A Knowledge-Based System for
Capturing Human-Computer
Interaction Events: CHIME

by

Alber N. Badre
Paulo Santos

GIT-GVU-91-21
September 1991

Graphics, Visualization & Usability
Center

Georgia Institute of Technology
Atlanta GA 30332-0280

A Knowledge-Based System for
Capturing Human—-Computer Interaction Events: CHIME

Observations and Issues

Albert N. Badre
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
phone: +1 — 404 — 894-2598
email: badre@cc.gatech.edu

Paulo J. Santos
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
phone: +1 — 404 — 853-9393

email: pas@cc.gatech.edu

ABSTRACT

The ability to capture and analyze human-computer
interaction (HCI) data is an important part of the iterative
interface development process. In this paper, we claim that
in order to perform accurate and extensive analysis of HCI
events, an automated technique has to be used. We describe
steps towards identifying desirable features of such a
technique and present a list of those features. We present
the key characteristics and architecture of a knowledge-based
monitoring system, CHIME, We claim that the more
knowledge a monitor has about the semantics of an
application the more useful the data it collects. Finally, we
report on the results of an exploratory study to assess the
adequacy of key CHIME assumptions and architecture.

KEYWORDS
User Interfaces, Human-Computer Interaction, Human-
Computer Interaction Monitoring

INTRODUCTION

The scenario

Two of the steps in the iterative design (Figure 1) of quality
human-computer interfaces {Gould 85] are the collection
and analysis of interface utilization data. Several techniques
have been used to collect such data. Historically, data
gathering has been accomplished either manually, by
automated means, or a combination of the two. Examples
of manual or combination data collection techniques are

session recording by expert annotators or videotaping of
sessions, These techniques require tend to be costly in
terms of effort and manpower. In addition, the accuracy and
completeness of the data collected is limited by the abilities
of the human observer.

refine
interface
design

design
the
interface

identify
interface
changes

use
interface

analyze
interface
utilization

monitor
interface
utilization

Figure 1 - Iterative Interface Design Model

To overcome these problems, a number of computer-based
techniques have emerged. The initial and most basic of these
techniques consisted of embedding trace commands in the
program being executed. This technique, one of the first

used extensively in debugging, has the capability of
recording very detailed information and of identifying the
relevant context. Its unpopularity is due to the necessity of
introducing modifications to the program each time a
different monitoring function is required.

Then came automatic transcribing [Good 85]. Using this
technique. computers gather data about themselves. All the
interaction with the user can be captured, generally at a low
level of abstraction (keystroke or mouse click level, or at
the command level). This technique provides a remarkable
advancement over the embedded trace techniques, especially
since it does not require changes to the application or
interface code each time a different monitoring function is
needed. However, a bare automatic transcription still has
some serious drawbacks, First, the amounts of raw data
generated are generally extremely very large, requiring the
use of elaborate analysis tools [Siochi 89 and 91].
Secondly, when the recorded information is based
exclusively on system level actions such as key presses, the
semantics of the interaction can not be inferred and recorded.
And. as all the techniques that are based exclusively on
information gathered by the computer, this technique can
not record aspects of the interaction that are not
communicated to the computer. such as user satisfaction or
environment conditions and perturbations.

Finally. the UIMS explosion brought along some UIMS-
based transcription facilities, such as in [Olsen 88]. This
technique differs from the automatic transcription described
above in the fact that a User Interface Management System
is in control of all the interaction. In particular, the UIMS
has some knowledge of the model of the interface. and can
thus build and record higher level interaction units by
combining lower level ones. However, the UIMS
approach, although extremely valuable in user interface
design and support, did not solve all the problems associated
with interaction monitoring. First, this technique requires
the program to be running under the control of a UIMS
runtime system, increasing the size and complexity of every
interface application generated with that UIMS. Secondly,
the UIMS-based technique can not be used with interfaces
built outside of the world of that UIMS. And finally. like
all other computer-based techniques, it totally disregards
actions and conditions not directly affecting the computer.

The problem

Automated HCI monitoring and analysis techniques are
beneficial mainly because of their accuracy and the potential
for extensive automation. However, it is clear to us that
current automated techniques have serious drawbacks and
limitations. We also realize that some of the potential of
manual techniques is lost by relying exclusively on
automation. There is a large body of important HCI events
that can not possibly be captured by the computer.
Examples of such events are user inactivity ("why isa't the
user typing?™), user off-line activities {user documentation
look-ups}. environmental conditions (light and noise

levels), psychological aspects (“the user has just received a
promotion”), and demographic data (gender, age, etc.).

The current unsatisfactory state-of-the-art of HCI
monitoring suggests that there is room for improvement.
Thus, we proceeded to investigate a new technique.
knowledge-based monitoring, that would eliminate or reduce
the problems of current techniques, while at the same time.
incorporating their good features. In knowledge based-
monitoring, the monitoring task is performed essentially by
the computer, but the computer is given a specification of
the interaction to enable it to monitor higher-level
interaction units.

We have developed a prototype knowledge-based monitoring
engine which we called CHIME [Badre 91]: knowledge-
based Computer-Human Interaction Monitoring Engine. A
description of CHIME will follow in the next section.

This paper presents some studies that we performed to test
the adequacy of CHIME for the HCI monitoring task. We
also identified changes and improvements needed in
CHIME.

BRIEF DESCRIPTION OF CHIME

Characteristics of CHIME

In conceptualizing CHIME, to assess interface quality, the
strategy was to incorporate the following key desirable
characteristics of automatic knowledge-based monitoring.

The first and most important characteristic is “‘automatic”
monitoring. This is the only way to achieve high accuracy
of the data collected. It is also important to automate the
monitoring process to reduce manpower costs.

A second important characteristic is the ability of a monitor
to distinguish human—computer interaction events that are
relevant for exploring the validity of some hypothesized
conclusion from events that are irrelevant for this purpose
and thus need not be collected. This enables the collection
of only the necessary data for some analysis task. It is
essential to keep the amount of collected data down to a bare
minimum, while capturing all the data relevant for the
analysis.

A third characteristic incorporated in CHIME is the ability
of the monitor to capture data related to the user's level of
expertise. The ways in which users execute actions on the
computer are dependent on their level of expertise and
familiarity with the interface and the model of the software
at hand. In particular, the way in which they perform
chunking of concepts is clearly dependent on these factors
[Badre 82, Smelcer 86]. Chunk size is associated with
expertise level, and may be detected by automatic time
monitoring of pauses between responses or actions. Based
on these and other studies of chunking, CHIME
incorporates the capability to identify action chunks based
on an inter-action time measure.

Another characteristics of CHIME is its ability for local or
remote monitoring of human—computer interaction.
Results of the monitoring process can be stored for later
analysis, or they may be immediately analyzed and the
results displayed on the user's screen or on another screen.

CHIME is also independent of any specific UIMS. The
MIKE [Olsen 86] User Interface Management System
contains a Metric Collector to perform data collection.
which is then passed on to an evaluator for analysis.
However, it is only possible to collect data on applications
built with and running under MIKE. While a UMIS with a
data capture tool makes the UIMS stronger. the data
collection phase in iterative design does not need to be
tightly coupled with a specific UIMS. In the case of
CHIME, while the monitor is built in a UIMS
environment, it can be decoupled from the UIMS to operate
independently. The underlying principle here is building a
generic data capture tool that can be used for data collection
in a wide range of applications. This requires that the
monitor has knowledge about the semantics of the interface
and its interaction units. Once this knowledge is available,
it would be possible to collect data on existing applications
that were not built using any specific UIMS; it will also
not be bound to any specific metaphor, as is the case with
the UIMS approach. Furthermore, the existence of a
generic monitor instantiatable for a wide range of situations
provides a significant economy of scale by distributing the
development effort throughout a wider range of
opportunities for its utilization.

CHIME has knowledge about the interaction. The CHIME
interaction model supports interaction specification of the
two interacting agents: the human user and the machine.
These two components of the CHIME interaction model
are related by a third component, the communication
component. In an ideal interface design, the human and
machine components of the model are identical. and the
communication is a simple one-to-one mapping. However,
we are far from achieving interfaces with such powerful
designs. Meanwhile, our goal is to design the interface
(thus indirectly the system component of the model) in
order to reduce the compiexity of the communication
component,

An application interface is generated using either a UIMS
design tool, traditional software development methods. or
both. If it is generated using a UIMS design tool, it might
be possible to automatically generate an interface
specification document, which would be then read by the
monitor. If, however, no such document can be generated
automatically, some reverse engineering of the interface
would have to be performed. Therefore, CHIME is designed
to accept complex and detailed interface descriptions, such as
those generated by a UIMS, or simple and incomplete ones,
such as those that result from a possibly crude reverse
engineering process.

Another characteristic of CHIME 1is that it minimizes the
effects on the user's work. It achieves this by running a

minimal CHIME kernel in the background of the user
environment.

CHIME is independent of specific applications. interface
managers. or UIMSs. In general. a monitor should not be
integrated into the application that the user is executing.
Furthermore, integrating the monitor functionality into the
user application may be impossible or unfeasible.

CHIME acquires its knowledge from the specification of the
user and machine components made using the interaction
model. This model gives CHIME a description of the
interaction units, and allows the analyst to control the
monitoring activity using a mental framework at a high
level of abstraction.

CHIME architecture
Figure 2 depicts CHIME’s environment architecture.

The system interaction interception module (SIIM)
communicates with the interface management system (the
operating system, the window system, or the UIMS
runtime system, whichever is being used to control the
interaction in the user environment). This is the only
module of the monitor that is environment-dependent. and
has to be custom-written for each system on which CHIME
is to run. It senses user actions and application responses,
converts them into an internal environment-independent
representation, and passes them to the module that identifies
interaction units. The SIIM performs its task with minimal
disturbance of the interface.

The identifier of interaction units takes as input the
interaction atoms captured by both, the system interaction
interception module and the interface description generated
by the UIMS or by a reverse engineering process. It is
basically a parser that identifies higher-level interaction
units based on the lower-level interaction atoms. It then
passes these interaction units to the identifier of relevant
interaction units.

The identifier of relevant interaction units is controlled by
the monitor session controller, which is in turn controlled
by the experimenter. It determines the relevant units for
recording in the current experiment session, based on the
information received from the monitor session controller.
The units that are found to be relevant for the session are
then formatted giving the output of the monitoring activity.
The output can then be stored for later analysis, or fed
directly into an analyzer for real-time analysis of the
interaction.

To control the monitoring session, the experimenter uses
the experimenter's console. This console is in most cases
remote from the user workstation, and will provide the
experimenter with the monitor control panel. Through the
control panel, the experimenter can select the interaction
units to be monitored and recorded, and those that are to be
discarded. That information is passed on to the monitor

System interaction
interception module

'

|dentification of
interaction units

Monitor session
- controller

S

Experimenter front end

Interface

relevant interaction units

Identification of

description

Interface
utilization
data

Figure 2 — CHIME monitor architecture

session controlier, which in turn sends control information
to the system interaction interception module and to the
identifier of relevant interaction units.

On the experimenter console, the experimenter can also be
running some analysis tools during the data collection
process. These would enable the experimenter to have
some early real-time results of the interaction.

The CHIME architecture makes several assumptions about
the operating system underlying the monitor. It should
support concurrency, or at least some form of voluntary
yield of control from the running process (like on a
Macintosh running System 6.x or earlier). It should also
have some mechanism for interception and replication or
reporting of interaction.

APPROACH AND RESULTS

Methodology

In order to investigate the adequacy of the CHIME
assumptions and architecture, we developed a series of field
studies. The initial objective of these studies was to
identify features of human-computer interaction that should
be considered in monitoring. The ultimate goal would be
to incorporate them into a working prototype of CHIME.

We prototyped human-computer interaction monitors for
two platforms — the X Windows System and the Apple
Macintosh. With these tools, we monitored users in their
normal work on those platforms and recorded the

interaction. We also performed manual transcription of
human-computer interaction, using both expert and novice
annotators.

These studies were undertaken as empirical field
observations rather than controlled experiment in order to
minimize turnaround time as well as to emulate the field as
closely as possible. Nevertheless, two quasi-experiments
were designed and executed. In the first study. users were
asked to perform some text editing and information search
and navigation tasks on a computer. Annotators, both
novices and experts at the tasks. were asked to record every
action made by that user that they felt was relevant for the
study of the interaction, recording as much detail as
possible. The users were made aware of the fact that their
actions were being monitored by annotators.

The second study was designed to extract hints on how
users represent and translate a computer task into actions on
the computer, and how those representations change with
practice. In this quasi-experiment, users (subjects) were
asked to perform repetitive tasks on a computer. Each
session consisted of three periods of fifteen minutes each.
In each period, the users would have to solve repetitively a
task using an interface. Two tasks were available, and two
interfaces were available for each of those tasks.

Both tasks consisted of algebraic manipulation. using basic
operations at the elementary school level (addition,
subtraction and division). To complete the task, the users
would have to combine a series of operators and operands to
reach a goal. Every task presented to the users was solvable

with one to four applications of operators to operands —
although it could also be solved. using non-optimal
strategies, using longer combinations. In both tasks, every
error was recoverable, and therefore no user action could
result in an unsolvable situation. Task 1 consisted of
sequentially adding or subtracting a set of 8 numbers from a
target number, with the purpose of bringing the target
number to zero. No pair operator/operand was invalid. The
two operations were the simplest. Is is important to realize
that there was not a simple algorithm that would always

solve the problem. Task 2 had the same goal. but
allowable operators were subtraction and division.
Operations that would result in non-integers or irf negative
numbers were not allowed. In this task, one of the 8
numbers used as operands was always the number 1.
Therefore, this task had an algorithm that would always
solve the problem, although not necessarily the by
optimum number of operations: sequentially subtracting
the largest number smaller or equal to the target number.

Both interfaces were mouse driven. Figure 3 shows an
example of interface A being used for task 1. To solve that
problem using an optimal strategy, the user could select the
sequence - 34 - 34 - 20 - 5. After 15 minutes of
using on pair task/interface, one of the variables (task or
interface, i.e., syntax or semantics), were changed. After
another 15 minutes, the other variable was again changed.
Users were told to solve as many problems as possible in
each of the 15-minute sessions. After the first and last trial
of each 15-minute session, the users were asked to verbalize
their mental process.

Figure 3 — Example of a screen using interface A to solve task 2 in quasi-experiment 2

Results of the studies

The first study allowed us to identify what type of
information annotators collect during HCI sessions. We
also abserved how novice and expert annotators observe and
record different aspects of the interaction.

Novice annotators tended to record mainly two types of
actions: high-level domain specific actions (such as
“Deleted ZIP code™) and physical actions (such as “When he
needed to use both hands on the keyboard, he put his pen in
his mouth” or "He scratched his forehead when he was
trying to remember something").

Expert annotators recorded a lot more information directly
related to the interaction with the computer (e. g., "User cut
and pasted a segment” or "Selects text (click — hold down —
move"). They do that at a high level, though, and details
such as typing errors, timing information. etc.. were
seldom or never captured by the expert annotators.

In the second study, we investigated how human models and
computer interaction models relate. we analyzed whether
practice with a computer task helps users deal with
complexity, It was expected that experienced users deal
with complex situations faster and better than novice users.
The results show that:

» Well-practiced users have larger action chunks than
do beginners. This was detected by analyzing
action time intervals from the timestamps recorded
for each action. The pauses between actions for
experienced users were shorter and less frequent
than for beginners.

» Both novice and experienced users use non-optimal
strategies to solve problems. However, as users
get more practice, they are able to improve their
strategies. This seems to happen in bursts: users
will try a modification to their strategies, and if
the modification works with better results, they
start using it again. If it doesn’t work as desired,
they revert to the old strategy.

The above results led to the identification of several features
that are desirable for effective human-computer interaction
monitoring. What follows is a list of those features along
with brief justifications. We have already incorporated some
of those features into CHIME.

DISCUSSION AND IMPLICATIONS

The first study suggests that information gathered by
human annotators is extremely diverse in nature. It also
shows that not all of this information can be captured
automatically (such as "user puts the pen in his mouth”) by
the computer. This suggests that an integrated monitoring
tool should consider external factors as well as data gathered
by the automatic monitoring process. This result will lead

us to incorporate external factors into the knowledge model
of CHIME.

The second study reveals the possibility of automatically
evaluating the user level. By identifying chunks. their sizes
and timing between them, it should be possible to infer the
user’'s level of expertise. The CHIME interaction model
provides a basis for a description of the chunks. The
capability for automatic chunk identification is obtainable
from this model.

The second study also revealed that users change their
strategies as they get more practice with using the system.
In order to change their strategies, they continually
experiment with new ones. One important feature of the
monitoring process is to detect the new strategies being
tried out by the user, and to give the user instantaneous
feedback on their performance. CHIME incorporates this
facility by including graphical display of feedback and data
on the user’s screen, as well as on a remote screen.

Interaction Features

1= It should ible to monitor and record interaction

at_several levels of abstraction. This is to
accommodate the increasing complexity of the
interfaces. For example, a monitoring tool should be
able to record lexical interaction units such as mouse
and keyboard actions, or higher level units such as
commands, tasks, errors, etc.

2+ It should be possible to capture the user's model of
interaction. Communication occurs between a user and
a machine. The machine's model can be known a
priori (hardware, application and interface metaphors,
etc.), but the user's model of the interaction and the
user goals need to be captured during the interaction
session. This is indispensable in order to evaluate how
well the interface is helping the user in communicating
with the application. We realize that this task can not
be fully automated. However, automation can be used
to gather some information about the user. For
example, as some of the data collected during our
studies suggests, user expertise levels can be identified
by analyzing the timing in the chunks of interaction
{Badre 82, Smelcer 86]. Novice users chunk fewer
items of interaction together, and more experienced
users build larger chunks and execute them with shorter
pauses between chunks.

3+ It should be possible to relate user and application

models. This is the obvious feature needed to evaluate
the interaction: how the user and application models
relate and how the interface helps in the translation
process.

4+ It should be possible to identify the relevance of
different human-computer interaction events. Some

events are relevant for exploring the validity of some
hypothesized conclusion, others are totally irrelevant.

Recording every event and later analyzing their
relevance is generally not a viable option due to the
extremely large amounts of interaction information that
would be recorded unnecessarily. When the monitor is
given a description of the tasks and subtasks involved
in an interaction, and also the tasks relevant for some
analytical study, it can derive the list of elementary
tasks that need to be gathered and those that need to be
recorded for the purpose of the intended analysis. For
example, let us suppose that we are interested in
analyzing the way in which users perform the tasks of
Cut/Copy-Paste. Let us also suppose that those tasks
can be performed by selecting items from a menu of
using keyboard accelerators. If a monitor is notified by
the analyst that one is only interested in these three
commands, it should be able to derive the relevant
elementary events from the description of the interface.
In this case, the monitor would only capture and parse
the relevant events.

Data collection accuracy features

5+ Every user action. at every level. should be
monitorable and recordable in detail. Analysis tools
may analyze interaction at different levels, and therefore
interaction needs to be recorded at each level. The
monitoring technique should ensure that record have the
capability of recording details of the higher level
interaction units, gathered from the lower level units
and summarized. For example, a menu selection (as on
a Macintosh) could be performed by pressing the
mouse on the menu title in the title bar, moving the
mouse to the appropriate item, and then releasing it.
Or it could be selected by a keyboard equivalent
command. In this case, a monitoring tool should be
able to record not only that the menu item was
selected. but which mechanism was used to select it
(key or mouse) and other lower level information such
as timing, mouse position, etc.

6+ Timestamps should be attached to everv action. For
atomic actions, the event time should be recordable.
For compound actions (such as the menu item
selection using an item), timestamps should be
recorded for the beginning and end of the action, and
possibly for relevant intermediate steps.

7+ Detailed low level interaction should be recordable.
Details such as screen coordinates of user actions,
subtle mouse movements or trajectories, etc., can be
important in analyzing hesitations, and similar very
low level and detailed actions can be detected and
recorded. Collecting this data with accuracy would be
extremely hard or even impossible using exclusively
more traditional recording techniques such as human
observation or videotaping, and is an important
measure that allows for fine tuning of an interface for
optimum performance.

CONCLUSION

Knowledge-based monitoring is a technique that
incorporates several of the advantages of the other
techniques, minimizing undesirable drawbacks. It has the
potential to match or surpass every other computer-based
technique. It also has the potential for integration with non
computer-collected data. Most importantly, it can be used
with or without a UIMS, thus opening up a wide range of
opportunities for accurate interface evaluations.

CHIME implements most of the desirable characteristics of
knowledge-based monitoring. Continuation of the work in
CHIME will lead to the incorporation of yet some more
features.

The knowledge-based monitoring technique that CHIME
uses provides an increased functionality over the UIMS-
based approach. It is also possible to integrate it into
existing or future User Interface Management Systems.

PROBLEMS AND FUTURE WORK

Automated transcription techniques are not sufficient for
gathering all the usability data that is relevant for analysis.
User satisfaction assessment techniques [Bailey 83, Chin
88] should still be used to complement the information
gathered by CHIME. We intend to integrate techniques to
consider non computer-related events and conditions into the
model. This will allow or analyzers to operate on all the
information known about a specific interface.

In [Jones 90], George Robertson points out that techniques
need to be developed that allow device drivers to be defined
at a higher level of abstraction, then compiled into an
appropriate form. We stand by this point, and are in the
process of implementing a CHIME prototype to include
this feature, with or without the “smart” device drivers.

REFERENCES

[Badre 82] Badre, A.N., “Selecting and Presenting
Information Structures for Visual Presentation”,
IEEE Transactions on Systems, Man. And
Cybernetics, 12, 4 (July 1982).

[Badre 91] Badre, A.N., and Santos, P.J., “CHIME: A
Knowledge-Based Computer-Human Interaction
Monitoring Engine”, Technical report GIT-GVU-
91-06, Georgia Institute of Technology, Atlanta
(1991).

[Bailey 83] Bailey, J. E., and Pearson, S. W.,
“Development of a Tool for Measuring and
Analyzing Computer User Satisfaction”,
Management Science, 29, 5 (May 1983), pp. 530~
545.

(Good 85] Good. M., “The Use of Logging Data in the
Design of a New Text Editor”, Proceedings of the
CHI'85 Conference on Human Factors in

Computing Systems (1985), pp. 93-97.

[Gould 835] Gould. J. D., Boies. and Lewis, C. H..
“Designing for usability: Key Principles and Waht

Designers Think”, Communications of the ACM,
28-3 (1985). pp. 300-311.

[Jones 90} Jones, W., Williams, P., Robertson, G..
Joloboff, V., Conner, M., “In Search of the Ideal
Operating System for User Interfacing”,
Proceedings of the ACM SIGGRAPH Symposium
on User Interface Software and Technology
(Snowbird. Utah, USA, October 3-3, 1990),
ACM Press (1990), pages 31-35.

[Olsen 86] Olsen, D. R., “MIKE: The Menu Interaction

Kontrol Environment”, ACM Transactions on
Graphics, 5, 4 (October 86).

[Olsen 88] Olsen, D. R., and Halversen, B. W., “Interface
Usage Measurements in a User Interface
Management System”, In Proceedings of ACM
SIGGRAPH Symposium on User Interface
Software (Banff, Alberta, Canada, Oct. 17-19).
ACM Press, 1988, pp. 102-108.

[Siochi 89] Siochi, A. C., “Computer-based user interface
evaluation by analysis of repeating usage patterns
in transcripts of user sessions™, (doctoral
dissertation) Virginia Polytechnic Institute & State
University. (1989).

[Siochi 91] Siochi. A. C., and Hix, D., “A study of
computer-supported user interface evaluation using
maximal repeating parttern analysis”, Proceedings

of the CHI'91 Conference on Human Factors in
Computing Systems (May 1991), pp. 301-305.

[Smelcer 86] Smelcer, J. B.. “Expertise in Data Modeling
or What is inside the Head of the Expert Modeler”,

Proceedings of the CHI'86 Conference on Human
Factors in Computing Systems (1986).

