97.8 1.1 1.1
0.0 58.9 26.1 15.0
0.0 58.8 14.9 26.2

0.0 98.7 0.6 0.6
1.2 73.8 14.6 10.4
1.2 73.6 10.3 14.9

0.0 48.2 27.3 24.5
0.0 31.4 37.9 30.7
0.0 31.2 35.6 33.2

0.0 94.1 1.9 4.0
0.0 68.1 17.0 14.9
0.0 68.1 13.5 18.4

(b) U1

Figure 34: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations in group 1 and 15 training
observations each in groups 2 and 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
84.7 13.0 1.2 1.1
88.0 3.0 7.5 1.5
88.3 3.1 1.7 6.9

66.4 23.5 5.1 5.0
66.8 6.5 21.1 5.6
67.4 6.7 5.7 20.3

29.0 43.3 13.8 13.8
28.8 16.1 40.3 14.8
28.8 16.3 15.0 39.9

0.2 86.8 6.5 6.5
0.5 62.7 26.1 10.6
0.5 62.3 11.0 26.2

LDF QDF CART SVMlinear SVMrbf
0.0 91.7 4.2 4.1
0.0 71.2 21.3 7.6
0.0 71.3 7.9 20.9

0.0 91.2 4.4 4.4
0.0 71.5 20.5 8.0
0.0 71.2 8.4 20.4

0.3 90.4 4.5 4.8
0.6 78.9 13.6 6.9
0.7 78.6 7.0 13.7

0.0 43.6 28.5 27.9
0.0 21.6 49.2 29.3
0.0 21.0 29.6 49.4

0.0 85.9 5.6 8.5
0.0 70.0 17.5 12.5
0.0 69.9 9.8 20.4

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
97.1 1.8 0.5 0.6
85.5 1.9 9.1 3.6
85.5 1.9 3.9 8.7

87.8 5.9 3.2 3.1
68.7 4.5 18.8 8.0
68.7 4.5 7.9 18.9

51.5 26.2 11.4 11.0
32.1 13.3 37.1 17.5
32.0 13.4 17.8 36.8

0.2 92.8 3.6 3.4
0.4 54.5 28.9 16.2
0.4 54.5 15.4 29.8

LDF QDF CART SVMlinear SVMrbf
0.0 97.2 1.5 1.3
0.0 65.8 21.4 12.7
0.0 65.9 12.9 21.2

0.0 95.0 2.5 2.5
0.0 50.2 33.1 16.6
0.0 50.1 16.8 33.1

0.2 93.7 3.2 3.0
1.6 58.5 24.9 15.1
1.7 58.5 14.9 24.9

0.0 45.8 28.3 25.9
0.0 27.2 37.9 34.8
0.0 26.6 34.6 38.8

0.0 90.7 3.7 5.6
0.0 53.6 26.0 20.3
0.0 53.4 18.0 28.6

(b) U1

Figure 35: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations in group 1 and 30 training
observations each in groups 2 and 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
88.3 9.5 1.1 1.1
90.2 1.9 6.6 1.3
90.3 2.0 1.3 6.4

66.5 22.5 5.4 5.7
67.0 5.9 21.6 5.5
66.8 5.8 5.7 21.6

28.2 42.7 14.5 14.7
27.9 15.7 41.7 14.7
28.1 15.4 15.3 41.3

0.1 76.9 11.3 11.6
0.2 47.4 37.2 15.2
0.2 47.0 15.8 36.9

LDF QDF CART SVMlinear SVMrbf
0.1 80.8 9.7 9.5
0.1 51.2 35.4 13.3
0.2 51.1 14.0 34.7

0.1 79.8 10.1 10.0
0.1 50.6 35.4 13.8
0.2 50.6 14.6 34.6

5.4 74.8 10.3 9.6
7.4 56.2 24.4 12.0
7.8 56.3 13.4 22.5

0.0 34.2 32.9 32.9
0.0 13.2 58.4 28.3
0.0 13.5 28.9 57.6

0.0 71.8 12.5 15.8
0.0 46.3 34.1 19.6
0.0 46.1 17.4 36.5

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
97.7 1.2 0.6 0.5
89.4 1.1 7.1 2.3
89.8 1.2 2.6 6.5

86.0 6.8 3.6 3.6
69.5 4.4 19.0 7.1
69.5 4.6 7.2 18.7

47.8 27.7 12.5 11.9
30.7 14.2 38.4 16.8
30.9 14.3 16.7 38.1

0.2 87.1 6.3 6.4
0.3 48.8 33.3 17.5
0.3 48.8 16.4 34.5

LDF QDF CART SVMlinear SVMrbf
0.1 89.7 5.3 5.0
0.2 53.7 30.6 15.5
0.2 53.9 14.9 31.0

0.0 90.3 4.8 4.9
0.1 42.0 39.0 18.9
0.1 42.0 19.0 38.9

4.3 81.4 7.5 6.9
6.0 43.4 31.6 19.1
6.5 43.4 19.6 30.5

0.0 42.8 29.3 27.8
0.0 23.3 40.7 36.0
0.0 25.8 34.7 39.4

0.0 86.7 6.0 7.3
0.0 43.1 33.8 23.1
0.0 43.0 20.6 36.4

(b) U1

Figure 36: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations in group 1 and 50 training
observations each in groups 2 and 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions
(QDF), classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial
basis function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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B.3.3 Two large groups
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
88.0 9.7 1.6 0.6
87.8 1.6 9.9 0.7
90.6 2.6 2.7 4.1

63.5 26.4 6.4 3.8
63.6 6.6 26.0 3.8
66.8 9.2 9.4 14.6

34.9 40.6 13.9 10.6
35.2 14.3 40.0 10.6
36.9 16.5 16.8 29.8

0.7 67.4 31.2 0.7
0.8 31.5 67.1 0.7
1.6 47.0 47.7 3.7

LDF QDF CART SVMlinear SVMrbf
0.1 69.1 30.7 0.1
0.1 31.2 68.6 0.1
0.1 49.2 50.0 0.7

0.1 69.0 30.7 0.1
0.1 31.7 68.1 0.1
0.1 49.4 49.7 0.8

4.2 59.4 36.4 0.0
4.3 36.5 59.2 0.0
5.2 47.0 47.7 0.0

0.0 36.5 49.5 13.9
0.0 11.4 83.7 5.0
0.0 20.9 67.9 11.2

0.0 58.7 41.1 0.2
0.0 23.4 76.5 0.2
0.0 41.3 58.0 0.7

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
96.3 2.1 0.9 0.7
79.5 1.0 18.9 0.7
83.4 1.1 12.8 2.6

81.0 11.5 4.5 2.9
61.0 5.8 29.1 4.0
65.2 6.1 18.0 10.7

54.0 26.3 10.7 9.0
40.5 12.9 35.7 10.8
43.0 12.8 20.7 23.5

0.2 80.7 18.3 0.7
0.1 39.9 59.5 0.5
0.3 45.9 51.9 2.0

LDF QDF CART SVMlinear SVMrbf
0.1 74.7 25.2 0.0
0.1 33.8 66.0 0.1
0.1 40.6 59.2 0.1

0.1 82.5 17.4 0.1
0.1 31.1 68.6 0.2
0.1 39.5 59.5 0.9

2.9 68.5 28.6 0.0
2.5 28.7 68.8 0.0
2.8 35.5 61.7 0.0

0.0 33.1 48.1 18.9
0.0 12.2 78.4 9.4
0.0 18.7 73.7 7.6

0.0 71.3 27.5 1.1
0.0 24.1 75.1 0.8
0.0 33.1 66.3 0.6

(b) U1

Figure 37: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations each in groups 1 and 2 and 5
training observations groups 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF),
classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis
function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
88.2 9.5 1.6 0.7
88.0 1.6 9.8 0.7
90.8 2.5 2.6 4.1

65.7 23.9 6.1 4.2
65.9 6.0 23.7 4.3
67.9 7.7 7.5 16.8

29.3 43.3 15.3 12.2
29.3 15.4 42.9 12.4
30.2 17.9 17.5 34.3

0.1 66.6 32.1 1.2
0.2 30.7 68.1 1.1
0.7 45.6 47.7 5.9

LDF QDF CART SVMlinear SVMrbf
0.1 68.6 31.1 0.2
0.1 30.8 68.9 0.2
0.2 48.8 49.5 1.6

0.1 68.2 31.4 0.3
0.1 31.0 68.7 0.2
0.1 48.6 49.6 1.6

4.6 59.5 35.9 0.0
4.6 36.5 58.8 0.0
6.1 47.2 46.7 0.0

0.0 34.4 49.5 16.1
0.0 10.7 83.6 5.7
0.0 20.5 66.5 13.0

0.0 58.1 41.5 0.4
0.0 23.0 76.7 0.4
0.0 40.5 57.8 1.7

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
96.9 1.6 0.8 0.6
82.9 1.0 15.3 0.8
87.1 1.2 8.5 3.2

83.8 9.5 4.1 2.7
67.0 5.3 23.1 4.6
70.2 5.5 11.4 13.0

47.1 30.0 12.6 10.3
32.9 14.7 40.6 11.7
34.7 14.8 22.1 28.4

0.2 81.1 17.6 1.1
0.1 40.6 58.5 0.9
0.3 46.1 50.0 3.6

LDF QDF CART SVMlinear SVMrbf
0.1 74.9 24.9 0.1
0.1 34.1 65.7 0.0
0.1 40.5 59.3 0.1

0.1 82.6 17.2 0.1
0.1 31.4 68.2 0.3
0.1 39.3 58.7 2.0

3.5 68.4 28.1 0.0
3.2 28.8 68.0 0.0
3.7 36.1 60.2 0.0

0.0 33.1 48.5 18.4
0.0 12.4 78.6 9.1
0.0 18.4 74.0 7.6

0.0 71.8 27.1 1.1
0.0 24.5 74.7 0.8
0.0 33.5 66.0 0.6

(b) U1

Figure 38: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations each in groups 1 and 2 and 10
training observations groups 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF),
classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis
function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
88.4 9.3 1.5 0.8
88.7 1.6 8.9 0.8
90.6 2.4 2.1 4.9

69.0 20.9 5.4 4.7
68.6 5.2 21.4 4.9
68.4 6.2 6.3 19.1

27.7 43.2 15.6 13.4
27.0 15.4 44.2 13.3
27.2 17.4 18.0 37.4

0.2 66.6 31.3 1.9
0.2 31.0 67.0 1.9
0.6 44.9 45.3 9.2

LDF QDF CART SVMlinear SVMrbf
0.1 68.3 31.1 0.4
0.1 30.9 68.6 0.4
0.1 48.3 48.4 3.2

0.1 67.9 31.4 0.5
0.1 31.0 68.4 0.5
0.2 48.1 48.5 3.3

4.8 58.8 36.4 0.0
4.9 36.4 58.7 0.0
6.0 46.9 47.1 0.1

0.0 34.4 49.6 16.0
0.0 10.7 83.3 5.9
0.0 20.3 64.9 14.8

0.0 58.2 41.0 0.8
0.0 23.4 75.9 0.7
0.0 40.8 55.9 3.3

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
97.1 1.6 0.7 0.7
85.5 1.0 12.6 0.9
88.8 1.1 6.5 3.6

85.3 7.6 3.9 3.2
71.5 4.4 19.0 5.1
72.8 4.4 8.2 14.6

45.1 30.4 13.1 11.4
31.7 14.7 41.0 12.6
32.1 15.5 21.3 31.1

0.3 79.9 18.5 1.4
0.1 40.0 58.8 1.2
0.4 45.7 48.8 5.0

LDF QDF CART SVMlinear SVMrbf
0.1 74.1 25.5 0.2
0.1 33.9 66.0 0.1
0.1 40.8 58.8 0.3

0.1 82.6 17.1 0.2
0.1 31.4 67.9 0.6
0.1 39.3 57.3 3.4

4.3 67.8 27.9 0.0
3.8 28.5 67.7 0.0
4.9 35.3 59.7 0.1

0.0 32.7 48.6 18.7
0.0 12.3 78.7 8.9
0.0 18.7 73.5 7.8

0.0 71.9 27.1 1.0
0.0 24.5 74.7 0.7
0.0 33.8 65.6 0.6

(b) U1

Figure 39: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations each in groups 1 and 2 and 15
training observations groups 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF),
classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis
function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
90.3 7.7 1.3 0.7
90.1 1.3 7.8 0.8
92.0 1.7 1.7 4.6

66.2 23.0 5.7 5.1
66.4 5.8 22.6 5.2
67.0 6.3 6.0 20.7

27.9 42.9 14.9 14.3
27.8 15.2 42.9 14.1
27.7 16.1 16.1 40.1

0.2 65.5 30.1 4.2
0.2 30.0 65.8 4.1
0.4 41.0 41.9 16.6

LDF QDF CART SVMlinear SVMrbf
0.1 67.9 30.2 1.9
0.1 30.5 67.4 1.9
0.1 44.8 44.6 10.4

0.1 67.4 30.4 2.0
0.1 30.7 67.2 2.0
0.2 45.1 44.8 9.9

6.1 57.9 34.9 1.1
6.1 35.1 57.6 1.2
7.2 44.8 44.5 3.5

0.0 31.5 49.2 19.2
0.0 9.4 82.8 7.7
0.0 16.3 61.6 22.1

0.0 58.3 38.7 3.0
0.0 24.0 73.4 2.6
0.0 39.2 51.4 9.4

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
97.7 1.1 0.6 0.6
89.2 0.9 8.8 1.1
91.5 0.9 3.5 4.0

84.3 8.0 4.3 3.5
68.5 4.8 20.5 6.2
70.0 4.7 8.0 17.3

47.0 28.4 12.8 11.8
31.7 14.4 39.7 14.2
32.4 14.3 18.4 34.9

0.3 79.1 17.4 3.2
0.2 40.1 56.5 3.2
0.4 45.6 42.2 11.7

LDF QDF CART SVMlinear SVMrbf
0.1 73.3 25.4 1.2
0.1 33.7 65.9 0.3
0.1 40.9 57.4 1.6

0.1 81.9 17.1 0.9
0.1 30.8 66.4 2.8
0.1 37.8 50.9 11.2

4.1 67.2 27.8 0.9
3.9 27.9 65.9 2.3
4.5 34.5 55.0 6.1

0.0 31.1 48.8 20.1
0.0 11.7 79.2 9.0
0.0 17.5 73.1 9.4

0.0 73.2 25.7 1.1
0.0 25.3 73.8 0.9
0.0 35.1 63.6 1.3

(b) U1

Figure 40: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations each in groups 1 and 2 and 30
training observations groups 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF),
classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis
function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
90.7 7.3 1.1 0.9
91.0 1.3 6.8 0.9
91.9 1.5 1.3 5.4

66.4 22.4 5.6 5.5
66.4 5.9 22.2 5.4
66.2 5.9 5.8 22.2

27.3 43.0 15.2 14.5
27.0 15.4 42.9 14.6
27.0 15.8 15.6 41.5

0.1 62.4 28.6 8.9
0.1 28.4 62.6 8.9
0.2 35.6 35.0 29.2

LDF QDF CART SVMlinear SVMrbf
0.1 64.8 28.7 6.4
0.1 28.7 64.7 6.5
0.2 37.4 37.3 25.1

0.1 64.3 28.8 6.8
0.1 28.6 64.4 6.9
0.2 37.4 37.3 25.1

7.5 55.4 32.8 4.3
7.7 33.3 54.6 4.4
9.5 39.6 39.0 12.0

0.0 29.5 47.4 23.0
0.0 8.3 80.6 11.1
0.0 10.8 54.6 34.6

0.0 56.0 35.6 8.4
0.0 23.2 69.1 7.8
0.0 33.2 43.6 23.2

(a) E1

DAMIP 0% DAMIP 5% DAMIP 15% DAMIP 100%
97.7 1.0 0.6 0.6
91.3 0.7 6.8 1.2
92.4 0.8 2.4 4.4

83.2 8.5 4.5 3.8
69.6 4.7 19.6 6.1
70.3 4.8 7.1 17.8

46.0 28.5 13.3 12.1
31.9 14.0 38.7 15.4
31.4 14.8 16.9 37.0

0.4 75.9 17.9 5.8
0.3 38.9 53.3 7.4
0.5 43.3 34.5 21.8

LDF QDF CART SVMlinear SVMrbf
0.2 70.2 25.4 4.3
0.1 33.4 64.6 1.8
0.2 40.2 50.6 9.1

0.1 81.3 15.8 2.8
0.1 30.6 62.1 7.2
0.1 35.6 41.4 22.9

5.4 65.1 26.2 3.3
5.6 26.6 60.8 7.0
7.2 31.3 46.6 14.9

0.0 28.8 49.1 22.2
0.0 11.6 79.8 8.6
0.0 16.7 71.7 11.7

0.0 74.7 23.7 1.6
0.0 26.4 71.5 2.1
0.0 36.1 58.7 5.2

(b) U1

Figure 41: Classification matrices for (a) E1 and (b) U1 distributions with 100 training observations each in groups 1 and 2 and 50
training observations groups 3. Classification matrices for linear discriminant functions (LDF), quadratic discriminant functions (QDF),
classification trees (CART), support vector machines with a linear kernel (SVMlinear), support vector machines with a radial basis
function kernel (SVMrbf), and DAMIP with training misclassification limits of 0, 5, 15, and 100% (DAMIP0, DAMIP5, DAMIP15,
and DAMIP100, resp.). The rows of each 3 × 4 matrix correspond to the known group membership of observations, and the columns
correspond to the allocated group. The percentage in row i and column j + 1 denotes the percentage of observations from group i
allocated by the method to group j. The first column corresponds to the reserved judgment group; these observations are not classified.
The data set and methods are described in Chapter 6.
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[65] Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B., “An intro-
duction to kernel-based learning algorithms,” IEEE Transactions on Neural Networks,
vol. 12, pp. 181–201, March 2001.

[66] Müller, R. and Schulz, A., “Transitive packing: A unifying concept in combinato-
rial optimization,” SIAM Journal on Optimization, vol. 13, pp. 335–367, 2002.

212



[67] Nemhauser, G. and Trotter, L., “Properties of vertex packing and independence
system polyhedra,” Mathematical Programming, vol. 6, pp. 48–61, 1974.

[68] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial Optimization.
Wiley, 1999.

[69] Neyman, J. and Pearson, E., “Contributions to the theory of testing statistical
hypotheses,” Stat. Res. Mem., vol. 1, pp. 1–37, 1936.

[70] Ng, T.-H. and Randles, R., “Distribution-free partial discrimination procedures,”
Computers and Mathematics with Applications, vol. 12A, pp. 225–234, 1986.

[71] O’Hagan, A., Kendall’s Advanced Theory of Statistics: Bayesian Inference, vol. 2B.
Halsted Press, 1994.

[72] Padberg, M., “(1, k)-configurations and facets for packing problems,” Mathematical
programming, vol. 18, pp. 94–99, 1973.

[73] Padberg, M., “On the facial structure of set packing polyhedra,” Mathematical Pro-
gramming, vol. 5, pp. 199–215, 1973.

[74] Papadimitriou, C. H. and Steiglitz, K., Combinatorial Optimization: Algorithms
and Complexity. Dover, 1998.

[75] Quesenberry, C. and Gessaman, M., “Nonparametric discrimination using toler-
ance regions,” Annals of Mathematical Statistics, vol. 39, pp. 664–673, 1968.

[76] Rao, C. R., Advanced Statistical Methods in Biometric Research. Wiley, 1952.

[77] Rencher, A. C., Multivariate Statistical Inference and Application. Wiley, 1998.

[78] Sekiguchi, Y., “A note on node packing polytopes on hypergraphs,” Operations Re-
search Letters, vol. 2, pp. 243–247, 1983.

[79] Smith, C. A. B., “Some examples of discrimination,” Ann. Eugenics, vol. 13, pp. 272–
282, 1947.

[80] Stam, A., “Nontraditional approaches to statistical classification: Some perspectives
on lp-norm methods,” Annals of Operations Research, vol. 74, pp. 1–36, 1997.

[81] Stam, A. and Joachimsthaler, E. A., “Solving the classification problem in dis-
criminant analysis via linear and nonlinear programming methods,” Decision Sciences,
vol. 20, pp. 285–293, 1989.

[82] Vapnik, V., Statistical Learning Theory. Wiley, 1998.

[83] Vapnik, V. and Chervonenkis, A., “On the uniform convergence of relative frequen-
cies of events to their probabilities,” Theory of Probability and its Applications, vol. 16,
pp. 264–270, 1971.

[84] Vapnik, V. and Chervonenkis, A., “Necessary and sufficient conditions for the
uniform convergence of means to their expectations,” Theory of Probability and its
Applications, vol. 26, pp. 532–553, 1981.

213



[85] Vapnik, V. and Chervonenkis, A. Y., “On a class of pattern-recognition learning
algorithms,” Automation and Remote Control, vol. 25, pp. 838–845, 1964.

[86] Vapnik, V. and Lerner, A. Y., “Pattern recognition using generalized portraits,”
Automation and Remote Control, vol. 24, pp. 709–715, 1963.

[87] Wolsey, L. A., Integer Programming. Wiley, 1998.

[88] Wright, A. H., The role of integrins in the differential upregulation of tumor cell
motility by endothelial extracellular matrix proteins. PhD thesis, Georgia Institute of
Technology, December 1999.

[89] Yanev, N. and Balev, S., “A combinatorial approach to the classification problem,”
European Journal of Operational Research, vol. 115, pp. 339–350, 1999.

[90] Zopounidis, C. and Doumpos, M., “Multicriteria classification and sorting methods:
A literature review,” European Journal of Operational Research, vol. 138, pp. 229–246,
2002.

214


