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Since the Handbook of Human Intelligence appeared 
in 1982, the "psychometric approach" has changed 
dramatically. Traditionally, the psychometric ap­
proach was synonymous with the factor-analytic ap­
proach. Exploratory factor analysis was applied to 
discover the number and nature of the factors that 
underlie performance on cognitive tasks. Carroll's 
(1993) three-stratum model of intellect synthesizes 
the factors supported across hundreds of studies. Al­
though the studies reported somewhat inconsistent 
factor patterns, Carroll found consistent support for 
several factors by reanalyzing their data with com­
mon methods of factor analysis. 

However, the contemporary psychometric ap­
proach differs in three major ways from the traditi­
onal psychometric approach: (1) confirmatory ap­
proaches predominate over exploratory approaches, 
(2) structural analysis of items predominates over 
structural analysis of variables, and (3) item response 
theory (IRT) models predominate over factor ana­
lytic models. Thus, in the contemporary psychome­
tric approach, confirmatory IRT models are applied 
to understand and measure individual differences. 
The intelligence construct is elaborated in confir­
matory IRT models by comparing alternative mod­
els as explaining item responses. Some confirma­
tory IRT models include parameters to estimate the 
cognitive processing demands in items. These mod­
els permit items to be selected and banked by their 
cognitive demand features and provide results rel­
evant to understanding what is measured by the 
items. Other confirmatory IRT models include pa­
rameters for person differences on the underlying 

processes, strategies, or knowledge structures. These 
models can define new types of individual differ­
ences. As will be elaborated below, parameters are 
included to measure qualitative differences in item 
responses such as relative success in various under­
lying cognitive operations, use of different strategies 
or knowledge structures, and modifiability of ability 
with intervention. 

In this chapter, we will first describe the major 
historical exploratory factor analytic theories and 
their implications for measuring and understand­
ing intelligence. Then, several IRT models will be 
elaborated. Both unidimensional and multidimen­
sional models will be presented . For each IRT model, 
we will present an overview of the model, describe 
some key applications, and present one or two elab­
orated examples to illustrate the potential of the 
model. 

FACTOR ANALYTIC APPROACHES TO 
MEASURINC AND UNDERSTANDINC 
INTELLICENCE 

Factor analysis has been the primary tool for mea­
suring and understanding intelligence for several 
decades. In this section, we begin with the historical 
foundations of measurement through factor analy­
sis. Factor analysis has not only been important for 
understanding the intelligence tests that have been 
developed but has also· provided a rationale for sev­
eral testing methods. Factor analysis remains influ­
ential in testing. 
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Exploratory Factor Analysis Methods 
General Factor Emphasis 

SPEA RMAN . Spearman (1904) proposed a two­
factor theory of intelligence in which performance 
was determined by a general factor (g), a universal 
due to a person's general intelligence, and a spe­
cific factor (s) due to a unique ability or activity 
related to a particular test. Spearman (1904) sug­
gested "all branches of intellectual activity have in 
common one fundamental function (or group of 
functions), whereas the remaining or specific ele­
ments seem in every case to be wholly different 
from that in all the others" (p. 202). Although both 
factors are present within each intellectual activity, 
thei r relative weight varies from activity to activity 
(Spearman, 1904, 1927). For example, Spearman's 
"abilities," originally defined by school subjects, 
had a greater relative g-to-s ratio for classics than for 
music study (Spearman, 1927). 

On the basis of preparatory school student per­
formance data, Spearman (1904) found an overall 
pattern of correlations among all of the various in­
tellectual activities, indicating uniformity. The gen­
eral factor is responsible for two tests being corre­
lated. However, Spearman's two-factor theory holds 
only if a test battery includes only one of each type 
of test. Spearman (1927) prescribed this universal­
ity of g for application to the measurement of in­
dividua l differences. For example, by measuring an 
individual's abilities on a series of tests, g can be de­
termined, explaining much information about some 
of the abilities, and some about all abilities. Supple­
mental performance variation would be explained 
by s. In addition, Spearman's (1927) suggestion for 
test design was governed by the extent to which the 
test measures an individual's g or s. 

TET R A D DI FFER ENCES. Spearman's method of 
tetrad differences was the result of his observation 
that the true difference between correlation prod­
ucts of different abilities equals zero. The form of 
the equation is as follows: 

For example, suppose the following four tests, a = 
French; b = English; c = Music; d = Math, and their 
correlations are as follows: r ab = .750; r cd = .500; 
r ac = .600; rbd = .625. Of course, the true difference 

and the observed difference are not always the 
same owing to sampling error. If tests are correlated 
through the specific factors, for example for two 
memorizing symbols tests, then the tetrad equation 
becomes invalid. 

The meaning of g for Spearman was "objective" 
because of this tetrad equation. In fact, Spearman 
(1927) stated, "Eventually, we mayor may not find 
reason to conclude that g measures something that 
can appropriately be called 'intelligence.' Such a 
conclusion, however, would still never be the defini­
tion of g, but only a 'statement about' it" (p. 76). He 
originally proposed the psychological meaning of g 
to be mental energy, concentration, or will power. 
For the physiological meaning, he hypothesized 
that neural plasticity or neural energy was important 
for g (Spearman, 1927). Later, however, Spearman 
included "agreement and difference" in his psycho­
logical characterization of g. For example, the pres­
ence of a spatial factor and a g factor together also 
implies that the absence of a spatial factor entails the 
absence of g (Spearman & Jones, 1950). 

EV ID ENCE FO R g . Spearman (1927) presented a 
variety of evidence concerning g in psychological 
tests that embody different relationships. Summar­
izing the correlationa l patterns of tests with tetrad 
differences, Spearman concluded that g exists in 
all types of relationships to the same degree and 
that cases in which "group factors" contribute to 
the correlations between tests are rare. However, a 
closer examination of Spearman's data reveals that 
the patterns of correlations did not support the two­
·factor theory so strongly as Spearman's conclusions 
would indicate. Although Spearman elaborated 10 
types of relationships in tests, which he categorized 
as ideal types (evidence, likeness, and conjunction) 
and rea l types (space-time, attribution, identity, 
constitution, causality, and psychological), evi­
dence was obtained for only 5 relationships. Four 
of the five types were moderately saturated with 
g comparable to factor loading magnitudes in the 
.70s. The remaining type of relationship (time) only 
weakly supported g with a saturation comparable 
to a factor loading in the .30s. Further, for only one 
type of relationship did the evidence clearly support 
only one common factor. Weak evidence for group 
factors was obtained for two types of relationships, 
whereas strong evidence was obtained for two 
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other types of relationships. The inconsistencies in 
Spearman's own data on the two-factor theory fore­
shadowed what was to come, namely, the identifi­
cation of significant group factors. 

SPEARMAN'S COGNITIVE THEORY. The general 
factor g in Spearman's psychometric theory is not 
really an explanatory concept. It is simply a de­
scription given to the central factor in a battery of 
tests or item types. Spearman (1923) also proposed 
a cognitive theory to explain intelligent thought. 
The analogy item played a central role in Spearman's 
cognitive theory, and defined g (i.e., it was highly 
saturated with g). Spearman postulated three quali­
tative principles of cognition to account for intelli­
gent behavior, which he called " noegenetic" think­
ing. Spearman regarded the analogy as the paradigm 
of noegenetic thinking because solving analogies de­
pends on all three principles. 

Consider first the three principles as elaborated 
by Spearman (1923). The first principle is apprehen­
sion of experience. As explained by Spearman (1923, 
p. 48), "Any lived experience tends to evoke imme­
diately a knowing of its direct attributes and its ex­
periences." Stimuli are meaningful for persons when 
they have relevant experiences or knowledge of re­
lated attributes. 

The second principle is the eduction of rela­
tions. According to Spearman (1923, p. 63), "The 
presenting of two or more characters tends to 
evoke immediately a knowing of relation between 
them." The second principle involves inference. 
The third principle is the eduction of correlates. 
"The presenting of any character together with a 
relation tends to evoke immediately a knowing of 
the correlative character" (Spearman, 1923, p. 91). 
That is, given a new stimulus and a re-
lationship, a new stimulus that fulfills 
the relationship can be anticipated. 

experience. The second and third principles con­
cern the way in which objects, characters, or funda­
ment in the environment are cognitively organized 
and processed. The second principle, the eduction 
of relations, is similar to Sternberg'S (1977) concept 
of inference in which a relationship is inferred bet­
ween pairs of stimuli. The third principle, the educ­
tion of correlates, is similar to Sternberg'S (1977) 
application in which a new stimulus is anticipated 
to fulfill a relationship that is applied to a stimulus. 

To understand how the two processes of educ­
tion are presented in prototypic form in the analogy 
item, it is necessary to compare the theory with the 
structure of the analogy item. Figure 19.1 presents 
a general schematization of Spearman 's second and 
third principles of cognition along with an analogy 
item. In the part of the drawing labeled Relation­
ship I, the boxes represent two fundaments, which 
are given. The left side of the analogy contains two 
fundaments from which some relationship can be 
educed. The educed relationship is represented by 
the circle above the fundament. The right side of the 
drawing, Relationship 2, represents the eduction of 
correlates in which one fundament and the relation­
ship are given. Now, for the analogy item below, it 
can be seen that the only part given on the right side 
is the fundament. Solving the item then depends on 
using the relationship educed on the left to educe 
the correlate on the right side. 

If Spearman's (1923) theory is to account for a 
broad range of behavior, it should be apparent that 
the fundaments should incorporate a broad range 
of phenomena. Spearman indicated that the fun­
daments are not restricted to simple elements. The 
relationship between two fundaments may define 
a higher order fundament which, in turn, can be 

FIGURE 19.1. spearman's cognitive theory applied to verbal 
analogies. 

Sternberg'S (1977) theory expanded 
Spearman's three principles and con­
nected them to contemporary infor­
mation-processing theory. The first 
principle is simply an assurance that 
organisms are able to understand their 
environment and act intelligently 
within it. The contemporary cogni­
tive psychology process of encoding 
is similar to the apprehension of 

Relationship I Relationsh ip 2 
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related to another higher order fundament. The 
relationship between higher order fundaments, so 
derived, would be a relationship of relationships. 
Neither the number of levels from which the funda­
ments are removed from actual objects nor the range 
of objects has any limits, according to Spearman. 

Spearman's cognitive theory gives the g concept 
explanatory power. Of course, the status of Spear­
man's cognitive theory is questionable because it is 
quite old and relatively untestable with the methods 
available to Spearman. Sternberg's (1977) contem­
porary theory of information processing on analo­
gies incorporated many principles similar to Spear­
man's cognitive theory. Sternberg's (1977) theory 
was supported by modern methods of mathemati­
cal modeling (see also Sternberg, 1985). 

Multiple Factor Emphasis 

Other researchers disagreed with Spearman's the­
ory and method. For example, Holzinger and his col­
leagues (Holzinger & Swineford, 1939; Holzinger & 
Harman, 1941) found conditions in which the two­
factor theory was not applicable, namely, bifactor 
situations, which they described as both general and 
secondary group factors necessary for reproducing 
correlations in complex sets of variables. Others, 
such as Hotelling (1933) and Kelley (1935) empha­
sized different methods for extracting factors, such 
as principal components analysis, in which the first 
axis has the best possible fit to the entire matrix of 
scores, and the second axis has the next possible fit, 
lying perpendicular to the first axis. 

KELLY. Kelly (1928), who was interested in the . 
method and content of group factors, carefully 
analyzed test performance in several age groups. 
Kelly thoroughly examined test pair bonds to deter­
mine their shared nature and to build factors un­
contaminated by other factors in order to obtain 
independent mental trait factors. In seventh-grade, 
third-grade, and kindergarten populations, Kelly 
identified verbal facility, number facility, memory, 
spatial facility, and interest factors, and he identified 
general and speed factors for the seventh-grade 
population. Kelly (1928) defined intelligent behav­
ior as "largely the regulation of impulses and the 
co-operation between adaptability and persistence, 
while intellect may involve a more abstract analyti­
cal capacity besides" (p. 223). 

THURSTONE. Thurstone (1938) proposed a the­
ory of primary mental abilities in which 9 inde­
pendent factors were identified by examining 250 
select college students on 56 tests: memory, num­
ber, verbal comprehension, induction, deduction, 
arithmetic reasoning, word fluency, space, and 
perceptual speed. Later, Thurstone (1941) examined 
high school students and found the same factors 
present. In another sample of 700 eighth-grade chil­
dren, Thurstone (1941) found most of the original 
factors present, although the factors were correlated 
in this young age group. In addition, Thurstone 
believed the obtained second-order genera l factor 
was "probably the general factor which Spearman 
has so long defended" (Thurstone, 1941, p. lll). 

In addition, verbal comprehension, reasoning, and 
induction factors had the highest second-order 
general factor loadings. 

GUILFORD. Guilford's structure of intellect model 
(Guilford, 1967, 1977) is a three-facet model that ex­
plains mental operations, stimulus content, and re­
sponse forms or products. The model contains up 
to 150 different abilities. Guilford (1967) rejected a 
general factor. Thirteen studies from an aptitudes 
project on young adults showed about 17% of all 
test variable correlations being at or near zero. 

Guilford (1948) valued factor analysis in develop­
ing tests for personnel selection and classification 
because it can result in minimally correlated scores 
that represent different contributors for predicting 
success. Additionally, Guilford (1948) believed that 
factor analysis should be app lied in a planned ex­
perimental investigation rather than as an after­
thought for a set of convenient intercorrelations. 
Guilford (1985) typically extracted a larger number 
of factors than indicated by the SCREE criterion 
to make better use of information and to avoid 
ignoring a potential factor. 

HUMPHREYS. Humphreys' (1985) theory of gen­
eral intelligence was broadly defined. His tests in­
cluded heterogeneous item types from different 
varying dimensions. He believed that heterogeneous 
items preserved predictive validity over reliability. 
Especially appealing to Humphreys for measuring 
intelligence were items that shared a particular at­
tribute, such as content, but loaded on different fac­
tors. Humphreys' goal was to include one dominant 
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dimension rather than one purely defined, homo­
geneous dimension. Humphreys' theory of general 
intelligence measurement included several measure­
ment principles, as follows: 

1. Items can be added together to form a total score if 
they are positively correlated. 

2. Items should be as heterogeneous as possible within 
certain defined parameters. 

3. A test should be broadly defined without losing its 
measurement purpose. 

4. Psychometric analyses should be applied to check 
assumptions but not to make decisions in test con­
struction. 

S. The item homogeneity criterion should be used spar­
ingly; tests can be rejected for either too much or too 
little homogeneity. 

Humphreys (1952) believed that abilities should 
be organized in a hierarchical structure. For exam­
ple, a set of tests measuring mechanical information 
about tools would be organized into three different 
levels: (1) narrow tool group factors, (2) broad me­
chanical area factors, and (3) a general mechanical 
information factor. Using orthogonal factor trans­
formation techniques to create a more parsimonious 
matrix allows one to interpret factors at all levels. 
However, Humphreys suggested that interpretation 
be limited to the broad and general levels. 

VERNON AND BU RT. Vernon (1950) defined abi­
lity as g at one level of a hierarchy and then two 
broad abilities at the next level: v:ed (verbal­
educational) and k:m (practical-mechanical). Under 
v:eri, verbal and numerical specific abilities are 
factored, and under k:m, spatial and mechanical 
abilit ies are factored. Vernon (1961) cautioned that 
these group factors are infinitely divisible, depend­
ing upon the level of detail at which the analysis is 
performed. A similar hierarchical structure was also 
proposed by Burt (1949). 

CATTELL AND HO RN . Cattell and Horn (Cattell, 
1963; Horn & Cattell, 1966) organized abilities ac­
cording to a hierarchical structure as well with g 
divided into major factors, fluid intelligence (gf) 
and crystallized intelligence (gc ). Fluid intelligen­
ce was hypothesized to be more genetically influ­
enced and based on physiological aspects of an in­
dividual. Crystallized intelligence was hypothesized 

to be experientially determined or acculturated. 
Tests of fluid intelligence include response to nov­
elty, problem solving, and figural reasoning; tests of 
crystallized intelligence include, most prominently, 
knowledge-based tests such as vocabulary and math­
ematical tests. 

CA RROLL. Carroll's three-stratum theory of in­
telligence (Carroll, 1993) was developed through 
surveying and factor analyzing over 460 prominent 
datasets in the literature. The stratum theory is also 
hierarchical. Stratum 1 comprises narrow factors, 
which are first-order factors to explain the corre­
lation matrix of test items. Stratum 2 comprises 
broad factors that explain the correlations of the 
Stratum 1 factors. Stratum 3 is a general factor g, 
which explains the correlations of the Stratum 2 
factors. Carroll's theory extends the theories of 
Thurstone (1938), Guilford (1967), and Horn and 
Cattell (1967) . However, the three-stratum model 
also includes several narrowly defined abilities, 
such as phonetic coding and perceptual illusions, 
that typically are not included in such models. 

The 1921 Symposium on Intelligence 
and Its Measurement 

After Spearman introduced his two-factor theory 
and others followed with alternatives, a movement 
for discussion of conceptions of intelligence oc­
curred. Seventeen leading researchers gathered in 
1921 to discuss the definition of intelligence and 
its measurement. Most investigators disavowed the 
notion of general intelligence and desired that its 
definition be expanded. It should be noted that 
Spearman, who was the primary advocate of general 
intelligence, did not attend the conference. 

Among the most outstanding comments made by 
the investigators were R. L. Thorndike's statement: 
"The value of a test score is its value in prophesying 
how well a person will do in other intellectual tasks" 
(1921 symposium, p. 125). Specifically, Thorndike 
called for using zero-order and partial correlations 
of simple and analytical processes with the criterion 
task to understand their explanatory contributions 
better. 

Terman's view of intelligence involved grasping 
the significance of adaptive situations and that" An 
individual is intelligent in proportion as he is able 
to carryon abstract thinking" (1921 sympOSium, 
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p. 128). Terman critiqued the notion of a singular 
type of test measuring a mental function with the 
following comments: " . . . a test does not, at all 
points, bring the same kind of mental activities 
into play. Success in the easier part of the test may 
depend chiefly on the subject's ability to remember 
what he is told to do; see likeness and differences on 
the representative level, or even to a considerable 
extent on eye-hand coordination in the use of a 
pencil" (1921 sympOSium, p. 131). Hence, Terman 
viewed intelligence as multifaceted and operating 
jointly at different levels. 

Colvin suggested that "An individual possesses 
intelligence in so far as he has learned, or can 
learn to adjust himself to his envi.ronment" (1921 
symposium, p. 136). He recommended that test­
ing proceed by focusing on ana lYSiS, synthesis, 
and attention span and disregarding speed. In con­
trast, Thurstone's definition of intelligence con­
tained three components: (a) inhibitive capacity, 
(b) analytical capacity, and (c) perseverance. In­
hibitive capacity involves substituting instinctive, 
environmental, and social pressure with conceptual 
thinking. Analytical capacity involves inhibiting in­
stinctive pressure to ensure response flexibility. Per­
severance involves volitional energy. 

Perhaps most striking is the diversity of defini­
tions and qualities of intelligence noted by these re­
searchers. A much more recent survey of researchers 
in intelligence (Sternberg & Detterman, 1986) found 
similar divergence of views and many similar beliefs. 
Overall, the researchers agreed upon continued in­
vestigations for the improvement of measurement 
and expansion of knowledge about intelligence. It 
is noteworthy that decades of research have not led 
to convergence of theoretical views, however. 

Confirmatory Factor Analysis 

Joreskog and Sorbom's confirmatory factor ana­
lytic work has made an enormous impact on the 
field of psychometrics (Joreskog, 1969; Joreskog & 
Sorbom, 1989). Their LISREL (Joreskog & Sorbom, 
1989) methods have allowed researchers to inves­
tigate hypothesized models in relation to sam­
ple data and alternatives that explain the factor 
structure of test intercorrelations and underlying 
processes. Confirmatory factor analysis computer 
programs are growing in number and becom­
ing more widely available, including EQS (Bentler, 

1985), AMOS (Arbuckle, 1993), and Mx (Neale, 
1994), allowing for widespread use among social 
science investigators, including those interested in 
measuring intelligence constructs. 

Confirmatory factor analysis is now applied 
widely to study intelligence. In fact, it is usually 
preferred over exploratory factor analysis owing to 
the massive literature on theoretical factor struc­
ture. To illustrate the advantages of confirmatory 
factor analYSiS, consider Kyllonen and Christal's 
(1990) study of the relationship of general intelli­
gence (reasoning) to working memory capacity. In 
an effort to understand processing, content, and 
methodological aspects of reasoning and working 
memory for delineating their relationship, Kyllonen 
and Christal (1990) examined multiple tests de­
scribing these constructs in four large-sample stud­
ies. The authors carefully considered experimen­
tal and correlational disciplines for defining factors 
and included speed and knowledge factors in ad­
dition to working memory and reasoning. In addi­
tion, within reasoning and working memory, they 
analyzed domain-specific and domain-independent 
aspects of tests for describing the nature of the 
factors . 

For Study I , working memory and reasoning fac­
tor correlations ranged from .79 to .93 across fit­
ted models. Working memory was found to be gen­
eral in nature, for both linguistic and quantitative 
processes of working memory were correlated. For 
Study 2, testing modalities and domains were varied. 
The reasoning factor's tests were broadened to elim­
inate confounding with working memory content, 
·and computer-administered tests were given within 
both factors. In addition, two reasoning factors were 
defined to understand method variance better. Fit 
analyses indicated better fit with the two-factor rea­
soning model over the one-factor reasoning model. 
Reasoning was found to be more highly related to 
knowledge, and working memory with speed. For 
Study 3, a more broadly defined reasoning factor was 
defined by including ETS Kit tests (Ekstrom et al., 
1976), and similar results were found. For Study 4, 
the reasoning factor was defined more generally to 
detect any changes in its correlation with working 
memory. Across all four studies, the correlations be­
tween working memory and reasoning were .82, 
.88, .80, and .82, respective ly, suggesting that dif­
ferences in working memory capacity are strongly 
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related to executive processes regardless of variation 
in test content and administration method. 

The obvious strengths in using confirmatory fac­
tor analysis in Kyllonen and Christal's (1990) ap­
proach are (1) multiple tests defining the constructs 
can be fitted and compared using hypothesized and 
alternative models, (2) a variety of test content 
within constructs can be used to test domain speci­
ficity, and (3) method variance can be better un­
derstood by using different types of administration 
techniques. The major weakness is that constructs 
are clearly defined between rather than within 
factors . 

Implications for Measuring and 
understanding Intelligence 

The factor analytic approaches have had major 
impact on how intelligence has been measured 
and understood. We will first elaborate impact on 
measurement and then elaborate impact on under­
standing. 

Measuring Intelligence 

either Spearman's (1927) psychometric the­
ory nor Spearman's (1923) cognitive theory was 
uniquely associated with a test of intelligence. A 
single-factor test, which includes only a single item 
type that is highly saturated with g, is most consis­
tent with both Spearman's psychometric theory and 
cognitive theory. Given the central role of analogies 
in both theories, one wou ld have expected an anal­
ogy test to be developed directly from Spearman's 
theories. Surprisingly, however, the single factor test 
that is most closely associated with Spearman con­
sists of matrix problems. John Raven, Spearman's 
student, developed a matrix completion test that re­
flects Spearman's principles of eduction of relation 
and eduction of correlates. Raven's matrix problems 
(see Raven, 1956) consisted of a three-by-three 
array of complex figures that varied systematically 
across the rows and columns. The last element was 
missing. To find the missing element, relationships 
among elements had to be educed, and then a corre­
late to complete the missing entry had to be educed. 
Spearman is reported to have favored matrix prob­
lems for educing relationships, and he had huge 
displays of matrix problems in his office. Tests with 
Raven's matrices have been used cross-culturally 
for several decades to measure general reasoning. 

The Raven's Progressive Matrices Tests have recently 
been updated and remain an important measure of 
intelligence (Raven, J., Raven, J. c., & Court, 1995). 

However, a genera l intelligence test, with mixed 
item types, is compatible with Spearman's two­
factor theory as well. Because g was postulated to 
be the only source of correlations between distinct 
types of items, the dimension measured from a 
mixed test would be g. The influence of specific fac­
tors, balanced over item types, would essentially be 
cancelled. According to Spearman's view, a test of 
heterogeneous items, with varying saturations with 
g, would be inefficient but would still measure g. 
However, Humphreys'views about item heterogene­
ity would be well represented by a test of mixed­
item types. In any case, many intelligence tests 
employ mixed-item types. Even the first success­
ful intelligence test, Binet's scales of intelligence, 
is compatible with these views. The current revi­
sion of the Stanford-Binet still renders a global 
score from mixed-item types (Thorndike, Hagen, & 
Sattler, 1986). Similarly, many contemporary intel­
ligence tests, such as the Wechsler scales (WAIS-R; 
Wechsler, 1981; WISC-III; Wechsler, 1991) continue 
to provide an overa ll index of intelligence based on 
mixed-item types. 

In contrast, several tests have been directly associ­
ated with the multiple factor theories. For example, 
the Primary Mental Abilities Test (Thurstone & 
Thurstone, 1941) resulted directly from Thurstone's 
application of multiple factor analysis. More re­
cently, the Schaie-Thurstone Adult Mental Abilities 
Test (Schaie, 1985) has updated the original Primary 
Mental Abilities Test. Similarly, Guilford (1967) de­
veloped a battery of tests to represent factors in his 
theory. In other cases, tests that were developed later 
were inspired by factor theories. Examples of multi­
ple aptitude tests of separate abilities include the ETS 
Kit of Factor-Referenced Cognitive Tests (Ekstrom, 
French, Harman, & Dermen, 1976), the Differential 
Aptitudes Test (Bennett, Seashore, & Wesman, 
1984), and the Armed Services Vocational Aptitude 
Battery (Moreno, Wetzel, McBride, & Weiss, 1984). 

Many contemporary intelligence tests have been 
influenced by the hierarchical theories of intellect. 
Scores at different levels are routinely reported in 
contemporary tests. For example, the Kaufman Ado­
lescent and Adult Intelligence Test (Kaufman & 
Kaufman, 1993), the Woodcock-Johnson Tests of 
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Cognitive Ability (Woodcock & Johnson, 1989) and 
the Differential Ability Scales (Elliott, 1990) provide 
scores for fluid and crystallized intelligence. 

Both exploratory and confirmatory factor analy­
sis are important in determining the scores reported 
from inte lligence tests with mixed-item types. For 
example, on the Differential Ability Scales (Elliott, 
1990), the actual structure of the abilities to be mea­
sured at various ages was determined by confirma­
tory factor analysis . 

understanding Intel ligence 

Factor theories have also had an impact on how 
intelligence is understood. Factors are derived from 
the similarity of persons' responses to items or sub­
tests. Items that are responded to in the same way 
load on the same factor or factors . The factor ana­
lytic method identifies factors that summarize pat­
terns of correlations. The factors are often inter­
preted as latent variables that underlie test or item 
performance. The nature of the dimension typically 
is determined by an inspection of the items that load 
on it. That is, the dimension is interpreted by com­
paring features shared by the items. 

For a single-factor theory, such as postulated by 
Spearman (1927), item features are quite diverse be­
cause all cognitive tasks depend on g to some ex­
tent. Thus, the nature of g must be determined from 
other considerations. The most prevalent approach 
has been to correlate measures of g with external 
variables such as group membership, other tests, cri­
terion variables, and so forth to bui ld a nomolog­
ical network according to Cronbach and Meehl's 
concept of construct validity. Thus, the theoreti­
cal meaning of g depends on its empirical relat ion­
ships. Another approach is to develop a theory about 
the item types that load highly on g. For exam­
ple, Spearman (1923) postu lated processing mech­
anisms to explain performance on verbal analo­
gies, an item type that was highly saturated with 
g. The latter approach, termed the construct repre­
sentation aspect of construct validity (Embretson, 
1983), has been applied effectively only in the last 
two decades (e .g., Sternberg, 1977). Further, the pro­
cessing mechanisms underlying the items that ap­
pear on existing tests have rarely been examined 
empirically. 

For multiple factor theories, items or subtests that 
load on the same factor often share obvious fea-

tures such as verbal comprehension or spatial visu­
alization. These shared features give rise to inter­
pretations. However, the shared features are often 
quite global so that further understanding must be 
provided from outside considerations like under­
standing g. The most prevalent approach has been 
to elaborate empirical re lationships with other vari­
ables. Confirmatory factor analysis (e.g., Kyllonen & 
Christal, 1990), along with structural equation mod­
eling, has been particularly effective in expanding 
nomological networks for multiple factors. How­
ever, the mechanisms underlying item performance 
are not necessarily elaborated by empirical correlates 
with other variables. Unless the other variables rep­
resent theoretically singular dimensions, it is diffi­
cult to pinpoint the source of the correlation. 

ITEM RESPONSE THEORY MODELS 
FOR MEASURING AND UNDERSTANDING 
INTELLIGENCE 

Both exploratory and confirmatory IRT models are 
available to measure and understand intelligence. 
The exploratory models were developed earlier and 
have been applied more extensively. Unidimen­
sional and multidimensional exploratory IRT mod­
els have been app lied. We will begin by p resent­
ing exploratory models. Although the exploratory 
IRT models have substantial practical advantages, 
applying them usually results in measuring aspects 
of intelligence that are similar to the aspects de­
rived from the factor analytiC approaches. Yet, it is 
valuable to elaborate these models for two reasons: 

. (1) IRT models and their many properties, are unfa­
miliar to many psychologists and (2) the advantages 
of the confirmatory models depend directly on the 
properties of IRT models. 

Unidimensional Item Response 
Theory Models 

Item response theory is rapidly replacing classi­
cal test theory as the psychometric basis for testing 
and has many theoretical and practical advantages 
over classical test theory. The exploratory models 
mentioned below have become quite routine in 
testing. Some typical models and some elaborated 
applications will be discussed to illustrate some 
properties. More extended treatments are available 
in textbooks (see Embretson & Reise, in press; 
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Hambleton, Swaminathan, & Rogers, 1989). The ex­
ploratory models do not permit direct incorporation 
of theory into the estimates that are obtained. The 
confirmatory IRT models, however, were designed 
to incorporate theory explicitly in the measurement 
process. 

Exploratory IRT Models 
Some Logistic IRT Models 

[n IRT, persons are measured in the context of a 
model of the item response process. IRT models are 
mathematical models of the responses of persons to 
particular tasks or items. Thus, ability estimates de­
pend not only on persons' responses but also on the 
properties of the items. 

IRT models contain parameters to represent the 
characteristics of items and persons. The probabil­
ity that a person solves a particular item depends 
jointly on ability level and on the item character­
istics. In typical IRT models, ability level and item 
difficulty combine additively to produce the prob­
ability that the item is endorsed or passed. Many 
IRT models are based on the logistic distribution in 
which the parameters are exponents. For example, 
the Rasch (1960) model predicts item success from 
the simple difference between the item's difficulty hi 
and the person's ability (}j as follows: 

P(Xi = 1 1 (), hi) = exp((}j - hi) 
} } 1 + exp((}j - hi) 

(19.1) 

Abilities and item difficulties that are estimated from 
Equation 19.1 are similar in magnitude to z scores. 
High values are assigned to high abilities and diffi­
cult items. 

More complex unidimensional IRT models add 
parameters to reflect additional item properties. 
Items, for example, may differ in how well they dis­
criminate between levels of ability and in their vul­
nerability to guessing. Thus, the simple model in 
Equation 19.1 can be expanded to include item dis­
crimination ai and guessing Ci as follows: 

(19.2) 

Notice that the impact of the difference between the 
person's ability and the item's difficulty is propor­
tional to item discrimination, which is the multi-

plier ai in Equation 19.2. Notice also that the guess­
ing parameter Ci prevents the response probability 
from falling to zero, even for the lowest ability levels. 

Meaning of the parameters 

Three types of meanings for the parameters es­
timated from Equation 19.1 or Equation 19.2 may 
be illustrated: (1) the impact of ability on perfor­
mance, (2) the impact of item difficulty, and (3) con­
jOint scaling of persons and items. These meanings 
are essential to the advantages of IRT over classical 
test theory. In the examples below, a 30-item test 
of fluid ability, the Abstract Reasoning Test (ART; 
Embretson, 1995), was calibrated with the Rasch 
model (i.e., Equation 19.1) for a sample of 818 young 
adults. 

MEANING OF AB I LITY FO R PER FO R MANCE. 

The meaning of a person's ability for item responses 
is easily shown by person characteristics curves (pees). 
Suppose that three persons are selected from the 
sample with abilities of - 1.0, .00, and 1.0 (similar 
in magnitude to z scores) , respectively. By inserting 
item difficu lties at various levels in Equation 19.1, 
a probability for solving each item may be calcu­
lated. Figure 19.2 shows the pees for the three per­
sons. Item difficulty is represented on the abscissa. 
Item solving probability is represented on the or­
dinate. The point of inflection occurs at the prob­
ability of .50, which is shown by a reference line 
from the ordinate axis on Figure 19.2. The item dif­
ficulty for the point of inflection is analogous to 

FIGURE 19.2. Person characteristics curves. 
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a threshold value. Like a psychophysical threshold, 
items at a threshold are as likely to be passed as to 
be failed. 

Several meanings for an ability level are shown 
in Figure 19.2. First, items at the person's thresh­
old may be identified. If the difference between abil­
ity and item difficulty is zero, the probability of 
passing is .50. Three reference lines through the ab­
scissa at the item values that correspond to the three 
abilities, - 1.00, .00, and 1.00, are shown in Fig­
ure 19.2. Notice that the reference lines intersect the 
line through a probability of .50 differently for each 
PCe. For the PCC at the ability of - 1.00, for exam­
ple, the reference line through the ordinate proba­
bility of .50 crosses the reference line from the item 
difficulty at -1.00. Thus, one meaning for ability is 
the scale value of items at the person's threshold. 
Second, diagnostic information about the person's 
relative success on other items may readily be ob­
tained. If a person's ability exceeds item difficulty, 
then the difference is positive and Equation 19.1 
predicts a probability of success greater than .50. 
Conversely, if the person's ability falls below item 
difficulty, then the probability of passing is less than 
.50. For Person 2, for example, items with difficulties 
less than .00 are relatively easy, whereas items with 
difficulties greater than .00 are harder. 

Of course, the actual response of the persons to 
the 30 ART items is known. In what ways do PCCs 
provide additional information? If the IRT model fits 
the data, the advantages of the PCC for diagnosing 
performance include: (1) more detailed descriptions 
of performance than actual item responses because 
the latter has only two values, pass or fail; (2) more 
accurate description of performance because error 
factors may result in the person's actually failing an 
easy item and passing a hard item; (3) predictions for 
items that the person has not been presented, if their 
item difficulties are known; and (4) possible detec­
tion of aberrant response patterns because fit of the 
person to the model can be checked by comparing 
actual responses to predictions. 

ITEM CHARACTERISTICS CURVES. Diagnostic 
information about items also can be given by Equa­
tion 19.1 predictions. An item characteristics curve 
(ICC) regresses item solving probabilities on abil­
ity level. Figure 19.3 shows ICCs for three ART 
items from Table 19.1. Like the PCCs, the ICCs 
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are S-shaped. In the middle of the curve, large 
changes in item-solving probability are observed for 
small ability changes, whereas at the extremes, item­
solving probabilities change very slowly with ability 
changes. 

The three ICCs in Figure 19.3 have the same 
shape but differ in location. Location is indicated 
by item difficulty; it is the inflection point at which 
the item-solving probability is .50. Like the PCCs, 
location is directly linked to ability level. For ex­
ample, the ability level that has a probability of 
.50 for solving Item 1 is - 1.00, which is its item 
difficulty. 

In Figure 19.3, all items have the same discrimi­
nation and a lower asymptote of zero. If the three­
parameter logistic model in Equation 19.2 had been 
applied to the ART data, items would have differing 
slopes (item discrimination) and a nonzero lower 
asymptote (due to guessing) . 

CONJOINT SCALING. Conjoint scaling means 
that item difficulty and person ability are placed on 
a common scale. Figure 19.4 presents a joint fre­
quency distribution of item difficulty and ability on 
the ART. Notice how items are located on the same 
scale as persons. Further, the distributions may be 
compared to determine if the test is appropriately 
targeted to the sample. In Figure 19.4, item diffi­
culties have the highest frequency near the mid­
dle of the ability distribution; thus, most items are 
appropriate for most persons. However, Figure 19.4 
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Person-Item Frequency Distribution 
(set to 25 Groups with Interval Length of 0.320) 

Person 
Frequency 

Item 
Frequency 

150 

-4 -3 -2 -1 

also shows a noticeable lack of difficult items and 
many persons with high abilities . Thus, more diffi­
cult items are needed to measure these persons op­
timally. 

ADVANTAGES. The theoretical advantages of IRT 
models include the following: 

1. Justifiable interval or ratio-level scaling of persons. 
2. Population-invariant item calibrations. 
3. Item-invariant meaning for ability. 
4. Item-referenced meaning for ability levels. 
S. Superior capability for handling missing data (e.g., 

persons do not receive all the same items). 
6. Standard errors of measurement that reflect the ap­

propriateness of items for the various ability levels. 

Each of these advantages will be elaborated in turn. 

First, conjOint scaling means that persons and 
items are located on the same continuum, as shown 
in Figure 19.4. The same increase in item prob­
abilities results from either increasing ability or 
decreasing item difficulty. Andrich (1988) pOinted 
out that the conjOint additivity criterion for fun­
damental measurement is met directly by success­
ful scaling with the Rasch model. Thus, interval-

o 2 3 4 

Parameter Estimate 

FIGURE 19.4. ConjOint distributions of persons and items. 

level scaling can be justified by fitting the Rasch. 
In contrast, classical test theory can be justified 
as interval-level scaling under only limited condi­
tions (see Embretson, 1996). A practical advantage 
that derives from interval-level scaling is measuring 
individual change to reflect treatment or develop­
mental effects. When interval level scaling is not 
obtained, as is true for tests developed under clas­
sical test theory, change scores have paradoxical 
reliabilities, spurious correlations with initial scores, 
and nonmonotonic relationships to true change 
(see Bereiter, 1963). Failing to achieve interval scal­
ing also influences means and variances, which 
will lead to biased estimates of effects and their 
significance (see Embretson, 1995; Maxwell & 
Delaney, 1985). Second, population-invariant item 
calibrations mean that item properties are unbi­
ased by the population ability distribution. Be­
cause ability levels are included in the model, 
item parameter estimates are implicitly controlled 
for the abilities of the calibration sample. Very 
high ability or very low ability samples will yield 
the same item calibrations (see Hambleton et aI., 
1991). 
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Third, abilities have item-invariant meaning in 
item response theory. The PCCs show that the 
meaning of ability for performance applies to any 
calibrated item. Further, it can be readily shown that 
ability differences have invariant implications for 
item performance differences, regardless of the spe­
cific item (Le., for the Rasch model). Andrich (1988) 
elaborated this principle. Fourth, item-referenced 
meaning is possible because ability level may be ref­
erenced directly to the items, as shown by the PCCs 
above. DiagnostiC feedback may be given about an 
ability by direct reference to the items that persons 
at an ability level find hard or easy. Further, it is of­
ten revealing to examine the properties of items that 
fall at the threshold. 

Fifth, handling missing data is a very significant 
practical advantage of item response theory. In fact, 
data may be so sparse that two persons do not even 
receive any common items. Missing data handling 
capabilities result from the item-invariant meaning 
of ability. Ability estimates are readily comparable 
over different item sets, such as from different test 
forms or from computerized adaptive testing. Be­
cause item parameters are included in the model, 
person ability level estimates are implicitly con­
trolled for the properties of the items that were ad­
ministered. Sixth, the standard errors of measure­
ment reflect the appropriateness of the items for an 
individual. The information provided by an item for 
an ability depends mainly on probability of passing. 
The smallest standard error of measurement is ob­
tained when many items are near a person's thresh­
old level. Standard errors are also useful in select­
ing items for optimal precision for a person or a 
population. 

confirmatory IRT Models 

A major advantage of IRT, as shown in the preced­
ing section, is item-referenced meaning for ability. 
However, the exploratory IRT models do not elabo­
rate the nature of the items that correspond to var­
ious ability levels. Most ability test items are com­
plex problem-solving tasks that involve multiple 
processing stages. The unidimensional exploratory 
IRT model parameters will reflect a confounded 
composite of these influences, thus yielding param­
eters with unclear construct representation. Con­
sequently, "enhancing" ability interpretations by 

showing representative items that correspond to the 
ability level will not be effective if the nature of the 
items cannot be clearly specified. 

The confi rmatory IRT models include parameters 
that can represent cognitive theory variables to de­
scribe the processing characteristics of the items. 
Two models will be described below. 

Unidimensional Models 

LINEAR LOGISTIC LATENT TRAIT MODEL. The 
linear logistic latent trait model (LLTM; Fischer, 
1973) incorporates item stimulus features into the 
prediction of item success. For example, if the item 
stimulus features that influence processes are speci­
fied numerically (or categorically) for each item, as 
in a mathematical model of item accuracy, then the 
impact of processes in each item may be estimated 
directly as follows: 

P(X
ij 

= 1 1t/
j

• Tk) = exp(t/ j - ~kTlllqik) 
1 + exp(t/ j - ~k Tkqik) 

(19.3) 

where qik is the value of stimulus feature k in item I, 
Tk is the weight of stimulus feature k in item diffi­
culty, and t/ j is the ability for person j. 

To give an example, consider the matrix task 
in Figure 19.4. The Abstract Reasoning Test (ART; 
Embretson, 1995) contains matrix items that were 
designed to reflect Carpenter, Just, and Shell's (1990) 
theory of processing. Carpen ter et al.'s (1990) theory 
emphasized working memory requirements and ab­
straction as underlying processing difficulty. Work­
ing memory requirements for solving a matrix prob­
lem were influenced by the number of relational 
tokens in a problem. Abstraction was influenced by 
abstract correspondence among elements (e.g., cor­
respondence due to common properties rather than 
common objects) or null values. 

ART items were generated mechanically by speci­
fying 30 formal structures that defined various com­
binations of number and type of rules. In addition, 
some drawing principles were specified . The draw­
ing principles specified whether objects in each po­
sition of the matrix were overlaid (objects placed 
inside other objects), fused (separate object appear­
ing as a single object), or distorted (corresponding 
objects are perceptually distorted versions of each 
other) . Five clone items that involved the same 
number and type of rules, but different stimuli and 
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attributes, were generated for each 
structure. 

For the ART item in Figure 19.5, 
th ree relationships are involved. 
Two relationships are pairwise pro­
gressions in which the attributes are 
changing across the rows (orienta­
tion of the interior lines) or across 
the columns (i.e., number of lines). 
The third relationship is a distribu­
tion of three elements in which the 
oval, diamond, and rectangle are dis­
tributed to appear once in every row 
and column. None of the relation-

® 
I~I 

<§> 

ships involve a null value, and correspondence is 
not based on abstract properties. The drawing prin­
ciples specified overlay (i.e., the lines are inside the 
shapes) but show no fusion or distortion. 

To operationalize the Carpenter et al. (1990) the­
ory into a mathematical model, each ART item 
was· scored for number of rules and abstract corre­
spondence, which ope rationalizes working-memory 
load and abstraction, respectively. Further, each 
item was also scored on the three drawing princi­
ples. Then, the 150 items were placed in 5 forms 
of 30 items each, with 4 additional items that 
appeared in every form to link estimates. The 5 
forms were randomly assigned to 5 groups of about 
250 participants each (see Embretson, 1995, for 
details) . 

Table 19.1 presents the LLTM estimates, standard 
errors, and t values that were obtained. Model fit 
for LLTM was comparable to a multiple correlation 
of .76. Although item difficulties are not fully ex­
plained by the variables in the mo-
del, moderately good prediction was 

[]] <» 1 <§> 2 ~ 
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FIGURE 19.5. An item from the Abstract Reasoning Test. 

culty is decomposed as follows: 

= .67(3) + 1.49(0) + .88(0) - .31(0) + .96(1) - 2.39. 

= 2.01 + 0 + 0 + 0 + .96 - 2.39 
= .58. (19.4) 

Thus, the item is predicted to be moderately difficult 
(.58), and the primary source of difficulty is working­
meniory load. Other items, in contrast, could be 
difficult primarily from other factors, such as ab­
stract correspondence. 

T R EE- BASED REGR ESSION . Sheehan (in press) 
has applied tree-based regression to enhance the 
meaning of the ability scale. In this method, clusters 
of homogeneous items with respect to skill compo­
nents are located on the common lRT scale for item 
difficulty and ability. Persons' abilities can be de­
scribed by the characteristics of the clusters at their 

obtained. Table 19.1 shows that the 
number of rules, which operation­
alizes working memory, is the most 
highly significant variable. How­
ever, abstract correspondence and 
two drawing principles were also 
significan t. 

TABLE 19.1 . LLTM Estimates for Extended Carpenter et al. Model 
on ARTa 

An item can be decomposed into 
its processing contributions by mul­
tiplying the value of the stimulus 
feature qik times its weight. Thus, for 
the item in Figure 19.4, item diffi-

LLTM 

processing Variable Scored Variable weight Tm SE 

Working Memory Load Number of Rules .67 .09 
Abstraction Abstract 1.49 .25 

Correspondence 
Drawing Principles Distortion .88 .29 

Fusion -.31 .24 
Overlay .96 .20 

a The model also included dummy variables to represent key position. 

7.14 
5.99 

3.05 
-1.31 

4.73 
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level. The item clusters are hierarchically organized; 
clusters are merged at higher levels based on com­
mon global properties. The cluster structure is deter­
mined by regressing IRT item difficulty on a set of 
binary predictors that reflect substantive item prop­
erties. As in LLTM analyses, items are scored on inde­
pendent variables that represent sources of process­
ing difficulty. 

For example, Sheehan (in press) has applied tree­
based regression to mathematical reasoning items. 
At the highest level, two clusters of items were 
formed; thus, items were parsed into two-class 
concrete versus abstract schemas. The binary vari­
able that represented schema type had the strongest 
relationship to item difficulty. At the next level, the 
number of independent equations in the items de­
fined the clusters. Number of independent equa­
tions had four levels, which were represented by 
three binary variables. These clusters for equations 
are nested within schema. Thus, within concrete 
schema, for example, items were parsed into clusters 
with one, two, three, or four equations. Similarly, 
items were also clustered by number of equations 
within abstract schema. 

All clusters, regardless of hierarchical level, can be 
located on a common continuum for item difficulty 
and ability. Thus, for a given ability level, meaning 
may be enhanced by referring to the properties of 
the item clusters that correspond to that level. 

SOME APPLICA nONS. The confirmatory IRT 
models described above have been applied to verbal 
and nonverbal items that measure intelligence. 
Embretson and Reise (in press) summarize these 
applications in a chapter on applications of IRT to 
cognition and life span. For example, applications 
of LLTM to nonverbal abilities includes studies 
of basic components in mathematical reasoning, 
abstract reasoning (Le., matrix problems), geometric 
analogies, spatial visualization, and developmental 
balance problems. Applications of LLTM to verbal 
measures of ability include verbal comprehension, 
verbal analogies, and literacy. Applications of tree­
based regression are just now appearing but in­
clude mathematical reasoning items and reading 
comprehension items. 

IMPLICATIONS FOR MEASURING AND UNDER­

STANDING INTELLIGENCE. Applications of both 

LLTM and tree-based regression can lead to (1) en­
hanced construct validity, (2) enhanced meaning for 
ability, and (3) item selection by cognitive proper­
ties. Each of these advantages will be elaborated, in 
turn. 

For the first advantage, construct validity is en­
hanced by explicating the processes involved in 
item difficulty. The construct representation as­
pect of construct validity (see Embretson, 1983) is 
supported by elaborating the theoretical nature of 
the constructs reflected in test performance. It is 
most adequately studied by cognitive psychology 
methods such as mathematical modeling. The pre­
diction model in LLTM and the item bundles in 
tree-based regression explicate the relative impact of 
various processes or knowledge structures on item 
difficulty. 

For the second advantage, it should clearly be 
noted that the confirmatory unidimensional IRT 
models probably do not result in defining any new 
dimensions of intelligence. Instead, the IRT prop­
erty of item-referenced meaning for ability is ex­
tended by describing the processing properties of 
items. Rather than merely show items that corre­
spond to a person's ability, the investigator can show 
that items can be described by the processes and 
knowledge structures involved in their solution. 

For the third advantage, decomposing items into 
cognitive components permits items to be selected 
by their cognitive properties. For example, if the 
construct to be measured is deemed to require a 
combination of processes, then these processes can 
be balanced across item subsets to reflect the desired 
combinations. For ART items, for example, if both 
abstraction and working memory are to be reflected 
in the measured ability, then items that include both 
sources of processing difficulty can be selected. This 
advantage can lead to selecting items that are more 
pure measures of targeted constructs. 

Multidimensional Models 

If ability test items are complex tasks with mul­
tiple processing stages, each stage may require 
a different ability. Multidimensional IRT models 
contain two or more abilities for each person . The 
confirmatory IRT models contain design structures 
to link items to underlying cognitive variables. The 
variables in the design structures can be derived 
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from cognitive psychology research to identify pro­
cesses, strategies, or knowledge structures from item 
responses. 

It should be noted that exploratory IRT models 
with multiple dimensions are also available. For ex­
ample, Bock, Gibbons, and Muraki (1987) devel­
oped a multidimensional IRT model in which a 
linear combination of several abilities predicts item­
solving probabilities. The exploratory multidimen­
sional IRT models are very similar to factor anal­
ysis models . In fact, Bock et al. (1987) described 
their model as full-information factor analysis. It is 
full information in the sense that item responses 
are modeled, and hence the full dataset is used to 
estimate parameters. In contrast, factor-analysis at­
tempts to model statistics that have been computed 
on the data; namely, correlations. The exploratory 
multidimensional IRT models are more appropriate 
than factor analysis for binary data or for data with 
discrete categories. 

In this section, only confirmatory IRT models will 
be considered. Although the exploratory multidi­
mensional IRT models are more justifiable for ana­
lyzing item level data, the models do not identify 
dimensions that differ much from factor analysis. 
Although confirmatory factor analysis models, in 
some applications, can identify new aspects of in­
dividual differences, little attention has been given 
to measurement from item level data . The confir­
matory multidimensional IRT models, however, do 
have potential for identifying new aspects of indi­
vidual differences. 

In this section, only a few confirmatory IRT mod­
els will be presented. Confirmatory IRT modeling 
is a rapidly expanding area. This section cannot re­
view all these developments, but several models will 
be mentioned here. The reader is referred to the 
Embretson (1983) Handbook of Modem Item Response 
Theory for more details on several models. 

Models for Independent Processing 
Components 

MLTM AND GLTM. The general component la­
tent trait model (GLTM, Embretson, 1984) measures 
(1) abilities on covert processing components, (2) 
item difficulties on processing components, and 
(3) the relationship of item stimulus features to 
component processing difficulties. GLTM is a gen-

eralization of MLTM (Whitely,' 1980) and is a non­
compensatory model appropriate for tasks that 
require correct outcomes on several processing com­
ponents. 

Two types of mathematical models as well as an 
IRT model are specified by GLTM. The first model 
in GLTM specifies how component outcomes are re­
lated to item solving. In GLTM, item success is as­
sumed to require success on all underlying compo­
nents. If any component is failed, then the item 
is not successfully solved. Thus, GLTM is a non­
compensatory model that gives the probability of 
success for person j on item I , Xi;T, as the product 
of successes on the underlying components Xi;m. as 
follows : 

P(Xi;T = 1) = n lT/p(Xi;1II = 1) (19.5) 

Although the component outcomes are covert, they 
may be operationalized by subtasks or by special 
constraints on the GLTM model without sub tasks 
(see the following paragraphs for details). 

The second mathematical model in GLTM spec­
ifies how item features influence component diffi­
CUlty. Essentially, each component item difficulty is 
modeled by a linear combination of scored item fea­
tures as in LLTM above. The third model in GLTM is 
an IRT model. A Rasch model gives the component 
success probabilities as a combination of ability and 
item difficulty. These three models are represented 
in GLTM in the following equation: 

(19.6) 

where 'kill is the weight of stimulus factor k in com­
ponent m, qiklll is the score of stimulus factor k on 
component m for item i, and ();III is the ability level 
of person i on component m. Like LLTM, item dif­
ficulty is replaced with a linear combination of the 
item features, which predict item difficulty. 

To give an example, Maris (1995) applied MLTM 
to estimate two components, generation and evalua­
tion, that were postulated to underlie success in syn­
onym items. The results had several implications. 
First, Maris' results further elaborated the construct 

• S. E. Embretson has published previously as S. E. Whitely. 
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representation of synonym items; the generation 
component was much stronger than the evaluation 
component in contributing to item solving. Second, 
generation ability and evaluation ability were mea­
sured for each person. Thus, diagnostic information 
about the source of performance may be obtained by 
comparing the relative strength of the two abilities. 
Third, the contributions of each component to the 
difficulty of each item could also be described. Such 
information is useful for selecting items to measure 
specified sources of difficulty. 

Originally, both MLTM and GLTM required com­
ponent responses, as well as the total item response, 
to estimate the component parameters. Now, how­
ever, GLTM can be applied to the total item task 
directly without subtasks if a strong cognitive 
model of item difficulty is available. That is, if stim­
ulus features are known to predict item difficulty 
strongly, they may be used to place constraints on 
the GLTM solution when applied with Maris' (1995) 
missing-data algorithm. GLTM has been applied to 
measure individual differences in working-memory 
capacity versus control processing on abstract rea­
soning items (Embretson, 1995) and on spatial vis­
ualization items (Schmidt McCollam, 1998). 

Models for Contrasting Experimental 
Task Conditions 

Several IRT models can identify abilities by con­
trasting a person's performance over varying con­
ditions. These IRT models interface well with 
contemporary cognitive experiments that use 
within-subject designs in which each person re­
ceives several conditions. In these experiments, 
construct impact is estimated by comparing perfor­
mance across conditions. A similar approach can 
be applied in testing to measure individual differ­
ences in construct impact. Calculating performance 
differences directly for a person, say by subtracting 
one score from another, has well-known psycho­
metric limitations (see Bereiter, 1963). Some new 
confirmatory IRT models, however, can provide 
psychometrically defensible alternatives. Several 
general models have been proposed, including 
Adams and Wilson (1996); DiBello, Stout, and 
Roussos (1995); and Embretson (1994, 1997). Like 
all structured IRT models, performance under a cer­
tain condition or occasion is postulated to depend 
on a specified combination of underlying abilities. 

Like confirmatory factor analysis, the specification 
is determined from theory. 

These models may be illustrated by elaborating a 
special case, the multidimensional Rasch model for 
learning and change (MRMLC; Embretson, 1991), 
which measures a person's initial ability and one or 
more modifiabilities from repeated measurements. 
MRMLC contains a Wiener process design structure 
(shown below) to relate the items to initial ability 
and the modifiabilities. The Wiener process struc­
ture increases in the n umber of dimensions involved 
in performance across time or conditions. Complex 
cognitive data often have properties that correspond 
to the Wiener processing design structure, that is, in­
creasing variances and decreasing correlations over 
time (see Embretson, 1991). 

A general structured latent trait model (SLTM; 
Embretson, 1997) that includes MRMLC is given as 
follows: 

exp(EmAi(k)m 8 jlll - bi ) 

1 + exp(Em Ai(k)m8 jm - bi ) ' 

(19 .7) 

where 8j1 is initial ability level and 8 j2 , ... , 8 jm are 
modifiabilities between successive occasions or con­
ditions, and bi is difficulty for item i. The weight 
Ai(k)m is the weight of ability m in item i under occa­
sion k . In MRMLC the weight is specified as 0 or I , 
depending on the occasion. The Wiener process de­
sign structure determines which ability is involved 
on each occasion. For three occasions the structure, 
A, is specified as fo llows: 

Ability 

Occasion 8J 82 83 

1 1 0 0 

A= 2 1 1 0 

3 1 1 1 

Thus, on the first occasion, only initial ability is in­
volved. On the second occasion, both initial ability 
and the first modifiability are involved. 

A recent application of MRMLC appears in 
Schmidt McCollam (1998). A dynamic test of spa­
tial visualization ability with measures at three 
time points was analyzed by MRMLC for older and 
younger adults. Ability was estimated at time 1 
(Pretest), after physical analogue training at time 2 
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FIGURE 19.6. Means for initial spatial ability and two spatial 
modlfiabilitles In young and older adults. 

(Modifiability I), and after verbal-analytic training 
at time 3 (Modifiability 2) for both age groups. The 
Age x Occasion interaction was statistically signifi­
cant, F(2, 352) = 30.33 , P < .0005. It can be seen 
from Figure 19.6 that, although younger adults' ini­
tial pretest ability was greater than that of older 
adults, neither modifiability differed significantly. 
Analyses using raw scores failed to show the same 
trends. Because MRMLC is a Rasch-family model, 
it does have justifiable interval level measurement. 
Hence, MRMLC provides a more justifiable index of 
age group differences. 

Equation 19.7 is obviously more general than 
MRMLC. Other design structures can be developed 
to represent specific comparisons or contrasts be­
tween conditions such as trends or Helmert con­
trasts and more. 

Models for Distinct Classes of Persons 

Several IRT models can identify groups of persons 
that differ qualitatively in their response patterns. 
On many cognitive tasks, persons have different 
knowledge bases or apply different strategies for 
item solving. The relative difficulty of the tasks de­
pends on which knowledge structure or strategy is 
being applied. For example, in many spatial ability 
tests, items may be solved by either a spatial or a 
verbal strategy. Or, for another example, suppose 
that the source of knowledge for an achievement 
test differs between persons (e.g., formal education 

versus practical experience). In both cases, the 
groups are distinguished by a different pattern of 
item difficulties . 

MIXED RASCH MODEL. The mixed population 
Rasch model (MIRA; Rost, 1990) has the follow­
ing properties: (1) latent classes are identified from 
characteristic response patterns, (2) abilities are es­
timated for each person within each class, and 
(3) class membership is estimated for each person. 
In MIRA, IRT is combined with latent class analysis. 
The meaning of the ability level depends on the class 
because the item difficulties are ordered differently. 
The Mixed Rasch Model is given as follows: 

P X· - 1 - "" IT exp(Bjg + big) 
( 'I - ) - ~ g 1 + exp(Bjg + big) 

g 

(19.8) 

where Bjg = B for person j in group g, big = easiness 
for item I in group g, and ITg = the class size parame­
ter or mixing proportion. ote that big in this model 
is designated as item easiness. The b-value has a re­
verse sign from item difficulty. The constraint 

deSignates the sum of the mixing proportions over 
all groups as equal to l. 

MIRA analyses enable estimation of class mem­
bership based upon different patterns of responses. 
Advantages of applying MIRA include (1) increased 
knowledge of construct representation for the test 
and (2) identification of a possible moderator 
variable (Le., the latent class) that influences the pre­
diction of criterion behaviors or other tasks. 

An application that illustrates the properties of 
MIRA is a study by Schmidt McCollam (1998). A spa­
tial visua lization test was administered to a sample 
of adults and then analyzed with MIRA. Because it 
is well known that spatial solution strategies dif­
fer among persons, it was hypothesized that these 
strategy differences defined distinct latent classes. A 
goodness of fit test for MIRA indicated a two-class so­
lution best fit the data. In one class, item difficulty 
patterns were highly related to spatial processing 
features of the items, whereas in the other it was not. 
Further, the external correlates of abilities from the 
two classes further indicated that the classes were 
spatial processing versus verbal-analytic processing. 
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An inspection of the mixing proportions indicated 
that 38% of the sample belonged to a verbal-analytic 
class and 62% belonged to a spatial processing class. 

Thus, these results suggested qualitative as well 
as quantitative differences between persons. The re­
sults not only reflect widely held hypotheses about 
spatial processing but further allow assessment of in­
dividuals for processing strategies. 

SALTUS: A DEVELOPMENTAL MODEL. Wilson 
(1989) designed the Saltus model as a developmental 
extension of the Rasch (1960) model to measure dis­
continuous stage changes in persons. Saltus is the 
Latin word for leap. The Saltus model measures state 
changes by using multiple tasks at each of various 
developmental levels . Wilson (1989) described the 
Saltus model in terms of Fischer et al.'s (1984) dis­
tinctions between first-order and second-order dis­
continuities. First-order discontinuities are sudden 
or abrupt changes in a single ability, whereas second­
order discontinuities are these changes occurring 
in at least two domains. The Rasch model is used 
for first-order discontinuities, and the Saltus model, 
which estimates parameters for persons, domains, 
and levels, is used for second-order discontinuities. 

The Saltus model also can be viewed as a refine­
ment of Guttman's scalogram model (1944) , which 
assumes that one item exists per level. A person is as­
signed to a given level based upon passing all previ­
ous items and failing all subsequent items. There are 
three major shortcomings of the scalogram model: 
(1) persons are discarded who do not adhere to the 
ordinal scalogram model, (2) the use of one item 
per level assumes that the exact nature determining 
the item's difficulty is known, and relatedly (3) the 
use of one item per level assumes no replication of 
task is needed. Wilson (1989) applied Rasch's prob­
abilistic approach and interval scaling in Saltus to 
resolve the scalogram adherence problem. Further, 
Wilson (1989) noted that multiple tasks tied to cog­
nitive theory can resolve the nature and replication 
problems. 

A necessary part of first-order discontinuity for 
Wilson's Saltus model is segmentation, or the differ­
ences between difficulty across levels. Segmentation 
consistent with first-order discontinuity requires the 
item difficulties between levels be nonoverlapping. 
The Saltus model, in addition to ej and bi , contains 
parameters to represent stages for persons and to 

represent the impact of stages on different types of 
items. An important aspect of Saltus is its extension 
of IRT to cognitive task data that otherwise would 
not fit IRT models . Further, the impact of stages on 
different types of tasks further elaborates the nature 
of developmental changes. 

COGNITIVE DIAGNOSTIC ASSESSMENT. The 
rule-space methodology (Tatsuoka, 1983, 1984) clas­
sifies persons on the basis on their knowledge states, 
and measures overall ability level. For example, 
a person's score on a mathematical test indicates 
overall performance levels but does not usually 
diagnose processes or knowledge structures that 
need remediation. The rule-space methodology 
provides diagnostic information about the meaning 
of a person's response pattern. The meaningfulness 
of the diagnostic assessment depends directly on 
the quality of the cognitive theory behind the attri­
butes and resulting knowledge states. The rule­
space methodology has been applied to ability 
and achievement tests and to both verbal and 
nonverbal tests (see Embretson & Reise, in press, for 
a summary). 

A basic rule space is defined by two dimen­
sions, the ability level (namely ej from an IRT 
model), and by a fit index (I,"j). Ability, of course, 
represents overall performance, and the fit index 
measures the typicality of the person's response 
pattern. For example, passing hard items and fail­
ing easy items is an atypical response pattern that 
would yield an extreme value for a fit index. Fit in­
dices are calculated by comparing the person's re-

. sponse pattern to the predictions given by the IRT 
model. 

Figure 19.7 plots both persons and knowledge 
states into the rule space from ability level and fit . 
Persons are classified into knowledge states by the 
distances of their response patterns from the loca­
tions of the knowledge states. Obviously, persons 
are plotted directly to the rule space because both 
ability level and fit are estimated . Locating a knowl­
edge state requires some intermediate steps. First, 
an attribute incidence matrix is scored to reflect 
which attributes are required to solve each item. 
This is the first step in which cognitive theory is 
implemented. Second, knowledge states are defined 
from patterns of attributes . Knowledge states are ex­
tracted empirically by applying a Boolean clustering 
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algorithm to the attribute incidence 
matrix. Third, an ideal response pat­
tern is generated for each knowl­
edge state; that is, the ideal response 
pattern specifies the items that are 
passed and failed by someone in the 
knowledge state. Like a person, an 
ideal response pattern can be scored 
for ability (Le., from total number of 
items passed) and for a fit index. 
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The confirmatory multidimension­
al IRT models can readily be inter­
faced with cognitive theory to un-
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derstand intelligence. Unlike factor 
analysis, IRT focuses on the basis of item response 
rather than on decomposition of whole variables. 
The models include parameters to represent both 
persons and items. 

Several advantages for measuring and understand­
ing intelligence result from interfacing the confir­
matory IRT models with cognitive theory. For items, 
the impact of various cognitive processes on item 
difficulty can be estimated from models such as 
LLTM or tree-based regression. In turn, these param­
eters can be used to select items by their processing 
demands. Recent research has also shown the poten­
tial to generate items from cognitive theory and to 
anticipate their psychometric properties by confir­
matory IRT models (Embretson, in press). For per­
sons, the confirmatory IRT models are more flexible 
in how abilities may be combined in processing an 
item. Multiple abilities are not restricted to a com­
pensatory relationship as in factor analysis. In fact, 
compensatory models, such as linear combinations, 
do not interface well with contemporary theory in 
cogn itive psychology. Noncompensatory IRT mod­
els better represent cognitive processes as indepen­
dent events that must all be processed successfully. 

Perhaps even more important is the potential of 
confirmatory IRT models to measure new aspects 
of individual differences. For example, qualitative 
differences in the basis of item responding can 
be assessed with the mixed Rasch model or with 

-2 -1 o 2 3 

Ability Level 

FIGURE 19.7. The rule space of ability level by misfit. 

Tatsuoka's cognitive diagnostic assessment method. 
Further, individual differences in the component 
resources that underlie test performance can be as­
sessed with the multicomponent latent trait model 
or the general latent trait model. Last, the differen­
tial sensitivity of persons to treatments or condi­
tions that are varied during a testing session may be 
measured with the structured latent trait model. 

These are just a few examples of the rapidly emerg­
ing field of confirmatory IRT models. Although such 
models are not fully implemented in testing as yet, 
relevant basic research to operationalize these mod­
els is expanding. At one major test publisher, Edu­
cational Testing Service, applications of diagnostic 
assessment and tree-based regression are now being 
considered. 

SUMMARY 

In this chapter we reviewed two types of psychomet­
ric models for impact on measuring and understand­
ing intelligence. Factor analytic models and item 
response theory models are major psychometric ap­
proaches that are being applied to current measures 
of intelligence. 

The factor analytic tradition was reviewed first be­
cause it has been the psychometric model with the 
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longest history. Until the mid-1970s, factor anal­
ysis was a predominant paradigm for understand­
ing human intelligence. Understanding ability was 
synonymous with discovering the number and the 
nature of the underlying factors. Unidimensional 
and multiple factor models were reviewed for im­
pact on current measurement practice. Although 
Spearman postulated a central factor in intelligence 
nearly a century ago, many contemporary intelli­
gence tests provide an index of general intelligence. 
Similarly, multiple factor theories, such as those pro­
posed by Thurstone and Guilford, have a history 
of at least one-half century and, again, contempo­
rary tests that involve these factors remain avail­
able. Perhaps most influential for current measures 
of intelligence are the hierarchical factor theories. 
Many intelligence tests now report several scores 
at different levels of abstraction. Broad and narrow 
indices of ability are reported in tests such as the 
Stanford-Binet IV and the Differential Ability Scales, 
for example. Cattell and Horn's distinction between 
fluid and crystallized intelligence has been partic­
ularly influential, for many contemporary intelli­
gence tests provide these estimates. 

Item response theory methods were developed 
much more recently. For example, Rasch developed 
his IRT model in 1960. Currently, IRT is being ap­
plied in many contemporary tests to solve practi­
cal testing problems such as equating adaptive tests. 
The advantages of IRT were briefly reviewed, and 
two popular unidimensional IRT models were pre­
sented. Applications of these models have little po­
tential to provide understanding of the nature of 
intelligence, however, or to define new aspects of in­
dividual differences. 

However, a family of confirmatory IRT models is 
rapidly developing. These models have the poten­
tial to replace factor analysis as a tool for under­
standing intelligence. In fact, the exploratory multi­
dimensional IRT models are equivalent to a full 
information factor analysis for item level data. In 
general, however, the IRT models are better in­
terfaced with cognitive psychological approaches 
to understanding intelligence than are the factor 
analytic models for several reasons. First, it was 
shown that IRT models are applied to individual 
task responses like mathematical modeling in cog­
nitive psychology. Second, the confirmatory IRT 
models utilize similar independent variables for 

modeling item difficulty as cognitive psychological 
approaches. The linear logistic latent trait model, 
for example, can utilize the same stimulus design 
data as mathematical modeling of response times. 
Third, confirmatory multidimensional IRT models 
have the potential to characterize qualitative vari­
ables more fully such as differing knowledge states 
and strategies. For example, the mixed Rasch model 
and diagnostic assessment can diagnose groups of 
person whose response patterns differ systematically 
from other response patterns. Fourth, confirmatory 
multidimensional IRT models have also been pro­
posed to measure individual sensitivity to various 
interventions or conditions. Within-subject varia­
tions are commonly used in cognitive psychology 
to test hypotheses about processing mechanisms. 
Similar task variations can be applied in intelligence 
measurement to assess individual differences in sen­
sitivity to processing. 

If another Handbook of Intelligence is published 
several years from now, we predict that IRT-based 
approaches will predominate for measuring and 
understanding intelligence. Further, we anticipate 
a broad array of new types of individual differ­
ences to result from the application of the newer 
confirmatory IRT models. These new models can 
assess individual differences in knowledge struc­
tures, strategies, processing components, modifia­
bility, and more if applied in the context of well­
understood cognitive ability items. 
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